lLearn to:

- Create amazing apps for the latest
Android smartphones and tablets

- Download and install the SDK and
start working with the Android
Studio tools

- Adapt your apps for use on Android
watches and TVs

« Publish your apps to the Google
Play~ Store

Michael Burton

Android™
Application
Development

3rd Edition

by Michael Burton

DUMMIES

Android™ Application Development For Dummies®, 3rd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 0703015774,

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 74816011, fax (201) 74816008, or online at

http: www.wilev.com/go/permissions.

Portions of this page are based on work created and shared by the Android Open Source Project
and used according to terms described in the Creative Commons 2.5 Attribution License.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and may not be used without written permission. Android is a trademark of Google, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE
AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO
WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORKIS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS
READ.

http://www.wiley.com
http://www.wiley.com/go/permissions

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877176212974, outside the U.S. at 317157213993, or fax 3171572l
4002. For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by printlonldemand. Some
material included with standard print versions of this book may not be included in elbooks or in
printlonldemand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014954664

http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Android™ Application Development For
Dummies®

Visit www.dummies.com/cheatsheet/androidappdevelopment to
view this book's cheat sheet.

Table of Contents
Cover

Introduction
About This Book

Conventions Used in This Book

Foolish Assumptions

How This Book Is Organized

Icons Used in This Book
Beyond the Book

Part I: Getting Started with Your First Android Application
Chapter 1: Developing Spectacular Android Applications
Why Develop for Android?

Android Development Basics

Hardware Tools

Software Tools

Chapter 2: Prepping Your Development Headquarters
Developing the Android Developer Inside You
Assembling Your Toolkit

Tuning Up Your Hardware

Installing and Configuring Your Support Tools
Installing Android Studio

Installing Java 7

Adding SDK Packages

Navigating the Android SDK

Specifying Android Platforms

Using SDK Tools for Everyday Development
Part Il: Building and Publishing Your First Application
Chapter 3: Your First Android Project
Starting a New Project in Android Studio

Responding to Errors

http://www.dummies.com/cheatsheet/androidappdevelopment

Setting Up an Emulator
Running the Hello Android App

Understanding Project Structure

Chapter 4: Creating the User Interface
Creating the Silent Mode Toggle Application

Laying Out the Application

Adding an Image to Your Application

Creating a Launcher Icon for the Application

Previewing the Application in the Visual Designer

Chapter 5: Coding Your Application

Understanding Activities and the Activity Lifecycle

Creating Your First Activity

W orking with the Android Framework Classes

Installing Your Application

Material Design
UhlOh! (Responding to Errors)
Thinking Beyond the Application Boundaries

Chapter 6: Understanding Android Resources

Understanding Resources

W orking with Resources

Different Strokes for Different Folks: Using Resource Qualifier Directories

Chapter 7: Turning Your Application into an App Widget
Working with App Widgets in Android
Working with Intents and Pending Intents
Creating the App Widget

Placing Your Widget on the Home Screen

Chapter 8: Publishing Your App to the Google Play Store

Creating a Distributable File

Creating a Google Play Developer Profile

Pricing Your Application

Getting Screen Shots for Your Application

Uploading Your Application to the Google Play Store

Watching the Number of Installs Soar

Part lll: Creating a FeaturelRich Application
Chapter 9: Designing the Tasks Application

Reviewing the Basic Requirements

Creating the Application’s Screens

Chapter 10: Creating the Task Detail Page
Creatina the TaskEditActivity

vieduily uie 1dSKEUILRACLVILY

Linking the List View to the Edit View

Creating the TaskEditFragment

You Put the Fragment in the Activity and Shake It All Up
Updating the Styles

A Special Bonus

Chapter 11: Going a la Carte with Your Menu

Understanding Options and Context Menus

Creating Your First Menu

Creating a LonglPress Action

Chapter 12: Handling User Input

Creating the User Input Interface

Getting Choosy with Dates and Times

Creating an Alert Dialog

Validating Input

Chapter 13: Getting Persistent with Data Storage
Finding Places to Put Data
Understanding How the SQLite ContentProvider \Works
Creating Your Application’s SQLite Database

Using ContentProvider URIs
Dealing with CRUD

Implementing the Save Button

Implementing the List View
Reading Data into the Edit Page

Chapter 14: Reminding the User
Seeing Why You Need AlarmManager

Asking the User for Permission

Waking Up a Process with AlarmManager

Updating a Notification

Clearing a Notification

Rebooting Devices

Chapter 15: Working with Android Preferences

Understanding the Android Preferences Framework

Understanding the PreferenceFragment Class

Creating Your Preferences Screen

W orking with the PreferenceFragment Class

Working with Preferences in Your Activities at Runtime
Part IV: Android Is More than Phones
Chapter 16: Developing for Tablets

Considering the Differences between Phones and Tablets
Tweaking the Tasks App for Tablets

Configuring a Tablet Emulator

Creating a New Product Flavor

Creating an AndroidManifest for Phones

Creating an AndroidManifest for Tablets

Making the TaskListAndEditorActivity for Tablets
Building the Tablet App

Adding the App Callbacks

One More Thing . ..

Chapter 17: Supporting Older Versions of Android
Understanding AppCompat
Updating the build File
Adding the Toolbar
Using the AppCompat Theme
Testing Your App
Working with RightltolLeft Languages
Fixing the Add Task Menu
Fixing the Window Options

Using Newer APIs
Using Android Lint

Chapter 18: Wearing the Tasks App

Preparing Your Development Environment

Creating a New Wear App

Publishing the Data from Your Phone
Running the App without Android Studio
Packaging the App
What's Next?

Chapter 19: Look Ma, 'm on TV!
Understanding Guidelines for Building TV Apps
Building and Manifesting Changes

Adding the BrowseActivity

Creating the TV Browse Fragment

Creating the CardPresenter

Running Your App
Adding and Editing ltems

Creating Backgrounds

Creating More Filters

Chapter 20: Moving beyond Google

Working around Google Features

Setting Up the Fire SDK

Setting Up Your Fire or Emulator
Publishing to Amazon Appstore for Android

Part V: The Part of Tens

Chapter 21: Ten Free Sample Applications and SDKs
Android Samples
The Google /O App
KI9 Mail
GitHub Android App
Facebook SDK for Android
Notepad Tutorial
U+2020
Lollipop Easter Egg
Android Bootstrap
The AOSP

Chapter 22: Ten Tools to Simplify Your Development Life
Android Lint
Android Systrace
RoboGuice and Dagger

Translator Toolkit

Hierarchy Viewer

UlI/Application Exerciser Monkey
Git and GitHub
Picasso and OkHitp

Memory Analyzer Tool

Travislci

About the Author
Cheat Sheet
Connect with Dummies

End User License Agreement

Introduction

Welcome to Android Application Development For Dummies!

When Android was acquired by Google in 2005 (yes, Android was a startlup company at one
point), a lot of people didn’t have much interest in it because Google hadn’t yet entered the mobile
space. Fastlforward to a few years later, when Google announced its first Android phone: the G1.
It was the start of something huge.

The G1 was the first publicly released Android device. It didn’t match the rich feature set of the
1Phone at the time, but a lot of people believed in the platform. As soon as Donut (Android 1.6)
was released, it was evident that Google was putting some effort into the product. Immediately
after version 1.6 was released, talk of 2.0 was already on the horizon.

Today, we’re on version 5.0 of the Android platform, with no signs that things are slowing down.
Without doubt, this is an exciting time in Android development.

About This Book

Android Application Development For Dummies s a beginner’s guide to developing Android
applications. You don’t need any Android application development experience under your belt to
get started.

The Android platformis a device £ndependent platform, which means that you can develop
applications for various devices. These devices include, but aren’t limited to phones, watches,
tablets, cars, elbook readers, netbooks, televisions, and GPS devices.

Finding out how to develop for the Android platform opens a large variety of development options
for you. This book distills hundreds, if not thousands, of pages of Android documentation, tips,
tricks, and tutorials into a short, digestible format that allows you to springboard into your future
as an Android developer. This book isn’t a recipe book, but it gives you the basic knowledge to
assemble various pieces of the Android framework to create interactive and compelling
applications.

Conventions Used in This Book

Throughout the book, you use the Android framework classes, and you’ll create Java classes and
XML files.

Code examples in this book appear in a monospace font so that they stand out from other text in the
book. This means that the code you’ll see looks like this:

public class MainActivity

Java is a highllevel programming language that is caselsensitive, so be sure to enter the text into
the editor exactly as you see it in the book. The examples follow standard Java conventions so you
can transition easily between the book examples and the example code provided by the Android

Software Development Kit (SDK). All class names, for example, appear in PascalCase
format.

All the URLs in the book appear in monospace font as well:

http://d.android.com

Foolish Assumptions

To begin programming with Android, you need a computer that runs one of the following operating
systems:

1 Windows 2003, Vista, 7 or 8
1 Mac OS X 10.8.5 or later
1 Linux GNOME or KDE

You also need to download Android Studio (which is free) and the Java Development Kit (or
JDK, which is also free), if you don’t already have them on your computer. Chapter 2 outlines the
entire installation process for all the tools and frameworks.

Because Android applications are developed in the Java programming language, you need to
understand the Java language. Android also uses XML quite heavily to define various resources
inside the application, so you should understand XML too. You don’t have to be an expert in these
languages, however.

You don’t need a physical Android device, because all the applications you build in this book will
work on an emulator.

http://d.android.com

How This Book Is Organized

Android Application Development For Dummies has five parts, described in the following
sections.

Part I: Getting Started with Your First Android Application

Part I introduces the tools and frameworks that you use to develop Android applications. It also
introduces the various SDK components and shows you how they’re used in the Android
ecosystem.

Part II: Building and Publishing Your First Android Application
Part II introduces you to building your first Android application: the Silent Mode Toggle
application. After you build the initial application, you create an app widget for the application
that you can place on the Home screen of an Android device. Then you publish your application to
the Google Play Store.

Part I11: Creating a Feature Rich Application

Part III takes your development skills up a notch by walking you through the construction of the
Tasks application, which allows users to create various tasks with reminders. You implement an
SQLite backed content provider in this multiscreen application. You also see how to use the
Android status bar to create notifications that can help increase the usability of your application.

Part IV: Android Is More than Phones

Part IV takes the phone app you built in Part III and tweaks it to work on lots of other devices,
including tablets, wearables, televisions, and the Amazon Fire.

Part V: The Part of Tens

Part V gives you a tour of sample applications that prove to be stellar launching pads for your
Android apps, and useful Android libraries that can make your Android development career a lot
easier.

Icons Used in This Book

8

This icon indicates a useful pointer that you shouldn’t skip.

hBER

|
@ This icon represents a friendly reminder about a vital point you should keep in mind while
proceeding through a particular section of the chapter.

This icon signifies that the accompanying explanation may be informative but isn’t

essential to understanding Android application development. Feel free to skip these snippets,
if you like.

\MGY

)
@/ This icon alerts you to potential problems that you may encounter along the way. Read and
remember these tidbits to avoid possible trouble.

extras S o o
This icon signifies that you’ll find additional relevant content at

www.dummies.com/extras/androidappdevelopment.

Beyond the Book

In addition to the content in this book, you’ll find some extra content available at the

www.dummies.com website:

1* The Cheat Sheet for this book at www.dummies.com/cheatsheet/androidappdevelopment

+* Online articles covering additional topics at
www.dummies.com/extras/androidappdevelopment

Here you’ll find the articles referred to on the page that introduces each part of the book. So,
feel free to visit www.dummies.com/extras/androidappdevelopment. You'll feel at home
there . . . find coffee and donuts . . . okay, maybe not the coffee and donuts, but you can find

cool supplementary information about things we couldn’t fit into the book, such as testing, GPS
location tracking, voice control, and other fun topics.

1 Updates to this book, if any, at www.dummies.com/extras/androidappdevelopment

1 Don’t want to type all the code in the book? You can download it from the book’s website at

www.dummies.com/go/androidappdevfd.

1~ If there are ever updates to this book, you can find them at

www.dummies.com/go/androidappdevifdupdates.

http://www.dummies.com/extras/androidappdevelopment
http://www.dummies.com
http://www.dummies.com/cheatsheet/androidappdevelopment
http://www.dummies.con/extras/androidappdevelopment
http://www.dummies.con/extras/androidappdevelopment
http://www.dummies.con/extras/androidappdevelopment
http://www.dummies.com/go/androidappdevfd
http://www.dummies.com/go/androidappdevfdupdates

Part |

Getting Started with Your First Android
Application

getting started
with

Your First

Android
Application

http://www.dummies.com

In this part. ..

Part I introduces you to the Android platform and describes what makes a spectacular Android
application. You explore various parts of the Android software development kit (SDK)) and see
how to use them in your applications. You install the tools and frameworks necessary to develop
Android applications.

Chapter 1
Developing Spectacular Android
Applications

In This Chapter

Seeing reasons to develop Android apps
Starting with the basics of Android development
Working with the hardware

Getting familiar with the software

Google rocks! Google acquired the Android platform in 2005 (see the sidebar “The roots of
Android,” later in this chapter) to ensure that a mobile operating system (OS) can be created and
maintained in an open platform. Google continues to pump time and resources into the Android
project. Though devices have been available only since October 2008, over a billion Android
devices have now been activated, and more than a million more are being added daily. In only a
few years, Android has already made a huge impact.

It has never been easier for Android developers to make money by developing apps. Android
users trust Google, and because your app resides in the Google Play Store, many users will be
willing to trust your app, too.

Why Develop for Android?

The real question is, “Why not develop for Android?” If you want your app to be available to
millions of users worldwide or if you want to publish apps as soon as you finish writing and
testing them or if you like developing on an open platform, you have your answer. But in case
you’re still undecided, continue reading.

Market share

As a developer, you have an opportunity to develop apps for a booming market. The number of
Android devices in use is greater than the number of devices on all other mobile operating systems
combined. The Google Play Store puts your app directly and easily into a user’s hands. Users
don’t have to search the Internet to find an app to install — they can simply go to the preinstalled
Google Play Store on their devices and have access to all your apps. Because the Google Play
Store comes preinstalled on most Android devices (see Chapter 19 for some exceptions), users
typically search the Google Play Store for all their application needs. It isn’t unusual to see an
app’s number of downloads soar in only a few days.

Time to market

Because of all the application programming interfaces (APIs) packed into Android, you can easily
develop fulllfeatured applications in a relatively short time frame. After you register as a
developer at the Google Play Store, simply upload your apps and publish them. Unlike other
mobile marketplaces, the Google Play Store has no app approval process. All you have to do is
write apps and publish them.

F

Though anyone can publish almost any type of app, maintain your good karma — and your
compliance with the Google terms of service — by producing familylfriendly apps. Android
has a diverse set of users from all over the world and of all ages.

Open platform

The Android operating system is an open platform: Any hardware manufacturer or provider can
make or sell Android devices. As you can imagine, the openness of Android has allowed it to gain
market share quickly. Feel free to dig into the Android source code to see how it works, by
visiting https://source.android.com. By using open source code, manufacturers can create
custom user interfaces (Uls) and even add new features to certain devices.

Device compatibility

Android can run on devices of many different screen sizes and resolutions, including watches,
phones, tablets, televisions, and more. Android comes supplied with tools to help you develop
applications that support multiple types of devices. If your app requires a frontlfacing camera, for
example, only devices with frontlfacing cameras can “see” your app in the Google Play Store —
an arrangement known as feature detection. (For more information on publishing your apps to the
Google Play Store, see Chapter 8.)

The roots of Android

Though most people aren’t aware of it, Google didn’t start the Android project. The first version of the Android operating
system was created by Android, Inc., a small startlup company in Silicon Valley that was purchased by Google in
August 2005. The founders (who worked for various Internet technology companies, such as Danger, Wildfire
Communications, TIMobile, and WebTV) became part of the Google team that helped create what is now the fulllfledged
Android mobile operating system.

Mashup capability

A mashup combines two or more services to create an application. You can create a mashup by
using the camera and the Android location services, for example, to take a photo with the exact
location displayed on the image. Or you can use the Map API with the Contacts list to show all
contacts on a map. You can easily make apps by combining services or libraries in countless new
and exciting ways. A few other types of mashups that can help your brain juices start pumping out
ideas include the following:

https://source.android.com

1 Geolocation and social networking: Suppose that you want to write an app that tweets a
user’s current location every ten minutes throughout the day. Using the Android location
services and a thirdlparty Twitter API (such as iTwitter), you can do it easily.

1 Geolocation and gaming: Locationlbased gaming, which is increasingly popular, is a helpful
way to inject players into the thick of a game. A game might run a background service to check
a player’s current location and compare it with other players’ locations in the same area. If a
second player 1s within a specified distance, the first one could be notified to challenge her to
a battle. All this is possible because of GPS technology on a strong platform such as Android.
If you’re interested in developing games for Android, check out
https://developers.google.com/games/services/ for more information about Google
Play Games services.

1 Contacts and Internet: With all the useful APIs at your disposal, you can easily make fulll
featured apps by combining the functionality of two or more APIs. You can combine the
Internet and names from the Contacts list to create a greetinglcard app, for example. Or you
may simply want to add an easy way for users to contact you from an app or enable them to
send your app to their friends. (See “Google APIs,” later in this chapter, for more information
on the APIs.)

HEER
"’ Developers can make Android do almost anything they want, so use your best judgment
when creating and publishing apps for mass consumption. Just because you want live

wallpaper to highlight your version of the hula in your birthday suit doesn’t mean that anyone
else wants to see it.

Android Development Basics

Thank goodness you don’t have to be a member of Mensa to develop Android applications!
Developing in Android is simple because its default language is Java. Though writing Android
applications is fairly easy, writing code in general is no easy feat.

F

If you’ve never developed applications before, this book may not be the best place to
start. Pick up a copy of Beginning Programming with Java For Dummies, by Barry Burd
(John Wiley & Sons, Inc.) to learn the ropes. After you have a basic understanding of Java
under your belt, you should be ready to tackle this book.

Although the Android operating system consists primarily of Java code, some of the framework
isn’t written in Java. Android apps use small amounts of XML in addition to Java. You need to
cement your basic understanding of XML before delving into this book.

F

If you need an introduction to XML, check out XML For Dummies, by Lucinda Dykes and

https://developers.google.com/games/services/

Ed Tittel (John Wiley & Sons, Inc.).

If you already know how to use Java and XML, then congratulations — you’re ahead of the curve.

Java: Your Android programming language

Android applications are written in Java — not the fulllblown version of Java that’s familiar to
developers using Java Platform, Enterprise Edition (JEE), but a subset of the Java libraries that
are most useful on Android. This smaller subset of Java excludes classes that aren’t suitable for

mobile devices. If you have experience in Java, you should feel right at home developing apps in
Android.

Even with a Java reference book on hand, you can always search at www.google.com or
www.stackoverflow.com to find information about topics you don’t understand. Because Java
isn’t a new language, you can find plenty of examples on the web that demonstrate how to do
virtually anything.

HhEER
&

._ “D

) H Not every class that’s available to Java programmers is also available on Android. Verify
that it’s available to you before you start trying to use it. If it’s not, an alternative is probably
bundled with Android that can work for your needs.

Activities

An Android application can consist of one or more activities. An activity serves as a container for
both the user interface and the code that runs it. You can think of activities as pages of your app —
one page in your app corresponds to one activity. Activities are discussed in more detail in

Chapters 3 and 5.

Fragments

Every “page” in an Android application is a separate activity. In older versions of Android, you
would place any element that you wanted to display onscreen directly into the Activity class.
This arrangement works well when viewed on a phone’s small screen, on which you typically
can’t see a lot of information at once. You may be able to see a list of tasks, or a task that you’re
editing, but cramming both elements onto the screen at the same time is impossible.

On a tablet, however, you’re swimming in real estate. Not only does it make sense to let users see
a list of tasks and edit them on the same page, but it also looks silly not to let them do so. The
screen size on a tablet is simply too big to fill with a single long list of items or lots of empty
space.

Android doesn’t allow you to easily put two activities on the screen at the same time. What to do?
The answer is fragments.

Using fragments, a single list fragment can occupy half the screen, and an edit fragment can occupy
the other half. Now each page of your app can contain multiple fragments. You can find out how to
use fragments in your phone application in Chapter 9 and how to scale your app to tablets in

Chapter 17.

http://www.google.com
http://www.stackoverflow.com

o

You can think of fragments as miniature activities: Because every fragment has its own
lifecycle, you know when it’s being created and destroyed, among other information.
Fragments go inside activities.

Intents
Intents make up the core message system that runs Android. An intent is composed of two
elements:

1 An action: The general action to be performed (such as view, edit, or dial) when the intent is
received

1 Data: The information that the action operates on, such as the name of a contact

Intents are used to start activities and to communicate among various parts of the Android
operating system. An application can send and receive intents.

Sending messages with intents

When you send an intent, you send a message telling Android to make something happen. The
intent can tell Android to start a new activity from within your application or to start another
application.

Registering intent filters

Sending an intent doesn’t make something happen automatically. You have to register an intent
filter that listens for the intent and then tells Android what to do — whether the task is starting a
new activity or another app. If more than one receiver can accept a given intent, a chooser can be
created to allow the user to decide which app to use to complete the activity — such as how the
YouTube app allows the user to choose whether to watch videos in the YouTube app or ina
browser.

Various registered receivers, such as the Gmail and the Hangouts apps, handle imagelsharing
intents by default. When you find more than one possible intent filter, a chooser opens with a list
of options to choose from and asks what to do: Use email, messaging, or another application, as

shown in Figure 1-1.

Share via

Android Beam

Bluetooth

Copy to clipboard

Drive

Fake GPS - Search location
Fancy

Gmail

Google+

&
0
s
&
e
™~
v

Hangouts

Keep

Figure 111: A chooser.

*“#HG

@ Follow best practice and create choosers for intents that don’t target other activities
within your application. If the Android system cannot find a match for an intent that was sent,
and 1f a chooser wasn’t created manually, the application crashes after experiencing a
runtime exception — an unhandled error in the application. (Android expects developers to
know what they’re doing.) See
http://d.android.com/training/basics/intents/sending.html for more
information about using intent choosers.

Cursorless controls

http://d.android.com/training/basics/intents/sending.html

Unlike the PC, where you manipulate the mouse to move the cursor, an Android device lets you
use your fingers to do nearly anything you can do with a mouse. Rather than rightlclick in Android,
however, you longlpress an element until its context menu appears.

As a developer, you can create and manipulate context menus. You can allow users to use two
fingers on an Android device, rather than a single mouse cursor, for example. Fingers come in all
sizes, so design the user interface in your apps accordingly. Buttons should be large enough (and
have sufficient spacing) so that even users with larger fingers can interact with your apps easily,
whether they’re using your app on a phone or tablet.

Views

A view, which is a basic element of the Android user interface, is a rectangular area of the screen
that’s responsible for drawing and event handling. Views are a basic building block of Android
user interfaces, much like paragraph <p> or anchor <a> tags are building blocks of an HTML
page. Some common views you might use in an Android application might be a TextView,
ImageView, Layout, and Button, but there are dozens more out there for you to explore.
You can also implement your own custom views.

Many more views are ready for you to use. For complete details about views, check out the
android.widget and android.view packages in the Android documentation at

http: d.android.com/reference/android/widget/packagelsummary.html.

Background operations

There are various ways to run multiple operations at the same time on Android without having to
manage a thread yourself (which is generally not recommended). When loading data from a
database to show on the screen, you’ll generally find yourself using loaders. Loaders take care of
managing background threads for you, and they also watch your database for changes so that your
Ul updates when the data changes. You can find out more about loaders in Chapter 13.

For other kinds of background operations, you may find yourself using the AsyncTask class to
run an operation on a background thread. AsyncTask(s) let you start a task to run in the
background, and then they return the result to your foreground thread so that you can update your
UL This creates a clean programming model for asynchronous processing.

WeEr
SRIEER
&

o)

) H Threads let you run multiple sets of instructions at the same time on the same device. They
all share the same memory and CPU, but when one thread is blocked waiting for something,
other threads can be resumed to keep the CPU busy.

You use asynchronous processing for tasks that might take more than a small fraction of a second,
such as network (Internet) communication; reading or writing to storage; or media processing.
When users have to wait for your task to complete, use an asynchronous call and an element in the
user interface to notify them that something is happening.

http://developer.android.com/reference/android/widget/package-summary.html

Failing to use an asynchronous programming model can cause users of your application to
(correctly) believe that it’s buggy. Downloading the latest Twitter messages via the Internet
takes time, for example. If the network slows and you aren’t using an asynchronous model, the
application will lock up and the user will likely assume that something is wrong because the
application isn’t responding to her interaction. If the application fails to respond within a
reasonable length of time, the user sees the Application Not Responding (ANR) dialog box,
as shown in Figure 1-2. The user can then choose whether to close the application or wait for
it to recover. Most of the time, users press OK and close your app.

Tasks isn't responding.

Do you want to close it?

Wait OK

Figure 112: The ANR dialog box.

o

To follow the best practice, run CPUlintensive or longlrunning code inside another thread,
as described in “Keeping Your App Responsive” on the Android developer site

(http: d.android.com/guide/practices/design responsiveness.html).

Background services
You may already know what a service 1s: It’s an application that runs in the background and
doesn’t necessarily have a user interface. A classic example is an antivirus application that

usually runs in the background as a service. Even though you don’t see it, you know that it’s
running.

Android apps can also have background services. Most music players that can be downloaded
from the Google Play Store, for example, run as background services. Users can then listen to
music while checking email or performing other tasks that require the use of the screen.

Android support library

It’s always so much fun to write apps for the latest and greatest devices! However, you may find
yourself wanting to support older devices from time to time. After all, not all of your users may be
running the very latest versions of Android.

Luckily, Android provides a solution. You can use the Android support library to make your apps
compatible with devices all the way back to the Android Stone Age (circa 2010 A.D. or even
earlier).

In addition to supplying fragments and loaders, the support library adds several other newer APIs
to old devices, such as:

1 RecyclerView: Creates an endless scrollable list of views

1 CardView: A “card” you can use witha RecyclerView to create a scrollable list of
cards in your apps

1 ViewPager: Swipes pages left and right
1 ShareCompat: For sharing things with your friends

4P

Visit https://developer.android.com/tools/supportllibrary/features.html to
see the complete list of features in the Android support library. Visit
https://developer.android.com/about/dashboards to see how many Android users
are using which versions of Android.

Action bar

The action bar is where you’ll put many of the buttons and menus that will enable users to interact
with your application. The action bar is almost always present across the top of the screen — and
it’s therefore extremely difficult not to notice. See Figure 1-3 for an example of the action bar

http://d.android.com/guide/practices/design/responsiveness.html
https://developer.android.com/tools/support-library/features.html
https://developer.android.com/about/dashboards

from the YouTube application.

{ -F& Supercats: Episode 1 — The Funniest Cat Video!

Figure 113: The YouTube action bar for a funny cat video.

Check out these elements on the action bar:

1 Up Button, app logo: Tap the Up button or the app logo on the action bar to move up one
level.
Sy

. "D

H Note the subtle distinction between the Up button and the Back button: Pressing the
Back button returns the user to the previous activity, regardless of which app is being used;
pressing the Up button returns the user to the previous activity in the current application, even
if that activity wasn’t an activity the user was just performing.

Suppose that you’re viewing a web page in the Chrome browser and you tap a link to open the
YouTube app. Pressing the Back button returns you to Chrome; pressing the Up button takes
you to the YouTube app’s home page.

1~ Page: Next to the application icon on the action bar is the title of the current page. If your
application lets you filter data on the current page, you can add a dropldown menu there to
allow users to change the filter.

1 Action: You can see, on the right end of the action bar, various actions that the user can
perform. In the YouTube app shown in Figure 1-3, the user can add the video to a list, share
the video, or search for more videos. Actions can take the form of text or icons (as shown in
the figure) or both. You can add as many actions as you want. Actions that don’t fit onscreen
are placed on an overflow submenu on the right end.

1 Context action bar (not shown): The action bar can change to show what the user is doing.
For example, if a user chooses several items from a list, you can replace the standard action
bar with a contextual action bar to let users choose actions based on those items. For example,
if you want to allow bulk deletions, you can provide a Delete Items button on the contextual
action bar.

Visit http://d.android.com/guide/topics/ui/actionbar.html for more information about
the versatility that this element of the user interface can add to your app.

WEER
&

._ uf)

) H The action bar doesn’t exist at all on Android 2.x and earlier! Any action bars you add to
your application will not show up in these versions of Android. But don’t despair, you can
use the action bar on 2.1 or later by using the support library.

Widgets and notifications

Users might want to access information from your app without explicitly starting it up first. For

http://d.android.com/guide/topics/ui/actionbar.html

example, think about how the Gmail app allows users to preview emails in a notification before
they open the Gmail app, or how you can see the current time on your launcher without having to
open the clock app. These are examples of using notifications and launcher widgets.

1 Launcher Widgets: Widgets are like “mini apps” that provide access to functionality in your
app directly from the phone’s launcher (also known as Home screen). Widgets are easy to find
in the Applications list. They can display information, contain buttons, and even contain /is¢
views to handle limited swiping and scrolling.

1 Notifications: Android notifications are expandable and collapsible to allow users to see
more information about them. For example, if your mother sends you a photo of her new puppy
in a text message, you can see it directly in the notification without having to open the app. A
notification about a new email message can show a preview of the message text so that it can
be read directly.

In addition, a notification also lets the user take action on it directly from whichever app is
being used. To reply to a birthday email from Grandma, for example, simply tap the Reply
button on the notification to launch Gmail with an editor so that you can thank her.

Hardware Tools

Google gives developers the tools necessary to create toplnotch, fulllfeatured mobile apps.
Google makes it simple to tap into, and make use of, all available hardware on a device.

To create a spectacular Android app, you should take advantage of all that the hardware has to
offer. Don’t get us wrong — if you have an idea for an app that needs no hardware assistance,
that’s okay, too.

Android devices come supplied with several hardware features that you can use to build apps.
Table 1-1 describes the hardware features available on most Android devices.

Table 111 Android Device Hardware

Android Hardware Feature |What It Does

Accelerometer Indicates whether the phone is moving
Bluetooth radio Indicates whether a headset is connected
Compass Indicates in which direction the user is heading
Camera Take pictures and record video

GPS receiver Indicates the user’s location

Most Android devices are released with the hardware discussed in the following four sections,
but not all devices are created equal. Android is free for hardware manufacturers to distribute, so
it’s used in a wide range of devices, including some made by small manufacturers overseas (and it
isn’t uncommon for some of these devices to be missing a feature or two).

Android devices come in all shapes and sizes: phones, tablets, ebook readers, watches,

televisions, and cars. The engineers behind Android provide tools that let you easily deploy apps
on multiple screen sizes and resolutions. Don’t worry — the Android team has done all the hard
work for you. Chapter 4 covers the basics of screen sizes and densities.

Touchscreen

The Android touchscreen opens a ton of possibilities to enhance users’ interaction with your apps.
Users can swipe, flip, drag, or pinch to zoom, for example, by moving a finger on the touchscreen.
You can even supply custom gestures in your app, which opens even more possibilities.

Android also supports multitouch capability, which lets a user touch the entire screen with more
than one finger at a time.

Hardware buttons are old news. You can place buttons of any shape anywhere on the screen to
create the user interface best suited for your app.

GPS

Combining the Android operating system with the GPS receiver on a device lets the developer
access, and track, a user’s location at any time. The Foursquare social networking app is a good
example — it uses the GPS feature to determine the user’s location and then accesses the web to
determine the closest venues to the user.

Another helpful example is the Maps application’s ability to pinpoint a user’s location on a map
and provide directions to that person’s destination. Combining Android with GPS hardware gives
you access to the user’s exact GPS location. Many apps use this combination to show users where
the nearest gas station, coffeehouse, or even restroom is located.

Accelerometer

An accelerometer 1s a device that measures acceleration, and Android comes packed with
accelerometer support. The accelerometer tells you whether a user’s device is being moved or
shaken, and even in which direction it’s being turned. You can then use this information as a way
to control your application.

You can use the accelerometer to perform simple tasks, such as determining when the device has
been turned upside down and then completing an action. For example, you can immerse users in
game play by having them shake their device to roll the dice. This level of usefulness is setting
mobile devices apart from typical desktop personal computers.

o

Android has activity recognition built in, which uses various sensors such as the
accelerometer and the GPS to determine whether your user is likely walking, running,
driving, or bicycling right now. Check out
http://d.android.com/training/location/activitylrecognition.html for more
information about using activity recognition.

SD card

Android gives you the tools you need to access (save and load) files on the device’s SD card — a

http://developer.android.com/training/location/activity-recognition.html

portable storage medium that you can insert into compatible phones, tablets, and computers. To
avoid bloating your app with extra required resources and hogging limited builtlin memory, you
can download some or all of your application’s resources from your web host and save them to the
device’s SD card (which makes users less likely to uninstall your app when they need to clear
space on their devices).

P

Not every device has an SD card preinstalled, though most do. Always ensure that a
device has an SD card installed and that adequate space is available before trying to save
files to it. Also, be aware that any file you place on an SD card is not secure, and can be read
by other apps on the user’s phone.

Software Tools

Various Android tools are at your disposal while you’re writing Android applications. The
following sections outline some of the most popular tools to use in your dayltolday Android
development process.

Internet

Thanks to the Internet capabilities of Android devices, users can find realltime information on the
Internet, such as the next showing of a new movie or the next arrival of a commuter train. As a
developer, you can have your apps use the Internet to access realltime, upltoldate data, such as
weather, news, and sports scores, or (like Pandora and YouTube) to store your application’s icons
and graphics.

You can even offload your application’s more intense processes to a web server when
appropriate, to save processing time or to streamline the app. In this welllestablished
software architecture, known as client—server computing, the client uses the Internet to make
a request to a server that’s ready to perform some work for your app. The builtlin Maps app
is an example of a client that accesses map and location data from a web server.

Audio and video support

Including audio and video in your apps is a breeze in the Android operating system. Many
standard audio and video formats are supported, and adding multimedia content to your apps —
such as sound effects, instructional videos, background music, and streaming video and audio from
the Internet — couldn’t be easier. Be as creative as you want to be. The sky’s the limit.

Contacts

Your app can access a user’s Contacts list, which is stored on the device, to display the contact

information in a new or different way, or you can create your own Contacts list. You might even
write an app that couples the contact information with the GPS system to alert the user whenever
she’s near a contact’s address.

&

MBER

é
) H Don’t use information from the Contacts list in a malicious way. Use your imagination, but
be responsible about it. (See the next section, “Security.”)

Security

Suppose that someone releases an app that sends a user’s entire Contacts list to a server for
malicious purposes. For this reason, most functions that modify a user’s Android device or access
its protected content need specific permissions. For example, if you want to download an image
from the web, you need permission to use the Internet so that you can download the file to your
device, and you need a separate permission to save the image file to an SD card. When your app is
being installed, the user is notified of the permissions your app is requesting and can decide
whether to proceed. Though asking for permission isn’t optional, it’s as easy as implementing a
single line of code in your application’s manifest file. (Manifest files are described in Chapter 3.)

Google APIs

Users of the Android operating system aren’t limited to making calls, organizing contacts, or
installing apps. As a developer, you have great power at your fingertips — you can even integrate
maps into your application, for example, by using the Google Maps AP

Pinpointing locations on a map

Perhaps you want to write an app that displays a user’s current location to friends. You can spend
hundreds of hours developing a mapping system, or you can use the Google Maps API. You can
embed the API in your application without investing hundreds of development hours or even a
single cent. Using the Maps API, you can find almost anything that has an address. The
possibilities are endless — a friend’s location, the nearest grocery store, or your favorite gas
station, for example.

A

Showing your current location to friends is cool, but the Google Maps API can also
access the Google Navigation API, to pinpoint your location and show your users how to
reach it.

Messaging in the cloud

Suppose that your application’s data is stored in the cloud (the Internet) and you download all of
its assets the first time it runs. And then you realize that an image is outdated. To update the image,
the app needs to know that the image has changed. You can use the Google Cloud Messaging
framework to send a cloudltoldevice notification (a message from the web server to the device) to
direct the app to update the image. This process works even if your app isn’t running. When the
device receives the message, it dispatches a message to start your app so that it can take the
appropriate action.

@g_al._ﬂ e

(g\: . .
'@’ The KISS principle

The most difficult task in developing applications is remembering the KISS principle: Keep It Simple, Stupid. One way to
unnecessarily complicate the code you create is to dive into development before understanding the role of the builtlin
APls. Choosing this route may take more of your time than simply glossing over the Android documentation; you don’t
have to memorize the documentation, but do yourself a favor and at least skim it. Then you can see how easily you can
use the builtlin functionality — and how much time it can save you. You can easily write multiple lines of code to
complete a onelline task. Changing the volume of the media player or creating a menu, for example, is a simple
process, but if you don’t know how to use the APls, you may cause more problems by having to rewrite them.

Another way to muck things up is to add unnecessary functionality. Just give users the simplest way to operate their
devices. For example, avoid designing a fancy, customltab layout when a couple of menu items will suffice. Also,
Android comes supplied with enough widgets (builtlin controls) to help you accomplish virtually any task. Using these
controls makes your app even easier for users to work with because they already know and love them.

Chapter 2
Prepping Your Development Headquarters

In This Chapter

Becoming an Android application developer

Collecting your tools of the trade

Downloading and installing the Android software development kit (SDKs)
Getting and configuring Android Studio

Working with the Android development tools

All the software that you need to develop Android applications is free. That’s where the beauty of
developing Android applications lies. The basic building blocks you need to develop rich
Android applications — the tools, the frameworks, and even the source code — are free. No one
gives you a free computer, but you get to set up your development environment and start
developing applications for free, and you can’t beat free. Well, maybe you can — if someone pays
you to write an Android application, but you’ll reach that. This chapter walks you through the
necessary steps to install the tools and frameworks so that you can start building kicklbutt Android
applications.

Developing the Android Developer Inside You

Becoming an Android developer isn’t a complicated task. And it’s likely simpler than you believe.
To see what’s involved, ask yourself these questions:

+* Do I want to develop Android applications?

1 Do I like free software development tools?

1 Do I like to pay no developer fees?

1 Do I have a computer to develop on?

If you answered yes to every question, today is your lucky day — you’re ready to become an

Android developer.

There’s always a catch, right? You can develop for free to your heart’s content, but as soon as you
want to publish your application to the Google Play Store, where you upload and publish your
apps, you need to pay a small, nominal registration fee. At this writing, the fee is $25.

8

If you’re developing an application for a client, you can publish your application as a

redistributable package to give to him. Then your client can publish the application to the
Google Play Store, using his Google account, to ensure that you don’t have to pay a fee for

client work. You can then be a bona fide Android developer and never have to pay a fee.
That’s cool.

Assembling Your Toolkit

After you know that you’re ready to be an Android developer, grab your computer and get

cracking on installing the tools and frameworks necessary to build your first blockbuster
application.

Linux kernel

Android was created on top of the open source Linux kernel. The Android team chose to use this

kernel because it provided proven core features on which to develop the Android operating
system. The features of the Linux kernel include (but aren’t limited to)

1 Security model: The Linux kernel handles security between the application and the system.

1 Memory management: The kernel handles memory management, leaving you free to develop
your app.

1 Process management: The Linux kernel manages processes well, allocating resources to
processes as they need them.

1 Network stack: The Linux kernel also handles network communication.

+* Driver model: The goal of Linux is to ensure that the application works. Hardware
manufacturers can build their drivers into the Linux build.

Android source code

You should be aware that the full Android source code is open source, which means that it's not only free to use but also
free to modify. If you want to download the Android source code and create a new version of Android, you're free to do
s0. Check out the Android Open Source Project at nttps://source.android.com.

Android framework

Atop the Linux kernel, the Android framework was developed with various features. These

features were pulled from numerous open source projects. The output of these projects resulted in
these elements:

1 The Android runtime: The Android runtime is composed of Java core libraries and ART (the
Android RunTime). Older versions of Android (4.x and earlier) use the Dalvik runtime.

1 Open GL (graphics library): This crossllanguage, crosslplatform application program
interface (API) is used to produce 2D and 3D computer graphics.

1 WebKit: This open source web browser engine provides the functionality to display web

http://source.android.com

content and to simplify page loading.
1 SQLite: This open source relational database engine is designed to be embedded in devices.
1 Media frameworks: These libraries allow you to play and record audio and video.

1 Secure Sockets Layer (SSL): These libraries are responsible for Internet security.

See Figure 2-1 for a list of common Android libraries.

LIBRARIES ANDROID RUNTIME

Media

Surface Manager Framework

S0Lite Core Libraries

OpenGL | ES FreeType WebKit

SGL 35L libe:

Figure 211: Android and other thirdlparty libraries that sit atop the Linux 3.4 kernel.

Application framework

If you’ve read the preceding section, you may say, “Well, that’s all nice and well, but how do
these libraries affect me as a developer?” It’s simple: All these open source frameworks are

available to you via Android. You don’t have to worry about how Android interacts with SQLite
and the surface manager; you use them as tools in your Android tool belt.

The Android team has built on a known set of proven libraries, built in the background, and has
given them to you, all exposed through Android interfaces. These interfaces wrap up the various
libraries and make them useful to the Android platform and to you as a developer. You benefit

from these features because you don’t have to build any of the functionality they provide. Some of

these interfaces include
1 Activity manager: Manages the activity lifecycle.

1~ Telephony manager: Provides access to telephony services as well as to certain subscriber
information, such as phone numbers.

1 View system: Handles the views and layouts that make up your user interface (UI).

1 Location manager: Finds the device’s geographic location.

Take a look at Figure 2-2 to see the libraries that make up the application framework.

APPLICATION FRAMEWORK

Window Content

Actity Manager Manager Providers

Package Telephony Resource Location Matification

Manager Manager Manager Manager Manager

Figure 212: A glimpse at part of the Android application framework.

From kernel to application, the Android operating system has been developed with proven open
source technologies. You, as a developer, can therefore build rich applications that have been

fostered in the open source community. See Figure 2-3 for a full picture of how the Android
application framework stacks up. The Applications section is where your application sits.

AFPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

S i Window Content
Activity Manager Manager Providers

Package Telephony Resource Location Motification
Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Media
Framework

OpenGL | ES Free Type WebKit | 1 w‘

S6L 35L libe

Surface Manager S0Lite Core Libraries

Linux KERMNEL

Display IS 55 Flash Memory Binder (IPC)
Driver Camsra Driver Driver Driver

SR ey Audio Fower
Keypad Driver WiFi Driver Driverlt': Management

Figure 213: How the Android application framework stacks up.

o

Sometimes when you’re developing an Android application, you want to use the same
resource as in the core Android system. A good example is an icon for a Settings menu
option. By accessing the Android source code, you can browse the various resources and
download the resources you need for your project. Having access to the source code also
allows you to dig in and see exactly how Android does what it does. Be aware though that
you need to follow the requirements of the license, as well as follow Google’s branding
guidelines when borrowing these resources. Find out more at

http: d.android.com/distribute/googleplay/promote/brand.html.

Java knowledge

The Java programming language is one of the glorious tools that make programming Android a
breeze compared with programming for other mobile platforms. Whereas other languages insist
that you manage memory, allocate and delallocate bytes, and then shift bits around like a game of
dominoes, the Java runtime helps take care of that for you. The Java runtime allows you to focus
on writing code to solve a business problem by using a clean, understandable programming
language (or to build that next cool firstlperson shooter game you’ve been dreaming of) instead of
focusing on the “plumbing” just to get the screens to show up.

http://d.android.com/distribute/googleplay/promote/brand.html

You’re expected to understand the basics of the Java programming language before you
write your first Android application. If you’re feeling rusty and need a refresher course on
Java, you can visit the Java tutorials site at http: //docs.oracle.com/javase/tutorial.

4P

Though you find a little Java information in this book, you may want to spend some time
with a good book like Java All #n One For Dummies, by Doug Lowe (John Wiley & Sons,
Inc.), if you have no Java experience.

Tuning Up Your Hardware

You can develop Android applications on various operating systems, including Windows, Linux,
and Mac OS X. In this book, you find a combination of the Windows 8 operating system and Mac
OS X, but you can use Linux as well.

Operating system
Android supports these platforms:

1 Windows XP or later
1 Mac OS X 10.5 or later
1 Linux with GNOME or KDE

HhBER
AR
&

i
) E) Throughout this book, some examples use Windows 7 64lIbit Edition. Windows paths look
similar to this:

c:\path\to\file.txt

Some examples use Mac OS X; a Mac or Linux path looks similar to this:

/path/to/file.txt

Computer hardware

Before you start installing the required software, make sure that your computer can run it
adequately. Just about any desktop or laptop computer manufactured in the past four years will
suffice. A computer with 4 or 8 gigabytes (GB) of RAM should work just fine.

To ensure that you can install all the tools and frameworks you’ll need, make sure that you have
enough hard drive space to accommodate them. The Android developer site has a list of hardware
requirements, outlining how much hard drive space each component requires, at
https://developer.android.com/sdk/installing/studio.html.

http://docs.oracle.com/javase/tutorial/
https://developer.android.com/sdk/installing/studio.html

S

To save you time, you need at least 3GB of free hard drive space to install all the tools
and frameworks necessary to develop Android applications.

Installing and Configuring Your Support Tools

It’s time to put these exciting Android concepts into action, but before you can do so, you need to
install and configure a few tools, including the SDKs:

1 Android Studio: An easy to use Integrated Development Environment (IDE) that brings
together Java and the Android SDK to make it simple to write Android apps.

1 Java JDK: The Java Development Kit. Lays the foundation for the Android SDK.

1 Android SDK: Included in Android Studio. Provides access to Android libraries and allows
you to develop for Android.

The following sections show you how to acquire and install all these tools.

JHBER
&
L)
A benefit of working with open source software is that, most of the time, you can get the
tools to develop the software for free. Android is no exception to that rule. All the tools that

you need to develop rich Android applications are free.

Installing Android Studio

To download Android Studio, first go to

https: developer.android.com/sdk/installing/studio.html and download Android

Studio. Then go through the following steps to get to the Android Studio boot screen, as in Figure
2-4:

https://developer.android.com/sdk/installing/studio.html

> Android

/-’(Studio

Powered by the IntelliJ Platform

Figure 214: The Android Studio boot screen.

Mac users
If you’re a Mac user, follow these steps to download Android Studio:

1. Open the downloaded DMG file, androidlstudiolidel*.dmg.

2. From the resulting Android Studio DMG volume, drag and drop Android Studio into the
Applications folder.

3. Eject the Android Studio DMG volume so that you don’t accidentally run the wrong
Android Studio.

4. Open the Applications folder and doublelclick Android Studio.

Depending on your security settings, when you attempt to open Android Studio, you might see a
warning that says the package is damaged and should be moved to the trash. If this happens,
choose System Preferences= Security & Privacy and, under Allow applications downloaded
from, select Anywhere. Then open Android Studio again.

5. Depending on your Mac, you may be asked to install Java at this point.
Click OK and Java will be automatically installed for you.

Windows users
If you’re a Windows user, follow these steps to download Android Studio:

1. Launch the downloaded EXE file, androidlstudiolbundlel*.exe.
2. Follow the setup wizard to install Android Studio.

3. Open the Start screen and launch Android Studio.

On some Windows systems, the launcher script does not find where Java is installed. If you
encounter this problem, you need to set an environment variable indicating the correct
location.

Choose Start menu= Computer= System Properties= Advanced System Properties. Then
choose Advanced tab=Environment Variables and add a new system variable, JAVA HOME,
that points to your JDK folder — for example,
C:\ProgramFiles\Java\jdkl.8.0 20.

If you do not have the Java JDK installed, see the next section.

Installing Java 7

On some systems, you may see an error that the system cannot find the Java 7 JDK.

If this happens, visit www.oracle.com/technetwork/java/javase/downloads/jdk7l
downloadsl1880260.html to download the Java 7 JDK appropriate for your machine. Install it,
then run Android Studio again.

If you’re on a Mac and you continue to see the same error after installing Java 7, you may
also need to install Java 6. Visit http://support.apple.com/kb/DL1572 to install Java 6
on your Mac, then try again.

Adding SDK Packages

Now that you have Android Studio installed, you need to make sure that you download all the
latest SDK components. The first time you launch Android Studio, it may install part of the SDK
for you, but you need to install the full SDK using the following steps:

1. Choose Tools= Android= SDK Manager to launch the SDK manager tool.

2. Click New to select all new packages that are not currently on your machine, then click
the Install button.

3. Click each group in the list and click Accept License for each, then click Install

Now hum the theme from Jeopardy.

Once this is done, do it again. No seriously. Click New to select all the new packages, accept the
license agreements again, and click Install again. You shouldn’t have to do it more than twice, but
heck, check it a third time while you’re at it.

Navigating the Android SDK

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://support.apple.com/kb/DL1572

Now that you’ve installed the Android SDK, take a look inside the SDK folder:

On a Mac, open the Terminal app in Applications= Utilities (or by searching for “Terminal” in
Spotlight), then type ecd " /Applications/Android Studio.app/sdk". On Windows,
open the Start menu and search for “cmd” to launch a command prompt, then type c¢d
"\Users\<user> \AppData\Local\Android\androidlstudio\sdk\" where
<user>1s your username.

Whoa — you’ll find a lot of folders in the SDK! Don’t worry: The folder structure of the Android
SDK is easy to understand when you get the hang of it. You need to understand the structure of the
SDK to master it. Table 2-1 outlines the contents of each folder.

Table 211 Folders in the Android SDK

SDK Folder What It Contains

tools, buildltools, Various tools that are available for use during development — such as for debugging, view management,
and platformltools and building.

platforms The platforms you target when you build Android applications, such as folders named androidl16

(which is Android 4.1) and androidl8 (which is Android 2.2).

extras and/or addlons Additional APIs that provide extra functionality. The Google APIs in this folder include mapping
functionality. This folder remains empty until you install any of the Google Maps APIs.

Specifying Android Platforms

Android platform is a fancy way of saying Android version. At this writing, many versions of
Android are available, ranging up through version 5.0. When we say “specifying an Android
platform,” that means that we are developing our app so that it will work on devices running that
specific Android version or later.

WBER
&

. uD

H Several versions of Android are still widely used on phones. If you want to reach the
largest number of users, target an earlier version. If you want to keep your development quick
and simple, or if your app requires functionality that older platforms can’t support, then by all
means specify the newer platform. It would make no sense to write a Bluetooth toggle widget
targeting any platform earlier than 2.0 because earlier platforms can’t use Bluetooth.

To view current platform statistics, visit

http: d.android.com/resources/dashboard/platformlversions.html.

Using SDK Tools for Everyday Development

The SDK tools are the building blocks you use in developing Android apps. New features packed
into every release enable you to develop for the latest version of Android.

Saying hello to the emulator

http://d.android.com/resources/dashboard/platform-versions.html

Google provides not only the tools you need to develop apps but also an awesome little emulator
to test your app. The emulator has some limitations (for example, it cannot emulate certain
hardware components, such as the accelerometer) but not to worry — plenty of apps can be
developed and tested using only an emulator.

When you’re developing an app that uses Bluetooth, for example, you should use a physical device
that has Bluetooth on it. If you develop on a speedy computer, testing on an emulator is fast; on
slower machines, however, the emulator can take a long time to complete a seemingly simple task.
If you’re developing on an older machine, use a physical device. When you’re developing on a
newer, faster machine, use the emulator.

The emulator is handy for testing apps at different screen sizes and resolutions. It isn’t always
practical or possible to have several devices connected to your computer at the same time, but you
can run multiple emulators with varying screen sizes and resolutions.

Getting physical with a real Android device [Windows]

If you develop on a Windows machine and you want to test your app on a realllife device, you
need to install a driver. If you’re on a Mac or Linux machine, you can skip this section because
you don’t need to install the USB driver.

When you downloaded the SDK, you also downloaded the USB driver that you need. To install it,
do the following:

1. Plug in your device.
2. Choose Control Panel= Device Manager.

3. Expand Other Devices (Figure 2-5), rightlclick your device, and select Update Driver
Software.

Select Browse my computer for driver software.

4. Type \C:\Users\<user>\AppData\Local\Android\androidl
studio\sdk\extras\google\usb driver (replacing <user> with your
username), and click Next.

oF

If you can’t find the AppData directory on your computer, it’s because it’s hidden by
default. What you can do is type %appdata%b in the location field and then click Browse. That
unhides the directory and allows you to navigate the rest of the way there.

5. When asked if you would like to install this device, click Install.

=1 Device Manager el “
File Action View Help
o m D HEm &S ERS
4 = WIN-NZUBCEFMIC A
& Audio inputs and cutputs
ﬁ Battenes
ﬂ EBlustcoth
B Computer
=" Disk drrees
e Display adapters
,'_'..', DVDCD-ROM dirnves
o Floppy dask drives
|__=| Floppy ditve controllers

!.'PF" Human Inteface Demces
L IDE ATASATAPI controllers
= Keyboards
B Memory devices
ﬁ, Mice and other poirting devices
..- Muontors
&¥ Metwork sdapters
4 |5 Other devices
i Portable Devices
'y Ports (COM & LPT)
= Print queues
bl Processors
L Software devices
% Sound, video and game controllers

of = Sharans roeteedle

Figure 215: Finding your device in the Windows Device Manager.

Debugging your work

The Android Device Monitor equips you with the necessary tools to find those pesky bugs,
allowing you to go behind the scenes as your app is running to see the state of its hardware, such
as the wireless radio. But wait — there’s more! The Device Monitor also simulates actions
normally reserved for physical devices, such as sending global positioning system (GPS)
coordinates manually, simulating phone calls, or simulating text messages. Get all the Device
Monitor details at http://d.android.com/tools/help/monitor.html.

Trying out the API and SDK samples

The API and SDK samples are provided to demonstrate how to use the functionality provided by
the API and SDK. If you’re ever stuck and can’t figure out how to make something work, visit
http://d.android.com/samples/ to find samples of almost anything, from using Bluetooth to
making a twolway text application or a 2D game.

You also have a few samples in your Android SDK. Simply open the Android SDK and navigate
to the samples directory, which contains various samples that range from interacting with
services to manipulating local databases. Spend some time playing with the samples — the best
way to learn to develop Android applications is to look at existing working code bases and then
experiment with them in Android Studio.

Giving the API demos a spin
The API demos inside the samples folder in the SDK are a collection of apps that demonstrate
how to use the included APIs. You can find sample apps with a ton of examples, such as

http://d.android.com/tools/help/monitor.html
http://d.android.com/samples/

1 Notifications
1 Alarms

1 Intents

1 Menus

1 Search

1~ Preferences

1+ Background services

If you get stuck or you simply want to prepare yourself for writing your next spectacular Android
application, check out the complete details at http://d.android.com/samples/.

http://d.android.com/samples/

Part 1l

Building and Publishing Your First
Application

8 5 @ s shntmodeicggiel,. factivity_mainemi - [silenimedateggie] - Helle Android - [-/AndroldSiudicProjects/HalleAndroid] - Android Studio (Beta) 0.8.14
= il & A | @sientmocemggie - | b W 0L ¥ @ FE B R 7 =]
5 Melloandroid | 7 sil gale | [5o | T main | Cires | (5] layout | 5 activity_mainoomd |
-i. 0 aciany_main e w0 | =
& Pulems Bl [L- Beosd- T @ageTueme ™ - - fi- Corrpasatnt Tret TE 8- F
o [avoun ' Bl & [v [Device Sereen
- [FrameLayout i r:‘ L R8T R | content FramaLayeet i
=[] unearLayout (Horizont: & phone_ican DmageWiew) - Sdeawabie o
i [unearLayout (westical) m
5 | TableLayout
Fa| [TableRow 5
V[GridLayeut e
[FE RetassveLayout 4
[Widgers =
e Plains TeaaView @
5 Large Teus o
A hrdium T Properties 7T AT 5
8 Sal Tt
* [Buman
Sl Buron layoutheight MRRCE,_panent
& RadioButton style
|| CrarckBox sccessiblindveRegion
g B Switch alpha
2 = TopgBumon background
i ;""'“'“"“:' bt Tint
b ngnn:mr Largel Edtiogrond Tistkod ¢
3 == ProgressBar (Normal) chrianie
== Progresifiar (Small contensDescrigion
g == Progressiar (Horzonta elevation
Fa| o SpekBar [
* Design Text |
= TODD o fAndroid B Terminal W Dventleg [F Gradie Contole a Wermaory Momibor
= | [mia|na s @
web
extras

Learn how to test your Android app online at
www.dummies.com/extras/androidappdevelopment

http://www.dummies.com/extras/androidappdevelopment

In this part. ..

Part II walks you through developing a useful Android application. You start with the basics of the
Android tools and then delve into developing the screens and Home screen widgets that users will
interact with. When the application is complete, you sign your application digitally so that you can
publish it. You finish by publishing your application to the Google Play Store.

Chapter 3
Your First Android Project

In This Chapter
Creating a new, blank project in Android Studio

Understanding errors

Creating an emulator

Running your first app

Studying the anatomy of a project

Before you start creating that next blockbuster Android application, I walk you through creating
your first Android application to help solidify a few key aspects in the Android projectlcreation
process. In this chapter, you create a simple “Hello Android” application that requires no coding
whatsoever. What — no coding? How is that possible? Follow along as I show you.

Starting a New Project in Android Studio

First things first: Start Android Studio. You should see a screen that looks similar to the one
shown in Figure 3-1. Now you’re ready to start cooking with Android.

@ Android Studio

Welcome to Android Studio

Recent Projects Quick Start
[}.'.—-_ MNew Project...

=

E" Import Project...

|_"— Open Project

‘_ Check out from Version Control

,.f{"' Configure

[‘? Docs and How-Tos

Android Studio 0.8.14 Build 135.1538390. Check for updanes now.
Figure 311: The Android Studio development environment.

HBER
&

*,

@ If you haven’t set up your development environment yet, turn to Chapter 2. It shows you
how to set up all the tools and frameworks necessary to develop Android applications.

Follow these steps to create your first Android application project:

1. In Android Studio, choose File=New Project.
The Create New Project Wizard opens, as shown in Figure 3-2.

2. Enter Hello Android as the application name.

The application name is the name of the application as it pertains to Android. When the
application is installed on the emulator or physical device, this name appears in the
application launcher.

3. Enter dummies.com as the Company Domain.

Your Package name should autocomplete to com.dummies.helloandroid. This is the
name of the application ID, which will generally be the same as your Java package. (See the
nearby sidebar “Java package nomenclature.”)

4. Choose a location for your project.

The default location will probably be fine. Click Next.

[]) Create New Project

Configure your new project

Application name: | Hello Android
Comparry Domain: dwmmies. oom

Fac kage name Edit

Project location: JUsers { mice/AndrobdStudioProjects / Hell oAndroid

Cancel | Nemt |

Figure 312: The Create New Project Wizard.

Java package nomenclature

A package in Java is a way to organize Java classes into namespaces similar to modules. Each package must have a
unique name for the classes it contains. Classes in the same package can access one another’s packagelaccess
members.

Java packages have a naming convention defined as the hierarchical naming pattern. Each level of the hierarchy is

separated by periods. A package name starts with the highestllevel domain name of the organization; then the
subdomains are listed in reverse order. At the end of the package name, the company can choose what it wants to call
the package. The package name com.dummies.helloandroid is the name used in this example.

Notice that the highestllevel domain is at the front of the package name (com). Subsequent subdomains are separated
by periods. The package name traverses through the subdomains to get to the final package name of helloandroid.

A great example of another use for a package is having a Java package for all your weblrelated communications. Any
time you need to find a weblrelated Java class, you can open that Java package and work on your weblrelated Java
classes. Packages allow you to keep your code organized.

5. Select Phone and Tablet, choose a Minimum SDK version of API 21: Android 5.0
Lollipop, and click Next.

The Minimum SDK dropldown list identifies which application programming interface (API)
you want to develop for this project. Always set the Build Target SDK to the latest version
that you’ve tested your app on. When you select Lollipop, you build and test your app on
devices going up to Lollipop. Doing so allows you to develop with the Lollipop APIs, which
include new features such as the Material Design look and feel. If you had selected Android
2.2 as the target, for example, you wouldn’t be able to use any features introduced in Lollipop
(or 2.3, 3.1, and so on).

6. In the Create Activity box, choose Blank Activity and click Next.
The Add an Activity screen appears, as shown in Figure 3-3.

7. Enter MainActivity in the Activity Name box, activity main in the Layout name,
MainActivity in the Title, and menu main as the Menu Resource Name.

The New Blank Activity screen defines what the initial activity is called — the entry point to
your application. When Android runs your application, this activity is the first one to be
accessed.

The Layout name is the name of the file that will contain the layout of your activity’s user
interface.

8. Click the Finish button.

You’re done! You should see Android Studio think for a few moments, and then create a new
project with your new blank activity, ready for you to populate (see Figure 3-4).

& Crearte New Project

Choose options for your new file

Creates a mew blank activity with an action bar

Artivity Mame Mol b R ity
Layout Mamse A EiwEly_main
Title Mol AR B i Ty

Meniu Resource Name FMEril_Mmain

Blank Activity

The name of the activity class to create

Cancel Previous Finish

Figure 313: Set up your new activity.

Understanding Android versioning

Version codes aren’t the same as version names. (Huh?) Android has version names and version codes. Each version
name has a single version code associated with it. The following table outlines the version names and their respective
version code. You can also find this information in the Build Target section of the New Android Project dialog box.

Platform Version |API Level |Codename

4.0 14 Ice Cream Sandwich
4.0.3 15 Ice Cream Sandwich
4.1 16 Jelly Bean

4.2 17 Jelly Bean

4.3 18 Jelly Bean

4.4 19 Kit Kat

4.4W 20 Wearables

5.0 21 Lollipop

] [& activity_main.oml = [app = Helle Android = [-/\AndroidStedicPropectaHellstndrod) - Android Studio (Bata) 0.8.14
i] 15 Wae- F EL & TL A & 7
o HelloAndroid | app 5re main - T res MIyout o SOty kel

& Android - =T - S & MaimArthity jiva o | 5 aCthity_mainxel «

1 el)

* Laapp Palete &1~ Q- Enesme - — P T &
b (@ Gradie Scrign ; Fd
Laygits (K AppThess ik ety - ¥ B Dwvice Screen

FrameLayout - W3- L RelarywLayout
LinearLayout (Horizont: 7 S o Tty i
LinearLayout (verscay o= B2/ (2] @ I - §
TableLayout
TableRow
CridLayout
Relatve Layout Properiies TS T
Widgets
Ab Flain TeerView
ab Large Text
Aby Madium Text
ab small Text
Baston algha
Small Butign Background
& Rad olarme [T T T
Design ~ Text

I L Project

FE-F TS

F|

! T Suutlure

LORE =FERTERE o (]

Layauthaight FRAICE_pa e

style

HpEFY

acieiilblitylweRegon

Messages Gradle Budd ¥ L

App reargeDebegTesREscUries
App:processDebugTesReiounies
app:gerstraceDe bog Testhouroes

i BULD SUCCESSAUL

iy Total vme: 7.972 secs

00 errors

i O warrings

i) 560 COMPNRE CUCDUL in COPTRON

& Build Variants

I Favadites
w g =
= B [+= b b

2 TODG & fAndrodd [H Termina 0 Mesrages fwenilog (¥ Cradie Conaole) Mermory Monitor
] Grasie build finished in B sex la minute agol Ml | mia | nfa | @

Figure 314: The Android Studio development environment with your first Android project, Hello Android.

Responding to Errors

The Android project generated by Android Studio is a fresh, clean project with no compiled
binary sources. You will need to understand what happens under the hood of Android Studio at a
high level. Click the MainActivity. java tab in Android Studio, then change package
com.dummies.helloandroid to org.dummies.helloandroid, like in Figure 3-5.

The red sguare indicates an error.

The red underlined code shows the error location,

aoe MairActivity jiva - [app] - Hells Android - |=AnanidStudicProjectaHelaAndreid] - Andnoid Studio [Baeta) 0.8,14
0 s 1 - apa P&l 8 LA 7
el lodndread app e L el java £om dus L helloariieid © bladnAg thviey
- And| - (] L 0 WadnArbvBy java = o activity_manaml X -
% - app ww1muwm1.hrllmrdm:d,l - i
2 ¢ (P Gradie Scripts 3
import androld.app. ACTivity; E
aE import android.os.Bundle; _,3
~ import android.view, Mems; -
3 impart android.vies Menultens;
e E
= poblic class MainActivity extesds Activity { 2
' 3
Bl 7 com.dummies hellgandroid B? 0o nsTanceState) | 2
SUPEr. OIS T e e IS LS tate] =
setContentview(i, Layout. sctivity saknl; =
} B
i o
E
o
- &
public boolean onCreatedpt icnsMenui{Meny menu) {
getMenuIntlater]). inflatelR. senu. menu_sadn, mera);
return troe;
- ¥
g
2
=
z App g DebugTeseiounied
.:i app:processDebugTestResources
o appgeneran DebugTestources
A i BUALD SUCOESSAUL
-] + @ i Total tme: 7.972 wecs
i e
'_4 0 0 warnings.
7 i S complene ouIpUL in ConsOle
=TO0D & & Arcold i Terminal O Wrssages Dveni Log ¥ Gradie Comole Wl MieTory Mongor
L] Package name ‘org.d iy hellpandr ond” Soes not e o chee Nile pash “oomudummies. halomnd rosd” L:l2/} LF = UTF-8 &

Figure 315: Android Studio notifies you that something is wrong with the project.

You may notice a little red square on the upper rightlhand side of the window (refer again to
Figure 3-5). That icon is Android Studio’s way of letting you know that something is wrong with
the project in the workspace. If you look carefully, you’ll see a red line below it that indicates
exactly where 1n the file the error was detected.

Now choose Navigate=Next Highlighted Error. The editor jumps your cursor to the location of
the error so you can fix it. If you keep selecting it, you can jump from error to error. Once all the
errors are fixed, Android Studio then jumps you from warning to warning until you fix all those as
well. Eventually, once all your problems are fixed, the icon will turn a very satisfying green.

Now put your text cursor back on org.dummies.helloandroid. If you look carefully in the
lower leftlhand corner of the screen, Android Studio gives you some assistance to fix the problem
(Figure 3-6). Here it says:

Package name "org.dummies.helloandroid" does not correspond to the file path
"com.dumies.helloandroid"

[] [] MainActivity. java - [app] - Hello Andnoid - [=/AndroidStugioProjects/HelioAndroid] - Anorosd Stwdio (Beta) 008,14
4 @ =1 -] d wer b i F R 8 & 7

MeilnAndrgid app BIE main B Lo dummigy Fglicandroid © Mainkotivity

£ Maied cnivity java = o SCRAATY_main ol

package org. dusmies.helloandroid;

I L Projest
o
-
3
gt il

app:mergeDebegTestResources
ADE protE s D Bug T # SIREL0OUNCES
app germrateDebugTedtSoundes

L BULD SUCCESSFUL

i Towl wme: 7,972 secs

i O errors

) 0 warnings

) See complete output in cordole

! I Suutiure

T.

~ B+
#3305y uaary 3

Wb

= TODD [¥ Terrsinal §: Messages Evers Lig ¥ Cradie Condole | My B R
= Ih:l.lg: nasse ‘org.dummies hellosrdecid’ doei Aot correipond o the Ble path 'cmdunmmlhmdrmd"l Ikl (LF & UTF-8 &

Package name does not correspand.
Figure 316: Package name org.dummies.helloandroid does not correspond to the file path
com.dummies.helloandroid.

If you don’t see it, you can choose View=Error Description to see the message. With your text
cursor still on the error, press Alt+Enter to view a couple Quick Fix options for this error. You
want to change the package name back to what it should be, so choose Set package name to
com.dummies.helloandroid.

Setting Up an Emulator

You’re almost ready to run your Hello Android application! The next step is to set up an emulator.

An emulator (also known as an AVD) 1s an Android Virtual Device that looks, acts, walks, and
talks (well, maybe not walks and talks) like a physical Android device. AVDs can be configured
to run just about any particular version of Android.

Follow these steps to create your first AVD:
1. Choose Tools= Android= AVD Manager.

The AVD Manager dialog box opens.
2. Click Create a Virtual Device, then click the Nexus 5 item and click Next, as in Figure 3-

1.
3. In the System Image dialog box, select the Lollipop x86 item as in Figure 3-8, then click
Next.

4. In the Configure AVD dialog box, use the default AVD name or change it to a haiku.
Leave everything else alone, as in Figure 3-9.

5. Click the Finish button.

Figure 3-10 shows the completed AVD Manager dialog box. You should now see your new
AVD listed under Your Virtual Devices.

Select Hardware

Cheose a device definition

4B BOQ
Wear Newus 6 5.96° 1440x2560 560dpi T
™
A5 130

Mexus & L TEEx 1280 whdpl

Caluxy Nexus 465" T20 1280 whpi

4" PWYCA 54" 4B0mBS4 i e

5.1° WAEA 51° ABONB00 mepi

4.7 WG 4.7 Tt 1280 xhidpi

£.65 THp G .. 465" T2 1280 shdppl
| Mew Hardware Profile | (&) Clone Device...

Cancel Previous E Finish

Figure 317: The Select Hardware dialog box.

L NS Virtual Dewice Configuration

System Image

Select & system image

Reigang Mo APLeval = An Targat
Lollipop
Lallipop Z1 armeabi-v... Android 5.0 - Android TV

Ledlipop 21 armeabi-v,.. Android 5.0 ;"im'
Lellipep 21 xBE Androld 5.0 |

Andriad
Lollipep 2 xnBE_64 Andraid 5.0 | 5.0

And roid
Kirkar Wesr 20 armeabi-v.. Android 4.4W - Android Wear

Tamiem Image
Kitkaz Wear 0 xBE Androld 4.4W = Androéd Wear xB&
Kitkaz 19 armpabi-v, . Android 4.4,2
Kitkas 19 xBE Android 4.4.2
Kitkat 1% armeabi-v... Coogle APs (Coogle Inc.)

| €3] | Inonall Latest Version... |

Cancel Previous E Finish

Figure 318: The System Image dialog box.

AVD Mame [Wexus & AR 21

50 wesss 5 4.95 1080w 1920 xxhdpi Change...
@ Lelipop Android 5.0 w86 Change...
Startup size
and Scale: Auto § Wathing Lelected
orientation

Drientaticn: D I:I

Forwaiy Landscape

m'"" i Lse Host GPAU

Store a snapshot for faster startup

Shioree Advanced Settings

Figure 319: The Configure AVD dialog box.

a 8 AND Manages

Your Virtual Devices

Android Studio
Type hame Resnbagagn AR Target CAJ/AM S on Disk Arnans
m Nexus 5 AP 21 1080 = 1920 axkdpi 21 Andraid 5.0 =BE G50 ME
= Creats Virbeal Device.. &)
Cancel | [

Figure 3110: The recently created AVD in the AVD Manager.

Running the Hello Android App

Understanding the basics of how to get an Android application up and running is a simple but
detailed process. You’re now ready to see your hard work in action. You’ve created an Android
Virtual Device; now it’s time to get the application running. Finally!

Running the app in the emulator
Starting your application is as simple as choosing Run=Run ’app’. At this point, Android Studio
will compile your app. When it’s done, choose Launch Emulator and select the emulator you just

created. Check Use same device for future launches, and click OK. Android Studio compiles your
application, deploys it to the emulator, and then runs it, as shown in Figure 3-11.

& 5554:AVD_for_Nexus_5_by_Google

Android

Saturday, October 25

Charging

o

Figure 3111: The Android Emulator, showing the port number that the emulator is running under and the AVD name on the
window’s title bar.

o8

Look for “HAX is working and emulator runs in fast virt mode” in the Run app log at the
bottom of Android Studio, as in Figure 3-12.

3 Bur o AVD AVD_for_Nenin_%_w Googh
E = AP LLCHT dns AR dE S1edlin, s/ 0kl 1os L femilater” —netoelay Rone ~helisesd full -av8 AND_for_Mesus 3 by_Gsogle
Ifl LY working and emulaicr russ in Tasl wirt mcos |

Dviedl Ly Gt adie Compids gl Messasy Mosags
TAE L0 Lt maider |

Look for this message
Figure 3112: HAX is working and emulator runs in fast virt mode.

If you don’t see this, then your emulator will likely run much slower than it could. To fix this, you
will want to enable the

1 Graphics acceleration

1 Intel HAXM virtual machine acceleration

Visit http://d.android.com/tools/devices/emulator.html# acceleration for more
information about how to enable these two features to speed up your emulator.

HhEER
&

i

B) Help! If your emulator never loads and stays stuck on the ANDROID screen(s), there’s no
need to worry, comrade. The first time the emulator starts, it can take many minutes to finish
loading because you’re running a virtual Linux system in the emulator. The emulator has to
boot up and initialize. The slower your computer, the slower the emulator is in its boot

process.

o

You can save valuable time by leaving the emulator running. The emulator doesn’t have to
be loaded every time you want to run your application. After the emulator is running, you can
change your source code and then rerun your application. Because you checked the Use same
device for future launches option, Android Studio will reuse it when running your app.

When the emulator finishes loading, you see your app running with the words “Hello world!” like
in Figure 3-13.

http://d.android.com/tools/devices/emulator.html%23acceleration

@ Android Studio

Welcome to Android Studio

Recent Projects Quick Start
1
I._:"'- Mew Project...
I:K..r Import Project...
|_"— Open Project
Check out from Version Control

\ 4
,.f{"' Configure

[‘d? Docs and How-Tos

Android Studio 0.8.14 Build 135.1538390. Check for updates now.

Figure 3113: The Hello Android application in the emulator.

You’ve just created and started your first Android application.

Checking app logs

You can view the logs of your application in the Android tool window, as shown in Figure 3-14.
This tool window should have popped up automatically when you ran your app, but if it didn’t,
you can access it by choosing View=Tool Windows= Android.

] 8-k

Do [AR - B4 Lisg bt infg A aep com dunimie Relloesdined &
Ui
E v Emulster A0 Tor Memg ® TIEL=11FL oo dand ek e | LedSdreld BFLLSredaiagfing Taliod 13 sdid Bre] Chown JRCOLSGdE LR Medd-aniy Tili
.E. A HEL-T1EL cos. ey el Lodsdrn L WTpgane « CreyveProresslomeg Talled, hervel sdsilay (ONFEC_CORLP ORECTR
3 rghenid procnii scre FINL-FIEL pon, chamaciiey , A | londrndad 170t - Mot late—erabling -Nchacip el [alresdy ol
i [T ——— TN con. dumnde el losndroid I/0peaSlRenderer - Tnitislised DG, wverpion 1.4

FINL-2108 ton. dumaci il e 1 Lodadroid B eeulafion . eglierdscpliic il rot Seplaserfod

wndroad defoonai
- _— JIEL=2190/ e dulided he | Loasdrn LY WOGeSDL Rendedar - Falled 19 ol BCL Swar PEHAVION &5 jurfide @xTTSRLI4calel

womandrod devackech

A gl et N i
somandrod keychain
womiradroa] Rerfar

A0eTe Jend o W

s gl ks

] Wt

Terrined B § Charge | & Anceadd uruge Al = TODD vesi Log) Grafi Cossole) Maveaary Blomins
| o i P in 15 v (F mirsanes. gt [T Y |

Figure 3114: The Android Tool window displaying logs from your app.

Inside the Android view, you’ll see your app’s log output in the logcat tab. Here’s an example log
that you might see:

1885-1885/com.dummies.helloandroid I/art: Not late-enabling
-Xcheck:jni (already on)

1885-1898/com.dummies.helloandroid I/art: Profiler disabled.
To enable setprop dalvik.vm.profiler 1

1885-1885/com.dummies.helloandroid W/Resources: Preloaded drawable resource
#0x1080093 (android:drawable/sym def app icon) that varies with
configuration!!

1885-1885/com.dummies.helloandroid I/am on resume called: [0,com.dummies.
helloandroid.MainActivity]

o

The logcat view provides valuable information on the state of your application. It lets you
know it’s launching an activity, shows which device you’re connected to, and shows
warnings and errors. In the previous example, you can see that the
com.dummies.helloandroid.MainActivity, the activity you just wrote, was run
and its on_resume was called:

1885-1885/com.dummies.helloandroid I/am on resume called:
[0, com.dummies.helloandroid.MainActivity]

I’ll explain what on resume means later in the book, but for now just know that your activity
was started up as expected.

Understanding Project Structure

You’ve created your first application. You even did it without coding. It’s nice that Android
Studio provides you with the tools to fire up a quick application, but it won’t write your next
blockbuster application for you. The beginning of this chapter walked you through how to create a
boilerplate Android application by using the New Android Project Wizard. The rest of this
chapter shows you how to use the file structure that the Wizard created for you.

[}
<

£

Q/ The following sections aren’t ones you should skim (they’re vital!), because you’ll spend
your entire Android development time navigating these folders. Understanding what they’re
for and how they got there 1s a key aspect of understanding Android development.

Navigating your app’s folders

In Android Studio, the Project View expands to show the Hello Android project, as shown in
Figure 3-15. If you don’t see the Project view, choose View=Tool Windows=>Project to turn it
on. Then click on Android in the upper left and select Project to view the Project view.

(] [] ManActnaty. v - [app] = Hello Andngid = [~/AndrsdSludaPropciaHelodndngid] - Andeoed Studio (Beta) 0.8.14
% 0 & Vi [we- /0 L #32 LB+ 7

. Hellgdndrpdd AP
; £ Projce - S o - 015 5 ManActhityjiva = 0 acEity_mainosl . &
" = HelboAndroid (- A S -0 package com, dunmies.helloandroid; " I
- * ded E
a > - import android.app.Activity;

Bocat Bt an PestLe; g
s Dgmde import android,vied.Mesu; o
5 gitiganhe import androdd.wied. Menultes;

5 . bk gradhe =
A Fadle, progerE

i | radie. progrtes % public class MainActivity extends Activity { E
. gradiew ;
gradiew, bar vt 'E
31 HeSoAndred, iml . protected wedd onlreate{Bundle savedinstanceStated { 4
A super.oolreatel savedInitancettate) ; =

1 lGalproaeries SETCeATEATY LR, Layout . sctivity maial;
. s gradie } i

Bl Exrernal Lbrarses E

i
public boclesn onlreatelpt ionsMena(Mesu menul {
getMerulaflater]). inflate(R. nerw. meny_sain, menul;
reters troee:
o ¥
E R RES o
-
= - ape mengeDebogTe dIREsouroRs
f = appprocessDebugTeidfesounces
. 5 App: g retransDe bug TestSources
- - i BUILD SUCCESSAUL
= 3+ @ i Total Gme: 7.972 teci
0 #rroes
S T iy
al {0 O warnings
? () See complene outnut bn comaoke
=TODD & Android ¥ Terrming @ Messages Evenk Log ¥ Gradie Congole Wy Mosngr
] Grasie build finished in B vex {boday 251 PV 545 WUF: UTr-8: b o

Figure 3115: The Project view with the Hello Android project folder structure expanded.
o8
The Project view and Android views are both very useful. Try switching back and forth

between them both to see which you prefer. For more information about the Android view,

ViSithttps: developer.android.com/sdk/installing/studiolandroidview.html.

After the Hello Android project is expanded, you’ll see a few directories and files. The important
ones are

1 app: Where your main app code is placed.

1 build.gradle: Your topllevel build file. It’s not the only build.gradle file in your
project, but it’s the one at the top. It tells gradle, the Android build system, how to build the
various subdirectories in your project.

» settings.gradle: This file doesn’t have much in it right now, but it does contain the list
of subdirectories that gradle needs to build. In this case, it just lists app.

Go ahead and open up the app directory and look what’s inside. Some of the interesting folders
and files here include

1 Another build.gradle: The build.gradle file in this directory is different from the
one at the top level. This build.gradle file includes the real meat of what’s necessary to
compile your app. You’ll examine it in more detail later.

1 build: This directory isn’t something you normally look at. It contains temporary and
generated files that are built by the Android build system during the course of compiling your

app.

https://developer.android.com/sdk/installing/studio-androidview.html

1 1ibs: This directory is also something you won’t normally look at. If you need to add thirdl
party libraries to your project, you can download the jars and put them into this 1ibs
directory to include in your app. However, more commonly you add them as dependencies into
your build.gradle file. You’ll find out more about how to add dependencies to your
Android projects in Chapter 9.

1 src: This directory is the most interesting one here. It contains all the source files necessary
to build and test your app.

Go ahead and open up the src directory now. You’ll see two directories:

1 androidTest: This directory is where you’ll put all your test cases to test your app.

1 main: Your app’s source code is inside the main folder.
If you open the ma in folder, you’ll see three things:

¥ AndroidManifest.xml

¥ java

¥ res

The AndroidManifest.xml file tells Android what’s inside your app. Android uses this

information to find and load the various components of your app. You’ll find out more about
AndroidManifest.xml in Chapter 9.

extras .
To learn how to use the androidTest folder to create automated test cases for your app,
read the articles online about testing at www.dummies.com/extras/androidappdevelopment.

The following sections discuss the other folders.

Java Source (java) folder

The Java source folder — known as the java folder in Android projects — includes your stub
MainActivity.java file, which you created in the New Android Project Wizard earlier in
this chapter. If you open the java folder, you’ll see the com.dummies.helloandroid
package, with the MainActivity. java file inside.

o

You aren’t limited to a single package in your Android applications. In fact, separating the
different pieces of your app into separate packages is considered to be a best practice. For
example, your application might have Customer objects that represent a customer, and
those customers are retrieved via a web API. To make that easy, you might also have some
http classes that represent your API. One way you might organize these classes is to use
packages like the following:

http://www.dummies.com/extras/androidappdevelopment

P com.dummies.helloandroid.models

» com.dummies.helloandroid.http

These packages contain their respective Java components.
com.dummies.helloandroid.models contains the domain model Java classes (such as
your Customer object), and com.dummies.helloandroid.http contains the HTTPI
related Java classes used to access your web APIs.

Resources (res) folder

The res folder contains the various resources that your application will use. Classic examples of
resources include text strings, images, and layout files, but there are many other kinds of lessl
common resources that you might include with your app. See Table 3-1 for a more complete list.

Table 311 Supported Subdirectories of the res Directory

Directory |Resource Type

anim/ XML files that define animations.

color/ XML files that define a list of colors.

drawable/ Bitmap files (.png, .9.png, .jpg, .gif)or XML files that are compiled into drawable resources. Typically you would
use one of the other drawable directories instead of using this one directly.

drawablel Drawables for screens with extralextralhigh resolution, approximately 480 dpi.
xxhdpi/

drawablel Drawables for screens with extralhigh resolution, approximately 320 dpi.
xhdpi/

drawablel Drawables for highlresolution screens, approximately 240 dpi.
hdpi/

drawablel Drawables for lowlresolution screens, approximately 120 dpi.
ldpi/

drawablel Drawables for mediumlresolution screens, approximately 160 dpi.
mdpi/

layout/ XML files that define a user interface layout.

menu/ XML files that represent application menus.

raw/ Arbitrary files to save in their raw form. Files in this directory aren’t compressed by the system and can be accessed by
Resources.openRawResource ().

values/ XML files that contain simple values, such as strings, integers, and colors. Whereas XML resource files in other res/
folders define a single resource based on the XML filenames, files in the values/ directory define multiple resources
for various uses. You should follow a few filename conventions, outlined in the nearby sidebar “Naming resources in the
values directory,” for the resources you can create in this directory.

Android allows you to define the same resource multiple times in different folders. For example,
if youopenup res/values/strings.xml, you'll see that the hello world stringis
defined to be the text “Hello world!” If you wanted to, you could define the same hello world
stringin res/valuesles/strings.xml and give it the value of " jHola Mundo!"
Android would then automatically choose the Spanish translation when the app runs on a Spanish
device, and the English translation when it runs on an English device. You can use the same trick

to use different layouts on different sized devices.

o

You can access your resources in code via resource IDs that are generated by Android
Studio in the R class. (See “The mysterious build/generated folder,” later in this chapter.)

You should place each resource in a specific subdirectory of your project’s res directory. Table
3-1 lists the subdirectories that are the most common types of resource folders under the parent
res directory.

o

That is a lot of drawable directories! Don’t worry, you do not need to supply images and
icons for every possible resolution device that your app runs on. In general, you should
provide drawables for the highest resolution you expect to need (usuvally xxhdpi), and the
device will scale them down to other resolutions. For performance reasons and to avoid any
scaling artifacts, you may decide to scale them down yourself and put them into the
appropriate drawables directory, and that’s why Android gives you so many different
drawable directories to choose from.

Naming resources in the values directory

You should follow a few filenaming conventions for the resources you can create in the values directory: v

1* arrays.xml for resource arrays (storing like items, such as strings or integers, together).
L colors.xml for resources that define color values; accessed via the R. color class.

L dimens.xml for resources that define dimension values (20px equals 20 pixels, for example); accessed via
the R.dimen class.

1 strings.xml for string values; accessed via the R. st ring class.

1 styles.xml for resources that represent styles; accessed via the R. style class. A style is similar to a
cascading style sheet in HTML. You can define many styles and have them inherit from one another.

A full discussion of the powerful resource mechanism inside Android could fill its own book, but
this book covers the basics to get you up and running. The resource mechanism can help with
internationalization (enabling your app for different languages and countries), device size and
density, and even resources for the mode that the phone may be in. To dive into the ocean of
resources, review the “Providing Resources” section of the Dev Guide in the Android
documentation, at http://d.android.com/guide/topics/resources/providingl

resources.html.

The mysterious build/generated folder

Ah, you finally get to witness the magic that is the generated folder. When you create an
Android application, before the first compilation, the generated folder doesn’t exist. Upon the
first compilation, Android Studio generates the generated folder and its contents. To see it,

http://d.android.com/guide/topics/resources/providing-resources.html

make sure Project Tool window is set to Project view instead of Android view.

The generated folder contains source files generated by Android Studio. One particular file it
creates 1s the R. java file (I will tell you more about that topic in a moment). The generated
folder contains items generated from the res directory. Without a proper understanding of what
the res folder is and what it contains, you have no clue what the generated folder is for. But
because you’re already an expert on the res folder, you can dive right into the generated
folder.

When you write Java code in Android, you reach a point when you need to reference the items in
the res folder. You do this by using the R class. The R. java file is an index to all resources
defined in your res folder. You use this class as a shorthand way to reference resources you’ve
included in your project. This is particularly useful with the codelcompletion features of Android
Studio because you can quickly identify the proper resource via code completion.

Go to the
app/build/generated/source/r/debug/com/dummies/helloandroid folder
in the Hello Android project. Now open the R. java file by doublelclicking it. You can see a
Java class that contains nested Java classes. These nested Java classes have the same names as
some of the res folders defined in the preceding res section. Under each of those subclasses,
you can see members that have the same names as the resources in their respective res folders
(excluding their file extensions). The Hello Android project’s R. java file should look similar to
the following code:

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.

*/

package com.dummies.helloandroid;

public final class R {
public static final class attr {
}
public static final class dimen {
public static final int activity horizontal margin=0x7£040000;
public static final int activity vertical margin=0x7£040001;
}
public static final class drawable {
public static final int ic launcher=0x7£020000;
}
public static final class id {
public static final int action settings=0x7£080000;
}
public static final class layout {
public static final int activity main=0x7£030000;
}
public static final class menu {
public static final int main=0x7£070000;
}
public static final class string {
public static final int action settings=0x7£050000;
public static final int app name=0x7£050001;
public static final int hello world=0x7£050002;
}
public static final class style {
/** Customize your theme here.

*/

public static final int AppTheme=0x7£060000;
}
}

Whoa — what’s all that 0x stuff? Android Studio generates this code for you so that you don’t
have to worry about what’s happening behind the scenes. As you add resources and the project is
rebuilt, Android Studio regenerates the R. java file. This newly generated file contains members
that reference your recently added resources.

[}
)

&‘gﬁ'ﬂﬁ \\

"-’/ You should never edit the R. java file by hand. If you do, your application may not
compile, and then you’re in a world of hurt. If you accidentally edit the R. java file and
can’t undo your changes, you can delete the gen folder and build your project. At this point,
Android Studio will regenerate the R. java file for you.

Viewing the application’s manifest file
You keep track of everything you own and need through lists, don’t you? Well, that’s similar to

what the Android manifest file does. It keeps track of everything your application needs, requests,
and has to use in order to run.

The Android manifest file is stored in your src/main directory and is named
AndroidManifest.xml. Every application must have an Android manifest file.

What the Android manifest file contains
The application manifest file provides essential information to the Android system — information

that it must have before it can run any of your application’s code. The application manifest file
also provides

1 The name of your application ID for the application, which is the unique identifier for your
application in the Android system as well as in the Google Play Store

1 The 1con for your application
1 The components of the application, such as the activities and background services

1 The declaration of the permissions your application requires to run

Permissions

Assume that your application needs to access the Internet to retrieve some data. Android restricts

Internet access by default. For your application to have access to the Internet, you need to ask for
it.

In the application manifest file, you must define which permissions your application needs to
operate. Table 3-2 lists some commonly requested permissions.

Table 312 Commonly Requested Application Permissions

Permission What It Means

Internet The application needs access to the Internet.

Write External Storage The application needs to write data to the Secure Digital card (SD card).

Camera The application needs access to the camera.

Access Fine Location The application needs access to the global positioning system (GPS) location.

Read Phone State The application needs to access the state of the phone (such as ringing).

Viewing the build.gradle file
The build.gradle file tells Android Studio how to build your app.

A

You can also compile your app using the command line instead of Android Studio if you
want. Simply choose View=Tool Windows=Terminal (or open your own terminal) and cd
to the He11oAndroid directory. Then type ./gradlew assembleDebug to build your app
into app/build/outputs/apk. Type ./gradlew tasks for a list of valid build targets
you can us€. And visithttp://d.android.com/sdk/installing/studiolbuild.html for
more information about using Gradle with Android.

Your build.gradle file might start off like the following:

apply plugin: 'com.android.application'

android {
compileSdkVersion 21
buildToolsVersion "21.1.2"

defaultConfig {
applicationId "com.dummies.helloandroid"
versionCode 1
versionName "1.0"
minSdkVersion 21
targetSdkVersion 21

)
The following further explains this code:

1 The compileSdkVersion tells Android Studio what version of the Android SDK you are
compiling against. This version is set based off the choices you made when you went through
the New Activity Wizard earlier in this chapter.

1 The buildToolsVersion tells Android Studio what version of the build tools to use
(which is the version of the tools that you installed on your computer).

1 The applicationId must match the package that you set in your
AndroidManifest.xml file.

Version code

The version code 1s an integer value that represents the version of the application relative to other
versions of your application. The Google Play Store uses it as a basis for identifying the
application internally and for handling updates.

You can set the version code to any integer value you want, but you must make sure that each

http://d.android.com/sdk/installing/studio-build.html

successive release has a version code greater than the previous one.

Typically, on the first release, you set the version code to 1. Then you monotonically increase the
value with each release, whether the release is major or minor. This means that the version code
doesn’t have a strong resemblance to the application release version that’s visible to the user,
which is the version name. (See the next section.) The version code typically isn’t displayed to
your users.

/ You must increase the version code with every version of the app that you publish to the
Google Play Store. The Google Play Store does not accept an app that has the same version

code as one that has previously been uploaded.

Version name

The version name 1s a string value that represents the app’s version as it should display to the
user. The value is a string that can be anything, but it typically follows a common releaselname
nomenclature that describes the application version:

<major>.<minor>.<optional point>

An example of this releaselname nomenclature might be 2.1 or 3.2.4.

The Android system doesn’t use this value for any purpose other than to display it to users.
Android uses the version code rather than the version name internally.

4P

The version name may be any other type of absolute or relative version identifier. The
Foursquare application, for example, uses a versionlnaming scheme that corresponds to the
date. An example of the version application name is 2012 .05. 02, which clearly represents
a date. The version name is left up to you. You should plan ahead and make sure that your
versioning strategy makes sense to you and your users.

Understanding the Compile SDK, Minimum SDK, and Target SDK

Versions

This section discusses three very important parameters you should understand about supporting
different versions of Android in your app. Reviewing this section will help you determine what
settings to use to support users who are running your app on older versions of Android.

Compile SDK Version

The Compile SDK Version is the version of Android in which you write code. If you choose 5.0,
you can write code with all the APIs in version 21. If you choose 2.2, you can write code only
with the APIs that are in version 2.2 or earlier. You can’t use the WilF1 Direct APIs in version
2.2, for example, because they weren’t introduced until version 4.0.

Minimum SDK Version
Android operating system (OS) versions are backwardlcompatible. If your minSdkVersion is

set to Android version 4.0, for example, your application can run on Android 5.0, 4.4, 4.3, 4.2,
4.1, and 4.0. The benefit of choosing the 4.0 framework is that your application is exposed to a
much larger market share. Your app can be installed on devices going back to 4.0 (and on future
versions, too!). Selecting an older version isn’t free of consequences, however. By targeting an
older framework, you’re limiting the functionality you have access to.

You should set the minSdkVersion to the oldest version of Android that you are willing to
support. For this app you will simplify your development life by supporting only the latest version
of Android, but see Chapter 17 for more information about supporting older versions of Android.

If your Minimum SDK Version is not the same as your Compile SDK Version, you must take great
care! For example, you might set your Compile SDK Version to 5.0 in order to use the latest APIs
and your Minimum SDK Version to 16 to support devices running Android 4.1, but your app will
crash if you use 5.0 APIs and run it on an Android 4.1 device (because Android 4.1 did not have
any of 5.0’s APIs).

The Google Play Store decides which users to show your app to based on your
minSdkVersion. If you're having trouble deciding which version to set as your minimum, the
current version distribution chart can help you decide:
http://d.android.com/about/dashboards.

The minSdkVersion is technically optional, but you should always set it! If you don’t know
what to set it to, then set it to the same value as your compileSdkVersion.
i
!
7 [t’s up to you to test your app on all the versions of Android between your Minimum SDK
Version and the latest Android SDK version! To help automate your testing, visit the book’s
website and read the articles online at www.dummies.com/extras/androidappdevelopment.

Target SDK Version

Compile SDK Version and Minimum SDK Version are arguably the most important SDK version
settings that you need to understand. However, there’s a third SDK version called
targetSdkVersion that’s often misunderstood and equally important to understand.

You should set the targetSdkVersion to the most recent version of Android that you have
tested on. In this case, I am building and testing against Lollipop, so that’s what I’'1l set my
targetSdkVersion to.

Whenever a new version of Android comes out, you will want to update the
targetSdkVersion to the latest Android version and test your app to fix any problems. If you
don’t update the target SdkVersion, Android devices will assume that your app wasn’t
tested on the latest version of Android, so they may introduce some backwardlcompatibility
behavior for your app to make sure your app still looks and feels the way you designed it for that
older version of Android. It gets a little tricky, so the best policy is to always keep your
targetSdkVersion up to date with the latest versions of Android.

What’s up next

http://d.android.com/about/dashboards
http://www.dummies.com/extras/androidappdevelopment

You’re now done examining the guts of your Hello World! app. Next, you are going to create
another app with a little more functionality, which you’ll upload to the Google Play Store so that
your mom and her friends can download it to their Android phones.

Chapter 4
Creating the User Interface

In This Chapter

Setting up the Silent Mode Toggle application
Designing the layout

Developing the user interface

Adding an image and a button widget

Making a launcher icon

Previewing your work

In Chapter 3, you discover what Android is and how to build your first application. Chapter 4
helps you delve into the fun stuff: building a real application and publishing it to the Google Play
Store.

The application you build in this chapter allows the user to toggle the ringer mode on the phone by
simply pressing a button. This application seems simple, but it solves a reallworld problem.

Creating the Silent Mode Toggle Application

Create the new application by choosing File=New Module from inside the project you created in
Chapter 3. Choose Phone and Tablet Application from the list, and then click Next. Use Table 4-1
for your module settings.

Table 411 Project Settings for Silent Mode Toggle

ISetting lVaIue

Application Name Silent Mode Toggle
Module Name Silent Mode Toggle
Package Name com.dummies.silentmodetoggle

Minimum Required SDK API 21: Android 5.0 Lollipop

On the Add an Activity page, choose Blank Activity and click Next. Use the settings in Table 4-2
to create your activity.

Table 4]12 Settings for Blank Activity

ISetting 'Value |

Activity Name MainActivity

Layout Name activity_main

Title MainActivity

Menu Resource Name menu_main

Now click Finish. You should now have the Silent Mode Toggle application in your Project view,
as shown in Figure 4-1.

D EH D ¢ A 3 . &
-, SilentModeToggl

- android-for-dummies-v3
B lil Android N QD = | B~ - | €
E » [“.HelloAndroid &
% v [7SilentModeToggle
» » |1 manifests

» [ljava

[« 1)
5 v L3res
S » [« ldrawable
& v <] layout
N~ an :
» < activity_main.xml

© app_widget.xml|
» < lvalues
> [Jxml
» (o Gradle Scripts

Figure 411: The Silent Mode Toggle application in Android Studio.

Laying Out the Application

When you have the Silent Mode Toggle application created inside Android Studio, it’s time for
you to design the application’s user interface, the part of an application that users interact with.

Your application will have a single image centered in the middle of the screen to toggle silent
mode. The image will also provide visual feedback to let the user know whether the phone is in
silent mode or normal ringer mode. Figure 4-2 shows what the finished application will look like.

& 5554:AVD_for_Maxus_5_by_Google

3 5554:AVD_for_Mexus_5_by_Google
A * 4 150 | A * 'l & 1:50

Silent Mode Toggle Silent Mode Toggle

o T

Figure 412: The Silent Mode Toggle application in (left) normal ringer mode and in silent ringer mode (right).

It’s time to start developing the user interface. First, open the user interface layout file that you
created when you created the new blank activity in the previous section. The file is called

activity main.xml, and you can find it by expanding SilentModeToggle, res, and
layout as in Figure 4-1. Doublelclick it to open it.

Then make sure that you’re in the Text tab of your layout by clicking the Text tab as in Figure 4-3.

= Android v 0 = - [+ va 1 activity_mainxml |-=1
at
€ » [iHelloAndroid k?xml version="1.0" ¢l
v SilentModeToggle c ' -<FramelLayout xmlnsiar
’ » [manifests android:
: android:
» Lljava android:
o :
= v ires android:
3 » [“ldrawable o
= <ImageView
v v layout .
~ Y -) android:1d="¢
v © activity_main.xml| android:layol
© app_widget.xml android:layoL
= > values android:layol
= android:src='
S > xml
£ » (= Gradle Scripts Design | Text
=

Click the Text tab

Figure 413: The Text tab for the activity main.xml layout file.

When you’re on the Text tab, delete the XML and replace it with the following. Your layout should
now look like this:
<?xml version="1.0" encoding= encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/content"

android:layout width="match parent"
android:layout height="match parent" >

</FramelLayout>
JUNBER
o)

A view occupies a rectangular space on the screen and is responsible for drawing and
event handling. All items that can show up on a device screen are views. The View class is
the superclass that all items inherit from in Android. This includes all layout classes, such as
the FrameLayout used in this example.

The first line in every XML file provides the default XML declaration, letting text editors
such as Android Studio and platforms such as Android know what type of file it is:

<?xml version="1.0" encoding="utfl8"?>>

Working with views

As stated in the previous section, views in Android are the basic building blocks of user interface
components. Any time you implement a user interface component in Android such as a layout or
TextView, you're using a view. Every view must be configured, and the next sections explain
the configuration you created for your FrameLayout. You can also see them summarized in
Table 4-2.

Setting layout width and layout height values

Before a view can be presented to the screen, a couple of settings must be configured on the view
so that Android knows how to lay out the view on the screen. The attributes that are required,
layout widthand layout height, are part of the LayoutParams in the Android SDK.

The layout width attribute specifies the given width of a view, and the 1ayout height
attribute specifies the given height of a view.

Setting match _parent and wrap content values

The layout widthand layout height attributes can take any pixel value or densityl
independent pixel value to specify their respective dimensions. However, two of the most common
values for layout width and layout height are the match parent and

wrap content constants.

The match parent value informs the parent view to make this view the same width/height as
itself. The wrap content value informs Android to occupy only as much space as needed to
show the view’s content. As the view’s content grows, as would happen with a TextView when
text 1s added, the view’s dimension grows (see Table 4-3).

Table 413 XML Layout Attributes

Layout What It Does

xmlns:android=". . ." Defines the XML namespace for android: . . . that you will use in your XML
elements. This will always be http://schemas.android.com/apk/res/android.

android:id=" @+id/content" Sets the ID of this view to 1d/content. All references to resources in Android
XML files start with the @ symbol. And because you are defining a new ID
resource, you must also have a + symbol after the @.

android:layout_width="match_parent" Informs the view that it should fill as much horizontal space as it can, up to the
size of its parent, to make its own width the same as its parent’s.

android:layout_height="match_parent" Informs the view that it should fill as much vertical space as it can, up to the size
of its parent, to make its own height the same as its parent’s.

In general, you will set your view parameters in XML. If you’re creating views
dynamically via code, though, you can configure the layout parameters via Java code. To find
out more about dynamic creation of views, see the API samples that come with the Android
SDK.

Using Android layouts

When you create a user interface, you sometimes have to lay out components relative to each other,
or in a table, or in a list or grid. Thankfully, the engineering geniuses at Google who created
Android thought of all this and provided the necessary tools to create those types of layouts. Table
4-4 briefly introduces the common types of layouts available in Android.

Table 414 Android SDK Layouts

http://schemas.android.com/apk/res/android

Layout What It Does

FrameLayout Designed to block out an area on the screen to display a single item. You can add multiple children to a
FrameLayout, but all children are pegged to the upper left area of the screen by default. Children are drawn in a

stack, with the most recently added child at the top of the stack.
This layout is commonly used as a way to lay out views on top of each other, or to lay them out relative to their
parent.

LinearLayout Arranges its children in a single row or column.

RelativeLayout Lets the positions of the children be described in relation to each other or to the parent.

GridLayout Arranges its children into a grid.

Other, different types of layout tools exist, such as a TabHost for creating tabs and
DrawerLayout for side “drawers” that hide and display views. Programmers tend to use these
layout tools in speciallcase scenarios. The items in Table 4-4 outline the most commonly used

layouts.

For now, this example uses the simplest layout, the FrameLayout. You’ll use more advanced
layouts in later chapters.

Adding an Image to Your Application

You will add a ringer icon to your app, so first you need to download the icon, of course. You can
download the image from this book’s source code, available from this book’s website (at
http://www.dummies.com/go/androidappdevfd3e), OF yOU Can use your Own.

Adding images to a project is simple: Drag them from the folder where they’re stored to the
src/main/res/drawablelxxhdpi folder, as shown in Figure 4-4.

http://www.dummies.com/go/androidappdevfd3e

[Project v D = | NI+

e
L=
-u .
O v [ZHelloAndroid (~/AndroidStudioProjects/Hellos
o
-l b .idea
£ > LEiapp

B gradle
o
— v _isilentmodetoggle
= - build
=
v libs
I
o v Src

| androidTest
v main
v [Cjava
¥ 2 lcom.dummies.silentmodetoge
€ ‘& MainActivity
v LZres

drawable
B drawable-hdpi
b drawable-mdpi
I drawable-xhdpi

z - » [Jdrawable-xxhdpi
§ 3 layout

=

< menu

é g values

1 g values-v21

2 values-w820dp
Figure 414: Dragging the image file into the src/main/res/drawablelxxhdpi folder.

@E‘?'.B Ek

& @
u
h For the Silent Mode Toggle application, you need two ringer images: off and on. Be sure
to put both images inthe src/main/res/drawablelxxhdpi folder.

Why you should worry about density folders

Android supports various screen sizes and densities. Elsewhere in this chapter, we mention placing an image in the
xxhdpi folder, which is for extralhighldensity devices. What about lowl and highldensity devices? If Android cannot find
the requested resource in the desired density, it uses whatever density resource it can find and scales it appropriately. If
your device has a higher pixel density than Android can find, Android scales the image up to the necessary size,

resulting in resize “jaggies.” To avoid this problem, create multiple versions of your image to target multiple screen
densities. For more information, see the Supporting Multiple Screens page in the Android documentation at
http://d.android.com/guide/practices/screens support.html. And to see a list of which are the most common screen
densities, visit http://d.android.com/about/dashboards/index.html.

To follow along in the rest of the chapter, be sure that the images are named this way:

» Normal mode image: ringer on.png

1 Silent mode image: ringer off.png

If your images aren’t named correctly, you can rename them now.
@LNI.- STE.I'&
‘/ When you drag images into Android Studio, it regenerates the build/generated

folder, and the R. java file is updated to include a reference to the two new images you
added.

)

‘:-

You can use the references to these resources to add images to your layout in code or in XML
definition. You declare them in the XML layout in the following section.

To add an image to the layout, type the following into the activity main.xml file,
overwriting the current content of the file:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/content"
android:layout width="match parent"
android:layout height="match parent"

android: foreground="7?android:attr/selectableItemBackground"
>

<ImageView
android:id="@+id/phone icon"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout gravity="center"
android:src="@drawable/ringer on"/>

</FrameLayout>

This code adds the ImageView inside the FrameLayout. An ImageView allows you to
project an image to the screen on the device.

Setting image properties
Your ImageView contains a few new parameter attributes:

1 The android:id="@+id/phone icon" property: The id attribute defines the unique
identifier for the view in the Android system. You can find an inldepth explanation of the
android:id value nomenclature at

http: d.android.com/guide/topics/ui/declaringllayvout.html.

1 The layout width and layout height properties: Youused layout width and
layout height inyour FrameLayout, but there you set themto match parent. For

http://developer.android.com/guide/practices/screens_support.html
http://d.android.com/about/dashboards/index.html
http://d.android.com/guide/topics/ui/declaring-layout.html

the ImageView, we want the ImageView’s size to be the same as the image it’s showing,
sowe’ll setitto have a layout widthand layout height ofwrap content to
“wrap” the content inside the view. If we had set the height and width to be match parent,
Android would have scaled the image up much too large to take up the full screen. Try it!

1 The layout gravity property: This property defines how to place the view (both its xI
and ylaxes) with its parent. In this example, the value is defined as the center constant.
Since the ImageView is smaller than the FrameLayout, using
layout gravity=center instructs the Android system to place the ImageView in the
center of the FrameLayout rather than in the default location of the upper left. You can use
many other constants, such as center vertical, center horizontal, top,
bottom, left, right, and many more. See the FrameLayout.LayoutParams
Android documentation for a full list.

1 The android:src="@drawable/ringer on" property: You use this property to set
the 1mage that you want to show up on the screen.

Notice the value of the src property — "@drawable/ringer on". You canreference
drawable resources via XML by typing the “at” symbol (@) and the type and id of the resource you
want.

JUNBER

"% (Certain Android attributes begin with the layout prefix — android:
layout width, android:layout height, and android:layout gravity
are all examples. The 1ayout convention tells you that the attribute relates to the view’s
parent. Attributes that don’t begin with layout pertain to the view itself. So the
ImageView’s android: src attribute tells the ImageView which image to use, but its
android:layout gravity tells the ImageView’s parent (the FrameLayout, in
this case) to lay out the ImageView in the center of the parent.

Setting drawable resources

In your ImageView, youset your image srcto @drawable/ringer on. Youdon’t type
@drawablelxxhdpi/ringer on for the drawable resource identifier, because it’s
Android’s job (not yours) to figure out the correct size image for the current device’s screen. At
runtime, Android determines which density is correct for that device, and loads the closest
matching drawables.

For example, if the app is running on a mediumldensity device and the requested drawable
resource is available in the drawablelmdpi folder, Android uses that resource. Otherwise, it
uses the closest match it can find. Support for various screen sizes and densities is a broad topic
(and can be complex!). For an inldepth view into this subject, read the “Supporting Multiple
Screens” article in the Android documentation at

http: d.android.com/guide/practices/screens support.html.

The ringer on portion of the identifier identifies the drawable you want to use. The image
filename is ringer on.png. If you were to open the R. java file in the

http://d.android.com/guide/practices/screens_support.html

build/generated folder, you would see a static field with the name phone on.

You can use code completion to see the available resources in Android Studio. Place the cursor
directly after @drawable/ inthe src property of the ImageView in the Android Studio
editor, and press Ctrl+spacebar. The codelcompletion window opens, as shown in Figure 4-5.
The other resource names in the window are other options you could choose for the src portion
of the drawable definition.

3

<ImageView 2

android: id="@+id/phone_icon" %

android:layout_width="wrap_content" 7.
android: layout_height="wrap_content"

android: layout_gravity="center" m

android:src="gdrawable/|" z

J= @drawable/ic_launcher
@drawable/icon_ringer_off

@drawable/ringer_on

Dot, semicolon and some other keys will also close this lookup and be inserted into editor

</FrameLayout>

-

Figure 415: Code completion, with resources.

Creating a Launcher Icon for the Application

When your app is installed, its icon helps users identify its presence in the application launcher.
When you create the Silent Mode Toggle application, Android Studio automatically includes a
default launcher icon, as shown on the left in Figure 4-6.

& @ B8 untitled folder
= [Il % v -

Favorites
All My Files ﬁ ‘
¢ iCloud D...
@) AirDrop
[Desktop
‘m‘ mike
:f'-\; Applicat...
O Downloads
™M Documents

Figure 416: The default icon (left) and a unique icon (right).

original icon.png new icon.png

You should change this icon to one of your own. You can create your own (as shown in the
following section) or use the one from the downloaded source code at

http: www.dummies.com/go/androidappdevfd3e.

http://www.dummies.com/go/androidappdevfd3e

Designing a custom launcher icon

Creating your own launcher icons is fairly easy, thanks to the Android project. The article
“Iconography” in the Android documentation covers all aspects of icon design — a howlto manual
for creating icons for the Android platform, a style guide, a list of do’s and don’ts, materials and
colors, size and positioning guidelines, and (best of all) icon templates that you can use. You can
find useful resources for designing icons at www.google.com/design/spec/style/icons.html

and http: d.android.com/design/stvle/iconography.html.

Working with templates

After you download the Android SDK, these icon templates and materials are available for you to
use immediately on your computer’s hard drive. Navigate to your Android SDK installation
directory (see Chapter 2), and from there navigate to the docs/shareables directory. You’ll
find various . zip files that contain templates and samples. Open the templates in the image
editing program of your choice, and follow the design guidelines in the documentation to create
your next rockin’ icon set.

Matching icon sizes with screen densities

Because every screen density requires an icon in a different size, you, as the designer, need to
know how large the icon should be. Each density must have its own icon size to look appropriate
(no pixilation, stretching, or compressing) on the screen.

Table 4-5 summarizes the finished icon sizes for each of the three generalized screen densities.

Table 4)5 Finished Icon Sizes

; Icon Size in
Screen Density

Pixels
Lowldensity screen (ldpi) 36 x 36
Mediumldensity screen (mdpi) 48 x 48
Highldensity screen (hdpi) 72x 72
Extralhighldensity screen (xhdpi) 96 x 96
Extralextralhigh density screen (xxhdpi) 144 x 144
Extralextralextralhigh density screen (xxxhdpi) 192 x 192

In general, xxxhdpi is not currently used for more assets. It's only used for providing extrallarge launcher icons on
some devices.

o

In general, you won’t need to supply most of your assets in xxxhpi (triplelx). The only
asset you should use xxxhdpi for is your launcher icon. Some Android devices use the
additional resolution to provide an extrallarge launcher icon. On these devices, adding an
xxxhdpi launcher icon will make your app icon look pretty. But don’t bother adding xxxhdpi
assets for other images because the highest resolution that’s currently used in devices is only
xxhdpi (doublelx).

http://www.google.com/design/spec/style/icons.html
http://d.android.com/design/style/iconography.html

Adding a custom launcher icon
To place your custom launcher icon into the project, follow these steps:

1. Rename the image iconto ic launcher.pna.
2. Create the drawablelxxxhdpi folderin src/main/res.

3. Drag your icon into the drawablelxxxhdpi folder.
Android Studio asks whether you want to overwrite the existing ic launcher.png.

4. Click Yes.
The ic launcher.png file is now in the drawablelxxxhdpi folder.

You’re not done yet! For the other drawable folders, you need to delete the other versions of
ic launcher.png or provide your own versions.

If you don’t delete the icons of other densities in their respective folders, users who have a lowl
or highldensity device receive the default launcher icon (refer to Figure 4-6), whereas the xxhdpil
density devices receive the new icon that you included in the project.

Previewing the Application in the Visual
Designer

To take a look at what the layout looks like in the visual designer, click the Design tab to view it,
as shown in Figure 4-7.

[] B » slentmodetogghe’.. factivity_mainxmd - [silenimodetoggle] - Hallo Andnoid - [~/AndrolgSiudicPropectsHelloindroid) - Android Studio (Beta) 0.8.14

! = i = silentmodengghe F .-. + [3 L A= 7

Hedlodndroid silenomodesoggle e man ires layout - = actity_main.xmi

= i BBty fdin wesl

o

& Faette 8- I* I L = (0 AgaTheme . w AT Camgasant Trew H - i

saparunasy o

Laygun =IH| 3 r - iy o v B Dwvice Soreen
Frame Layout T v convent (Framelayeet)
LinearLayout (Horirontd =l phone_ioon (mageViea)
LinearLaywout (vertical o -
TableLayout
TableRow
Girid Larpoust
Belarwelayout
Widprts
Ao Plaim Taxxviiny
AbLarge Text
ol W jurm T
&b Sl Tgur
Butmon
Sl Bumina
RadipBumon
" CrackBox
B Saitch
Toopgie Bution
& ImageBuzon
= ImageVew
= ProgressBar (Langel
== ProgressBar (Kormal
= ProgressBar (Smail
= ProgressSar (Horizonta

f I Ssudiure

3005 wiary 3

HPREY (%

Propartiy fF 57T

layoutheight atch_panent
style

acteiiibdityliseRegion

alpha

background

Backgrownd T

Backgreund Tinbiads

chcicable

& Busld Varianty

contenlDescripton
elevatan
SeekBar 0 EEE Y e anie

Design Text

I Favedites

= TODG & & Androi Torrminal fvent Log v Gradie Conyole Wl Mermory Montar
|
Figure 417: The Design view of the layout.

The visual designer has many different possible configurations.

Selecting the Devices dropldown list in the visual designer shows you which devices you can
simulate your layout on. You can test out what your app will look like on many different kinds of
phones and tablets.

Selecting the Orientation dropldown list allows you to see what your app looks like in portrait and
landscape modes.

You can also preview what your app looks like in other languages, on older versions of Android
(if you enabled backward compatibility), and on devices that have different default themes.

Using the visual designer allows you to quickly test out your app on various configurations so you
can fix bugs quickly without having to load up an emulator for each and every one of those
configurations. It’s not a substitute for actually testing on a device, but it can make your
development much quicker.

Try out a few other configurations!

Chapter 5
Coding Your Application

In This Chapter

Seeing how activities work in Android
Coding your own activity

Using the Android framework classes
Installing an application

Using debugging tools

Testing your app in the real world

You’re probably eager to start coding your application. In this chapter, you write the Java code,
from soup to nuts. Before you can start banging out bits and bytes, though, you need a firm
understanding of activities.

Understanding Activities and the Activity
Lifecycle

An activity 1s a single, focused action that a user can take. You can think of an activity like a
“page” in your app. For example, an activity might present a list of menu items that a user can
choose from, or it might display photographs along with captions. An app may consist of only one
activity or (more commonly) several. Though activities may work together to appear to be one
cohesive application, they work independently from each other. Almost all activities interact with
the user, so the Activity class creates for you the window in which you can place your user
interface (UI).

HEER
&

o
) @ An activity in Android is an important part of an application’s overall lifecycle, and the
way the activities are launched and put together is a fundamental aspect of the Android

application model. Every activity is implemented as a subclass of the Activity base class.

The Activity lifecycle is one of the most important differences between Android and other phone
operating systems. It’s complicated, but it’s an important set of concepts to grasp before you dive
into developing Android apps.

The Activity lifecycle

Two important methods that almost all activities implement are

1 onCreate: Where the activity is initialized. Most importantly, it’s where you tell the activity
which layout to use by using a layout resource identifier — considered the entry point of your
activity.

1 onPause: Where you deal with the user leaving your activity. Any changes made by the user
should be committed at this point (if you need to save them).

Activities in the system are managed as an activity stack. When a new activity is created, it’s
placed on top of the stack and becomes the running activity. The previous running activity always
remains below it in the stack and returns to the foreground only when the new activity exits.

JUNBER
")

4’ To be a successful Android programmer, you must understand the importance of how and
why the activity works behind the scenes. This will make you a better Android programmer
and help you debug strange problems later.

An activity essentially has four states, as described in Table 5-1.

Table 511 Essential States of an Activity

Activity

State Description

Active/running The activity is in the foreground of the screen (at the top of the stack).

Paused The activity has lost focus but is still visible. (A new, nonlfulllsize or transparent activity has the focus on top of your
activity.) Because a paused activity is completely alive, it can maintain state and member information and remains
attached to the window manager in Android.

Stopped If an activity becomes obscured by another activity, it is stopped. It retains all state and member information, but isn’t
visible to the user. Therefore, the window is hidden and will often be killed by the Android system when memory is
needed elsewhere.

Destroyed When the activity is paused or stopped, the system can reclaim the memory by asking it to finish, or it can kill the
process. When it displays the activity again to the user, it must be completely restarted and restored to its previous
state.

Figure 5-1 shows the important paths of an activity — the activity lifecycle.

[Activity starts.)
Y

User navigates
back to S onCreate|()
the activity. ¥
onStart() = onRestart() |
Y A

|
(ﬁctivitv is running) { The activity]

comes to the
[

foreground.
Another activity
comes in front of

__the activity.

Ether applic Euti-:m;\L

onPause()

| The activity
(The activity is no longer visible.) comes to the
¥ foreground.

need memory. |

onStop() |
Y

onDestroy()

Y
[Antivitr is shut dnwn)
Figure 511: The activity lifecycle.

The rectangles represent callback methods you can implement to respond to events in the activity.
The shaded ovals represent the major states of the activity.

The activity lifecycle is a large and complex topic, and the following sections cover only the

basics. If you want to read more about activity lifecycles, check out the “Activity Lifecycle”
article in the Android documentation at

http: d.android.com/reference/android/app/Activity.html.

Important lifecycle loops

You may be interested in monitoring these three loops in your activity:

1 The entire lifetime takes place between the first call to onCreate () and the final call to
onDestroy (). The activity performs all global setup in onCreate () and releases all
remaining resources in onDestroy (). For example, if you create a thread to download a
file from the Internet in the background, it may be initialized in the onCreate () method.
That thread can be stopped in the onDestroy () method.

1~ The visible lifetime of the activity takes place between the onStart () and onStop ()
methods. During this time, the user can see the activity onscreen (though it may not be in the

http://d.android.com/reference/android/app/Activity.html#ProcessLifecycle

foreground interacting with the user, which can happen when the user is interacting with a
dialog box). Between these two methods, you can maintain the resources that are needed to
show and run your activity. For example, you can create an event handler to monitor the state
of the phone. The phone state can change, and this event handler can inform the activity of the
phone entering Airplane mode and react accordingly. You would set up the event handler in
onStart () and tear down any resources you’re accessing in onStop (). The

onStart () and onStop () methods can be called multiple times as the activity becomes
visible or hidden to the user.

1 The foreground lifetime of the activity begins at the call to onResume () and ends at the
call to onPause (). During this time, the activity is in front of all other activities and is
interacting with the user. An activity normally toggles between onResume () and
onPause () multiple times, for example, when the device goes to sleep or when a new
activity handles a particular event — therefore, the code in these methods must be fairly

lightweight.

Viewing activity methods
The activity lifecycle boils down to these methods:
public class Activity extends ApplicationContext {
protected void onCreate (Bundle savedInstanceState) ;
protected void onStart();
protected void onRestart () ;
protected void onResume () ;
protected void onPause () ;
protected void onStop() ;
protected void onDestroy () ;

)

All methods can be overridden, and custom code can be placed in all of them. All activities
implement onCreate () for initialization and may also implement onPause () for cleanup.
You should always call the superclass (base class) when implementing these methods.

Following an activity’s path
The movement of an activity throughout its lifecycle looks like this:

1 onCreate () : Called when the activity is first created. You initialize most of your activity’s
classlwide variables here. onStart () is always called next. Killable: No. Next:
onStart ().

1 onRestart (): Called after your activity has been stopped before being started again.
onStart () is always called next. Killable: No. Next: onStart ().

1 onStart (): Called when your activity is becoming visible to the user. Followed by
onResume () ifthe activity is brought to the foreground or onStop () if it becomes hidden
from the user. Killable: No. Next: onResume () or onStop ().

1 onResume () : Called when the activity will be available for interacting with the user. The
activity is at the top of the activity stack at this point. Killable: No. Next: onPause ().

1 onPause () : Called when the system is about to resume a previous activity or if the user has

navigated away to another portion of the system, such as by pressing the Home key. This stage
is typically used to commit unsaved changes to data that needs to be persisted. If the activity is
brought back to the foreground, onResume () is called; if the activity becomes invisible to
the user, onStop () is called. Killable: Yes, but only on Honeycomb (3.0) or earlier. Next:
onResume () oronStop ().

1 onStop () : Called when the activity is no longer visible to the user because another activity
has resumed and is covering this one. This may happen because another activity has started or
a previous activity has resumed and is now in the foreground of the activity stack. It’s
followed by onRestart () ifthis activity is returning to interact with the user or by
onDestroy () ifthis activity is going away. Killable: Yes. Next: onRestart () or
onDestroy ().

1 onDestroy () : The final call youreceive before your activity is destroyed. This method
gets called either because the activity is finishing (such as someone calling finish () onit)
or because the system is temporarily destroying the activity to reclaim space. You can
distinguish between these two withthe isFinishing () method, which helps identify
whether the method is finishing or the system is killing it. The isFinishing () method is
often used inside onPause () to determine whether the activity is pausing or being
destroyed. Killable: Yes. Next: Nothing.

HhBER

S/ The killable indicator at the end of each activity method description notes the activities
the Android system can kill at any time and without notice. You should therefore use the
onPause () method to complete any cleanup to write persistent data (such as user edits to
data) to your storage mechanism.

Recognizing configuration changes

A configuration change i1s a change that’s made to the screen orientation (for example, i1f the user
moves the screen to the side and back or moves it from portrait to landscape mode or vice versa),
the language, or an input device. A configuration change causes your activity to be destroyed while
completing the normal activity lifecycle: onPause () followed by onStop () and then
onDestroy (). After the onDestroy () method is called, the system creates a new instance of
the activity to be created, which takes place because resources and layout files and other elements
might need to change depending on the current system configuration. For example, an application
may look completely different if the user is interacting with it in portrait mode, as compared to
being displayed in landscape mode (on its side).

Creating Your First Activity

You may have already created the MainActivity class if you created a project using the New
Android Project Wizard in Chapter 3. Openthe MainActivity.java file in the Silent Mode
Toggle module to enhance it in the following sections.

Starting with onCreate

The entry point into your application is the onCreate () method. The code for the
MainActivity.java file already contains an implementation of the onCreate () method.
It’s where you start writing code! For now, your code should look like this:

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@QOverride
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Initialize our layout using the res/layout/activity main.xml
// layout file that contains our views for this activity.
setContentView (R.layout.activity main); }

)
You write the initialization code directly below the setContentView () method.

§E¥WEL\

“Q/ Be sure to always include this method call to your onCreate () method:

super.onCreate (savedInstanceState) ;

It’s required for the application to run. This line directs the base Activity class to perform
setup work for the MainActivity class. If you omit this line of code, you receive a runtime
exception.

Telling Android to display the user interface

By default, an activity has no idea what its user interface is. It can be a simple form that allows the
user to type information to be saved. It can be a visual, cameralbased, augmented, virtual reality
application (such as Layar in the Google Play Store). Or it can be a drawnlonlthelfly user
interface, such as ina 2D or 3D game. As a developer, it’s your job to tell the activity which
layout the activity should load.

To show the user interface onscreen, you have to set the content view for the activity, by adding
this line of code:

setContentView (R.layout.activity main);

R.layout.activity mainreferstothe activity main.xml file that’s located in the
src/main/res/layouts directory. It’s the layout you defined in Chapter 4.

Handling user input
The Silent Mode Toggle application has little user interaction. The only user interaction that your
application will have is a single button that the user taps to toggle Silent mode.

To respond to this tap event, you need to register an event listener, which responds to an event in
the Android system. Though you find various types of events in the Android system, two of the
most commonly used are keyboard events and touch events (also known as clicks).

Keyboard events
A keyboard event occurs whenever a particular keyboard key is pressed. For example, if the user

presses the Alt+E hot key in your application, you may want the view to toggle into Edit mode.
Responding to keyboard events allows you to do this. If you need to override the onKeyDown
method to use your own keyboard event, do it this way:

@Override
public boolean onKeyDown (int keyCode, KeyEvent event) {
return super.onKeyDown (keyCode, event) ;

}

You won’t need to use onKeyDown for the examples in this book, but it’s useful to know about it.

Touch events

A touch event occurs whenever the user taps a widget on the screen. The Android platform

recognizes each tap event as a click event. Examples of views that can respond to touch events
include (but aren’t limited to)

1 Button

1 ImageButton
» EditText

¥ Spinner

¥ ListView Rows
1 Menultem

o8

All views in the Android system can react to a tap; however, some widgets have their
clickable property set to false by default. You can override this setting in your layout file or
in code to allow a view to be clickable by setting the c1ickable attribute on the view or
the setClickable () method in code.

Writing your first click listener

For your application to respond to the click event of the user toggling Silent mode, you respond to
the click event that’s exposed by the button.

Add the method shown in Listing 511 to your MainActivity class. It demonstrates how to
implement a click handler for contentView. The code consists of the entire onCreate ()

method with the new code. You can either fill in the button code (in bold) or overwrite your entire
onCreate code.

Listing 5I1: The Initial Class File with a Default Button
OnClickListener

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

// Find the view with the ID "content" in our layout file.
FrameLayout contentView =

(FrameLayout) findViewById(R.id.content) ;

// Create a click listener for the contentView that will toggle
// the phone’s ringer state, and then update the UI to reflect
// the new state.
contentView.setOnClickListener (new View.OnClickListener() {
public void onClick (View v) {
// TODO

}
})
}

This listing uses the findViewById () method, which is available to all activities in Android.

This method allows you to find any view inside the activity’s layout and do some work with it.
MG

@ Be sure to cast the result of findViewById () to the appropriate type. If the type in
your layout file is different from what you’re casting it to (if you’re trying to cast an
ImageView in the layout file to ImageButton, for example), you’ll crash your
application.

Immediately following this line of code, you start setting up the event handler.

The event handling code is placed inline after you retrieve the contentView from the layout.
Setting up the event handler is as simple as setting a new View.OnClickListener. This
click listener contains an onC11ick () method that’s called after the user taps the button.

It’s where you place the code to handle the Silent mode toggle.

What should the view do when it’s clicked? You’ll set that up shortly, but for now leave it empty.

Working with the Android Framework Classes

This section gets into the good stuff — the nittylgritty of Android development and its Android
framework classes! Yes, activities and views are integral parts of the system, but they’re simply
the “plumbing” that’s required in any modern operating system (in one capacity or another). The
real fun is just about to start.

The following sections describe how to check the state of the phone ringer to determine whether
it’s in Normal mode (ringing loud and proud) or Silent mode. At this point, you can begin to start
toggling the phone’s ringer mode.

Getting good service
To access the Android ringer, you’ll need access to the AudioManager in Android, which is
responsible for managing the ringer state, so you should initialize itin onCreate ().

@*ﬁﬁ“‘?
)
@/ All important initialization needs to happen in onCreate ().

You first need to create a field of type AudioManager by the name of audioManager. Type
this name at the top of your class file, directly after the class declaration line, as shown in Listing

S512.

Listing 512: Adding the ClasslLevel AudioManager Variable

package com.dummies.silentmodetoggle;

import android.media.AudioManager; -3

public class MainActivity extends Activity {
AudioManager audioManager; -9

@QOverride

public void onCreate (Bundle savedInstanceState) {
// Always call super.onCreate() first.
super.onCreate (savedInstanceState) ;

// Get a reference to Android’s AudioManager so we can use
// it to toggle our ringer.
audioManager = (AudioManager) getSystemService (AUDIO SERVICE); -18

}
}

This list briefly explains what the numbered lines denote:

— 3 The import statement that brings in the necessary package so that you can use
AudioManager.

— 9 The AudioManager field. Because it’s a field, you can have access to it in other
parts of the activity.

— 18 Initializes the audioManager field by getting the service from the
getSystemService () method inthe Activity superclass.

Whoa! What’s getSystemService () ? By inheriting from the base Activity class,
MainActivity receives all the benefits of being an activity, including access to the
getSystemService () method call. This method returns the base Java Object class, so you
have to cast it to the type of service you’re requesting.

This call returns all available system services that you might need to work with. All services that
are returned can be found in the Context class in the Android documentation, at

http: d.android.com/reference/android/content Context.html.POpulaI‘ system
service types include

1 AUDIO SERVICE
1 LOCATION SERVICE
1 ALARM SERVICE

Toggling Silent mode with AudioManager

After you have an instance of AudioManager, you can start checking the state of the ringer and

http://d.android.com/reference/android/content/Context.html

toggling the ringer. The code you need to add or modify is in bold in Listing 513.

Listing 5I3: Adding the Application Toggle to the App

package com.dummies.silentmodetoggle;

import android.app.Activity;
import android.media.AudioManager;
import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Framelayout;
import android.widget.ImageView;

import com.dummies.silentmodetoggle.util.RingerHelper;
public class MainActivity extends Activity {

AudioManager audioManager;

*

/*
* This method is called to initialize the activity after the
* java constructor for this class has been called. This is
* typically where you would call setContentView to inflate your
* layout, and findViewById to initialize your views.
* @param savedInstanceState contains additional data about the
*saved state of the activity if it was previously shutdown
*and is now being re-created from saved state.
=/
@Override
public void onCreate (Bundle savedInstanceState) {
// Always call super.onCreate() first.
super.onCreate (savedInstanceState) ;

// Get a reference to Android's AudioManager So we can use
// it to toggle our ringer.
audioManager = (AudioManager) getSystemService (AUDIO SERVICE) ;

// Initialize our layout using the res/layout/activity main.xml
// layout file that contains our views for this activity.
setContentView (R.layout.activity main) ;

// Find the view named "content" in our layout file.
FrameLayout contentView =
(FrameLayout) findViewById(R.id.content) ;

// Create a click listener for the contentView that will toggle

// the phone's ringer state, and then update the UI to reflect

// the new state.

contentView.setOnClickListener (new View.OnClickListener () {
public void onClick (View v) {

// Toggle the ringer mode. If it’s currently normal,
// make it silent. If it’s currently silent,

// do the opposite.

RingerHelper.performToggle (audioManager) ;

// Update the UI to reflect the new state
updateUi () ;

}) i

/**
* Updates the UI image to show an image representing silent or
* normal, as appropriate

*/

private void updateUi () {
// Find the view named phone icon in our layout. We know it’s
// an ImageView in the layout, so downcast it to an ImageView.
ImageView imageView = (ImageView) findViewById(R.id.phone icon);

// Set phoneImage to the ID of image that represents ringer on
// or off. These are found in res/drawable-xxhdpi
int phoneImage = RingerHelper.isPhoneSilent (audioManager)

? R.drawable.ringer off

: R.drawable.ringer on;

// Set the imageView to the image in phonelImage
imageView. setImageResource (phoneImage) ;

/**

Every time the activity is resumed, make sure to update the
buttons to reflect the current state of the system (since the
user may have changed the phone’s silent state while we were in
the background) .

Visit http://d.android.com/reference/android/app/Activity.html
for more information about the Android Activity lifecycle.

* F F X H * *

*/
@Override
protected void onResume () {
super .onResume () ;

// Update our UI in case anything has changed.
updateUi () ;

}

Now, create the file
src/main/java/com/dummies/silentmodetoggle/util/RingerHelper.java
and add the following to it:

package com.dummies.silentmodetoggle.util;
import android.media.AudioManager;

public class RingerHelper {
// private to prevent users from creating a RingerHelper object
private RingerHelper () {}

/**
* Toggles the phone's silent mode
o/
public static void performToggle (AudioManager audioManager) {
// If the phone is currently silent, then unsilence it. If
// it's currently normal, then silence it.
audioManager.setRingerMode (
isPhoneSilent (audioManager)
? AudioManager.RINGER MODE NORMAL
: AudioManager .RINGER MODE SILENT) ;

/**
* Returns whether the phone is currently in silent mode.
*/
public static boolean isPhoneSilent (AudioManager audioManager) {
return audioManager.getRingerMode ()
== AudioManager.RINGER_MODE_SILENT;

)
RingerHelper is a simple Java class that has only static methods that help us deal with the

http://d.android.com/reference/android/app/Activity.html

AudioManager ringer. These methods are useful inMainActivity now, but they’ll also be
useful in other classes later, so that’s why they’re in a separate class.

Installing Your Application

You’ve done it — you’ve written your first Android app. Okay, your second, but your first one that
does anything useful. In the next sections, you will install your app on the emulator and put that
baby into action!

Running your app in an emulator
It’s time to install this app on the emulator. Follow these steps:

1. In Android Studio, choose Run=Run ‘Silent Mode Toggle’.
You see the Choose Device window, shown in Figure 5-2.

2. If your emulator is already running, select it now.
Otherwise, select Launch Emulator and choose your desired emulator.

Click the Use same device for future launches check box to avoid having to see the dialog box
every time you launch your app.

3. Wait for the emulator to load and launch your app.
Your application starts and the emulator runs your program, as shown in Figure 5-3.

4

If your application doesn’t start, try Step 1 again and watch the Android view to see
the logcat output from your app. Refer to Chapter 3 for how to use the Android view.

4. Click the Toggle Silent Mode button to see the image toggle, shown in Figure 5-4.
Notice the new 1con on the notification bar — the Silent Notification icon.

5. Return to the Home screen by clicking the Home button on the emulator.

6. Open the application (it’s the center button at the bottom of screen).

You see the application launcher icon in the list of applications.

DED Choose Device. |

() Choose a running device

(*) Launch emulator
Android virtual device: Nexus_5_API_21

Ak
—_—

' Use same device for future launches

Gance | (060

Figure 512: The Choose Device window.

@ 5554:AVD_for_Nexus_5_by_Google

* "4 b 1:50

Silent Mode Toggle

Figure 513: The emulator running the application.

& 5554:AVD_for_Nexus_5_by_Google

* "4 b 1:50

Silent Mode Toggle

Figure 514: The app in Silent mode, with the Silent Notification icon.

After the emulator is running, it’s running on its own. The emulator has no dependencies on
Android Studio. In fact, you can close Android Studio and still interact with the emulator.

Installing on a physical Android device

Installing an application on a device is no different from installing it on the emulator, except for
having to make a few small adjustments to get it to work. If you’re on a Windows machine, refer to
Chapter 2 for how to install the necessary drivers. The remaining steps are straightforward:

1. From the Home screen of your phone, access the Settings panel.
2. Choose About Phone.

Tap on Build number seven times to unlock the developer options. You should see a message
that says “You are now a developer!” If only you’d known that being an Android developer
was so easy, you wouldn’t have needed to buy this book!

. Go back to Settings and choose Developer Options, then select the USB Debugging
option, as shown in Figure 5-5.

This step allows you to debug your application on a device. (You can find more about
debugging later in this chapter, in the “Using the Android Studio debugger” section.)

. Connect your phone to the computer by using a USB cable.

The phone will ask you whether you want to allow USB debugging for this computer. Click the
Always allow from this computer check box and click OK.

. When the phone is detected on your system, run the application by choosing Run=Run
‘Silent Mode Toggle’.

Your device and any emulators that are currently running will show up in the device chooser
(refer to Figure 5-2).
. Choose your phone from the list and click OK.

This step sends the application to your phone, and it launches it just as it would on the
emulator. In a few seconds, the app should show up on your phone.

You’ve now deployed the application to your phone.

< Developer options

On

Debugging

USB debugging

Debug mode when USB is connected

Bug report shortcut
Show a button in the power menu for taking [j

a bug report

Allow mock locations

Allow mock locations
Enable view attribute inspection]

Select debug app

No debug application set

Figure 515: Enabling your device to perform USB debugging.

GEMeEn

)

u

A If you change the app and you need to test it again, you have to reinstall it on your phone.
It’s a simple matter of plugging in your phone and choosing Run=Run ‘Silent Mode Toggle’.

Material Design

Your app runs, it works great, and does what it says it will do. But does it feel right? You may
have noticed that every time you click on the toggle button in the app, there’s no visual
acknowledgment of your click. Sure the image toggles, but is there more that you can do?

Android’s visual design language, called Material Design, is all about making your phone’s Ul
look like physical materials. Backgrounds should look like card stock paper; views set on top of
the background should be elevated to cast a shadow onto the background; button clicks should
cause ripples that expand out over the view like ripples on a pond. These are the little details that
make your app a delight to use.

W

Visit http: //www.google.com/design/spec/materialldesign/ for more information
about Material Design and how to use it to build a visually appealing app.

Your Ul is quite simple right now, so there’s no need to elevate one part of it over another. But
what you do need 1s some sort of click animation.

Luckily, 1t’s simple to add one. Go back to your activity main.xml layout file, and change
your FrameLayout to add the following line:
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/content"
android:layout width="match parent"

android:layout height="match parent"
android: foreground="7?android:attr/selectableItemBackground">

The foreground attribute in the FrameLayout class allows you to overlay a drawable on top of
whatever is inside the FrameLayout. By setting your foreground to ?
android:attr/selectableltemBackground, you are placing the Androidlstandard
selectableltemBackground over your entire image. What does the
selectableltemBackground do? It’s a usually transparent drawable that when clicked
displays a ripple animation across its view.

The question mark (?) in an attribute value means that you are referencing a value in the
currently applied theme. If you change your app’s theme or run your app on a phone with
another version of Android, the app will look and behave slightly differently (as it should)
because you are referencing values from the proper theme.

Go ahead and run your app again, and you will see the standard Android ripple animation when
you click your FrameLayout.

You will learn how to use other aspects of Material Design, such as setting your view elevation,
in Chapter 9.

Uh Dh! (Responding to Errors)

You write perfect code, right? Even if it’s perfect this time, though, the day will come when it
isn’t. When coding doesn’t go as planned, you have to figure out the problem. To help developers
facing application crashes, Android Studio provides valuable tools to help debug applications.

Using the Android view

http://www.google.com/design/spec/material-design/

Debugging is rarely fun. Thankfully, the Android Tool window provides the tools necessary to
help you dig yourself out of a hole filled with bugs. One of the most commonly used features in the
Android Tool window is the logcat viewer, which allows you to view the output of system log
messages from your system, as shown in Figure 5-6.

e ® == erimodetoggieMaintctivity. java - [SilentModeToggie] - andoid-for-dummies-v3 - [~/Projectsfandroid-ioe-dummiss-v3] - Androkd Studko (Beta) 0.8, 14
O & b e SintdodeTogghe - B & L ¥ F @ I E i L& %
dicd - ar - Il SilnnbladeT oggle she s i £ i sibenlRodeee Ml thity
; e = - 1~ oml Androkdanile.xml Lauirse AL thily jar Andresdhanseis sl iebad bt ity v 5w
E 1 He ot read . imi &g
=5 myappicates i
(= SilemtMode Toggle i updatetiidl; E
* [buid w2k T
=
5 T e
¥ v mak B og. 'l "SilentModeToggle™, “This is & test” I
4 java ¥ F
" 4 &
5 com E
¥ T dummies é
v [silentmodetoggle z
- il
* wiid g private vold updateuif] { -
a
4
£
5 Devices | logear ADEfogs - 4 Log lewel; Drebug : app: com.dummies silentmodetogghe
3
= # Devices " legeat
S e s e e,
< Emalator AVD_for_Ne 3 - ZI:- :It 'B!- :I." ME 2606-2621/com, dusmies. silentmodetoggle W/EGL _esulation , eglfurfacedttrib not
b B=26 14:=@5:17.349 2686-2621/con. dusales. & 1lentmadstoggle W/ OpenGLAEnderer . Failed to set EGLS
androdd. process.acore 8-20 149518008 2H86-2680/ con, dumales. s ilentmodetoggle I/Chareographer | Skipged 42 frases!
] androld, process. media B=36 14:=85: :‘EIG—:‘E:‘L.-':M ﬂlﬂ'ﬂl{"i. t11m|:mdﬂ: ale [l.-'llpr-r-dlh.mdcrrr el L L5t agingAni
E SOMLARArG Ml B=26 1'5-""3 JFBﬁ- }ﬁ}L.l' : 'I1 1 - L EG 1 . Siarf Al kb
] F =BE: 79,51 com, gusmies. 54 Ftl'h’.ﬂrllbf"l] « WEGL_esulation ﬁ; aceAttril not
:: com.android defcontal ner B-20 14:B6: 3. 518 20862621/ com, dumaies. ¢ ilentmodetoggle I'.I'EDEML“EHI‘.IE er: Failed to set BGL_S
com.androd deskcock
G LFind B &Run S2TODD | B Androld F Termina % version Coatral B 5 Changes O Metuages 15 EventLog (¥ Cradie Console) Med
|hd Sasnige “SdentMode Toggie™ menming (£ minubes agod TLAGSYE LF & UTF-8 = GRmaier & o O

Figure 516: A view of logcat in the Android view.

This system log reports everything from basic information messages (which include the state of the
application and device) to warning and error information. Seeing only an “Application Not
Responding” or a forcelclose error message on the device doesn’t clarify what has happened.
Opening the Android view and reviewing the entries in logcat can help identify, down to the line
number, where the exception 1s occurring.

Logging messages to logcat

Displaying log messages in the Android view is as simple as adding one line of code to your app.
Open the MainActivity. java file, and at the bottom of the method, add a log entry, as shown
in bold in Listing 514.

Listing 5M4: The onCreate() Method

import android.util.Log;

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

Log.d("SilentModeApp", "This is a test"); -9
}

Line 9 demonstrates how to output a message into the system log. SilentModeApp is known as
the TAG that you’re giving to this log entry; the second parameter to the log call is the message you
want to output. The tag helps filter messages while looking at them in Android Studio.

Ay

Declare a TAG constant in your code and use it instead of repeatedly typing the TAG, as in
this example:

private static final String TAG = "SilentModeApp";

Another common technique for dealing with tags is to use the class name:

private static final String TAG = MainActivity.class.getSimpleName () ;

Notice the d in Log . d in Listing 514, indicating that this is a debug message. Other options are

1 e: error

1 i:info

L w: warning

1 wt f: What a terrible failure (Yes, it’s an option.)

1 . verbose

The various logging types exist for you to decide how various messages should be logged.

Viewing log messages in logcat
You can view log messages in the Android Studio Android view by choosing View=Tool
Windows=>Android.

Start the application by choosing Run=Run ‘Silent Mode Toggle’. When your application is
running, open the Android view and look for your log messages. It should look somewhat similar
to the one shown in Figure 5-6.

By default, the Android view automatically filters the output for you to some sensible defaults. If
you would like to explore other filters, try clicking the filter selector in the top right of the Android
view and select No filter. You can also filter by log level, and you can search for specific log
messages if you like.

Using the Android Studio debugger

Although the Android view might be one of your best allies, your numberlone weapon in the battle
against the army of bugs is the Android Studio debugger, which lets you set various breakpoints,
inspect variables using the watch window, and much more.

Checking runtime errors

The runtime error is the Wicked Witch of the East — it comes out of nowhere and leaves
everything a mess. Your application might be humming along and, all of a sudden, it crashes when
you click a menu option or a button, for example. It can be very difficult to solve these kinds of
problems just by looking at the source code.

The debugger can help in this situation because you can set a breakpoint at the start of
onCreate () that allows you to inspect the values of the variables as the app is running.

Let’s make your app crash! Listing 515 demonstrates one way to crash your app — commenting out
the setContentView initialization will cause an exception to be thrown at runtime. Go ahead
and do this now:

Listing 515: Commenting Out the setContentView Initialization

@Override

public void onCreate (Bundle savedInstanceState) {
// Always call super.onCreate() first.
super.onCreate (savedInstanceState) ;

// Get a reference to Android's AudioManager so we can use
// it to toggle our ringer.
audioManager = (AudioManager) getSystemService (AUDIO SERVICE) ;

// Initialize our layout using the res/layout/activity main.xml
// layout file that contains our views for this activity.
//setContentView (R.layout.activity main); -12

// Find the view named "content" in our layout file.
FrameLayout contentView =
(FrameLayout) findViewById(R.id.content); -16

// Create a click listener for the contentView that will toggle

// the phone's ringer state, and then update the UI to reflect

// the new state.

contentView.setOnClickListener (new View.OnClickListener () { -21
public void onClick (View v) {

}
}) i
}

Listing 515 works this way:

— 12 This code, which is intentionally commented out, is a bug and prevents our activity
from getting a layout.

— 16 findViewById won’tbe ableto find R.id.content anymore, so it will
return null.

— 21 Calling contentView.setOnClickListener will throw a
NullPointerException because contentViewis null.

Attaching a debugger to your app allows you to track down the root cause of the error.

Creating breakpoints

You have a couple ways to create a breakpoint, which will pause your application midlexecution
and let you examine its running state:

1 Choose the line where you want to place the breakpoint by clicking it with the mouse. Choose
Run=Toggle Line Breakpoint.

1 Click the left gutter in the Android Studio editor where you want to create a breakpoint.

Either method creates a small, round red icon in the left gutter of the Android Studio editor, as
shown in Figure 5-7.

contentView.setOnClickListener(new View.OnClickListener() {
o public wvoid onClicki{View v) {

4 Build variants

§ RingerHelper.performToggle{audioManager);
& :
updateUi();
}
=TODO . 6:Android [@ Terminal & 9: Changes 0: Messages

[] Gradle build finished in 3 sec (a minute ago)

Figure 5I7: A set breakpoint in the left gutter of Android Studio’s editor window.

To try debugging in Android Studio, set a breakpoint on the line with
contentView.setOnClickListener.

Starting the debugger

Follow these steps to debug your code:

1. Choose Run=Debug ‘Silent Mode Toggle’.

Android Studio installs the application on the emulator (or device) and then attaches the
debugger to it. If your emulator is not running, you will have the option to start one now.

2. Wait for the debugger to break at your breakpoint.

You’re now at a breakpoint, as shown in Figure 5-8. You can hover the cursor over variables
to see their values.

3. Hover the cursor over the contentView variable.
The variable is null because you commented out the code. Silly human, why did you do that?

If you click the Resume button and look at your emulator, you can see that your application has
now crashed, as shown in Figure 5-9.

4. To disconnect the debugger, click the Stop button.

® 7 @ - sieimodatoggleMainiclivity java - [Sllenthode Toggle] - android-far-dummies-v3 - [/Profectsd o v3] - AndoKd Studio (Betal 08,14

=R * i W shnekToggh - b & LY F S ¥E TLREW 7 Q
L2 for-d 'f;-_t;q- ,pp-] are) [v | [v | I'ﬂ_m_.' [5] dumesies | mm';. ;mr :
i_ﬁ sctiviey_task_edeaml | b Andreddanifenxed | 0 LesechActvityjiva | 5 Asdrekdbesifeseaml | 50 MaisActiity ava =
H Framelayout contentVies = []
L (FrameLayout] 1indViesSyId(R. id.centent)
-
e A Create @ click listensr For the comCantWiew that w11 toggle
M the phone's ringer state, and then opddte the UT to reflect
£ = 4t
=) ckListenert m
L public wold onClickiVies w] o E
Y
k= 2 A Toggle the ringer sode. If IC's currenily norsal,
/¢ make 1t #. If it"s cwrrently silent, ‘;
(5 #f oo The of L]]
Oebug § SdentiodeToggle b .

)

G pebugger [Comiole < f Logem - M F F &

a

L]

" i Frames + J Threads =-| [Wariables [T waaches -
3 Emai.. 3 ¢ & T * =ithis = [tomdummies silenimodeinggle Maindctivieggil 565]
] = -
: e
= =

i $ B performCreate 5333, Ac - - Ha watches
- @ B callAczhinOaCreate: 1 101

B performda unchathving 2 2
B [B nandieLaunchactiving:2 38
! [B accessS BO00: 144, Acthviny
= B handleMesiagel; 12 7H, Ax
#* B dispanchbisisagel 102, H =

f
i
:5;
i
i
|
;
;

3 Event Log ¥ Gradie Console il Wemary Monhor

Figure 5I8: The SilentModelToggle app running in the Debug view.

& 5554:AVD_for_Nexus_5_by_Google

Unfortunately, Silent Mode Toggle
has stopped.

Figure 519: The app crash dialog box opens after an exception.

Go backto MainActivity.java and remove the comment you added to ensure that the
application runs successfully.

Thinking Beyond the Application Boundaries

At times, the device may perform extraneous work that can affect your application, such as
downloading a large file in the background while playing music from an online radio application.
Will these heavy networklbound activities affect the application in any way? It depends. If your
app needs a connection to the Internet and for some reason cannot connect, will it crash? What
will happen? Knowing the answers to these questions means that you’re thinking beyond your

application boundaries.

Not all apps are created equal — some good ones are out there, along with some bad ones. Before
building or releasing your first Android application, ensure that you know the ins and outs of your
application and anything that can affect it. Be sure that the app doesn’t crash when users perform
routine tap events and screen navigation.

Building applications on embedded devices is very different than building them on a PC or Mac,
and the reason is simple: The resources (battery, memory and processor, for example) are limited.
If the Android device is a phone, its main purpose is to perform phonellike duties, such as
recognizing an incoming call, maintaining a signal, and sending and receiving text messages.

If a phone call is in progress, the Android system treats that process as vital, whereas a
downloading file in the background is considered nonlvital. If the phone starts to run out of
resources, Android kills all nonlvital processes to keep the vital ones alive. A file can be
downloaded again, but when a call is lost, it’s lost forever — you have to make that call again,
which would only frustrate the user if the main purpose for purchasing the device was to have a
phone. Your app might download a file in the background and the process gets killed — this is a
scenario that you need to test. It can also happen if your phone encounters an area with a poor or
nonlexistent wireless signal. If the connection gets dropped, your file isn’t downloaded.

Test for all possible solutions and have a safety guard for them. Otherwise, your app will be prone
to runtime exceptions, which can lead to poor reviews from users at the Google Play Store.

Interacting with your application

To ensure that your app works, fire it up and play with its features. While your app is running, start
another app, such as the browser. Visit a few sites, and then return to your app. Click any buttons
related to your app to see what happens. Try all kinds of things to see whether you find outcomes
that you didn’t consider. What happens if a user is interacting with your app and receives a phone
call? Are you saving the necessary state in onPause () and restoring it in onResume () ?

SIBER

>
"’ Android handles the difficult task management for you, but it’s ultimately your
responsibility to manage the state of your application.

The most common errors come from Android developers failing to save their state properly in
onPause and restore it in onRe sume. Remember that Android can kill your activity at any time,
and i1t’s up to you to make sure you properly save your activity’s state so it can be relcreated later
if necessary! See Chapter 10 for more information about saving and restoring your activity state.

Testing whether your application works
In the emulator or on your device, open the Silent Mode Toggle application from the launcher.
You’ve already performed the first step in the testing process — making sure that the app starts!

After the app is open, check to see whether the phone is in Silent mode by looking for the small
star icon on the notification bar (refer to Figure 5-3).

Click the Silent Mode Toggle button to toggle the ringer mode. Did the application’s image
change? Try various actions to ensure that your application works as expected. If you find a flaw,
use the debugging tools featured in this chapter to help identify the issue.

Are you having difficulty turning Silent mode off again? You may have been hit by a bug
introduced in Android 5.0. Visit https://code.google.com/p/android/issues/detail?

id=78652 for more details.

What about automated testing?

With the rise of agile methodologies over the past decade, it’s only a matter of time before you
start to wonder how to perform automated testing in Android. The SDK installs Android unitl
testing tools that you can use to test not only Java classes but also Androidlbased classes and user
interface interactions. You can read more about unit testing in the Android documentation at

http: d.android.com/guide/topics/testing/testing android.html.

Here are some tools at your disposal:

1 JUnit: The Android SDK includes JUnit 3.x integration. You can use JUnit, a popular unitl
testing framework that’s used in Java, to perform unit testing or interaction testing, and you can
find more information about JUnit at www.junit.org. To make your development life easier,
Android Studio has builtlin tools to help facilitate testing in JUnit through Android Studio.

1 Monkey: The user interface and application exerciser known as Monkey runs on your
emulator or device and generates pseudorandom streams of user events, including taps,
gestures, touches, clicks, and a number of system events. Monkey, which is installed with the
Android SDK, is a helpful way to stressltest an application.

1 Ul Automator: The Ul Automator testing framework lets you test your user interface (UI)
efficiently by creating automated functional Ul test cases that can be run against your app on
one or more devices.

1~ Espresso: The Espresso library makes unit testing Android significantly easier than using
straight JUnit. It uses a simple and concise style to write Android unit tests. Beginning with
2.0, Espresso is now distributed as part of the Android SDK.

web
extras o
To learn more about how to use Espresso to create automated tests for your app, visit the
book’s online website at www.dummies.com/extras/androidappdevelopment to read the
articles on testing.

https://code.google.com/p/android/issues/detail?id=78652
http://d.android.com/guide/topics/testing/testing_android.html
http://www.junit.org
http://www.dummies.com/extras/androidappdevelopment

Chapter 6
Understanding Android Resources

In This Chapter

Knowing why resources are important in Android
Extracting resources

Working with image resources

Resources are mentioned in detail throughout this book, so you might wonder why an entire
chapter is devoted to them. Discussing resources and their use in Chapters 3 and 4 is necessary to
help you understand the basic structure of the resource directory and the use of resources to build a
simple application. One compelling reason to use resources in your application — localization —
is covered in this chapter.

Understanding Resources

Resources are additional static content that are an intrinsic part of your app but aren’t part of your
Java code. The most common resources are

1 Layout

1 String

1 Image

1 Dimension
1~ Style

1 Theme

1 Value

1 Menu

1 Color

Earlier chapters in this book introduce you to layouts, strings, and images because they’re the most
common types of resources that you use in everyday Android application development. The
remaining resources may need some explanation, so the following few sections will clear them up.

Dimensions

In an Android resource, a dimension is a number followed by a unit of measurement, such as 10px,
2.51n, or 5sp. You use a dimension when specifying any property in Android that requires a
numeric unit of measure. For example, you may want the padding of a layout to be 10px. Android

supports the following units of measure:

1 densitylindependent pixel (dp or dip): This is the most commonly used dimension. Dp is
based on the physical density of the screen. These units are relative to a screen measuring 160
dots per inch (dpi1); therefore, 1 dp 1s equivalent to 1 pixel on a 160ldpi screen. The ratio of dp
to pixels changes with screen density, but not necessarily in proportion.

o

The dp concept is complex; you will want to support multiple screen densities, so
check out the “Supporting Multiple Screens” article at

http: d.android.com/guide/practices/screens support.html.

1 scalelindependent pixel (sp or sip): This unit resembles the dp unit but is scaled according to
the user’s fontlsize preference. Use sp dimensions when specifying font sizes in your
application.

1~ pixel (px): A pixel corresponds to a pixel on the screen. This unit of measure isn’t
recommended for most cases. Your app may look great on a mediumldensity device but look
distorted and out of place on a highldensity screen (and vice versa) because the dpi differs.

1 point (pt): A point is inch, based on the physical size of the screen. Like px, pt is not
recommended.

1 millimeter (mm): This unit is based on the size of the screen. Like px, mm is not
recommended.

+* inch (in): This unit is based on the physical size of the screen. Like px, in is not recommended.

Styles

Styles in Android are similar to Cascading Style Sheets (CSS) in the web development realm:
You use styles to (you guessed it) style an application. A style is a collection of properties that
can be applied to an individual view (within the layout file) or to an activity or to your entire
application (from within the manifest file). Styles support inheritance, so you can provide a basic
style and then modify it for each particular use case in your application. Style property
attribute examples include text size, text color, and background.

Themes

A theme 1s a style applied to an entire activity or application, rather than an individual view.
When a style is applied as a theme, every view in the activity and/or application inherits the style
settings. For example, you can set all TextView views to a particular font, and all views in the
themed activity or application then display their text in that font.

Values
The value resource can contain many different types of value type resources for your application,
including

+* Bool: A Boolean value defined in XML whose value is stored in an arbitrary filename in the

http://d.android.com/guide/practices/screens_support.html

res/values/ <filename> .xml file, where <filename> is the name of the file. An
example 1s bools.xml.

1 Integer: An integer value defined in XML whose value is stored with an arbitrary filename in
the res/values/ <filename> .xml file. An example is integers.xml.

1~ Integer array: An array of integers defined in XML whose set of values is stored with an
arbitrary name inthe res/values/ <filename> .xml file, where <filename> is the
name of the file. An example is integers.xml. You canreference and use these integers in
your code to help define loops, lengths, and other elements.

1 Typed array: An array used to create an array of resources, such as drawables. Youcan
create arrays of mixed types. Therefore, the arrays aren’t required to be homogeneous —
however, you must be aware of the data type so that you can appropriately cast it. As with
other resources, the filename is arbitrary inthe res/values/ <filename> .xml file. An
example 1s types.xml.

Menus

Whether your app is using the action bar or a menu, Android treats them both the same and you’ll
define them the same way. A menu can be defined via either code or XML. The preferred way to
define one is via XML, therefore, the various menus you create should be placed into the menu/
directory. Each menu has its own . xm1 file.

Colors

The colors file, typically located in the values/colors.xml file, lets you name colors,
suchas login screen font color. This might depict the color of the text you’re using on
the logon page, for example. Each color is defined as a hexadecimal value.

Working with Resources

You may have worked with resources a few times in this book, and at this point you’re likely
familiar with using the R class to access resources from within your application. If you’re rusty on
resources and the generated R file, see Chapter 3.

Moving strings into resources

As you become an experienced programmer, you may start to take shortcuts to get your project
built and working. Say that initially you forget to move strings into resources, and you have to
come back at a later time to do it. You can extract a string into a resource using the builtlin tools.

The long way

Here’s one way to extract a string into a resource:

1. Create a new string resource.
2. Copy its name.

3. Replace the string value in your layout with the resource identifier.

This way 1s fine. It’s not a huge pain, but it does take a little time.

The fast way

You can cut the time to create a string resource to fewer than 15 seconds. If you do this 30 times a
day (which is feasible in an 8lhour day), you can save 15 minutes of just copying and pasting.
That’s five hours a month doing the copylandlpaste dance!

Follow these steps:

1. In Android Studio, open a random layout file such as activity main.xml in the
layouts directory.

2. Add a new TextView element that looks like the following:

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="I need a kombucha refill, please"/>

3. Place your cursor on the boldface line with the hardcoded text string and press
Alt+Enter.

A menu opens with various options.

4. Choose the Extract String Resource option.

The Extract String Resource dialog box opens, as shown in Figure 6-1, and you can set various
options for the resource.

5. Choose a name for your resource such as kombucha refill, leave the other options
set to their defaults, and click OK.

You can now see that the layout file has been modified. The text "I need a kombucha
refill, please" hasbeenreplaced with "@string/kombucha refill".

If youopen the strings.xml file inthe res/values folder, you can see your new string
resource.

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="I need a kombucha refill, please"/>

Disable inspection
Edit '"Hardcoded text' inspection settings
Suppress: Add tools:ignore="HardcodedText" attribute

=/FramelLayout=>

Extract string resource
Inject Language/Reference
Override Resource in Other Configuration...

Figure 611: The Extract Android String dialog box.

That’s pretty cool! You can see that doing this 20 or 30 times a day can add up and save you a lot
of time.

Wrestling the image beast

One of the most difficult parts about resources can be images. They might look great on mediuml
density devices but look like garbage on highldensity devices. This is where multipleldensity
folders come into play. These densitylspecific drawable folders are explained in Chapter 3.

Battling pixelation and compression

The 1ssue you’ll most likely encounter 1s pixelation and compression/expansion (moving from
higherl to lowerldensity devices and vice versa). To work around this issue, design your graphics
at a high density, such as 640 dpi in largelsize format. For example, if you’re building the launcher
icon, build it at 512px high and 512px wide to upload to Google Play. Although the xxxhdpi
folder might need an image of only 192px high x 192px wide (the largest in use), it doesn’t mean
that in two or three months a higher resolution device won’t be released.

This situation can be painful because working with large image files in image editing programs is
difficult if you don’t have a computer with decent capabilities. But you have to trust us on this one:
Having a large rawlimage file that’s high density is much easier to mold and shape into the correct
densities you’ll need.

JUNBER

Cl

%/ Downsizing a highlresolution image doesn’t distort its quality (other than losing its fine
edges and detail), but upscaling does because it creates pixelation. Starting with a large file
reduces the chance that you’ll ever have to upscale, which means that your app graphics will
always look crisp. If possible, working with vector files will make this even easier.

Using layers
If you’re creating graphics in an image editing tool that supports layers, place each item in your
graphic on a different layer. The reasons are many, but here are the key factors:

1 Changes: At some point, you will need to change something in your graphic — its
background, font, or logo, for example. If you have all these items in different layers, you can
make the change without affecting the rest of the graphic.

1 Localization: An example from an earlier section in this chapter talks about various strings in
different languages, and graphics are no different. Many times as you develop applications,
you will encounter graphics with stylized text in the graphic itself. If your application is being
translated into Japanese and your graphics contain stylized English text, you can create a
Japanese version of those graphics and place them in a Japanese drawable region folder, such
as res/drawablelja. The Android platform recognizes which region it’s in (in this case,
Japan). If the region’s resource folders (res/drawablelja, res/valueslja, and so on)
are available, Android uses them in the application. That being said, it’s always easier to keep
your text in text resources and your images in image resources. Translating text resources 1s
easier than making new copies of your images for every new language.

Making your apps global with resources

The Android platform surpassed the Apple iPhone in U.S. market share in the first quarter of 2010.
Now carriers around the world are developing Androidlbased smartphones, which simply means
more potential users for your apps.

What this statement means to you as a developer is that Android 1s a huge market with tons of
opportunity waiting to be tapped. Though this opportunity is exciting, taking the greatest advantage
of it requires that you understand resources and how they affect the usability of your apps. For
example, if a user in the United States uses your app and it was written for an Englishlspeaking
audience (using resources or not), the user can use it. However, if you hardlcode all your string
values into your views and activities and then need to release a Chinese version, you have to
rewrite your application to use resources. When you use resources, you can have a translator
translate your strings and drawables into the region you’re targeting — such as China.

Resources allow you to extract humanlreadable strings, images, and viewable layouts into
resources that you can reference. You can create various resource folders to handle screens of
differing sizes, languages (strings and drawables), and layout options, such as landscape and
portrait. Landscape and portrait layouts come into play when a user rotates the device 90 degrees
in either direction.

If you want your apps to be available on as many Android devices as possible around the world,
you should use resources at all times. Always put all strings into the st rings.xml file because,
someday, someone from another country will want your application in another language. To
transport your application to another language, you simply need a translator to translate your
strings.xml file into her language, and then you can create various values folders to hold
the appropriate region’s values. Android takes care of the hard work. For example, if the user is in
China and his phone is set to the Chinese Locale, Android looks for the values folder named
valueslcn, which is where Chinese values are stored — including the Chinese version of the
strings.xml file. If Android cannot find such a folder, the platform defaults to the values
folder, which contains the English version of the st rings.xml file. (For more on strings, see
the section, “Moving strings into resources,” earlier in this chapter.)

When it comes down to it, having a translator update your strings and creating a new folder with
the new strings.xml file located within are simple tasks. Expand this concept to other
languages and tablets and televisions and you can see the potential. You’re no longer looking at
mobile users as your target audience. You’re looking at Android users, and with the options being
released, you could be looking at billions of users. Using resources correctly can make your
expansion into foreign markets that much easier.

o

Looking to have your app translated? You have a few options. Visit
http://translate.google.com/toolkit tolearn how to upload your strings.xml
file and have it automatically translated by a computer. For higher quality results, you should
lookathttp://d.android.com/distribute/tools/localizationlchecklist.html tO
learn how to upload your app and have it translated by a professional translator.

Designing your application for various regions is a big topic. You can find more inldepth

http://translate.google.com/toolkit
http://d.android.com/distribute/tools/localization-checklist.html

information in the “Localizing with Resources” article of the SDK documentation at

http: d.android.com/guide/topics/resources/localization.html.

o

You’re not forced into releasing your application to all countries at once — Google Play
will allow you to release your app only to specific countries. Therefore, if you have written
an application for the Berlin bus route system in Germany, it probably doesn’t make sense to
have a Chinese version, unless you want to cater to Chinese tourists as well as to German
residents.

Different Strokes for Different Folks: Using
Resource Qualifier Directories

As discussed in Chapter 3, you can use different drawable directories to create different resources
for higher and lower resolution devices. This is an example of using resource qualifiers, and it
turns out that you can use the same trick to do many other things.

Using default resources

By default, when you place a resource into your drawable, layout, menu, value, or other directory
in the res folder, you’re supplying a default resource. This is the resource that will be used if no
other resources are specified. You’ve done this already with drawables, layouts, and strings.

These default resources will be used if there are no other specific resources overriding them. To
override a resource for special cases, you create files in directories that have special names. The
next sections will go over some common ways you might want to override resources.

Localizing to another language

Let’s say that you want to translate the Silent Mode Toggle app into Spanish. As covered in
Chapter 3, you can do that by creating a valuesles directory, and placing a new
strings.xml file into that directory that “overrides” the default values that are in
values/strings.xml. Whenever your app is opened on a device that is set to use Spanish as
the default language, your app automatically displays the strings from valuesl
es/strings.xml rather than the default English values.

This works with any of Android’s supported languages, not just Spanish. You can use fr for
French, de for German, and so on.

In addition, Android allows you to subdivide languages by region. So you can provide Portuguese
translations for Portugal in valueslpt, and in valueslptlrBR for Brazil (which also speaks
Portuguese).

Vﬁﬁthttp: developer.android.com/guide/topics/resources/localization.html for

more information about how to localize your app to different languages and regions.

http://d.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

o

You don’t necessarily need to override every value in your strings.xml files. For
example, if you have a values/strings.xml using U.S. English and a valueslenl
rGB/strings.xml for UK. English, you only need to supply translations for those few
things that mean different things in the U.S. and the U.K. (such as pants).

'/ But be careful if you supply selective translations! The above might make sense for U.S.
and U.K. English, but it does not make sense for a French translation file. If you provide only

some French translations, then some of your app will be in English and some in French!

Handling different screen sizes
Resource qualifier directories can be a key tool in your battle to handle the hundreds of different
screen sizes and resolutions out there in the Android world.

There are two main techniques you will want to use: selecting resources based on screen density
or based on screen size.

Screen density (pixel density)

Android devices come in many different pixel densities. Older phones came in mdpil or 1dpilpixel
densities. These days, most newer phones come in hdpilorlabove pixel densities. But some tablets
may still come in mdpi densities. Here is the list of densities Android supports:

1 1dpi (low): ~120 dpi (dots per inch)

1 mdpi (medium): ~160 dp1

1 hdpi (high): ~240 dpi

1 xhdpi (extralhigh): ~320 dpi

1 xxhdpi (extralextralhigh): ~480 dpi

1 xxxhdpi (extralextralextralhigh): ~640 dpi

As described in Chapter 3, you can use these densities as qualifiers in your drawables directory to
provide different images for different density screens. For example, you can provide different
sizes of assets for different devices by putting the image files in drawableslmdpi,
drawableslxxhdpi, and so on.

In addition, you can use them as qualifiers on your values directories to utilize slightly different
values for things like margin, padding, and text size on different sized devices. These values are
typically put into a dimens . xml file in the corresponding values directory.

F

Remember, you do not necessarily have to provide all your images for all densities. A
good rule of thumb is to provide the xxhdpi assets for all your images and rely on Android to

automatically scale them down to the other sizes as necessary. But if there are some images
that don’t look great when scaled down (such as a company’s logo for example), you may
want to provide that asset at all densities.

Layouts

You may want to use different layouts for different sized screens. For example, a tablet has much
more screen real estate than a phone, so you will likely want to lay out some of your screens
differently on a tablet than on a phone.

Android provides the smallestWidth qualifier to help you distinguish between a phone and
tablet. “Smallest width” means the smaller of your height of width, regardless of which orientation
your device is in. So if your phone 1s 600dp x 800dp, the smallest width would be 600.

This is very handy for distinguishing between phones and tablets. In general, the common
consensus is that a smallest width of 600dp or more is a tablet, whereas anything less is a phone.

The way to use the smallestWidth qualifier is to provide your default phone layouts in
res/layouts, and then put any tabletlonly layouts that youneed in res/layoutslsw600dp.
Android will then pick the correct layout file depending on whether the user is using a phone or a
tablet.

See Part [V for more information about how to use different layouts for tablets versus phones.

Portrait versus landscape orientations

Similarly, you may want to provide a different layout if the phone is in portrait mode or landscape
mode. This can be handy for showing multilpane layouts when in landscape mode, but collapsing
them to a single pane when in portrait.

Put all your default layouts into res/layout. These are used regardless of which orientation
your phone is in. If you want to have landscapelonly layouts, put themin res/layoutlland.
Similarly, portraitlonly layouts should go in res/layoutlport.

Handling old Android versions
You can also use resource qualifiers to supply alternate resources for when your app is running on
different versions of Android. For example, older versions of Android use different styles and

colors, so perhaps you want your app to use a slightly different color when running on Android 4.1
rather than Android 5.0.

To do this, you can put your regular colors in res/values/colors.xml, and then put your
Android 4.1 colors into res/valueslvl6/colors.xml (for platformlevel 16, or Android
4.1).

See Chapter 17 for more information about backward compatibility and handling older versions of
Android.

Qualifier name rules
Now that you know the basics, there are some additional things that can be helpful to know about
using resource qualifiers:

1 You can specify multiple qualifiers for a single set of resources, separated by dashes. For
example, drawablelenlrUSl1and applies to USIEnglish devices in landscape orientation.

1 If you use multiple qualifiers, they must be in a special order that you can find here:
http: d.android.com/guide/topics/resources/providingl

resources.html#table2. For example:

e Wrong: drawablelhdpilport/
e Correct: drawablelportlhdpi/

1 Only one value for each qualifier type is supported. For example, if you want to use the same
drawable files for Spain and France, you cannot have a directory named drawablelrESl

riFR.

There are many other things you can customize by using resource qualifiers! Visit
http://d.android.com/guide/topics/resources/ for more information.

http://d.android.com/guide/topics/resources/providing-resources.html%23table2
http://d.android.com/guide/topics/resources/

Chapter 7

Turning Your Application into an App
Widget

In This Chapter
Seeing how app widgets work in Android

Understanding remote views and pending intents
Building an AppWidgetProvider

Putting your widget on the Home screen

Usability is the name of the game in regard to all disciplines of application development: If your
application i1sn’t easy to use, users simply won’t use it.

If you’ve followed the first six chapters of this book to build the Silent Mode Toggle application,
it undoubtedly works well. But it still requires launching an app to use. To make this application
even easier to use, simply turn it into a Home screen widget. A Home screen widget allows you to
place a view on the user’s Home screen, which they can use to interact with your app without
having to open the app.

In this chapter, you build an app widget for your application. An app widget normally is a small
icon or tiny view on the Home screen. Users can interact with your application by simply tapping
this widget to toggle their phone’s Silent mode. This chapter introduces you to these classes:

L Intent
L BroadcastReceiver

¥ AppWidgetProvider

L IntentService

Each of these classes plays a vital role in Android as well as in the app widget framework.

Working with App Widgets in Android

An app widget in Android 1s a special kind of view that can be embedded on your device’s Home
screen. An app widget can accept user input via click events, and it can update itself regularly. A
user can add an app widget to the Home screen by tapping the Applications button and then
selecting Widgets. The result is shown in Figure 7-1.

5554:AVD_for_Nexus_5_by_Google

* 4 w 3:18

WIDGETS

©)

Settings shortcut Silent Mode Toggle

Figure 711: Adding a widget to the Home screen.

To make the Silent Mode Toggle application more usable, build an app widget for it so that users
can add the widget to the Home screen. Tapping the widget changes the phone’s ringer mode

without having to open the application. The widget also updates its layout to indicate what state
the phone is in, as shown in Figure 7-2.

Phone is in regular mode Silent mode is enabled

& 5554:AVD_for_Mexus_5_by_Google @ 5554:AVD_for_Nexus_5_by_Google

* 'Y M 320

Figure 712: The two states of the app widget.

Working with remote views

When you develop apps in Android, remember that it’s based on the Linux kernel. Linux comes
supplied with its own idioms about security, and the Android platform inherits them. For example,
the Android security model is heavily based around the Linux user, file, and process security
model.

SHHBER
()
Because every Android application is (usually) associated with its own unique user,
Android prevents applications from modifying the files of other applications. This prevents
developers from injecting malicious code into other apps.

Because the Home screen (also known as the Launcher) is its own application and thus has its own
unique user, developers such as yourself aren’t allowed to directly run your application code on
the Home screen for security reasons. To provide a way to access the Home screen and modify the
contents of a particular area on it from an application, Android provides the RemoteViews
architecture: It lets you run code inside your application, in a separate process from the Home
screen application, but it still allows a widget’s view to be updated on the Home screen. This
architecture protects the Home screen app from buggy or malicious apps, because no thirdlparty
app code needs to run in the Home screen app.

Suppose that a user taps the Home screen app widget (in this case, an icon she added to the Home
screen). This action sends a request — addressed to your application — to change the ringer
mode. Android routes the request to your application, and the application processes the request,
instructing the Android platform to change the ringer mode and update the app widget on the Home
screen with a new image. None of this code is run in the Home screen application — it’s all run
remotely in your application, with Android routing the message to the appropriate application.
These messages are called intents in Android.

A remote view combines a little magic with innovative engineering. Known as the
RemoteViews class on the Android platform, it allows your application to programmatically
supply a remote user interface to the Home screen in another process. The app widget code isn’t
an activity (as in earlier chapters), but is an implementation of an AppWidgetProvider. When
Android routes an intent to your application from the Home screen, the message is handled in your
implementation of the AppWidgetProvider class.

Using AppWidgetProviders

The AppWidgetProvider class allows the developer to programmatically interact with the
app widget on the Home screen. When this interaction takes place, messages are sent from the
Home screen app widget to your application via broadcast events. Using these broadcast events,
you can respond when the app widget is updated, enabled, disabled, or deleted. You can also
update the look and feel of the app widget on the Home screen by providing a new view. Because
this view 1s located on the Home screen and not within your running application, you use
RemoteViews to update the app widget layout. All the logic that determines what should happen
is contained in an implementation of AppWidgetProvider and initiated by an intent.

Picture the app widget framework (AppWidgetManager) as the translator of a conversation
between two entities. If you need to speak to someone who knows Italian, but you don’t know how
to speak Italian, you would find a translator who would accept your input, translate it into Italian,
and relay the message to the native Italian speaker. The same process applies to the app widget
framework: This framework is your translator.

When the Italian native (AppWidgetHost, which is the Home screen, in this case) needs to let
you know that something has happened (such as a user tapping a button), the translator (the app
widget framework in the Android system) translates the action into a message (intent) that you can
understand (tapping a particular button). At that time, you can respond with the action you want to
take (such as change the app widget background color to lime green), and the translator (the app
widget framework) relays the message to the native Italian speaker (AppWidgetHost; that s,
the Home screen via the Android system). The Home screen then updates the background color of
the view.

&

EMBER

._ uD

) H App widgets can only accept input from tapltype events. When you’re working within an
app widget, you have no access to other basic input views, such as an editable text box or
dropldown lists.

Working with Intents and Pending Intents

When the user needs to interact with your application, she communicates by tapping the app
widget using the Android messaging architecture (as described earlier), and you aren’t
immediately notified. However, this doesn’t mean you can 't be notified about a click event on
your app widget — it’s just done a little differently than regular views.

App widget click events contain instructions for what to do when a click event happens via the
Intent class in the Android framework.

Understanding the Android intent system

An Intent object in Android is a message telling Android to make something happen. When you
turn on a light using a wall switch, the action of your intent is to turn on the light, so you flip the
switch to the On position. In Android, this action correlates to creating an instance of the Intent

class with an action in it specifying that the light is to be turned on:

Intent turnLightOn = new Intent ("TURN LIGHT ON");

This intent is fired off using startActivity () inthe Android messaging system (as described
in Chapter 1), and the appropriate activity handles the Intent. (If multiple activities respond,
Android lets the user choose one to do the work.) However, in the physical world, an electrical
connection is made by positioning the switch to the On position, resulting in illuminating the light.
In Android, you have to provide code, in the form of an activity, to make this happen. This activity
(which could hypothetically be named TurnLightOnActivity) responds to the
turnLightOn intent. If you’re working with an app widget, you must handle the intent in a
BroadcastReceiver rather than in an activity. AppWidgetProvider is a subclass of a
BroadcastReceiver witha few extra bells and whistles that configure a lot of the app
widget framework for you. A BroadcastReceiver is responsible for receiving broadcast
intents.

The AppWidgetProvider (a BroadcastReceiver) handles the intent from the Home
screen and responds with the appropriate result that you determined, using your code, inside your
custom AppWidgetProvider.

An intent 1s a message that can carry a wide variety of data describing an operation that needs to
be performed. An intent can be addressed to a specific activity or broadcast to a generic category
of receivers known as BroadcastReceivers (whichincludes AppWidgetProvider). The
Intent, Activity, and BroadcastReceiver systemis reminiscent of the message bus
architecture, where a message is placed on a message bus and any of the endpoints on the bus
respond to the message if (and only if) they know how. If no endpoint knows how to respond to the
message, or if the message wasn’t addressed to the endpoint, the app will crash.

An intent can be launched into the message bus system in a couple of ways:

1 Start another activity: Use the startActivity () call, which accepts an Intent object
as a parameter.

1 Notify any interested BroadcastReceiver components: Use the sendBroadcast ()
call, which also takes an intent as a parameter.

1 Communicate with a background service: Use the startService () or
bindService () call, which both accept intents as parameters.

An intent 1s the glue that binds together the various components of the application. It provides a
mechanism that allows you to communicate within your app, as well as communicate with other

apps.

Understanding intent data
An intent’s data consists of these elements:

1~ Action: The general action to be performed. A few common actions include ACTION VIEW,
ACTION EDIT,and ACTION MAIN. You can also provide your own custom action.

1 Data: The data to operate on, such as a record in a database or a uniform resource identifier
that should be opened, such as a URL.

Table 7-1 demonstrates a few action and data parameters for Intent objects and their simple
data structure.

Table 711 Intent Data Examples

Action Data Result

ACTION VIEW tel:123 Display the dialer with the given number (123) filled in.

ACTION_DIAL content://contacts/people/1 Display the dialer showing the phone number from the contact with the ID of 1.

ACTION EDIT content://contacts/people/1 Edit the information about the person whose given identifier is 1.

ACTION VIEW http://www.example.orq Display the web page of the given intent.

ACTION VIEW content://contacts/people Display a list of all people in the Contacts system.

Intents can also carry an array of other data that include these elements:

1 category: Gives additional information about the action to execute. As an example, if
CATEGORY LAUNCHER is present, the application should show up in the application
launcher as a topllevel application. Another option, CATEGORY ALTERNATIVE, can
provide alternative actions that the user can perform on a piece of data.

1 type: Specifies a particular type (MIME type) of intent data. For example, when you’re setting
the type to audio/mpegq, the Android system recognizes that you’re working with an MP3
file. Normally, the type is inferred by the data itself. By setting the type, you override the
inferred type by explicitly setting the type in the intent.

1 component: Specifies an explicit component name of the class on which to execute the intent.
Normally, the component is inferred by inspection of other information in the intent (action,
data/type, and categories), and matching components can handle it. If this attribute is set, none
of that evaluation takes place, and this component is used exactly as specified (likely the most
common use case in your applications). You can provide another activity as the component —
this instructs Android to interact with that specific class.

1 extras: A bundle of additional, keylbased information that’s used to provide extra information
to the receiving component. For example, if you need to send an email address, you use the
extras bundle to supply the body and subject and other components of the email.

Evaluating intents
In the Android system, intents are evaluated either explicitly or implicitly.

Explicitly

The intent has specified an explicit component or the exact class that will execute the data in the
intent. (Again, this is likely the most common way to address intents.) This type of intent often
contains no other data because it’s a means to start other activities within an application. You find

http://www.example.org

out later in this chapter how to use an explicit intent in an application.

An example of an explicit intent would be new Intent (..., MainActivity.class)
to create an intent that would explicitly launch your MainActivity.

Implicitly

The intent hasn’t specified a component or class. Instead, the intent must provide enough
information about the action that needs to be performed with the given data for the Android system
to determine which available components can handle the intent — sometimes referred to as an
address and a payload.

An example is setting up an email intent that contains email fields (To, CC, Subject, and Body)
and an email MIME type. Android interprets it as an email and gives the user of the device the
opportunity to choose which application should handle the intent. Possibilities include Gmail or
Exchange or a POP email account. The user determines which email program to use. The Android
capability to identify possible matches for the given intent is known as intent resolution.

To create an implicit email intent, you would do something like the following:

new Intent (Intent .ACTION SENDTO,
Uri.parse("mailto:taylor.swift@gmail.com")) ;

Using pending intents

A PendingIntent is used for something different than regular intents: A PendingIntent is
created by your application and given to another, completely different application. By giving
another application a PendingIntent, you’re granting the other application the right to
perform the operation you have specified as though the application were your own application.
When the other application deems that the given work needs to take place, it executes the
PendingIntent, which is sent back to your application to perform the necessary work.

For the purpose of the Silent Mode Toggle application, you use the
PendingIntent.getBroadcast () call to create a PendingIntent. This call returns a
PendingIntent that you can use to wrap a regular intent that instructs the Silent Mode Toggle
app to toggle Silent mode. The call takes these four parameters:

1 Context: The context in which this PendingIntent should perform the broadcast.

1 RequestCode: The private request code for the sender. Not currently used in this app;
therefore, a zero is passed in.

1 Intent: The intent to be broadcast.
1 Flags: A set of optional information used to configure the intent when it’s started.

The Intent object is wrapped inside a PendingIntent because a PendingIntent is
used for interlprocess communication. When the PendingIntent is fired off, the real work that
needs to be done is wrapped up in the broadcast Intent object.

That’s a lot of information! Now that you understand the basics of the Android intent system, it’s
time to implement the guts of the application inside this app widget.

Avoiding the dreaded Application Not Responding (ANR)
error

Because all the work that happens in the AppWidgetProvider takes place on the main thread of the user interface,
you must complete all your work as quickly as possible. If your AppWidgetProvider takes too long to respond, your
code holds up the Ul thread and causes your application to display an Application Not Responding (ANR) dialog box
because the Android system believes that the application is frozen and not responding. An example is network
communication to download status updates from a service such as Twitter. If downloading the statuses takes too long
(which can be much shorter than you might expect), Android shows the ANR dialog box letting the user know that the
app widget isn’t responding; at that point, the user can forcelclose the application.

One way to avoid the ANR error is to implement a separate service that performs its work in a background thread. The
IntentService that you implement in the following sections helps you avoid ANR errors and allows the widget to
remain very fast.

Creating the App Widget

The process of sending messages between the Home screen app widget and your application is
handled via the Android messaging system, the PendingIntent class, and the
AppWidgetProvider. In this section, you build each component to get your first app widget
up and running on the Home screen.

Implementing the AppWidgetProvider
Implementing the AppWidgetProvider is fairly straightforward: Open Android Studio and
open the Silent Mode Toggle application.

To add a new class to the com.dummies.silentmodetoggle package and provide a name,
such as AppWidget . java, follow these steps:

1. Rightlclick com.dummies.silentmodetoggle inthe src/ folder and choose
Package, then create a package named widget.

2. Rightlclick com.dummies.silentmodetoggle.widget inthe src/ folder and
choose New=Java Class.

3. Name the class AppWidget and click Finish.
The new class is added to the selected package.

Communicating with the app widget
The AppWidget class has no code in it at first — it’s an empty shell. In the code file you just
created, type the code shown in Listing 711 into the editor.

Listing 711: The Initial Setup of the App Widget

/**
* The main class that represents our app's widget.
* Dispatches to a service to do all of the heavy lifting.

*/

public class AppWidget extends AppWidgetProvider { -5

@Override
public void onUpdate (Context context, AppWidgetManager -8
appWidgetManager, int[] appWidgetIds) {

context.startService (new Intent (context, AppWidgetService.class)); -11

)
This list briefly describes the numbered lines:

— 5 The AppWidget class extends from AppWidgetProvider. Remember that
AppWidgetProvider is a BroadcastReceiver, so it canreceive broadcasted
intents.

— 8 Overrides the onUpdate method in AppWidgetProvider. onUpdate is
called when the widget is first created. It is also called periodically at a set interval that you
will define later inwidget provider.xml.

— 11 Starts a service so the service can take on the responsibility of updating the widget
without you having to worry about how long the responses take to generate. This is
necessary for any widgets that do any sort of I/O (network, disk, and so on). Our widget
doesn’t do I/O, so using a service is not strictly speaking necessary, but it’s a very common
pattern and it’s important to know.

The AppWidgetProvider does all the work of responding to events from the
RemoteViews, but how so? Recall that AppWidgetProvider is a subclass of
BroadcastReceiver. Atahighlevel, a BroadcastReceiver is a component that can
receive broadcast messages from the Android system. When a user taps a clickable view in the
RemoteViews onthe Home screen (such as a button), the Android system broadcasts a message
informing the receiver that the view was clicked. After the message is broadcast, the
AppWidgetProvider canhandle that message.

_@Eﬁ%

[—
00|
= ._;‘- 'y -
ks

Note that because these messages are broadcast, they’re sent systemlwide. If the payload
of the message and the destination address information are vague enough, various
BroadcastReceiver objects might handle the message. This is similar to walking into a
room full of building contractors and asking whether any of them can do some work for you
— everyone would respond. You have a vague message address and payload. However, if
you ask the same group for a small electronics electrician contractor by the name of Bob
Smith, only one might respond. You have a specifically addressed message with a detailed
address and payload information.

Building the app widget’s layout

The app widget needs to have a layout for Android to know what to display on the Home screen.
The widget layout file defines what the widget will look like while on the Home screen. Earlier in
this chapter, Figure 7-2 showed the app widget running in the emulator.

To create the widget layout, create an XML layout file in the res/layout directory. Create one
now and name it app widget.xml.

The contents of app widget.xml are shown in Listing 712.

Listing 712: The Contents of app_widget.xml

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/phone_state" -3
android:layout height="wrap content" -4
android:layout width="wrap content"
android:src="@drawable/icon ringer on" -6
android:contentDescription="@string/toggle silent mode"/> -7

This layout should be nothing new. It’s simply a single TmageView with an image that will
represent whether the phone is in Silent mode or not.

Here’s what the code is doing;

— 3 Sets the ID of the image to phone state so that it can be referenced later in the
Java code. The + tells Android that this is a new ID and to create it.

— 4 The height and width of this view is set to wrap the image.

— 6 Sets the initial icon for the ImageView. You will write the code to update this icon
based on the ringer state of the phone later. You can download icon ringer on from
the sample source code on the book’s website.

— 7 A simple text string that describes what the image is. This is provided for
accessibility. It’s a good practice to include contentDescription text for any images
you supply in your app. Go ahead and create a string resource for this string in your
res/values/strings.xml file. Name it toggle silent mode and setits value
to something like "Toggle Silent Mode".

Doing work inside an AppWidgetProvider

After the PendingIntent has started your AppWidgetProvider, you perform some work
on behalf of the calling application (in this case, the Home screen application). In the following
sections, you perform timelsensitive work on behalf of the caller.

The work that your app does to update the widget is divided into two parts: The
AppWidgetProvider, which must finish processing its work quickly, and the
IntentService, which can take as long as it wants to finish.

Most widgets will have an AppWidgetProvider that does a little bit of light work, but passes
all the heavier work to an IntentService to execute in the background. Anything that involves
I/O (such as reading or writing from a network, database, or disk) or a lot of CPU processing,
should be done on a background thread in something like an IntentService.

Understanding the IntentService
Any code that executes for too long without responding to the Android system is subject to the
Application Not Responding (ANR) error. App widgets are especially vulnerable to ANR errors

because they’re executing code in a remote process, and because app widgets execute across
process boundaries that can take time to set up, execute, and tear. The Android system watches
app widgets to ensure that they don’t take too long to execute. When they do, the calling
application (the Home screen) locks up and the device is unusable. Therefore, the Android
platform wants to ensure that you’re never capable of making the device unresponsive.

Because app widgets are expensive in regard to CPU and memory, judging whether an app widget
will cause an ANR error 1s difficult. If the device isn’t doing any other expensive tasks, the app
widget would probably work just fine. However, if the device is in the middle of expensive CPU
or I/O operations, the app widget can take too long to respond — causing an ANR error. To work
around this problem, move any CPUI or I/Olintensive work of the app widget into an
IntentService that can take as long as it needs to complete — which in turn doesn’t affect the
Home screen application.

Unlike most background services, which are longlrunning, an IntentService uses the work
queue processor pattern, which handles each intent in turn using a worker thread, and it stops when
it runs out of work. In layman’s terms, the Intent Service simply runs the work given to it as a
background service, and then stops the background service when no more work needs to be done.

The AppWidget in this example isn’t doing any I/O and isn’t CPU intensive, so technically it
probably doesn’t need to use an IntentService. Butit’s more common that your widgets will
be doing some amount of I/O, so it’s an important design pattern for you to understand.

Implementing the IntentService
Create a new class called AppWidgetService in

com.dummies.silentmodetoggle.widget, then type the code in Listing 713 into your
code editor.

Listing 713: The AppWidgetService

public class AppWidgetService extends IntentService { -1

private static String ACTION DO TOGGLE = "actionDoToggle"; -3
AudioManager audioManager;

public AppWidgetService () {
super ("AppWidgetService"); -8
}

@Override

public void onCreate() { -12
// Always call super.onCreate
super.onCreate () ;

audioManager = (AudioManager) getSystemService(-16
Context .AUDIO SERVICE) ;
}

@QOverride
protected void onHandleIntent (Intent intent) { -21

if(intent!=null && intent.getBooleanExtra(—-23
ACTION DO TOGGLE, false)) {
RingerHelper.performToggle (audioManager) ;

AppWidgetManager mgr = AppWidgetManager.getInstance (this); -28
ComponentName name = new ComponentName (this, AppWidget.class); -30
mgr.updateAppWidget (name, updateUi());

private RemoteViews updateUi () { -35
RemoteViews remoteViews = new RemoteViews (getPackageName (), —36
R.layout.app widget) ;

int phoneImage = RingerHelper.isPhoneSilent (audioManager) -39

? R.drawable.icon ringer off

: R.drawable.icon ringer on;
remoteViews.setImageViewResource (R.id.phone state, phoneImage); —42

Intent intent = new Intent (this, AppWidgetService.class) —44
.putExtra (ACTION DO TOGGLE, true) ;

PendingIntent pendingIntent = -47
PendingIntent.getService (this, 0, intent,
PendingIntent.FLAG ONE SHOT) ;

remoteViews.setOnClickPendingIntent (R.id.widget, pendingIntent); —-51

return remoteViews;

)
The following list briefly explains the purpose of the major sections of code:

— 1 The service that handles all your widget’s operations. The intent sent to the service
will tell it what you it want to do.

This service is an instance of IntentService. An IntentService is a convenient
way to handle things that need to be done on background threads. Whenever a new intent is
received, onHandleIntent executes in a background thread. This allows you to perform
whatever operations you want to in the background — no matter how long they might take —
without blocking the foreground UI thread (which would cause the app to hang).

— 3 A flag that you set in your intent whenever you want to indicate that you want to
toggle the phone’s silent setting.

— 8 All IntentServices need to have a name. Ours 1s called
AppWidgetService.

— 12 onCreate is called when the service is initialized, after the object’s Java
constructor.

— 16 Just like in the activity, you’ll get a reference to Android’s AudioManager so
you can use it to toggle our ringer.

— 21 onHandleIntent is called on a background thread. This is where all your
heavy processing happens. All IntentServices must override onHandleIntent.

— 23 Checks the intent. If it says ACTION DO TOGGLE, then it toggles the phone’s
Silent mode. If it doesn’t say ACTION DO_TOGGLE, then this is just an update request, so
it updates the UL.

— 28 Gets a reference to Android’s AppWidgetManager, which is used to update the
widget’s state.

— 30 Updates the widget’s UL First, find the name for your widget, then ask the
AppWidgetManager to update it using the views that you’ll construct in updateUi ()
in line 35.

— 35 Returns the RemoteViews that is used to update the widget. Similar to
updateUi () inMainActivity, butappropriate for use with widgets.

— 36 Inflates the res/layout/app widget.xml layout file into a RemoteViews
object, which communicates with the widget.

— 39 Determines which image to use in the widget.
— 42 Sets the appropriate image.

— 44 Creates an intent to toggle the phone’s state. This intent specifies
ACTION DO TOGGLE=true, which youlook for inonHandleIntent on line 23.

— 47 Wraps the intent ina PendingIntent, which gives someone in another process
permission to send you an intent. In this case, the widget is actually running in another
process (the device’s launcher process), so it must have a pending intent to communicate
back into your service.

You should specify FLAG ONE SHOT to this intent to ensure it is used only once. There
are some situations where a PendingIntent can be automatically retried on your behalf,
and you want to ensure that you don’t accidentally do a few extra toggles. See
http://d.android.com/reference/android/app/PendingIntent.html for more
information about pending intents.

— 51 Gets the layout for the app widget and attaches an onlclick listener to the button.

Working with the app widget’s metadata

After you’ve written the code to handle the updating of the app widget, you might wonder how to
list it on the Widgets menu. This fairly simple process requires you to add a single XML file to
your project. This file describes basic metadata about the app widget so that the Android platform
can determine how to lay out the app widget on the Home screen. Follow these steps:

1.

A

In your project, rightlclick the res directory and choose New= Android resource
directory.

Name the folder xml , select XML as the Resource type, and click Finish.
Rightlclick the new res/xml folder, and choose New= XML Resource File.
In the New Android XML File Wizard, type widget provider.xml for the filename.

After the file opens, open the XML editor and type the following code into the
widget provider.xml file:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider

http://d.android.com/reference/android/app/pendingintent.html

xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="40dp"

android:minHeight="40dp"
android:updatePeriodMillis="1800000"
android:initialLayout="@layout/app widget"/>

The minWidth and minHeight properties are used for setting the minimum amount of space
that the view needs on the Home screen. 40dp represents the size of one widget “cell,” which is
all we need for this widget.

A

Your app widget can occupy one Home screen cell or many cells. This app widget is
occupying only one. Your minWidth and minHeight should be setto 70dp* N - 30dp,
where N is the number of cells you want to occupy. For example, a widget that is one cell tall
and two wide would be 40dp x 110dp.

The updatePeriodMillis property defines how often the app widget should attempt to
update itself. You will want the widget to update itself periodically in case the user changes the
state of the ringer using some other mechanism. Therefore, this value 1s set to 1800000
milliseconds — 30 minutes. Every 30 minutes, the app attempts to update itself by sending an
intent that executes the onUpdate () method call in the AppWidgetProvider.

The initialLayout property identifies what the app widget looks like when the app widget is
first added to the Home screen, before any work takes place. The initial layout is shown until the
widget finishes updating itself.

An example of a longer delay is an app widget that checks Twitter for status updates. The
initialLayout is shown until updates are received from Twitter. Inform the user in the
initialLayout that information is loading to keep him aware of what’s happening when the
app widget is initially loaded on the Home screen. You can do this by providinga TextView
with the contents of "Loading . . ." while the AppWidgetProvider does its work.

Registering your new components with the manifest

Anytime you add an activity, a service, or a broadcast receiver (or certain other items) to your
application, you need to declare them in the application manifest file. The application manifest
presents vital information to the Android platform — namely, the components of the application.
The system doesn’t recognize the Activity, Service, and BroadcastReceiver objects
that aren’t declared in the application manifest.

To add your AppWidgetProvider and IntentService to your application manifest file,
openthe AndroidManifest.xml file and type the code shown in Listing 714 into the already
existing file. Bolded lines are newly added lines for the new components.

Listing 714: An Updated AndroidManifest.xml File with New
Components Registered

<<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.dummies.silentmodetoggle">

<application
android:icon="@drawable/ic launcher"
android:label="@string/app name"
android:allowBackup="true">

<activity
android:name=".MainActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<receiver
android:name="com.dummies.silentmodetoggle.widget.AppWidget"
android:label="@string/app name"> -21

<intent-filter>
<action android:name= -24
"android.appwidget.action.APPWIDGET UPDATE"/>
</intent-filter>

<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget provider"/> -29
</receiver>

<service android:name= -32
"com.dummies.silentmodetoggle.widget.AppWidgetService"/>

</application>
</manifest>

The following list briefly describes each section:

— 21 The opening element registers a BroadcastReceiver as part of this
application. The name property identifies the name of the receiver — in this case,
.widget .AppWidget, which correlates to the AppWidget . java file in the
application. The name and label help identify the receiver.

— 24 Identifies what kind of intent (based on the action of the intent in the intent filter) the
app widget automatically responds to when the particular intent is broadcast. Known as an
IntentFilter, it helps the Android system understand what kind of events your app
should be notified of. In this case, your application is concerned about the

APPWIDGET UPDATE action of the broadcast intent. This event fires after the
updatePeriodMillis property has elapsed, which is defined in the

widget provider.xml file. Other actions include enabled, deleted, and disabled.

— 29 Identifies the location of the widget provider.xml file that yourecently built
into your application. Android uses the widget provider to help determine defaults
and to lay out parameters for your app widget.

— 32 The <service> element registers the AppWidgetService with your
application. This is the background service that does most of the work for your widget.

At this point, your application is ready to be installed and tested. To install the application, choose
Run=>Run ‘Silent Mode Toggle’. It should show up on the emulator. Return to the Home screen by

pressing the Home key. You can now add to the Home screen the app widget that you recently
created.

Placing Your Widget on the Home Screen

Adding a widget to your Home screen is easy — follow these steps:

1. Open the application list on the Home screen of the emulator.
2. When the list of applications is visible, select Widgets.

3. Choose Silent Mode Toggle, as shown in Figure 7-1, and drag it to your Home screen.

You have now added the Silent Mode Toggle widget to the Home screen. You can tap the icon to
change the ringer mode and the icon changes accordingly. (Refer to Figure 7-2.)

Chapter 8

Publishing Your App to the Google Play
Store

In This Chapter

Building an Android package file

Creating a developer profile in the Google Play Store
Picking a price for your app

Illustrating your app with a screen shot

Uploading and publishing your application

Monitoring downloads

The Google Play Store is the official application distribution mechanism for Android. Publishing
your application to the store enables your application to be downloaded, installed, and used by
millions of users across the world. Users can also rate your application and leave comments about
it, which helps you identify possible use trends and problematic areas that users might be
encountering.

The Google Play Store also provides a set of valuable statistics that you can use to track the
success of your application.

In this chapter, you publish your application to the Google Play Store. You find out how to provide
a couple of screen shots, a promotional screen shot, and a short description of your application.

Creating a Distributable File

So you have a great idea, and it has led you to develop the next hit application or game for the
Android platform. Now you’re ready to put the application into the hands of users. The first thing
you need to do is package your application so that it can be placed on their devices. To do so, you
create an Android package file, or APK file, which you will do in the following sections.

Choosing your tools
You can build an Android APK file in numerous ways:

1 Android Studio
1 Command line with Gradle

1 Automated build process, such as a continuous integration server

Really, these are just three different ways to kick off your gradle build.

In this book you will use Android Studio to create a signed APK file. Android Studio provides an
array of tools that compile, digitally sign, and package your Android application into an APK file.

f

Other options, such as using Gradle and continuous integration to build signed APKs, are
used in more advanced scenarios. You can find more information about setting up a
commandlline build process in the Android documentation at

http: d.android.com/tools/publishing/applsigning.html.

Digitally signing your application
The Android system requires all installed applications to be digitally signed with a certificate that
contains a public/private key pair. The private key is held by the developer. The certificate that’s

used to digitally sign the application identifies developer and establishes the trust relationships
between applications.

You need to know some key information about signing Android applications:

1 All Android applications must be signed. The system won’t install applications that aren’t
signed. By default, your apps are signed by a debug key generated by the Android SDK.

1 You can use selflsigned certificates to sign your applications; a certificate authority isn’t
needed.

1 When you’re ready to release your application to the store, you must sign it with a private

release key. You cannot publish the application with the debug key that signs the APK file
when debugging the application during development.

1~ The certificate has an expiration date, and it’s verified only at install time. If the certificate
expires after the application has been installed, the application continues to operate normally.

1 If you don’t want to use Android Studio to generate the certificate, you can use standard JDK
tools such as keytool or jarsigner to sign your APK files.

A

You can create modular applications that can communicate with each other if the
applications were signed with the same certificate. This arrangement allows applications to
run within the same process, and the system can, if requested, treat them as a single
application. Using this methodology, you can create your application in modules, and users
can update each module as they see fit — for example, to create a game and then release
update packs to upgrade it. Users can decide to purchase only the updates they want.

The certificate process is outlined in detail in the Android documentation at
http://d.android.com/tools/publishing/applsigning.html.

Creating a keystore

http://d.android.com/tools/publishing/app-signing.html
http://d.android.com/tools/publishing/app-signing.html

A keystore in Android (and in Java) 1s a container in which your private certificates reside. You
can use a couple of tools in Android to create a keystore file:

1 Android Studio Generate Signed APK Wizard: Creates a keystore and a key that will be
used to sign your app APK.

1~ Keytool application: Lets you create a selflsigned keystore via the command line. Keytool,
located in the Java bin directory, provides many options via the command line.

Safeguarding your keystore

The keystore file contains your private certificate, which Android uses to identify your application
in the Google Play Store. Back up your keystore in a safe location because if you happen to lose it,
you cannot sign the application with the same private key. Neither can you upgrade your
application because the Google Play Store platform recognizes that the application isn’t signed by
the same key and restricts you from upgrading it — the store sees the file as a new Android
application. This also happens if you change the package name of the app; Android doesn’t
recognize it as a valid update because the package and/or certificate are not the same.

[}
<

K ‘g!ﬁ_ﬂ_ls \‘\

@/ Keep your keystore safe! If your source code is open source, do not check your keystore
into your source code. You don’t want the whole Internet to have access to your keystore and
be able to modify your app in the Google Play Store whenever it wants. If you ever lose your
keystore, you will not be able to update app in the Play Store, and Google would not be able
to help you even if they wanted to.

Creating the APK file

To create your first APK file, follow these steps:

1. Choose Build= Generate Signed APK.

2. Select the Silent Mode Toggle module and click Next.

The Generate Signed APK Wizard, shown in Figure 8-1, opens with the current project name
filled in.

3. Press the Create New button (as shown in Figure 8-2).

Or, if you already have a keystore, press the Choose Existing button instead.

4. Choose the location of your keystore.

Find your project directory (the directory above SilentModeToggle) and create a keystore
there named release. jks, as in Figure 8-3. For example:
/Users/mike/Projects/androidlforldummieslv3/release. jks.

5. Enter a password that you’ll remember, and reenter it in the Confirm field.
If using an existing keystore, you won’t need to confirm your password.
Your keystore file has been created, but now you need to create a key.

6.

7.

10.

11.

Fill out the following fields:
e Alias: A simple name that you use to identify the key. Call it release.

e Password and Confirm: The password that will be used for the key. You can use the
same password that you used for the keystore, or you can use a different password.

¢ Validity: Indicates how long this key will be valid. Your key must expire after October
22,2033.

Complete the certificate issuer section, filling out at least one of these fields:
First and Last Name

Organization Unit

Organization

City or Locality

State or Province
Country Code (XX)

Click OK.

You’ll return to the Generate Signed APK Wizard dialog box, but this time the fields should be
filled as in Figure 8-4.

. Optionally check the Remember password check box so that you don’t have to retype it

every time, and click Next.

If you don’t have a Master Password configured for Android Studio, you may be prompted to
set one so that Android Studio can remember your password securely.

Choose the APK destination folder and the Build Type as in Figure 8-5.

The location should be set to the SilentModeToggle directory, and the Build Type should be
release.

Click Finish.
The . apk file is created in your chosen location as well as a keystore in the location you
chose in Step 4. Open these locations, and you can see a . jks file as well as an . apk file.

® O Generate Signed APK Wizard

Module: 4 SilentModeToggle

4k

? Cancel Previous E—N;m—-j

Figure 811: The Generate Signed APK Wizard.

® O Generate Signed APK Wizard
Key store path: sjects/android-for-dummies-v3/release.jks
Create new... Choose existing...

Key store password:

Key alias: release

Key password:

Remember password

= Cancel Previous HEHE—j

Figure 8I12: The Keystore Selection screen.

® @ New Key Store

Key store path: :rs/mike/Projects/android-for-dummies-v3/release.jks

Password: ssssssenee Confirm: eessssssse
Key

Alias: release

Password: sssssseeee Confirm: essessessess

Validity (years): 2511+
Certificate
First and Last Name: Mike Burton

Organizational Unit:
Organization:

City or Locality:
State or Province:

Country Code (XX):

Cancel HH

Figure 813: The Key Creation screen.

® © Generate Signed APK Wizard
Key store path: jects /android-for-dummies-v3/release.jks
_ Create new... Choose existing...

Key store password: eesessssess
Key alias: release

Key password: eecccsceee

v/ Remember password

? Cancel Previous - Next

Figure 814: The Generate Signed APK Wizard screen with fields filled out.

®@ ©o Generate Signed APK Wizard
Mote: Proguard settings are specified using the Project Structure Dialog

APK Destination Folder: for-dummies-v3/SilentModeToggle

Ar

Build Type: release

Flavors:

No product flavors defined

? Cancel Previous Finish

Figure 815: Providing a destination for the APK file.

You have created a distributable APK file and a reusable keystore for future updates.

Creating a Google Play Developer Profile

After you have created an APK file, you can release the application on the Google Play Store. To
do so, you create a Google Play developer profile. To create this profile, you first need a Google
account. Any Googlelbased account, such as a Gmail account, works. If you have no Google
account, you can open a free one by navigating to www.google.com/accounts.

To create the Google Play developer profile, follow these steps:

1. Open your web browser and navigate to http://plav.google.com/apps/publish.

2. Sign in to your Google account.

If you’re already signed in to your account, you go straight to Step 3 to fill in your developer
profile.

3. Check “I agree” to accept the terms of the developer agreement (Figure 8-6), and then
click Continue to Payment.

If you don’t pay the developer fee, you cannot publish applications.

4. On the Secure Checkout page, fill in your credit card details and billing information, then
click the Accept and Continue button.

If you already have a credit card on file with Google, you may not see the page in Figure 8-7.
If you already have a card set up, select one and continue.

5. Fill out the following fields to complete your developer profile, as shown inFigure 8-8:

e Developer Name: The name that appears as the developer of the applications you

http://www.google.com/accounts
http://play.google.com/apps/publish

release, such as your company name or your personal name. You can change it later,
after you’ve created your developer profile.

e Email Address: The email address to which users can send email with questions or
comments about your application.

e Phone Number: A valid phone number at which to contact you to discuss problems
with your published content.

6. Scroll down and click the Complete Registration button.

Congratulations, you are now a registered Android developer! The Android developer home
page opens, as shown in Figure 8-9, where you can upload your application or set up a
merchant account (which you need, if you’ll be charging a fee for your apps). See the nearby
“Google Wallet merchant accounts” sidebar.

- P | b gl play.google.com e | o
b o L) play

Blge-ln with your Googls Aataoanpd Dharralipeed Py Registraton Fee Cowmnplate youst Account

Bocount Agroomsnt deails

YOU ARE SIGHNED IN AS.,

- This Is the Googh that will ba lated with your Developer Conacle.
5 Wy ws el i B e @ chParnn] Rooounl, you cn oo brom e inlowing opBons: balow, | you B aR
CIGERIAtGN, (onEded regEenng & fire GOoghe Boite rthe than uBing B porsonsl soount
BEFORE YOU CONTINUE...
= 8o = 525

Pl aeed mggrass 52 the Cocglo Fipvitrn the disiribulion couniries wheen you can Make #o you have your crpdd casd handy i
Ttk Bt AGFRReTIN] disirbnte and bel appheatons pary the 525 registration tee in The nexl Bep
¥y e plarving 80 Sall Bp0S OF incEDD products,

chvisck if yom) S il @ manchae! Sccount in your
country.

| agres ard | mm wilkng b sssocale my

acoount regisinaton with the Googie Play
Direplopsin dubriBabior Bgrierd

USEFUL AMDROID RESDURCES HEED HELF?

Figure 816: The Google Play Developer Console.

ﬂ Google Wallet a by

Set up Google Wallet

NAME AND HOME LOCATION

@5 United States (US)

ik

PAYMENT METHOD
Credit or debit card

‘ .
visA & X g

Expiration date Security code
/v v @

Billing address

@ Billing address is the same as name and home location

@ Send me Google Wallet special offers, invitations to
provide product feedback, and newsletters.

| agree to the Google Wallet Terms of Service and Privacy Notice.

Cancel Accept and continue

Figure 817: Pay with Google Wallet.

| & - Ill.*_ +_'L. Batgs @ pliy. google.com l:-_] 0|
b '\”.l.1l.1_:.:i.l.' plany Jeveloper Console
Blge-ln with your Googls Asstpt Devabspes Py Registraton Fese Coamplets yous Account
Becount Agrooment deialls
'I’GJ.I'A.RE ALMOST DONE_..
DE\"ELDFEH FHOHLE Flalcl Frulrienel wilhs * el 0 Bay Ml o A
Dovalopsr nams ©
Than ok e 1 lice
Physicsl addness
I"' CuETeT, ¥ sl address whers you may be contacied. If y To anp A
lor sale, you are required io provide a postal addross. under our dov LIS toche
wes; Amiure 10 O ny resLlt i i
i i ki B b g, By 1 ¥ Tk il Forrrud
Email sddress
Website
Phone Humber *
nclude plus sign, acuning code and area code. For sxample, «1-B00-555-0150
Figure 818: Developer listing details.
| o Il.‘ +L*|p--mqmglnm ¢ | | [
Sign ol
b C l.1l.1.\l. .5!.-].- leveloper Console ﬂ
H
S

]

vﬁ:

it

| T
dh

Ifmmﬂhﬂpwﬂhmdﬂnll havvn & book af

.l\ddwnﬂgrnmqfn!mbnwmqmm
ey Gtling started guide

Andresd, 105 and The wal |

1f you are pllnrhngbum:brp.dlpmm in lpp-
pmduﬂi_-lm'llmdm

Aure you working in o tesen®

y eoaerker te th Devebor

USEFUL ANDROID RESOURCES USEFUL TOOLS MEED HELP?

Figure 819: The Google Play Developer Console.

Google Wallet merchant accounts

To have a paid application on the Google Play Store, you must set up a Google Wallet merchant account. To set it up,
choose Setup Merchant Account from the Google Play developer console (refer to Figure 8-9) and provide these types

of information:

1 Personal and business name
L* Tax identity (personal or corporation)

1 Expected monthly revenue ($1 billion, right?)

After you have set up a Google Wallet merchant account, you can sell your applications.

Pricing Your Application

So you have created an APK file and you’re a registered Android developer. Now you’re ready to
put your app into users’ hands. (Finally!) But you must answer one last question — is your app a
free app or a paid app?

Make this decision before you release your app, because its price has psychological consequences
for potential customers or users and monetary consequences for you. If yours is a paid application,
you have to determine your price point. Only you can make this decision, so check out similar
applications in the Play Store, and their price points, to determine your pricing strategy. The
majority of apps are priced between $0.99 and $9.99. Keeping the pricing of your app competitive
with your market is a game of economics that you have to play to determine what works for your
application.

The paidlversuslfree discussion is an evergreen debate, and both sides can be profitable. You only
have to figure out what works best for your application, given your situation.

Choosing the paid model

If you choose the paid model for your app, you generally start seeing money in your pocket within
24 hours of the first sale (barring holidays and weekends). However, your paid application
probably won’t receive many active installs.

Users who download your app from the Google Play Store get a free, 2lhour trial period to try out
your paid application. During the trial period, users can experiment with the fully functional
application, and if they don’t like it, simply uninstall it for a full refund. The trial period is
extremely useful because users aren’t penalized for taking your app for a brief testldrive.

Choosing the free model

If you choose to take the free route, users can install the application for free. Between 50 and 80
percent of the users who install your free app will keep the application on the device; the others
will uninstall it. The elephant in the room now is the question of how to make money by creating
free apps.

As the agelold saying goes, nothing in life is free, and the saying applies to making money on free
apps. You have two basic options:

1~ Inlapp purchases: You identify different “upgrades” that users can buy when using your app,
which are then managed via the Google Play Store.

1 Advertising: Various mobile advertising agencies provide thirdlparty libraries to display ads
on your mobile application.

The top mobile advertising company is Google

(https ://developer.android.com/google/playlservices/ads.html). Google offers useful
SDKs and walks you through the steps to run ads on your native Android applications. Google
pays on a netl60lday cycle, so you may have to wait a few months to receive your first check.

Getting Screen Shots for Your Application

Screen shots are a vital part of the Google Play Store ecosystem because they allow users to
preview an application before installing it. Allowing users to view a couple of screen shots of
your application can be the determining factor in installing your application. If you’ve spent weeks
(or months) creating detailed graphics for a game that you want users to play, you want potential
users and buyers to see them so that they can see the overall look of your app.

To grab realltime shots of your application, you use an emulator or a physical Android device. To
grab screen shots with an emulator, follow these steps:

1. Open the emulator.

2. In Android Studio, choose View= Tool Windows= Android.

3. Click the Screenshot button to take a screen shot.

After the screen shot is taken, save the file somewhere on your computer.

Uploading Your Application to the Google Play
Store

You’ve finally reached the apex of Android application development: You’re ready to publish the
application. To publish your app, you’ll need to collect the following information:

1 The signed APK
1 Your screen shots
1 A description and promotional text for your application

1 A promotional image used to advertise your app if it’s featured in the Google Play Store
Publishing an application is easy — follow these steps:

1. On the Android developer’s home page (refer to Figure 8-9), click the Publish an Android
App on Google Play button.

The Add New Application page opens, as shown in Figure 8-10.
2. Click Upload APK, and choose the . apk file that you created earlier in this chapter.

https://developer.android.com/google/play-services/ads.html

10.
11.

.,,}“"HE'

O/I No two applications can have the same package name in the Google Play Store.
Therefore, if you try to upload the Silent Mode Toggle application at this point, you see this
error message:

The package name of your apk (com.dummies.silentmodetoggle) is the same as

the package name of another developer’s application. Choose a
new package name.

When you upload an application that you’ve created, you don’t see this message.
Click Store Listing, and set the description for your application (see Figure 8-11).

Users see this description when they inspect your application to determine whether to install it.
All this text 1s indexed for the Google Play Store search engine.

Scroll down to the Screenshots section and add two screen shots from your application.

Apps with screen shots have higher install rates than apps without them. These screen shots
allow users to preview your application in a running state without having to install your
application.

Add a promotional shot.

The promo shot is not a screen shot but rather an advertisement used for random promotions
that Android chooses to showcase.

. Upload a highlresolution app icon image.

Refer to Chapter 6 for instructions on how to create a 512Ix1512bhigh resolution app icon.

. Set the promotional text of your application.

Promotional text is used when your application is featured or promoted in the Google Play
Store. Getting your application featured is likely based on the popularity of your application. If
it’s chosen to be featured in the promotional area of the Google Play Store (usually in the
upper area of the screen of each category), the promo text shows up as the promotional
component for it.

. Set the application type, category, and content rating.

This app falls into the Applications type; if you have a game app, choose the Games type.
The Category is based on your application type.
The Content Rating helps to prevent kids from seeing things that are too mature for them.

. Fill out the Web Site and EIMail fields (and Phone, if you want).

These fields are used to contact you for various reasons, including app feature requests and
bug reports. If you fill in the Phone field, remember that users can call to speak with you. If
you’re writing an app for one company and publishing it under your developer account, you
can change the Web Site, EIMail, and Phone fields so that users can’t contact you.

Click Save, then click Pricing and Distribution (see Figure 8-12).

Select the list of countries where the application should be visible.
For example, if your application is meant for an Italian audience, deselect All Locations and

select Italy as the destination location, to ensure that only devices in the Italy region can see it
in the store. If you leave All Locations enabled, all locations can (you guessed it) see your app
in the store.

12. Verify that your application meets the Android content guidelines and that you have
complied with applicable laws by selecting the pertinent check boxes.

13. Click Save, then click Publish.
Your application is published to the Google Play Store.

ADD NEW APPLICATION

Default language *

English {United States) - en-US H

Title *

0 of 30 characters

What would you like to start with?

Prepare Store Listing Cancel

Figure 8110: The Add New Application page.

ol | = | ()| b mnpid ply.googlecsm = | LD
b Google play evaloper Console e
2 7]
L]
~ SILENT MODE TOGGLE - com dumes sientndesaosi 7 best +

S

STORE LISTING

PRODUCT DETAILS

Fy e : Emglish (United States) - o-us Add translaticons
T _ Slart Mode Teggle

Short description”

Full descriptien”

Figure 8111: The Store Listing.

a e | [ot]| b enpd play.goaglecam oo oun dey_ae ePricengPlace s durenies silentmodetoggh O Rsadec L

: " Sign ot
br Google play | Developer Consale o
i

- SILENT MODE TOGGLE - com dumeies sikentmodetoggle 7 o
]
= APK o PRICING & DISTRIBUTION aved

Stone Listing
o This sppdication is Pakd Pras
I Pricing & Distribution
T publish paid apploations, you nooad I sef up & moenchant socount. Set up a

a‘ I'Fm P ' L= S e TR R Of Lbam Mg
E Sarvices & APS

MMSTRIBUTE IN THESE COUNTRIES

Optenization Tips Yiou hines nol selechd sy countries

SELECT ALL COUNTRIES

Aorsrgli g |

Figure 8112: The Pricing and Distribution page.

Figure 8-13 shows an application in the Google Play Store.

1. Silent Mode Widget

Jason Hull

i i

2. Silent Mode Toggle New

Beer for Breakfast
% W

3. Silent Toggle Widget

|
W W

4. Silent Mode Toggle
Adriao Neves

i

5. SilentMode OnOff

Curvekish

Ll

6. Silent Mode Switcher

Figure 8113: The application is released in the Google Play Store.

You’ve probably noticed a certain highlight in this process: It has no applapproval process (like a
certain other platform does). You can create an app now and publish it, and users can install it
within a few minutes or hours. You can then complete a quick release cycle and get new features
out the door as quickly as you finish them — very cool.

Watching the Number of Installs Soar

You’ve finally published your first application. Now it’s time to watch those millions start rolling
in, right? Kind of. You might be an independent developer who’s releasing the next standout firstl
person shooter game, or you might be a corporate developer who’s pushing out your company’s

Android application. Regardless, to be aware of the user experience on various devices, you can
identify how your application is doing in various ways using the Google Play developer console:

1 Fivelstar rating system: The higher average rating your app receives, the more likely people
will install it.

1 Comments: Give people the courtesy of reading the comments they leave. You might be
surprised at the outstanding ideas people provide to you for free. Users get excited about new
features and return to the store to update their comments with a much more positive ratings
boost.

1 Error reports: Users who were gracious enough to submit error reports want to let you know
that the app experienced a runtime exception for an unknown reason. Open these reports in the
Google Play developer console, examine the error, review the stack trace, and fix the problem.
An app that’s reported to forcelclose frequently can quickly receive lots of bad reviews.

1~ Installs versus active installs: Though this comparison isn’t the best metric for identifying
user satisfaction, it’s an unscientific way to determine whether users who install your app will
tend to keep it on their devices. Users who keep your app probably like it.

1 Direct email: Users will return to the Google Play Store to find your email address or website
address and ask questions about features or send comments about their user experience. They
may also send you ideas about how to improve your app or ask you to create another app that
does something they cannot find at the Google Play Store. Reply if you have the time! Though
maintaining an active dialogue with users is difficult if your app has a million active users, it
makes users happy to know that they can contact you about issues with your app.

Staying in touch with your user base is a large task in itself, but doing so can reap the reward of
dedicated, happy customers who refer their friends and family to your application.

o

Like the Google Play Store, the Amazon App Store for Android (one of the largest nonl
Google app stores for Android devices) offers applications for users to buy and install.
Developers can sell their applications and receive a competitive rate for their apps from
Amazon, or post free apps. Amazon also provides great sales metrics for developers and
marketers. Find out more at http://developer.amazon.com. You can find out how to port
your app to the Amazon App Store in Chapter 20.

http://developer.amazon.com

Part Il
Creating a FeaturelRich Application

5554:AVD_for_Nexus_5_by_Google
W %4 W 10:45

Two

Four

web
i

Check out the free articles at www.dummies.com/extras/androidappdevelopment tO
learn how to add GPS location features to your app.

http://www.dummies.com/extras/androidappdevelopment

In this part. ..

Part I1I expands on the knowledge that you acquire in Part Il by demonstrating how you can build a
featurelrich application from scratch. By the end of Part III, you will have an advanced app that
interacts with a local database, send notifications, and writes its settings to preferences.

Chapter 9
Designing the Tasks Application

In This Chapter

Determining what you want your app to do
Understanding fragments

Creating the Task list fragment

Setting the style and action bar of your app
Adding library dependencies to your app

Using RecyclerView, ViewHolder, and adapters

Building Android applications is fun, but building truly inldepth applications is exciting because
you dive into the guts of the Android platform. This chapter introduces you to the Tasks
application, which you build in the next few chapters.

The Tasks application lets users create a list of tasks that can each have a reminder associated
with them.

Reviewing the Basic Requirements

The Tasks application has a few basic requirements:

1 Users must be able to add, edit, and delete tasks.
1 Tasks must be easy to manage.

1+ Every task must have a reminder date and time when the user will be reminded of the task.

This application invites lots of interaction between the user and the Android system. The
following sections delve into the features that you need to build in order to meet the above
requirements.

Storing data

The task data and alarms needed to make the Tasks app work are stored in these locations:

1 Task data: Ina ContentProvider backed by an SQLite database. Android uses SQLite
as its database. You will create a SQLite database to contain your task data, and you will then
create a ContentProvider to access that database.

1 Alarm info: In the AlarmManager after being pulled fromthe ContentProvider.

Scheduling a reminder script (That’s alarming!)

For the Tasks application to work well, you need to implement a reminder system. The first thing
that comes to mind is a scheduled task, or cron job. In the Windows operating system, you create
a scheduled task to handle the execution of code and scripts at a given time. In the world of Unix
and Linux, you use cron (short for the Greek word chronos, which means time) to schedule
scripts or applications.

Because Android is running the Linux kernel, you might assume that Android uses cron to
schedule tasks. Unfortunately, Android doesn’t have cron, but instead it has the
AlarmManager class, which accomplishes the same thing. The AlarmManager class lets you
specify when things should happen, even if your app is not currently running. An alarm can be set
as a singleluse alarm or repeating. The Tasks application uses AlarmManager to remind users
of pending tasks.

Notifying the user

After an alarm fires, the app has to notify the user of the alarm. You have two ways to grab the
user’s attention:

1 Toast: A small view that contains a brief message for the user. The message is usually
available for only a few seconds — a toast never receives focus. Because it shows up only
briefly, it’s good for showing users a message when you already have their attention, but it’s
bad at getting their attention when they’re doing something else. The Tasks app uses a toast not
for reminding users but instead for notifying users when their changes have been saved.

1~ Notification Manager: The NotificationManager class notifies a user that events have
taken place. They can appear on the status bar at the top of the screen. Notification items can
contain various views and are identified by icons you provide. The user can slide down the
notification list to view notifications. The Tasks application uses the

NotificationManager class to handle reminders. (See Chapter 1 if you’re unsure how
the notification area works.)

Creating the Application’s Screens

The Tasks application needs two different screens to perform all its basic functions — create,
read, update, and delete (CRUD) tasks:

1 A list view that displays all the tasks in the application. This view also allows the user to
delete a task by longlpressing the item.

1 An edit view to allow the user to view or create a task, read a task’s full details, or update a
task.

Each screen eventually interacts with a database for changes to be persisted over the longlterm use

of the application.

Each screen consists of a single Android fragment that contains most of the user interface for the

screen, and that fragment is contained in an activity. See Chapter | for more information about
fragments.

o

You use fragments to reuse Ul code between multiple activities. You will reuse the
fragments you create here when you build tablet support into your app in Part I'V.

Starting the new project

To get started, choose File=New Module and create a new module in your project. (If you’re
unfamiliar with how to create an Android project, see Chapter 3.) Choose Phone and Tablet as the
module type, and use the settings in Table 9-1:

Table 911 Module Settings for Tasks

Setting Value
Application Name Tasks
Module Name Tasks
Package Name com.dummies.tasks

Minimum Required SDK 21

If you download the source code from this book’s website, you can also open the Tasks example.
Choose Blank Activity when asked to add an activity, and use the following settings for the

activity:

Table 912 Activity Settings for Tasks

Setting Value

Activity Name TaskListActivity
Layout Name activity task list
Title Tasks

Menu Resource Name menu_task_list

Cleaning up the TaskListActivity
The TaskListActivity class that Android Studio generated for you is just a template, so

you’ll want to do a few things to fix it up before you go any further:

1 Change the package to com.dummies.tasks.activity : Editthe
TaskListActivity.java file, and change the package on the first line of the file to be
com.dummies.tasks.activity. This will cause an error in the editor. Click on the
error, and then press Alt+Enter to open the Quick Fix dialog box (see Chapter 3 to remind
yourself how to use the Quick Fix dialog box). Choose Move to package
com.dummies.tasks.activity to move the file to the proper directory. If you are

given a choice between multiple directories, make sure you choose the directory path that
contains main as in Figure 9-1. You may also need to update the entry for
TaskListActivityinyour AndroidManifest.xml.

1 Remove the menus: Remove the onCreateOptionsMenu and
onOptionsItemSelected methods. Also remove the
res/menu/menu task list.xml file. Youwon’t need themin this activity.

® @ Choose Destination Directory

Directory Structure Choose By Neighbor Class |

Y

HelloAndroid

SilentModeToggle

tasks
1.../tasks/src/androidTest/java/com/dummies/tasks/activity

_1.../tasks/src/main/java/com/dummies/tasks/activity

Cancel (-

Figure 911: Changing an activity’s package.

Your new TaskListActivity class now looks like Listing 9-1 .

Listing 911 The ReminderListActivity Class

public class TaskListActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity task list);

)
Run it now and you will see the familiar “Hello world!” displayed on your device.

Editing the activity task list.xml layout file

Now that your activity runs, you will need to edit its layout file. The TaskListActivity will
have a very simple layout consisting of a toolbar and a fragment. Open up

activity task list.xml and edit the file to match Listing 9-2:

Listing 912 The activity_task_list.xml Contents

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" -3
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">

<Toolbar -8
style="?android:actionBarStyle"
android:layout width="match parent"
android:layout height="wrap content"
android:title="@string/app name"
android:id="@+id/toolbar" />

<fragment -15
android:layout width="match parent"
android:layout height="match parent"
android:id="@+id/fragment"
android:name="com.dummies.tasks.fragment.TaskListFragment"/> -19

</LinearLayout>

There are several things to be aware of in the previous layout file:

— 3 The topllevel layout for this activity. It is a vertically oriented linear layout that will
contain the toolbar and the fragment.

— 8 The toolbar for the activity. It won’t be styled automatically, so set its style to the
theme’s actionBarStyle. Also, setits title to the app’s name. Its id is set to
@+id/toolbar so that it can be referenced later in the code.

— 15 The fragment. A fragment of type TaskListFragment will be created using the
default constructor, and attached to this layout. It is named @+id/fragment so that we
can reference it later from the code.

— 19 The com.dummies.tasks.fragment.TaskListFragment class does
not exist yet, but you will create it in a subsequent section.

Setting the action bar
You need to tell Android how to find the action bar for the activity. Open up the
TaskListActivity.java file and modify your onCreate method to add the line in bold:
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity task list);
setActionBar ((Toolbar) findViewById(R.id.toolbar)) ;

}

This tells Android how to find the toolbar that you created in your layout, and use it as your
activity’s action bar.

An action bar is a special case of a toolbar. You can have multiple toolbars in your
activity, but only one may be your activity’s action bar. The action bar is generally at the top
of your activity.

Then open res/values/styles.xml and change your app’s theme to be the following:

<resources>

<!-- By default, most apps for Lollipop and later should use
some variant of android:Theme.Material.NoActionBar —-->
<style name="AppTheme"
parent="android:Theme.Material .NoActionBar">
</style>

</resources>

ﬁ"ﬁ?‘-ﬂf’?
)

@ gf there are any other styles.xml files in other values directories in your module,
delete them now. There should be only one, located in res/values. So for example, if the
New Blank Activity Wizard created a second styles.xml inres/valuesl21/, you

should delete it.

Creating the TaskListFragment

Fragments are the parts of your activities that are meant to be reused throughout your application.
Most activities have one or two fragments. The list activity needs a fragment to display the list of
tasks, so rightlclick on tasks (under com/dummies) in the Project view and add a new
package named fragment. Then rightlclick on fragment and add a new Blank Fragment. Use
the settings in Table 9-3:

Table 913 Fragment Settings for TaskListFragment

Setting Value

Fragment Name TaskListFragment
Create Layout XML? Yes

Fragment Layout Name fragment task list

Include Fragment Factory Methods No

Include Interface Callbacks No

The resulting fragment should look like Listing 9-3.

Listing 913 The TaskListFragment

package com.dummies.tasks.fragment;

import android.os.Bundle;

import android.app.Fragment;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import com.dummies.tasks.R;

public class TaskListFragment extends Fragment ({

public TaskListFragment () {
// Required empty public constructor

}

@Override
public View onCreateView (
LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
// Inflate the layout for this fragment
return inflater.inflate(R.layout.fragment task list, container, false);

SO ST,

TEcy,

60 |

‘@’ Knowing when to use activities or fragments

Both activities and fragments are central parts of your user interface (Ul) code. So how then do you decide whether to
put certain functionality into a fragment or an activity?

If activities are the lunchbox of Ul code, fragments are its Tupperware. You can insert your Ul code directly into your
lunchbox, but like an egg salad sandwich it would make a big mess all over your lunchbox. Put your Ul code into your
fragment Tupperware instead, where you can shift it from lunchbox to lunchbox as you need to use it again.

If you're absolutely certain that the code you're writing is specific to a given activity, put it directly into an activity. But if
you'’re unsure, put your Ul code in a fragment. In most applications, fragments contain all your Ul code, and your
activities contain only the glue that binds the fragments together.

If you run your app now, you should see a slightly modified message that now says “Hello blank
fragment.”

Making your fragment show a list

The goal of the TaskListFragment is to show a list of items. There are three things that need
to be done for this to happen: Add a RecyclerView to your layout, create a view that
represents a task in your list, and add an adapter to supply these task views to your
RecyclerView.

Adding a RecyclerView

A RecyclerView is a neat view that can display an infinite set of items on your tiny little
phone’s screen. Because your phone has a limited amount of memory, it won’t always be possible
to display your entire database of tasks on the screen at one time without running out of memory. A
RecyclerView takes care of this for you by only loading into memory the items that can fit onto
the screen at any given time. As you scroll through your infinite list, items that fall off the screen
will be purged from memory, and items that come onto the screen will be loaded into memory.

To add a RecyclerView to your fragment, first open the build.gradle file in your Tasks
directory and replace the dependencies section with the following (or add a
dependencies section at the end if one doesn’t exist):

// Libraries that our app will use
dependencies {
// recyclerview, cardview, and palette are all google libraries
// used to create Android Lollipop apps.
compile 'com.android.support:recyclerview-v7:21.0.3"'
compile 'com.android.support:cardview-v7:21.0.3"'

}
SO ST,
-
£16d

by

e/ In the old days, if you needed to add a library to your app, you would have to go out and
find the library, download it, and copy it into your sourcetree. Not anymore! With
Gradle, all you need to do is specify the name of the dependency you want, and Gradle
automatically downloads it for you. For more information about Gradle dependency
management, visit

b

http: www.gradle.org/docs/current/userquide/dependency management.html.

Then edit fragment task list.xml and replace its contents with a single
RecyclerView:

<?xml version="1.0" encoding="utf-8"?>

<!-- Our recyclerview, which shows a scrolling list of items -->
<android.support.v7.widget.RecyclerView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/recycler"
android:layout width="match parent"
android:layout height="match parent"
/>

Finally, add the RecyclerView to your fragment by making the following edits to
TaskListFragment.java:

public class TaskListFragment extends Fragment ({
RecyclerView recyclerView;

public TaskListFragment () {
// Required empty public constructor

}

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {

final View v = inflater.inflate (R.layout.fragment_ task list,
container, false);
recyclerView = (RecyclerView) v.findViewById (R.id.recycler); -16
recyclerView. setHasFixedSize (true); -17
recyclerView. setLayoutManager (
new LinearLayoutManager (getActivity())); -19
return v;

}
Things to note from the previous changes:

— 16 Finds the RecyclerView inthe layout and assigns it to the recyclervView
field in the class.

— 17 Ifall ofa RecyclerView’s items are going to be the same size, the

http://www.gradle.org/docs/current/userguide/dependency_management.html

RecyclerView can cut some corners and improve performance by not having to rel
measure the layout after displaying every item. All the items will be the same size, so turn on
setHasFixedSize.

— 19 EveryRecyclerView needs to have a LayoutManager that tells it how to lay
out the views. Because this fragment is just displaying a list, use a
LinearLayoutManager, which knows how to lay things out linearly in a list. There are
other LayoutManagers, such as the GridLayoutManager, which knows how to lay
things out in a twoldimensional grid, but for now all you need is the
LinearLayoutManager.

Creating the item view
Each task in your RecyclerView must have a view to display it.

First, create a layout that’s going to represent an item in your list. Create a new file named
res/layout/card task.xml, and add the following to it:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.CardView -3
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:card view="http://schemas.android.com/apk/res-auto"
android:id="@+id/card view"
android:layout width="match parent"
android:layout height="100dp" >

<Relativelayout
android:layout width="match parent"
android:layout height="match parent">

<ImageView -14
android:id="@+id/image"
android:layout width="100dp"
android:layout height="100dp"
android:scaleType="centerCrop"
android:layout alignParentStart="true"/>

<TextView -22
style="@android:style/TextAppearance.Medium.Inverse"
android:id="@+id/textl"
android:layout width="match parent"
android:layout height="wrap content"
android:maxLines="1"
android:ellipsize="end"
android:padding="10dp"
android:layout alignTop="@id/image"
android:layout toEndOf="@id/image"/>

<TextView -33
style="@android:style/TextAppearance.Inverse"
android:id="@+id/text2"
android:layout width="match parent"
android:layout height="match parent"
android:maxLines="2"
android:ellipsize="end"
android:padding="10dp"
android:layout alignStart="@id/textl"
android:layout below="@id/textl"/>

</RelativeLayout>

</android.support.v7.widget.CardView>

Here 1s some more information about the code you just put into card task.xml:

— 3 The card into which you’ll place your task information. The view is the same width
as the parent and a height of 100dp.

— 14 The image for the task. It’s a cropped square image that fills the height of the card.
It’s aligned to the far left of the card (the far right in languages that read rightltolleft like
Hebrew and Arabic).

— 22 The title of the task. You made it a little larger (Medium) than normal text. You
also used the Inverse color because the theme (Theme .Material) uses light text on a
dark background by default, which is what you want; but if you did that on the lightlcolored
cards, then you wouldn’t be able to read the text. A maxLines of 1 is set to prevent
wrapping of the title, and you’ve ellipsized the end if it exceeds one line. You placed the
title to the right and aligned it with the top of the task image. You also gave the title a little
padding on all sides to make it look good within the card.

— 33 The task notes. You limit the number of lines to two and place them below the title
and aligned on the left with the title.

Now that you have a basic CardView layout, add a little style to it by adding the following lines
in bold:

<android.support.v7.widget.CardView
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:card view="http://schemas.android.com/apk/res-auto"
android:id;"@+id/card7view"
android:layout width="match parent"
android:layout height="100dp"
android:layout marginTop="@dimen/task card half spacing"
android:layout marginBottom="@dimen/task card half spacing"
android:layout marginStart="@dimen/gutter"
android:layout marginEnd="@dimen/gutter"
android:layout gravity="center"
android:elevation="@dimen/task_pard_glevation"
android: foreground=""7android:attr/selectableltemBackground"
card view:cardCornerRadius="0dp" >

The lines in bold in the previous block of code make a few visual improvements to the
CardView. Youadded a margin on the top and bottom to create an empty space between items in
the list, and added a gutter on the left and right. You’re using an elevation to add a subtle
shadowing effect. You set the foreground drawable to Android’s
selectableltemBackground so that you get a nice click animation when the user clicks on
the card. You also turned off the default rounded corners for the card.

Now edit res/values/dimens.xml to create some of the values you just used in your
layout:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<!-- The gutter on the left and ride side of most of our pages —-->
<dimen name="gutter">10dp</dimen>

<!-- Half of the spacing we'll add between task cards. The full
spacing will be double this number. -->
<dimen name="task card half spacing">5dp</dimen>

<!-- The elevation of our task cards -->
<dimen name="task card elevation">6dp</dimen>

</resources>

Adding an adapter

A RecyclerView isn’t very interesting without a list of data to display. To use a
RecyclerView, you must create an adapter which will supply it with views of your tasks. An
adapter is a class that knows how to read from a list of data somewhere (whether in a database,
file, or wherever), and creates a view that represents an item in that list.

Create a new file called com/dummies/tasks/adapter/TaskListAdapter.java
and set its contents to the following:

public class TaskListAdapter
extends RecyclerView.Adapter<TaskListAdapter.ViewHolder> -2
{
static String[] fakeData = new String[] { -4
"One" ,
"TWO" 0
"Three",
"Four" ,
"Five" ,
"Ah ... ah ... ah!"
}:

@Override
public ViewHolder onCreateViewHolder (ViewGroup parent, int i) { -14
// create a new view
CardView v = (CardView) LayoutInflater.from(parent.getContext()) -16
.inflate (R.layout.card task, parent, false);

// wrap it in a ViewHolder
return new ViewHolder (v) ;

}

@Override

public void onBindViewHolder (ViewHolder viewHolder, int i) { -23
viewHolder.titleView.setText (fakeDatal[i]) ;

}

@QOverride
public int getItemCount () { —-28

return fakeData.length;
}

static class ViewHolder extends RecyclerView.ViewHolder { -32
CardView cardView;
TextView titleView;

public ViewHolder (CardView card) {
super (card) ;
cardView = card;
titleView = (TextView)card.findViewById (R.id.textl); -39

)
Here’s what the TaskListAdapter is doing:

— 2 The TaskListAdapter is asubclass of RecyclerView.Adapter.
RecyclerView.Adapter takes a parameter which represents the kind of
ViewHolder that will be used by this adapter. The ViewHolder you will use is
TaskListAdapter.ViewHolder, which will be defined on line 32.

— 4 In Chapter 13 you will create a SQLite database that will contain all your task data.
But for now, just use some dummy data.

— 14 EveryRecyclerView.Adapter mustoverride onCreateViewHolder,
which will be called whenever a new ViewHolder is needed. You must do two things to
create a new view holder. First, you must inflate a card task view. This card task
view will be reused over and over to display new tasks as they scroll onto the screen.
Second, you must create a ViewHolder to wrap this card task view.

SO STy,
S opy
St
» o e

B,

The purpose of a ViewHolder is to improve performance. Every call to
findviewById is relatively expensive. By using a ViewHolder, you only need to make
your calls to findViewById when the view is created in onCreateViewHolder,
rather than every time a view is recycled in onBindViewHolder. Because you will
create only a handful of views, this can be a significant time savings if you’re scrolling
through a nearly infinite list of tasks.

— 16 Inflates the CardvView fromcard task.xml usinga LayoutInflater. The
call to inflate takes as parameters the XML file to inflate, the parent view to instantiate the
right LayoutParams subclass, and false to indicate that this view should not be
automatically attached to the parent (because the RecyclerView takes care of attaching
and detaching the views).

— 23 There will be roughly as many ViewHolders created by
onCreateViewHolder as can fit on the screen at any one time, and each of these
ViewHolders will be reused whenever a new item needs to be displayed.
onBindViewHolder is responsible for recycling one of these ViewHolders and
updating it to display the information for the item that’s currently being shown on the screen.
The only thing that must be done to update the ViewHolder istosetits titleView to
display the appropriate string from our fakeData.

— 28 Returns the count of items 1in the list.

— 32 The TaskListAdapter.ViewHolder class is a subclass of
RecyclerView.ViewHolder. The purpose of the ViewHolder is to make it quick
and easy to access the subviews in your CardView without having to call
findviewById all the time. The two subviews you’ll need access to for now are the
cardView itself, as well as the t it 1eView that contains the title of the card.

— 39 Finds the titleView of the card by calling findViewById on the
cardView.

Now modify your TaskListFragment.java file toadd the adapter:
public class TaskListFragment extends Fragment {

RecyclerView recyclerView;
TaskListAdapter adapter;

public TaskListFragment () {

Now run your app. You should see something like what’s in Figure 9-2:

5.5.54.:,-‘-"'.';JID_f-or_Nexus_ﬁ_by_GoogIé

Figure 912: The Tasks app running with fake data.

The fragment lifecycle

Just like activities (see Chapter _5), fragments have their own lifecycle.

Like an activity, a fragment can exist in three states:

1* Resumed: The fragment is visible in the running activity.

1 Paused: Another activity is in the foreground and has focus, but the activity in which this fragment lives is still
visible (the foreground activity is partially transparent or doesn’t cover the entire screen).

1* Stopped: The fragment is not visible. Either the host activity has been stopped, or the fragment has been
removed from the activity but added to the back stack. A stopped fragment is still alive (all state and member
information is retained by the system). However, it is no longer visible to the user and will be killed if the activity

is killed.

Most of the fragment callbacks are very similar to the activity callbacks. However, there are some important differences.
The three most common fragment callbacks are

1 onCreate: Unlike an activity, fragments don’t have a setContentView () method. Unlike activities, views

are not created at all in a fragment’'s onCreate () method, so there is no way to manipulate views in
onCreate ().

1* onCreateView: To create a view in a fragment, override the onCreateView () method and inflate the view
yourself, and then return it at the end of the function. See Listing 9-3 for an example. One important thing to
note: Even though the views are created, they aren’t fully constructed yet. If any saved state needs to be

restored to the view (for example, if the activity was destroyed and relcreated because of a screen rotation),
that state isn’t available until the next step.

I onActivityCreated: onActivityCreated () is the final step called before your fragment is fully created.

At this point, your fragment is fully set up. Because of this, it's usually best to put most of the code involving
views or saved state in onActivityCreated().

Styling your activity
Now that you have a working list view for your tasks, it’s time to make it a little bit prettier.
Here’s the list of changes you will make:

1 Pick a color scheme for your app.

1 Color the action bar, status bar, and navigation bar based on your scheme.

1 Add an image to your cards.

Coloring your activity
Every Android app needs to have several colors defined:

+ Primary: This 1s the main color of your app. You should set it to something distinctive that
represents your app’s brand. Your action bar will use this color to help users visually identify
your app.

+ Primary Dark: A slightly darker version of the primary color. Primary Dark will be used in
the status bar above your action bar, as well as other places throughout your app.

1 Text Color Primary: The main color for text in your app. There is also Text Color Primary
Inverse for when you need to display text against a different colored background.

1 Accent: An accent color that can be used to draw attention to things in your app. Typically, the
accent color should be something bold and eyelcatching.

1 Background: The background color of your app.

You can see how these colors are used in a typical activity in Figure 9-3.

colorPrimary

textColorPrimary

colorPrimaryDark

windowBackground

navigationBarColor

Figure 913: The main colors used to describe an Android app.

Openthe res/values/styles.xml file and edit it to look like the following:

<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:android="http://schemas.android.com/apk/res/android">

<!-- define your colors so that they can be referenced
anywhere else you might need them -->

<color name="primary">#leabf2</color> -6

<color name="primary dark">#178acf</color>

<color name="accent">#ffb936</color>

<color name="window background">#cldae6</color>

<!-- By default, most apps for Lollipop and later should use
some variant of android:Theme.Material.NoActionBar —-->
<style name="AppTheme"

About this listing:

— 6 First, you define the various colors that you will need to use throughout your app’s
theme.

— 15 Now take the AppTheme you defined earlier in the chapter and update it to use the
colors you defined in line 6.

Now run your app. You should see the same app as before, only now it will be using some prettier
colors as in Figure 9-4:

@ 5554:AVD_for_Nexus_5_by_Google

One

Two

Three

Four

Five

Figure 914: The styled Tasks app.

Adding an image
Most cards in a list view look better with an image. For now, there aren’t any images for the tasks
in the list, but you can add some dummy placeholder images and replace them later.

To do this, you will want to use a handy image library called Picasso. Add it to your project
dependencies by opening Tasks/build.gradle and adding the lines in bold:

// Libraries that our app will use
dependencies {
// recyclerview and cardview are google libraries
// used to create Android Lollipop apps.
compile 'com.android.support:recyclerview-v7:21.0.3"'
compile 'com.android.support:cardview-v7:21.0.3"'
// Picasso is a library from Square that makes downloading images easy

F

compile 'com.squareup.picasso:picasso:2.4.0'

For more information on Picasso, visit http://square.github.io/picasso

Now openup TaskListAdapter.java and add the lines in bold:

public class TaskListAdapter

{

}

extends RecyclerView.Adapter<TaskListAdapter.ViewHolder>

@QOverride
public void onBindViewHolder (ViewHolder viewHolder, int i) {
Context context = viewHolder.titleView.getContext(); -8

viewHolder.titleView.setText (fakeDatal[i]) ;

// set the thumbnail image
Picasso.with (context) -13
.load (getImageUrlForTask (i))
.into (viewHolder. imageView) ;

static class ViewHolder extends RecyclerView.ViewHolder ({
CardView cardView;
TextView titleView;
ImageView imageView; -24

public ViewHolder (CardView card) {
super (card) ;
cardView = card;
titleView = (TextView)card.findViewById (R.id.textl);
imageView = (ImageView)card.findViewById(R.id.image) ;

The new code does the following:

— 8 Finds the context (the current activity) for the item in the list. Picasso will need the
context later.

— 13 Uses Picasso to load an image into the card’s ITmageView. All Picasso commands
start witha with () clause, which instructs Picasso which context to use to download the
image. This generally is your current activity. Next, you tell Picasso which URL to load
using the 1oad () command. In this case, the URL comes from get ImageUrlForTask,
which hasn’t been defined yet. Finally, you tell Picasso which ImageView to put the image
into after it has been downloaded. Picasso then fires up an HTTP request on a background
thread to download the image and displays it after it’s available.

— 24 Adds the TmageView to the ViewHolder. You previously defined the
ImageView when you created card task.xml, so all you have to do here is create a
field for it and call findViewById to setit.

Because Picasso downloads images from the Internet, add the line in bold to your
AndroidManifest.xml to give your app permission to access the Internet:

http://square.github.io/picasso/

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.dummies.tasks" >

<uses-permission android:name="android.permission.INTERNET" />

This does everything that’s necessary to display an image for each task. The only thing left to do is
to determine which image to display.

Add the following method to TaskListAdapter.java:

public static String getImageUrlForTask (long taskId) {
return "http://lorempixel.com/600/400/cats/?fakeId=" + taskId;
}

This uses the 1orempixel . com service to download a random 6001xl400Ipixel cat image for
the given taskId. Because cats. (If you prefer a different random image, you may also be
interested in checkingout fillmurray.com.)

You are now done styling your TaskListActivity! Runthe app and you should see
something like Figure 9-5:

5554:AVD_for_Nexus_5_by_Google

Two

Three

Figure 915: The fully styled TaskListActivity.

o8

Are you interested to learn more about how to style your Android app? There is a lot more

information available on the web. Check out http://androidl
developers.blogspot.com/2014/10/materialldesignlonlandroidlchecklist.html

and http://d.android.com/design and
http://developer.android.com/training/material/index.html for more
information.

http://android-developers.blogspot.com/2014/10/material-design-on-android-checklist.html
http://d.android.com/design/index.html
http://developer.android.com/training/material/index.html

Chapter 10
Creating the Task Detail Page

In This Chapter
Create the TaskEditActivity and TaskEditFragment
Using the FragmentManager to start fragments
Creating click listeners and starting activities
Saving fragment state and restoring it later
Transparent status, action, and navigation bars

Using the Palette library

This chapter continues the Tasks app that you started in Chapter 9. You’ve already built a
rudimentary list view for the app; now it’s time to allow users to create and edit tasks.

This will require the following steps:

1 Create a new activity and fragment to allow editing and updating tasks.

1 Allow users to click on items in the list to open them in the editor.

Creating the TaskEditActivity

First things first, you will need a new activity to hold all this editing goodness. Rightlclick the

com/dummies/tasks/activity folder and select New Blank Activity. Input the settings in
Table 10-1:

Table 1011 Activity Settings for TaskEditActivity

ISetting 'Value

Activity name TaskEditActivity
Layout name activity task edit
Title Tasks

Menu resource name menu_task_edit

Launcher activity No

Hierarchical parent com.dummies.tasks.activity.TaskListActivity

Package name com.dummies.tasks.activity

After you’ve created the activity, delete the onCreateOptionsMenu and
onOptionsItemSelected methods, as well as the res/menu/menu_task edit.xml

files. You won’t be using them.

Add the lines in bold below, and your activity should now look like this:

public class TaskEditActivity extends Activity {
public static final String EXTRA TASKID = "taskId"; - 3

@QOverride

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity task edit);
setActionBar ((Toolbar) findViewById(R.id.toolbar)); - 9

)
Some quick notes on the previous code:

— 3 Youuse this constant later in the chapter, so add it in now to save yourself a little
trouble later.

— 9 Set the action bar for the activity to the toolbar in your layout. You will add a toolbar
to your layout next. You may recognize this code from Chapter 9; you did the same thing
there.

Now edit res/layout/activity task edit.xml and setit to the following:

<?xml version="1.0" encoding="uft-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" - 3
android:layout width="match parent"
android:layout height="match parent">

<FrameLayout -7
android:layout width="match parent"
android:layout height="match parent"
android:id="@+id/container"/>

<Toolbar -12
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginTop="@dimen/status bar height"

android:layout gravity="top"
android:id="@+id/toolbar" />
</FrameLayout>

Some comments about the previous code:

— 3 A view group that holds the fragment and your toolbar. Order is important: The first
itemin the FrameLayout is drawn first, and the last item drawn last. This means that the
views at the top of the FrameLayout will be under the later views.

— 7 This FrameLayout is an “anchor” into which the fragment is placed. It takes up the
entire screen. Unlike activity task 1list, youdo notuse the <fragment> taghere
because you do not want Android to autolinstantiate the fragment for you. Instead, you
manually instantiate it so that you can pass in parameters to the nonldefault constructor
(specifically, the ID of the task to be edited).

— 12 This is the Toolbar view, which is placed at the top of the screen and in front of the

fragment. Most of its styling settings are defined in the
AppTheme.TransparentActionBar style inthe styles.xml (which you set up
later in this chapter). But you do need to add a little bit of buffer at the top of the screen to
account for the status bar, because the status bar is translucent and content of the page has
shifted up by a few pixels to slide under the status bar. To do this, create a new dimension
named status bar height inyour dimens.xml file and set it to 25dp.

Linking the List View to the Edit View

So you have a fancy new activity. Good for you. Now the question is, how do you get to it?

Because this activity will be used to edit tasks, you want to reach it from the list view you created
in Chapter 9. To do that, you need to create an OnClickListener to listen to clicks on the list
view (the RecyclerView), which then starts up the TaskEditActivity.

To do so, first openup TaskListAdapter. java and add code in bold to the end of
onBindViewHolder:

@Override
public void onBindViewHolder (ViewHolder viewHolder, final int i) { - 2

}

final Context context = viewHolder.titleView.getContext () ;

viewHolder.titleView.setText (fakeData[il]) ;

// set the thumbnail image
Picasso.with (context)
.load (getImageUrlForTask (1))
.into (viewHolder.imageView) ;

// Set the click action
viewHolder.cardView.setOnClickListener(—-13
new View.OnClickListener () {
@Override
public void onClick (View view) {
((OnEditTask) context) .editTask(i); -17
}
}) i

Here’s what this code does:

— 2 The i parameter is used inside an inner class on line 17, so Java requires that you
declare it final. Same thing for the context parameter on the next line.

— 13 Here yousetthe OnClickListener onthe cardvView by calling
cardView.setOnClickListener.

— 17 The OnClickListener is going to ask the context (also the activity) to edit the
task by calling editTask on the activity. The editTask method does not exist yet, but
you will create it and the OnEditTask interface in the next section. Technically, you don’t
need an interface to use an OnClickListener, but using one here will be handy in
Chapter 16 when you begin adapting your app for tablets.

Now that you have the OnClickListener setup, youneed to create the OnEditTask
interface so that it can be implemented by the TaskListActivity.

Create a new package named com.dummies.tasks.interfaces and add a new interface
to it called OnEditTask. Edit the file to contain the following code:

public interface OnEditTask {
/**
* Called when the user asks to edit or insert a task.
w/
public void editTask (long id) ;
}

Now if you go back to TaskListAdapter. java, it should compile fine. However, it won’t
run yet because you cast context to the OnEdit Task interface, but your context does not yet
implement OnEditTask. So modify TaskListActivity. java with the following changes:

public class TaskListActivity extends Activity implements OnEditTask {

/**
* Called when the user asks to edit or insert a task.
*/
@QOverride
public void editTask(long id) {
// When we are asked to edit a reminder, start the
// TaskEditActivity with the id of the task to edit.
startActivity(new Intent (this, TaskEditActivity.class)
.putExtra (TaskEditActivity.EXTRA TASKID, id));

)
Now run your app and try clicking on one of the items in your list view. You should then see a
blank activity on your screen. You can press the Back button to go back to the list and try again
with another item in the list.

Creating the TaskEditFragment

The edit fragment is going to do all the heavy lifting for editing tasks. It is the part of the app that
knows how to display a detailed view of the current task and allow the user to edit it.

To create the edit fragment, first create the layout.

Creating the layout
Create a new file named res/layout/fragment task edit.xml and put the following
in it:

<?xml version="1.0" encoding="utf-8"?>

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android" - 2
android:layout width="match parent"
android:layout height="match parent" >

<Relativelayout -6
android:layout width="match parent"
android:layout height="wrap content" >

<ImageView —10
android:id="@+id/image"
android:layout width="match parent"
android:layout height="wrap content"
android:minHeight="?android:actionBarSize"
android:adjustViewBounds="true"

android:layout alignParentTop="true"

/>

<EditText -19
android:id="@+id/title"
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginStart="@dimen/gutter" -23
android:layout marginEnd="@dimen/gutter"
android:layout below="@id/image" -25
android:hint="@string/title"/> -26

<TextView -28
style="@android:style/TextAppearance.Medium" —29
android:id="@+id/task time"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout below="@id/title" -33
android:layout alignEnd="@id/title" -34
android:layout marginEnd="3dp"/> -35

<TextView -37
style="@android:style/TextAppearance .Medium"
android:id="@+id/task date"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout toStartOf="@id/task time" -42
android:layout alignBottom="@id/task time" -43
android:layout marginEnd="10dp"/> -44

<EditText —46

android:id="@+id/notes"
android:layout width="match parent"
android:layout height="wrap content"
android:layout alignStart="@id/title"
android:layout marginEnd="@dimen/gutter"
android:layout below="@id/task time"
android:gravity="top" -53
android:hint="@string/notes"
android:minLines="5"/> 55

</RelativeLayout>

</ScrollView>

Some additional information about the listing above:

— 2 Youplace the entire edit fragment inside a scroll view. If you don’t do this, the user
can’t see the bottom of the screen on small devices or when she is in landscape mode. Most
screens should be wrapped inside a scroll view, except views like RecyclerView that
have their own builtlin scrolling.

— 6 A RelativeLayout lets you position things directly relative to each other. It
gives more control than something like a LinearLayout, which only allows you to
position things in a line, one after another. To use a RelativeLayout, you utilize
positioning commands such as layout below, layout alignStart, and
layout parentStart. You'll see examples of these commands in the child views of
this layout. For more information about RelativeLayout, visit

http: d.android.com/guide/topics/ui/lavout/relative.html.

— 10 This 1s the same image used on the list view, but here you show the full image
instead of cropping it. When you downloaded the image, you made sure it was a size that
fully filled the screen horizontally. You enable adjustViewBounds so that the
ImageView shrinks or expands itself to properly fit the image after it’s loaded. You set the

http://d.android.com/guide/topics/ui/layout/relative.html

minHeight to the height of the action bar, so that if the image isn’t available yet, the
action bar won’t cover up the title field.

— 19 Allows the user to edit the task’s title. I provide hint text (“Title””) which indicates
what field the user is editing.

— 23 Every wellldesigned page should have some margin on its left and right sides. This
is called the gutter. This line tells Android to place a gutter of 10dp (defined in
dimens.xml) on the left of the EditText. The next line adds the same gutter on the

right.

SO STle,
&yt
o0,
¥ W

You could also use marginLeft and marginRight rather than
marginStart and marginEnd. However, it’s better practice to use marginStart
and marginEnd, because layouts that use start and end automagically work in locales
where text is laid out rightltolleft rather than leftltolright. Examples of rightltolleft languages
are Hebrew and Arabic. You might think you’ll never translate your app to one of these
languages, but it’s better to follow the best practice just in case you ever find your app
wildly popular in Israel or Saudi Arabia! See Chapter 17 for more information about using
rightltolleft languages.

— 25 Positions the title directly below the image in the layout. All the layout parameters
relate to the Layout view that this TextView is a child of, in this case a
RelativeLayout.

— 26 The hint text for the EditText displays a hint to users concerning what kind of
information they can input into this field. For example, a hint might say “Phone number” or
“(xxx) xxxIxxxx” for a field expecting a phone number in the U.S. The hint text appears in the
EditText when the field is empty.

— 28 The time button.

— 29 The default text size is relatively small. Because the date and time TextViews are
going to be clickable, you want them a little larger than normal. To do this, you change the
style of the textview to use android:style/TextAppearance.Medium, which
is a standard Android style for TextViews. The default is
android:style/TextAppearance.DeviceDefault, butthere is also Large,
Small, and many others. See
http://d.android.com/reference/android/R.style.html#TextAppearance for an
exhaustive list.

— 33134 Positions the time button directly below the title, and aligns it to the rightlhand
side of the title as well. This puts the time on the far right side of the screen.

— 35 Adds a little bit of extra padding to the right of this view to make the text line up
with the horizontal line above it.

— 37 The date button. You’ll place this to the left of the time button.

http://d.android.com/reference/android/R.style.html%23TextAppearance

— 42143 Positions the date button to the left of the time button, and aligns the bottom of
the date and time so they line up.

— 44 Adds a little padding to the right of this EditText to put a little space between
the date and the time text. Without this space, the two sets of text look very crowded.

— 46 Allows the user to edit the task’s notes. You’ll place this below the title. You’ll
also give it a minimum of 5 lines of height to accommodate longer notes. You set the gravity
to "top" to make the text align with the top of the text field because it looks better.

— 53 The default gravity for a TextView (as well as an EditText) is center. This
looks a little funny for a multiline TextView, so change the gravity to "top". You may
recall using the 1ayout gravity parameter in Chapter 4. layout gravity tells
Android how to position the current view inside its parent, whereas the gravity
parameter tells Android how to position the content inside the current view.

— 55 Make sure this EditText is at least 5 lines high. It expands to more lines for
extrallong notes.

You used a couple of new strings in the layout, so openup strings.xml and add them there:

<string name="title">Title</string>
<string name="notes">Notes</string>

Creating the fragment

Now that you’ve created the layout, it’s time to create the fragment. Create a new Java file in
com/dummies/tasks/fragment named TaskEditFragment. java, and add the
following to it:

public class TaskEditFragment extends Fragment ({
public static final String DEFAULT FRAGMENT TAG = "taskEditFragment"; - 3

// Views

View rootView;
EditText titleText;
EditText notesText;
ImageView imageView;

long taskId; -11

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

Bundle arguments = getArguments(); -17
if (arguments != null) {
taskId = arguments.getLong(TaskEditActivity.EXTRA TASKID, OL);
}
}

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {

View v = inflater.inflate(R.layout.fragment task edit, -27
container, false);

rootView = v.getRootView(); —-30

titleText
notesText
imageView

(EditText) v.findViewById(R.id.title);
(EditText) v.findViewById(R.id.notes) ;
(ImageView) v.findViewById (R.id.image) ;

return v;
}
}

The class in the previous code does essentially two things. It knows how to

1~ Inflate the layout and find the views in the layout.
1 Read the task ID from the fragment arguments.

Here are more details on the previous code:

— 3 The “name” that you’ll usually use to identify this fragment. You need this constant
later in the chapter when you use the FragmentManager to add the fragment to the
activity.

— 11 The ID of the task being edited. When editing existing tasks, the ID is the ID of the

task. When creating a new task, the ID is initially 0, but it is set to the new ID of the task
after the task is saved.

— 17 Sets the task ID from the intent arguments, if available. Fragments do not get their
arguments from their constructors like normal Java objects. Instead, you must get and set
their arguments using the getArguments and setArguments methods.

— 27 Inflates the layout and sets the container. The layout is the view that you will return.
— 30 From the layout, gets a few views that you’re going to work with.

Those are the basics of creating a fragment that can show the details of a task. However, there’s
one more very important step that you must not leave out. You must remember to persist your inl
memory state whenever the fragment is destroyed, and use that persisted state (if it exists) when
your fragment starts up.

Saving your state

Android activities can be killed at any time to save memory when they’re in the background. If the user returns to the
activity, it may be relcreated again. When it's destroyed, the Android OS automatically saves the current state of any
views (such as EditTexts) that the user may have changed into the outState bundle. When it’s relcreated, those
values are automatically set for you in onCreate from the savedInstanceState bundle.

However, although Android can save the state of views for you automatically, it cannot do that for nonlviews. So any
time you have any state that you or the user may modify in your fragments or activities, it's UP TO YOU to make sure
you save them properly! To do this, just save the value to the outState bundle, and then read it back in again from the
savedInstanceState bundle in onCreate.

DO NOT FORGET TO DO THIS!

If you forget, your app will appear to work fine. You won’t immediately notice anything wrong. But any time you rotate
your phone, or leave an app running for awhile in the background and then later return to it, you may experience random
crashes and unexpected behavior. It won't happen every time, and it will be very difficult to track down.

To make these situations easier to discover, you can enable the “Don’t keep activities” option in the developer options
for your phone. This tells Android to destroy each activity as soon as it goes to the background, as happens when your

phone runs low on memory. If you hit the Back button to return to the activity, it is relcreated from its out State bundle.
See Chapter 5 to refresh your memory on how to access the developer options for your phone.

Saving your fragment’s state involves two things:

1 Overriding onSaveInstanceState to save any of your fields that may have changed
while the fragment was running.

1 Checking for any saved instance state when the activity is created in onCreate.

Go back to your TaskEditFragment.java and add the lines in bold:

public class TaskEditFragment extends Fragment ({

static final String TASK ID = "taskId"; -3

long taskId;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

if (savedInstanceState != null) { -13
taskId = savedInstanceState.getLong (TASK ID);
}
}

@QOverride -18
public void onSaveInstanceState (Bundle outState) {
super.onSavelnstanceState (outState) ;

// This field may have changed while our activity was

// running, so make sure we save it to our outState bundle so
// we can restore it later in onCreate.
outState.putLong (TASK ID, taskId);

— 3 The name of the entry that you’ll use to store the taskId when the fragment needs to
save its state.

— 13 Restores the taskId from savedInstanceState, if available.

— 18 onSaveInstanceState is called whenever Android needs to destroy your
fragment, most likely to free up memory. However, it may need to resurrect your fragment
again later. You are responsible for saving any fields that may have changed into the bundle
so that they can be used later when the activity is resurrected. See the “Saving your state”
sidebar for more information.

Finally, there’s one more thing you need to do in this fragment. Because the fragment needs the ID
of the task that it is going to edit, you need to create a method that can create a new fragment for a
given ID. To do this, add the following static factory method to the TaskEditFragment class:

public static TaskEditFragment newlInstance (long id) {
TaskEditFragment fragment = new TaskEditFragment () ;
Bundle args = new Bundle();
args.putLong (TaskEditActivity.EXTRA TASKID, id);
fragment.setArguments (args) ;

return fragment;

}
You’ll use this method in the next section.

But first, your page needs an image. Add the following to onCreateView:

// Set the thumbnail image

Picasso.with (getActivity())
.load (TaskListAdapter.getImageUrlForTask (taskId))
.into (imageView) ;

You Put the Fragment in the Activity and Shake
It All Up

Now, you have an activity that you can reach by clicking on an item in the list, and you have a
fragment that displays the details of an item, but you do not yet have any way to see the fragment
from the activity. What you need to do is put the fragment in the activity.

You may recall from Chapter 9 that this was superleasy to do. All you needed to do was put a
<fragment> tagin your activity’s layout, and everything worked magically.

Things are a little more complicated this time around.

In Chapter 9, the fragment did not take any parameters, so it was easy to instantiate. The fragment
in this chapter, on the other hand, does need a parameter. Specifically, it needs to know the ID of
the task that’s being edited. Because of this difference, you cannot just inflate the fragment in the
layout. You must create the fragment programmatically using the FragmentManager.

Openup TaskEditActivity and add the lines in bold:

public class TaskEditActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity task edit);
setActionBar ((Toolbar) findViewById(R.id.toolbar)):;

long id = getIntent() .getLongExtra (TaskEditActivity.EXTRA TASKID,OL); - 11
Fragment fragment = TaskEditFragment.newInstance (id) ;

String fragmentTag = TaskEditFragment.DEFAULT FRAGMENT TAG; -14

if (savedInstanceState == null) -16
getFragmentManager () .beginTransaction () .add(
R.id.container,
fragment,
fragmentTag) .commit() ;

}

In brief, you are getting the ID of the task from the activity’s intent extras, using that ID to create a
new TaskEditFragment, and then using the FragmentManager to add the fragment to
your activity in a fragment transaction. Some comments about the code are

— 11 Creates a new edit fragment for the specified task ID.

— 14 The tag that you’ll use to add the fragment to the activity. This allows you to
reference this fragment from other fragments, such as the Date and Time picker dialog
fragments, which you will create in Chapter 12.

— 16 Adds the fragment if it has not already been added to the FragmentManager. If
you don’t do this, a new fragment will be added every time this method 1s called (such as on
orientation change). The FragmentManager saves previously added fragments to the
savedInstanceState. Soif savedInstanceState is null, you know there
were no previous fragments. The fragment is attached as a child of the container view.

Updating the Styles

You’re close to being able to view your handiwork. You can run it now, but there will be some
bugs because there are a couple of changes you need to make to your activity’s style.

This activity is a bit different from the list activity, so it should have a different style. Because the
page is a detail view, you should remove as much of the app’s distracting “chrome” from the page
as possible, so that users can focus on their beautiful content. Things like the action bar, the status
bar, and the navigation bar are all going to be reduced in prominence. You wouldn’t want to do
this on every page of your app because that chrome can give users a visual indication of where
they are in the app and what app they’re using, but it can be a powerful technique if used
judiciously.

Open styles.xml and add the following to the bottom of the file:

<!-- A variation of the AppTheme, but with a transparent (clear)
ActionBar. Also has a translucent (grey) status and navigation
bar. -—>

<style name="AppTheme.TransparentActionBar" parent="AppTheme"> -4

<item name="android:windowTranslucentStatus">true</item>

<item name="android:windowActionBarOverlay">true</item> -6

<item name="android:windowTranslucentNavigation">true</item>

<item name="android:actionBarStyle">@style/TransparentActionBar</item> — 8
</style>

<!-- The TransparentActionBar style used by

AppTheme.TransparentActionBar -->
<style name="TransparentActionBar" parent="android:Theme.Material">

<item name="android:background">@android:color/transparent</item> - 14
</style>

About the previous code:

— 4 This style definition is for activities that want a transparent action bar. It also uses a
translucent (slightly opaque) status and navigation bar. Notice that it inherits from the
AppTheme you created in Chapter 9.

— 6 Normally the action bar is at the top of the page, and all the other content (such as the
image) 1s arranged below it. However, because the action bar is transparent, you want to
move the image all the way up to the top of the screen so that it is under the action bar.
Setting the action bar to windowActionBarOverlay=true is the way to do that.

— 8 The way to make the action bar transparent is to set its style, so set the action bar
style to a style that you will create on line 14.

— 14 Sets the background color of the action bar style to transparent.
Next, update the following lines in your AndroidManifest.xml:

<activity
android: theme="@style/AppTheme.TransparentActionBar"

android:name="com.dummies.tasks.activity.TaskEditActivity"
android:label=""

android:parentActivityName=
"com.dummies.tasks.activity.TaskListActivity">

Now run your app! You should be able to click on any item in the list and have it open a blank edit
fragment like Figure 10-1:

5554:AVD_for_Nexus_5_by_Google

Figure 1011: The blank Edit activity and fragment.

A Special Bonus

There’s a fun library called Palette that scans an image and picks out a few key colors. Try using
this library to add some dynamic color to your fragment.

First, add the library to your dependencies inbuild.gradle:

compile 'com.android.support:palette-v7:21.0.3"

Then, update your call to Picasso in TaskEditFragment. java to be like the following:

Picasso.with (getActivity())
.load (TaskListAdapter.getImageUrlForTask (taskId))

.into(
imageView, new Callback() { -4
@Override
public void onSuccess () { -6
Activity activity = getActivity();

if (activity == null) -9
return;

// Set the colors of the activity based on the
// colors of the image, if available

Bitmap bitmap = ((BitmapDrawable) imageView
.getDrawable ())
.getBitmap(); -16

Palette palette -17
= Palette.generate (bitmap, 32);
int bgColor = palette.getLightMutedColor (0) ;

if (bgColor != 0) {
rootView.setBackgroundColor (bgColor); — 22
}
}

@Override
public void onError () {
// do nothing, we'll use the default colors

}
b

What is this code doing?

— 4 Like before, you’re still telling Picasso to load the image “into” the imageView.
However, this time you’re also adding a callback, which is invoked when the image is done
loading. This callback is where you do the magic if you are inspecting the image for colors.

— 6 The callback has two methods: onSuccess and onError. If the image
successfully loaded, onSuccess is called so that you can inspect the image. If there was
an error, you do nothing.

— 9 Because Picasso downloads images in the background, you can’t be sure that the user
didn’t close the activity while the images were loading. If he did, you will bomb out, so do a
sanity check to be sure.

— 16 You’ll get the image from the imageView because it’s not passed into the
callback for you directly.

— 17 Uses the Palette library to generate a color palette for the image. From that palette,
you’ll pick out the “light muted color” to use as the background for your activity.

— 22 IfPalette can find a color for you, then use it to set your background. Palette is
usually but not always successful at finding colors.

o

For more information about the Palette library, visit

https: d.android.com/reference/android/support/v7/graphics/Palette.html.

https://d.android.com/reference/android/support/v7/graphics/Palette.html

Chapter 11
Going a la Carte with Your Menu

In This Chapter

Building an Options menu

Creating a longlpress action

Every good Android application includes menus. If you have an Android device and you’ve
downloaded a few applications from the Google Play Store, you’ve probably encountered plenty
of menu implementations. You’ll recognize them by their icons or text in the action bar, or their
text in the dropldown overflow menu on the far right of the action bar.

Activities and fragments can both have menus, in which case they’ll both be combined into one. In
this chapter, you add option and context menus to the fragments in the Tasks app, but you could just
as easily add them to an activity, too.

Understanding Options and Context Menus

Android provides a simple mechanism for you to add menus to your applications. This is the
Options menu (also known as the action bar menu). This is, most likely, the most common type of
menu that you’ll work with. It’s the primary menu for an activity or fragment.

The Options menu is in the action bar at the top of the screen (read more about the action bar in
Chapter 1). Figure 11-1 shows the Options menu with the overflow menu collapsed and expanded.

View as List

Sort by

Figure 1111: The Options menu with (top) menu icons and (bottom) the overflow menu expanded.

Android 2.x and earlier didn’t have an action bar, so menus on those devices showed up
behind a dedicated hardware menu button and were shown at the bottom of the screen in a
grid of icons. Most apps won’t need to worry about Android 2.x at this point. If you want to
learn more about supporting older versions of Android, see Chapter 17.

You have two choices when making Options menus:

1 Show in action bar or put in the overflow menu: Options menu items can either be shown in
the action bar, as is the case with the magnifying glass and folder icons in Figure 11-1, or
displayed in the overflow menu. Use the action bar for the one or two most important actions
that can be taken in your activity. For anything less important, use the overflow menu. It’s
important to not overload your action bar with a ton of menu options, both because you have
limited real estate, but also because too many options can be overwhelming to the user.

+# Icon or Text: For option menus that are shown in the action bar, you have a choice between
using an icon or using text. Icons are generally preferable, but in the case where you have only
a single action in the action bar, it often makes sense to use text. For example, an app might
have a single action called “Save” in the action bar, but you wouldn’t want to have multiple
text actions such as “Save” and “Share” because the text can start to get crowded.

Creating Your First Menu

You can create a menu through code or through an XML file that’s provided in the res/menu
directory. The preferred method of creating a menu 1s to define it through XML and then inflate it
into a Java object that you can interact with. This helps separate the menu definition from the
application code.

Defining the XML file

To define an XML menu, follow these steps:

I. Create a menu folder in the res directory.
2. Add a file by the name of menu list.xml to the menu directory.
3. Type the following code into the menu list.xml file:

<?xml version="1.0" encoding="utf-8"?>
<!—— Our default menu, which we'll load into the action bar of our main
app activity -->

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<!-— The Insert button, used to create a new task. This button
is important and small, so we'll force it to always be
in the action bar. In general, you should try to have as
few items as possible configured with showAsAction=always.
We'll use the default Add button icon that ships with
Android. If you want to see what other drawables Android

ships with, you can look in

$ANDROID SDK/platforms/android-*/res/drawable-*
==

<item
android:id="@+id/menu insert"
android:icon="@android:drawable/ic menu add"
android:showAsAction="always"

android:title="@string/menu_ insert"/>

</menu>

Notice that a new string resource is included (shown in bold). You’ll create that in Step 4. The
android:icon value is a builtlin Android icon. The 1dpi, mdpi, hdpi, xhdi, and so on,
versions of this icon are all built into the Android platform, so you don’t have to provide this
bitmap in your drawable resources. To view other available resources, view the
android.R.drawable documentation at

http://d.android.com/reference/android/R.drawable.html

gﬁﬂfﬂ

“uf)
H/ All resources inthe android.R class (as opposed to your own app’s R class) give
your application a common user interface and user experience with the Android platform.

. Create a new string resource with the name menu insert with the value of Add
Task inthe strings.xml resource file.

. Openthe TaskListFragment class and add the following method:

@Override

public void onActivityCreated (Bundle savedInstanceState) {
super.onActivityCreated (savedInstanceState) ;
setHasOptionsMenu (true) ;

)
setHasOptionsMenu () tells the activity that this fragment has an Options menu to show
in the action bar. You place this call in onActivityCreated to be sure that the activity
has finished calling its own onCreate before you call setHasOptionsMenu.

. Add the onCreateOptionsMenu () method to your class:

@Override

public void onCreateOptionsMenu (Menu menu, MenuInflater inflater) ({
super.onCreateOptionsMenu (menu, inflater) ;
inflater.inflate (R.menu.menu list, menu);

)
The MenuInflater inflates the XML menu created earlier and adds it to the menu that was
passed as an argument to the method call.

. Install the application in the emulator, and click the Menu button.

Figure 11-2 shows the Add Task menu icon that you just created. If you longlpress on the icon,
you can see the text “Add Task”.

http://d.android.com/reference/android/R.drawable.html

3943 10:23

®

Figure 1112: The Add Task menu icon.

Handling user actions
After you’ve created the menu, you then have to add what happens when a user clicks it. To do
this, type the following code at the end of the TaskListFragment Java file:

@Override
public boolean onOptionsItemSelected (Menultem item) { -2
switch (item.getItemId()) { -3
case R.id.menu_insert:
((OnEditTask) getActivity()) .editTask(0); -5
return true; -6

)
return super.onOptionsItemSelected(item); -9
)
The lines of code are explained in detail here:

— 2 This 1s the method that’s called when a menu item is selected. The item parameter
identifies which menu item the user tapped.

— 3 To determine which item you’re working with, compare the ID of the menu items
with the known menu items you have. Therefore, a switch statement is used to check each
possible valid case. You obtain the menu’s ID through the MenuI tem method
getItemId().

— 5 Ifthe user selected the Add Task menu item, the application is instructed to create a
task through the editTask () method (defined in Chapter 10). By convention, calling
editTask () withanID of O means the app should create a new task.

— 6 This line returns t rue to inform the onMenuItemSelected () method that a
menu selection was handled.

— 9 If the menu selection and return isn’t handled earlier, the parent class tries to handle
the menu item.

If you run your app, you will now be able to access the edit screen of the app by pressing the Add
Task button in the action bar. You won’t actually be able to create a new task, of course, because
the app is using hardcoded dummy data for now, but you will be able to after you create your
database in Chapter 13.

Creating your second menu
One good thing deserves another. Why stop at one menu when you could have two? In particular,
your edit page needs an option to allow users to save their changes.

In this section, you will create a menu programmatically instead of using XML.

Open TaskEditFragment. java and add the following methods and constant:

private static final int MENU SAVE = 1; - 1
@Override
public void onActivityCreated(Bundle savedInstanceState) { - 4

}

super.onActivityCreated (savedInstanceState) ;

setHasOptionsMenu (true) ;

@Override

public void onCreateOptionsMenu (Menu menu, MenuInflater inflater) {

}

super.onCreateOptionsMenu (menu, inflater);

menu.add (0, MENU SAVE, 0, R.string.confirm) - 13
.setShowAsAction (Menultem.SHOW AS ACTION ALWAYS); - 14

There are some differences from the previous menu:

— 1 Creates a constant int that will represent the Save menu. Each menu item within an
activity should have a unique integer.

— 4 The onActivityCreated method is identical to the one you added to
TaskListFragment inthe previous section.

— 13 Creates a menu item named “Save” and gives it an id of 1. If you have multiple
menu items, it’s a good practice to create static final ints to name them.

— 14 setShowAsAction has several possible values that determine the way that the
menu item appears in the action bar:

ifRoom: Only place this item in the action bar if there is room for it.

withText: Also include the title text (defined by android: title) with the action
item. You can include this value along with one of the others as a flag set, by separating
them with a pipe (|).

never: Never place this item in the action bar.

always: Always place this item in the action bar. Avoid using this unless it’s critical
that the item always appear in the action bar. Setting multiple items to always appear as
action items can result in them overlapping with other UI in the action bar. In this case,
because the Save option is a critical piece of UI functionality that we never want
hidden, it’s okay to use always.

collapseActionView: The action view associated with this action item (as
declared by android:actionLayout or android:actionViewClass)is
collapsible. This is a more advanced option used for custom menu items.

You added a new string, so add itto strings.xml:

<string name="confirm">Save</string>

Now, add the following method to handle the menu option when it is selected:

@Override
public boolean onOptionsItemSelected (Menultem item) {
switch(item.getItemId()) {
// The Save button was pressed
case MENU SAVE: -5

//save(); —6
((OnEditFinished) getActivity()) .finishEditingTask(); -8
return true;

}

return super.onOptionsItemSelected (item); -13

}

The onOptionsItemSelected method for TaskEditFragment is similar to the one you
added to TaskListFragment, but it has some differences:

— 5 Was onOptionItemsSelected called with a menu ID of MENU SAVE? If so,
then. . .

— 6 . call the save method. But really, the save method is commented out for now
because the Tasks app is using dummy data and does not yet have a way to save items. That
will be added in Chapter 13.

— 8 Tells the enclosing activity that you are done so that it can clean up whatever it needs
to clean up. You will implement this method later in this section.

— 13 Ifyoucan’t handle this menu item, see if your parent can return
super.onOptionsItemSelected (item) ;.

The previous code handles most of the things necessary to implement a Save menu item for the
fragment. The one thing that remains is to figure out what to do after the Save button has been
clicked. In this case, the activity should close and return the user to the previous activity. Much
like you did when you created the OnEditTask interface in Chapter 10, you will create an
interface named OnEditFinished that has a method called finishEditingTask () that
handles this behavior. In Chapter 16, you will make finishEditingTask do something
different for tablets, but for now it just needs to close the activity.

Create a new interface named OnEditFinished in com/dummies/tasks/interfaces.
Put the following code in it:

public interface OnEditFinished {
/**
* Called when the user finishes editing a task.
*/
public void finishEditingTask() ;
}

And then implement the interface in TaskEditActivity. java:

public class TaskEditActivity extends Activity
implements OnEditFinished

Now run the app; you should see a Save menu overlaying the task image, as in Figure 11-3. If you
tap it, the activity should dismiss.

Try setting setAsActionBar to MenuItem.SHOW AS ACTION NEVER to see
what the Add Task item would look like in the overflow menu.

Figure 1113: The Save menu action.

Creating a Long Press Action

The Tasks application needs a mechanism in which to delete a task when it’s no longer needed.
Users can longlpress the task in the list, and a dialog appears that allows them to delete the task by
selecting an item from the menu. For this section, you’re going to implement a dialog.

Open TaskListAdapter. java and add the following code below your call to
setOnClickListener inonBindViewHolder:

// Set the long-press action

viewHolder.cardView.setOnLongClickListener (

new View.OnLongClickListener ()
{
@Override
public boolean onLongClick (View view) ({
new AlertDialog.Builder (context) -7
.setTitle(R.string.delete gq) -8
.setMessage (viewHolder.titleView.getText ()) -9
.setCancelable (true) -10
.setNegativeButton (android.R.string.cancel, null) -11
.setPositiveButton(—-12
R.string.delete,
new DialogInterface.OnClickListener () {
@Override
public void onClick(

DialogInterface dialogInterface,
int 1)

deleteTask (context, 1); —20

1)
.show () ; —-23

return true;

}
}):

— 7 Usesthe AlertDialog.Builder class to constructanew AlertDialog. The
Builder has several methods such as setTitle, setMessage,
setPositiveButton, and so on, that will construct an alert to your specifications.
When you’re all done, you will call show on line 23 to show the dialog.

— 8 Sets the toplline title of the dialog. Add the following line to your strings.xml:

<string name="delete g">Delete?</string>

— 9 Sets the message body of the dialog to the title of the task, so that the user can confirm
exactly which item she is deleting.

— 10 Makes the dialog cancelable. This means that if the user hits the Back button, the
dialog behaves as if the user hit the Cancel button. You can set this to false to disable the
Back button in dialogs.

— 11 Sets the text and action for the negative button in the dialog. In this case, the text is
Cancel. Youdon’t need to add this string to your app because the android.R file has it
builtlin. Also, you can set the click action to nul1, because by default the negative button
dismisses the dialog, and that’s the only behavior you need for this dialog.

— 12 Sets the text and action for the positive button in the dialog. The textis Delete,
which you should add now to your strings.xml:

<string name="delete">Delete</string>

Unlike the negative button, the positive button has to do some specific stuff to the Tasks app,
so you need to implementa DialogInterface.OnClickListener to handle the
behavior of a positive button click.

— 20 When the positive button is clicked, call the method deleteTask. For now, this

method does not need to do anything, so add a deleteTask method to your
TaskListAdapter like so:

void deleteTask (Context context, long id) {

Log.d ("TaskListAdapter", "Called deleteTask");
}

— 23 Youmustcall show () to display your dialog.

Because your viewHolder is being accessed from within an inner class, you also need to
change the signature of your method:

public void onBindViewHolder (final ViewHolder viewHolder, final int 1)

Now run your app. When you longlpress on a task, you should see a dialog like the one in Figure
11-4:

Delete?

Meowhahaha

DELETE

Figure 1114: The Delete dialog.

And when you press the Delete button, a message should appear in your logcat output that says
Called deleteTask. See Chapter 3 for more information about how to use logcat.

@ﬁM—' 5.].-{"&

S yey
FHES
Ly BV . . .
’?‘) In Chapter 10, youused DialogFragments to create dialogs, but here you are using an
AlertDialog (whichisnota DialogFragment). What is the difference?

DialogFragments are more complicated to set up, but they interact properly with the Android
activity and fragment lifecycle (see Chapter 5 and 9 for more information about Android activities
and fragments). In particular, if a fragment is asked to save itselfin onSaveInstanceState

and then relcreate itself later in onCreate (see Chapter 10 for more information about
onSavelnstanceState),a DialogFragment will behave properly but an
AlertDialog will not.

You can see this in action by going to the edit page of your app, dismissing the keyboard, and then
clicking on the date to open the date picker. If you rotate your device, the date picker remains on
the screen and retains whatever date you clicked on.

However, if you longlpress on an item in the list view to open the Delete dialog and then rotate
your device, the Delete dialog disappears! This is because you did not use a DialogFragment
to create it.

In general, it’s best to always use DialogFragments because they result in the best user
experience. As an exercise, try relimplementing the Delete dialogas a DialogFragment using
the lessons described in Chapter 10.

Chapter 12
Handling User Input

In This Chapter
Working with EditText views
Creating date pickers and time pickers
Setting up alert dialogs

Validating user input

Rarely does an application not allow users to interact with it. Whether they use text, a date or time
picker, a radio button, a check box, or any other input mechanism, users need to interact with your
application in one way or another. This chapter focuses solely on user input in the form of alert
confirmation, freelform text, and dates and times.

Creating the User Input Interface

The most common input type is the EditText view, used for freelform text entry. With an
EditText view, you can provide an onscreen keyboard or let the user choose the physical
keyboard (if the device provides one) to enter input.

Creating an EditText view

In Chapter 10, you created a view layout XML file, named fragment task edit.xml, that
contained these lines of code:
<EditText
android:id="@+id/title"

android:layout width="match parent"
android:layout height="wrap content"

ér;d.roid:hint="@string/title"/>
The snippet creates an input mechanism on the screen where the user can type a task title. The
EditText view spans the width of the screen and occupies only as much height as it needs.
When the view is selected, Android automatically opens the onscreen keyboard to allow user

input. And when the EditText is empty, it displays a hint to the user describing what it’s for; in
this case, the hint text is “Title”.

The previous example takes a minimalistic approach, compared to the following EditText
example, which is also present in the fragment task edit.xml layout file:
<EditText
android:id="@+id/notes"

android:layout width="match parent"
android:layout height="wrap content"

android:gravity="top"

android:hint="@string/notes"
android:minLines="5"/>

This code creates the body description text of the task. The layout width and height are the same as
inthe EditText view inthe previous example. These three properties outline the differences in
this EditText definition:

» minLines: Specifies the height of the EditText view. Because the EditText view is a
subclass of the TextView object, they share this property. This code specifies a minimum of
five lines for the EditText object onscreen so that the view resembles a text input
mechanism for long messages.

oF

Compare this view to the body portion of any email client, and you can see that they’re
much the same — the body is much larger than the subject. In this case, the body is much larger
than the title.

1 gravity: The default gravity of an EditText aligns text to the middle of the view when
the user places focus into the field, though it isn’t what users would expect when they work
with a multiline input mechanism. To position the cursor at the top of the EditText view, as
users might expect, you must set the gravity of the EditText view to top, to force the text to
gravitate to the top of the EditText input as shown on the right in Figure 12-1.

Figure 1211: An EditText view, with gravity set to center (left) and top (right).

Displaying an onscreen keyboard
The EditText view is responsible for the onscreen keyboard display. Because most devices
have no physical keyboard, an onscreen keyboard must be present for interaction with the input

mechanisms. One property that the EditText view provides is a way to manipulate the visual
aspect of the onscreen keyboard.

You adjust the onscreen keyboard because different EditText input types might need different
keys. For example, ifthe EditText is a phone number, the onscreen keyboard should display
only numbers. If the EditText value is an email address, however, the onscreen keyboard
should display common email style attributes — such as the at (@) symbol.

JUNBER

%/ (Configuring the onscreen keyboard properly can significantly increase the usability of
your application.

You can configure the way the onscreen keyboard looks by using the i nputType property on the
EditText view. For example, if you set android: inputType="number" on the body
EditText, the keyboard displays number keys rather than letter keys, as shown in Figure 12-2.

5554:AVD_for_Nexus_5_by_Google
* %Y

N
O 0o U1 N
@)

Figure 1212: Keyboard customized for number entry.

The inputType attribute has too many options to cover in this book, but you can examine the
full list at

http: d.android.com/reference/android/widget Textview.html#attr_android:inDutT

Getting Choosy with Dates and Times

A Task Reminder application without a way to set the date and time is a poor Task Reminder
application — it would be only a simple task list application.

If you’ve programmed dates and times in another programming language, you realize that building
a mechanism for a user to enter the date and time can be a painstaking process. The Android

http://d.android.com/reference/android/widget/TextView.html#attr_android:inputType

platform comes to your rescue by providing two classes to assist you: DatePicker and

TimePicke
selects a date

r. These pickers also provide builtlin classes for opening a dialog where the user
and time. Therefore, you can either embed the DatePicker or TimePicker into

your application’s views or use the DialogFragment classes.

Creating picker buttons
The fragment task edit.xml file contains two TextViews to help show the

DatePicke

r and TimePicker (under the EditText definitions described earlier). You can

see these two buttons in Listing 12-1 .

Listing 1211: The Date and Time TextViews

<!-- The time button. -->

<TextView
style="@android:style/TextAppearance.Medium"
android:id="@+id/task time"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout below="@id/title"
android:layout alignEnd="@id/title"
android:layout marginEnd="3dp"/>

<!-- The date button. -->

<TextView
style="@android:style/TextAppearance.Medium"
android:id="@+id/task date"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout toStartOf="@id/task time"
android:layout alignBottom="@id/task time"
android:layout marginEnd="10dp"/>

You already added these buttons to your layout in Chapter 10. See that chapter for a description of

what this code does.

Date and time pickers

Every task in your app should have an associated date and time, which can be used to set
reminders for the user at a future date. As noted in the previous section, you already have two
TextViews that represent the task’s date and time. All that remains is to

1 Show the task’s date and time.
1 Create picker dialogs that display the date and time.

1 Hook up the dialogs to the TaskEditFragment to let the user change the date and time.

Showing the task’s date and time
Open TaskEditFragment and add the lines in bold:

public class TaskEditFragment extends Fragment {

// Constants for saving instance state
static final String TASK ID = "taskId";

static final String TASK DATE AND TIME = "taskDateAndTime"

// Views

; -6

View rootView;

EditText titleText;
EditText notesText;
ImageView imageView;
TextView dateButton; -13
TextView timeButton;

// Some information about this task that we'll store here until we
// save it to the database

long taskId;

Calendar taskDateAndTime; -19

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// If we're restoring state from a previous activity, restore the
// previous date as well
if (savedInstanceState != null) {
taskId = savedInstanceState.getLong (TASK ID);
taskDateAndTime = -29
(Calendar) savedInstanceState.getSerializable
(TASK _DATE AND TIME) ;

// If we didn’t have a previous date, use "now"
if (taskDateAndTime == null) { -35
taskDateAndTime = Calendar.getInstance() ;

}

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {

// From the layout, get a few views that we're going to work with
rootView = v.getRootView () ;

titleText = (EditText) v.findViewById(R.id.title);
notesText = (EditText) v.findViewById(R.id.notes) ;
imageView = (ImageView) v.findViewById (R.id.image) ;

dateButton = (TextView) v.findViewById(R.id.task_date); -53
timeButton = (TextView) v.findViewById(R.id.task_time) ;

updateDateAndTimeButtons () ; —58

return v;

@Override
public void onSaveInstanceState (Bundle outState) {
super.onSavelnstanceState (outState) ;

// These two fields may have changed while our activity was

// running, so make sure we save them to our outState bundle so

// we can restore them later in onCreate.
outState.putLong (TASK ID, taskId);
outState.putSerializable (TASK DATE AND TIME, taskDateAndTime); -71

/**
* Call this method whenever the task’s date/time has changed and
* we need to update our date and time buttons.

*/

private void updateDateAndTimeButtons () {
// Set the time button text
DateFormat timeFormat = —80
DateFormat.getTimeInstance (DateFormat.SHORT) ;
String timeForButton = timeFormat.format (
taskDateAndTime.getTime ()) ;
timeButton.setText (timeForButton) ;

// Set the date button text

DateFormat dateFormat = DateFormat.getDatelInstance(); —87

String dateForButton = dateFormat.format (
taskDateAndTime.getTime ()) ;

dateButton.setText (dateForButton) ;

}

Now if you run the app, you will see that each edit page has a date and time appear underneath the
title. Here’s an explanation of what the additions in the previous code do:

— 6 Much like you needed to create a constant string to name the taskId data when it’s
saved in onSaveInstanceState, youdo the same here for the date and time
information.

Saving field names in Android

Android activities and fragments aren’t like standard Java objects, where you can store information in a field in the object
and expect it always to be there. Normally in Java, if a person object is set to the name "Michael", you can expect
that name to always be "Michael", but surprisingly this isn’t always the case in Android.

Unlike in Java, Android can destroy activities and fragments at any time. These elements can also be relcreated later —
and a relcreated activity needs to look indistinguishable from one that was never destroyed and relcreated. Android
reserves the right to destroy objects when memory is running low, but it retains the ability to relcreate them later, to offer
the user a seamless experience.

If you store the string "Michael" in a field named name, that field isn't saved automatically if the activity or fragment is
destroyed and relcreated. You have to save the field manually, by storing it in a bundle in onSaveInstanceState ()
and restoring it from the savedInstanceState bundle in onCreate ().

Remember: Anytime you add a field to an activity or a fragment, you must add the appropriate code to the
onSavedInstanceState () and onCreate () methods to save it and restore it — otherwise, your app will behave
strangely in some circumstances but not in others.

— 13 Creates two TextViews, one for the date of the task and one for the time. You
will make each one individually clickable later in the chapter so that the user can set them.

— 19 The taskDateAndTime field stores both the date and the time for the task.
Remember: Because this is a new field that may be changed, you must remember to save it in
onSaveInstanceState and restore itin onCreate!

— 29 When the activity is created, check and see if there was already a date and time
saved for it. If there was, then read it out of the savedInstanceState bundle and save
itto taskDateAndTime.

— 35 Ifthere wasn’t a previous value set for the date and time, then just use the current
time.

— 53 Finds the date and time TextViews from the layout.

o

— 58 Atthe end of onCreate, call updateDateAndTimeButtonsto...you
guessed it, update the date and time buttons. You will end up calling this method a few times
later, whenever the user changes the values of the date and time.

— 71 If Android is shutting down this activity and asking you to save your instance state,
then make sure to save the taskDateAndTime to the out State bundle. Calendar
objects can be serialized (stored as data), so this line uses the putSerializable ()
method to save them.

Find out more information about Java serialization at

http: java.sun.com/developer/technicalArticles/Programming/serialization.

Youc

an save all kinds of other types into bundles, such as ints, longs, strings, parcelables, and

other exotic elements, so check

http:

d.android.com/reference/android/os/Bundle.html to see the full list.

Crea

— 80 Updates the time button text. First, get a Time formatter by calling
DateFormat.getTimeInstance (DateFormat.SHORT), which will return times
suchas "5:45 PM" inthe United States (but different formats in other locales). Then call
format on this formatter to format the taskDateAndTime. Finally, update the
timeButton with the string returned by the formatter.

— 87 Updates the date button text. This is the same as the code for the time formatter, but
ituses getDateInstance rather than getTimeInstance. Because we didn’t specify
a type of format to the getDateInstance call, it will use the default, which evaluates to
strings like "Jan 19, 2038" inthe United States.

ting date and time pickers

Android has builtlin date picker and time picker dialogs that you may use to let users pick dates
and times. They require a little bit of massaging to work in recent versions of Android, so here is
how you use them.

First,

create a file in the com/dummies/tasks/fragment directory named

DatePickerDialogFragment.java. The DatePickerDialogFragment will be a
reusable dialog fragment that “wraps” a standard Android DatePickerDialog.

In the

/**

*

*

=
pub

file, put the following code:

A lightweight wrapper for a DatePickerDialog that wraps the dialog
in a fragment.

lic class DatePickerDialogFragment extends DialogFragment { -5
static final String YEAR = "year"; -6

static final String MONTH = "month";

static final String DAY = "day";

public static DatePickerDialogFragment newInstance (—10
Calendar date) {
DatePickerDialogFragment fragment =
new DatePickerDialogFragment () ;

http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://d.android.com/reference/android/os/Bundle.html%20

Bundle args = new Bundle();

args.putInt (YEAR, date.get (Calendar.YEAR))
args.putInt (MONTH, date.get (Calendar.MONTH)) ;
args.putInt (DAY, date.get (Calendar.DAY OF MONTH)) ;
fragment.setArguments (args) ;

return fragment;

}

@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {

OnDateSetListener callback = (OnDateSetListener) —27
getFragmentManager ()
.findFragmentByTag
(TaskEditFragment
.DEFAULT FRAGMENT TAG) ;

Bundle args = getArguments(); —33

return new DatePickerDialog(getActivity (), callback,
args.getInt (YEAR),
args.getInt (MONTH) ,
args.getInt (DAY)) ;

}
Here’s what the code does:

— 5 Every dialog that you use in your app should extend DialogFragment. For more
information about DialogFragment, visit

http: d.android.com/reference/android/app/DialogFragment.html.

— 6 The constant strings that will be used in this class to read and write the year, month,
and day in bundles.

— 10 Creates a newInstance method like you created for the TaskEditFragment
earlier in this chapter. The newInstance method knows how to construct an instance of
the date picker for a given date. First, it constructs a new
DatePickerDialogFragment. Then, it constructs the bundle of parameters containing
the year, month, and day, which the DatePickerDialogFragment will use to create a
dialog showing that date.

— 27 Finds the TaskEditFragment that created this dialog by name. You’ll use that
fragment as the edit callback, so that when the user chooses a new date inthe DatePicker
dialog, the dialog calls back into the edit fragment to set the new date.

— 33 Constructs a new DatePicker dialog that is hosted by this fragment. It sets its
Year, Month, and Day to the values specified in the args bundle.

Next, you do the same thing but for the TimePickerDialogFragment. Create
TimePickerDialogFragment.java incom/dummies/tasks/fragment, and add
the following code:

/**
* A lightweight wrapper for a TimePickerDialog that wraps the dialog
* in a fragment.
*/
public class TimePickerDialogFragment extends DialogFragment {
static final String HOUR "hour";
static final String MINS "mins";

http://d.android.com/reference/android/app/DialogFragment.html

public static TimePickerDialogFragment newInstance (
Calendar time) {

TimePickerDialogFragment fragment =
new TimePickerDialogFragment () ;

Bundle args = new Bundle();

args.putInt (HOUR, time.get (Calendar.HOUR OF DAY)) ;
args.putInt (MINS, time.get (Calendar.MINUTE)) ;
fragment.setArguments (args) ;

return fragment;

}

@QOverride
public Dialog onCreateDialog(Bundle savedInstanceState) {
OnTimeSetListener listener = (OnTimeSetListener)
getFragmentManager ()
.findFragmentByTag (
TaskEditFragment
o DEFAULTiFRAGMENTiTAG) 8
Bundle args = getArguments() ;
return new TimePickerDialog(getActivity (), listener,
args.getInt (HOUR) ,
args.getInt (MINS), false);

}

This code is basically identical to the DatePickerDialogFragment inthe previous listing,
but this one is for time rather than for dates.

gﬁﬁafﬂ

1 Wﬁ
@/ Sometimes you may need to use savedInstanceState to restore the state from
previous instances. However, in this case, the dialog already does it for you, so you can
safely ignore savedInstanceState in this method.

Hooking up the date and time pickers to the fragment

Now modify the TaskEditFragment to open the date and time pickers when the date or time
is clicked.

Edit TaskEditFragment. java and add the code in bold:

public class TaskEditFragment extends Fragment ({

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {

updateDateAndTimeButtons () ;

// Tell the date and time buttons what to do when we click on
// them.
dateButton.setOnClickListener (-15
new View.OnClickListener() ({
@Override
public void onClick (View v) {
showDatePicker () ;
}
b

timeButton.setOnClickListener (

new View.OnClickListener () {
@Override
public void onClick (View v) {
showTimePicker () ;
}
});

return v;

/**
* A helper method to show our Date picker
*/
private void showDatePicker () {
// Create a fragment transaction
FragmentTransaction ft = getFragmentManager () .beginTransaction() -40

DatePickerDialogFragment newFragment = -42
DatePickerDialogFragment.newInstance (taskDateAndTime) ;

newFragment.show (ft, "datePicker"); -45
}

private void showTimePicker() { -48
// Create a fragment transaction
FragmentTransaction ft = getFragmentManager () .beginTransaction() ;

TimePickerDialogFragment fragment = 52
TimePickerDialogFragment.newInstance (taskDateAndTime) ;

fragment.show(ft, "timePicker"); -55

}
This code adds two methods: showDatePicker and showTimePicker. It also calls those

two methods from inside OnClickIListeners that are attached to the date and time text views.
Here are some more details:

— 15 Creates an OnClickListener and attaches it to the dateButton. When
clicked, the OnClickListener will call showDatePicker, which is defined on line
40. The same thing is next done for the t imeButton.

— 40 The showDatePicker method does three things. First, it begins a fragment
transaction using the FragmentManager, just like you did earlier in the chapter inside
TaskEditActivity. Then...

— 42 ... itcreates the DatePickerDialogFragment and initializes it with the
appropriate values.

— 45 Show the dialog, and name it datePicker. By naming it, Android can
automatically manage its state for you if it needs to be killed and relcreated.

— 48 The showTimePicker method does the same thing that showDatePicker
did, except for times rather than dates.

— 52 Creates the TimePickerDialogFragment and initializes it with the
appropriate values.

— 55 Shows the dialog, and names it t imePicker. By naming it, Android can
automatically manage its state for you if the dialog needs to be killed and relcreated.

In theory, you should now be able to run the app and click on a date or time to see the picker
dialogs. However, there’s a bug in the code. The app will crash because the pickers have no way
to return the value that the user picks to the TaskEditFragment. If the user selects a new date
or time, how does the TaskEditFragment know?

The answer is to have TaskEditFragment implement OnDateSetListener and
OnTimeSetListener.

Edit TaskEditFragment and make the following changes:

public class TaskEditFragment extends Fragment
implements DatePickerDialog.OnDateSetListener,
TimePickerDialog.OnTimeSetListener

/**
* This is the method that our DatePicker dialog will call when
* the user picks a date in the dialog.
*/
@Override
public void onDateSet (DatePicker view, int year, int monthOfYear,
int dayOfMonth) ({
taskDateAndTime.set (Calendar.YEAR, year);
taskDateAndTime. set (Calendar .MONTH, monthOfYear) ;
taskDateAndTime.set (Calendar.DAY OF MONTH, dayOfMonth) ;
updateDateAndTimeButtons () ;
}

/**
* This is the method that our TimePicker dialog will call when
* the user picks a time in the dialog.
*/
@QOverride
public void onTimeSet (TimePicker view, int hour, int minute) ({
taskDateAndTime.set (Calendar.HOUR OF DAY, hour);
taskDateAndTime.set (Calendar .MINUTE, minute) ;
updateDateAndTimeButtons () ;

}

These two methods are callbacks. When the user chooses a new date or time in the picker dialogs,
the dialogs call back to the fragment named DEFAULT FRAGMENT TAG (see line 27 of
DatePickerDialogFragment), inthis case the TaskEditFragment, and call
onDateSet or onTimeSet as appropriate.

The onDateSet method then sets the year, month, and day of taskDateAndTime, and calls
updateDateAndTimeButtons. The onTimeSet method does the same, except for the
time.

Try running your app! You should now be able to click any date or time, choose a new date or
time, and watch that date and time update when you return to the TaskEditFragment. You
should see something like Figure 12-3.

.‘ SES4-AVD Tor Mo B BAE4AND_for_MNaxus_5_by_Googie

S554AND_Tor_MNexus_5_by_Googhe

Figure 1213: The Edit page showing date and time (left), the date picker (middle), and the time picker (right).

2

If you leave the TaskEditActivity and return to it later, you may wonder why the
date and time don’t remember the values you set. This is because you have not yet
implemented the database to store all these values. You will do that in Chapter 13.

Creating an Alert Dialog

From time to time it may be necessary to alert the user to something that has happened. In the Tasks
app, perhaps you want to display a welcome message and offer instructions on how to create a
task. The Android system has a framework built around dialogs that provide you with the
implementation you may need.

Various types of dialogs are available:

1 Alert: Notifies the user of an important occurrence. Also allows you to set the text value of a
button and the action to be performed when it’s clicked. As a developer, you can provide the
AlertDialog with a list of items to display, from which the user can make a selection. You

used an AlertDialog in Chapter 11 to confirm whether the user wanted to delete a task or
not.

1 Custom: A custom dialog created and programmed by you, the master Android developer.

You create a custom dialog class by extending the Dialog base class or using custom layout
XML files.

Seeing why you should work with dialogs
If you’ve never worked with an application that failed to alert you, or warn you appropriately,
consider the example of an email client not notifying you that you have new email. How annoying

would that be? Alerting users to important issues or choices that need to be made is an integral
part of any user experience.

This list gives a few examples of using a dialog to inform the user of a message or a necessary
action:

1 The user is trying to input some data that is invalid.
1 The network has become unavailable.
1 The user needs to select a date or time (as in the Tasks app).

1 The state of the phone 1s incompatible with the application. (It might need to have GPS
enabled or an SD card added, for example.)

1 The user needs to choose from a list of items.
Though this list isn’t comprehensive, it gives you an idea into what is possible with dialogs.

Choosing the appropriate dialog for a task
Though you determine which dialog to use for a given scenario, you can ask a logical series of
questions to choose the appropriate one:

1. Does the user need to be able to perform an advanced action in the dialog?
An advanced action isn’t supported by the AlertDialog class.
e Yes: Create a custom Dialog class by extending the Dialog base class or creating
one from a custom layout XML file. You can find more information about custom
dialogs at

http: developer.android.com/guide/topics/ui/dialogs.html#CustomlLavou:

e No: Continue to Step 2.

2. Does the user need to answer a question such as “Are you sure?” with a Yes or No
value?

e Yes: Create an AlertDialog and react to the buttons onthe AlertDialog by
using onClickListener () calls.

e No: Continue to Step 3.
3. Does the user need to make a selection from a simple list of items?
o Yes: Create anAlertDialog.
e No: Continue to Step 4.
4. Does the user simply need to be alerted?
e Yes: Create a simple AlertDialog.

e No: Youmay not need a dialog if you can notify the user another way.

Creating your own alert dialog

http://developer.android.com/guide/topics/ui/dialogs.html#CustomLayout

At times, you need to notify the user of important information by presenting a dialog. Android
makes it quite simple with its introduction of the AlertDialog.Builder class, which lets
you easily create an AlertDialog with various options and buttons. Your app can react to
these button clicks via the onClickListener () of each button.

Youused the AlertDialog.Builder in Chapter 11. Listing 12-2 shows another example of
how to create one, this time usinga DialogFragment.

B ER
S
&

",

|
@ Dialogs should always use DialogFragment in Android apps. Refer to Chapter 11 for
more details.

Suppose that the user has tapped the Save button in the Tasks application, and you want to open a
window (similar to the one in Figure 12-4) so that the user can confirm.

Are you sure?

Are you sure you want to save the
task?

Figure 1214: A hypothetical confirmation AlertDialog.

In Listing 12-2, you create an AlertDialog object using the AlertDialog.Builder class
and then add an AlertDialogFragment (which works similarly to
DatePickerDialogFragment and TimePickerDialogFragment).

Listing 12J2: Creating an AlertDialogFragment with the
lertDialog.Builder Class

public class AlertDialogFragment extends DialogFragment {
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
AlertDialog.Builder builder
= new AlertDialog.Builder (getActivity()); -5
builder.setMessage ("Are you sure you want to save the task?") -6
.setTitle ("Are you sure?") -7
.setCancelable (false) -8
.setPositiveButton ("Yes", -9
new DialogInterface.OnClickListener() { -10
public void onClick(DialogInterface dialog, int id) {
// Perform some action such as saving the item -12

}

})

.setNegativeButton ("No", new DialogInterface.OnClickListener () -15
public void onClick(DialogInterface dialog, int id) {
dialog.cancel (); -17

}
Fy:
return builder.create(); -20

}
}

The code 1s explained in this list:

— 5 Setsup the AlertDialog.Builder class with the context of the
AlertDialog.Builder as the current running activity.

— 6 Specifies the message to show in the middle of the AlertDialog (as shown in
Figure 12-4). The value can be a string or a string resource.

— 7 Sets the title of the AlertDialog. The value can be a string or a string resource.

— 8 Sets the cancelable attribute to false, requiring the user to select a button in the
AlertDialog. Ifthis flagis setto false, the user cannot tap the Back button on the
device to exitthe AlertDialog. Setitto true and the user can tap the Back button.

— 9 Specifies the text on the positive button. The user clicks the Yes button to perform the
action indicated on line 10. This value can be a string or a string resource.

— 10 A block of code (ending on line 12) that defines the onClickListener () for
the Yes button. The code on line 12 executes when the button 1s tapped.

— 15 Specifies the text on the negative button. This button indicates that the user doesn’t
want to perform the action being requested via AlertDialog. The text value of this button
is set to No. It can be a string or a string resource.

— 17 Sets the onClickListener () for the negative button. The listener provides a
reference to the dialog that’s being shown. It’s called the cancel () method on the
Dialog object to close the dialog when the user clicks No onthe AlertDialog.

— 20 Notifies Android to create the AlertDialog via the create () method.
To show the dialog, you start a fragment transaction in the usual manner:

FragmentTransaction ft = getFragmentManager () .beginTransaction() ;
DialogFragment newFragment = new AlertDialogFragment () ;
newFragment.show (ft, "alertDialog");

4P

Creating a dialog with the AlertDialog.Builder class is easier than having to
derive your own Dialog class. If possible, create your dialog with the
AlertDialog.Builder class because it gives your application a consistent user
experience that’s familiar to most Android users.

When the user taps the Save button (or whatever button the code is attached to), an
AlertDialog opens so that the user can confirm saving the task. This data most likely is stored
in a database, as covered in Chapter 13.

You can find helpful examples of using other options on the Dialog class at

http: d.android.com/guide/topics/ui/dialogs.html.

Validating Input
What happens when the user enters invalid text or no text? Input validation now enters the picture.

Input validation verifies the input before the save takes place. If a user enters no text for the title
or the message and attempts to save, should she be allowed to? Of course not.

The method in which you provide validation to the user 1s up to you. Here are some common
methods:

»* EditText.setError (): If you detect that the user has tried to enter invalid text in a field,
simply call setError () and pass the error message. Android then decorates EditText
with an error icon and displays an error message. The message stays onscreen until the user
changes the value of the field or until you call setError (null).

1 TextWatcher: Implement a TextWatcher onthe EditText view. This class provides
callbacks to you every time the text changes in the EditText view. Therefore, you can
inspect the text on each keystroke.

1 On Save: When the user attempts to save a form, inspect all the form fields at that time and
inform the user of any issues that were found.

1 onFocusChanged () : Inspect the values of the form when the onFocusChanged ()
event 1s called — which is called when the view has focus and when it loses focus. This 1s
usually a good place to set up validation.

The Task application provides no input validation. However, you can add validation via one or
more of the methods described.

Toasting the user

The most common way to inform the user of a potential problem, such as an error in input value, is
to display a Toast message. This type of message appears onscreen for only a few seconds by
default.

Providing a Toast message is as simple as implementing the following code, where you inform
the user of the input error:

Toast.makeText (getActivity (), "Title must be filled in", Toast.LENGTH SHORT) .show () ;

You might show this message when the user fails to enter a title in the title field and then clicks the
Save button.

F

The only problem with a Toast message is that it’s shortllived by default. A user who
happens to glance away at the wrong time will likely miss seeing it. You can configure your

http://d.android.com/guide/topics/ui/dialogs.html

Toast messages to appear longer by using Toast . LENGTH LONG rather than
Toast.LENGTH SHORT, but remember that it still disappears after a slightly longer time.
Use a dialog rather than a Toast for critical messages that you need to be sure a user sees.

Using other validation techniques
A Toast message isn’t the only way to inform users of a problem with their input. A few other

popular validation techniques are described in this list:

1 AlertDialog : Create an instance of an AlertDialog that informs the user of errors.
This method ensures that the user sees the error message because the alert must be either

canceled or accepted.

1 Inputlfield highlighting: If the field is invalid, the background color of the input field (the
EditText view) can change to indicate that the value is incorrect.

1 Custom validation: If you’re feeling adventurous, you can create a custom validation library
to handle validations of all sorts. It might highlight the field and draw small views with arrows
pointing to the error, for example, similar to the Google validation of its signlin window when

you log on to a device for the first time.

You can use these common methods to display input validation information, or you can dream up

new ways to inform users of errors. For example, Chapter 9 mentions the
NotificationManager, which you can use to inform users of a problem with a background

service in the status bar.

Chapter 13
Getting Persistent with Data Storage

In This Chapter
Discovering data storage
Creating an SQLite database
Querying your database

Using loaders and adapters

In certain types of applications, Android requires application developers to use data persistence,
where information about a user’s preferences, such as favorite background colors or radio
stations, 1s saved on the device for reuse later, after the device is turned off and then on again. For
example, the Tasks application wouldn’t be useful if it didn’t save tasks, would i1t? Thankfully, the
Android platform provides a robust set of tools that you can use to store user data.

This chapter delves deeply into creating and updating an SQLite database and producing a
ContentProvider to access it. You need to be familiar with a certain level of database theory
to tackle the data storage tasks in this chapter.

o8

If you’re unfamiliar with SQL (Structured Query Language) or the SQL database, see the
SQLite website at www.sglite.org for more information.

This chapter is code intensive — if you start feeling lost, you can download the completed
application source code from this book’s website.

Finding Places to Put Data

Depending on the requirements of your application, you may need to store data in a variety of
places. For example, if an application interacts with music files and a user wants to play them in
more than one music program, you have to store them in a location where all applications can
access them. An application that needs to store sensitive data, such as encrypted usernames and
password details, shouldn’t share data — placing it in a secure, local storage environment is the
best strategy. Regardless of your situation, Android provides various options for storing data.

Viewing your storage options
The Android ecosystem provides various locations where data can be persisted:

1 Shared preferences: Private data stored in keylvalue pairs. (See Chapter 15 to find out how
to handle shared preferences.)

http://www.sqlite.org

+ Internal storage: A location for saving files on the device. Files stored in internal storage are
private to your application by default, and other applications cannot access them. (Neither can
the user, except by using your application.) When the application is uninstalled, the private
files are deleted as well.

1 Local cache: The internal data directory for caching data rather than storing it persistently.
Cached files may be deleted at any time. You use the getCacheDir () method, available on
the Activity or Context objects in Android.

HMBER

)

B/ If you store data in an internal data directory and the internal storage space begins to
run low, Android may delete files to reclaim space. Don’t rely on Android to delete your files
for you though! You should delete your cache files yourself to stay within a reasonable limit
(for example, around 1MB) of space consumed in the cache directory.

1 External storage: Every Android device supports shared external storage for files — either
removable storage, such as a Secure Digital card (SD card) or nonlremovable storage. Files
saved to external storage are public (any person or application can alter them), and no level of
security is enforced. Users can modify files by either using a file manager application or
connecting the device to a computer via a USB cable and mounting the device as external
storage. Before you work with external storage, check the current state of the external storage
with the Environment object, using a call to getExternalStorageState () to
check whether the media is available.

The main method is a call onthe Context object— getExternalFilesDir (). This
call takes a string parameter as a key to help define the type of media you’re saving, such as
ringtones, music, or photos. For more information, view the external data storage examples
and documents at http://d.android.com/gquide/topics/data/datal

storage.html#filesExternal.

1 SQLite database: A lightweight SQL database implementation that’s available across
various platforms (including Android, iPhone, Windows, Linux, and Mac) and fully supported
by Android. You can create tables and perform SQL queries against the tables accordingly.
You implement an SQLite database in this chapter to handle the persistence of the tasks in the
Tasks application.

1 Content provider: A “wrapper” around another storage mechanism. A content provider is
used by an app to read and write application data that can be stored in preferences, files, or
SQLite databases, for example. ContentProviders are smart in that they also keep track
of when your data is modified, and automatically notify any listeners to changes. In this
chapter, you will implement a ContentProvider to wrap your database access.

1 Network connection: (Also known as remote storage.) Any remote data source that you have
access to. For example, because Flickr exposes an API that allows you to store images on its
servers, your application might work with Flickr to store images. If your application works
with a popular tool on the Internet (such as Twitter, Facebook, or Basecamp), your app might
send information via HTTP — or any other protocol you deem necessary — to thirdlparty

http://d.android.com/guide/topics/data/data-storage.html#filesExternal

APIs to store the data.

1 Storage Access Framework: The SAF makes it simple for users to browse and open
documents, images, and other files across all their preferred document storage providers. A
standard, easyltoluse Ul lets users browse files and access recents in a consistent way across
apps and providers. For example, you can use the SAF to provide access to a remote cloud
storage provider for documents.

Choosing a storage option
The various data storage locations offer quite the palette of options. However, you have to figure
out which one to use, and you may even want to use multiple storage mechanisms.

Suppose that your application communicates with a thirdlparty remote API such as Twitter, and
network communication is slow and less than 100 percent reliable. You may want to retain a local
copy of all data since the last update from the server, to allow the application to remain usable (in
some fashion) until the next update. When you store the data in a local copy of an SQLite database
and the user initiates an update, the new updates refresh the SQLite database with the new data.

o

If your application relies solely on network communication for information retrieval and
storage, use the SQLite database (or any other storage mechanism) to make the application
remain usable when the user cannot connect to a network and must work offline — a common
occurrence. If your application doesn’t function when a network connection is unavailable,
you’ll likely receive negative reviews in the Google Play Store — as well as feature requests
to make your app work offline. This strategy introduces quite a bit of extra work into the
application development process, but it’s worth your time tenfold in user experience.

Understanding How the SQLite
ContentProvider Works

The two fragments in the Tasks application need to perform various duties to operate.
TaskEditFragment needs to complete these steps:

1. Create a new record.
2. Read a record so that it can display the details for editing.
3. Update the existing record.

The TaskListFragment needs to perform these duties:

1. Read all tasks to show them onscreen.

2. Delete a task by responding to the click event from the context menu after a user has
longlpressed an item.

To work with an SQLite database, you communicate with the database via a
ContentProvider. Programmers commonly remove as much of the database communication
as possible fromthe Activity and Fragment objects. The database mechanisms are placed
into a ContentProvider to help separate the application into layers of functionality.
Therefore, if you need to alter code that affects the database, you know that you need to change the
code in only one location to do so.

Creating Your Application’s SQLite Database

The first step to creating a new SQLite database ContentProvider is to create the SQLite
database that it will use.

Visualizing the SQL table

The table in SQL is what holds the data you manage. Visualizing a table in SQLite is similar to
looking at a spreadsheet: Each row consists of data, and each column represents the data inside the
row. Listing 13-1 defines column names for the database. These column names equate to the
header values in a spreadsheet, as shown in Figure 13-1. Each row contains a value for each
column, which is how data is stored in SQLite.

Tasks
_id | title notes date_time
1 Collect underpants Obviously. 1/23/16 10:00AM
2 Details TBD, check 1/30/16 12:30PM
with Cartman
3 | PROFIT! 1/30/16 12:31PM

Figure 1311: Visualizing data in the Tasks application.

The SQL script to create a table like the one in the previous figure is shown in Listing 13-1 :

Listing 13I1: Creating an SQL Database Table

create table tasks (-1
_1d integer primary key autoincrement, -2
title text not null, -3

notes text not null, -4

task date time integer not null); -5

Getting into the details about SQL is beyond the scope of the book, but here’s a brief synopsis
about what this SQL script does:

— 1 Creates a table named tasks.

— 2 Adds a primary key to that table named 1id. Android assumes that the id field for
every table begins with an underscore.

— 3 Adds a nonlnull field named tit1le to the table. This field can be any length.
— 4 Adds a nonlnull notes field.

— 5 Adds a date/time field to the table. In this table, the date/time is stored as an
integer.

F

For more information on dates and times in SQLite, visit
www.sglite.org/datatype3.html.

Creating the database table

Android apps create SQLite databases using an SQLiteOpenHelper. Because this database is
going to be used exclusively froma ContentProvider, you're going to create an
SQLiteOpenHelper class nested inside a ContentProvider.

Create a new class named TaskProvider in the directory
com/dummies/tasks/provider. Add the following code to it:

public class TaskProvider extends ContentProvider { -1

// Database Columns -3

public static final String COLUMN TASKID = " id";
public static final String COLUMN DATE TIME = "task date time";
public static final String COLUMN NOTES = "notes";
public static final String COLUMN TITLE = "title";

// Database Related Constants -9

private static final int DATABASE VERSION = 1; -10
private static final String DATABASE NAME = "data"; -11
private static final String DATABASE TABLE = "tasks"; -12

// The database itself
SQLiteDatabase db; —-15

@Override -18
public boolean onCreate () {
// Grab a connection to our database
db = new DatabaseHelper (getContext ()) .getWritableDatabase(); -21

return true;

/‘k*
* A helper class which knows how to create and update our database.
*/

protected static class DatabaseHelper extends SQLiteOpenHelper ({

static final String DATABASE CREATE = -30
"create table " + DATABASE TABLE + " (" +
COLUMN TASKID + " integer primary key autoincrement, " +
COLUMN TITLE + " text not null, " +
COLUMN NOTES + " text not null, " +
COLUMN DATE TIME + " integer not null);";

http://www.sqlite.org/datatype3.html%23datetime

DatabaseHelper (Context context) {
super (context, DATABASE NAME, null, DATABASE VERSION); -39
}

@Override —42

public void onCreate (SQLiteDatabase db) {
db.execSQL (DATABASE_CREATE) 8

}

@Override —48
public void onUpgrade (SQLiteDatabase db, int oldVersion,
int newVersion) {

throw new UnsupportedOperationException(); —51

}
}

The numbered lines are described in this list:

— 1 A ContentProvider that knows how to read and write tasks from your tasks
database. For now, it’s practically empty. The only thing it does is create a database using a
SQLiteOpenHelper.

— 3 The names of the various columns in the Task table. These correspond to the columns

in Listing 13-1 and Figure 13-1. These column names are going to be needed outside of this
class, so make them public.

— 9 Various databaselrelated constants. These constants will not be needed outside this
class, so they are private.

— 10 The version number for this database. Because it’s the first version, give it a
version of 1. Whenever you change the database, increment this number by one so that
Android knows that the database has changed. This allows you to know whether you need to
upgrade the database schema in onUpgrade on line 48 (an advanced topic outside of the
scope of this book).

— 11 The database name. This is the name of the file on the file system.
— 12 The name of the database table. This table is named "tasks™".

— 15 The database object that will be created in onCreate using your
SQLiteOpenHelper below. This is the object that your ContentProvider will use
to read and write from your database.

— 18 This method is called when the ContentProvider is created. This is usually
done once on app startup.

— 21 Creates the database object by using a DatabaseHelper. First you create a new
DatabaseHelper, passing in the current context. Then, you call
getWritableDatabase (). Some apps might want to use

getReadableDatabase () instead, but because this app 1s reading and writing, it needs

a writable database.
— 30 The database creation script from Listing 13-1.

— 39 The constructor for the database helper. It must call the super’s constructor, and
pass in the current context, the database name, an optional CursorFactory for advanced
usages, and the version of the database.

— 42 This method is called when the app is first installed and no database has yet been
created. This 1s where the magic happens and your database creation SQL script is executed.

— 48 This method will be called in the future when version 2.0 of the Tasks app is
released. At that point, you’ll need to upgrade the database from version 1.0 to version 2.0.
For now, there’s nothing you need to do here.

— 51 Because this method will never be called (because there was no version 0 of the
database before version 1), just throw an UnsupportedOperationException here.
You will need to change this code before you release version 2 of the database.

o

Upgrading your database

Suppose that you release your application and 10,000 users install it and are using it — and they love it! Some even
send you feature requests, so you implement one that requires a change in the database schema. You then perform
SQL ALTER statements inside the onUpgrade () call to update your database. If you were lazy, you could upgrade the
database by “dropping” the existing one and then creating a new one. But you don’t want to do this — dropping a
database deletes all the user’s data. Imagine updating your favorite Tasks application, only to see that the upgrade has
erased all preexisting tasks (a major bug).

Using ContentProvider URIs

Now that you’ve created the basic SQLite table, you need to start providing all the methods you’ll
need to read and write from that table using your ContentProvider. But first, you need to
understand how ContentProviders use URIs.

An Android ContentProvider uses URIs to identify data. Typically, you can use a URI to
identify a specific piece of data, such as a single task, or all the tasks in your database. If you store
other types of data there, you can use URIs for them, too.

In your application, you use two kinds of URIs —
content://com.dummies.tasks.provider.TaskProvider/task toretrieve a
list of all tasks in your database, or
content://com.dummies.tasks.provider.TaskProvider/task/9 to retrieve a
specific task from the database (in this case the task with the ID of 9).

These ContentProvider URIs are undoubtedly similar to the URIs you’re already familiar
with. Their main differences are described in this list:

1 content://: AContentProvider begins with content : // rather than with
http://.

¥ com.dummies.tasks.provider.TaskProvider: The second part of the URI
identifies the authority (the TaskProvider) of the content. Though this string can be
virtually anything, convention dictates using the fully qualified class name of your
ContentProvider.

1 task: The third part of the URI identifies the path — in this case, the type of data you’re
looking up. This string identifies which table in the database to read. If the application stores
multiple types in the database (say, a list of users in addition to a list of tasks), a second type
of path might be named user, for example.

1 9: In the first URI, the path ends with task. However, in the second URI, the path continues
to include the specific ID of the task being requested.

Now you have to add the code to support these URIs in your ContentProvider. Open
TaskProvider and add the following lines to the class:

// Content Provider Uri and Authority
public static final String AUTHORITY

= "com.dummies.tasks.provider.TaskProvider"; -3
public static final Uri CONTENT URI

= Uri.parse ("content://" + AUTHORITY + "/task"); -5

// MIME types used for listing tasks or looking up a single
// task
private static final String TASKS MIME TYPE
= ContentResolver.CURSOR DIR BASE TYPE
+ "/vnd.com.dummies.tasks.tasks"; -11
private static final String TASK MIME TYPE
= ContentResolver.CURSOR ITEM BASE TYPE
+ "/vnd.com.dummies.tasks.task";
// UriMatcher stuff
private static final int LIST TASK = 0; -17
private static final int ITEM TASK = 1;
private static final UriMatcher URI _MATCHER = buildUriMatcher (); -19

/‘k*
* Builds up a UriMatcher for search suggestion and shortcut refresh
* queries.
*/
private static UriMatcher buildUriMatcher () {
UriMatcher matcher = new UriMatcher (UriMatcher.NO MATCH) ; -26
matcher.addURI (AUTHORITY, "task", LIST TASK); —27
matcher.addURI (AUTHORITY, "task/#", ITEM TASK); -28

return matcher;

/%%
* This method is required in order to query the supported types.
*/

@Override

public String getType (Uri uri) {

switch (URI_MATCHER.match (uri)) { -37

case LIST TASK:
return TASKS MIME TYPE;
case ITEM TASK:
return TASK MIME TYPE;
default:
throw new IllegalArgumentException ("Unknown Uri: " + uri);

}
}

This chunk of code may seem intimidating, but it consists mostly of constants with one useful
method (getType ()). Here’s how the numbered lines work:

— 3 The authority for the ContentProvider — by convention, the same as the fully
qualified class name. This value must match the value you will add to your
AndroidManifest.xml file for the provider authorities.

— 5 The base URI for the ContentProvider. Every time your application asks for
data for this URI, Android routes the request to this ContentProvider.

WBER
:j @\‘
@/ The ContentProvider supports two types of URIs: one for listing all tasks and one
for listing a specific task.

The first type of URI 1s the CONTENT URI, and the second one is the CONTENT URI with the
task ID appended to the end.

— 11 Because the ContentProvider supports two types of data, it defines two types
(or MIME types) for this data. MIME types are simply strings commonly used on the web to
identify data types. For example, web HTML content typically has a MIME type of
text/html, and audio MP3 files have audio/mpeqg3. Because the tasks are of no
known standard type, you can make up MIME type strings as long as you follow Android
and MIME conventions.

The list MIME type begins with ContentResolver.CURSOR DIR BASE TYPE, and the
individual task MIME type begins with ContentResolver.CURSOR ITEM BASE TYPE.
DIR represents the list, and TTEM represents the item — simple enough.

The subtype (which follows the /) must begin with vnd. The subtype is followed by the fully
qualified class name and the type of data — in this case, com.dummies. tasks and task.
Visit
http://developer.android.com/reference/android/content/ContentResolver.html for

more information about the Android conventions for MIME types.

F

Youuse "task" singular almost everywhere inthe ContentProvider. The only
places where it is plural 1s in the MIME type for lists, in the name of the database file, and
when referring to the name of the app. Everywhere else it is singular.

— 17 Uses another constant to identify list types versus item types, which are ints.

http://developer.android.com/reference/android/content/ContentResolver.html

— 19 The UriMatcher is used to determine the URI type: list or item. You build a
UriMatcher using the method named buildUriMatcher () online 25.

— 26 Creates the UriMatcher, which can indicate whether a given URI 1s the list type
or item type. The UriMatcher.NO MATCH parameter tells the application which default
value to return for a match.

— 27 Defines the list type. Any URI that uses the

com.dummies.tasks.provider.TaskProvider authority and has a path named
"task" returns the value LIST TASK.

— 28 Defines the item type. Any URI that uses the
com.dummies.tasks.TaskProvider authority and has a path that looks like
task/# (where # is a number) returns the value ITEM TASK.

— 37 Uses the UriMatcher online 19 to determine which MIME type to return. If the
URI is a list UR], it returns TASKS MIME TYPE. Ifit’s anitem URI, it returns
TASK MIME TYPE,

Before you can use the TaskProvider, make sure that it’s listed in the
AndroidManifest.xml file, by adding this code before the </application> tag:

<provider
android:name=".provider.TaskProvider"
android:authorities="com.dummies.tasks.provider.TaskProvider"
android:exported="false" />

It tells Android thata ContentProvider named TaskProvider will handle URIs that use
the specific authority of com.dummies.tasks.TaskProvider. Italso indicates that the
data in the provider is not exported to other apps on the user’s phone. In general, you should set
exported="false" unless you want to make your provider available to other apps.

There are two main times when you need a ContentProvider instead of just using a
database directly. The first is when you want to export your content to other apps. The
Android Calendar app allows you to browse your calendar from other apps using this
mechanism. The second case is when you need to use a CursorLoader, which you will
use later in this chapter.

Dealing with CRUD

Your ContentProvider needs to be able to deal with CRUD. Specifically, it needs to handle
the following operations:

1 Create
1 Read
1 Update

1 Delete

To do this, you must add the necessary methods to support these four operations to the
TaskProvider. I'll tackle these slightly out of order.

Create
Adding a new item to the database is easy. Add the following method to your TaskProvider:

/**
* This method is called when someone wants to insert something
* into our content provider.
=/
@Override
public Uri insert (Uri uri, ContentValues values) { -6
// you can't choose your own task id
if (values.containsKey (COLUMN TASKID))

throw new UnsupportedOperationException(); -9

long id = db.insertOrThrow (DATABASE TABLE, null,

values); —-12
getContext () .getContentResolver () .notifyChange (uri, null); -13
return ContentUris.withAppendedId(uri, id); -14

)
Here’s what the insert method is doing:

— 6 The insert method takes two parameters. The first is the URI that identifies which
table to insert into, which will always be CONTENT URT for this ContentProvider.
The second parameter is a hashmap with keys and values that represent the data being
inserted into the database. Typically, this would include the task’s title and notes.

— 9 When you insert something into the database, the database creates a new row and
returns the ID to you. Because of this, it doesn’t make sense to allow you to specify a row
id when you insert into the db. Doing so is an error, so throw an exception.

— 12 Calls insertOrThrow on the database object to insert the value. As the name
implies, this method throws an exception if there’s any problem inserting into the database.
Typically, this would only happen if the user is running out of space on his or her phone.
Because this is fairly rare, you do not need to add any explicit exception handling to catch
this case. The insertOrThrow method returns the ID of the task that was added to the
db.

— 13 As mentioned before, one of the main responsibilities of a ContentProvider is
to notify listeners of changes to their data. If a list page in your app is watching the tasks
table, and the edit page adds a new item to the table, the list page needs to be notified of the
change so that it can be refreshed. This is done on this line by calling notifyChange ()
on the context’s ContentResolver. The notifyChange () method takes the uri of
the content that has changed. The second parameter of notifyChange () can be ignored.

— 14 Returns the URT for the newly added task. To do this, take the URI and append the
new ID using ContentUris.withAppendedId().

Update
Editing (also known as updating) a task in the database is very similar to creating a new one. Add
the following method to your TaskProvider:

/**
* This method is called when someone wants to update something
* in our content provider.
*/
@Override
public int update (Uri uri, ContentValues values, String ignoredl,
String[] ignored2) { -7
// you can't change a task id
if (values.containsKey (COLUMN TASKID))

throw new UnsupportedOperationException(); —10
int count = db.update (12
DATABASE TABLE,
values,
COLUMN TASKID + "=?", -15
new String[]{Long.toString(ContentUris.parseld(uri))}); -16

if (count > 0)
getContext () .getContentResolver () .notifyChange (uri, null); -19

return count; -21

)
Here’s a description of what this listing is doing:

— 7 The update method takes four parameters. The first is the URI, which is the same
URI as the insert method, except this URI will also have the ID of the task to be edited
appended to the end. For example, the URI might be
content://com.dummies.tasks.provider.TaskProvider/task/8 to edit
the eighth task in the db. The second parameter is the values to be set for that task. Typically
this would include the title and/or the notes. The third and fourth parameters are SQL
selection arguments for advanced usages and can be ignored.

— 10 Just like in the insert method, it is illegal to try to change the ID of a given task,
so throw an exception if anyone tries.

— 12 C(alls the update () method on the db object. Much like in the call to
insertOrThrow () inthe previous section, the first two parameters to the update call are
the table to be edited and the values to be set. The next parameters, however, are different.

— 15 Specifies the WHERE clause to the SQL query. In this case, the WHERE clause will
be " id=?", indicating that you want to update the row thathasan idof "?". The "?"
will be replaced by the value on line 16.

— 16 Computes the id of the task to be edited. This is done by parsing it from the URI
using ContentUris.parseld (), converting the resulting long into a String, and
then putting that St ring into an array of Strings to be passed as the whereArgs for
the update call. Each " ?" in the where clause will be replaced by the respective entry

fromthe St ring array, so there should always be exactly as many question marks in the
where clause as there are items in the St ring array.

SO STl
&t
jalo0

b

e/ The lazy or enterprising among you might wonder, why do I need to use a bunch of
question marks and String arrays? Can’t I just make a WHERE clause that says " id=10"
and skip the whole question mark business entirely? Don’t do it! Using a question mark is a
security practice that can prevent you from getting hit from SQL injection attacks. To learn
more about SQL injection, visit http://en.wikipedia.org/wiki/SQL_injection.

— 19 If anything in the table was changed, notify any listeners.

— 21 Returns the count of items update. It should only ever be zero or one.

Delete

The delete method is even easier to implement than the update method.

/**
* This method is called when someone wants to delete something
* from our content provider.
*/
@Override
public int delete (Uri uri, String ignoredl, String[] ignored2) { -6
int count = db.delete(-7
DATABASE TABLE,
COLUMN TASKID + "=2",

new String[]{Long.toString (ContentUris.parseld(uri))});
if (count > 0)
getContext () .getContentResolver () .notifyChange (uri, null); -13

return count;

)
By now, most of this should be familiar to you. However, there are some differences:

— 6 As was the case with the update method, the last two arguments (the selection
and the selectionArgs) canbe ignored for delete.

— 7 Calls the delete method, and passes in the table name, the where clause for the
_id,and the id.

— 13 If anything was deleted, notify any listeners. Then return the count of rows that were
deleted (should be zero or one).

Read

Were insert, update, and delete too easy for you? Are you ready for a challenge? Well,
let’s give you something a little trickier. Here’s how you implement the query (also known as
Read) method:

/**
* This method is called when someone wants to read something from
* our content provider. We'll turn around and ask our database

* for the information, and then return it in a Cursor.

http://en.wikipedia.org/wiki/SQL_injection

=/
@Override
public Cursor query(Uri uri, String[] ignoredl, String selection, -7
String[] selectionArgs, String sortOrder) ({

String[] projection = new String[]{ -10
COLUMN TASKID,
COLUMN TITLE,
COLUMN NOTES,
COLUMN DATE TIME};

Cursor c;

switch (URI_MATCHER.match (uri)) { -17

case LIST TASK: -19
c = db.query (DATABASE TABLE, -20
projection, selection,
selectionArgs, null, null, sortOrder);

break;

case ITEM TASK: -25
c = db.query (DATABASE TABLE, projection, -26
COLUMN TASKID + "=2",
new String[]{Long.toString(ContentUris.parseld
(uri)) },
null, null, null, null);
if (c.getCount() > 0) {

c.moveToFirst (); —32
}
break;
default:
throw new IllegalArgumentException ("Unknown Uri: " + uri); -36

}
c.setNotificationUri (getContext () .getContentResolver (), uri); -39
return c;

)
Okay, that wasn’t so bad, but it still warrants some explanation:

— 7 The query method takes a URI that represents the content to be queried. The
selection parameter specifies an optional where clause (suchas title=?), and the
selectionArgs parameter is an array of strings that fill in any question marks in that
selection parameter. The sortOrder parameter indicates how the results should be
sorted.

— 10 Creates a list of column names to represent the data and the order of the data that

will be returned. This is called a projection to people who hold their pinkies up when they
drink tea.

— 17 Uses the UriMatcher to see what kind of query you have and formats the
database query accordingly.

— 19 Youare asked to return a list of tasks.

— 20 Queries the database table named "tasks" with the projection specified on line
10. The selection parameter indicates which tasks will be selected. If no selection is

specified, this returns ALL of the rows in this table. The result is an SQL cursor that
contains each of the columns specified in the projection.

— 25 Youare asked to return a specific task.

— 26 Unlike line 20, line 26 is about querying a single specific task. To do that, you
construct a where clause withan 1id specified in the where args, exactly like you did for
the update and delete methods. The other parameters of the db . que ry method can be
ignored.

— 32 If'the query returned any results (for example, getCount () i1s larger than zero),
then move the cursor to the first item in the list.

— 36 Ifthe URI wasn’ta list URI and it wasn’t an item URI, then something went wrong,
so throw an error.

— 39 Sets the notification URI for this cursor. This URI must agree with the URIs you
used in insert, update, and delete. The loader (explained later in this chapter) uses
this URI to watch for any changes to the data; and if the data changes, the loader
automatically refreshes the UL

Your ContentProvider is now complete! The next step is to use it in your app.

Implementing the Save Button

There are two fundamental things your ContentProvider is used for. The first is reading from
your database, and the second is writing to your database. Let’s look at the simpler of the two first,
which is writing to your database.

Open TaskEditFragment. java and add the following method:

private void save() {
// Put all the values the user entered into a
// ContentValues object
String title = titleText.getText ().toString(); -4
ContentValues values = new ContentValues();
values.put (TaskProvider.COLUMN TITLE, title);
values.put (TaskProvider.COLUMN NOTES,

notesText.getText () .toString()) ;
values.put (TaskProvider.COLUMN DATE TIME,

taskDateAndTime.getTimeInMillis ()) ;

// taskId==0 when we create a new task,
// otherwise it's the id of the task being edited.
if (taskId == 0) {

// Create the new task and set taskId to the id of

// the new task.

Uri itemUri = getActivity () .getContentResolver ()
.insert (TaskProvider.CONTENT URI, values); -19

taskId = ContentUris.parseld(itemUri); —20

} else {

// Update the existing task

Uri uri = ContentUris.withAppendedId (TaskProvider.CONTENT URI,
taskId); -26

int count = getActivity () .getContentResolver () .update (

uri, values, null, null); -28

// If somehow we didn't edit exactly one task,
// throw an error
if (count != 1) -32
throw new IllegalStateException (
"Unable to update " + taskId);

}

Toast.makeText (—»38
getActivity(),
getString (R.string.task saved message),
Toast.LENGTH SHORT) .show () ;

)
At a high level, the save method 1s doing three things:

1 1t’s putting all the values that the user entered into a ContentValues keylvalue map.

1 It’s usinga ContentResolver to insert or update those values, depending on whether the
taskId is zero (to insert a new task) or nonlzero (to edit an existing task). Most of the time,
you don’t access a ContentProvider directly. Instead, youuse a ContentResolver
to resolve an operation ona ContentProvider by using a URL

1 1t’s messaging the user that the save was successful using a Toast.

Here 1s the code in more detail:

— 4 Creates anew ContentValues map, then takes all the values that the user entered
into the fragment (such as title, notes, date, and time), and puts them into the
ContentValues instance. Note that you do not put the task ID into the
ContentValues because it’s illegal to try to change it.

— 19 This line gets a ContentResolver from the activity. It then calls insert ()
on that ContentResolver and specifies the URI of the task table and all the values that
you want to insert. The ContentResolver will inspect that URL, figure out which
ContentProvider is responsible for that URI, and ultimately call into your
TaskProvider.insert method to insert the data for you.

— 20 Thecall to insert () returns the URI of the data that was inserted, so parse out
the ID of the newly inserted task and update the taskId field with the new value. That
way, if the fragment does anything else later, the taskId will be set correctly and
everything will work as it should. (In this case, it’s not strictly necessary because the
fragment finishes itself as soon as the save is complete, but it’s usually better to leave
yourself'in a clean state than to open yourself up to future bugs.)

— 26 In this section, you are updating an existing task rather than inserting a new one, so

figure out what the URI is for that task by appending it to the CONTENT URTI using
ContentUris.withAppendedId.

— 28 Edit the task by giving the task’s URI and new values to the ContentResolver,
like you did on line 19.

— 32 Ifeverything went well, then exactly one task should have been edited. If somehow
more or less than one task was edited, throw an error.

— 38 Notifies the user of the change using a Toast.

You added a new string, so add itto strings.xml:

<string name="task saved message">Task has been saved</string>

Now that you have a save () method, you need to call it. Uncomment the line you added in
Chapter 11 in TaskEditFragment.onOptionsItemSelected thatcalled save:

@Override
public boolean onOptionsItemSelected (Menultem item) {

switch (item.getItemId()) {
case MENU SAVE:

save () ;

((OnEditFinished) getActivity()) .finishEditingTask() ;
return true;

}

// If we can't handle this menu item, see if our parent can
return super.onOptionsItemSelected (item) ;

)
Now run your app! Click the Add button in the action bar and create a new task with whatever title

you want, then click Save. A Toast message will pop up and indicate the task was saved. But
how do you know for sure it was saved? The app has no way to show you the saved task yet.

You may not be able to view the data in the app, but if you are using an emulator or a rooted
phone, you should be able to examine the SQLite database directly from the command line.

.@‘7{'.’."* STege,
£05d)
'Y If you would like to consider rooting your phone (not all phones allow this), visit
http://www.androidcentral.com/root.

To view the database directly:

1. Open a terminal on your computer and type adb shell to get a login shell on your device.
2. Type cd /data/data/com.dummies.tasks/databases.

3. If your device has the sqlite3 command installed (most do), you canrun sgqlite3 data
to examine and manipulate your database directly.
"data" is the DATABASE NAME of the database you created in the
SQLiteOpenHelper.

4. Try running select * from tasks; to get a list of your tasks.

http://www.androidcentral.com/root

You should now see the task you just created.

If your device does not have sqlite3 installed, you can search the App Store to find an sqlite3
binary that you can install on rooted phones.

Implementing the List View

You might think that reading from a database should be simpler than writing to a database. After
all, you don’t have to change anything when you do a read. However, reading from a database is
actually more complicated than writing for this example.

The reason is that when you’re doing any kind of I/O operation, such as reading from a network or
from disk (reading a database, for example), you must do this work from a background thread. If
you work from the main thread of the user interface, you run the risk of locking it up for an
unknown period, which can cause it to feel jerky and unresponsive. Under particularly bad
circumstances, it can even lead to displaying the dreaded Application Not Responsive dialog box,
which can leave many users believing that your application has crashed.

Because the read operation is reading a bunch of items in a list, it may take a little time. It might
take a few hundred milliseconds or so, for example. That may not seem like a long time, but it’s
long enough to make your app stutter, and in rare circumstances it’s possible you might see an

Technically, both reading and writing from a database should be done on a background
thread. So i1f we’re following best practices, the previous section on implementing the Save
button should have used a background thread to write to the database. However, because the
save operation is writing such a small amount of data to just a single task at a time, and
because the Ul isn’t doing anything fancy during that time, we took a shortcut and skipped the
background thread. It’s reasonably safe to do so in this case, but you may want to consider
going back after reading this chapter and reimplementing save using a loader.

Android provides a system based on loaders and adapters to read a list of data from a datastore
(such as a database or file system) on a background thread.

1 Loaders are objects that read data from somewhere, often a database. Loaders have two
responsibilities:
e They must be able to load data into memory. This is usually accomplished by using an
SQLite cursor to read data from the database into memory a few records at a time.

e They must watch your database table for changes, and if they are notified of a change,
they will reload the data as necessary.

¥ Adapters are objects that know how to create views for each itemin a list. You created a
simple adapter named TaskListAdapter in Chapter 9 to read data from a dummy list of
strings and create CardViews for each item.

In the next sections, you are going to create a loader to load data from your database, and an
adapter to create views for that data.

Using loaders

The loader provides a mechanism by which you can launch background operations (such as
reading from your database) and then get a callback when those operations finish so that you can
update the user interface.

A typical example of a loader is a CursorLoader. Youuse a CursorLoader to load data
from an SQLite database using a cursor. To add a CursorLoader to one of your list fragments,
you implement the LoaderCallback interface in your callback and implement the three
LoaderCallback methods:

1 onCreateLoader () : This method is called in a background thread when you create a
loader using initLoader (). Inthis method, you’re responsible for creating a
CursorLoader object and returning it. The CursorLoader uses a URI to ask a
ContentProvider for data.

1 onLoadFinished (): This method is called when the CursorLoader object finishes
loading its data from the database. In this method, you’re responsible for updating the UI to
show the new data to the user.

1 onLoaderReset (): This method is called when the loader is being reset or shut down.
When this happens you’re responsible for making sure your fragment no longer uses the loader
or its cursor.

To kick off a loader, you first obtain a LoaderManager from your activity by calling
getLoaderManager () and then initLoader (). initLoader () starts loading data in
the background by calling onCreateLoader (), and when it finishes it executes
onLoaderFinished () inyour LoaderCallback object.

@‘%ﬁaf‘f
(w’\‘

-/ You can use loaders for things other than loading data from a database, but all loaders
must implement the same three methods regardless of whether they’re loading their data from

a database, a network, or somewhere else entirely.

Visit http: developer.android.com/guide/components/loaders.html for more
information about loaders.

Open TaskListFragment. java and add the following code in bold:

public class TaskListFragment extends Fragment
implements LoaderManager.LoaderCallbacks<Cursor> -2

{
@QOverride

public void onCreate (Bundle savedInstanceState) {

getLoaderManager () .initLoader (0, null, this); -8

http://developer.android.com/guide/components/loaders.html

}

@Override
public Loader<Cursor> onCreateloader (int ignored, Bundle args) {
return new Cursorloader (getActivity(), -13
TaskProvider.CONTENT URI, null, null, null, null);
}

@Override
public void onlLoadFinished (Loader<Cursor> loader, Cursor cursor) ({

adapter. swapCursor (cursor) ; —-19

}

@Override
public void onlLoaderReset (Loader<Cursor> loader) ({
adapter. swapCursor (null) ; 24

}
}

You will get a couple of errors when you add this code, but skip those for now. What this code is
doing;

— 2 Adds the LoaderManager.LoaderCallbacks interface to this fragment,
which is needed when we call initLoader online 8.

— 8 This is where you tell Android to start up a loader for you. Get a LoaderManager
by calling getLoaderManager (), then initialize a loader by calling initLoader.
initLoader takes three parameters:

e AnID for the loader. If you have multiple loaders, it’s handy to give them each
different IDs.

e A Bundle of args that can be used to initialize the loader. In this case, there’s
nothing special we need to initialize, so we’ll pass innull for the args.

e A LoaderManager.LoaderCallbacks implementation. Oh hey, that’s us!

— 13 initLoader online 8 will call onCreateLoader to create a new loader.
Because you are going to be reading data from an SQL database, you will use Android’s
builtlin CursorLoader to do the heavy lifting. Create a new CursorLoader and
initialize 1t with the URI of the ContentProvider you want to use. The other parameters
are for advanced usage; see
http://d.android.com/reference/android/content/CursorLoader.html for more
information.

— 19 When the loader is finished loading data into memory, it needs to do something with
that data. You can do whatever you want with the data, but the traditional thing is to give the
data to an adapter so that the adapter can display it to the user. The adapter has a method
called swapCursor, which replaces whatever cursor it was using with a new cursor, so
call swapCursor with the new cursor you just received.

— 24 onLoaderReset is called when the last cursor provided to
onLoadFinished () above is about to be closed. You need to make sure the adapter is
no longer using it, so setitto null.

http://d.android.com/reference/android/content/CursorLoader.html

That is essentially all you need to do to use a loader. The next step 1s to implement the adapter that
can take the data and create a view for it.

Using adapters
Adapters are objects that know how to create views for each item in a list. You created a simple
adapter in Chapter 9, and now you are going to update it to read data from an SQL Cursor.

Open TaskListAdapter and add the bold lines to it:

public class TaskListAdapter
extends RecyclerView.Adapter<TaskListAdapter.ViewHolder>

Cursor cursor; -13
int titleColumnIndex; -14
int notesColumnIndex;

int idColumnIndex;

public void swapCursor (Cursor c) { -18
cursor = c; —19
if (cursor!=null) {
cursor.moveToFirst(); —-21

titleColumnIndex = cursor.getColumnIndex (TaskProvider.COLUMN TITLE); -22

notesColumnIndex = cursor.getColumnIndex (TaskProvider.COLUMN NOTES) ;
idColumnIndex = cursor.getColumnIndex (TaskProvider.COLUMN TASKID) ;

}
notifyDataSetChanged(); -26

@Override
public void onBindViewHolder (final ViewHolder viewHolder,
final int i) {
final Context context = viewHolder.titleView.getContext () ;
final long id = getItemId(i); -33

// set the text
cursor .moveToPosition (i) ; -36
viewHolder.titleView. setText (cursor.getString(titleColumnIndex)); -37

viewHolder.notesView. setText (cursor.getString (notesColumnIndex)); -38

// set the thumbnail image
Picasso.with (context)
.load (getImageUrlForTask (id)) -42

.into (viewHolder.imageView) ;

// Set the click action

viewHolder.cardView.setOnClickListener (

((OnEditTask) context) .editTask(id); -48
1) i
viewHolder.cardView.setOnLongClickListener (
new View.OnLongClickListener ()

{

deleteTask (context, id) ;-55

@Override
public long getItemId(int position) { -61
cursor .moveToPosition (position) ;

return cursor.getlong(idColumnIndex); —-63

@Override
public int getItemCount () {

return cursor!=null ? cursor.getCount() : 0; -68

static class ViewHolder extends RecyclerView.ViewHolder ({
CardView cardView;
TextView titleView;
TextView notesView; 74

ImageView imageView;

public ViewHolder (CardView card) {
super (card) ;

cardView = card;
titleView = (TextView)card.findViewById (R.id.textl);

notesView = (TextView) itemView.findViewById(R.id.text2); -81

imageView = (ImageView)card.findViewById(R.id.image) ;

}

These changes to TaskListAdapter make it possible to read the list of tasks from a cursor
rather than from a hardcoded fakeData array. In more detail:

— 4 Remove the fakeData array; it is no longer necessary. You also need to remove
the callto titleView.setText (fakeData[position]) in
onBindViewHolder.

— 13 The TaskListAdapter is going to read data from a cursor, so add a field for
the cursor here.

— 14 When reading through the cursor, each column of data is referred to by an index. For
example, the index of the title column might be 1, the index of notes might be 2, and so on.
You don’t need the index for the date/time column because the list view does not display the
date/time of each task. Store the indices of each column here for quick reference; you will
determine their values on line 22.

— 18 Creates a method named swapCursor. This method is called whenever the data

in your database has changed. This might occur because someone added or deleted an item
from the database, or because the app just started up and is reading all the previously
created tasks for the first time. swapCursor is responsible for

e Replacing the previous cursor (if there was one) with the new cursor
e Figuring out the indices of the various columns of data

e Notifying any listeners that the data has changed
— 19 Replaces the previous cursor with the new cursor.

— 21 Whenever you use a cursor, you must first move the cursor to its first location
before you may attempt to read data from it. This line moves to the first position so that we
can read the various column indices in the next few lines.

— 22 Determines the column index for the title column in the cursor. This is done by
asking the cursor for the index of the column named "title". Technically, you can skip
this step entirely and just ask for columns by their name rather than by their index, but it’s
more efficient to ask by index. On the next two lines, do the same thing for the notes and
id columns.

— 26 When the cursor has been swapped, that means that the data likely has changed.
Notify any listeners (in particular, the RecyclerView from Chapter 9) that the data has
changed so that they can refresh their displays.

— 33 Each task in the database has an ID associated with it. You will need the id later,
so find the ID for this task by calling get TtemId and passing in the position of the item in
the list.

— 36 Youare about to update the view with the data from the cursor, so make sure you
move your cursor to the proper position before you begin to read.

— 37 Reads the title string from the cursor using the get St ring method, and then uses
that string to setthe titleView TextView.

— 38 Does the same for the notesView.

— 42-55 Inthe old TaskListAdapter, items inthe fakeData array didn’t have an
ID, so we just used the position in the index as a sort of fake ID. In the new version of
TaskListAdapter, every task has an ID that is stored in the database, so make sure to
use that ID when calling get ImageUr1ForTask, editTask, and deleteTask.

— 61 The implementation for get ItemId which was called from line 33.

— 63 After moving the cursor to the appropriate row in the database, this line asks the
cursor what the ID is for that row.

— 68 Updates getItemCount to return the count of items in the cursor, assuming that
the cursor i1s not nul 1. If the cursor is nul 1, this line just returns O.

— 74 Addsthe notesView TextView to your ViewHolder. Return to Chapter 9 for
a reminder of what a ViewHolder does.

— 81 Sets the notesView field by looking for the TextView named text?2 inthe
card task.xml layout.

If you run your app now, you should be able to add tasks! Give it a try.

Deleting a task
There is one more thing to do. You need to add the ability to delete tasks from your database.

This is pretty straightforward. Update TaskListAdapter to implement the deleteTask
method as shown:

private void deleteTask (Context context, long id) {
context.getContentResolver ()
.delete(
ContentUris.withAppendedId (
TaskProvider.CONTENT URT,
id),
null, null);
}

This code gets the ContentResolver from the context, calls delete onit, and passes in the
URI of the task to be deleted.

Run the app and longlpress on an item in the list to try deleting it. You should see it automatically
disappear from the list after the delete is confirmed.

Reading Data into the Edit Page

The Edit page can now save data into the database, but it cannot yet read data from the database.
This makes 1t impossible for users to edit existing tasks, so let’s wrap up this final bit of
functionality now.

Now that you know how loaders work, let’s use a loader to read the task data from the database
into the edit page. As you recall, loaders are the best way to perform I/O on a background thread
without blocking the main UI thread.

Open TaskEditFragment and make the following changes:

public class TaskEditFragment extends Fragment
implements DatePickerDialog.OnDateSetListener,
TimePickerDialog.OnTimeSetListener,

LoaderManager .LoaderCallbacks<Cursor> -4

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout and set the container. The layout is the
// view that we will return.
View v = inflater.inflate(R.layout.fragment task edit,

container, false);

// From the layout, get a few views that we're going to work with

rootView = v.getRootView () ;

titleText = (EditText) v.findViewById(R.id.title);
notesText = (EditText) v.findViewById(R.id.notes) ;
imageView = (ImageView) v.findViewById(R.id.image)
dateButton = (TextView) v.findViewById(R.id.task date);
timeButton = (TextView) v.findViewById(R.id.task time);

gpdatebateAndfimeButtonst+ —30

// Tell the date and time buttons what to do when we click on
// them.
dateButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {

showDatePicker () ;

}) i
timeButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {

showTimePicker () ;

if (taskId == 0) { -47

updateDateAndTimeButtons () ;

} else {

// Fire off a background loader to retrieve the data from the
// database
getlLoaderManager () .initLoader (0, null, this); -55

return v;

@Override
public Loader<Cursor> onCreateloader (int id, Bundle args) { -63
Uri taskUri = ContentUris.withAppendedId(-64
TaskProvider.CONTENT URI, taskId);

return new CursorLoader(—67
getActivity (),
taskUri, null, null, null, null);
}
[**
* This method is called when the loader has finished loading its
* data
*/

@Override
public void onLoadFinished (Loader<Cursor> loader, Cursor task) ({
if (task.getCount() == 0) { -78
getActivity () . runOnUiThread(-79
new Runnable() {
@Override
public void run() {
((OnEditFinished) getActivity())
.finishEditingTask () ; -84

})

return;

titleText.setText(-90
task.getString(
task.getColumnIndexOrThrow (TaskProvider.COLUMN TITLE))) ;

notesText.setText (
task.getString(
task.getColumnIndexOrThrow (TaskProvider.COLUMN NOTES))) ;

Long dateInMillis = task.getLong(—97
task.getColumnIndexOrThrow (TaskProvider.COLUMN DATE TIME)) ;

Date date = new Date(dateInMillis) ;
taskDateAndTime.setTime (date) ;

Picasso.with (getActivity()) -103
.load (TaskListAdapter.getImageUrlForTask (taskId))

.into (. . .);

updateDateAndTimeButtons () ; —-107

@QOverride
public void onlLoaderReset (Loader<Cursor> arg0) { -111
// nothing to reset for this fragment.

}
This code reads the task information from the database rather than from the fakeData list. It
does it using a loader to avoid blocking the main UI thread. Here’s what the code does in more

detail:

— 4 Similar to what you did when you put a loader into the list view, you must implement
LoaderManager.LoaderCallbacks inyour fragment to use a loader here.

— 25-30 Itdoesn’t make sense to try to download the image or update the date and time
buttons yet if you don’t know what data has been loaded from the task, so move these lines
from here to lines 103—107 when the loader has finished.

— 47 Ifthe task ID is 0, then you know you’re inserting a new item into the database. This
means that there’s no data to load, so skip the loader and just update the time and date
buttons instead.

— 55 If the task ID was nonlzero, then the loader needs to read data out of the database.

Start it up by calling initLoader, and pass in yourself as the
LoaderManager.LoaderCallbacks object.

— 63 onCreateLoader iscalled by initLoader whenitis time to create the
loader.

— 54 Computes the URI for the task you want to load.
— 67 Creates a cursor loader to load the specified task.
— 78 Sanity check. If you weren’t able to load anything, just close this activity.

— 79 onLoadFinished is called from a background thread. Many operations that
affect the Ul aren’t allowed from background threads. So make sure that you call
finishEditingTask fromthe Ul thread instead of from a background thread.

— 84 Calls finishEditingTask from the main Ul thread. You implemented
finishEditingTask in Chapter 11.

— 90 Sets the title and notes from the DB.
— 97 Sets the task date/time from the DB.
— 103-107 The code that you moved from lines 25-30.

— 111 onLoaderReset is called when a previously created loader 1s being reset, thus
making its data unavailable. In the list view, you needed to tell the adapter to stop using the
old cursor. But in this fragment, there is nothing using the old cursor, so there is nothing to be
done in this method.

Now you should have a fully working Tasks app that can create, read, update, and delete tasks
from its database. Congratulations! Try running the app now and test it out.

Chapter 14
Reminding the User

In This Chapter
Understanding scheduled tasks
Planning permissions
Setting up alarms
Using notifications

Seeing how device reboots affect alarms

Many tasks need to happen daily, right? Wake up, take a shower, eat breakfast — we do all these
things every day. These tasks make up the standard MondaylthroughlFriday morning routine for
many people. You may have an internal clock and awaken every day on time, but most people have
to set alarms to wake up on time. At work, employees have calendars that remind them of
upcoming events they need to attend, such as meetings and important server upgrades. Reminders
and alarms are part of most everyday routines, and people rely on them in one way or another.

Building your own scheduled task system from scratch would be a pain. Thankfully, Windows has
scheduled tasks, Linux has cron, and Android has the AlarmManager class. Though Android

is based on Linux, it doesn’t have access to cron; therefore, you have to set up scheduled actions
via the Android AlarmManager.

These are the steps to reminding the user of something when the app isn’t running;

1 Asking for permissions to wake up the device
1 Registering a new alarm

1 Creating a class to handle the alarm

1 Relregistering alarms when the phone reboots

1 Creating a notification

Seeing Why You Need AlarmManager

A user adds a couple of tasks in the Tasks application (all due later today), puts his device away,
and goes about his business. If he isn’t reminded about the tasks, he might forget about them;
therefore, he needs a way to be reminded of what should happen — which is where the
AlarmManager class comes into play.

The AlarmManager class allows users to schedule a time when the Tasks application should be
run. When an alarm goes off, an intent is broadcast by the system. Your application then responds

to that broadcast intent and performs an action, such as opening the application, notifying the user
via a status bar notification (which you will write later in this chapter), or performing another type
of action.

Asking the User for Permission

You wouldn’t let your nextldoor neighbor store holiday decorations in your shed without
permission, would you? Probably not. Android is no different. Performing some actions on a
user’s Android device requires permission, as explained in the following sections.

You added the INTERNET permission to the Tasks app in Chapter 9. In this section, you’ll learn
more about how Android permissions work.

Seeing how permissions affect the user experience

When a user installs an application from the Google Play Store, the application’s manifest file is
inspected for required permissions. Anytime your application needs access to sensitive
components (such as external storage, the Internet, or device information), the user is notified at
install time and decides whether to continue the installation.

JUNBER

)

Don’t request unnecessary permissions for your app — securitylsavvy users are likely to
reject it. For example, the Silent Mode Toggle application (described in Part 1) doesn’t need
GPS locations, Internet access, or hardwarelrelated information. (But if you’d like to learn
how to incorporate GPS location into your apps, visit the book’s online web extras at

www.dummies.com/extras/androidappdevelopment.)

If your application doesn’t need a permission, yank it. The fewer permissions your application
requests, the more likely the user is to install it.

Setting requested permissions in the AndroidManifest.xml file

When you need to request permissions, add them to the AndroidManifest.xml file in your
project. Youneed to add the android.permission.RECEIVE BOOT COMPLETED
permission to the Tasks application. It allows the application to know when the device reboots so
that it can relregister its alarms with the AlarmManager.

You edit the AndroidManifest.xml file to add the useslpermission element to the
manifest element. The XML permission request looks like this:

<uses-permission
android:name="android.permission.RECEIVE BOOT COMPLETED"/>

To view a full list of available permissions, view the Android permission documentation at

http: d.android.com/reference/android/Manifest.permission.html.

G
L
7)

Q/ If you don’t declare the permissions that your application needs, it won’t function as

http://www.dummies.com/extras/androidappdevelopment
http://d.android.com/reference/android/Manifest.permission.html

expected on either a device or an emulator, and any runtime exceptions that are thrown may
crash your application. Always ensure that your permissions are present.

Waking Up a Process with AlarmManager

To wake up a process with AlarmManager, you have to set the alarm first. In the Tasks
application, the best place to do it is right after you save a task in the save button’s save () call.

Creating the ReminderManager helper
Creating an alarm 1sn’t hard, but it does take a few lines of code. You will use this code in a
couple of places, so it makes sense to have a method to do it for you. Put this method into a new
class named ReminderManager. java ina new package named
com/dummies/tasks/util:
e
* A helper class that knows how to set reminders using the AlarmManager

*/

public class ReminderManager {
private ReminderManager () {} —6

public static void setReminder (Context context, long taskId, -8
String title, Calendar when) {

AlarmManager alarmManager = (AlarmManager) context
.getSystemService (Context .ALARM SERVICE); -12

Intent 1 = new Intent (context, OnAlarmReceiver.class); -14
i.putExtra(TaskProvider.COLUMN_TASKID, taskId) ;
i.putExtra(TaskProvider.COLUMN TITLE, title);

PendingIntent pi = PendingIntent.getBroadcast (context, 0, i, -18
PendingIntent.FLAG ONE SHOT) ;

alarmManager.setExact (AlarmManager .RTC_WAKEUP, -21

when.getTimeInMillis (), pi);
}
}

Here’s an explanation of what the previous code does:

— 6 The ReminderManager class should not be instantiated, so make the constructor
private.

— 8 The setReminder method takes the task ID, the task’s title, and the date/time of

the reminder and creates an alarm to wake up your OnAlarmReceiver (not yet written)
at the specified time.

— 12 Asks the context for an AlarmManager by calling
getSystemService (ALARM SERVICE).

— 14 Creates an intent for the AlarmReceiver class, which you haven’t written yet.
The intent tells the AlarmReceiver the ID and the title of the task that the
AlarmReceiver needs to create a notification for.

— 18 Creates the PendingIntent that will wrap the intent from line 14. All intents

used in the AlarmManager must be wrapped ina PendingIntent to “give
permission” to the AlarmManager to call back into our application.

o
-téj‘".. o]

A pending intent is a wrapper around an intent and target action to perform with it. A
pending intent can be handed to other applications so that they can perform the action you
described on your behalf at a later time.

By givinga PendingIntent to another application (in this case, the Android OS which
runs the AlarmManager), you are granting it the right to perform the operation you have
specified as if the other application was yourself (with the same permissions and identity).
As such, you should be careful about how you build the PendingIntent: Almost always,
for example, the base intent you supply should have the component name explicitly set to one
of your own components, to ensure it is ultimately sent there and nowhere else.

— 21 Sets the alarm using the pending intent and the date/time for the task. The
AlarmManager can use one of the following;

e RTC (Real Time Clock): Specifies the exact time to wake up

e ELAPSED REALTIME: Specifies the exact time to wake up relative to when the
device booted

e INTERVAL: Specifies a periodic wake up
Additionally, most of the settings just described have WAKEUP and nonlWAKEUP options:

1 WAKEUP: Specifying this means that the phone will wake up at exactly the time you specified
and do whatever you say.

1 nonlWAKEUP: Specifying this means that the device will wake up sometime around the time
you specified.

Whenever possible you should choose nonlWAKEUP so that the device can group wakeup alarms
together and minimize draining your battery. In this app, a WAKEUP is necessary because we don’t
want to remind the user later than expected.

The next step is to call setReminder when a task is created or edited. To do this, open up
TaskEditFragment and add the following to the bottom of your save () method:

// Create a reminder for this task
ReminderManager.setReminder (getActivity (),
taskId, title, taskDateAndTime) ;

This line of code instructs ReminderManager to set a new reminder for the task with a row ID
of taskId atthe particular date and time as defined by the taskDateAndTime variable.

F

If an alarm is already scheduled with a pending intent that contains the same signature, the
previous alarmis canceled and the new one is set up.

Creating the notification in OnAlarmReceiver
Now that you have created an alarm, you need to specify what happens when the alarm fires.

The OnAlarmReceiver class, shown in Listing 14-1 , is responsible for handling the intent
that’s fired when an alarm is raised. It’s a simple BroadcastReceiver called whenever an
intent is broadcast that is addressed to it, like the one that was registered in
TaskEditFragment in the previous section.

Create a new package named com.dummies.tasks.receiver, and add the
OnAlarmReceiver class as follows:

HListing 1411: The OnAlarmReceiver Class

/**
* This class is called when our reminder alarm fires,
* at which point we'll create a notification and show it to the user.

v
public class OnAlarmReceiver extends BroadcastReceiver { -5
@Override
public void onReceive (Context context, Intent intent) { -7

// Important: Do not do any asynchronous operations in
// BroadcastReceive.onReceive! See the sidebar

NotificationManager mgr = (NotificationManager) context
.getSystemService (Context .NOTIFICATION SERVICE); -13

Intent taskEditIntent = -15

new Intent (context, TaskEditActivity.class);
long taskId = intent.getLongExtra(TaskProvider.COLUMN TASKID, -1); -17
String title = intent.getStringExtra (TaskProvider.COLUMN TITLE); -18
taskEditIntent.putExtra (TaskProvider.COLUMN TASKID, taskId); -19

PendingIntent pi = PendinglIntent.getActivity(context, 0, -21
taskEditIntent, PendingIntent.FLAG ONE SHOT) ;

// Build the Notification object using a Notification.Builder
Notification note = new Notification.Builder (context) -25
.setContentTitle (
context.getString (R.string.notify new task title)) -27
.setContentText (title) -28
.setSmallIcon (android.R.drawable.stat sys warning) -29
.setContentIntent (pi) -30
.setAutoCancel (true) -31
.build(); -32

// Send the notification.
mgr.notify((int) taskId, note); -35

)
The numbered lines are explained in this list:

— 5 The OnAlarmReceiver isa BroadcastReceiver. This means that when the
AlarmManager broadcasts the intent you created previously, the OnAlarmReceiver
will wake up and receive the intent.

— 7 onReceive is called when the intent is received. The intent passed in will be the
intent inside of your pending intent (not the pending intent itself).

— 13 GetsaNotificationManager from the context, which you’ll use to create a
notification.

— 15 Creates the intent that opens the TaskEditActivity for the specified task id.
You get the ID of the task from the OnAlarmReceiver’s broadcast intent. This intent is
invoked when the user clicks on your notification. When that happens, the
TaskEditActivity starts and users can view and edit their task.

— 17-18 Gets the task’s ID and title from the intent that you created in
TaskEditFragment.

— 19 Adds the task’s ID to the edit intent because the receiver of the intent needs to know
which task to edit.

— 21 Creates the PendingIntent that wraps the taskEditIntent. See the
previous section to find out more about pending intents.

— 25-32 Now that you have the task’s ID, title, and an intent that starts the
TaskEditActivity when invoked, it’s time to create the actual notification itself.
Create a notification using the Notification.Builder.

— 27 Sets the title of the notification. Add the following string to your strings.xml:

<string name="notify new task title">Task Reminder!</string>

— 28 Sets the content of the notification (displayed below the title) to the text of the task
itself.

— 29 Gives the notification a simple icon. The stat sys warning is built into
Android and works as a reasonable default.

— 30 Sets the intent for the notification to the pending intent that you created on line 21.
This is the intent fired when the user clicks a notification.

— 31 Turns on “auto cancel.” This means that when a user clicks the notification, it is
automatically dismissed. If you turn this off, the user must manually dismiss his notifications,
or you must programmatically dismiss them for the user.

— 32 Builds the notification object and returns it.

— 35 Takes the notification object created on the previous line, and asks the
NotificationManager to display it to the user.
SHBER
&
')
@/ Do not do any asynchronous operations (for example, using background threads) in
BroadcastReceiver.onReceive!

The OS may kill your process immediately after onReceive returns, so if you attempt to do
asynchronous operations in onReceive, they may get killed before they ever finish! The result is
that sometimes things will appear to work, and sometimes they won’t.

Similarly, do not do any longlrunning operations (such as network requests, disk or database reads

or writes, and so on) in BroadcastReceiver.onReceive! onReceive is called from the
Ul thread, so if you do anything that may take more than a few hundred milliseconds, you can cause
your app to appear to hang.

If you need to do asynchronous or longlrunning operations, update OnAlarmReceiver to
subclass android.support.vd.content.WakefulBroadcastReceiver and create
a new service to do all your heavy lifting. Remember to call startWakefulService to start
your service, and remember to call
WakefulBroadcastReceiver.completeWakefulIntent from your service when you
are done.

See http: d.android.com/reference/android/content/BroadcastReceiver.html and
https: developer.android.com/reference/android/support/vid/content/WakefulBroac

for more information.

Now, register the OnAlarmReceiver inyour AndroidManifest.xml by adding the
following line inside your application element:

<receiver android:name=".receiver.OnAlarmReceiver"
android:exported="false"/>

At this point, you should be able to run your app, create a new task, and watch it immediately pop
up a reminder notification in your status bar, as in Figure 14-1.

http://d.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/support/v4/content/WakefulBroadcastReceiver.html

@ 5554:AVD_for_Nexus_5_by_Google

4:58 PM
Sunday, November 9

Task Reminder!

| can haz cheeseburger

Figure 1411: An important reminder.

A

The NotificationManager has a lot of other options for getting the user’s attention.
You can augment a notification using one — or more — of these options:

1 Vibration: The device vibrates briefly when a notification is received — useful when the
device is in the user’s pocket.

1 Sound: An alarm sounds when the notification is received. A ringtone or a prerecorded tone
that you install along with your application is useful when the user has cranked up the
notification sound level.

1~ Light: The LED light on the device flashes at a given interval in the color you specify. (Many
devices contain an LED that you can program.) If the LED supports only a single color, such as
white, it flashes in that color and ignores your color specification. If the user has set the
volume level to silent, the light provides an excellent cue that something needs attention.

1~ Expandable preview: The user can expand a notification by using the pinchlandlzoom gesture.
The expandable notification is a helpful way to show users an expanded preview of the
notification content, such as a message preview for an email application.

1 Action buttons: A user has always been able to tap a notification to launch the app that
created it. However, you can add as many as three additional buttons to a Jelly Bean app to
make it perform whatever operations you want. One outstanding example in the Tasks app is
having the Snooze button temporarily dismiss the notification and bring it back later.

Gotonhttp://d.android.com/guide/topics/ui/notifiers/notifications.html for more
information about creating more advanced notifications.

Updating a Notification

At some point, you might need to update the view of your notification, such as when your code
runs in the background, to see whether tasks have been reviewed. This code checks to see whether
any notifications are overdue. Suppose that after the twolhour mark passes, you want to change the
icon of the notification to a red exclamation point and quickly flash the LED in red. Thankfully,
updating the notification is a fairly simple process.

If you call the notify () method again with an ID that’s already active on the status bar, the
notification is updated on the status bar. Therefore, to update the notification, you simply create a
new Notification object with the same ID and text (but with a different red icon) and then
call notify () againto update the notification.

Clearing a Notification

Users constitute an unpredictable group — whether they’re firstltime users or advanced power
users, they can be located anywhere in the world and use their devices in their own, special ways.
At some point, a user may see a notification and decide to open the app using the app launcher
instead. If this happens while a notification is active, the notification persists. Even if the user
looks at the task at hand, the notification still persists on the status bar. Your application should be
able to simply recognize the state of the application and take the appropriate measures to cancel
any existing notifications for the task. However, if the user opens your app and reviews a different
task that has no active notification, your app shouldn’t clear the notification.

HBER
&

._ "D
) H Clear only the notification that the user is reviewing.

The NotificationManager makes it simple to cancel an existing notification by using the

http://d.android.com/guide/topics/ui/notifiers/notifications.html

cancel () method. This method accepts one parameter — the ID of the notification. You may
recall using the ID of the task as the ID of the note. The ID of the task is unique to the Tasks
application. By doing this, you can easily open a task and cancel any existing notification by
calling the cancel () method with the ID of the task.

At some point, you might also need to clear all previously shown notifications. To do this, simply
call the cancelAll () method onthe NotificationManager.

Rebooting Devices

You probably forget things from time to time. It’s only human. The Android AlarmManager is
no different. The AlarmManager doesn’t persist alarms; therefore, when the device reboots,
you must set up the alarms again.
MG
@ If you don’t set up your alarms again, they simply don’t fire because, to Android, they
don’t exist.

Creating a boot receiver

The RECEIVE BOOT COMPLETED permission allows your application to receive a broadcast
notification from Android when the device is done booting and is eligible to be interactive with
the user. Because the Android system can broadcast a message when this event is complete, you
need to add another BroadcastReceiver to your project. This BroadcastReceiver is
responsible for handling the boot notification from Android. When the broadcast is received, the
receiver needs to retrieve the tasks from the TaskProvider and loop through each task and
schedule an alarm for it, to ensure that your alarms don’t get lost in the reboot.

Add anew BroadcastReceiver to your application. For the Tasks application, the
BroadcastReceiver has the name OnBootReceiver. Youalso need to add the following
lines of code to the application element in the AndroidManifest.xml file:
<receiver android:name=".receiver.OnBootReceiver" android:exported="false">
<intent-filter>
<action android:name="android.intent.action.BOOT COMPLETED"/>

</intent-filter>
</receiver>

This snippet informs Android that OnBootReceiver should receive boot notifications for the
BOOT COMPLETED action. In layman’s terms, it lets OnBootReceiver know when the device
is done booting up.

The full implementation of OnBootReceiver is shown in Listing 14-2 . Add this class to your
com/dummies/tasks/receiver directory:

Listing 1412: The OnBootReceiver Class

public class OnBootReceiver extends BroadcastReceiver { -1

@QOverride

public void onReceive (Context context, Intent intent) { -4

Cursor cursor = context.getContentResolver () .query (
TaskProvider.CONTENT URI, null, null, null, null); -7

// If our db is empty, don't do anything

if (cursor == null)
return;

try {

cursor.moveToFirst (); -14

int taskIdColumnIndex = cursor

.getColumnIndex (TaskProvider.COLUMN TASKID); -17
int dateTimeColumnIndex = cursor

.getColumnIndex (TaskProvider.COLUMN DATE TIME) ;
int titleColumnIndex = cursor

.getColumnIndex (TaskProvider.COLUMN TITLE); -21

while (!cursor.isAfterlLast()) { -23

long taskId = cursor.getlong(taskIdColumnIndex); —25
long dateTime = cursor.getlong(dateTimeColumnIndex); —26
String title = cursor.getString(titleColumnIndex); —27

Calendar cal = Calendar.getInstance();
cal.setTime (new Date (dateTime)); —-30

ReminderManager.setReminder (context, taskId, -32
title, cal);

cursor.moveToNext () ; —35

}

} finally {
cursor.close(); -39

}

}
The numbered lines are detailed in this list:

— 1 The definition of the OnBootReceiver.

— 4 The onReceive () method that’s called when the receiver receives an intent to
perform an action.

— 7 Obtains a cursor with all the reminders from the TaskProvider via the
ContentResolver. It’s similar to the calls used to update and delete reminders in the
TaskEditFragment and TaskListFragment.

— 14 Moves to the first record in the Cursor.

— 17-21 Eachrow in the cursor contains several columns of data. These lines get the
index for the task, date/time, and title.

You want to find the ID of the row as well as the date and time so that you can schedule the
reminder. You also need the title to display to the user. To get this information, you need to
find the index of the columns that contain this information.

— 23 Sets up a while loop that checks to see whether the cursor has moved past the last
record. If it equals false, the app moves to line 25. If this value is true, no more records are

available to use in the cursor.

— 25-27 The ID, title, and dateTime are retrieved from the cursor for this row using
the column indices from lines 17-21.

— 30 After the date is retrieved from the cursor, the Calendar variable needs to be
updated with the correct time. This line sets the local Calendar object to the time of the
task in the row.

— 32 Schedules a new reminder with the row ID from the database at the time defined by
the recently built Calendar variable.

— 35 Moves to the next record in the cursor. If no more records exist in the cursor, the
call to isAfterLast () online 23 returns t rue, which means that the while loop
exits. Otherwise, the next row is processed.

— 39 Closes the cursor because it’s no longer needed. BroadcastReceivers
generally don’t use loaders, so you need to close the cursor.

WBER

% When you previously worked with the Cursoxr object in Chapter 13, you didn’t have to
close the cursor. This is because the Loader object was managing the cursor.

If you were to start the application, create a few reminders, and then reboot the device, you would
see that the reminders persisted.

Checking the boot receiver
If you’re unsure whether OnBootReceiver is working, you can place log statements into the
while loop, like this:

Log.d ("OnBootReceiver", "Adding alarm from boot.");
Log.d ("OnBootReceiver", "Row Id - " + rowld);

This snippet prints messages to the system log. You can then shut down the emulator (or device)
and start it again. Watch the messages stream in logcat, and look for OnBootReceiver
messages. If you have two tasks in your database, you should see two sets of messages informing
you of the system adding an alarm during boot.

extras . . . o .
Interested in adding even more features to your featurelrich app? Visit the book’s online
web extras at www.dummies.com/extras/androidappdevelopment to learn how to

incorporate GPS location information into your Tasks app.

http://www.dummies.com/extras/androidappdevelopment

Chapter 15
Working with Android Preferences

In This Chapter
Seeing how preferences work in Android
Building a preferences screen

Working with preferences programmatically

Most programs need to be configured to suit a user’s needs with individual settings or preferences.
Allowing users to configure your Android application gives it a usability advantage. Thankfully,
creating and providing a mechanism to edit preferences in Android is a fairly easy process.

Android provides, out of the box, a robust preferences framework that lets you define preferences
for your application. Android stores preferences as persistent keylvalue pairs of primitive data
types for you. The Android preferences framework commits the values you provide to internal
storage on behalf of your application. You can use the preferences framework to store Boolean,
float, int, long, and string elements. The data persists across user sessions — if the user closes the
app and reopens it later, the preferences are saved and can be used, even if your application is
killed or the phone restarts.

This chapter delves into the Android preferences framework and describes how to incorporate it
into your applications. You find out how to use the builtlin PreferenceFragment to create
and edit preferences and how to read and write preferences from code within your application. At
the end of this chapter, you’ll have integrated preferences fully into the Tasks app.

Understanding the Android Preferences
Framework

One outstanding quality of the Android preferences framework is the simplicity of developing a
screen that allows users to modify their preferences. Most of the heavy lifting is done for you by
Android because developing a preferences screen is as simple as defining it in the XML located in
the res/xml folder of your project. Though these XML files aren’t the same as layout files, there
are specific XML definitions that define screens, categories, and actual preferences. Common
preferences that are built into the framework include

1 EditTextPreference: Stores plain text as a string
1 CheckBoxPreference: Stores a Boolean value

1 RingtonePreference: Allows the user to store a preferred ringtone from those available
on the device

1 ListPreference: Allows the user to select a preferred item from a list of items in the
dialog box

If the builtlin preferences don’t suit your needs, you can create your own preference by deriving it
from the base Preference class or DialogPreference. A DialogPreference is the
base class for preferences that are dialoglboxlbased. Tapping one of these preferences opens a
dialog box showing the preference controls. Examples of builtlin DialogPreferences are
EditTextPreference and ListPreference.

Android also provides a PreferenceFragment in which you can load a preferences screen
similar to how you load a layout for a basic Fragment class. This base class allows you to tap
into the PreferenceFragment events and perform advanced work, such as setting an
EditTextPreference to accept only numbers.

Understanding the PreferenceFragment Class

The responsibility of the PreferenceFragment class is to show a hierarchy of
Preference objects as lists, possibly spanning multiple screens, as shown in Figure 15-1.

& 5554:AVD_for_Nexus_5_by_Google
* 4w 5:32

€< General settings

Contact display options
Sort by

First name

Name format
First name first

Sounds and vibrate

Phone ringtone

Andromeda

Dialpad tones
Also vibrate for calls O
Other

Quick responses

Figure 1511: The preferences screen for the call settings in Android.

When preferences are edited, they’re stored using an instance of SharedPreferences. The
SharedPreferences class is an interface for accessing and modifying preference data
returned by getShared Preferences () fromany Context object.

A PreferenceFragment is a base class that’s similar to the Fragment base class.
However, the PreferenceFragment behaves a bit differently. One of the most important
features that the PreferenceFragment handles is the displaying of preferences in the visual
style that resembles the system preferences. This gives your application a consistent feel across
the board in regard to Android user interface components. You should use the
PreferenceFragment when dealing with preferences screens in your Android applications.

Persisting preference values

Because the Android framework stores preferences in the SharedPreferences, which
automatically stores the preference data in internal storage, you can easily create a preference.
When a user edits a preference, the value is automatically saved for you; you don’t have to do any
persisting yourself.

Figure 15-2 shows a preference being set in the Tasks app. After the user taps OK, Android
persists the value to SharedPreferences. Android does all the heavy lifting in regard to
persisting the preference values.

5] 5554:AVD_for_Nexus_5_by_Google

Minutes From Now
60

N
© 00 U1 N
@)

Figure 1512: Setting a preference.

Laying out preferences

Working with layouts in Android can sometimes be a painstaking process of alignment, gravity,
and other complicating factors. Building layouts is almost like building a website with various
tables all over the place. Sometimes it’s easy; sometimes it isn’t. Thankfully, laying out Android
preferences is much simpler than defining a layout for the application screen.

Android preference building blocks are broken into these types:

1 Preference: A preference that’s shown onscreen. This preference can be any common
preference (such as a check box or text field), or a custom one that you define.

1 PreferenceCategory: This building block is used to group preference objects and

provide a title that describes the category. In Figure 15-1, the Contact display options itemis a
PreferenceCategory.

1 PreferenceScreen: Represents a topllevel preference that’s the root of a preference
hierarchy. All the categories and preferences in Figure 15-1 are rooted in a

PreferenceScreen called “General settings.” You canuse a PreferenceScreen in
these two places:

e InaPreferenceFragment: All the categories and preferences in the
PreferenceScreen are showninthe PreferenceFragment.

e In another preference hierarchy: When present in another hierarchy, the
PreferenceScreen serves as a gateway to another screen of preferences (similar
to nesting PreferenceScreen declarations inside other PreferenceScreen
declarations). Though this concept might seem confusing, you can think of it as XML,
where you can declare an element and any element can contain the same parent element.
At that point, you’re nesting the elements. The same statement applies to the
PreferenceScreen. Bynesting PreferenceScreens, you're informing
Android that it should show a new screen when selected.

By laying out a combination of the PreferenceScreen, PreferenceCategory, and

Preference in XML, you can easily create a preferences screen that looks similar to Figure
15-1.

Creating Your Preferences Screen

Creating preferences using the PreferenceFragment and a preference XML file is a fairly
straightforward process. The first thing you do is create the preference XML file, which defines
the layout of the preferences and the string resource values that show up onscreen. These string

resources are presented as TextViews onscreen to help the user determine what the preference
does.

Your PreferenceScreen should give users the chance to set the default time for a reminder
(in minutes) and a default title for a new task. As the application stands now, the default title is
empty and the default reminder time is set to the current time. These preferences allow the user to

save a couple of steps while building new tasks. For example, if the user normally builds tasks
with a reminder time of 60 minutes from the current time, the user can now specify it in the
preferences. This new value becomes the value of the reminder time when the user creates a new
task.

Building the preferences file

To build your first preferences screen, create a res/xml folder in your project. Inside the
res/xml folder, create an XML file and name it task preferences.xml. Add the code in
Listing 15-1 to the file.

HListing 15I1: The task preferences.xml File

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"> -2

<PreferenceCategory -4
android:title="@string/tasks"> -5

<EditTextPreference -7
android:key="@string/pref task title key" -8
android:summary="@string/default title description” -9
android:title="@string/default title"/> -10

<EditTextPreference -12
android:key="@string/pref default time from now key" -13
android:summary="@string/minutes from now description" -14
android:title="@string/minutes from now"/> -15

</PreferenceCategory>
</PreferenceScreen>

Each numbered line of code is explained as follows:
— 2 The rootllevel PreferenceScreen; it’s the container for the screen itself. All
other preferences live below this declaration.

— 4 A PreferenceCategory that defines the category for task defaults, such as title
or body.

— 5 Defines the category title. You define the @string/tasks and other strings in the
next section.

— 7 Contains the definition of the EditTextPreference, which is responsible for
storing the preference for the default title of a task.

— 8 Contains the key for the default title text EditTextPreference. The key is the
name of the preference, which you will use when you want to check the value of the
preference.

— 9 Defines the summary text that’s present on the preferences screen. It’s a helpful
message that describes what the preference does in more detail.

— 10 Defines the title of the preference on the preferences screen. It is also the title used
in the dialog box that pops up when the user edits the preference.

— 12 The start of the definition of the EditTextPreference, which stores the

default time in minutes (digits) that the task reminder time defaults to from the current time.
— 13 Defines the key for the default task time preference.

— 14 Defines the summary of the preference that’s present on the main preferences
screen.

— 15 Defines the title of the preference on the preferences screen.

Adding string resources
For your application to compile, you need the string resources for the preferences. In the
res/values/strings.xml file, add these values:
<string name="default title">Default Title</string>
<string name="tasks">Tasks</string>
<string name="default title description">
The default title for a task.</string>
<string name="minutes from now">Minutes From Now</string>
<string name="minutes from now description">
The number of minutes into the future to set the reminder.</string>

<string name="pref task title key">default task title</string>
<string name="pref default time from now key">time from now default</string>

You should now be able to compile your application.

Working with the PreferenceFragment Class

Defining a preferences screen is fairly simple: You provide the values to the necessary attributes
and you’re done. Though the preferences screen may be defined in XML, simply defining it in
XML doesn’t mean that it will show up onscreen. To display your preferences screen, you create a
PreferenceFragment.

To inflate and display the PreferenceScreen you may have just built, add a fragment that
derives from PreferenceFragment to your application and name it
PreferencesFragment. Add the code in Listing 15-2 .

Listing 1512: The PreferencesFragment File

public class PreferencesFragment extends PreferenceFragment { -1

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Construct the preferences screen from the XML config
addPreferencesFromResource (R.xml.task preferences); -8

// Use the number keyboard when editing the time preference
EditTextPreference timeDefault = (EditTextPreference) -11
findPreference (getString (R.string
.pref default time from now key));
timeDefault.getEditText () .setKeyListener (DigitsKeyListener -14
.getInstance());

}

That’s all the code needed to display, edit, and persist preferences in Android. The numbered
lines of code are explained in this list:

— 1 The PreferencesFragment class file is defined by inheriting from the
PreferenceFragment base class.

— 8 The call to the addPreferencesFromResource () method is provided with
the resource ID of the task preferences.xml file that’s stored in the res/xml
directory.

— 11 Retrieves the EditTextPreference for the default task reminder time by
calling the findPreference () method and providing it with the key that was defined in
the task preferences.xml file.

— 14 Obtains the EditText object fromthe EditTextPreference using the
getEditText () method. The setKeyListener () method is called to set the key
listener on the EditText to aninstance of DigitsKeyListener, which allows only
digits to be typed into the EditTextPreference.

ﬁ"ﬁ?‘-ﬂf’?
)

-/ You don’t want users to enter string values such as foo or bar into the field because it
1sn’t a valid integer value. Using the DigitsKeyListener ensures that the only values
passed into the preferences are digits.

Now that you have the PreferencesFragment, you need an activity to display it. Create a
new file named PreferencesActivity.javaincom/dummies/tasks/activity
and add the following code:
/**
* An activity for displaying and editing preferences.
* Uses a PreferencesFragment to do all of the dirty work.

*/

public class PreferencesActivity extends Activity {

@QOverride
protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;

getFragmentManager () .beginTransaction () .replace (-11
android.R.id.content,
new PreferencesFragment ()) .commit () ;
}
}

This activity is very simple. All it does is create a new PreferencesFragment and replace
the existing activity content with that fragment on line 11.

At this point, you can use your activity. This PreferencesActivity allows users to edit and
save their preferences. As you can see, this implementation requires only a snippet of code.

Add your new PreferencesActivity tothe AndroidManifest.xml file by using this
line of code:

<activity android:name="com.dummies.tasks.activity.PreferencesActivity"/>

The next step is displaying the preferences screen by adding a menu item.

Starting the PreferencesActivity

To open this new activity, you add a menu item to the TaskListFragment by simply adding a
new menu definition to the menu 1ist.xml file that’s located in the res/menu directory.
Updating this file updates the menu on the TaskListFragment. The updated
menu_list.xml file is shown here with the new entry in bold:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
android:id="@+id/menu_ insert"
android:icon="@android:drawable/ic_menu_ add"
android:showAsAction="always"
android:title="@string/menu insert"/>

<item
android:id="@+id/menu_settings"
android:showAsAction="never"
android:title="@string/menu settings"/>
</menu>

The last item adds a menu item for settings, which uses the menu settings string resource.
You add a new string resource named menu_settings witha value of Settings in your
string resources. Because the Settings menu is significantly less important than the Insert menu
item, you don’t want to clutter the action bar with an icon for the Settings menu. Instead, use
showAsAction="never" to ensure that the Settings menu is always displayed in the overflow
menu rather than directly on the action bar.

o

See http: d.android.com/design/patterns/settings.html and

http://www.google.com/design/spec/patterns/settings.html for more tipS about
how to create your settings menus.

Handling menu selections

After your menu is updated, the app needs to respond whenever the user taps a menu item. To
make it do this, you add code to the onOptionsItemSelected () method in the
TaskListFragment. The code to handle the Settings menu selection is bold in this snippet:

@Override
public boolean onOptionsItemSelected (Menultem item) {
switch (item.getItemId()) {
case R.id.menu insert:
((OnEditTask) getActivity()).editTask(0) ;
return true;
case R.id.menu_settings:
startActivity (new Intent(getActivity(),
PreferencesActivity.class)) ;
return true;

}

return super.onOptionsItemSelected (item) ;

}

This code creates a new Intent object with a destination class of PreferencesActivity.
A user who selects the Settings menu item is shown the preferences screen to edit his preferences.

If you start the app and select Settings, you should see a screen similar to the one shown in Figure
15-3.

http://d.android.com/design/patterns/settings.html
http://www.google.com/design/spec/patterns/settings.html

@ 5554:AVD_for_Nexus_5_by_Google
* "4 w 5:58

Tasks

Figure 1513: The preferences screen.

Working with Preferences in Your Activities at
Runtime

Though setting preferences ina PreferencesFragment is useful, it provides no value in the
end unless you can read the preferences from the SharedPreferences object at runtime and
use them in your application. Thankfully, Android makes the process fairly simple.

In the Tasks app, you read these values in the TaskEditFragment to set the default values
when a user creates a new task. Because the preferences are stored in SharedPreferences,

you can access the preferences across various activities in your application.

Retrieving preference values

Open the TaskEditFragment and navigate to the onCreateView () method. It determines
whether the task is an existing task or a new task. If the task is new, you pull the default values
from SharedPreferences and load them into the activity for the user. If for some reason the
user has never specified her preferences, they’re empty strings and you ignore the defaults. You
use the preferences only if the user has set them.

To retrieve preference values, you use the SharedPreferences object, as shown in Listing
15-3 . Add the bold code to the very bottom of onCreateView ().

Listing 1513: Retrieving Values from SharedPreferences

if (taskId == 0) { -1
SharedPreferences prefs = PreferenceManager -2
.getDefaultSharedPreferences (getActivity()) ;
String defaultTitleKey = getString(R.string -4
.pref task title key);
String defaultTimeKey = getString(R.string -6
<.pref default time from now_key) ;

String defaultTitle = prefs.getString(defaultTitleKey, null); -9
<String defaultTime = prefs.getString(defaultTimeKey, null); -10

if (defaultTitle '= null)
titleText.setText (defaultTitle); -13

if (defaultTime '= null && defaultTime.length() > 0)
taskDateAndTime.add (Calendar .MINUTE, -16
Integer.parseInt (defaultTime)) ;

updateDateAndTimeButtons (); -19
} else {

// Fire off a background loader to retrieve the data from the
// database
getLoaderManager () .initLoader (0, null, this);

}

Each new line of code is explained in this list:

— 1 Ifthe taskId is 0, then you know the task’s ID hasn’t been set yet. This means it’s a
new task.

— 2 Retrieves the SharedPreferences object from the static
getDefaultSharedPreferences () call onthe PreferenceManager object.

— 4 Retrieves the key value for the default title preference from the string resources. This
same key 1s used in Listing 15-1 to define the preference.

— 6 Retrieves the key value for the default time offset, in minutes, from the preferences.

— 9 Retrieves the default title value from the preferences with a call to getString ()
onthe SharedPreferences object. The first parameter is the key for the preference,
and the second parameter is the default value if the preference doesn’t exist (or hasn’t been

set). In this instance, the default value is nul1l if the preference doesn’t exist.

— 10 Retrieves the default time value from the preferences, using the same method as
described on line 9 with a different key.

— 13 Sets the text value of the EditText view — which is the title of the task. This
value is set if the preference wasn’t null.

— 16 Increments time onthe taskDateAndTime Calendar field by calling the

add () method with the parameter of Calendar .MINUTE if the value from the
preferences wasn’t equal to an empty string. The Calendar .MINUTE constant informs the
Calendar object that the next parameter should be treated as minutes and the value should
be added to the calendar’s Minute field. If the minutes force the calendar into a new hour or
day, the Calendar object updates the other fields for you.

For example, if the calendar was originally set to 2016108131 11:45 p.m. and you add 60
minutes to the calendar, the new value of the calendar is 2016109101 12:45 a.m. Because
EditTextPreference stores all values as strings, the string parses the minute value to
an integer withthe Integer.parselInt () method. By adding time to the
taskDateAndTime Calendar field, the time picker and button text associated with
opening the time picker update as well.

— 19 Updates the date and time buttons to reflect the time added to the existing
taskDateAndTime Calendar field.

When you build, reinstall, and start the application, you can now set the preferences and see them
reflected when you choose to add a new task to the list. Try clearing the preferences and then
choosing to create a new task. Notice that the defaults no longer apply — easy!

Setting preference values

Though updating preference values via Java isn’t done in the Tasks app, at times you might need to
in your own apps. Suppose that you develop a helpldesk ticket system application that requires
users to enter their current departments. You have a Pre ference object for the default
department, but the user never uses the preferences screen and therefore repeatedly enters the
department into your application manually. Using logic that you define and write, you determine
that the user is entering the same department for each helpldesk ticket (assume that it’s the
Accounting department), so you prompt him to determine whether he wants to set the default

department to Accounting. If he chooses Yes, you programmatically update the preferences for
him.

To edit preferences programmatically, you need an instance of Shared Preferences. You
can obtain it via PreferenceManager, as shown in Listing 15-4 . After you obtain an instance
of SharedPreferences, you can edit various preferences by obtaining an instance of the
preference Editor object. After the preferences are edited, you need to apply the changes, also
demonstrated in Listing 15-4 .

Listing 154: Programmatically Editing Preferences

SharedPreferences prefs =

PreferenceManager.getDefaultSharedPreferences (this); -2
Editor editor = prefs.edit(); -3
editor.putString ("default department", "Accounting"); -4
editor.apply(); -5

The numbered lines of code are explained in this list:

— 2 Aninstance of SharedPreferences is retrieved from the
PreferenceManager.

— 3 Aninstance of the preferences Editor object is obtained by calling the edit ()
method on the SharedPreferences object.

— 4 Edits a preference with the key value of default department by calling the
putString () method onthe Editor object. The value is setto "Accounting".
Normally, the key value is retrieved from the string resources, and the value of the string is
retrieved via your program or user input. The code snippet remains simple for brevity.

— 5 After changes are made to any preferences, you must call the apply () method on
the Editor object to persist themto Shared Preferences. The apply call
automatically replaces any value stored in SharedPreferences with the key given in
the putString () call.

<

§E¥Pﬂakﬁ

@ If youdon’t call apply () onthe Editor object, your changes don’t persist and your
application may not function as you expect.

Part IV
Android Is More than Phones

—

Alice Yang
most home!

web
Supplement your Android apps with voice input using the articles online at

www.dummies.com/extras/androidappdevelopment

http://www.dummies.com/extras/androidappdevelopment

In this part. ..

Part IV introduces you to the world beyond Android phones. Android tablets, watches, and TVs
are a different sort of beast than Android phones, and this part walks you through all the changes
you need to make to your app so it can run on these other Android devices.

Should you want to go beyond the realm of standard Android, you will also find everything you
need to add support for Androidlbased (but nonlGoogle) devices, such as the Amazon Fire.

Chapter 16
Developing for Tablets

In This Chapter

Zeroing in on why a tablet i1s a different digital beast
Modifying your existing app to run on tablets
Downloading a tablet emulator

Using responsive layouts

Building product flavors

Creating a tabletlonly activity

You need to master some tricks of the trade to make your apps work on tablets and on phones. In
this chapter, you can get an overview of the differences betweeen phones and tablets, and then find
out how to design the Tasks application to work on both types of devices.

Considering the Differences between Phones
and Tablets

Android tablets and Android phones have some obvious differences, and size immediately comes
to mind, but that is only one of the differences:

1 Tablets are designed to be held in two hands, whereas phones are designed for only one.

1 Android tablet screens tend not to extend past the 7ltol10linch range, and the largest phones
max out around 6 inches.
@}ﬁaﬁ‘?
The line between tablet and phone can blur at the Slinch mark. Some “tweener”
devices are marketed as phones, and others with nearly the same specs are marketed as tablets.

1~ Tablet orientation varies depending on usage, whereas almost all Android phones have settled
on portrait orientation for their screens.

Many Android tablets are designed for widelscreen media viewing, so they favor landscape
orientation. Others, such as the Nexus 7 and Kindle Fire, are designed primarily for use in
portrait mode. That’s not to say that you can’t run an app in portrait mode on a landscape tablet
(or vice versa), but be aware that many users may run your app in an orientation other than the
one in which you completed most of your testing.

Tablets and phones also have some differences in hardware design and operation that affect app
design. This list describes them from the tablet perspective:

1 Tablets often lack alwayslon 3G or 4G data connections.

1 Tablets tend to be larger, use larger batteries, and benefit from much longer battery life than
their phone counterparts.

1 Tablets may have cheaper cameras — or no cameras — because tablet cameras typically get
less use than phone cameras.

1 Tablets often lack such common phone capabilities as GPS location service.

In addition, don’t be surprised if you have to design your app (or tweak an existing one) to
accommodate new tablet features.

Tweaking the Tasks App for Tablets

To help accommodate the differences, you use a few techniques to upgrade the Tasks app so that it
can work on both tablets and phones.

F

Use these strategies every time you design an Android application because it’s likely that
most of your apps target users of both types of devices.

Anticipating screen size with a responsive layout
Go with the flow when you’re designing your layout to fit multiple screen sizes. A flowing, or
responsive, layout skips a lot of hassle and frustration for both the designer and the user.

If you’re familiar with i10OS development from a few years back, you know that back then you only
had a few screen sizes to worry about: a couple of 1Phone sizes, and a couple of iPad sizes. Each
size required both lowl and highlresolution images, but that was easy enough to handle: Design for
iPhone first, and then for iPad, and then plug in the lowl and highlresolution images in the
respective versions and you were done.

Android has never been quite as simple to design for. Layouts in Android need to “flow” — that
is, resize and rearrange themselves — so that they can accommodate minor (and sometimes major)
differences in the width and height of users’ devices. Android developers have dozens or
hundreds of different sizes of devices to worry about.

It’s similar to designing for websites — when you’re building a website, you can’t assume that all
users will view it in browser windows that are exactly the same size (800 x 600 pixels). Users
may view the site from bigger (or sometimes smaller) browser windows; your design must be
flexible enough to give a good experience to the whole range of sizes. Designing for Android
makes the same requirement. In fact, 10S is now moving in this same direction, and encouraging
their developers to use flowing layouts as well.

So how do you perform this bit of magic? For openers, don’t try to use fixed dimensions (such as
10px or 120dp) in your layouts. Instead, favor relative dimensions, such as

"wrap content" and "match parent" as much as possible. The idea is to achieve a
responsive layout that can resize to fit the device.

The following code shows a layout that makes too many assumptions about the device it’s on:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="300px"
android:layout height="match parent"
android:1lines="1"
android:text="Occurrences of the word 'Internet' in the Gettysburg
Address: 0 (unverified)"/>

The code has multiple problems:

1~ It uses a fixedlsized TextView rather than flexible dimensions, like wrap content and
match parent.

1 1t uses pixels (px) to measure size, which doesn’t scale automatically across different devices,
as dp (devicelindependent pixels) would.

1 It hardlcodes the number of lines in TextView to 1 and doesn’t tell Android what to do with
any overflow.

1 It doesn’tuse ScrollView, so if your layout is taller than the device screen, there’s no way
to see the offscreen views.

1 Generally speaking, many of your layouts should be wrapped in a single Scrol1lView to
handle unanticipated overflow off the bottom of the screen. Exceptions include layouts that
already handle scrolling, such as ListView, which shouldn’t be wrapped in a
ScrollView. The example above uses only a single TextView, so it’s unlikely to need a
ScrollView, but more complicated layouts should consider them.

Figure 16-1 shows the TextView from the above code. It abruptly cuts off text midsentence
because of the fixed size. If the developer had used a responsive layout, the text wouldn’t have
been cut off.

Figure 1611: A nonlresponsive layout that abruptly truncates after “Occurrences of .. .”

Fixing this particular example i1s easy by changing the width of the TextView and replacing
android:lines="1" withandroid:maxLines="3":
<?xml version="1.0" encoding="utf-8"7?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match_ parent"
android:layout height="match parent"
android:maxLines="3"

android:text="Occurrences of the word 'Internet' in the Gettysburg Address:
0 (unverified)"/>

o8

When you’re designing your layouts, always consider the maximum size of each item in
your layout. The app content can take up more space than you expect, and it’s important to
anticipate these situations and plan for them rather than end up with an app that looks ugly.

Adding more fragments

Android uses fragments to help you deal with the additional real estate on tablets. The basic idea
is that a typical phone activity centers on one, two, or three distinct groups of reusable onscreen
items. Put each of these groups into its own fragment and it becomes easy to reuse across multiple
activities.

You’re going to do exactly this — you’ll add the TaskEditFragment and the
TaskListFragment from your two phone activities into a single new activity that tablet users
will enjoy.

Figure 16-2 shows how Tasks fragments lay out on a phone and on a tablet.

] SESAANT_jor_ b _5_by_Jotghe

My L

5554:Mexus_7T_API_21

L

I canhaz

all your base is belong to

al your bage is belo

m can haz chisabungar

e

<] 0] (] <]

Figure 1612: Fragments can handle a single activity on a phone (left) or two activities on a tablet (right).

2

Without fragments, you’d have to reinvent the wheel every time you wanted to make an
activity that shows a list of tasks. Using fragments, just write the code once and you can reuse
it as many times as you want.

Creating different layouts for different devices

The fragment 1s a handy feature for the designer, but how do you slice and dice fragments to show
the right experience for the right device? The tablet’s relatively vast screen real estate (compared
to a phone) can show one or two more fragments on a single activity.

You can use one layout containing a single activity for your phone and another layout containing
multiple fragments for your tablet. For example, here’s the TaskListActivity layout for the
phone size in the Tasks app:
<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:name="com.dummies.tasks.fragment.TaskListFragment"
android:layout width="match parent"

android:layout height="match parent"
/>

And Listing 16-1 shows how you might modify the code using two fragments to create a twol
column layout on a tablet:

Listing 1611: TwolColumn Table Layout Example

<?xml version="1.0" encoding="utf-82>"

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:orientation="horizontal"
android:layout height="match parent">

<fragment
android:id="@+id/list fragment"
android:name="com.dummies.tasks.fragment.TaskListFragment"
android:layout width="0dp"
android:layout weight="1"
android:layout height="match parent"

/>

<fragment
android:id="@+id/edit fragment"
android:name="com.dummies.tasks.fragment.TaskEditFragment"
android:layout width="0dp"
android:layout weight="1"
android:layout height="match parent"

/>

</LinearLayout>

This is very similar to what you’ll do later in the chapter to put two fragments next to each other.

Three strategies for adding tablet support

There are three main strategies that you can use to make your phone app work on tablets. Each is perfectly reasonable
and has its own set of advantages and disadvantages.

The first strategy is to make two different apps: one for phones and one for tablets. This sounds wasteful, but in fact it’s
quite easy to use build variants to create two different apps from nearly the same codebase.

The advantage of this strategy is that you can keep all your shared code in one place but keep any phonelspecific or
tabletlspecific code in separate directories. That way, the tablet code won'’t need to be installed on phones where it won'’t
be used, and vice versa. The disadvantage of this strategy is that you need to manage two APKs, one for phones and
one for tablets, every time you make a new release of your app.

The second strategy is to use a single app for both types of devices, but use different activities and choose between
them when you launch the app. For example, the phone app might have a TaskListActivity which shows a list of
tasks, and the tablet might have a TaskListAndEditActivity which shows a list of tasks, but also shows the edit
fragment next to the list (as described in the previous section). You would then add a special LaunchActivity which
would be your app’s main launcher activity in the AndroidManifest. At startup, the LaunchActivity would quickly
detect if you were on a tablet or on a phone, and start the appropriate activity before finishing itself. It would happen so
fast that users would never even see the LaunchActivity itself.

The advantage of this strategy is that your app will still appear as a single app in the Google Play Store. The
disadvantage is that all the phone code will also be installed on all your tablets, and vice versa.

The third strategy is to use the exact same activities on both phones and tablets, but to change the layouts for each type
of device. This can work great for simple apps. The advantage of this strategy is that you don’t need to worry about
writing additional activities to handle different device types. The disadvantage is that your phone and tablet code can
start getting tangled in your activities, potentially making the activities complicated.

In this chapter, you will use the first strategy and build two separate apps for phones and tablets. However, you may
want to experiment with the second strategy (or even the third) after you finish this chapter.

Configuring a Tablet Emulator

First things first — you need a tablet on which to test your application. If you already have a
tablet, you’re well on your way; if you don’t, then you need an emulator to emulate an Android
device on your computer. Google calls these Android Virtual Devices (AVDs). Follow these steps
to get the Google Nexus 7 AVD:

1. Choose Tools= Android= AVD Manager in Android Studio.
2. Click Create Virtual Device.
3. Choose Tablet, then Nexus 7, and click Next.

4. Choose Lollipop 21 x86 and click Next.
5. Click Finish.

6. Choose the AVD you just created from the list of AVDs, and click the Start button to
launch it.

See Chapter 3 for a reminder of how to configure an emulator.

Creating a New Product Flavor

As mentioned in the “Three strategies for adding tablet support” sidebar, you are going to create
two product “flavors” for your app — one for phones and one for tablets. Each flavor will have
its own APK file. For the most part, the flavors will share the same code, but they can have some
slight differences in code and configuration.

Add the following to the android section of your Tasks build.gradle:

productFlavors {
phone {}
tablet {}

}

Both flavors will use all of the default settings, so there is no need to add any configuration to
either of them. Later, you will set up each flavor to use a slightly different set of files, but for now
they’re identical. When you do this, the shared code and resources will go into src/main
(shared by all flavors), and the code for phones and tablets will go into src/phone and
src/tablet, respectively, as specified by the name of the flavors you defined in the previous
code.

Now choose Build=Rebuild Project and build your project again. If you then choose View=Tool
Windows=Messages, you should see your project being built for both phones and tablets as in

Figure 16-3.

Mehiaged Gradie Buikd & L
Tasks:prePhoneDe bugBuild
Tasks: checkPhone De bughblanile 51
‘Taski: prePhoneR o bewss Build
I Taiks preTableiDe begluik
=
o Tasks: pre pare Comitnd rosd Sup portCardviewy's 2 100LIbrary
T Tasks prepare Comimsd roadSp porFale me V7 2 100Library
> Tasks: prepareComAsd roadiup portR ety rdew T2 100 Library
Tarks: prepareComind roidSupportSupporvd 2 100 Librany
Tasks: prepareComGooglefndrod GmsPlaySericeswWearablet 17 1 Library
Tasks: preparePhoneDebugDepend encies

#s Build Variants

2! Faveeites

5 TODD o G Androwd § Terminal W 5 Chamges O Wessages Event Log ¥ GradleComiole i Memory Monitor
'_I Coradle bagild finda®ed in 18 sex (2 minube ago) 2553 LF ¢ UTF-8 ¢ Gi: mburion/rec.ratch 2 & &

.Figure 1613: Build Messages showing Tasks being built for phones and tablets.

There’s more to do, so go through the next sections before you try to install and run your two
flavors.

Creating an AndroidManifest for Phones

There are going to be slight differences between your phone and tablet apps. Both require their

ownAndroidManifest.xml file. For the most part, the configuration will remain in your
existing AndroidManifest.xml, but you'll need to make some specific changes for each
flavor that goes into a phone and tablet AndroidManifest .xml. The information in the phone
and tablet AndroidManifest.xml will override the information in the main
AndroidManifest.xml.

Moving the TaskListAdapter

First, go to your AndroidManifest.xml file and remove the following code:

The TaskListActivity will be used only on your phone. You create a different activity for
tablets. So for that reason, you just removed it from the shared AndroidManifest.xml.

The next step is to create the phone’s AndroidManifest.xml. But before creating it, first
create the phone directory by going to your src directory and creating a new directory named
phone. The directory phone must match the name of the flavor you created in your
build.gradle in the previous section.

Next, create a new AndroidManifest.xml file inthe src/phone directory with the
following contents:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" >

<application>
<activity android:name="com.dummies.tasks.activity.TaskListActivity" >
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

You just moved the TaskListActivity from the shared AndroidManifest.xml to the
phonelspecific AndroidManifest.xml.

Now build and run your app to make sure you haven’t broken anything, If everything worked
properly, the app should run identically to how it did before you split the
AndroidManifest.xml.

Informing the Google Play Store

There is one more thing you need to do: Tell the Google Play Store that the phone version of your
app should only be visible and installable on phones, not tablets. If you do not do this, the Google
Play Store will show the phone app to people on tablets!

Openthe src/phone/AndroidManifest.xml file and add the code in bold:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" >

<compatible-screens>
<!-- all small size screens -->
<screen android:screenSize="small" android:screenDensity="1ldpi" /> -6
<screen android:screenSize="small" android:screenDensity="mdpi" />
<screen android:screenSize="small" android:screenDensity="hdpi" />
<screen android:screenSize="small" android:screenDensity="xhdpi"/>
<screen android:screenSize="small" android:screenDensity="480" /> -10
<!-- all normal size screens --/>
<screen android:screenSize="normal" android:screenDensity="1ldpi" /> -12
<screen android:screenSize="normal" android:screenDensity="mdpi" />
<screen android:screenSize="normal" android:screenDensity="hdpi" />
<screen android:screenSize="normal" android:screenDensity="xhdpi"/>
<screen android:screenSize="normal" android:screenDensity="480" /> -16
</compatible-screens>

<application>
<activity android:name="com.dummies.tasks.activity.TaskListActivity" >
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>

</manifest>

The compatiblelscreens element is not used by Android or your app directly. It is used only
by the Google Play Store to determine which devices this app is compatible with.

— 10 Declares that your app is compatible with all five resolutions of "small" screens
(1dp1, mdpi, hdpi, xhdpi, and xxhdpi). You’ll notice that instead of saying xxhdpi on line 10,
we say 480. This is because, at the time of this writing, the compatiblelscreens

element does not yet support xxhdpi directly, so we need to use the numerical value for
xxhdpi, which is 480.

— 12—-16 Does the same, but for "normal" size devices.

These two sections declare that your app will run fine on small and normal devices, but will not
run on large or extrallarge devices (generally tablets).

o
The compatiblelscreen element is a little tricky. If you want to make changes to this

section, make sure youread http://d.android.com/guide/practices/screensk
distribution.html.

Creating an AndroidManifest for Tablets

Now that you have a fully functioning phone app again, it’s time to start working on the tablet app.

Create a directory named tablet inside the src directory. Inside the tablet directory, create
an AndroidManifest.xml for tablets that looks like the following;

http://d.android.com/guide/practices/screens-distribution.html

SHEEE
)

@/ When creating new product flavors, the name of the directory under src must match the
name of the flavor inthe build.gradle. You can name them whatever you want, as long
as they agree.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" >

<application>
<!-- Declare our main activity, which will be different than the
main activity for phones.
-—>

<activity android:name=
"com.dummies.tasks.tablet.activity.TaskListAndEditorActivity" > -10
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>

</manifest>

Just like the phone manifest in the previous section, this manifest declares a single activity that
will be the main launcher activity for the app — except the activity for tablets is different from the
one for phones.

You should receive an error on line 10. That’s okay; you create the
TaskListAndEditorActivity in the next section.

There is one more thing to do. You must tell the Google Play Store that this app is available only
for tablets and not for phones. Add the following to your manifest:

<?xml version="1.0" encoding="utf-8"?>
manifest xmlns:android="http://schemas.android.com/apk/res/android" >

<compatible-screens>
<!-- all large size screens -->
<screen android:screenSize="large" android:screenDensity="1ldpi" />
<screen android:screenSize="large" android:screenDensity="mdpi" />
<screen android:screenSize="large" android:screenDensity="hdpi" />
<screen android:screenSize="large" android:screenDensity="xhdpi"/>
<screen android:screenSize="large" android:screenDensity="480" />
<!-- all xlarge size screens -->
<screen android:screenSize="xlarge" android:screenDensity="1ldpi" />
<screen android:screenSize="xlarge" android:screenDensity="mdpi" />
<screen android:screenSize="xlarge" android:screenDensity="hdpi" />
<screen android:screenSize="xlarge" android:screenDensity="xhdpi"/>
<screen android:screenSize="xlarge" android:screenDensity="480" />
</compatible-screens>

<application>
<!-- Declare our main activity, which will be different than the
main activity for phones.
-—>

<activity android:name=
"com.dummies.tasks.tablet.activity.TaskListAndEditorActivity" >
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>

</manifest>

Notice the difference between the phone manifest and the tablet manifest. In the phone manifest,
you said the flavor supported small and normal screens, but in the tablet manifest you say it
supports large and xlarge screens.

Making the TaskListAndEditorActivity for
Tablets

You’ve created and built the phone app. You’ve declared the manifest file for the tablet app. The
next step 1s to create the TaskListAndEditorActivity which only tablets will use.

Creating the tablet activity class
The first step is to create the directories you need. Create the following directories inside the
tablet directory:

¥ java

¥ java/com

¥ java/com/dummies

¥ java/com/dummies/tasks

¥ java/com/dummies/tasks/tablet

¥ java/com/dummies/tasks/tablet/activity

Then create a new file inside the tablet/java/com/dummies/tasks/
tablet/activity directory named TaskListAndEditorActivity. java withthe
following code:

public class TaskListAndEditorActivity extends Activity
implements OnEditTask, OnEditFinished -2
{

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity task list and editor);
setActionBar ((Toolbar) findViewById(R.id.toolbar))

}

/‘k*

* Called when the user asks to edit or insert a task.
)

@Override

public void editTask(long id) { -16

}

/**k

* Called when the user finishes editing a task.

4
@Override
public void finishEditingTask() { -23

}

}

The onCreate method creates a new activity, sets its content to the
activity task list and editor.xml layout (which you will create), and sets its
action bar to the toolbar element.

In addition, you’ll see the following happen on these lines:

— 2 Youdeclare that this activity will implement the OnEditTask and
OnEditFinished interfaces.

— 16023 The methods from the interfaces on line 2 are defined on these lines. Currently
they are empty, but you will recall from Chapters 9 and 10 that these methods are used to
figure out what the fragment will do when the user asks to edit a task and finishes editing a
task. You will complete these methods in a later section.

Adding the tablet layout

Next, add the layout file. Create a new directory inside the src/tablet directory called res.
Inside res, create a directory named 1ayout, and inside the 1ayout directory create the layout
file named activity task list and editor.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"-2
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical"
android:baselineAligned="false">

<Toolbar -8
style="?android:actionBarStyle"
android:layout width="match parent"
android:layout height="wrap content"
android:title="@string/app name"
android:id="@+id/toolbar" />

<LinearLayout -15
android:layout width="match parent"
android:layout height="match parent"
android:orientation="horizontal"
android:baselineAligned="false">

<fragment -21
android:id="@+id/list fragment"
android:name="com.dummies.tasks.fragment.TaskListFragment"
android:layout width="0dp"
android:layout height="match parent"
android:layout weight="1"/>

<FrameLayout —28
android:id="@+id/edit container"
android:layout width="0dp"
android:layout height="match parent"
android:layout weight="2"/>

</LinearLayout>

</LinearLayout>

This layout consists of three main parts:

1 A toolbar
1 The list fragment
1 A framelayout which holds your edit fragment

If you look back to Listing 16-1 at the beginning of the chapter, you’ll see that the layout is pretty
similar, but instead of having two fragments in the layout, it has one fragment and one placeholder.
The reason the second fragment needs to be a placeholder 1s because the edit fragment cannot be
instantiated without knowing the ID of the task that needs to be edited. Because the ID isn’t known
at the time the layout is created, you must inflate the fragment manually so that you can specify the
ID. Look back at Chapter 10 and you’ll see you needed to do the same thing there for the
TaskEditFragment.

Discussion of the previous code in more detail:

— 2 Avertical LinearLayout that holds the two fragments for your tablet layout. Set
baselineAlignedto false as recommended by Android lint to get a tiny bump in
performance. See Chapter 17 for more information about Android lint.

— 8 The toolbar for the activity. It won’t be styled automatically, so set its style to the
theme’s actionBarStyle. Also set its title to the app’s name.

— 15 Asecond LinearLayout, this one arranged horizontally. This LinearLayout
is used to hold the two sidelbylside fragments.

— 21 The list view fragment, which occupies the leftmost third of the screen. It is using
onelthird of the screen because its layout weight is setto 1, whereas the

layout weight of the other fragment on line 28 is set to 2, and 1 out of 3 is onelthird.
Remember, when using layout weight, youmust set your layout width to O.

— 28 The edit view fragment, which occupies the remaining two of three parts of the
screen.

Building the Tablet App

The tablet app isn’t quite done yet, but it’s time to run it and see what happens. How do you
choose whether to build the phone app or the tablet app? Android Studio gives you a simple way
to choose.

Choose View=Tool Windows=>Build Variants. You should see a tool window, listing the build
types for each of your apps. Click the build variant for Tasks and change it to say tabletDebug

(see Figure 16-4):

android-for-dummies-v3 Tasks

E Build Variants £~ e
o' Module Build Variant

(a1

~i i HelloAnd...) debug

rm

SilentMo... () debug

Tasks 7'l tabletDebug

| TasksWear () debug

L[| LI |

<! 7:Structure

Figure 1614: The Build Variants tool window with the tablet Debug flavor selected.

There are four build variants listed for the Tasks app. These correspond to the two
buildTypes and the two productFlavors inyour build.gradle as shownin
Table 16-1.

Table 1611 The Four Build Configurations for the Tasks App

buildTypes / productFlavors |Debug Release
Phone phoneDebug phoneRelease
Tablet tabletDebug tabletRelease

Your build.gradle may not explicitly list a debug buildType, but it is always there by
default.

You can add additional buildTypes or productFlavors if you want, but be careful! The
number of build configurations can explode very quickly if you add a bunch of new
productFlavors orbuildTypes.

Now choose Build=Make Project and build the tablet app. Then choose Run=Run ‘Tasks’ to run
your app, and choose the tablet emulator you created earlier in this chapter. You should see a list

view but no editor view, as in Figure 16-5.

] 5556:Nexus_7_API_21

g all your base is belo..
b

<]] O
Figure 1615: The Tasks app with only a list view running in the Nexus 7 emulator.

w8

The emulator has several special keys that control it. To rotate the emulator, use CtrllF11

or CtrllF12. Note that, if you’re on a Mac, you may also need to hold down the Fn key
depending on how your keyboard is set up.

It looks great! But the problem is that there is no way add or edit tasks. You need to fill out the
editTask () and finishEditingTask () methods.

Adding the App Callbacks

Recall from Chapter 10 that, on phones, the editTask () method started a new
TaskEditActivity as shown in Listing 16-2 (do not add this code to your tablet app!):

Listing 1612: The editTask() Method for Phones (Not Tablets)

@Override
public void editTask (long id) {
// When we are asked to edit a reminder, start the
// TaskEditActivity with the id of the task to edit.
startActivity(new Intent (this, TaskEditActivity.class)
.putExtra (TaskEditActivity.EXTRA TASKID, id));
}

Instead of starting a new activity on tablets, it makes more sense to use some of the empty real
estate on the rightlhand side of the page as a task editor. So for tablets, you’ll use a different
version of editTask (), which opens the editor fragment inside the current activity.

Add the following code to TaskListAndEditorActivity.java:

@Override
public void editTask(long id) {
TaskEditFragment fragment = TaskEditFragment.newInstance (id); -3

FragmentTransaction ft = getFragmentManager() -5
.beginTransaction() ;

ft.replace(R.id.edit container, fragment,
TaskEditFragment.DEFAULT FRAGMENT TAG) ;

ft.addToBackStack (null); -10

ft.commit(),; -12
}

This code should look familiar. It’s very similar to the code you used in Chapter 10 to instantiate
the TaskEditFragment there. As a recap:

— 3 Creates the fragment for the given task id.

— 5 Adds the fragment to the activity. If there’s one already there (for example, the user
clicks on another task), then replace it. Tag the fragment with a name
(DEFAULT FRAGMENT TAG in this case) so that you can find it again later.

— 10 Adds this change to the backstack, so that when the user clicks the Back button
you’ll pop this editor off the stack. If you don’t do this, the whole activity closes when the
user clicks the Back button, which will be disruptive and unexpected.

— 12 Make it so!

Now the only thing left to do is implement finishEditingTask (). All this method needs to
do is remove the fragment you just created, so add the code in bold:

@Override

public void finishEditingTask() {

FragmentManager fm = getFragmentManager () ;
FragmentTransaction transaction = fm.beginTransaction() ;

// Find the edit fragment using the tag,

// and remove it from the activity.

Fragment fragment = fm.findFragmentByTag (
TaskEditFragment.DEFAULT FRAGMENT TAG) ;

transaction.remove (fragment) ;

transaction.commit () ;

}
Run the app again and you should be able to add and edit tasks.

One More Thing ...

Do you remember adding that super cool code in Chapter 10 to change the colors of your window
based on the color of the image being displayed? Well, that was pretty cool back then, but it looks
a bit goofy now. For phones, the colors take over the entire window, but here in the tablet they
only cover the right half of the page.

Let’s disable the color change for tablets but keep it there for phones.
First, define a SHOULD USE PALETTE field in your build configuration. Open

build.gradle and add the lines in bold:

productFlavors {
phone {
buildConfigField ‘boolean’, ‘SHOULD USE PALETTE’, ‘true’
}
tablet {

buildConfigField ‘boolean’, ‘SHOULD USE PALETTE’, ‘false’
}
}

This creates a new field named SHOULD USE PALETTE inthe BuildConfig class. The
field 1s set to t rue for the APK built for phones, and to false for the APK built for tablets.

The next step is to use the field in your code. Open TaskEditFragment.java and add the
code in bold:

@Override
public void onLoadFinished (Loader<Cursor> loader, Cursor task) {

// Set the thumbnail image
Picasso.with (getActivity())
.load (TaskListAdapter.getImageUrlForTask (taskId))
.into(
imageView,
new Callback() {
@Override
public void onSuccess () {
Activity activity = getActivity ()

if (activity == null)
return;

// Don’t do this for tablets, only phones,

// since it doesn’t really work with a split

// screen view.

if (!'BuildConfig.SHOULD USE_PALETTE)
return;

}

Now run your app again on the tablet; the Palette behavior should be disabled. Verify that you
haven’t broken anything on phones by changing your build variant to phoneDebug and running

the app again on your Nexus 5 phone emulator. The Palette behavior should still be present on
your phone app.

Congratulations! You now have a fully implemented version of your Tasks app designed for
tablets!

Chapter 17
Supporting Older Versions of Android

In This Chapter
Learning about AppCompat
Using the backwardlcompatibility theme
Using the backwardlcompatibility toolbar
Understanding resource directories for different Android versions
Working with rightltolleft languages on older devices
Working around newer APIs on older devices
Using Android lint

It’s always nice to be able to write apps for the latest and greatest version of Android. You can
reduce the complexity of your app by targeting a single version. It also makes testing your app
much easier because there are fewer devices you need to test every new feature on.

Unfortunately, most of us (maybe not Uncle Jimmy) live in the real world. In the real world, not
everyone who wants to use your app is necessarily using the latest version of Android.

Why is this? Because the economics of device production make it profitable for manufacturers to
produce a wide range of Android handsets, but not necessarily to keep upgrading those devices
after they’ve been on the market for a few years. Invariably, some devices stop getting updates,
and users on those phones are stuck with whatever version of Android they can get.

Although it can be useful to support older versions of Android, it’s also important to know where
to draw the line. The older you go, the more difficult your job of developing and testing your app
will become. Figure 17-1 shows you the distribution of Android versions across all devices in the
world as of the time of this writing.

N 4.1+

M 4.0.x

- 2.x

& Other

Figure 1711 Percentage of Android devices by OS version.

iigs;
¥ To find the latest data, visit https://developer.android.com/about/dashboards.

Using the data in the figure, you can see that about 80 percent of the market is covered by Android
4.1 and later. Knowing that the 80/20 rule says that covering the last 20 percent of the market will
take 80 percent of the work, it makes sense to draw the line at Android 4.1.

4af
@. For more about the 80/20 rule (also known as the Pareto Principle), visit

http://en.wikipedia.org/wiki/Pareto principle.

This chapter will show you how to make the Tasks app backward compatible to Android 4.1 Jelly
Bean (API 16).

Understanding AppCompat

Google provides a library, called AppCompat, that emulates many of the features of later
versions of Android on earlier versions. For example, features that were introduced in Android
5.0, such as the Toolbar and Material Design, have become available to Android 4.1 users using
the AppCompat library.

You use the AppCompat library in this chapter to make your app work on Android 4.1.

https://developer.android.com/about/dashboards
http://en.wikipedia.org/wiki/Pareto_principle

o

For more information about the AppCompat library, visit

https: developer.android.com/tools/supportllibrary/features.html and
http://androidldevelopers.blogspot.com/2014/10/appcompatlv2llmateriall

designlforlpre.html.

Updating the build File

The first step is to update your bui 1d file to indicate that your app supports Android 4.1 (API
level 16).

Openthe build.gradle file inthe Tasks directory and make the following changes:

android {

compileSdkVersion 21

defaultConfig ({
applicationId "com.dummies.tasks"
minSdkVersion 16 -8
targetSdkVersion 21
versionCode 1
versionName "1.0"

}

dependencies {

}

// For backward compatibility to 16
compile "com.android.support:appcompat-v7:21.0.0" -20

The following explains the code:

— 8 Youchanged the minSdkVersion from21 to 16. This means that your app can be
installed on versions of Android as old as Android 4.1 Jelly Bean (rather than Android 5.0
Lollipop). You will leave the targetSdkVersion and the compileSdkVersion
alone.

SUMBER

rl

7 [t’s important to keep the targetSdkVersion as close to the latest Android
version as possible. Whenever a new version of Android comes out, you should increase the
targetSdkVersion (and possibly the compileSdkVersion if you want to use any
new features), and then build and test your app. See Chapter 3 for more information about
the minSdkVersion, compileSdkVersion, and targetSdkVersion.

— 20 Youadded the AppCompat library to your project. As mentioned in the previous
section, AppCompat provides most of what you need to support the features of the newest

https://developer.android.com/tools/support-library/features.html
http://android-developers.blogspot.com/2014/10/appcompat-v21-material-design-for-pre.html

Android OS on earlier versions of Android. It won’t do everything under the sun, but it does
support everything you need for the Tasks app.

Adding the Toolbar

In Chapters 9 and 10 you used the Toolbar widget to create both visible and invisible action bars
on the various pages of the Tasks app. You may not have realized it then, but Toolbar was
introduced in Android 5.0 and is not available on Android 4.1.

Luckily, the AppCompat library supplies its own implementation of Toolbar which works on 4.1
and later. You just need to switch over to it.

Open the following layout files:

¥ activity task edit.xml
¥ activity task list.xml
¥ activity task list and editor.xml

In each file, change the Toolbar view to the android. support.v7.widget.Toolbar, as
in the following example:

<android. support.v7.widget.Toolbar
android:layout width="match parent"
android:layout height="wrap content"
/>
This changes your layouts to use the AppCompat version of Toolbar. The next step is to change
your Java code to also use the AppCompat version of Toolbar.

Open the following Java files:

»* TaskEditActivity.java
»* TaskListActivity.java
1 TaskListAndEditorActivity.java

In each file, make the following changes:

Hport—androtdwidgetFootbars 1
import android.support.v7.widget.Toolbar; -2

public class ... extends ActionBarActivity -6
{
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setSupportActionBar ((Toolbar) findviewById(R.id.toolbar)); -12

Here is a description of each of the changes above:

— 1 Previously, you used the Toolbar that ships as part of Android 5.0. Remove the
reference to this Toolbar; you replace it on the next line.

— 2 Import the AppCompat version of Toolbar rather than the Android 5.0 version. This
ensures that your app won’t crash on versions of Android older than 5.0.

— 6 The Activity class that comes with Android 5.0 knows about the Android 5.0
Toolbar, but it does not know about the AppCompat version of Toolbar. Instead of using
the builtlin version of the Act ivity class, use the ActionBarActivity that comes

with AppCompat. The ActionBarActivity class knows about the AppCompat
Toolbar.

— 12 Similarly, the setActionBar () method youused in the old Activity class
does not know about the AppCompat version of Toolbar, so change that method call to one
that does.

Using the AppCompat Theme

Open the Tasks styles.xml file. You’ll notice that the Tasks app theme inherits from the
Material Design theme:

<style name="AppTheme"
parent="android:Theme.Material .NoActionBar">

This is a beautiful theme, but the problem is that the Material Design theme did not exist prior to
Android 5.0. You must use a different theme if you want to support Android 4.1.

Luckily, AppCompat ships with a backwardlcompatibility version of the Material Design theme.
This theme looks the same as the Material Design theme on Android 5.0, and looks close to the
same on older devices. You need to update your theme to use the AppCompat theme.

Make the changes in bold to your styles.xml file as shown in Listing 17-1 .

HListing 1711: Making the styles.xml File Backward Compatible

<style name="AppTheme"
parent="Theme.AppCompat.NoActionBar"> -2

<item name="colorPrimary">@color/primary</item> -4
<item name="colorPrimaryDark">Qcolor/primary dark</item> -5
<item name="colorAccent">Qcolor/accent</item> -6

<!--<item name="android:navigationBarColor">@color/primary
dark</item>--> -8

</style>

<style name="AppTheme.TransparentActionBar" parent="AppTheme">
<!--<item name="android:windowTranslucentStatus">true</item>--> -14
<!--<item name="android:windowTranslucentNavigation">

true</item>--> -15

</style>

<style name="TransparentActionBar" parent="Theme.AppCompat">-19

</style>

Here is what the changes do:

— 2 Change your AppTheme to inherit from the AppCompat
Theme . AppCompat .NoActionBar rather than from Android 5.0’s
Theme.Material .NoActionBar.

— 4-6 Remove the android: namespace from the various theme color definitions.
These three color definitions were introduced in Android 5.0, so they did not exist in 4.1.
The AppCompat theme will find them without the android: namespace.

— 8 Comment this line out. navigationBarColor isn’t supported on 16. You fix this
in a later section.

— 14 Comment this line out. windowTranslucentStatus isn’t supported on 16.
You fix this in a later section.

— 15 Comment this line out. windowTranslucentNavigation isn’t supported on
16. You fix this in a later section.

— 19 Replace Android 5.0’s Theme .Material with AppCompat’s equivalent
Theme .AppCompat.

Testing Your App

At this point, you should be able to try running your app. However, I have bad news: Your life just
got a whole lot more complicated.

To thoroughly test your app, you should create the following 12 emulators, shown in Table 17-1:

Table 1711 One. MILLION. Emulators ...

Phone Tablet

16

Nexus 5 APl 16 Nexus 7 API 16

17

Nexus 5 API 17 Nexus 7 APl 17

18

Nexus 5 APl 18 Nexus 7 API| 18

19

Nexus 5 APl 19 Nexus 7 APl 19

20

Nexus 5 APl 20 Nexus 7 API20

21

Nexus 5 APl 21 Nexus 7 API 21

Go ahead, I’ll wait. And while you’re doing that, maybe you want to create another 12 emulators
to test out the Nexus 4 and Nexus 9? But that wouldn’t be fair to all the other Android
manufacturers, so maybe you want to create a few emulators for Samsung, Motorola, HTC, LG,
and other manufacturers . . .

As you can see, this can quickly get out of hand. For simplicity, it’s best to just pick a few
representative extremes on the device matrix and test those thoroughly. Then you can spotlcheck
other devices as necessary.

For this section, let’s test with the following 4 emulators (or are you an overachiever? Go ahead
and create the 12 emulators from Table 17-1):

1 Nexus 5 API 16
1 Nexus 5 API 21

1 Nexus 7 API 16
1 Nexus 7 API 21

Choose Tools= Android= AVD Manager and create the four emulators. See Chapter 3 for more
information about how to create emulators.

After your emulators are available, try running the app on each, one at a time. You should see
something like what’s in Figure 17-2.

& 5554:Nexus_5_AP|_16
.. ! .
Lori ak it down dolizzle fozzizl...
L 4

rl
o e

@ 5554:AVD_for_MNexus_5_by Google

Lorizzle break it down...

[5554:Mexus 7_API_16

Lnrwak it down dolizzle...
'3

& 5554:Nexus_7_API_21

Lorizzle break it dow..

Figure 1712 Tasks app on a 4.1 phone (a), 5.0 phone (b), 4.1 tablet (c), and 5.0 tablet (d).

Poke around in the app a bit. As you can see, the app seems to work fine on Android 5.0 phones
and tablets, but there are some bugs on Android 4.1 devices.

Working with Right fo Left Languages

Looking at Figure 17-2a, it appears that the Tasks app does not lay out the text on its cards
correctly for Android 4.1 devices.

The reason is that we used some features in our layouts that added support for rightltolleft
languages (such as Hebrew and Arabic) in Chapter 9. However, rightltolleft languages were not
added to Android until Android 4.2, so these layouts do not render properly on Android 4.1.

To fix this, you need to change your layouts to have the proper rightltolleft directives, but add the
older nonlrightltolleft directives as well.

For the next set of code changes, it’s helpful to look at the next two figures. Figure 17-3 illustrates
how to configure things for leftltolright languages.

toLeftOf . toRightOf
Layouts In

toStartOf left-to-right languages toEndOf

Figure 1713 Laying out leftltolright languages like English.

Because you are reading this book in English, presumably you are accustomed to read in leftltol
right languages. For leftltolright languages, things that are on the left of something can be thought of
as at the start of the item. Things to the right can be thought of as at the end of the item.

For rightltolleft languages, this is reversed, as you can see in Figure 17-4.

toLeftOf Layouts in toRightOf

toEndOf right-to-left languages toStartOf

Figure 1714 Laying out rightltolleft languages like Hebrew and Arabic.

In the next few code blocks, you will add toLeftOf directives to anything that is currently using

toStartOf. Similarly, you will add toRightOf anywhere that toEndOf is currently being
used.

Open card task.xml and make the following additions:

<ImageView
android:id="Q@+id/image"

android:layout alignParentStart="true"

android:layout_alignParentLeft="true" -5
/>

<TextView

android:id="Q+id/textl"

android:layout toEndOf="@id/image"
android:layout toRightOf="Qid/image"/> -12

<TextView
android:id="Q@+id/text2"

android:layout alignStart="Q@id/textl"
android:layout alignLeft="@id/textl" -18
/>

These changes do the following:

— 5 The ImageView is intended to align with the left side of the parent view. The way
to indicate this in a nonldirectional way is to say that it is aligned with the parent start, as
shown on the previous line. However, for older Android versions that don’t have a nonl
directional way to specify parent start, you must add the alignParentLeft directive.

— 12 Similarly, this text view is intended to be laid out to the right of the image on leftltol
right devices, and to the left of the image on rightltolleft devices. Hence, it uses

layout toEndOf onthe previous line to indicate this. For older versions of Android,
youmust add the 1ayout toRightOf, which means the same thing in leftltolright

languages.

— 18 Adds layout alignLeftto the TextView thatis already using
layout alignStart.

Next, open fragment task edit.xml and make the following additions:

<TextView
android:id="@+id/task time"

android:layout marginEnd="3dp"
android:layout _marginRight="3dp"
android:layout alignEnd="@id/title"
android:layout alignRight="Qid/title"/>

<TextView
android:id="@+id/task date"

android:layout marginEnd="10dp"
android:layout marginRight="10dp"
android:layout toStartOf="@id/task time"
android:layout toLeftOf="@id/task time"/>

<EditText
android:id="Q@+id/notes"

android:layout alignStart="@id/title"
android:layout alignLeft="@id/title"
android:layout marginEnd="@dimen/gutter"

android:layout marginRight="@dimen/gutter"/>

Now when you rerun the app, the text on the list card and the edit fragment should be where you
expect them to be.

Fixing the Add Task Menu

If you look at the screen shots in Figure 17-2, you may notice that the Add Task menu icon is

missing.

Where did it go? The answer is in the menu_ 1ist.xml file. Open it now and look at the lines
that use showAsAction.

The problem s that android: showAsAction was not available on very old versions of
Android, so the AppCompat library doesn’t look for it. Instead, it looks in its own namespace.

Openmenu_list.xml and add the lines in bold:

<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"> -2

<item
android:id="@+id/menu insert"
android:showAsAction="always"
app:showAsAction="always" -7

. />

<item
android:id="@+id/menu_settings"
android:showAsAction="never"
app:showAsAction="never" -13

. />

</menu>

Lines 7 and 13 add a second showAsAction directive in the app : namespace in addition to
the one that’s already there in the android: namespace. But before you can use the app
namespace, you have to declare it as on line 2.

The http://schemas.android.com/apk/reslauto namespace (also known as the resl
auto namespace) is a special placeholder namespace that Android replaces with a namespace
containing your app’s package name. You use it whenever you want custom attributes, which
you can create for the custom views in your app. You also use it when you need custom
attributes defined by a thirdlparty library, such as the showAsAction attribute which is
defined in the AppCompat library.

If you rerun the app on your 4.1 and 5.0 emulators, you should see that the Add Task menu has now
returned.

Fixing the Window Opftions

If you run the app on a 5.0 phone emulator and click an item, you will notice some differences
from how you built the app in Chapter 10, shown in Figure 17-5.

http://schemas.android.com/apk/res-auto

@ 5554:AVD_for_Nexus_5_by_Google

Figure 1715 The Edit Task page on a 5.0 phone emulator.

The differences are

1 The status bar at the top is no longer translucent.
1 The navigation bar at the bottom is no longer translucent.

1 The Save button has been pushed down.

The problem is that Android 4.1 does not support transparent/translucent action, status, and
navigation bars. You commented out these lines in Listing 17-1 , and that’s why they’re broken
now. You will need to add back in this functionality, but do it in a way that won’t break Android
4.1.

The solution is to create a new style specific to API level 21 (Android 5.0) but otherwise leave
the existing style alone. In order to avoid copying and pasting code everywhere, share as much of
the style as possible between the existing and the 5.0 styles by using inheritance.

Open styles.xml now and make the following changes:

<!-- This theme will be overridden in newer SDKs -->
<style name="AppTheme" parent="AppTheme.Base"/> -2

<style name="AppTheme.Base" -4
parent="Theme.AppCompat .NoActionBar">

</style>

<!-- This theme will be overridden in newer SDKs -->
<style name="AppTheme.TransparentActionBar"
parent="AppTheme.TransparentActionBar.Base" /> -11

<style name="AppTheme.TransparentActionBar.Base" parent="AppTheme"> 13
</style>
Here is a description of the changes you just made:
— 2 Adds a new style, named AppTheme, which inherits from the AppTheme . Base.
AppTheme .Base is the old style you had for the app (previously it was called
AppTheme). By separating them out, you created a new “base” theme with all your app’s
style definitions, and a new theme that inherits from that base. Practically speaking, this code

will still behave exactly the same as the old code. But by doing it this way, you can override
values for Android 5.0 later in this section.

— 4 Renames the old AppTheme theme to AppTheme . Base.

— 11 Do the same thing here as you did on line 2. Create a new theme named
AppTheme.TransparentActionBar for the edit task page, and make it inherit from
AppTheme.TransparentActionBar.Base, which you create on line 13.

— 13 Renames the old AppTheme . TransparentActionBar to
AppTheme.TransparentActionBar.Base.

If you run the app now, it still behaves exactly as it did before.

The next thing to do is to add the special 5.0lspecific overrides to a style definition that is applied
only to Android 5.0. Create a new directory in the res folder named valueslv21, and then
create a new file named styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="AppTheme" parent="AppTheme.Base">
<item name="android:navigationBarColor">@color/primary dark</item> -5
</style>

<style name="AppTheme.TransparentActionBar"
parent="AppTheme.TransparentActionBar.Base">
<item name="android:windowTranslucentStatus">true</item> -9
<item name="android:windowTranslucentNavigation">true</item> -10
</style>

</resources>
This file contains the style items that you commented out from Listing 17-1 . By putting them in the
valueslv21 directory, you are telling Android to use resource directories to apply them only on
Android 21 (also known as 5.0) or later. See Chapter 6 for more information about resource
directories.

Here 1s more information about the previous code:

— 5 Sets the android:navigationBarColor inthe AppTheme. This fixes the
bug that caused the navigation bar to not be colored correctly on tablets. And because this
change is in the valueslv21 directory, it applies only to Android 5.0 or later.

— 9 Tells Android 5.0 or later to set the android:windowTranslucentStatus
to t rue, which makes the status bar translucent on the Edit page.

— 10 Tells Android 5.0 or later to set the
android:windowTranslucentNavigation to true, which makes the navigation
bar translucent on the Edit page.

Using Newer APIs

Every version of Android introduces some new APIs. For example, as you saw earlier in this
chapter, Android 5.0 introduced the new Toolbar API. To use the Toolbar, the AppCompat
library provides an alternative version of Toolbar that works on older versions of Android.

But what do you do if you have no equivalent for a new API in AppCompat? After all,
AppCompat can’t be expected to provide ports of new functionality for every single old version
of Android.

In cases where a new API isn’t available on older versions of Android, and you have no support
for it in the AppCompat or other Android support libraries, you must disable that functionality in
your app when it is run on versions of Android that do not support that feature.

A

See https://developer.android.com/tools/supportllibrary/features.html for
more information about the various Android support libraries, including AppCompat.

The way to do this is to check the version of Android before you attempt to use one of these APIs.
If you’re running on a version of Android that is too old, then disable that feature; otherwise, let it
go through. For example, if your app uses the new Advanced Camera APIs introduced with
Android 5.0, you could do something like the following;

if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
String[] ids = cameraManager.getCameraldList () ;

} else {
Toast.makeText (this,
"Sorry, that feature is not available on this " +
"version of Android",
Toast .LENGTH SHORT) .show () ;

https://developer.android.com/tools/support-library/features.html

You won’t need to do this for any of the APIs that the Tasks app uses, but it’s good to know what
to do should you ever need it.

Using Android Lint

When dealing with backward compatibility, it’s very easy to accidentally use some APIs that are
available on your current API version, but weren’t available a few years ago on older versions of
Android. If you’re not paying attention and do this, everything will seem to work fine on your
latestlandlgreatest phone, but your users will see crashes on their older phones.

A great tool is available to help you find these sorts of situations before they happen. It’s called
Android lint.

If you are familiar with the lint tool on other programming platforms, Android lint is very similar.
Android lint examines the source code for your project and finds anything that looks suspicious
and could possibly be a bug. Not all these warnings may, in fact, turn out to be bugs, but it’s
important to go through each one and make sure you know whether they are or aren’t.

The reason that Android lint is so useful when working with backward compatibility is that it
automatically flags any use of older APIs that haven’t been wrapped in build version checks.

To run Android lint, open a file in the Tasks project and then choose Analyze= Inspect Code.
Click Module "Tasks’ as in Figure 17-6 and click OK.

® © Specify Inspection Scope
Inspection scope

Whole project
* Module Tasks'

Uncommitted files All
Current File

Custom scope

Include test sources
Inspection profile

Project Default -

? Cancel oK |

Figure 1716 Choosing which modules to inspect using Android lint.

After Android lint has finished running, you see a report similar to what’s in Figure 17-7.

o Inpection: Bessits for inipection Frofibe Progect Defust’ | Rrsiibts For s prezion Profle "Frojees Defauly’ B L
5 s =y T 8 android-for-dummies-v (2 Hamg
3 b Androkd frageent_task_edit. sl
E ¥ Android Ling (15 ems Location
5 T ¢ % atiribube unused on older versions ie Tile ... Tackhos /8 oAl bnS Fiss Lyt | rdgment Task odit.xsl
) b B Frameliyout can be repliced with <meige> Eg (] Ber = [Tasksl
-
w it g F
5 5 . mage wit .(W'ﬂﬂ'!“"l:l - Problem syncpesis
H E b Tashs a [Accessibility] Missing contentDescription attribute on
; * B [Accessibility] Missing “conteniDeicripion’ atribuge on isage (at Lise 24)
] [Accrisibility Misiing “contentDeicripton’ &itribute on ir
[T —— s -
B 4Run S inspection S TODD o GAndrokd [E Terminad 0f versionControl B 3 Chamges I Blertages 1 Evemalog (¥ Gradie Comaole i N
|1 12 fhes o : add backward comp ¥ |3 mirese aga) 502 (WF 3 UTF-A Gemberteafrec.aaith = s & 0|

Figure 1717 The Android lint report for the Tasks app.

This report gives you a list of warnings that may or may not be bugs in your app. You click each
warning to view a description of it. If it’s a bug, then you should fix it. If it’s not in this particular
case, you are given the option to suppress the warning. By suppressing the warning, you indicate to
the lint tool that you acknowledge the warning, you have checked it, and you know it’s not an
error.

Android lint can be a very powerful tool to find potential problems with your code before you
release it. Make sure you run it frequently and keep your codebase clean and lint free! For more
information about Android lint, visit http://d.android.com/tools/help/lint.html.

http://d.android.com/tools/help/lint.html

Chapter 18
Wearing the Tasks App

In This Chapter
Understanding Android Wear
Creating an Android Wear emulator
Connecting Android Wear to your phone
Building a Wear app
Syncing data to your Wear app using Google Play
Packaging your Wear app

Android Wear extends the Android platform to a new generation of devices, with a user
experience that’s designed specifically for wearables.

Android Wear devices (usually watches) are designed to complement your existing Android phone
or tablet (see Figure 18-1). They are not designed to be standalone and usually do not have their
own WilFi or LTE radios, but instead communicate with the Internet through your phone over
Bluetooth. Any Android phone running Android 4.3 or later can easily pair with an Android Wear
watch.

\ ¥

/
TalTal el o r, i
| . |
| ' |
" A |

L] ! W e L |

Almost home!

Figure 1811: A notification on an Android Wear watch.
Users typically interact with Android Wear in one of three ways:

1 The Context stream: This is a vertically scrolling list of cards much like you might find in
the Google Now app. The Context stream is a list of notifications that are relevant to you right
now. They might include the current weather in your area, the traffic report for your evening
commute, notifications from apps on your phone, or just about anything else. These
notifications are usually the same notifications that show up on your Android phone.

1 Voice control: Android Wear allows you to do many things simply by speaking to your watch.
(To learn how to add voice control to your wearable app, visit the book’s online web extras at

www.dummies.com/extras/androidappdevelopment)

1 Apps: You can install specially designed Android Wear apps on your watch. These are
usually not the same as regular Android phone apps because they need to run on much smaller

http://www.dummies.com/extras/androidappdevelopment

screens and use much less memory.

By default, any Android phone app that posts notifications automatically displays its notifications
in the Context stream on your Android Wear watch. If you have an Android Wear device, you can
try it now with the reminders from Part I11!

Developers interested in bringing a richer experience to their apps on Android Wear devices have
two main options:

1 You can leave the app running on the phone, and improve the notifications to allow them to do
more stuff on the watch. For example, you might enable users to snooze reminders for the
Tasks app right from their watch without having to open the app on the phone. In this scenario,
the app stays on the phone, but provides rich notification actions that can be used on the watch.
See https://developer.android.com/training/wearables/notifications/ for more
information about building rich Android Wear notifications.

1 You can build a second app that runs directly on the watch, and synchronizes data with the app
on your phone via Bluetooth.

This chapter focuses on building a second app that runs directly on the watch.

o

You can do much with Android Wear, much more than this chapter or book can explore. In
many ways, Android Wear is its own platform. To learn more about it, visit

https: developer.android.com/wear/.

WhBER
,&t -
&

%,

ol

E) At the time of this writing, you must have a real Android phone to develop for Android
Wear. This is because you must install the Android Wear app on your phone, and the app 1s
not currently available on the Android emulator. You do not need to have a real Android
Wear watch though. It is possible to develop for Android Wear using a watch emulator.

Preparing Your Development Environment

Because Android Wear is a companion to your phone rather than a completely standalone product,
the development environment is familiar but slightly different from developing on regular Android.

Prepping your Android phone

Before you create the Android Wear emulator, you should prepare your phone.

Checking for system updates

Android Wear is an evolving platform, and it requires that certain services be up to date on your
phone. Go to your phone’s Settings page, scroll down to About phone, and click System updates to
make sure your phone has the latest software.

,M(‘fﬂlll.nﬂ AMI"/‘I)I.I’ Wl)ﬂlﬂ Nnm VNuIv nhnmn

https://developer.android.com/training/wearables/notifications/
https://developer.android.com/wear/

"DOLW&LD'&S AT VLWL FyY ©Twr uvie .}/UW' ll'lfll'lfl'/

Visit the Google Play Store and search for Android Wear. Install the app and then run it. You
should see something like Figure 18-2.

AaNdrold
wear

Let's get you set up

Figure 1812: The Android Wear setup screen.

Setting up an Android Wear emulator

The next step is to create your Android Wear emulators. These are the devices on which you will
develop your Wear apps.

1. In Android Studio, choose Tools= Android= AVD Manager.
2. Click Create Virtual Device.

3. Choose Wear, select Android Wear Square, and click Next.
4. Choose Lollipop API 21 x86, click Next, and then click Finished.
5. Start the emulator by pressing the green rightlpointing triangle Play button.
Wait until the emulator initializes and shows the Android Wear home screen as in Figure 18-3.

6. Repeat the Steps 1 to 4 but create an Android Wear Round emulator.You don’t need to
run it at this time, but you will need it later in the chapter.

You're all set!

Swipe up to get
started.

Figure 1813: The Android Wear Square emulator.

Pairing your phone with the Wear emulator
Now that your phone and emulator are ready to use Android Wear, you must pair them. Every
Android Wear user pairs his watch to his phone, and the Android Wear app makes this easy.

Because you are using an emulator rather than a physical device, you must go through a few extra
steps to pair your devices:

1. Connect the phone to your machine through USB.

2. Forward the emulator’s communication port to the connected phone.
You must do this every time the phone 1s connected:
adb -d forward tcp:5601 tcp:5601
The wearable emulator and your phone should now be listed when you run the adb
devices command.

$ adb devices

List of devices attached
emulator-5554 device
5b44a488839e3171 device

3. Start the Android Wear app on your phone and connect to the emulator.

You do this by choosing Pair with a new wearable and then choosing Pair with emulator from
the overflow menu, as shown on the left and right images in Figure 18-4.

The Android Wear app should now report that your emulator is “Connected.” Your phone and
emulator are now paired!

4. Check that the pairing is working.

You do this by tapping the menu on the top right corner of the Android Wear app, selecting
Demo cards, then clicking a Demo card. As shown in Figure 18-5, the card you select (left)
appears as a notification(s) on the home screen (right). You can dismiss the card by swiping it
off the screen to the right.

i

Do you want to develop with a real Android device rather than the emulator? Then
visit https: developer.android.com/training/wearables/apps/creating.html for
more information.

https://developer.android.com/training/wearables/apps/creating.html

20w @102
Pair with a new wearable
Disconnect Emulator
Forget Emulator

Demo cards

3

Tutorial

(LAl 800 Choose a device:

View wearable bug reports

Help & feedback

About

Figure 1814: Pairing your Android Wear emulator to your phone.

|
& Demo cards

R

Traffic

Weather

Sports

Public transit
Reminder (by time)
Reminder (by location)
Stocks

Package tracking

Package Shipped
Flight status

<

Figure 1815: Sending a demo notification to your Android Wear emulator.

Hiking boots & Wool

Creating a New Wear App

In this section, you create a new Android Wear app that runs directly on your watch emulator, and
you add the code necessary to allow it to sync with your phone.

Creating a new module
You can create a new module in your Android Studio project by following these steps:

1. Choose File=New Module.
Select Android Wear module, and press Next.

2. Create a new Wear module using the settings in Table 18-1 .

WBER
&

._ nD
) H The package name you use here MUST be the same as the package name you use for
your Tasks app. If they’re not the same, your tasks won’t sync between the two apps.

3. Press Next

and add a new Blank Wear Activity.

Use the settings from Table 18-2 for your new activity, and then click Finish.

4. Run your a
You can do

pp on your Wear emulator.
this by choosing Run=Run ‘TasksWear’ and choosing your emulator (not your

phone). You should see the “Hello world” app running as shown in Figure 18-6.

Table 1811 Settings for Creating a New Wear Module

Application Name

Tasks

Module name

TasksWear

Package name

com.dummies.tasks

Minimum SDK

API 21 Lollipop

Table 18)2 Settings for Creating a New Android Wear Activity

Activity Name

MainActivity

Layout name

activity main

Round layout name

round activity main

Rectangular layout name rect_activity main

Hello Square World!

Figure 1816: The Hello World app running on the Wear emulator.

Editing MainActivity

You’re now going to replace the sample code inMainActivity with the beginning of a real
app.

OpenMainActivity. java and replace the contents of that file with the following:

public class MainActivity extends Activity

{

@QOverride

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;

}

This code loads the activity main.xml layout into your activity.

Now open res/layout/activity main.xml and replace it with the following code:

<?xml version="1.0" encoding="utf-8"?>

<android.support.wearable.view.BoxInsetLayout -2
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto" -4
android:layout height="match parent"

android:layout width="match parent"
android:padding="15dp"> -7

android.support.wearable.view.WearableListView -9
android:id="@+id/list"

android:layout width="match parent"
android:layout height="match parent"

app:layout box="all"/> -13

</android.support.wearable.view.BoxInsetLayout>

This layout uses a few views specific to Android Wear. They are included in the Android Wear
support library. Chances are you have not encountered them yet while developing regular Android
apps. Here is what the code 1s doing:

— 2 The outer view is the BoxInsetLayout. Think of this view as a fancy
FrameLayout. Like a FrameLayout, the BoxInsetLayout lets you put other views
inside it but doesn’t give you any sophisticated layout options. However, unlike a
FrameLayout, the BoxInsetLayout knows the difference between round and
rectangular Android Wear devices, and it resizes its children appropriately to make sure that
they fit on a round watch face.

4

Because Android Wear devices come in many different shapes and sizes, it’s
important to ensure your layouts work with them all. You have a few ways to make your
layouts work with both round and rectangular devices. BoxInsetLayout is what you use
in this chapter. Another useful tool 1s WatchViewStub. WatchViewStub is great when
you want to use significantly different layouts for a round watch than a rectangular watch.
For more information about WatchViewStub, visit

https: developer.android.com/training/wearables/apps/lavouts.html.

— 4 You’ve been using the xm1ns:android namespace for some time now and are
probably quite used to it. This may be the first time you’ve seen a different namespace in
your Android layouts. The BoxInsetLayout uses an additional layout parameter
(Layout box online 13) that is not present in the default xm1ns: android namespace,
so 1t must use its own namespace to add the 1ayout box parameter. I call this namespace
app, but you can call it whatever you want as long as lines 4 and 13 agree.

— 7 This line assigns padding to the BoxInsetLayout element. Because the window
insets on round devices are larger than 15dp, this padding applies only to square screens.

— 9 WearableListView is a Wearlspecific layout very similar to the regular
Android ListView or RecyclerView. It shows items one at a time in a list, and creates
only as many views as will cover the screen, no matter how long the list is.
WearableListView is optimized for ease of use on small screen wearable devices.

— 13 This line ensures that the FrameLayout element and its children are boxed inside
the area defined by the window insets on round screens. This line has no effect on square
screens. Other options for layout box are left, right, bottom, and top. See the
documentation for BoxInsetLayout for more details.

https://developer.android.com/training/wearables/apps/layouts.html

You now have a Wear app that can theoretically show a list of data. However, you have no data
yet to display. The next few sections will fix that.

Adding Google Play Services for data syncing

Android Wear apps use the Google Play Services library (which is different than the Google Play
Store) for a lot of functionality. In this section you use Google Play Services to sync data between
your phone and watch.

Open your AndroidManifest.xml and add the following metaldata entry to your
application element:

<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google play services version" />

This metaldata is necessary for apps that use the Google Play Services library.

You then open the TasksWear build.gradle and ensure that the Google Play dependency is
listed there. If it’s not already there, then add it to the dependencies section:

dependencies {

compile 'com.google.android.gms:play-services-wearable:6.5.87'

}

Now add Google Play Services to your activity. OpenMainActivity.java and add the code
in bold:

public class MainActivity extends Activity -1
implements DataApi.Datalistener, GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener

GoogleApiClient googleApiClient; -5

@QOverride

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;

googleApiClient = new GoogleApiClient.Builder (this) -13
.addApi (Wearable.APTI)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
Lbuild() ;
}

@0verride
protected void onStart() { -21
super.onStart () ;

googleApiClient.connect (); —24
}

@Override
protected void onStop() {
super.onStop () ;

googleApiClient.disconnect (); -31
}

@QOverride

public void onConnected (Bundle bundle) { -35

Log.d("MainActivity", "onConnected"); -36
Wearable.DataApi.addListener (googleApiClient, this); -38
updateList (); —40

}

@QOverride

public void onDataChanged (DataEventBuffer dataEvents) ({
Log.d("MainActivity", "onDataChanged") ;
dataEvents.release(); —47

updatelList (); —49
}

@QOverride

public void onConnectionSuspended (int i) { -53
Log.d("MainActivity", "onConnectionSuspended"); -54

}

@Override

public void onConnectionFailed (ConnectionResult connectionResult) { -58
Log.d("MainActivity", "onConnectionFailed");

}

private void updateList () { —62
// TBD

}
}

This code adds support for Google Play data syncing. How does it do it? It basically connects to

the Google Play service, subscribes to updates, and then calls updateList () whenever there
is new data. Here is more detail about the code:

— 1 The main activity for this app. This activity implements the
DataApi.DataListener interface to be notified of sync events. It also implements the
GoogleApiClient ConnectionCallbacks and
OnConnectionFailedListener to handle connectivity events. If you’re writing an
app that needs to sync in the background (this one doesn’t), then consider using a
WearableListenerService to run continuously in the background.

— 5 Wearables use the GoogleApiClient to communicate with their host devices
(usually your phone).

— 13 This sets up the GoogleApiClient. Youtell it you need the Wearable.APT,
and also that it should call you back on this for any connectivity notifications.

— 21 The onStart method is an Android callback (not Google Play) that happens after
onCreate. onStart is called when the activity is visible on the screen, although it may
not necessarily be the frontmost activity. You want to make sure that you are connected to
Google Play any time the activity is visible (and disconnect from Google Play after the
activity is no longer visible), so you connect to Google Play in onStart and disconnect in
onStop. For more information about onStart and onStop, refer to Chapter 5.

— 24 Connects to the GoogleApiClient. Upon connection, you will receive a
callback on onConnected ().

— 31 We’re done, so disconnect fromthe GoogleApiClient.

— 35 onConnected is a Google Play callback that is called after a connection has
been established (which was initiated on line 24). It is defined in the
ConnectionCallbacks interface. This method needs to do two things: It needs to start
listening for data changes on line 38, and it needs to update the list with whatever data has
already been cached on the watch on line 40.

— 36 Logs a simple message to let you know that onConnected has been called. This
may be helpful later when you’re debugging your app and need to know whether a
connection between the phone and the wearable has been established.

— 38 Subscribes for any more data updates. You will be called back on
onDataChanged if anything is updated.

— 40 Updates the adapter as soon as you’re connected.

— 47 Always release the dataEvents when you’re done. In this case, you don’t use the
dataEvents directly, so release them right away.

— 49 Youwere told there was an update, so this line updates your adapter.

— 53 onConnectionSuspended is also defined in the Connection
Callbacks interface, and it is called whenever the Google Play connection has been shut
down.

— 54 Just logs a message. You don’t have to do anything at all, but a log message can
help you debug any issues.

— 58 onConnectionFailedis defined inOnConnectionFailed Listener.
It is called if there was an error connecting to the device. There i1s nothing that you need to
do here, but again you should log a message as an aid during debugging.

— 62 The updatelList refreshes the Ul with the latest data. At this time it doesn’t do
anything yet, but you will implement it in the next section.

Creating the adapter
Recall that an adapter is responsible for taking data from a data source (such as a database) and
creating views for each item in the list. See Chapter 9 for more information about adapters.

You created a list view earlier in the chapter. Now you just need an adapter to feed it data.

Create a new file WearableTaskListAdapter.java inthe same directory as your
MainActivity.java, and add the following to it:

/**
* A WearablelListAdapter that knows how to display our Task items in a
* list.

public class WearableTaskListAdapter

{

extends WearablelListView.Adapter -6

static final String COLUMN TITLE = "title"; -8
List<Dataltem> dataltems; —10

LayoutInflater inflater; -12

public WearableTaskListAdapter (Context context) {
inflater = LayoutInflater.from(context); -15

}

QOverride -18
public WearablelListView.ViewHolder onCreateViewHolder (
ViewGroup viewGroup, int i) {

return new ViewHolder (—22
inflater.inflate (R.layout.item task, null));
}

@Override -26
public void onBindViewHolder (
WearablelListView.ViewHolder viewHolder, int i) {

Dataltem dataltem = datalItems.get(i); —30

DataMap map —32
= DataMapItem.fromDataltem(dataltem) .getDataMap() ;

((ViewHolder) viewHolder) .titleView.setText (—35
map.getString (COLUMN TITLE)
);

}

@QOverride
public int getItemCount () { -41
return dataltems != null ? dataltems.size() : 0;

}

public void setResults (List<Dataltem> dataltems) { —45
this.dataltems = dataltems;
notifyDataSetChanged(); —47

static class ViewHolder extends WearablelListView.ViewHolder { -51
TextView titleView;

public ViewHolder (View itemView) {
super (itemView) ;
titleView = (TextView) itemView.findViewById(R.id.title);

}

This adapter takes a list of DataItems and creates views for each one from
item task.xml. Here is a look at the code in detail:

— 6 All adapters used by the WearablelistView must inherit from
WearablelListView.Adapter. The WearablelListView.Adapter is pretty
similar to the RecyclerView.Adapter youused in Chapter 9.

— 8 The name of the column containing the data you are looking for. The only column
shown in this list view is the title, due to the limited screen real estate. This string must
match the name used in the phone app.

— 10 The current list of dataItems. Maybe null.
— 12 The layout inflater used to inflate the views.

— 15 Retrieves a LayoutInflater from the current context.

— 18 Creates a ViewHolder that holds a reference to the views that you will need to
update for each new item in the list.

— 22 Returns anew ViewHolder (see line 51 for class ViewHolder). Each view in
your list will use the item task.xml layout. Note that you haven’t created
item task.xml yet, but you will shortly.

— 26 Updates the views in the ViewHolder using the information in the item in
position i.

— 30 Finds the DataItem for the item in position i.

— 32 Reconstructs the original DataMap for that item.

— 35 Sets the title view text based on the COLUMN TITLE inthe DataMap.

— 41 As in Chapter 13, getITtemCount returns the count of items in the list. In this
case itis equal to dataItems.getCount (), or zero ifdataltems is null.

— 45 Updates the items 1n the list, and notifies listeners (particularly the ListView)
that the data in the adapter has changed.

— 47 notifyDataSetChanged works the same way here as it did in Chapter 9. It
notifies any listeners (in particular, the WearableListView) that the data has been
updated and that the listener should be refreshed.

— 51 A simple ViewHolder thatjust holds the tit1leView for the list item. See
Chapter 9 for more information about ViewHolders.

The previous code used a layout called item task for each itemin the list, so add a new layout
fileinres/layouts andcallititem task.xml:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/title"
android:gravity="center vertical|start" -5
android:layout width="wrap content"
android:layout:marginEnd="I6dp" -7
android:layout height="80dp" -8
android: fontFamily="sans-serif-condensed-light" -9
android:lineSpacingExtra="-4sp" -10
android:textSize="16sp"/> -11

This layout is just a single, simple TextView.
— 5 Positions the text to the far left and centers it vertically in the view.

— 7111 These lines represent some styling choices to make sure the text fits on the
screen and is readable. Feel free to play around with these values to find the right look for

your app.

Now you need to hook the adapter up to the list view. OpenMainActivity.java and add the
code in bold:

public class MainActivity extends Activity

implements DataApi.DatalListener, GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener

WearableTasklListAdapter adapter; -5

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;

adapter = new WearableTaskListAdapter (this); -15

WearableListView listView = -17
(WearablelListView) findViewById(R.id.list);

listView.setAdapter (adapter) ; -20

private void updatelList () {
Wearable.DataApi.getDataItems (googleApiClient) . setResultCallback(-25
new ResultCallback<DataItemBuffer>() {
@Override
public void onResult (DataltemBuffer dataItems) { -28

try {
List<DataItem> items -30
= FreezableUtils. freezelterable (dataItems) ;

adapter.setResults (items); -33

Log.d("MainActivity", "adapter.setResults"); -35
} finally {

dataltems.release(); —38

}

If you run the app now, you won’t see anything because you haven’t published any data to the
watch yet.

— 5 The adapter you just created.

— 15 Creates the adapter.

— 17 Finds the WearablelistView inthe view hierarchy.
— 20 Links the adapter and the ListView.

— 25 Retrieves the complete list of dataitems using DataApi getDataltems.
Because this may involve a network sync and may take some time, you get the results back in
aResultCall back ata later time.

— 28 The onResult method of your callback is called when data is received. It returns
to you the list of items that resulted from your query.

— 30 Before you start using dataItems, you must “freeze” them to make sure they

don’t change while you are iterating over them.

— 33 Updates the adapter with the new items.

— 35 Logs a message to logcat to assist with debugging.

— 38 Always releases the dataTItems when you are through.

Your Android Wear app is now complete! However, if you run it, you will see just a blank screen.
This is because it does not yet have any data to show. You will fix that in the next section.

Publishing the Data from Your Phone

Now that you’ve created a Wear app, it’s time to publish the tasks from your phone so they can be
synced to your Wear app. This involves adding the Google Play sync services to your phone and
then testing the sync between your phone and Wear app. But before you do that, you need to do a
little setup work.

Configuring the phone’s build
Openbuild.gradle inyour original Tasks (not TasksWear) directory, and add the
following dependency:

compile ‘com.google.android.gms:play-services-wearable:6.5.87’

Make sure the version you use agrees with the version in your TasksWear build.gradle
from earlier in this chapter.

Next, open AndroidManifest.xml for your Tasks app and add the required metaldata tag
to your application element (like you did for TasksWear):

<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google play services version" />

Publishing the data from the phone

With those preliminaries over, it’s time to add Google Play data syncing to your phone’s
TaskProvider. Go backto TaskProvider. java inyour Tasks app, and add the code in
bold:

/**
* A Content Provider that knows how to read and write tasks from our
* tasks database.
*/
public class TaskProvider extends ContentProvider
implements GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener -7

// Google Play Constants
private static final String PLAY BASE URL = "/ o+ DATABASE TABLE; -12

GoogleApiClient googleApiClient; -14

@Override
public boolean onCreate() {

googleApiClient = new GoogleApiClient.Builder (getContext()) -20
.addApi (Wearable.API)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
.build() ;

googleApiClient.connect(); —25

QOverride
public Uri insert (Uri uri, ContentValues values) {

// Save to google Play for wearable support

PutDataMapRequest dataMap = PutDataMapRequest.create (

PLAY BASE URL + "/" + id); -38

DataMap map = dataMap.getDataMap(); -39

map .putLong (COLUMN TASKID, id); -40

map.putString (COLUMN TITLE, values.getAsString(COLUMN TITLE)) ;

map .putLong (COLUMN DATE TIME, values.getAsLong(COLUMN DATE TIME)) ;
map .putString (COLUMN NOTES, values.getAsString(COLUMN NOTES)); -43
PutDataRequest request = dataMap.asPutDataRequest(); -44
Wearable.DataApi.putDataltem(googleApiClient, request); -45

/**
* This method is called when someone wants to delete something
* from our content provider.
*/

@Override

public int delete (Uri uri, String ignoredl, String[] ignored2) ({

// Delete from google Play for wearable support
long id = ContentUris.parseld(uri); -60
Uri wearUri
= new Uri.Builder() .scheme (PutDataRequest.WEAR URI SCHEME)
.path (PLAY BASE URL + "/" + id) .build(); -63
Wearable.DataApi.deleteDataItems (googleApiClient, wearUri); -64

/**
* This method is called when someone wants to update something
* in our content provider.
*/
@Override
public int update (Uri uri, ContentValues values, String ignoredl,
String[] ignored2) ({

// Update to google Play for wearable support

long id = ContentUris.parseld(uri); -79

PutDataMapRequest dataMap = PutDataMapRequest.create (

PLAY BASE URL + "/" + id);

DataMap map = dataMap.getDataMap() ;

map .putLong (COLUMN TASKID, values.getAsLong(COLUMN TASKID)) ;
map.putString (COLUMN TITLE, values.getAsString(COLUMN TITLE)) ;

map .putlong (COLUMN DATE TIME, values.getAsLong(COLUMN DATE TIME)) ;
map .putString (COLUMN NOTES, values.getAsString(COLUMN NOTES)) ;

PutDataRequest request = dataMap.asPutDataRequest() ;
Wearable.DataApi.putDataItem(googleApiClient, request); 88

@Override

public void onConnected (Bundle bundle) {
Log.d("TaskProvider", "connected to Google Play") ;

}

@QOverride

public void onConnectionSuspended (int i) {
Log.d("TaskProvider", "Google Play connection suspended") ;

}

@QOverride

public void onConnectionFailed (ConnectionResult connectionResult) {
Log.e("TaskProvider", "Google Play connection failed") ;

}
}

Yourecall that the TaskProvider manages all of your database access for you. This code
added the ability to sync data to Google Play whenever your database changes. Here 1s more
detail about how this code works:

— 7 As youdid for the Wear app, add the ConnectionCallbacks and
OnConnectionFailedListener interfaces to get notified when you connect and
disconnect from Google Play.

— 12 Every item that is to be synced with Google Play must have a unique URI. This URI
must be unique for all items within your app, but does not have to be unique globally across
all apps. For this reason, you use a very simple URI which looks like /tasks to reference
all tasks, or /tasks/<id> to reference a specific task by id.

— 14 Google Play API client, used for Android Wearable syncing.

— 20 This block of code connects to Google Play. It is identical to the connection you
made for the Wear app earlier in this chapter.

— 25 Connects to the Google Play services. In the TaskWear app, you waited to
connect to Google Play until the onStart method. TaskProviders do not have an
onStart method, so they connect right away.

— 38 Lines 3845 sync a new task to Google Play. PutDataMap
Request.create () online 37 creates a new PutDataMap Request that requests
that you sync a DataMap to Google Play. The DataMap is basically a hashmap that
contains all the data for the task.

— 39 Gets the DataMap fromthe PutDataMapRequest so you can put your data in
it.

— 40—43 These lines insert all the task data into the hashmap. This includes the task ID,
title, notes, and date/time.

— 44 Converts the PutDataMapRequest to a PutDataRequest so that it can be

sent to Google Play.

— 45 Finally, this line sends the request to Google Play. The call to
Wearable.DataApi.putDataItem is whatactually does the syncing to the watch.

— 60 Lines 60—64 delete a task from Google Play. First you must determine the task ID
from the task provider URL

— 63 Once you have the task ID from line 60, you must determine the Google Play URI
for that task. This is done by usinga URT . Builder to create a new URI with the
PutDataRequest.WEAR URI SCHEME scheme, followed by the path to your task. The
path to the task is /tasks/<id> as was indicated in the description for line 12.

— 64 Deletes the task identified by the wearUri.

— 78—87 These lines update a task. The code 1s identical to lines 38—45 when you
inserted a task into Google Play. If the task already exists, it is updated with the new data.

Testing the sync
Congratulations, you should now have a working sync between your Tasks phone app and your
Tasks Wear app!

To test it out, follow these steps:

1.

Uninstall the app from your phone and watch emulator.
This 1s important to clear out the database.

adb -e uninstall com.dummies.tasks # uninstall from the emulator
adb —-d uninstall com.dummies.tasks # uninstall from your phone

. Run the Android Wear app and make sure that it still says “Connected” at the top.

If not, go back to the section “Preparing Your Development Environment” and reconnect your
emulator to your phone.

Run the app on your phone and add a few new tasks.

Run the TasksWear app on your emulator.

You should see the items you just added in your emulator, as in Figure 18-7. If you add more
items, they should appear immediately on your emulator.

Shut down the Android Wear Square emulator, then start up the Android Wear Round
emulator that you created earlier in this chapter.

Connect the round emulator to your phone using the Android Wear app. Then run the app on
that emulator to make sure that all the text is visible on a round display. You should see
something like Figure 18-8.

meow IS a verb and noun

Figure 1817: The Tasks app showing one item on the rectangular emulator.

meow IS a verb and a

noun

Figure 1818: The Tasks app on the round emulator.

Running the App without Android Studio

So far, you’ve been using Android Studio to run your Android Wear app. Most users are not
developers, of course, and will not have Android Studio handy.

Unlike regular Android, you have no launcher on Android Wear, which can make it hard to find
the app that you installed on your watch. How do you run your app without a launcher or Android
Studio?

You have two ways:

1 You can tap on your watch face and wait until it says Speak Now, and then say “Start tasks.”
Your watch will launch the Tasks app.

1 1f you prefer the long way, you can tap on your watch face and wait until it says Speak Now,
and then scroll down to the Start option. Then choose the Tasks app.

Packaging the App

One more difference between Android and Android Wear is that you have no Google Play Store
for Android Wear. Wait, there’s no Play Store for Android Wear? How are people supposed to
download and install your app?

The answer is that you need to bundle your Android Wear app into your phone app so that it
automatically installs when your phone app does.

To bundle your Wear app inside your phone app, add the following line to your build.gradle
in Tasks (not TasksWear):

dependencies {

wearApp project (':TasksWear')

}

Now, choose Build=Generate Signed APK and generate a signed APK for your Tasks app (not
TasksWear). Now if you install the signed APK, the Wear app automatically installs on your
Wear watch.

What’s Next?

This is just the tip of the iceberg. There are plenty of additional things you can do with your new
Android Wear app. Consider making a few of the following changes:

1 Improve your phone’s notifications to make them actionable from your watch.
v Allow users to be able to click into individual tasks and view them.
1 Add voice control so users can edit tasks or search them.

1 Use GridViewPager and CardFragment to add images and make a more visually
appealing interface.

1 Create a WearableListenerService to sync data from your phone while the
MainActivity isn’t running.

Visit https://developer.android.com/wear for more information about how to add some of
these exciting features.

extras _ _ . _
To learn how to add voice control to your Android Wear apps, visit the book’s online

web extras at www.dummies.com/extras/androidappdevelopment.

https://developer.android.com/wear
http://www.dummies.com/extras/androidappdevelopment

Chapter 19
Look Ma, I'm on TV!

In This Chapter

Creating an Android TV emulator

Coding apps for TVs

Using multiple loaders and adapters

Filtering your SQL queries

Launching a nonldefault activity from Android Studio

I wish there was a knob on the TV so you could turn up the intelligence. They got
one marked “brightness” but it don’t work, does it?

— Leo Anthony Gallagher

Smart TVs are changing the living room. Up until now, every TV manufacturer has developed their
own unique interfaces for their TVs. Now Android is available on TVs to consolidate those
interfaces and bring developer apps to your living room. Android is available in set top boxes
such as the Android TV, which you can plug into any modern TV, and it’s being built directly into
televisions shipping from Sony, Sharp, and Phillips.

As a developer, this is an opportunity for you to bring your apps to a whole new audience. In this
chapter, you will port the Tasks app to Android TV.

Understanding Guidelines for Building TV Apps

It goes without saying that the way people use their TVs is different from the ways they use their
phones. TVs are good for browsing information, but they’re not as great for entering information,
given their lack of a keyboard and touchscreen. Android TV is designed for casual consumption,
simplicity, and a beautiful, cinematic experience.

Consequently, you should build your TV apps differently than you build them for tablets or phones.
Here are some of the differences you should take into account when building TV apps:
1 Build for browsing, not for data entry.

1 TVs have no touchscreen, so build your interfaces so they can be navigable with a Dlpad
(imagine a remote control with up, down, left, and right buttons).

1 Put onscreen navigation controls on the left or right side of the screen and save the vertical
space for content. Do not use an action bar.

1 Don’t just reuse your phone or tablet activities; they will be hard to use and won’t look good
on the TV.

f

For more information about designing for Android TV, visit
https://developer.android.com/design/tv. For more information about developing
for Android TV, visit https://developer.android.com/training/tv.

You will use these techniques to transform your Tasks app into a TVllike browsing experience.

Building and Manifesting Changes

To build an app for TVs, you must make some changes to your build settings and your
AndroidManifest.xml.

Openthe build.gradle file inthe Tasks directory, and add the line in bold:

dependencies {

compile 'com.android.support:leanback-v17:21.0.3"'

If you set your minSdkVersion to 16 in Chapter 17, you will receive an error message
when you add the 1eanbacklv17 dependency from the previous code. This is because the
leanback library requires platform API 17 or later, as the name implies. To continue, change
your minSdkVersionto 17 inyour build.gradle file.

This adds the Android TV dependency (also known as the “leanback” library, because that’s what
you do when you watch TV) to your Tasks project.

Now open the AndroidManifest.xml file in your src/main directory and add the two
sections in bold:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.dummies.tasks">

<!-- For Android TV -->

<uses-feature android:name="android.hardware.touchscreen" -5
android:required="false" />

<application ... >

<activity android:name="com.dummies.tasks.tv.BrowseActivity" -11
android: theme="@style/Theme.Leanback" -12
android:screenOrientation="landscape" > -13

<intent-filter>
<action android:name="android.intent.action.MAIN" /> -15
<category
android:name ="android.intent.category.LEANBACK LAUNCHER"/>
-17
</intent-filter>
</activity>

https://developer.android.com/design/tv
https://developer.android.com/training/tv

</application>
</manifest>

Here is a description of what these lines do:

— 5 Your Android TV is not going to have a touchscreen, because most couch potatoes do
not have a long enough backscratcher that can reach the screen from their LalZIBoy. You
must tell the Google Play Store that a touchscreen is not required to install this app if you
want the app to be displayed to users browsing the store from their T'Vs.

— 11 Declares a new activity for the TV. This activity will be your “browse” activity,
which users will use to browse their tasks on your TV.

— 12 All TV activities should use the Theme . Leanback style, which among other
things disables the action bar (which is really hard to use ona TV).

— 13 This line forces Android to display this activity in landscape mode. There are very
few TVs out there that display in portrait mode.

— 15 Every launcher activity should also be a MATN activity. You did the same thing for
your phone and tablet activities.

— 17 Unlike your phone and tablet, Android TV uses a different launcher. Thus, the
category will be android.intent.category.LEANBACK LAUNCHER rather than
android.intent.category.LAUNCHER. This is convenient because it means you
can have two MAIN activities in your app, and Android can automatically pick the
appropriate one depending on whether your app is running on a phone/tablet or a TV.

Adding the BrowseActivity

In the previous section, you added a new activity to your manifest. In this section, you will create
the activity.

The BrowseActivity is justa simple activity wrapper around a fragment, which you will
write in the next section. It consists of two parts:

1 The BrowseActivity class
1 The activity browse.xml layout

Create a new package in src/main/java/com/dummies/tasks named tv, then create a
new file named BrowseActivity.java inthe tv directory and add the following code to it:

public class BrowseActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity browse);

Then add the following layout to res/layout ina file named activity browse.xml:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/main browse fragment"
android:name="com.dummies.tasks.tv.MainFragment"
android:layout width="match parent"
android:layout height="match parent"/>

This layout is similar to the one you created in Listing 912. It declares that this layout consists of
one element, a fragment with code defined in com.dummies.tasks.tv.MainFragment,
which you will create next.

Creating the TV Browse Fragment

As you can see, the BrowseActivity does very little. All it does is create the
MainFragment, which is where most of your TV code is going to go.

The MainFragment is an instance of an Android TV’s BrowseFragment. The builtlin
BrowseFragment consists of three parts:

1 A column of headings, or categories, on the left
1 Rows of content on the right, divided into the appropriate heading

1 A transparent title bar at the top containing a title and an optional search icon

You can see how these parts are arranged in Figure 19-1.

OSearch Title

Heading 1
Heading 2 Row 1 Item Row 1ltem | _,
Heading 3
Heading 4
Row 2 Item Row 2 Item .
Row 3 ltem Row 3 Item

Figure 1911 Android TV's BrowseFragment layout.

Creating the MainFragment outline
Let’s focus first on putting your tasks into the section on the right.

Create a new class named MainActivity inthe com.dummies. tasks. tv package, and

add the following code to it:

public class MainFragment extends BrowseFragment

{

}

implements LoaderManager.LoaderCallbacks<Cursor> -2

@Override
public void onActivityCreated (Bundle savedInstanceState) { -5
super.onActivityCreated (savedInstanceState) ;

setTitle (getString (R.string.app name)); -8
setBrandColor (getResources () .getColor (R.color.primary)); -9

ArrayObjectAdapter adapter
= new ArrayObjectAdapter (new ListRowPresenter()); -12

setAdapter (adapter); -14

@QOverride -18
public Loader<Cursor> onCreatelLoader (int id, final Bundle args) {

}

@Override
public void onLoadFinished (Loader<Cursor> loader, Cursor cursor) {

}

@QOverride
public void onLoaderReset (Loader<Cursor> loader) ({
} -28

This class creates a new BrowseFragment named MainFragment, sets some properties on
the fragment, creates an adapter, and then sets up the loader callbacks needed to populate the
adapter. For a refresher on how loaders and adapters work, see Chapter 13.

Here is more information about the previous listing:

— 2 This line creates the MainFragment, declares that it extends
BrowseFragment, and implements the loader callbacks that you’ll need to load data into
your adapter.

— 5 These lines override the onActivityCreated () method, and call
super.onActivityCreated () to make sure that the fragment is initialized properly.
onActivityCreated is called when the activity has been created and the fragment has
been attached to it. This is where you’ll do most of your initialization code for the fragment.
See Chapter 9 for more examples of using onActivityCreated.

— 8 Sets the title of the activity. This will be displayed in the upper rightlhand side of the
screen, as in Figure 19-1.

— 9 Sets the “brand” color of the activity. This is the color that will be used for the
background of the left half of Figure 19-1 containing your headers. For phones and tablets,
you used this color in your action bar, but because TVs have no action bar, you will use this
color on the left side of the screen.

— 12 Creates anew ArrayObjectAdapter which will be the main adapter used by
the BrowseFragment. Recall from Chapter 13 that an adapter knows how to read a list

of items (usually from a database) and create views for them. In this case, an
ArrayObjectAdapter knows how to read a list of items from an array and create
views for them.

Why an array rather than a database? The array contains one entry for each row in the grid
in Figure 19-1. Each row has its own adapter, and that adapter reads items from the
database. So you’ll still be reading from the database, but not directly from this adapter.

Android TV adapters require a Presenter object to create views from objects.
Presenters are very similar to the RecyclerView.Adapters youused in Chapter 13,
but they are not position based (their methods take objects rather than positions). In this case
you are using the builtlin Li stRowPresenter, which knows how to take i stRow
objects (which you will create in the next section) and create views for them.

— 14 Tells the BrowseFragment to use the adapter you just created.

— 18-28 Adds the loader callback methods that you’ll need to use a loader. See
Chapter 13 for more information about loaders. These callbacks are not fully implemented
yet.

Reading data from the database
The next step is to actually read your tasks from the database. You will use a
CursorObjectAdapter witha loader to load your tasks.

First you will need a simple model class to represent a task. Create a new file named
Task.javaincom.dummies.tasks.tv and add the following:
public class Task {
long id;
String title;

String notes;

)
This class will hold the data that you read out of the database.

Displaying tasks using loaders and CardPresenters

Now that you have the Task model, you need to set up your fragment so that it can read items from
the database and present them to the user. This is similar to using the loaders and adapters you
used in Chapter 9, except for Android TV you will also use a Presenter and a
CursorMapper.

OpenMainFragment.java again and add the lines in bold:

public class MainFragment extends BrowseFragment
implements LoaderManager.LoaderCallbacks<Cursor>
{
@Override
public void onActivityCreated (Bundle savedInstanceState) {
super.onActivityCreated (savedInstanceState) ;

setTitle (getString(R.string.app name)) ;

setBrandColor (getResources () .getColor (R.color.primary)) ;

ArrayObjectAdapter adapter
= new ArrayObjectAdapter (new ListRowPresenter()); -13

CardPresenter cardPresenter = new CardPresenter(); -15
CursorMapper simpleMapper = new CursorToTaskMapper(); -16

HeaderItem header = new HeaderItem(O,"All", null); -18
CursorObjectAdapter cursorObjectAdapter

= new CursorObjectAdapter (cardPresenter); -20
cursorObjectAdapter. setMapper (simpleMapper) ; —21

adapter.add (new ListRow (header, cursorObjectAdapter)); -23

setAdapter (adapter) ;

LoaderManager loaderManager = getLoaderManager(); -28
loaderManager.initLoader (0, null, this); -29

@Override
public Loader<Cursor> onCreatelLoader (int id, final Bundle args) { -35
return new CursorLoader (getActivity(), -36
TaskProvider.CONTENT URI,
null, null,null,null);
}

@Override
public void onLoadFinished (Loader<Cursor> loader, Cursor cursor) {
ListRow row = (ListRow) getAdapter().get(0); -43
CursorObjectAdapter rowAdapter
= (CursorObjectAdapter) row.getAdapter(); -45
rowAdapter.swapCursor (cursor) ; —46

}

@Override
public void onLoaderReset (Loader<Cursor> loader) {
// This is called when the last Cursor provided to
// onLoadFinished ()
// above is about to be closed. We need to make sure we are no
// longer using it.
ListRow row = (ListRow) getAdapter() .get(0); -55
CursorObjectAdapter rowAdapter
= (CursorObjectAdapter) row.getAdapter(); -57
rowAdapter. swapCursor (null) ; -58

)
Here 1s what the code i1s doing:

— 15 Inthe previous section you used a ListRowPresenter to convert rows into
views. Similarly, on this line you will use a CardPresenter to convert each task into a
card. The CardPresenter does not exist yet; you will write it in the next section.

— 16 Every CursorObjectAdapter must have a CursorMapper that knows how
to map rows in the database to objects that the adapter can read. You will create one called
CursorToTaskMapper a little later.

— 18 Eachrow in the grid needs to have a header associated with it. For your first
header, the row will contain all the tasks in the database, so name this header "A11" and
give it anid of 0.

— 20 On this line you finally get to meet the CursorObjectAdapter that we’ve been

referring to throughout this section. The CursorObjectAdapter is an adapter that
knows how to read rows from the database and convert them into views. To do that, it uses
the mapper and the presenter that you configured earlier and are added to the
CursorObjectAdapter onlines 20 and 21. Remember that the
CursorObjectAdapter is the second adapter you’ve created for this fragment. The
first (and main) adapter is the ArrayObjectAdapter you created in the previous
section. The ArrayObjectAdapter represents the rows in our grid, and the
CursorObjectAdapter represents the items in the row.

— 23 Youcreated the CursorObjectAdapter online 20, so now you need to add it
to the ArrayObjectAdapter. Recall that the ListRowPresenter that you added on
line 13 knows how to read 1.1 stRow objects, so on this line you create a new ListRow
object and add it to the adapter. The L1 st Row object represents one row in the grid, so it
will have the "A11" header you created on line 19 and the CursorObjectAdapter
that you created on line 20. Together, those two objects contain all the data (the header and
the items) needed to construct one row in the grid.

— 28-29 Kicks off the loader so that it starts running. initLoader will call your
onCreateloader callback on line 35 to create the loader, and then it will call the
onLoadFinished callback when the data is done loading. Refer to Chapter 13 for more
information about initLoader.

— 36 onCreateLoader is called when the fragment has been asked to create a loader,
so create a new CursorLoader that knows how to load tasks fromthe TaskProvider.
This code is the same as what you used in Chapter 13 to load tasks from the database.

— 43-47 onLoadFinished is called when the database has finished loading data and
has a cursor to give you. You need to take that cursor and hand it to the adapter. But
remember there are two adapters, so which one? Call getAdapter () to get the main
adapter from the fragment, which in this case is the ArrayObjectAdapter. Then get the
first object from that adapter (which you added on line 23). That object is a ListRow, so
call getAdapter () onthe ListRow and that will return to you the
CursorObjectAdapter that you set on line 23.

Now that you have the CursorObjectAdapter, call swapCursor () to set the
cursor that the loader just gave you. This is similar to how you implemented
onLoadFinished in Chapter 13, except it requires an additional step to find the right
adapter.

— 58 Do the same thing you did above, but in this case set the cursor to null.
onLoaderReset is called when the loader is reset, and it should zerolout any data that
it’s holding onto. In this case, that means swapping out the old cursor and setting the cursor
to null. This is similar to what you did in Chapter 13.

Mapping database cursors to tasks
The next step is to add the CursorToTaskMapper referenced on line 16 in the previous code.
Create a new class in com.dummies.tasks. tv called CursorToTaskMapper , and add the

following to it:

public class CursorToTaskMapper extends CursorMapper {
int idIndex; -2
int titleIndex;
int notesIndex; -4

@Override
protected void bindColumns (Cursor cursor) { -7
idIndex = -8
cursor.getColumnIndexOrThrow (TaskProvider.COLUMN TASKID) ;
titleIndex =
cursor.getColumnIndexOrThrow (TaskProvider.COLUMN TITLE) ;
notesIndex =
cursor.getColumnIndexOrThrow (TaskProvider.COLUMN NOTES); -13

}

@Override

protected Task bind(Cursor cursor) {
long id = cursor.getlLong (idIndex); -18
String title = cursor.getString(titlelndex) ;
String notes = cursor.getString(notesIndex); —20

Task t = new Task(); -22
t.id=id; -23
t.title=title;
t.notes=notes; -25
return t; -26

}
}

The CursorToTaskMapper knows how to read a row in the cursor and convert itto a Task
object. The following explains the way this is done:

— 2-4 C(reates fields that store the indices of the ID, title, and notes columns in the
database. Recall from Chapter 13 that you must know the index of the column you want to
retrieve from the cursor.

— 7 Overrides the bindColumns () method. This method is called once when the
cursor is obtained so that you can ask the cursor what the indices of the columns are. Lines
8—13 retrieve these indices and store them in the fields on lines 2—4. Refer to Chapter 13 for
more information about using cursors.

— 18-20 The bind () method is called to generate a Task object from a cursor. Lines
18-20 get the ID, title, and notes of the task from the cursor by using the column indices that
were obtained in bindColumns on line 7.

— 22-26 Creates a new Task object, and sets its fields based on the data you obtained
from lines 18-20, then returns the object.

Now your TV app is very close to working. The only thing you still need to implement is the
CardPresenter, which knows how to convert tasks into cards.

Creating the CardPresenter

Presenters are objects in Android TV used by adapters to convert objects (in this case, tasks) into
views. They are similar to the RecyclerView.Adapters youused in Chapter 9, so they
should look familiar to you.

Create a new class named CardPresenter. java inthe com.dummies.tasks.tv
package, and add the following code:
public class CardPresenter extends Presenter { -1

private static int CARD WIDTH = 313; -2
private static int CARD HEIGHT = 176; -3

@Override
public ViewHolder onCreateViewHolder (ViewGroup parent) { —6
Context context = parent.getContext(); -7

ImageCardView cardView = new ImageCardView (context); -8
cardView.setFocusable (true); -9
cardView.setFocusableInTouchMode (true); -10
cardView.setBackgroundResource (R.color.window background); -11
return new ViewHolder (cardView); -12

@Override
public void onBindViewHolder (Presenter.ViewHolder viewHolder, Object item) {
-16
Task task = (Task)item; -17

// Update card

ViewHolder vh = (ViewHolder) viewHolder; -20

ImageCardView cardView = vh.cardView; -21
cardView.setTitleText (task.title) ;

cardView.setContentText (task.notes); —-23
cardView.setMainImageDimensions (CARD WIDTH, CARD HEIGHT); -24

Context context= cardView.getContext (); —26
Picasso.with (context) -—27
.load (TaskListAdapter.getImageUrlForTask (task.id)) -28
.resize(CARD_WIDTH, CARD_HEIGHT) -29
.centerCrop () -30
.into (cardView.getMainImageView ()) ;-31

@Override
public void onUnbindViewHolder (Presenter.ViewHolder viewHolder) { -35

}

// The ViewHolder class
static class ViewHolder extends Presenter.ViewHolder { -39
ImageCardView cardView;

public ViewHolder (View view) ({
super (view) ;
cardView = (ImageCardView) view;

}
About this class:

— 1 Every presenter class must be a subclass of the Presenter class and must
implement three methods and one class:

e onCreateViewHolder
e onBindViewHolder
e onUnbindViewHolder
e AViewHolder class

— 2-3 The width and height of the ImageCardview. This needs to be in Java because

you are creating views in Java rather than in an XML layout file.

— 6 onCreateViewHolder is called when the ViewHolder is created. One
ViewHolder is created for every visible card on the screen. So if your screen is large
enough to show four cards at once, approximately four ViewHolders and CardViews
are created, no matter how long your list is. See Chapter 9 for more information about using
ViewHolders.

— 7 Gets the current context from the parent view. You will need this later.

— 8 Creates a new instance of Android TV’s builtlin ImageCardView. This view will
be recycled over and over to display tasks in a row. You can see examples of the
ImageCardView in Figure 19-1 on the rightlhand side. In Chapter 9 you used a
LayoutInflater to inflate an XML layout for the card view there, but it’s also okay to
create views directly in Java instead of using XML.

— 9-10 Makes sure that the ImageCardView is focusable when using a Dlpad and
when using touch.

o

For more information on using focus for navigation on devices without touchscreens,
S€€ http://d.android.com/guide/topics/ui/uilevents.html#HandlingFocus.

— 11 Sets the background of the view to the default window background color for this
theme.

— 12 Creates a new ViewHolder, defined on line 45, and returns it for the view you
just created. See Chapter 9 for more information about using ViewHolders.

— 16 onBindViewHolder is called when it’s time to populate a card with data from
the object in the adapter. onBindViewHolder will get the card view from the
ViewHolder object, and then update that card to reflect the data in the object that’s passed
in. As you scroll through your list, onBindvViewHolder will be called every time an
item scrolls onto the screen. Again, see Chapter 9 for more information about binding views
to objects.

— 17 The itemin this case is a Task object (because the mapper returns tasks), so this
line casts the item to a Task.

— 20 Casts the viewHolder objectto a CardPresenter.ViewHolder (rather
thana Presenter.ViewHolder) so that you can access the cardView on line 9.

— 21-23 Sets the title and content of the cardView using the data from the task.

— 24 Sets the dimensions of the ImageView inside the ImageCardView to be the
size from line 2-3.

— 26 GQets the current context from the cardview.

— 27 Uses Picasso to download the image for this task. Refer to Chapter 9 for more
information about using Picasso. In this case, you will load the image using the task’s image

http://d.android.com/guide/topics/ui/ui-events.html#HandlingFocus

URL obtained from get ImageUrlForTask () (line 28) into the ImageView that’s
managed by the cardvView on line 31. In addition, on line 29 and 30, you will resize and
crop the image to fit the size of the TmageView.

— 35 onUnbindViewHolder is called whenever a view is about to be unbound from
aViewHolder. It’s the opposite of onBindViewHolder online 16. Most presenters
do not need to do anything here.

— 39 Most presenters will need to implement a ViewHolder that contains references to
the views that need to be updated in onBindViewHolder. This ViewHolder is a
simple one that has a reference to a single view, Android TV’s builtlin ImageCardView.
See Chapter 9 for more information about using ViewHolders.

Running Your App

Your app isn’t done yet, but it should be possible to build and run it. To do that, you’ll need to
create an Android TV emulator.

Choose Tools = Android = AVD Manager, click Create Virtual Device, and create a new device
with the settings in Table 19-1.

Table 1911 Settings for Creating a New TV Emulator

Category TV

Name Android TV (720p)

Release name Lollipop

APl level 21

ABI x86

See Chapter 3 for more information about creating an Android emulator.

Once the emulator has been created, click the Run icon to start it up. Be aware that because the
Android TV does not have a touchscreen, many items in the interface may not be clickable.
Instead, you should use the arrow keys on your keyboard to navigate the Android TV emulator
interface.

Now that the emulator has been created, go to Android Studio and select Run = Run ’Tasks’, then
choose to run it on the emulator that you just created. You should see something like Figure 19-2.

L BS54 Anard Tv_7200 AFL_21

Figure 1912 The Tasks app running on Android TV with no data.

Well, that’s fun, but there’s no data to view. And there’s no way to add data! Let’s fix that.

Adding and Editing Items

Android TV isn’t really designed for inputting data. There’s no keyboard on most devices, and
although there’s a virtual onscreen keyboard, using it with a standard TV remote control can be a
real pain.

For that reason, the BrowseFragment doesn’t really have a builtlin way for adding items to the
database. But without a way to add items to the database, how are you going to test your app?

The trick is to launch the TaskEditActivity onyour emulator, directly from Android Studio.
Once the TaskEditActivity is running, you can use it to save tasks to the database. Your
users can’t launch TaskEditActivity directly from the app, but you can launch it from
Android Studio for testing purposes.

o

Because TVs aren’t a good way to input data, it probably doesn’t make sense to have a
permanent Add Item button on the Tasks app for TVs. The technique in this section is a good
way to test your app, but most users will expect your TV Tasks app to sync with their apps on
their phones. Cloud storage is not covered in this book, but take a look at Google Cloud Save
(http://developer.android.com/google/gcs) for one potential way to sync your tasks
between devices.

web
extras
. Using voice input can be a great way to allow your users to add data to apps on your TV.
Many Android TVs support voice input either directly on the TV, or built into the Android

http://developer.android.com/google/gcs

TV remote. For more information about using Voice Input on Android, visit the book’s web
extras online at www.dummies.com/extras/androidappdevelopment.

To launch TaskEditActivity, openthe TaskEditActivity. java file and rightlclick
on TaskEditActivity, then choose Run *TaskEditActivity’, as in Figure 19-3.

Retactor ¥
i |
* Jur Reminder Edit Activi Fnldlng
B */f >
w & public class TaskEditActivi Go To
= OnEditFinished, Shouldu Generate... &N
5 {
E # Save 'TaskEditActivity'
A Run TaskEditActivity' ~AOR
& ¢ Lattedwnen the User @ pebug 'TaskEditActivity' ~{D
: -EU;.*crr'_dc .
L= ..
Bllsi . peblic vodd finishedicj Local History
£ // When the user di Git > o
(=]
= // this activity.
ue finish(); Compare with Clipboard
i~ W ¥
} File Encoding
@ 3:Find P 4:Run "2 TODO ' ® Open on GitHub 5]
] Gradle build finished in 2 sec (2 minute: ® Create Gist... ,

Figure 1913 Running the TaskEditActivity from Android Studio.

The TaskEditActivity should run on your emulator, and you should be able to save a new
task into your database. If you repeat this a few times, you should see a few items in your app, like

in Figure 19-4.

[# BS54 Anednid_TY_ 7200 AP 21

f
% ! -
- Vo ey
p "
F e
T E & .

e Like a basiger Like a chehuahua
Like a boss

Figure 1914 The Tasks app with one item selected.

http://www.dummies.com/extras/androidappdevelopment

Creating Backgrounds

As mentioned in the first section, Android TV apps should be a little bit more cinematic than their
phone and tablet counterparts. Let’s add a touch of visual flair by changing the background of the
app when you select each task.

OpenMainFragment. java and add the lines in bold:

@Override
public void onActivityCreated (Bundle savedInstanceState) {
super.onActivityCreated (savedInstanceState) ;

final BackgroundManager backgroundManager
= BackgroundManager.getInstance (getActivity()); -6
backgroundManager.attach (getActivity () .getWindow()); -7

setOnItemViewSelectedListener (-11
new OnItemViewSelectedListener() {
@QOverride
public void onItemSelected (Presenter.ViewHolder
itemViewHolder,
Object item,
RowPresenter.ViewHolder
rowViewHolder, Row row)

if(itemViewHolder==null) -20
return;

ImageCardView cardView =
((CardPresenter.ViewHolder) itemViewHolder) .cardView; 24
Drawable d = cardView.getMainImage(); —25
if(d!=null) {-26
Bitmap b = ((BitmapDrawable)d).getBitmap(); —27
backgroundManager.setBitmap (b) ; -28

}
Here is what the code does:

— 6 Gets a BackgroundManager from the activity. The Android TV
BackgroundManager is responsible for setting the background of the app.

— 7 Every time you want to use a BackgroundManager, you must make sure that it is
associated with the current activity’s window.

— 11 Calls setOnItemViewSelectedListener () when you want to set the
listener that is invoked whenever an itemis selected. You will use this listener to change the
background to be a scaledlup version of the image for the currently selected task.

— 20 Youmustuse the itemViewHolder to getthe current cardview for the
selected item, but the 1 temViewHolder may sometimes be null. This can happen when
a row header is selected rather than a row item. To protect against this case, make sure to
check for null.

— 24 QGets the cardvView fromthe ViewHolder.

— 25-27 Gets the bitmap from the ImageCardView by first getting the drawable, and
then getting the bitmap from the drawable. It’s possible that the drawable may be null if it
hasn’t been downloaded from the network yet, so make sure to check for that case.

— 28 Uses the BackgroundManager to set the background to the bitmap you got from
line 27.

BackgroundManager has a setDrawable () method, so you might be tempted to
call backgroundManager.setDrawable () using the drawable on line 25 and
skipping line 26 entirely. Do not do this; it’s not safe to reuse drawables in multiple places.
ImageViews may modify their drawables, and if you’re using the same drawable in two
different ImageViews, you can get some very weirdllooking behavior. ImageViews do
not modify bitmaps, so they are safe to reuse here.

Try running the app now, and you will see that the background changes as you select different
tasks.

Creating More Filters

Currently, the only header you have on the leftthand side of the app is the “All” filter. Let’s add
some additional filters to make it easier for users to navigate their tasks. In this section, you add
the following filters:

1 All

1 Today

1 This Week
1 This Month
1 This Year

The way to do this is to add one HeaderItem for each new filter, then add a new
CursorObjectAdapter for each filter’s row of data. You also need to create several more
loaders to handle all the new CursorObjectAdapters.

First add the following to your MainFragment:

public static final Object[] CATEGORIES[] = {

new Object[]{ "All",new int[] {
Calendar.YEAR,
Calendar.DAY OF YEAR,
Calendar.HOUR OF DAY,
Calendar.MINUTE,
Calendar.SECOND

}

}y

new Object[]{ "Today", new int[]{
Calendar.HOUR OF DAY,

Calendar.MINUTE,
Calendar.SECOND

}

br

new Object[]{"This Week", new int[]{
Calendar.DAY OF WEEK,
Calendar.HOUR OF DAY,
Calendar .MINUTE,
Calendar.SECOND

}

by

new Object[]{"This Month", new int[] {
Calendar.DAY OF MONTH,
Calendar.HOUR OF DAY,
Calendar.MINUTE,
Calendar.SECOND

}

bo

new Object[]{ "This Year",new int[]{
Calendar.DAY OF YEAR,

Calendar.HOUR OF DAY,
Calendar .MINUTE,
Calendar.SECOND

}i
This static field defines all the categories you’re going to use as headers on the leftlhand side of
the app. It also defines the fields that you need to zerolout if you want to take a timestamp and
create a filter for it.

Let’s say that you want to find all the tasks that have a reminder set for today. To do that, you
would take a timestamp that represents your time right now, and zerolout the hour, minutes, and
seconds to get the time at midnight this morning. Anything with a reminder after midnight would be
selected by your filter.

Similarly, if you want to find all of the reminders that are set this week, you would still zerolout
the hours, minutes, and seconds, but you would ALSO zerolout the day of the week. This would
tell you the time that the current week started, so any reminder after that time would be for this
week.

Now that you’ve defined your filters, you just need to use them. Edit MainFragment again and
change the following lines in onActivityCreated:

for(int i=0; i< CATEGORIES.length; ++i) { -9
HeaderItem header = new HeaderItem(i,
(String) CATEGORIES[i] [0] , null); -11
CursorObjectAdapter cursorObjectAdapter
= new CursorObjectAdapter (cardPresenter); -13
cursorObjectAdapter. setMapper (simpleMapper) ; —14

adapter.add (new ListRow (header, cursorObjectAdapter)); -16
}

setAdapter (adapter) ;

LoaderManager loaderManager = getLoaderManager () ;

teoaderManager—initioader{0—rutt—this+ -22

for(int i=0; i<CATEGORIES.length; ++i) -24
loaderManager.initloader (i, null, this); -25

You just took the previous code that created a single row in the grid, and replaced it with code that
created one row for each item in the CATEGORIES variable. Here’s how the code works:

— 9 Loops over each item in the CATEGORIES array. Each of these categories will
become a row in your grid.

— 11 Creates a HeaderItem for each category in the for loop. The ID of the
HeaderItem will be the current position in the category array (1), and the name of the
HeaderItemwill be setto "A11", "Today", "This Week", and so on as
appropriate. The last parameter is an optional image URL which you won’t use for the
category headers.

— 13 Because each category corresponds to a row in the grid, this line creates a new
CursorObjectAdapter to load the data for that row. As before, you create the

CursorObjectAdapter and pass ina cardPresenter and a simpleMapper
(lines 13 and 14).

— 16 Just like before, this line creates a new ListRow using the HeaderItem and the
CursorObjectAdapter, and adds it to the ArrayObjectAdapter.

— 22 Make sure you delete this line.

— 24-25 Instead of initializing just one loader, this line calls initLoader () once for
each row in the grid. You pass in the index of the row as the ID of the loader to initialize.
You will use that ID later to find the correct loader in onCreatelLoader.

The last step is to update the loader callbacks to know that they need to work with multiple
loaders rather than just one. Replace your existing loader callbacks with the following:

@QOverride
public Loader<Cursor> onCreateloader (int id, final Bundle args) {
long filterTimestamp = getFilterTimeForSelectedFilter (id); -3
return new CursorLoader (getActivity(), -4
TaskProvider.CONTENT URI,
null,
TaskProvider.COLUMN DATE TIME + "> °?", -7
new String[]{Long.toString(filterTimestamp)}, -8
null) ;
}

@Override

public void onLoadFinished (Loader<Cursor> loader, Cursor cursor) {
int id = loader.getId(); -14
ObjectAdapter adapter = getAdapter(); -15
ListRow row = (ListRow) adapter.get(id); -16
CursorObjectAdapter rowAdapter = (CursorObjectAdapter) row

.getAdapter () ; -18

rowAdapter.swapCursor (cursor) ; —19

}

@Override

public void onLoaderReset (Loader<Cursor> loader) {
int id = loader.getId(); -24
ObjectAdapter adapter = getAdapter(); -25

ListRow row = (ListRow) adapter.get(id); -26

CursorObjectAdapter rowAdapter = (CursorObjectAdapter) row
.getAdapter() ;

rowAdapter. swapCursor (null) ;

}

The last two methods are virtually identical to their predecessors, only now they use the ID of the
loader to pick the correct adapter to update. The first method requires a little more explanation:

— 3 CallsgetFilterTimeForSelectedFilter () to getthe timestamp for the
selected filter. For example, if the filter was "Today", then the timestamp will correspond
to midnight this morning as described previously in this section. You’ll add the
getFilterTimeForSelectedFilter () shortly.

— 4 As before, this line creates the CursorLoader using the CONTENT URTI for our
task ContentProvider. The only difference is on lines 7 and 8. Line 7 specifies a filter
criteria for the query. It’s beyond the scope of this book to explain SQL, but the idea is that
you create a query that says "task date time > 2", and the ? will be replaced by the
time you specify on line 8. This way, each CursorLoader gets its own unique query (one
for Today, one for This Week, one for This Month, and so on).

— 14-16 The functions onL.oadFinished () and onLoaderReset () are nearly
identical to what they were before, except instead of assuming that they should use the
CursorObjectAdapter inindex 0 of the ArrayObjectAdapter like they did
before, they now get the ID of the loader from the 1 ocader object, and use that as the index
into the ArrayObjectAdapter to find the correct CursorObjectLoader. You're
using the loader’s ID to pass around the index for the correct adapter.

— 24-26 The same as lines 14-16.
Finally, add the getFilterTimeForSelectedFilter method:

private long getFilterTimeForSelectedFilter (int id) { -1
Calendar calendar = Calendar.getlInstance(); -2
int[] calendarFieldsToZero = (int[])CATEGORIES[id][1l]; -3

for(int fieldToZero : calendarFieldsToZero) -5
calendar.set(-6
fieldToZero,
calendar.getActualMinimum (fieldToZero)); -8

return calendar.getTimeInMillis(); -10

)
This method isn’t really related to Android at all, but what it does s this:

— 1 getFilterTimeForSelectedFilter takes anindex into the CATEGORIES
array that indicates which filter to use. Index 0 is "A11", index 1 is "Today", and so on.

— 2 Gets a new calendar instance that corresponds to “now.”

— 3 Gets the list of fields to zerolout from the array. For example, if the selected filter is
"Today", then according to the CATEGORIES array, the fields will be HOUR OF DAY,
MINUTE, SECOND.

— 5-=8 For each field that needs to be zeroed, these lines call calendar.set () onthe

field and set it to 1ts minimum. In most cases, this will be zero or one, but in some cases it
may be other values. For example, the beginning of the week is considered to be SUNDAY
(1) in the U.S., but in Europe it is considered to be MONDAY (2).
Calendar.getActualMinimum () will tell us the appropriate value for each field,
given the user’s current locale.

o

Programming dates and times in Java can get quite complicated. For more
information about Java’s date and time classes, visit
https://docs.oracle.com/javase/tutorial/datetime/iso. YOUu may also be
interested in checking out ThreeTenBackport at http://www.threeten.org/threetenbp.

— 10 Returns the timestamp for the result, in UNIX time (a long representing milliseconds
since Jan 1, 1970 UTC).

Run the app again and create a few tasks with reminder times today, yesterday, and earlier this
month, and you should see something similar to Figure 19-5.

[# BSS4-Anansd_TV_1200_APL_21

This Month

Nadl

Like 3 boss

Like a badger

Figure 1915 The completed Tasks app on Android TV.

https://docs.oracle.com/javase/tutorial/datetime/iso
http://www.threeten.org/threetenbp

Chapter 20
Moving beyond Google

In This Chapter

Making your app work on Amazon Fire

Finding out which features don’t work with Fire
Configuring and testing with an emulator
Uploading your app to the Amazon Appstore

For Android, Google may be the biggest game in town, but it isn’t the only one. Because Google
makes every release of Android open to the public via the Android Open Source Project, many
companies produce their own, custom versions of the Android source code.

One company that you may be familiar with, Amazon, chose Android to run on its devices — the
Fire OS tablet and phone.

The Androidlbased Fire devices can run Android apps with few or no modifications. It has no
access to the Google Play Store, though, which means that if you want Fire users to be able to
download your app, you have to publish it to the Amazon Appstore for Android. In this chapter,
you find out how to port your application to the Fire OS and then publish it via Amazon.

A

One reason you may want to port to the Fire is to reach more users. But only you can
decide whether the additional users you’ll acquire are worth the extra effort that’s necessary.
Do your homework and read relevant statistics on how many users each new platform has
before you commit to expending the effort.

Working around Google Features

Because the Fire isn’t a “true” Android device (it doesn’t use the official Google Android source
code but instead uses a modified version), it doesn’t have access to any of the closedlsource

Google services that you might already be using. In addition, the device itself may not have certain
features that you’re accustomed to:

1 Google Maps: If you’re using the Google Maps library to bring maps to your Android
application, you can’t use this library on the Fire. If you use maps, you may be able to use
Amazon’s Map v2, available at

https: developer.amazon.com/public/apis/experience/maps.

1 Google Play Store inlapp purchasing: If your app uses inlapp purchasing to allow users to

https://developer.amazon.com/public/apis/experience/maps

purchase from inside it, you can’t use this same API in your Fire app. Luckily, Amazon has a
version of inlapp purchasing that you can use on the Fire.

1 GCM push notifications: If you’re using Google Cloud Messaging for push notifications, you
won’t be able to use these on the Fire. Amazon has an alternative that you can use for Fire
devices.

+* Android Lollipop: Amazon uses the version of Android source code before Lollipop was

released, so the Fire has no access to any of the features in Lollipop. In particular, you’ll
notice that the Fire has a unique look and feel unlike any other Android tablet.

Even without these features and services, many Android applications work on the Fire with little
or no modification. If this includes your app, read on.

F

The Amazon App Testing Service can inspect your Android app and tell you what, if
anything, needs to be updated to support the Fire OS. You can learn more about the App
Testing Service at https://developer.amazon.com/public/resources/developmentl

tools/appltestinglservice.

Setting Up the Fire SDK

Much like developing on Android requires the Android SDK, developing on Fire requires the Fire
SDK. Because you already have the Android SDK, installing the components necessary for Fire
development is simple:

1. Open Android Studio and choose Tools = Android = SDK Manager.
2. In the SDK Manager, choose Tools = Manage Addlon Sites.
3. Click User Defined Sites, click New, and add the following URL.:

https://s3.amazonaws.com/androidlsdklmanager/redist/addon.xml.

Click Close, and wait for the SDK to download.

4. Uncheck “Installed” to only show you SDKSs that are not yet installed.
Then check the Amazon Fire Phone SDK Addon, and click Install.

After the SDK is installed, you need to modify your Gradle build file to use the new SDK.

In the build.gradle in the top level of your project (not the build.gradle in your
individual app directories), change the line in bold to the following:

buildscript {

repositories {
mavenCentral ()

}

dependencies {
etasspath—leom—androta—toots—buitargradte+—6-—+1
classpath 'com.amazon.device.tools.build:gradle:1.0.0'

}

https://developer.amazon.com/public/resources/development-tools/app-testing-service
https://s3.amazonaws.com/android-sdk-manager/redist/addon.xml

In the build.gradle for your app, change your compileSdkVersion to the following:

compileSdkVersion "Amazon.com:Amazon Fire Phone SDK Addon:17"

Now you should be able to rebuild your project for the Fire.

Setting Up Your Fire or Emulator

If you want to develop for the Fire, you need either the Fire itself to test your app with or an
emulator that can act as a surrogate. Because the Fire is its own breed of Android, you can’t use
the same ADB you use with other Android devices unless you make a few configuration changes.

Creating a Fire like emulator
If you don’t have access to a Fire, you need to create an emulator for one. Follow these steps:

1. Choose Tools = Android = AVD Manager, then click Create Virtual Device.
2. Click New Hardware Profile to create a new kind of virtual device.
3. Enter the settings from Figure 20-1 and click Finish.
4. Select your newly created Fire Phone virtual device and click Next.
Then choose Jelly Bean API level 17 for x86 devices, as in Figure 20-2.
5. Click Next.
Use the default configuration and then click Finish to create your Fire Phone AVD.

; 808 Create new Androdd Virtual Device (AVD)
AVD Name: Fire Phone
Device: 4.65" 720p (Galaxy Nexus) (720 x 1280: xhdpi)
Target: Android 4.2.2 - APl Level 17
CPUfABI: Intel Atom (x86)
Keyboard: ~f Hardware keyboard present
Skin: Mo skin
Front Camera: None
Back Camera: None
Memoary Options: RAM: 2048 VM Heap: |64
Internal Storage: 200 MiE
5D Card:
= Size: MiB
File:
Emulation Options: Snapshot o Use Host GPU

Cancel oK

.Figure 2011: Settings in the Create new Android Virtual Device (AVD) dialog.

* B Virtual Davics Gonfiguration

Rt e M AR Level Al Targel
it 1% xBE Andioed 4.4.2 _I!lt‘]l'
Kirka 19 arTeaki- . Google AP (Cooghe he.)
it 19 =BE Google AP (xBE Syitern Image .. _b AR Lol
17
=
Jeily Eean 1r armeabi=y. . Andioed 4.2.2 -] .‘
Anctimid
Belly Bean Andecid 4.2.2 il 4.2.2
Android Open Source
m_m Projec
armeabi=v. Coogle AP (Coogle Inc.) Yywinm fra -
xB6
ey Bean 16 arfmgali-v, Andioid 4.1.2
Jelby Boan 16 mips Androdd 4.1.2
Jeily Bean 16 xBE Andioed 4.1.2
& Inckeall Latest Version,., * See doxwme ntation for Androd 4.2 APR
Cancel Previous o Mest

Figure 2012: The Virtual Device Configuration dialog.

A

Do you need to create an emulator for a different kind of Fire device?
Visit https://developer.amazon.com/public/solutions/devices/kindlel
fire/specifications/01ldevicelandlfeaturelspecifications for a list ofall of the
emulator settings for all of the available Fire devices.

Enabling Developer Options

If you are using a real Fire device, you need to enable Developer Options to be able to use it with
ADB on your computer. To enable Developer Options

1. Open the Settings interface.

2. Scroll to and expand the Device section.
3. Tap Get info about your Fire.
4

. Now tap any item in the list repeatedly.
You must tap the item at least seven times within five seconds.

5. Click the Developer Options button that appears at the bottom of the screen.
6. Set the Developer Options slider to the ON position.
7. Select USB Debugging.

Installing the USB driver (Windows only)

On Windows, to detect the Fire phone on your development computer, you must first install a
modified version of the Kindle Fire USB driver that is included with the Fire Phone SDK addlon:

1. Run the USB driver installer at <ANDROID SDK>/addlons/addonl

https://developer.amazon.com/public/solutions/devices/kindle-fire/specifications/01-device-and-feature-specifications

fire phone sdk addonlamazonll7/tools/KindleDrivers.exe.

2. After installing the driver, wait a few minutes for the system to update before attempting
to connect the Fire phone to your development computer.

Connecting to ADB

You will now need to restart ADB. In a terminal, go to ANDROID SDK/platformltools and
run

Windows:

»* adb killlserver
»* adb startlserver

* adb devices
Mac OS X or Linux:

»* _/adb killlserver
» . /adb startlserver
» /adb devices

You now see your Fire in the output from the adb devices command.

Publishing to Amazon Appstore for Android

Publishing to the Amazon Appstore for Android is similar to publishing to the Google Play Store:
You create an account, and then you may need to pay a developer fee.

o8

Unlike the Google Play Store, apps must be reviewed on the Amazon Appstore for
Android, so plan a few days between the day you submit your app and the day it becomes
available on the store.

Follow these steps:

. Gotonttps://developer.amazon.com/appsandservices and click Sign In.

1

2. Sign in using your Amazon login, or create a new account.
3. Enter your developer information, such as in Figure 20-3.
4

. Agree to the Amazon Distribution Terms by scrolling down and clicking Accept and
Continue (Figure 20-4).

5. Indicate whether you intend to monetize your apps.

If so, fill in the necessary details, then click Save and Continue.

https://developer.amazon.com/appsandservices

10.

11.

12.

13.

Country®egian Rnited Stabes

First amae * Mike

Lt nams Burtsn

Emall pddrwns © mb-dummiss@niskalaong
.thfﬂ-nﬂbfr' s 415-754-1925

Fax reamBar

DevelOpes NAME 0f LHMEANY Nams * Mike Burton

Dhrealopes description

. Click the Add a New App button.
. Enter your app’s important information as in Figure 20-5, and click Save when you’re

done.
Feel free to fill in the other optional fields such as SKU if it’s useful to you; see Figure 20-5.

. Click the Availability and Pricing tab (Figure 20-6) to choose in which countries to make

your app available — and its price.

. Click the Description tab to set your app’s short and long descriptions, and add

translations for other languages.
Click Save when you’re done (see Figure 20-7).

Click the Images and Multimedia tab (Figure 20-8) to upload icons and screen shots to
include in your app description, then click Save.

Click the Content Rating tab (Figure 20-9) to choose your app’s content rating and age
restrictions by clicking the appropriate radio buttons, then click Save.

Click the Binary File(s) tab (Figure 20-10) to upload your app’s binary code, then click
Save.

See Chapter 8 for more information about how to build and upload your app’s APK file.
Click the Submit App button.

Figure 2013: The Registration window.

< AMATON

Registration

@ 1. Prosis Intomation ’ 4 Tax i

Ergiah | 4 iChinesl | ES Uspaessal

AFPF DISTRIBUTION AND SERVICES AGREEMENT

Last updated August 6, 2004

Current developers Big mhat's Changed’

This is an agréeement between Amazon Digital Services, Inc., Amazon EU S.a.r.l., Amazon Services International, Inc.,
Amazen Servicos de Vareje do Brasil Lbda,, Amazon.com Int’l Sales, Inc., and Amazon Australia Services, Ing. (each,
individually, an "Amaron Party” and, together with their affiliates "Amaren,” "we" or "us™) and you (if registering

a5 an individual) or the entity you reprasent (if registering as a business) (“Developer® or “you~). Any other Amazon
affiliate that we designate i alse an Amaron Party.

L Strecture of Agreement. This agreement (the “Agresment”™) includes the body of the agreement below, a8 schedules to this agreement
(" Fchadulas®), ad all terms, rules and policies that we make available for participating in this program, inchedng on dur develaper portal
(together, the "Program Polickes™). Mowever, the terms in sach Schedule only apply 1o yau il you engage in the activity or use the
Program Materials [defined in Section 1) to which the Schedule apples (for nstance, the teoms of the Distribation Schedule only apply to
you if you tubmit & product to ul to sell, distribute, or premobe). Moate carehdly read the Agrearmsent before clicking to actept it

Gur Program. Our program [the "Program™) allows end users to purchase, downbosd, ard access mobile sand ron-mobile softeare
applications, games, and other digital products, and to wse related services that we make avalable (for instance, Amacon GameCincie),
“Appa” are tofware applicalic, garmed, and cther digitsl products that you dubmit bo ui fer dale, dislribation, o promstion thraugh the
Program, or with which you use any Program Materials, together with their enhanoements, upgrades, updates, bug faes, new wersaang amd

Figure 2014: Click to Accept the Distribution Terms.

New App Submission

" indaales & reguired Reld

e Siert Mode: Toggle

App BEL

Category * Lilibees t | | Cther [
Customes support contact

i Use my defaut support information

Cuslomes suppor email sddress *
CuMlnmed LUBpon phons ~

Cuslomes support weksie *

Figure 2015: The New App Submission window.

~ Silent Mode Toggle

urrent Verseon (Incomplete) | Live App Testeg | Reviews | In-ppltemne (0) | GameCicle | Maps | Device Messaging
| Security Profile | Login with Amazon

Ehﬁﬂr—ﬁm Ewadabelity & F Description Images & Mpltimedia Contend Rating Binany Filefs)
* relralet & negquersd ek

Wisere wosikd you Il this spp 1o be 68 151l Exnlrien Bl Pegeons whbid AU S6IR Afd

avallabls?

(Ol i this Ricrining CoUsnirie. Bnd Tegions

A you changing for s appT * ahh..m“
() ¥om, oy barse b price .

Hais thiy app already besn relesssd? " E."g

fe.g. Googhe Plary, Apple App Stone, eic) e, i i e e

Wisen wosld you bl thiv app i be avallable i
an Amazon? b
Leaving the Bald blank will maks the app

mwmdabie afar & has been apprvend. Publishng

of an approved app wil begin at tha Sme entensd

ol will b avalabin on Armaron sl houns

aher.

Mode: Tames ane shown and sniered in th Pacfc

Tima Tona

Frow App of the Day {FAD) sligiity i ¥ea. preasa consder Fin agp tor the progae
I o g b baing conpicenl, we wil contact

you with more dotad abou the progeam and whal

10 PGt 31 Your 3P GOt Trough the approval

Figure 2016: The Availability and Pricing tab for the Silent Mode Toggle app.

Silent Mode Toggle

Lrse ApD Teshng Revaewin | oA Ieens: (0 GameCrie Mg Dewice Mo iagng
Security Profile | Login with Amazon

a General information Awadabelity L Pricing Images & Mtimedia Conbend Rating IBinary Fibe{(s)

* indcalen & requined feld

Save and Add a Translation
Language Emsglith (U.5.} = Displayed in all marketplaces where transiabions are not provided.
Dhoploy Thla > Silern Mode Toggla

Ehort description ”

A shorer version of YO app descrplion for use
o ke Cvices

Mancmien charsctens: 1200, Remarieg 1200

Long description *

A descrpbon of your app 1or use on T
Araonn oo welns

Maimumn characters: 4000, Ramaining: 4000

Prodiset feaiung bullets ©
Thaeiai 1 Sl CoanciNG S00 ledlurid, Bach on S

rew I, Thade st

a1 teatured will SO0aEr On

Figure 2017: The Description tab for the Silent Mode Toggle app.

- SI|EI'It Mode Toggle

o

a Live App Testwg Reviews | indppitems (0) | CameCicle hlages | Dewice Messaprg
| :i.-Hl,rqyl'mhly Lﬁnwnh.i.rrl.a:{m

* indales & reguired fekd

Sl o "

114 & 114p0 PRG dwith Manspancy) AR
.ll'.\:".l.

Large lestsn *

513 x §1Tpm PHG jwith transpasency) IPLOAD
UA..I:_.I.

Screanshats

Between 3 and 10 PhGs o PGs A

B0 x 4B0pe. 1024 x G000, 1280 K 200, MAGE

10 x BOOpe. 1820 & 10800, 1520 1 120000,
or 2550 & 15000 {portrnit oF Rndnoan

Amazon Fire TV Scresnshots

Between 3 and 10 PNGS o JPGs —
BOO X 4B0p, 1024 & SO0, 1260 X T20ps, it
1580 & B00ps. 1E00x 1080gn, 1930 & 12008,

of 3550w 1 E0g |t o e agee]

Figure 2018: The Images and Multimedia tab for the Silent Mode Toggle app.

S|Ient Mode Toggle

St Live App Testrg Feviews | InvAppitemns (0} | GameCicle | Maps | Device Messaging
| 'iechrryFrnlll! I,qgnwuh!.mamn

ﬂummlﬂn-im Awndabelity & Prcing Desonplion Images & Wisimedin . Binary File{s)

* indcales @ reguired Mekd

Subject Matter

Mduraie: Dooars once of sy and B nol fundamenial o the oveeall punposs and'or inhend of Fw a0n
Strang: Doturs mgulady and is fundamental i e cwerall puipose andion intint of the apg.

W Moderate Strong

Whodanoe ”
Reaksiic Violenoe J .:. .:.
Pl 5441 0 COMNL Typa.

Cartesean Vieksnos *
Canrteneat i Fasilidy vichinea o 8]
Fanria wisct @ coritml Dypm

Druigi *
Aot Tobaoos, o Drug Lie or
Foforences

Pians salnct a content typs

Mudity *
Mty O 8] Q
Pl Sakct i CoMent Type.

Figure 2019: The Content Rating tab for the Silent Mode Toggle app.

Silent Mode Toggle

Live App Testing Reviews neApp Ibems () GameCich Maps Device Wessagng
Securty Prohile Liagw with Amazan

& Generslimtormation Avsdsbdty b Pricing Description Imagend Mullimedia Contet Flsting

Save and Add a Binary

8 e (Recomemended)

Binary file "
Pl SFTP Dindry es larpar thian 125MB
EFTP irilru o nd Parming CorviiiEn

M Al nerrimaren Androed denaces based on my mactiet
& Kincse Firs {181 Gan)

i 1andle Firw (2nd Gen)

B intie Fien HD T (2nd Gen)

g Kiruthe Fien HE B § [2nd Gan)

ol Hirsdle Firn IO 7 (e G

B Handie Fiem HIOX 7 [3ed Gen)

Figure 20110: The Binary File(s) tab for the Silent Mode Toggle app.

The review process can take anywhere from hours to days to weeks. However, when your app
launches in the Appstore, you can find it in the Amazon Appstore for Android alongside other apps
as shown in Figure 20-11.

Featured Apps and Games

amazon Amazon CBS

ke

SO FREE FREE

LX)

Tales from — Build It! Miami
the Dragon... L Beach Resor...
ek I, ey e

$0.99 . $0.99

Earn Amazon Coins

r—= “ha!erria m- I’m Sleep walker's
- o !

Figure 20111: The Amazon Appstore for Android.

o8

To find out more about the Amazon Appstore submission process, visit
https://developer.amazon.com/public/support/submittinglyourlapp/techl

docs/submittinglvourlapp.

https://developer.amazon.com/public/support/submitting-your-app/tech-docs/submitting-your-app

Part V

The Part of Tens

web™
Enjoy an additional Android Part of Tens chapter online at

www.dummies.con/cheatsheet/androidappdevelopment.

http://www.dummies.con/cheatsheet/androidappdevelopment

In this part. ..

Part V consists of some of the best secretlsaucelcovered Android nuggets that you acquire only
after having been in the development trenches for quite some time. Chapter 21 lists some of the
best sample applications that can help springboard you on your way to creating the next hit
application. These applications range from databaseloriented apps to interactive games to
applications that interact with thirdlparty web application programming interfaces (APIs).

Part V closes with a list of professional tools and libraries that can help streamline and improve
the productivity of your application development process and make your life as a developer much
easier.

Chapter 21
Ten Free Sample Applications and SDKs

When you develop Android apps, you may run into various roadblocks based on the code. Perhaps
you want an app to communicate with a thirdlparty API that returns JSON or to perform collision
detection in a game. You can usually search the web for sample code because someone else has
likely already written it. Then all you have to do is review the code, alter it to fit your needs, and
continue with development.

Reviewing sample code increases your knowledge even if you don’t need the code in an
application. In fact, a good way to find out how to program for Android is to look at sample code.
Sure, it comes supplied with the Android SDK — in the API Demos, for example (see Chapter 2)
— but a truly cool plethora of reallworld application code is freely available on the web. You can
find on the Internet plenty of highlquality open source applications to serve as examples, thanks to
the open source nature of Android.

Most of the ten excellent open source applications and samples in this chapter are reallworld
Android applications that you can install from the Google Play Store. Try an application on your
device, and then crack open its source code to see how the gears turn.

Android Samples

The samples folder of the Android SDK holds the source code for the various Android samples,
which demonstrate how to use various Android APIs via small, digestible, working examples.
You can find tons of simple, straightltolthelpoint examples in the Android samples source code.
Incorporating animation into your project or playing an audio file inside your app is easy because
API Demos provides examples of both. If you have a lot of ideas but not a lot of time, you should
definitely install this demo app on your device and play with its numerous examples to see exactly
what they can do. The samples are easy to use with Android Studio: Just go to File= Import
Sample to browse the list of available samples and import them into a new Android Studio
project.

The Google I/0 App

https://github.com/google/iosched

Every year, throngs of Google developer groupies descend on Moscone West in San Francisco for
a multilday conference to discuss all things Google. The official conference app is written for
Android devices, and the source code serves as an example of how to write good apps for the
platform.

K A Mail

https://github.com/google/iosched

http://code.google.com/p/k9mail
KI9 Mail is a popular email client for Android that used to ship with Android before it became a
separate app. It’s an extraordinarily fulllfeatured open source application, with functionality such
as search, push, sync, flagging, signatures, and more.

GitHub Android App

https://github.com/github/android
GitHub 1s a popular community of open source projects that uses the Git Distributed Version
Control System (DVCS). The GitHub Android App lets you view, from the palm of your hand, all
your favorite GitHub repositories located on GitHub.com. The application demonstrates how to
use the GitHub API as well as the RoboGuice framework.

http://code.google.com/p/k9mail/
https://github.com/github/android
http://github.com

Facebook SDK for Android

http://github.com/facebook/facebook-android-sdk

If you’re feeling ambitious, you can tackle the task of creating the next popular Facebook
application, even if you don’t know where to begin. Use the Facebook Android SDK to easily
integrate Facebook functionality into your application — authorize users, make API requests, and
much more. Integrate all the goodness of Facebook without breaking a sweat.

Notepad Tutorial

http://d.android.com/guide/tutorials/notepad

If you’re interested in understanding the basic principles of SQLite without all the fluff of
services, background tasks, and other technical concepts, Notepad Tutorial is for you. Although
simple in its execution and usage, the source code and tutorial that go along with it are helpful.

U+2020

https://github.com/JakeWharton/u2020

Jake Wharton is a prodigious contributor to the Android open source community. Among his many
projects is the U+2020 app, which showcases a number of open source libraries including Dagger,
Retrofit, Picasso, OkHttp, RxJava, Staggered Grid, and many others.

Lollipop Easter Egg

https://github.com/android/platform frameworks base/blob/master/packages/SystemUI/src/com/android/systemui /e

Were you alive in 2014? Then you’ve probably heard of Flappy Bird. Perhaps even you or
someone you love were unlucky enough to succumb to that terrible affliction. Well, now you can
unleash it upon everyone you know who has Android 5.0 by tapping a bunch of times on “Android
version” in Settings, and then longlpressing on the resulting lollipop. And if that’s not enough, take
a tour of the source code on Android Open Source Project (AOSP) using the link above.

Android Bootstrap

>http://www.androidbootstrap.com

Building an app from scratch takes time. Android Bootstrap can be a great way to shortcut that
process. It includes a full working implementation of Fragments, Fragment Pager, ActionBar via
AppCompat, Navigation Drawer, ViewPagerIndicator, Retrofit, GSON, Robotium for integration
testing, API Consumption with an API on Parse.com, and much more. It’s no substitute for
understanding how to build Android apps, but it can be a helpful tool to bootstrap your next
Android project with a few commonly used tools.

http://github.com/facebook/facebook-android-sdk
http://d.android.com/guide/tutorials/notepad/
https://github.com/JakeWharton/u2020
https://github.com/android/platform_frameworks_base/blob/master/packages/SystemUI/src/com/android/systemui/egg/LLand.java
http://www.androidbootstrap.com

The AOSP

https://source.android.com

Nearly everything about Android is open source. This means that the source code of the operating
system itself, including many of the apps it ships with, is available online for you to browse at the
Android Open Source Project (AOSP). The source is massive and you may find it a little difficult
to navigate, so you may want to check out the GitHub mirror at http://android.github.io,
which makes it easier to contribute to the source if you’re a github user.

https://source.android.com
http://android.github.io

Chapter 22

Ten Tools to Simplify Your Development
Life

As a developer, you inherently build tools to become more productive — for example, to assist in
asynchronous communication, XML and JSON parsing, date and time utilities, and much more.
Before you write a ton of helper classes or frameworks to handle items for you, seek out tools that
already exist. This chapter lists ten tools and utilities that can simplify your development life by
increasing your productivity and ensuring that your app is up to snuff.

Android Lint

http://developer.android.com/tools/help/lint.html

If you’ve done other nonlAndroid development, you may be familiar with the concept of lint tools,
which helps you find the “lint” that collects around your code. Lint helps you flag code that may
technically run, but it may not be doing exactly what you think it may be doing. Android lint is a
sort of warning system on steroids for Android code. To run it, go to Android Studio and choose
Analyze=Inspect Code. To run it from the command line, use the gradle target check; for
example, . /gradlew check.

Android Systrace

http://developer.android.com/tools/debugging/systrace.html

Are you interested in finding out why your app is so slow? Chances are that you are, or at least
you should be. Android’s Systrace tool can be instrumental to rooting out the causes of poor
performance. Using it, you can get very detailed information about what your app is doing at any
given time, an example of which is in Figure 22-1:

http://developer.android.com/tools/help/lint.html
http://developer.android.com/tools/debugging/systrace.html

1 rErg:
Es Bie o JEN, T B, in . L. (LR b, . . M P,

o oo NI TTEE | | NI T TN EETE T (7 N iy T e
CPL 0T ek Fln;q-nq?r
crur e (RN I A
CPU 1 Clock Froguency:
SurfaceView

(T TTITIT FITTTET T LEL 0D R |

WEY ML | |
vanmider 1z | || ||| = |] | I T
|
121: Bander 2= | | | Al [11111 |
121; Binder 3 .| | [| I_I ||. |
121: Bander 4: || || | |1 |

121: SurfaccFlmper: ||

121: surfiscefinger | | 111

1T nadind syaicm

BT kworkeru: 196407 (| 00 DEN RO | (WD O o
tos45: kworkeriu: .2 toeas: (MIRIIRURNN 0 00N 1 QOCOONR BT O V00N A0 DRER N L |
14243: kworkeruzi- 14243 [WD D ININ 10 DO UM Dy W INE e W e mm

15004 kwodkeou0-05004:) 10 DN B W0 [OO0 O OO U0 AR 1 OO N (R0 N
2673 kworker| 028729

26872 kworker0:2-26872-] L0 1/ | | {010 i | R I I JIMEL

26075: Thecad-5112 Illl | 1] ||

Figure 2211: Example output from Android Systrace.

RoboGuice and Dagger

http://roboguice.org
https://github.com/google/dagger

No, RoboGuice isn’t the latest and greatest energy drink marketed to developers — it’s a
framework that uses the Google Guice library to streamline dependency injection. Dependency
injection handles the initializing of variables at the right time so that you don’t have to. This
concept cuts down the amount of code you have to write overall, and it makes maintaining your
application a breeze. Where RoboGuice focuses on ease of use, Dagger 1s another popular
dependency injection library focused primarily on speed.

Translator Toolkit

http://translate.google.com/toolkit

If you want to increase the number of people who can use your app, there’s almost no better way
to do it than to translate your app into other languages. The answer is to use Google to find helpers
to translate your app for you. The translations aren’t as clean as if you found a native speaker to
translate for you, but they’re a great place to start on the cheap. You might consider getting the
initial translations done by Google, then reaching out to your user community to find volunteers to
edit the translations for you, or using an outsourcing website such as ODesk to find translators.
Even craigslist can be a great resource!

Hierarchy Viewer

http://developer.android.com/tools/help/monitor.html

http://roboguice.org
https://github.com/google/dagger
http://translate.google.com/toolkit
http://developer.android.com/tools/help/monitor.html

Working with various views inside the layout file to create a user interface isn’t always a
straightforward process. Hierarchy Viewer, located in the Android Device Monitor, lets you see
exactly how your widgets are laid out onscreen graphically. This format lets you clearly see a
widget’s boundaries so that you can determine what’s going on inside the layout. Hierarchy
Viewer, the ultimate tool to make a pixellperfect user interface, also lets you magnify the display
in the pixellperfect view to ensure that images and Uls display flawlessly on all screen sizes and
at all densities.

Ul/Application Exerciser Monkey

http://developer.android.com/tools/help/monkey.html

Don’t worry: The Ul/Application Exerciser Monkey doesn’t need to be fed bananas to remain
happy! You use Exerciser Monkey to stressltest your application. It simulates random touches,
clicks, and other user events to ensure that abnormal usage doesn’t make the app explode.
Exerciser Monkey can be used to test apps on either your emulator or your own device.

Git and GitHub

http://git-scm.com
http://github.com

Git — a superfast, free, and openlsourceldistributed version control system — manages
repositories quickly and efficiently, making it painless to back up work. Don’t let a system crash
ruin your day by not having a version control system for your next spectacular app. Git makes
working with branching simple and effective, and it integrates into your workflow easily. Although
Git 1s distributed, you’ll likely want a remote location where the Git repository is stored. You can
obtain a free, private Git repository fromhttp://bitbucket.org. If your code is open source,
you can create free repositories on Github.com , where there is a huge community of open source
developers contributing to each other’s open sourced projects. Also, the Github Android app is
open source (see Chapter 21) and worth a good browse.

Picasso and OkHfttp

http://square.github.io/picasso
http://square.github.io/okhttp/

Images add muchlneeded context and visual flair to Android applications. Picasso allows for
hasslelfree image loading in your application — often in one line of code! You’ve already seen
Picasso in use in the Tasks app in Chapter 9, but there’s much more it can do for you in your other

apps.

Picasso 1s built on OkHttp, which makes uploading and downloading information over ht tp
significantly easier than the builtlin libraries included with Android.

Memory Analyzer Tool

http://developer.android.com/tools/help/monkey.html
http://git-scm.com
http://github.com
http://bitbucket.org
http://github.com
http://square.github.io/picasso/
http://square.github.io/okhttp/

https://developer.android.com/tools/debugging/debugging-memory.html

Java does a lot of memory management for you, but that doesn’t mean that you can’t leak memory
on Java. In fact, memory leaks on Android are one of the most common ways that longlrunning
apps can become unstable. The Eclipse Memory Analyzer Tool (MAT) can help you track down
the cause of your memory leaks on Android. Visit the link above to get more information about
how to use MAT and other tools to investigate your app’s memory usage.

Travis £i

http://travis-ci.org

Once you have a source code control system such as Git set up, the next step is to set up a
Continuous Integration (CI) server such as TravislCI. A CI system such as TravislCI automatically
builds your app every time you push a new change to GitHub. It also runs your test cases, checks
Android lint, and can also build a release version of your app that’s ready to be uploaded to the
Google Play Store. TravislClI is free for open source projects, but you can also buy a subscription
if you want to build your closed source projects.

https://developer.android.com/tools/debugging/debugging-memory.html
http://travis-ci.org

About the Author

Michael Burton is the Director of Mobile Engineering at Groupon. He wrote the Digg, Triplt,
OpenTable, and awardlwinning Groupon Android apps, among others. He’s flown a project on the
space shuttle. He’s spoken on Android application development at conferences in London, Boston,
Silicon Valley, Rio de Janeiro, and elsewhere. He’s also the author of RoboGuice, the openl
source dependency injection framework used by thousands of apps, including Microsoft, Nike, and
others. Follow Michael on Twitter (@roboguice) or check out RoboGuice at

http: roboguice.orq.

http://roboguice.org

Dedication

To a neverlending list of new desserts.

Author’s Acknowledgments

A big thank you to the extended Android openlsource community, including Carlos Sessa,
Stéphane Nicolas, Manfred Moser, Michael Bailey, and Donn Felker among others, who
contributed their code, expertise, and reviews of this book.

Thank you to my boss Greg and to the great Android team at Groupon — Carlos, Alan, Aliya,
David, Eric, Hemant, Michael, Richard, Stéphane, Snow, Valampuri, Wentao, Cristian, Andrei,
Bogdan, Marius, Alin, and Trevor, who have pushed me to deeply understand the Android
platform.

I’d also like to thank my friends at Google, Roman, Boris, and Sarah, without whom the Lollipop
sections of this book would have been that much more difficult to write.

Thank you to my team at Wiley for their tireless efforts, especially Maureen, Michael, Kyle, and
Andy.

And finally, thank you to Carrie, my friends, and my family who have supported me through the
many evenings and weekends I have spent working on this project over the years.

Publisher’s Acknowledgments
Acquisitions Editor: Kyle Looper

Publisher: Andy Cummings

Project and Copy Editors: TISquared Services
Technical Editor: Michael Bailey

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Sheree Montgomery

Cover Image: © 1Stockphoto.com/ Cary Westfall

Get More and Do More at Dummies.com®
Start with FREE Cheat Sheets

A
ﬂ""hﬂ. Cheat Sheets include
t,\\'-' + Checklists
- Charts
* Common Instructions
» And Other Good Stufi!

To access the cheat sheet specifically for this book, go to
www.dummies.com/cheatsheet/androidappdevelopment.

g \
Get Smart at Dummies.com ’
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
*Videos
+lllustrated Articles
* Step-by-5tep Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
* Digital Photography
* Microsoft Windows & Office
* Personal Finance & Investing
* Health & Wellness
= Computing, iPods & Cell Phones
= eBay
* Internet
+ Food, Home & Garden

*Sweeepslakes nof currently avaikabie in all countries wisit Dummies.com for official rules,

Find out "HOW" at Dummies.com

http://www.dummies.com/cheatsheet/androidappdevelopment
http://www.dummies.com

Take Dummies with you everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

You

Watch us on YouTube

ﬁ

Join us on LinkedIn

Pin us on Plnterest

Circle us on google+

Subscribe to our newsletter

http://www.dummies.com
http://www.dummies.com
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/
https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter

>

Create your own Dummies book cover

Shop Online

A Wiley Brand

http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com
http://dummiesmerchandise.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

Making Everything Easier!”

ndroid
App Development

FOR

DUMMIES

mm

Learn to:

« Create amazing apps for the latest
Android smartphones and tablets

- Download and install the SDK and
start working with the Android
Studio tools

« Adapt your apps for use on Android
watches and TVs

« Publish your apps to the Google
Play” Store

Michael Burton

	Title Page
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Beyond the Book

	Part I: Getting Started with Your First Android Application
	Chapter 1: Developing Spectacular Android Applications
	Why Develop for Android?
	Android Development Basics
	Hardware Tools
	Software Tools

	Chapter 2: Prepping Your Development Headquarters
	Developing the Android Developer Inside You
	Assembling Your Toolkit
	Tuning Up Your Hardware
	Installing and Configuring Your Support Tools
	Installing Android Studio
	Installing Java 7
	Adding SDK Packages
	Navigating the Android SDK
	Specifying Android Platforms
	Using SDK Tools for Everyday Development

	Part II: Building and Publishing Your First Application
	Chapter 3: Your First Android Project
	Starting a New Project in Android Studio
	Responding to Errors
	Setting Up an Emulator
	Running the Hello Android App
	Understanding Project Structure

	Chapter 4: Creating the User Interface
	Creating the Silent Mode Toggle Application
	Laying Out the Application
	Adding an Image to Your Application
	Creating a Launcher Icon for the Application
	Previewing the Application in the Visual Designer

	Chapter 5: Coding Your Application
	Understanding Activities and the Activity Lifecycle
	Creating Your First Activity
	Working with the Android Framework Classes
	Installing Your Application
	Material Design
	Uh-Oh! �⠀刀攀猀瀀漀渀搀椀渀最 琀漀 䔀爀爀漀爀猀)
	Thinking Beyond the Application Boundaries

	Chapter 6: Understanding Android Resources
	Understanding Resources
	Working with Resources
	Different Strokes for Different Folks: Using Resource Qualifier Directories

	Chapter 7: Turning Your Application into an App Widget
	Working with App Widgets in Android
	Working with Intents and Pending Intents
	Creating the App Widget
	Placing Your Widget on the Home Screen

	Chapter 8: Publishing Your App to the Google Play Store
	Creating a Distributable File
	Creating a Google Play Developer Profile
	Pricing Your Application
	Getting Screen Shots for Your Application
	Uploading Your Application to the Google Play Store
	Watching the Number of Installs Soar

	Part III: Creating a Feature‐Rich Application
	Chapter 9: Designing the Tasks Application
	Reviewing the Basic Requirements
	Creating the Application’s Screens

	Chapter 10: Creating the Task Detail Page
	Creating the TaskEditActivity
	Linking the List View to the Edit View
	Creating the TaskEditFragment
	You Put the Fragment in the Activity and Shake It All Up
	Updating the Styles
	A Special Bonus

	Chapter 11: Going a la Carte with Your Menu
	Understanding Options and Context Menus
	Creating Your First Menu
	Creating a Long-Press Action

	Chapter 12: Handling User Input
	Creating the User Input Interface
	Getting Choosy with Dates and Times
	Creating an Alert Dialog
	Validating Input

	Chapter 13: Getting Persistent with Data Storage
	Finding Places to Put Data
	Understanding How the SQLite ContentProvider Works
	Creating Your Application’s SQLite Database
	Using ContentProvider URIs
	Dealing with CRUD
	Implementing the Save Button
	Implementing the List View
	Reading Data into the Edit Page

	Chapter 14: Reminding the User
	Seeing Why You Need AlarmManager
	Asking the User for Permission
	Waking Up a Process with AlarmManager
	Updating a Notification
	Clearing a Notification
	Rebooting Devices

	Chapter 15: Working with Android Preferences
	Understanding the Android Preferences Framework
	Understanding the PreferenceFragment Class
	Creating Your Preferences Screen
	Working with the PreferenceFragment Class
	Working with Preferences in Your Activities at Runtime

	Part IV: Android Is More than Phones
	Chapter 16: Developing for Tablets
	Considering the Differences between Phones and Tablets
	Tweaking the Tasks App for Tablets
	Configuring a Tablet Emulator
	Creating a New Product Flavor
	Creating an AndroidManifest for Phones
	Creating an AndroidManifest for Tablets
	Making the TaskListAndEditorActivity for Tablets
	Building the Tablet App
	Adding the App Callbacks
	One More Thing . . .

	Chapter 17: Supporting Older Versions of Android
	Understanding AppCompat
	Updating the build File
	Adding the Toolbar
	Using the AppCompat Theme
	Testing Your App
	Working with Right-to-Left Languages
	Fixing the Add Task Menu
	Fixing the Window Options
	Using Newer APIs
	Using Android Lint

	Chapter 18: Wearing the Tasks App
	Preparing Your Development Environment
	Creating a New Wear App
	Publishing the Data from Your Phone
	Running the App without Android Studio
	Packaging the App
	What’s Next?

	Chapter 19: Look Ma, I’m on TV!
	Understanding Guidelines for Building TV Apps
	Building and Manifesting Changes
	Adding the BrowseActivity
	Creating the TV Browse Fragment
	Creating the CardPresenter
	Running Your App
	Adding and Editing Items
	Creating Backgrounds
	Creating More Filters

	Chapter 20: Moving beyond Google
	Working around Google Features
	Setting Up the Fire SDK
	Setting Up Your Fire or Emulator
	Publishing to Amazon Appstore for Android

	Part V: The Part of Tens
	Chapter 21: Ten Free Sample Applications and SDKs
	Android Samples
	The Google I/O App
	K-9 Mail
	GitHub Android App
	Facebook SDK for Android
	Notepad Tutorial
	U+2020
	Lollipop Easter Egg
	Android Bootstrap
	The AOSP

	Chapter 22: Ten Tools to Simplify Your Development Life
	Android Lint
	Android Systrace
	RoboGuice and Dagger
	Translator Toolkit
	Hierarchy Viewer
	UI/Application Exerciser Monkey
	Git and GitHub
	Picasso and OkHttp
	Memory Analyzer Tool
	Travis-ci

	About the Author
	Cheat Sheet
	Connect with Dummies
	End User License Agreement

