

Table	of	Contents

Java	-	Basic	Syntax
First	Java	Program:
Basic	Syntax
Java	Keywords:
Comments	in	Java
Using	Blank	Lines:
Inheritance:
Interfaces:

Objects	and	Classes
Basic	Data	Types
Variable	Types
Operators	in	Java

The	Arithmetic	Operators
The	Relational	Operators
The	Bitwise	Operators
The	Logical	Operators
The	Assignment	Operators
Misc	Operators
Conditional	Operator	(?):
instanceof	Operator:
Precedence	of	Java	Operators

Loops	in	Java
The	while	Loop:

Decision	Making
Strings	in	Java

String	Methods
Arrays
Regular	Expressions

Regular	Expression	Syntax
Methods	of	the	Matcher	Class
Index	Methods:
PatternSyntaxException	Class	Methods:

Methods
File	Handling

Byte	Streams
FileOutputStream:

Exception	Handling
Throws	Keyword
Finally	Keyword
Creating	An	Exception
Common	Exceptions

Interfaces	and	Packages
Java	Applets

	

	

	

	

	

Java	For	Beginners
	

A	Simple	Start	To	Java	Programming	(Written	By	A	Software
Engineer)

	
Scott	Sanderson

	

	

Table	of	Contents
	
Java	-	Basic	Syntax

First	Java	Program:

Basic	Syntax

Java	Keywords:

Comments	in	Java

Using	Blank	Lines:

Inheritance:

Interfaces:

Objects	and	Classes

Basic	Data	Types

Variable	Types

Operators	in	Java

The	Arithmetic	Operators

The	Relational	Operators

The	Bitwise	Operators

The	Logical	Operators

The	Assignment	Operators

Misc	Operators

Conditional	Operator	(?):

instanceof	Operator:

Precedence	of	Java	Operators

Loops	in	Java

The	while	Loop:

Decision	Making

Strings	in	Java

String	Methods

Arrays

Regular	Expressions

Regular	Expression	Syntax

Methods	of	the	Matcher	Class

Index	Methods:

PatternSyntaxException	Class	Methods:

Methods

File	Handling

Byte	Streams

FileOutputStream:

Exception	Handling

Throws	Keyword

Finally	Keyword

Creating	An	Exception

Common	Exceptions

Interfaces	and	Packages

Java	Applets

Other	Scott	Sanderson	Books:

SPECIAL	BONUS

	

Copyright	2016	by	Globalized	Healing,	LLC	-	All	rights	reserved.

	

http://www.globalizedhealing.com

Click	here	to	receive	incredible	ebooks	absolutely	free!
	

	

Introduction

Java,	 the	 programming	 language,	was	 introduced	by	Sun	Microsystems.	This	work	was
initiated	by	 James	Gosling	 and	 the	 final	 version	of	 Java	was	 released	 in	 the	year	 1995.
However,	 initially	 Java	 was	 released	 as	 a	 component	 of	 the	 core	 Sun	 Microsystem
platform	 for	 Java	 called	 J2SE	 or	 Java	 1.0.	 The	 latest	 release	 of	 Java	 or	 J2SE	 is	 Java
Standard	Version	6.

The	 rising	 popularity	 of	 Java,	 as	 a	 programming	 platform	 and	 language	 has	 led	 to	 the
development	of	several	 tools	and	configurations,	which	are	made	keeping	Java	 in	mind.
For	instance,	the	J2ME	and	J2EE	are	two	such	configurations.	The	latest	versions	of	Java
are	called	Java	SE	and	Java	EE	or	Java	ME	instead	of	J2SE,	J2EE	and	J2ME.	The	biggest
advantage	of	using	the	Java	platform	is	the	fact	that	it	allows	you	to	run	your	code	at	any
machine.	So,	you	just	need	to	write	your	code	once	and	expect	it	to	run	everywhere.

As	far	as	the	features	of	Java	are	concerned,	they	are	as	follows:

Object	Oriented

In	Java,	everything	is	an	object.	Java	can	be	effectively	stretched	out	and	extended
to	unimaginable	dimensions	since	it	is	focused	around	the	Object	model.

Independent	of	the	platform

Dissimilar	 to	 numerous	other	 programming	dialects	 including	C	 and	C++,	when
Java	 is	 aggregated,	 it	 is	 not	 converted	 into	 a	 form,	 which	 is	 particular	 to	 any
machine.	Instead,	it	is	converted	into	a	machine-independent	byte	code.	This	byte
code	 is	 conveyed	over	 the	web	 and	deciphered	by	Virtual	Machines	 or	 JVM	on
whichever	stage	it	is	generally	run.

Simple

Java	is	intended	to	be	not	difficult	to	learn.	In	the	event	that	you	comprehend	the
essential	idea	of	OOP,	Java	would	not	be	difficult	to	ace.

Secure

https://globalizedhealing1.leadpages.net/kindle-books/

With	Java’s	security	framework,	it	empowers	to	create	frameworks,	which	are	free
of	viruses	and	tampering.	Public-key	encryption	is	used	as	the	core	authentication
strategy.

Independent	of	Machine	Architecture

Java	 compiler	 produces	 an	 object	 file	 format,	 which	 is	 independent	 of	 the
architecture	 of	 the	machine.	 The	 assembled	 code	 can	 be	 executed	 on	 numerous
processors,	 with	 the	 single	 requirement	 that	 they	 must	 all	 have	 Java	 runtime
framework.

Portability

The	fact	 that	Java	code	 is	machine	and	platform	independent	makes	 it	extremely
compact.	 Compiler	 in	 Java	 is	 composed	 in	 ANSI	 C	 with	 a	 clean	 conveyability
limit,	which	is	a	POSIX	subset.

Robustness

Java	 tries	 to	 kill	 circumstances,	 which	 can	 lead	 to	 potential	 system	 failures,	 by
stressing	chiefly	on	runtime	checking	and	compile	time	checking.

Support	for	Multithreaded	Applications

With	Java’s	multithreaded	feature,	it	is	conceivable	to	compose	programs	that	can
do	numerous	 assignments	 at	 the	 same	 time.	This	 configuration	gimmick	permits
designers	to	build	easily	running	intelligent	applications.

Interpreted	Code

Java	 byte	 code	 is	 interpreted	 on	 the	 fly	 to	 local	 machine.	 The	 advancement
methodology	is	more	quick	and	expository	since	the	interfacing	is	an	incremental
and	lightweight	process.

High	Performance

With	the	utilization	of	Just-In-Time	compilers,	Java	enhances	the	performance	of
the	system.

Distributed

Java	is	intended	for	the	conveyed	environment	of	the	web.

Dynamic

Java	is	thought	to	be	more	dynamic	than	C	or	C++	since	it	is	intended	to	adjust	to

an	 advancing	 environment.	 Java	 projects	 can	 convey	broad	measure	 of	 run-time
data	that	can	be	utilized	to	check	for	accesses	and	respond	to	the	same	on	run-time.

History	of	Java

James	 Gosling	 started	 working	 on	 the	 Java	 programming	 language	 in	 June	 1991	 for
utilization	 in	 one	 of	 his	 numerous	 set-top	 box	 ventures.	 The	 programming	 language,	 at
first,	was	called	Oak.	This	name	was	kept	after	an	oak	tree	that	remained	outside	Gosling’s
office.	This	name	was	changed	to	the	name	Green	and	later	renamed	as	Java,	from	a	list	of
words,	randomly	picked	from	the	dictionary.

Sun	discharged	 the	first	open	usage	as	Java	1.0	 in	1995.	 It	guaranteed	Write	Once,	Run
Anywhere	(WORA),	giving	no-expense	run-times	on	prominent	stages.	On	13	November
2006,	Sun	discharged	much	of	Java	as	free	and	open	source	under	the	terms	of	the	GNU
General	Public	License	(GPL).	On	8	May	2007,	Sun	completed	the	procedure,	making	the
greater	part	of	 Java’s	 center	 code	 free	and	open-source,	beside	a	 little	parcel	of	 code	 to
which	Sun	did	not	hold	the	copyright.

Pre-requisites

In	order	to	run	and	experiment	with	the	examples	given	in	this	book,	you	shall	require	a
Pentium	200-Mhz	machine	with	at	least	64	MB	of	RAM.	You	additionally	will	require	the
accompanying	programming	platforms:

Microsoft	Notepad	or	Any	Word	Processor
Java	JDK	5
Linux	7.1	or	Windows	XP	or	higher	Operating	Systems

	

Java	-	Basic	Syntax

A	basic	Java	program	can	be	broken	down	into	several	constructs	and	elements.	Typically,
it	can	be	characterized	as	a	collection	of	objects,	which	communicate	with	each	other	by
calling	each	other’s	routines.	The	basic	definitions	of	objects	and	classes	are	given	below:

Class

A	class	can	be	described	as	a	blueprint	that	portrays	the	practices/expresses	all	the
behaviors	and	states	of	its	objects.

Object

Objects	 are	 characterized	 by	 two	 components	 namely,	methods	 and	 attributes	 or
variables.	 For	 instance,	 if	 you	 consider	 the	 example	 of	 a	 puppy,	 then	 it	 has	 the
following	 attributes	 or	 states:	 name,	 color	 and	breed.	 In	 addition,	 it	 also	 has	 the
following	 behaviours,	 which	 include	 woofing,	 wagging	 and	 consuming.	 Any
object	is	nothing	but	an	instance	of	a	class.

Instance	Variables

Each	 object	 has	 its	 set	 of	 variables.	 An	 object’s	 state	 is	 made	 by	 the	 qualities
alloted	to	these	variables	during	program	execution.

Methods

A	method	is	 the	definition	of	a	method.	Moreover,	a	class	can	contain	numerous
methods.	 It	 is	 in	 these	 methods	 that	 behaviours	 like	 where	 the	 rationales	 are
composed,	information	is	controlled	and	all	the	activities	are	executed.

First	Java	Program:

In	 order	 to	 start	 with	 basic	 basic	 Java	 programming,	 let	 us	 look	 at	 the	 standard	 Hello
World	program.

public	class	MyFirstJavaProgram	{

public	static	void	main(String	[]args)	{

System.out.println(“Say	Hello	World	To	The	World!”);

}

}

As	you	can	see,	the	program	uses	a	single	line	of	code	in	the	main()	function,	which	prints

the	statement	 ‘Hello	World!’.	However,	before	 that	can	be	done,	 let	us	 look	at	 the	steps
that	you	must	follow	in	your	quest	to	execute	the	file.

Open	any	text	editor	and	paste	this	code	in	that	file.
Save	 the	 file	 with	 a	 .java	 extension.	 For	 example,	 you	 can	 save	 the	 file	 as
Sample.java.
The	 next	 step	 is	 to	 to	 open	 the	 command	 prompt	 of	 the	 system	 and	 relocate	 its
reference	to	the	directory	in	which	the	file	is	saved.	For	instance,	if	you	have	saved
the	file	in	C:\,	then	you	must	take	the	prompt	to	the	same	directory.
In	order	to	compile	the	code,	you	must	type	the	following:

javac	Sample.java

If	there	are	no	errors,	you	will	automatically	be	taken	to	the	next	line.	You	can	now
execute	the	code	using	the	following	command:

java	Sample.java

You	should	be	able	to	see	the	following	output	on	the	screen.

Say	Hello	World	To	The	World!

Basic	Syntax

About	Java	programs,	it	is	paramount	to	remember	the	accompanying	points.

Class	Names	–

For	all	class	names,	the	first	letter	ought	to	be	in	Upper	Case.

On	 the	 off	 chance	 that	 few	words	 are	 utilized	 to	 structure	 a	 name	 of	 the	 class,
every	 internal	 word’s	 first	 letter	 ought	 to	 be	 in	 Upper	 Case.	 For	 example,	 a
standard	class	name	is	as	follows:

class	Sampleclass

Case	Sensitivity	-	Java	is	case	sensitive,	which	implies	that	the	identifier	Hi	and	hi
would	have	distinctive	importance	in	Java.
Method	Names	-	All	system	names	ought	to	begin	with	a	Lower	Case	letter.	In	the
event	that	few	words	are	utilized	to	structure	the	name	of	the	method,	then	every
internal	 word’s	 first	 letter	 ought	 to	 be	 in	 Upper	 Case.	 An	 example	 of	 this
convention	is	follows:

public	void	mysamplemethod	()

Filename	–

The	name	of	 the	 system	 record	ought	 to	 precisely	match	 the	 class	 name.	At	 the
point	when	you	are	saving	the	file,	you	ought	 to	save	it	utilizing	the	class	name.
Remember	 Java	 is	 case	 touchy	 and	 affix	 “.java”	 to	 the	 end	 of	 the	 name.	 If	 the
document	 name	 and	 the	 class	 name	 don’t	 match	 your	 system	 won’t	 assemble.
Consider	the	example	of	a	class	name	Sample.	In	this	case,	you	must	name	the	file
as	sample.java.

public	static	void	main(string	args[])

Java	system	handling	begins	from	the	main()	function,	which	is	a	required	piece	of
each	Java	program.

Java	Identifiers

All	 Java	components	 require	names.	Names	utilized	 for	classes,	variables	and	 strategies
are	called	identifiers.	In	Java,	there	are	a	few	focuses	to	recall	about	identifiers.	They	are
as	per	the	following	standard:

All	identifiers	ought	to	start	with	a	letter	(beginning	to	end	or	a	to	z),	underscore
(_)	or	special	character	($).
After	the	first	character,	identifiers	can	have	any	mix	of	characters.
You	cannot	use	a	keyword	as	an	identifier.
Most	significantly,	identifiers	are	case	sensitive.	So,	Sample	is	not	same	as	sample.
Examples	of	identifiers	include	$salary,	age,	__1_value	and	_value.
Examples	of	illicit	identifiers	include	–compensation	and	123abc.

Java	Modifiers

Like	 is	 the	 case	with	 any	 programming	 language,	 it	 is	 conceivable	 to	 alter	 classes	 and
systems	by	utilizing	modifiers.	There	are	two	classifications	of	modifiers:

Access	Modifiers:	public,	default,	protected	and	private
Non-access	Modifiers:	strictfp,	final	and	abstract

We	will	be	researching	more	insights	about	modifiers	in	the	following	chapters.

Java	Variables

Several	types	of	variables	are	supported	by	Java.	These	types	of	variables	include:

Instance	Variables	(Non-static	variables)
Class	Variables	(Static	Variables)

Local	Variables

Java	Arrays

Arrays	are	contiguous	memory	locations	that	store	different	variables	of	the	same	sort.	On
the	 other	 hand,	 an	 array	 itself	 is	 an	 article	 on	 the	 memory.	 We	 will	 research	 how	 to
proclaim,	develop	and	instate	these	in	the	chapters	to	follow.

Java	Enums

Enums	were	introduced	as	part	of	the	Java	package	in	java	5.0.	Enums	limit	a	variable	to
have	one	of	 just	 a	 couple	of	predefined	qualities.	The	qualities	 in	 this	 identified	 list	 are
called	enums.	With	 the	utilization	of	enums	it	 is	conceivable	 to	diminish	the	quantity	of
bugs	in	your	code.	Case	in	point,	in	the	event	that	we	consider	an	application	for	a	cafe,	it
would	be	conceivable	to	limit	the	mug	size	to	extra	large,	large,	medium	and	small.	This
would	 verify	 that	 it	would	 not	 permit	 anybody	 to	 request	 any	 size	 other	 than	 the	 sizes
mentioned	in	the	menu	or	application	listing.

Please	 note	 that	 enums	 can	 be	 pronounced	 as	 their	 own	 or	 inside	 a	 class.	 However,
routines,	variables,	constructors	can	be	created	inside	the	body	of	enums	as	well.

Java	Keywords:

Keywords	or	reserved	words	in	Java	are	shown	in	the	table	below.	As	a	rule,	these	words
cannot	be	used	as	names	for	variables	or	constants.

assert
abstract
break
boolean
case
byte
char
catch
const
class
default
continue
double

do
enum
else
final
extends
float
finally
goto
for
implements
if
instanceof
import
int
long
interface
new
native
private
package
protected
return
public
static
short
super
strictfp
synchronized
switch
throw
this
transient
throws
while
try

volatile
void

Comments	in	Java

Just	as	in	the	case	of	C++	and	C,	Java	supports	two	types	of	comments	namely,	single	line
comments	 and	 multi-line	 comments.	 The	 syntax	 for	 these	 types	 of	 comments	 are	 as
follows:

Single	line	comment:

//<comment>

Multiple	line	comment:

/*<comment>*/

All	characters	that	exist	in	the	comments	region	are	simply	ignored	by	the	Java	compiler.

Using	Blank	Lines:

Any	 line	 that	 is	 only	 composed	 of	 whitespace	 characters	 or	 comments	 is	 considered	 a
blank	 line.	 These	 lines	 are	 just	 ignored	 by	 the	 compiler	 and	 are	 not	 included	 in	 the
executable.

Inheritance:

Java	supports	 inheritance.	In	other	words,	 it	 is	possible	 to	derive	one	class	from	another
class	in	this	programming	language.	For	instance,	if	you	need	to	create	a	new	class,	which
is	 an	 extension	of	 an	 existing	 class,	 then	you	 can	 simply	derive	 this	 new	class	 from	an
existing	class.	This	allows	the	new	class	to	access	the	elements	already	implemented	in	the
existing	class.	In	this	case,	the	new	class	is	called	the	derived	class	and	the	existing	class	is
referred	to	as	the	super	class.

Interfaces:

As	mentioned	 previously,	 Java	 is	 all	 about	 interaction	 between	 objects.	 The	manner	 in
which	 different	 objects	 communicate	 with	 each	 other	 is	 defined	 in	 what	 is	 called	 an
‘interface.’	Moreover,	interfaces	are	also	an	important	aspect	of	the	inheritance	feature	of
java.	As	part	of	an	interface,	 the	methods	that	can	be	used	by	a	derived	or	sub-class	are
declared.	 However,	 all	 the	 methods	 declared	 as	 usable	 for	 the	 subclass	 must	 be
implemented	in	the	subclass.

Objects	and	Classes

Java	 is	 an	 Object-Oriented	 	 programming	 language.	 As	 an	 issue	 that	 has	 the	 Object
Oriented	peculiarity,	Java	underpins	the	accompanying	essential	ideas:

Inheritance
Polymorphism
Abstraction
Encapsulation
Objects
Message	Parsing
Classes
Method
Instance

In	this	part,	we	will	investigate	the	concepts	of	Classes	and	Objects.

Class	 -	 A	 class	 can	 be	 described	 as	 an	 blueprint	 that	 declares	 and	 defines	 the
attributes	and	methods	that	its	objects	will	implement	and	use.
Object	 -	 Objects	 are	 simple	 real	 world	 entities	 that	 possess	 a	 state	 and	 its
characteritic	behaviour.

For	example,	if	you	consider	a	real	world	entity,	a	labrador	dog,	then	this	dog	is	an	object.
However,	it	belong	to	the	class	of	dogs.	Therefore,	the	associated	class	is	Dog.

Objects	in	Java

Let	 us	 now	 look	 profoundly	 into	 what	 are	 objects.	 In	 the	 event	 that	 we	 consider	 this
present	 reality,	we	 can	 discover	 numerous	 entities	 around	 us,	 Cars,	Humans,	Dogs	 and
several	other.	N	fact,	any	real	world	entity	can	be	modelled	as	an	object.	The	one	common
thing	between	all	these	entities	is	the	fact	that	they	contain	states	and	behaviours.	On	the
off	chance	that	we	consider	a	dog,	then	its	state	is	-	breed,	name	and	color.	However,	its
behaviour	includes	eating	habits	and	other	characteristics	like	running	and	barking.

Classes	in	Java

A	class	is	a	blue	print	from	which	individual	objects	are	made.	A	specimen	of	a	class	is
given	underneath:

open	class	Dogs	{

String	breed;

String	shade;

int	age;

void	eating	(){		}

void	barking	(){		}

}

A	class	can	contain	any	of	the	accompanying	variable	sorts.

Local	variables

Variables	that	are	declared	and	used	inside	routines,	constructors	or	pieces	of	code
are	called	local	variables.	The	variable	will	be	proclaimed	and	instated	inside	the
method	 or	 scope	 and	 the	 variable	 will	 be	 destroyed	 when	 the	 execution	 of	 a
method	terminates.

Instance	variables

Instance	 variables	 are	 variables	 inside	 a	 class	 yet	 outside	 any	 system.	 These
variables	are	instantiated	when	the	class	is	stacked.	These	variables	can	be	gotten
to	from	inside	any	technique,	constructor	or	squares	of	that	specific	class.

Class	variables

Class	 variables	will	 be	 variables,	which	 are	 declared	within	 a	 class,	 outside	 any
system,	with	the	static	word	before	them.

A	 class	 can	 have	 any	 number	 of	 routines	 to	 get	 to	 the	 estimation	 of	 different	 sorts	 of
methods.	 In	 the	 above	 illustration,	 eating()	 and	 barking()	 are	 the	 used	 methods.
Underneath	specified	are	a	percentage	of	the	vital	subjects	that	need	to	be	examined	when
researching	classes	of	the	Java	Language.

Constructors

At	 the	 point	 when	 talking	 about	 classes,	 a	 standout	 amongst	 the	 most	 vital	 sub	 theme
would	 be	 constructors.	 Each	 class	 has	 a	 constructor.	 In	 the	 event	 that	 we	 don’t
unequivocally	compose	a	constructor	for	a	class,	the	Java	compiler	manufactures	a	default
constructor	for	that	class.	Each	time	an	object	is	made,	no	less	than	one	constructor	will	be
summoned.

The	fundamental	principle	of	constructors	is	that	they	ought	to	have	the	same	name	as	the

class.	A	class	can	have	more	than	one	constructor	and	depending	on	the	parameters	given
and	return	type	expected,	the	matching	constructor	is	called.	A	sample	implementation	for
this	type	of	a	method	is	given	below:

public	class	Puppies{

public	Puppies(){

}

public	Puppies(string	puppyname){

}

The	 above	 class	 has	 two	 constructors.	 One	 of	 the	 constructors	 requires	 no	 parameters.
However,	the	other	constructor	requires	a	string	equivalent	to	the	name	of	the	puppy.	Java
additionally	upholds	Singleton	Classes	where	you	would	have	 the	capacity	 to	make	one
and	only	object	of	a	class.

Making	Objects

As	specified	previously,	a	class	gives	the	outlines	to	object	creation.	So,	fundamentally	an
object	 is	 made	 from	 a	 class.	 In	 Java,	 the	 new	 essential	 word	 is	 utilized	 to	 make	 new
objects.

There	 are	 three	 steps	 involved	 in	 the	 creation	 of	 any	 object.	 These	 steps	 are	 illustrated
below:

Declaration:	A	variable	assertion	with	a	variable	name	and	object	type.
Instantiation:	The	“new”	word	is	utilized	to	make	the	object	of	an	already	declared
class.
Initialization:	 The	 “new”	 word	 is	 trailed	 by	 a	 call	 to	 a	 constructor.	 This	 call
instantiates	the	class	and	creates	an	object	of	the	same,	as	a	result.

Sample	implementation	is	given	below	for	better	understanding	of	the	concept.

public	class	Puppies{

public	Puppies(string	name){

System.out.println(“Passed	Name	of	the	puppy	is:”	+	name);

}

public	static	void	main(string	[]args){

Puppies	samplepuppy	=	new	Puppies(“jimmy”);

}

On	 the	off	 chance	 that	we	compile	 and	 run	 the	 above	project,	 then	 it	would	deliver	 the
accompanying	result:

Passed	Name	of	the	puppy	is:	jimmy

Getting	to	Instance	Variables	and	Methods:

Variables	 and	methods	 are	 gotten	 to	 by	means	 of	made	 objects	 of	 classes.	 To	 get	 to	 a
variable,	the	qualified	way	ought	to	be	the	following:

The	following	statement	creates	an	object.

Newobject	=	new	Constructormethod();

The	following	statements	can	be	used	to	access	the	variable	and	method	associated	with
the	object.

Newobject.variablesname;

Newobject.methodsname();

A	sample	implementation	of	this	concept	is	given	below:

public	class	Dog{

int	dogAge;

public	dogAge(String	dogname){

System.out.println(“Dog	Name	Passed	is	:”	+	dogname);

}

public	void	initAge(int	dogage){

dogAge	=	dogage;

}

public	int	getDogAge(){

System.out.println(“Dog’s	present	age	is:”	+	dogAge);

return	dogAge;

}

public	static	void	main(String	[]args){

Dog	myDog	=	new	Dog(“jimmy”);

myDog.initAge(5);

myDog.getDogAge();

System.out.println(“Variable	dogAge	Value	is:”	+	myDog.dogAge);

}

}

Upon	 compilation	 and	 execution	 of	 the	 following	 code,	 you	 shall	 be	 able	 to	 see	 the
following	result.

Variable	dogAge	Value	is:	5

Declaration	Guidelines	for	Source	Files

As	 the	 last	 piece	 of	 this	 area	 how	 about	we	 now	 investigate	 the	 source	 file	 declaration
standards.	 These	 tenets	 are	 key	 when	 declaring	 classes,	 importing	 declarations	 and
packages	in	a	source	file.

There	can	be	stand	out	public	class	for	every	source	record.
A	source	document	can	have	numerous	non	public	classes.
The	public	class	name	ought	to	be	the	name	of	the	source	document.	The	name	of
the	source	file	must	be	affixed	by	the	string	.java.	For	instance,	the	class	name	is
public	 class	 Employeerecord{},	 then	 the	 source	 document	 ought	 to	 be	 saved	 as
Employeerecord.java.
If	the	class	is	declared	inside	a	package,	then	the	package	articulation	ought	to	be
the	first	proclamation	in	the	source	record.
If	 import	 articulations	 are	 available,	 then	 they	 must	 be	 composed	 between	 the
package	proclamation	and	the	class	revelation.	On	the	off	chance	that	there	are	no
package	proclamations,	then	the	import	articulation	ought	to	be	the	first	line	in	the
source	file.
Import	and	package	articulations	will	intimate	to	all	the	classes	show	in	the	source
record.	It	is	impractical	to	announce	diverse	import	and/or	package	explanations	to
distinctive	classes	in	the	source	file.

Classes	 have	 a	 few	 access	 levels.	 Moreover,	 there	 are	 diverse	 sorts	 of	 classes,	 which
include	 final	 classes,	 in	 addition	 to	 several	 others.	 Separated	 from	 the	 aforementioned

sorts	 of	 classes,	 Java	 likewise	 has	 some	 uncommon	 classes	 called	 Inner	 classes	 and
Anonymous	classes.

Java	Packages

Basically,	 it	 is	 a	 method	 for	 classifying	 the	 classes	 and	 interfaces.	 At	 the	 point	 when
creating	 applications	 in	 Java,	many	 classes	 and	 interfaces	will	 be	 composed.	 In	 such	 a
scenario,	ordering	these	classes	is	an	unquestionable	requirement	and	makes	life	much	less
demanding.	 In	 Java,	 if	 a	 completely	 qualified	 name,	 which	 incorporates	 the	 class	 and
package	name,	is	given,	then	the	compiler	can	without	much	of	a	stretch	find	the	source
code	 or	 classes.	 Import	 declarations	 is	 a	 method	 for	 giving	 the	 correct	 area	 for	 the
compiler	to	find	that	specific	class.

Case	 in	point,	 in	order	 to	 load	all	 the	classes	accessible	 in	 java_installation/java/io,	you
must	use	the	following	statement:

import	java.io.*;

A	sample	implementation	for	this	concept	is	given	below:

The	 following	code	uses	 two	classes	Employeerecord	and	Employeerecordtest.	The	 first
step	is	to	open	the	text	editor	you	intend	to	use	at	your	system	and	copy	and	paste	the	code
shown	below	into	the	text	editor	application.	Keep	in	mind	that	the	public	class	in	the	code
is	Employeerecord.	Therefore,	 the	name	of	the	file	should	be	Employeerecord.java.	This
class	uses	the	variables,	methods	and	constructor	as	shown	below:

import	java.io.*;

public	class	Employeerecord	{

int	empage;

String	empname;

double	empcompensation;

public	Employee(string	empname){

this.empname	=	empname;

}

public	void	employeeage(int	employeeage){

empage	=		employeeage;

}

public	void	empcompensation(double	empcompensation){

empcompensation	=	empcompensation;

}

public	void	printemp(){

System.out.println(“empname:”+	empname);

System.out.println(“empage:”	+	empage);

System.out.println(“empcompensation:”	+	empcompensation);

}

As	 specified	 awhile	 ago	 in	 this	 exercise,	 handling	 begins	 from	 the	 main	 function.
Accordingly,	with	 this	 goal,	we	 should	 create	 a	main	 function	 for	 this	 Employeerecord
class.	Given	beneath	 is	 the	Employeerecordtest	class,	which	makes	 two	 instances	of	 the
class	Employeerecord	 and	 conjures	 the	 techniques	 for	 each	 one	 item	 to	 allot	 values	 for
every	variable.	You	can	save	this	file	as	Employeerecordtest.java.

import	java.io.*;

public	class	Employeerecordtest{

public	static	void	main(String	args[]){

Employeerecord	employee1	=	new	Employeerecord(“Jack	Wright”);

Employeerecord	employee2	=	new	Employeerecord(“Mary	John”);

employee1.employeeage(32);

employee1.empcompensation(5000);

employee2.employeeage(25);

employee2.empcompensation(2000);

employee1.printemp();

employee2.printemp();

}

}

Upon	compilation	and	execution,	you	must	get	the	following	output:

empname:	Jack	Wright

empage:	32

empcompensation:	5000

empname:	Mary	John

empage:	25

empcompensation:	2000

	

Basic	Data	Types

Variables	are	only	saved	memory	areas	to	store	values.	This	implies	that	when	you	make	a
variable,	 you	 save	 some	 space	 in	 memory.	 In	 light	 of	 the	 data	 type	 of	 a	 variable,	 the
working	framework	distributes	memory	and	chooses	what	can	be	put	in	the	held	memory.
Consequently,	by	appointing	diverse	data	types	to	variables,	you	can	store	whole	numbers,
decimals,	or	characters	in	these	variables.

There	are	two	data	types	accessible	in	Java:

Reference/Object	Data	Types
Primitive	Data	Types

Primitive	Data	Types

There	are	eight	primitive	information	types,	which	are	supported	by	Java.	Primitive	data
types	 are	 predefined	 by	 the	 dialect	 and	 named	 by	 a	 catchphrase.	This	 section	 discusses
these	data	types	in	detail.

byte:

byte	information	sort	is	a	8-bit	marked	two’s	supplement	whole	number.
Maximum	worth	is	2^7	-1,	which	is	equal	to	127.	This	value	is	also	included	in	the
range	of	these	values.
Minimum	worth	is	-2^7,	which	is	equal	to	-128.
Default	value	stored	in	a	variable	of	this	type	is	0.
byte	information	sort	is	utilized	to	spare	space	in	vast	exhibits,	principally	set	up	of
numbers,	since	a	byte	is	four	times	littler	than	an	int.
Example:

byte	x	=	200,	byte	y	=	-20

short:

short	information	sort	is	a	16-bit	marked	two’s	supplement	number.
Maximum	value	is	2^15	-1,	which	is	equal	to	32,767.	This	number	is	also	included
in	the	range.
Minimum	value	is	-2^15,	which	is	equal	to	-32,768.
short	information	sort	can	likewise	be	utilized	to	spare	memory	as	byte	information
sort.	A	short	is	2	times	littler	than	an	int
The	default	value	for	this	data	type	is	0.

Example:

short	x	=	425164,	short	y	=	-76686

int:

int	information	sort	is	a	32-bit	marked	two’s	supplement	number.
Maximum	value	for	this	data	type	is	2^31	-1,	which	is	equal	to	2,147,483,647.	This
number	is	also	included	in	the	range	for	this	data	type.
Minimum	value	for	this	data	type	is	-2^31,	which	is	equal	to	-	2,147,483,648.
int	is	for	the	most	part	utilized	as	the	default	information	sort	for	its	indispensable
qualities	unless	there	is	a	worry	about	memory.
The	default	value	for	this	data	type	is	0.
Example:

int	x	=	826378,	int	y	=	-64782

long:

long	information	sort	is	a	64-bit	marked	two’s	supplement	whole	number.
Maximum	 value	 for	 this	 data	 type	 is	 2^63	 -1,	 which	 is	 equal	 to
9,223,372,036,854,775,807.
Minimum	 value	 for	 this	 data	 type	 is	 -2^63,	 which	 is	 equal	 to
-9,223,372,036,854,775,808.
This	sort	is	utilized	when	a	more	extensive	memory	range	than	int	is	required.
The	default	value	for	those	data	type	is	0l.
Example:

long	x	=	174636l,	int	y	=	-536452l

float:

float	 is	 a	 data	 type,	 which	 is	 know	 for	 its	 solitary	 exactness,	 32-bit	 IEEE	 754
gliding	point.
float	 is	for	 the	most	part	used	to	spare	memory	in	vast	exhibits	of	coasting	point
numbers.
The	default	value	for	this	data	type	is	0.0f.
float	information	sort	is	never	utilized	for	exact	values,	for	example,	money.
Example:

float	x	=	254.3f

double:

double	information	sort	is	a	float	with	twofold	exactness	64-bit	IEEE	754	drifting
point.
This	information	sort	is	for	the	most	part	utilized	as	the	default	information	sort	for
decimal	qualities.
double	 information	 sort	ought	 to	never	be	utilized	 for	exact	values,	 for	example,
money.
The	default	value	for	this	data	type	is	0.0d.
Example:

double	x	=	321.4

boolean:

boolean	information	sort	speaks	to	one	bit	of	data.
Any	boolean	variable	can	assume	one	of	the	two	values:	true	or	false.
This	 information	 sort	 is	 utilized	 for	 basic	 banners	 that	 track	 genuine/false
conditions.
The	default	value	for	this	data	type	is	false.
Example:

boolean	check	=	true;

char:

char	information	sort	is	a	solitary	16-bit	Unicode	character.
Maximum	value	for	a	variable	of	this	type	is	“\uffff”	(or	65,535	comprehensive).
Minimum	value	for	a	variable	of	this	type	is	“\u0000”	(or	0).
char	information	sort	is	utilized	to	store	any	character.
example:

char	text	=‘a’

Reference	Data	Types

Reference	 variables	 are	made	 utilizing	 characterized	 constructors	 of	 the	 classes.
They	 are	 utilized	 to	 get	 to	 objects.	 These	 variables	 are	 proclaimed	 to	 be	 of	 a
particular	data	type	that	can’t	be	changed.	A	few	examples	of	such	data	types	are
Employee	and	Dog.
Class	objects,	and	different	kind	of	variables	go	under	reference	data	type.
Default	estimation	of	any	reference	variable	is	invalid.

A	reference	variable	can	be	utilized	to	allude	to	any	object	of	the	announced	sort.
Example:	myanimal	=	new	Animals(“rabbit”);

Java	Literals

A	 literal	 in	 Java	 is	 a	 source	 code	 representation	 of	 a	 settled	worth.	They	 are	 spoken	 to
specifically	in	the	code	without	any	calculation.	Literals	can	be	appointed	to	any	primitive
sort	variable.	Case	in	point:

byte	x	=	86;

char	x	=	“a”

int,	byte,	short	and	long	can	be	communicated	in	hexadecimal(base	16),	decimal(base	10)
or	octal(base	8)	number	frameworks	too.	Prefix	0	is	utilized	to	show	octal	while	prefix	0x
demonstrates	 hexadecimal	 when	 utilizing	 these	 number	 frameworks	 for	 literals.	 For
example,

int	numd	=	134;

int	numo	=	0243;

int	numx	=		0x95;

String	 literals	 in	 Java	 are	 determined	 like	 they	 are	 in	 most	 different	 programming
languages	 by	 encasing	 a	 grouping	 of	 characters	 between	 a	 couple	 of	 twofold	 quotes.
Illustrations	of	string	literals	are:

“Hi	Everyone”	“two\nlines”	“"these	characters	are	inside	quotes"”

String	sorts	of	literals	can	contain	any	Unicode	characters.	For	instance:

String	news	=	“\u0001”

You	can	also	use	escape	sequences	with	Java.	Here	is	a	list	of	escape	sequences	that	you
can	use.

Double	quote	-	"

Carriage	return	(0x0d)	-	\r

Newline	(0x0a)	-	\n

Single	quote	-	'

Backspace	(0x08)	-	\b

Formfeed	(0x0c)	-	\f

Tab	-	\t

Space	(0x20)	-	\s

Octal	character	(ddd)	-	\ddd

Backslash	-	\

Hexadecimal	UNICODE	character	(xxxx)	-	\uxxxx

Variable	Types

A	variable	gives	us	named	capacity	that	our	code	can	control.	Every	variable	in	Java	has	a
particular	sort,	which	decides	the	size	and	format	of	the	variable’s	memory;	the	scope	of
values	 that	 can	 be	 put	 away	 inside	 that	memory;	 and	 the	 set	 of	 operations	 that	 can	 be
connected	 to	 the	variable.	You	must	make	an	explicit	declaration	of	all	variables	before
they	can	be	utilized.	Variables	can	be	declared	in	the	following	manner:

Data	type	<variable	name>;

Here	data	type	is	one	of	Java’s	datatypes.	On	the	other	hand,	a	variable	is	the	name	or	the
identifier	associated	with	the	variable.	To	pronounce	more	than	one	variable	of	the	pointed
out	 type,	 you	 can	 utilize	 a	 comma-divided	 rundown.	 Here	 are	 a	 few	 examples	 of
declarations:

The	following	declaration	declares	three	integer	variables.

int	x,	y,	z;

In	a	similar	manner,	variables	of	other	data	types	may	also	be	declared.

Java	supports	three	types	of	variables.	These	types	are	as	follows:

Class/static	variables
Instance	variables
Local	variables

Local	Variables

Local	variables	are	announced	in	systems,	constructors,	or	scopes.
Local	 variables	 are	 made	 when	 the	 constructor	 or	 method	 is	 entered	 and	 the
variable	will	be	decimated	once	it	retreats	the	system,	constructor	or	scope.
Access	modifiers	can’t	be	utilized	for	neighborhood	variables.
Local	 variables	 are	 noticeable	 just	 inside	 the	 announced	method,	 constructor	 or
scope.
Local	variables	are	executed	at	stack	level.
There	 is	 no	 default	 value	 for	 these	 variables.	 So,	 local	 variables	 ought	 to	 be
declared	and	a	beginning	value	ought	to	be	relegated	before	the	first	utilization.

Sample	Implementation:

Here,	age	is	a	neighborhood	variable.	This	is	characterized	inside	pupage()	strategy	and	its

degree	is	constrained	to	this	system	just.

public	class	myTest{

open	void	newfunc(){

int	myvar	=	1;

myvar	=	myvar	+	10;

System.out.println(“The	value	of	myvar	is:	”	+	myvar);

}

public	static	void	main(string	args[]){

mytest	=	new	myTest	();

mytest.myfunc();

}

The	output	of	the	execution	of	this	code	is:

The	value	of	myvar	is:	11

Instance	Variables

The	 declaration	 of	 an	 instance	 variable	 is	 made	 inside	 the	 class.	 However,	 it	 is
made	outside	the	system,	constructor	or	any	scope.
Instance	 variables	 are	 made	 when	 an	 object	 is	 made	 with	 the	 utilization	 of	 the
keyword	“new”	and	obliterated	when	the	item	is	destroyed.
When	 a	 space	 is	 dispensed	 for	 an	 item	 in	 the	memory,	 an	 opening	 for	 each	 one
variable	value	is	made.
Instance	variables	can	be	pronounced	in	class	level	before	or	after	utilization.
Instance	variables	hold	values	that	must	be	referenced	by	more	than	one	method,
constructor	or	piece,	or	key	parts	of	an	object’s	express	that	must	be	available	all
through	the	class.
Access	modifiers	can	be	given	for	sample	variables.
Instance	 variables	 have	 default	 values.	 For	 numbers,	 the	 default	 quality	 is	 0.
However,	for	Booleans,	it	is	false	and	for	object	references,	it	is	invalid.	Qualities
can	be	relegated	amid	the	statement	or	inside	the	constructor.
The	case	variables	are	unmistakable	for	all	methods,	constructors	and	scope	in	the
class.	 Regularly,	 it	 is	 prescribed	 to	 make	 these	 variables	 private	 (access	 level).
However	perceivability	 for	subclasses	can	be	given	with	 the	utilization	of	access

modifiers	for	these	variables.
Instance	variables	can	be	gotten	 to	by	calling	 the	variable	name	 inside	 the	class.
The	 following	 statement	 can	 be	 used	 for	 this	 purpose:
Objectreference.variablename.

Sample	Implementation:

import	java.io.*;

public	class	Employeerecord{

public	String	empname;

private	double	empcompensation;

public	Employee	(String	name){

empname	=	name;

}

public	void	initsalary(double	empsalary){

empcompensation	=	empsalary;

}

public	void	printemployee(){

System.out.println(“Employee	name		:	”	+	empname);

System.out.println(“Employee	salary	:”	+	empcompensation);

}

public	static	void	main(string	args[]){

Employeerecord	employee1	=	new	Employeerecord(“Mary”);

employee1.initsalary(7500);

employee1.printemployee();

}

The	compilation	and	execution	would	deliver	the	accompanying	result:

Employee	name		:	Mary

Employee	compensation	:7500.0

Class/Static	Variables

Class	 variables	 otherwise	 called	 static	 variables	 are	 declared	 with	 the	 static
keyword	in	a	class,	yet	outside	a	constructor,	method	or	scope.
There	would	 just	 be	 one	 duplicate	 of	 each	 class	 variable	 for	 every	 class,	 paying
little	mind	to	what	number	of	objects	are	made	from	it.
Static	 variables	 are	 seldom	 utilized	 other	 than	 being	 pronounced	 as	 constants.
Constants	 are	 variables	 that	 are	 announced	 as	 private/public,	 static	 and	 final.
Consistent	variables	never	show	signs	of	change	from	their	introductory	quality.
Static	 variables	 are	 put	 away	 in	 static	memory.	 It	 is	 uncommon	 to	 utilize	 static
variables	 other	 than	 announced	 final	 and	 utilized	 as	 either	 private	 or	 public
constants.
Static	 variables	 are	 made	 when	 the	 system	 begins	 and	 annihilated	 when	 the
execution	stops.
Visibility	 is	 like	 instance	 variables.	 In	 any	 case,	 most	 static	 variables	 are
announced	public	since	they	must	be	accessible	for	clients	of	the	class.
Default	values	for	these	variables	are	also	same	as	instance	variables.	For	numbers,
the	default	value	id	typically	0.	However,	the	same	value	for	Booleans	is	false	and
for	object	reference	is	invalid.	Values	can	be	doled	out	amid	the	assertion	or	inside
the	 constructor.	 Furthermore,	 values	 can	 be	 appointed	 in	 unique	 static	 initializer
brackets.
Static	 variables	 can	 be	 gotten	 to	 by	 calling	 with	 the	 class	 name	 .
Classname.variablename.
When	announcing	class	variables	as	public	static	final,	variables	names	(constants)
must	 all	 be	 in	 upper	 case.	Moreover,	 the	 static	 variables	 are	 not	 public	 and	 the
naming	convention	is	the	same	as	local	and	instance	variables.

Sample	Implementation:

import	java.io.*;

public	class	Employeerecord{

private	static	double	empcompensation;

public	static	final	String	empdept	=	“HR	“;

public	static	void	main(string	args[]){

empcomp	=	7500;

System.out.println(empdept+”	Compensation:	“+empcompensation);

}

The	compilation	and	execution	of	this	code	shall	create	the	accompanying	result:

HR	Compensation:	7500

Modifier	Types

Modifiers	 are	 catchphrases	 that	you	add	 to	definitions	 to	 change	 their	 implications.	The
Java	 programming	 language	 has	 a	 wide	 and	 mixed	 bag	 of	 modifiers,	 including	 the
accompanying:

Non-Access	Modifiers
Java	Access	Modifiers

In	order	 to	utilize	a	modifier,	you	 incorporate	 its	catchphrase	 in	 the	meaning	of	a	class,
variable	or	method.	The	modifier	goes	before	whatever	is	left	of	the	announcement.

Access	Control	Modifiers:

Java	gives	various	access	modifiers	to	set	access	levels	for	classes,	variables,	routines	and
constructors.	The	four	right	to	gain	access	are:

Private:	visible	to	the	class.
Default:	visible	to	the	bundle.	No	modifiers	are	required.
Secured:	visible	to	all	subclasses	and	package.
Public:	visible	to	the	world.

Non	Access	Modifiers:

Java	gives	various	non-access	modifiers	to	attain	numerous	other	usefulness.

Static:

The	static	modifier	for	making	class	variables	and	methods.

Final

The	final	modifier	for	concluding	the	executions	of	classes,	variables	and	methods.

Abstract

This	modifier	is	used	for	for	creating	abstract	methods	and	classes.

Volatile	and	Synchronized

These	modifiers	are	typically	used	for	threads.

Operators	in	Java

The	 operator	 set	 in	 Java	 is	 extremely	 rich.	 Broadly,	 the	 operators	 available	 in	 Java	 are
divided	in	the	following	categories.

Relational	Operators
Arithmetic	Operators
Logical	Operators
Bitwise	Operators
Misc	Operators
Assignment	Operators

The	Arithmetic	Operators

Operations	 in	Java	are	used	in	essentially	 the	same	manner	as	 in	algebra.	They	are	used
with	variables	for	performing	arithmetic	operations.	Here	is	a	list	of	arithmetic	operators
available	in	Java.

Operation Operator Description

Addition + Adds	the	values	of	two	variables

Subtraction - Subtracts	the	values	of	two	variables

Multiplication *
Multiplies	 the	 values	 of	 two
variables

Division / Divides	the	values	of	two	variables

Modulus %
The	 resultant	 value	 is	 the	 the
remainder	of	division

Increment ++ Increases	the	value	by	1

Decrement — Decreases	the	value	by	1

The	Relational	Operators

Java	 also	 supports	 several	 relational	 operators.	 The	 list	 of	 relational	 operators	 that	 are
supported	by	Java	are	given	below.

Operation Operator Description

Equal	To ==
Compares	 the	 values	 of	 two
variables	for	equality

Not	Equal	To !=
Compares	 the	 values	 of	 two
variables	for	inequality

Greater	Than >
Checks	 if	 one	 value	 is	 greater
than	the	other	value

Lesser	Than <
Checks	 if	 one	 value	 is	 lesser
than	the	other	value

Greater	 Than	 Or
Equal	To

>=
Checks	 if	 one	 value	 is	 greater
than	or	equal	to	the	other	value

Lesser	 Than	 Or
Equal	To

<=
Checks	 if	 one	 value	 is	 lesser
than	or	equal	to	the	other	value

The	Bitwise	Operators

The	bitwise	operators	available	 in	Java	can	be	easily	applied	 to	a	number	of	data	 types.
These	 data	 types	 include	 byte,	 short,	 long,	 int	 and	 char.	Typically,	 any	 bitwise	 operator
performs	the	concerned	operation	bit-wise.	For	instance,	if	you	consider	the	example	of	an
integer	 x,	 which	 has	 the	 value	 60.	 Therefore,	 the	 binary	 equivalent	 of	 x	 is	 00111100.
Consider	 another	 variable	 y,	with	 the	 value	 13	 or	 00001101.	 If	we	 perform	 the	 bitwise
operation	&	on	these	two	numbers,	then	you	will	get	the	following	result:

x&y	=	0000	1100

The	table	shown	below	shows	a	list	of	bitwise	operators	that	are	available	in	Java.

Operation Operator Description

BINARY	AND & Performs	the	AND	operation

BINARY	OR | Performs	the	OR	operation

BINARY	XOR ^ Performs	the	XOR	operation

ONE’S
COMPLEMENT

~
Performs	 the	 complementation
operation	on	a	unary	variable

BINARY	 LEFT
SHIFT

<< Performs	the	left	shifting	of	bits

BINARY	 RIGHT
SHIFT

>>
Performs	 the	 right	 shifting	 of
bits

In	addition	to	the	above	mentioned,	Java	also	supports	right	shift	zero	fill	operator	(>>>),
which	fills	the	shifted	bits	on	the	right	with	zero.

The	Logical	Operators

Logical	operators	are	an	integral	part	of	any	operator	set.	The	logical	operators	supported
by	Java	are	listed	in	the	table	below.

Operation Operator Description

Logical	AND &&
Returns	 True	 if	 both	 the
conditions	mentioned	are	true

Logical	OR ||
Returns	True	 if	one	or	both	 the
conditions	mentioned	are	true

Logical	NOT !
Returns	 True	 if	 the	 condition
mentioned	is	False

	

The	Assignment	Operators

There	are	following	assignment	operators	supported	by	Java	language:

Operation Operator Description

Simple	 assignment
operator

=
Assigns	 a	 value	 on	 the	 right	 to
the	variable	in	the	left

Add	 -	 assignment
operator

+=

Adds	 the	 value	 on	 the	 right	 to
the	value	of	 the	variable	on	 the
left	 and	 assigns	 the	 resultant	 to
the	variable	on	the	left

Subtract	 -
assignment	operator

-=

Subtracts	 the	value	on	 the	 right
to	 the	 value	 of	 the	 variable	 on
the	left	and	assigns	the	resultant
to	the	variable	on	the	left

Multiply	 -
assignment	operator

*=

Multiplies	the	value	on	the	right
to	 the	 value	 of	 the	 variable	 on
the	left	and	assigns	the	resultant
to	the	variable	on	the	left

Divide	-	assignment
operator

/=

Divides	the	value	on	the	right	to
the	value	of	 the	variable	on	 the
left	 and	 assigns	 the	 resultant	 to
the	variable	on	the	left

Modulus	 -
assignment	operator

%=

It	takes	the	modulus	of	the	LHS
and	 RHS	 and	 assigns	 the
resultant	 to	 the	 variable	 on	 the
left

Left	 shift	 -
assignment	operator

<<=

It	takes	the	left	shift	of	the	LHS
and	 RHS	 and	 assigns	 the
resultant	 to	 the	 variable	 on	 the
left

Right	 shift	 -
assignment	operator

>>=

It	 takes	 the	 right	 shift	 of	 the
LHS	 and	 RHS	 and	 assigns	 the
resultant	 to	 the	 variable	 on	 the
left

Bitwise	 -
assignment	operator

&=

It	 takes	the	bitwise	AND	of	 the
LHS	 and	 RHS	 and	 assigns	 the
resultant	 to	 the	 variable	 on	 the
left

bitwise	 exclusive
OR	 -	 assignment
operator

^=

It	 takes	 the	bitwise	XOR	of	 the
LHS	 and	 RHS	 and	 assigns	 the
resultant	 to	 the	 variable	 on	 the
left

bitwise	 inclusive
OR	 -	 assignment
operator

|=

It	 takes	 the	 bitwise	 OR	 of	 the
LHS	 and	 RHS	 and	 assigns	 the
resultant	 to	 the	 variable	 on	 the
left

Misc	Operators

In	addition	to	the	above	mentioned,	there	are	several	other	operators,	which	are	supported
by	Java.

Conditional	Operator	(?	:):

The	 conditional	 operator	 is	 a	 ternary	 operator	 that	 contains	 three	 operands.	 Essentially,
this	operator	is	used	for	the	evaluation	of	boolean	expressions.	The	operator	tests	the	first
operand	or	condition	and	if	the	condition	is	true,	then	the	second	value	is	assigned	to	the
variable.	However,	if	the	condition	is	false,	the	third	operand	is	assigned	to	the	variable.
The	syntax	of	this	operator	is	as	follows:

variable	a	=	(<condition>)	?	valueiftrue	:	valueiffalse

Sample	implementation:

public	class	myTest	{

public	static	void	main(String	args[]){

int	x,	y;

x	=	5;

y	=	(x	==	5)	?	15:	40;

System.out.println(“y	=	”	+		y);

y	=	(x	==	34)	?	60:	95;

System.out.println(“x	=	”	+	y);

}

}

The	compilation	and	execution	of	this	code	shall	give	the	following	result:

y	=	15

y	=	95

instanceof	Operator:

Only	 object	 reference	 variables	 can	 be	 used	 with	 this	 operator.	 The	 objective	 of	 this
operator	 is	 to	 check	 is	 an	 object	 is	 an	 instance	 of	 an	 exiting	 class.	 The	 syntax	 of	 this
operator	is	as	follows:

(<object	reference	variable>)	instanceof(<interface/class>)

Sample	implementation	of	this	operator	and	its	purpose	of	use	is	given	below:

public	class	myTest	{

public	static	void	main(String	args[]){

int	x	=	4;

boolean	resultant	=	x	instanceof	int;

System.out.println(resultant);

}

}

The	 output	 of	 this	 code	 shall	 be	 true.	This	 operator	 can	 also	 be	 used	 in	 comparison.	A
sample	implementation	of	this	is	given	below:

class	Animal	{}

public	class	Monkey	extends	Animal	{

public	static	void	main(String	args[]){

Animal	newa	=	new	Monkey();

boolean	resultant	=		newa	instanceof	Monkey;

System.out.println(resultant);

}

}

The	output	for	this	code	will	also	be	true.

Precedence	of	Java	Operators

More	 often	 than	 not,	 operators	 are	 used	 in	 combinations	 in	 expressions.	 However,	 you
must	have	also	realized	that	it	becomes	difficult	 to	predict	the	order	in	which	operations
will	 take	place	 during	 execution.	The	operator	 precedence	 table	 for	 Java	 shall	 help	 you
predict	operator	operations	in	an	expression	deduction.	For	instance,	if	you	are	performing
addition	and	multiplication	in	the	same	expression,	then	multiplication	takes	place	prior	to
addition.	The	following	table	illustrates	the	order	and	hierarchy	of	operators	in	Java.		The
associativity	 for	 all	 the	 operators	 is	 left	 to	 right.	 However,	 the	 unary,	 assignment	 and
conditional	operator	follows	right	to	left	associativity.

Operator Category

()	[]	.	(dot	operator) Postfix

++	-	-	!	~ Unary

*	/	% Multiplicative

+	- Additive

>>	>>>	<< Shift

>	>=	<	<= Relational

==	!= Equality

& Bitwise	AND

| Bitwise	OR

^ Bitwise	XOR

&& Logical	AND

|| Logical	OR

?: Conditional

=	+=	-=	*=	/=	%=	>>=	<<=	&=	^=
|=

Assignment

, Comma

	

Loops	in	Java

Looping	 is	 a	 common	 programming	 situation	 that	 you	 can	 expect	 to	 encounter	 rather
regularly.	Loop	can	simply	be	described	as	a	situation	in	which	you	may	need	to	execute
the	same	block	of	code	over	and	over.	Java	supports	three	looping	constructs,	which	are	as
follows:

for	Loop
do…while	Loop
while	Loop

In	addition	to	this,	the	foreach	looping	construct	also	exists.	However,	this	construct	will
be	explained	in	the	chapter	on	arrays.

The	while	Loop:

A	while	loop	is	a	control	structure	that	permits	you	to	rehash	an	errand	a	specific	number
of	times.	The	syntax	for	this	construct	is	as	follows:

while(boolean_expression)	{

/Statements

}

At	 the	 point	 when	 executing,	 if	 the	 boolean_expression	 result	 is	 genuine,	 then	 the
activities	inside	the	circle	will	be	executed.	This	will	proceed	till	the	time	the	result	for	the
condition	is	genuine.	Here,	key	purpose	of	the	while	loop	is	that	the	circle	may	not	ever
run.	At	 the	point	when	 the	 interpretation	 is	 tried	 and	 the	 result	 is	 false,	 the	body	of	 the
loop	will	be	skipped	and	the	first	proclamation	after	the	while	circle	will	be	executed.

Sample:

public	class	myTest	{

public	static	void	main(string	args[])	{

int	i=5;

while(i<10)	{

System.out.print(”	i	=	”	+	i);

i++;

System.out.print(“\n”);

}

}

This	would	deliver	the	accompanying	result:

x	=	5

x	=	6

x	=	7

x	=	8

x	=	9

x	=	5

The	do…while	Loop

A	do…while	 loop	 is	 similar	 to	 the	while	 looping	construct	 aside	 from	 that	 a	do…while
circle	is	ensured	to	execute	no	less	than	one	time.	The	syntax	for	this	looping	construct	is
as	follows:

do	{

/Statements

}while(<booleanexpression>);

Perceive	that	the	Boolean	declaration	shows	up	toward	the	end	of	the	circle,	so	the	code
execute	 once	 before	 the	 Boolean	 is	 tried.	 In	 the	 event	 that	 the	 Boolean	 declaration	 is
genuine,	the	stream	of	control	bounced	go	down	to	do,	and	the	code	execute	once	more.
This	methodology	rehashes	until	the	Boolean	articulation	is	false.

Sample	implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

int	i	=	1;

do{

System.out.print(“i	=	”	+	i);

i++;		System.out.print(“\n”);

}while(i<1);

}

This	would	create	the	accompanying	result:

i	=	1

The	for	Loop

A	for	circle	is	a	reiteration	control	structure	that	permits	you	to	effectively	compose	a	loop
that	needs	to	execute	a	particular	number	of	times.	A	for	looping	construct	is	helpful	when
you	know	how	often	an	errand	is	to	be	rehashed.	The	syntax	for	the	looping	construct	is	as
follows:

The	punctuation	of	a	for	circle	is:

for(initialization;	Boolean_expression;	redesign)

{

/Statements

}

Here	is	the	stream	of	control	in	a	for	circle:

The	introduction	step	is	executed	in	the	first	place,	and	just	once.	This	step	permits
you	to	pronounce	and	introduce	any	loop	control	variables.	You	are	not	needed	to
put	an	announcement	here,	the	length	of	a	semicolon	shows	up.
Next,	 the	 Boolean	 outflow	 is	 assessed.	 In	 the	 event	 that	 it	 is	 genuine,	 the
assemblage	of	the	loop	is	executed.	In	the	event	that	it	 is	false,	the	assortment	of
the	loop	does	not	execute	and	stream	of	control	hops	to	the	following	articulation
past	the	for	circle.
After	the	group	of	the	for	circle	executes,	the	stream	of	control	bounced	down	to
the	overhaul	 explanation.	This	 announcement	permits	you	 to	overhaul	 any	circle
control	variables.	This	announcement	can	be	 left	clear,	 the	 length	of	a	semicolon
shows	up	after	the	Boolean	declaration.
The	Boolean	outflow	is	currently	assessed	once	more.	On	the	off	chance	that	it	is
genuine,	 the	 loop	 executes	 and	 the	 scope	 rehashes	 itself.	 After	 the	 Boolean
declaration	is	false,	the	for	loop	ends.

Sample	Implementation

public	class	myTest	{

public	static	void	main(string	args[])	{

for(int	i	=	0;	i	<	5;	i	=	i+1)	{

System.out.print(“i	=	”	+	i);

System.out.print(“\n”);

}

}

This	would	deliver	the	accompanying	result:

i	=	0

i	=	1

i	=	2

i	=	3

i	=	4

Extended	Version	of	for	Loop	in	Java

As	of	Java	5,	 the	upgraded	for	 loop	was	presented.	This	 is	basically	utilized	for	Arrays.
The	syntax	for	this	loop	is	as	follows:

for(declaration	:	statement)

{

//Statements

}

Declaration:	 The	 recently	 declared	 variable,	 which	 is	 of	 a	 sort	 perfect	 with	 the
components	of	the	show	you	are	getting	to.	The	variable	will	be	accessible	inside
the	for	piece	and	its	esteem	would	be	the	same	as	the	current	array	component.
Expression:	 This	 assesses	 to	 the	 exhibit	 you	 have	 to	 loop	 through.	 The
interpretation	can	be	an	array	variable	or	function	call	that	returns	an	array.

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

int	[]	mynumber	=	{0,	5,	10,	15,	20};

for(int	i	:	mynumber){

System.out.print(i);

System.out.print(”	,”);

}

}

This	would	deliver	the	accompanying	result:

0,	5,	10,	15,	20

The	break	Keyword

The	break	keyword	is	utilized	to	stop	the	whole	loop	execution.	The	break	word	must	be
utilized	inside	any	loop	or	a	switch	construct.	The	break	keyword	will	stop	the	execution
of	the	deepest	circle	and	begin	executing	the	following	line	of	code	after	the	ending	curly
bracket.	The	syntax	for	using	this	keyword	is	as	follows:

break;

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[])	{

int	[]	mynumbers	=	{0,	5,	10,	15,	20};

for(int	i	:	mynumbers)	{

if(i	==	15)	{

break;

}

System.out.print(i);

System.out.print(“\n”);

}

}

This	would	deliver	the	accompanying	result:

0

5

10

The	Continue	Keyword

The	 proceed	 with	 decisive	 word	 can	 be	 utilized	 as	 a	 part	 of	 any	 of	 the	 loop	 control
structures.	It	causes	the	loop	to	quickly	bounce	to	the	following	emphasis	of	the	loop.

In	a	for	circle,	the	continue	keyword	reasons	stream	of	control	to	quickly	bounce	to
the	overhaul	articulation.
In	 a	 while	 or	 do/while	 loop,	 stream	 of	 control	 instantly	 hops	 to	 the	 Boolean
interpretation.

The	syntax	of	using	this	keyword	is	as	follows:

continue;

Sample	Implementation:

public	class	myTest	{

public	static	void	main(String	args[])	{

int	[]	mynumbers	=	{0,	5,	10,	15,	20};

for(int	i	:	mynumbers)	{

if(i	==	15)	{

continue;

}

System.out.print(i);

System.out.print(“\n”);

}

}

}

The	expected	output	of	the	code	is:

0

5

10

20

Decision	Making

There	are	two	sorts	of	decision	making	constructs	in	Java.	They	are:

if	constructs
switch	constructs

The	if	Statement:

An	if	constructs	comprises	of	a	Boolean	outflow	emulated	by	one	or	more	proclamations.
The	syntax	for	using	this	construct	is	as	follows:

if(<condition>)	{

//Statements	if	the	condition	is	true

}

In	the	event	that	the	Boolean	construct	assesses	to	true,	then	the	scope	of	code	inside	the	if
proclamation	will	be	executed.	If	not	the	first	set	of	code	after	the	end	of	the	if	construct
(after	the	end	wavy	prop)	will	be	executed.

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

int	i	=	0;

if(i	<	1){

System.out.print(“The	if	construct	is	executing!”);

}

}

This	would	create	the	accompanying	result:

The	if	construct	is	executing!

The	if…else	Statement

An	if	proclamation	can	be	trailed	by	a	non-compulsory	else	explanation,	which	executes
when	the	Boolean	outflow	is	false.	The	syntax	for	this	construct	is	as	follows:

if(<condition>){

//Executes	if	condition	is	true

}

else{

//Executes	if	condition	is	false

}

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

int	i	=	0;

if(i	>	1){

System.out.print(“The	if	construct	is	executing!”);

}

else{

System.out.print(“The	else	construct	is	executing!”);

}

}

This	would	create	the	accompanying	result:

The	else	construct	is	executing!

The	if…else	if	Statement

An	if	proclamation	can	be	trailed	by	a	non-compulsory	else	if…else	explanation,	which	is
exceptionally	helpful	to	test	different	conditions	utilizing	single	if…else	if	articulation.

At	 the	 point	 when	 utilizing	 if	 ,	 else	 if	 ,	 else	 proclamations	 there	 are	 few	 focuses	 to
remember.

An	if	can	have	zero	or	one	else’s	and	it	must	come	after	any	else	if’s.
An	if	can	have	zero	to	numerous	else	if’s	and	they	must	precede	the	else.
If	one	of	the	if	conditions	yield	a	true,	the	other	else	ifs	and	else	are	ignored.

The	syntax	for	using	this	decision	making	construct	Is	as	follows:

if(condition_1){

//Execute	if	condition_1	is	true

}

else	if(condition_2){

//Execute	if	condition_2	is	true

}

else	if(condition_3){

//Execute	if	condition_3	is	true

}

else

{

//Execute	if	all	conditions	are	false

}

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

int	i	=	0;

if(i	>	1){

System.out.print(“The	first	if	construct	is	executing!”);

}

else	if(i	==	0){

System.out.print(“The	second	if	construct	is	executing!”);

}

else{

System.out.print(“The	else	construct	is	executing!”);

}

}

This	would	create	the	accompanying	result:

The	second	if	construct	is	executing!

Nested	if…else	Statement

It	 is	 legitimate	to	home	if-else	constructs,	which	implies	you	can	utilize	one	 if	or	else	 if
proclamation	 inside	 an	 alternate	 if	 or	 else	 if	 explanation.	 The	 syntax	 for	 using	 this
construct	Is	as	follows:

if(condition_1){

//Execute	if	condition_1	is	true

if(condition_2){

//Execute	if	condition_2	is	true

}

}

else	if(condition_3){

//Execute	if	condition_3	is	true

}

else

{

//Execute	if	all	conditions	are	false

}

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

int	i	=	1;

if(i	>=	1){

System.out.println(“The	if	construct	is	executing!”);

if(i	==	1){

System.out.println(“The	nested	if	construct	is	executing!”);

}

}

else{

System.out.print(“The	else	construct	is	executing!”);

}

}

This	would	create	the	accompanying	result:

The	if	construct	is	executing!

The	nested	if	construct	is	executing!

The	switch	Statement

A	switch	construct	permits	a	variable	to	be	tried	for	equity	against	a	rundown	of	values.
Each	one	value	 is	known	as	a	case,	and	 the	variable	being	exchanged	on	 is	checked	for
each	one	case.	The	syntax	for	using	this	decision	making	construct	is	as	follows:

switch(<condition>){

case	value1:

//Statements

break;

case	value2	:

//Statements

break;

default:

//Optional

}

The	accompanying	runs	apply	to	a	switch	construct:

The	variable	utilized	as	a	part	of	a	switch	explanation	must	be	a	short,	byte,	char	or
int.
You	can	have	any	number	of	case	explanations	 inside	a	switch.	Each	one	case	 is
trailed	by	the	value	to	be	contrasted	with	and	a	colon.

The	value	for	a	case	must	be	the	same	type	as	the	variable	in	the	switch	and	it	must
be	a	steady	or	an	exacting	value.
When	the	variable	being	exchanged	on	is	equivalent	to	a	case,	the	announcements
after	that	case	will	execute	until	a	break	is	arrived	at.
When	a	break	is	arrived	at,	the	switch	ends,	and	the	stream	of	control	bounces	to
the	following	line	after	the	switch.
Not	each	case	needs	 to	contain	a	break.	In	 the	event	 that	no	break	shows	up,	 the
stream	of	control	will	fall	through	to	consequent	cases	until	a	break	is	arrived	at.
A	switch	articulation	can	have	a	discretionary	default	 case,	which	must	 show	up
toward	 the	end	of	 the	 switch.	The	default	 case	can	be	utilized	 for	performing	an
undertaking	when	 none	 of	 the	 cases	 is	 true.	 No	 break	 is	 required	 in	 the	 default
case.	However,	as	per	the	convention,	the	use	of	the	same	is	recommended.

Sample	Implementation:

public	class	myTest	{

public	static	void	main(string	args[]){

char	mygrade	=	‘A’;

switch(mygrade)

{

case	“A”	:

System.out.println(“Excellent	Performance!”);

break;

case	“B”	:

System.out.println(“Good	Performance!”);

break;

default	:

System.out.println(“Failed”);

}

Aggregate	 and	 run	above	code	utilizing	different	 inputs	 to	grade.	This	would	 create	 the
accompanying	result	for	the	present	value	of	mygrade:

Excellent	Performance!

Strings	in	Java

Strings,	which	are	generally	utilized	as	a	part	of	Java,	for	writing	computer	programs,	are
a	grouping	of	characters.	 In	 the	 Java	programming	 language,	 strings	are	 like	everything
else,	objects.	The	Java	platform	provides	the	String	class	to	make	and	control	strings.

Instantiating	Strings

The	most	appropriate	approach	to	make	a	string	is	to	use	the	following	statement:

String	mystring	=	“Hi	world!”;

At	whatever	 point	 it	 experiences	 a	 string	 exacting	 in	 your	 code,	 the	 compiler	makes	 a
String	object	with	its	value	for	this	situation,	“Hi	world!’.

Similarly	as	with	other	objects,	you	can	make	Strings	by	utilizing	a	constructor	and	a	new
keyword.	 The	 String	 class	 has	 eleven	 constructors	 that	 permit	 you	 to	 give	 the	 starting
estimation	of	the	string	utilizing	diverse	sources,	for	example,	a	cluster	of	characters.

public	class	myStringdemo{

public	static	void	main(string	args[]){

char[]	myarray	=	{	‘h’,	‘i’,	‘.’};

String	mystring	=	new	String(myarray);

System.out.println(mystring);

}

This	would	deliver	the	accompanying	result:

hi.

Note:	The	String	class	is	changeless,	so	that	once	it	is	made	a	String	object,	its	type	can’t
be	changed.	In	the	event	that	there	is	a	need	to	make	a	great	deal	of	alterations	to	Strings
of	characters,	then	you	ought	to	utilize	String	Buffer	&	String	Builder	Classes.

Determining	String	Length

Routines	used	to	get	data	about	an	object	are	known	as	accessor	methods.	One	accessor
technique	 that	 you	 can	 use	 with	 strings	 is	 the	 length()	 function,	 which	 furnishes	 a
proportional	 payback	 of	 characters	 contained	 in	 the	 string	 item.	 This	 function	 can	 be
utilized	in	the	following	manner:

public	class	mystring	{

public	static	void	main(string	args[])	{

String	newstr	=	“I	am	hungry!”;

int	strlen	=	newstr.length();

System.out.println(“length	=	”	+	strlen);		}

This	would	create	the	accompanying	result:

length	=	12

How	to	Concatenate	Strings

The	String	class	incorporates	a	function	for	connecting	two	strings:

mystring1.concat(mystring2);

This	 returns	another	 string	 that	 is	mystring1	with	mystring2	added	 to	 it	 toward	 the	end.
You	can	likewise	utilize	the	concat()	system	with	string	literals,	as	in:

“My	name	is	“.concat(“mary”);

Strings	are	all	the	more	usually	concatenated	with	the	+	administrator,	as	in:

“Hi,”	+	”	world”	+	“!”

which	brings	about:

“Hi,	world!”

Sample	Implementation:

public	class	MyString	{

public	static	void	main(string	args[])	{

String	mystr	=	“Sorry”;

System.out.println(“I	”	+	“am	”	+	mystr);

}

This	would	deliver	the	accompanying	result:

I	am	Sorry

Format	Strings

You	have	format()	and	printf()	functions	to	print	 the	output	with	designed	numbers.	The

function	format()	of	the	String	class	returns	a	String	object	as	against	a	Printstream	object.
This	function	creates	a	formatted	string	that	can	be	reused.	This	function	can	be	used	in
the	following	manner:

String	fstr;

fstr	=	String.format(“Float	variable	value	”	+	“%f,	and	Integer	value	”	+		“variable	is	%d,
and	the	contents	of	the	string	is	”	+	”	%s”,	fVar,	iVar,	sVar);

System.out.println(fstr);

String	Methods

This	section	contains	a	list	of	methods	that	are	available	as	part	of	the	String	class.

int	compareTo(Object	obj)	–	This	 function	compares	 the	specified	string	with	 the	object
concerned.

char	 charAt(int	 chindex)	 –	 This	 function	 returns	 the	 char	 present	 at	 the	 index	 value
‘index.’

int	 compareToIgnoreCase(String	 mystr)	 –	 This	 function	 performs	 the	 lexographic
comparison	of	the	two	strings.	However,	the	case	differences	are	ignored	by	this	function.

int	 compareTo(String	 aString)	 –	 This	 function	 performs	 the	 lexographic	 comparison
between	the	strings.

boolean	contentEquals(StringBuffer	 strb)	–	This	 function	checks	 if	 the	 string	 is	 same	as
the	sequence	of	characters	present	in	the	StringBuffer.	It	returns	true	on	success	and	false
on	failure.

String	concat(String	strnext)	–	This	function	appends	the	string	with	another	string	at	the
end.

static	String	copyValueOf(char[]	mydata,	int	xoffset,	int	xcount)	–	This	function	returns	a
stringf,	which	is	indicative	of	the	character	sequence	in	the	original	string.

static	String	copyValueOf(char[]	newdata)	–	This	function	copies	the	string	of	characters
into	a	character	buffer	in	the	form	of	a	sequence	of	characters.

boolean	 equals(Object	 aObject)	 –	 This	 function	 compares	 the	 object	 with	 the	 string
concerned.

boolean	endsWith(String	newsuffix)	–	This	function	appends	the	string	with	the	specified
suffix.

byte	getBytes()	–	Using	this	function,	the	string	can	be	encoded	into	bytes	format,	which
are	stored	in	a	resultant	array.

boolean	equalsIgnoreCase(String	aString)	–	This	function	makes	a	comparison	of	the	two
strings	without	taking	the	case	of	characters	into	consideration.

void	 getChars(int	 srcBegin,	 int	 sourceEnd,	 char[]	 dst,	 int	 destinationBegin)	 –	 This
function	copies	characters	from	the	specified	beginning	character	to	the	end	character	into
an	array.

byte[]	 getBytes(String	 charsetnm)	 -	Using	 this	 function,	 the	 string	 can	 be	 encoded	 into
bytes	format	using	named	char	set,	which	are	stored	in	a	resultant	array.

int	indexOf(int	charx)	–	This	function	returns	the	index	of	first	character	that	 is	same	as
the	character	specified	in	the	function	call.

int	hashCode()	–	A	hash	code	is	returned	by	this	string.

int	 indexOf(String	newstr)	 -	This	 function	 returns	 the	 index	of	 the	 first	 occurrence	of	 a
substring	in	a	string.

int	indexOf(int	charx,	int	fromIndexloc)	–	This	function	returns	the	index	of	first	character
that	 is	 same	 as	 the	 character	 specified	 in	 the	 function	 call.	 The	 search	 starts	 from	 the
specified	index.

String	intern()	–	A	canonical	representation	of	a	string	object	given	in	the	function	call	is
returned.

int	indexOf(String	newstr,	int	fromIndexloc)	-	This	function	returns	the	index	of	the	first
occurrence	of	a	substring	in	a	string.	The	search	starts	from	the	specified	index.

int	lastIndexOf(int	charx,	int	fromIndexloc)	-	This	function	makes	a	search	for	a	character
from	the	specified	index	and	returns	the	index	where	the	last	occurrence	is	found.

int	 lastIndexOf(int	charx)	 -	This	 function	makes	a	 search	 for	a	character	backwards	and
returns	 the	 index	where	 the	 last	 occurrence	 or	 first	 occurrence	 in	 a	 backward	 search	 is
found.

int	lastIndexOf(String	newstr,	int	fromIndexloc)	–	This	function	makes	a	search	for	a	sub-
string	from	the	specified	index	and	returns	the	index	where	the	last	occurrence	is	found.

int	lastIndexOf(String	newstr)	-	This	function	makes	a	search	for	a	sub-string	backwards
and	returns	the	index	where	the	last	occurrence	or	first	occurrence	in	a	backward	search	is
found.

boolean	matches(String	 aregex)	 -	 –	 This	 function	 checks	 for	 equality	 between	 a	 string
region	and	a	regular	expression.

int	length()	–	This	function	calculates	and	returns	the	string	length.

boolean	 regionMatches(int	 totaloffset,	 String	 otherstr,	 int	 otheroffset,	 int	 strlen)	 –	 This
function	checks	for	equality	between	string	regions.

boolean	 regionMatches(boolean	 ignorecharcase,	 int	 totaloffset,	 String	 otherstr,	 int
otheroffset,	int	strlen)	–	This	function	checks	for	equality	between	string	regions.

String	 replace(char	oldCharx,	 char	newCharx)	 -	This	 function	 looks	 for	 a	 substring	 that
matches	 the	 regular	 expression	 and	 then	 replaces	 all	 the	 occurrences	with	 the	 specified
string.	 The	 function	 returns	 the	 resultant	 string,	 which	 is	 obtained	 after	making	 all	 the
replacements.

String	 replaceFirst(String	newregex,	String	newreplacement)	–	This	 function	 looks	 for	a
substring	 that	matches	 the	regular	expression	and	then	replaces	 the	first	occurrence	with
the	specified	string.

String	 replaceAll(String	 newregex,	 String	 xreplacement)	 -	 This	 function	 looks	 for	 a
substring	 that	matches	 the	 regular	expression	and	 then	 replaces	all	 the	occurrences	with
the	specified	string.

String[]	split(String	newregex,	int	xlimit)	–	This	function	performs	splitting	of	the	string
according	to	the	regular	expression	with	it	and	the	given	limit.

String[]	split(String	newregex)	-	This	function	performs	splitting	of	the	string	according	to
the	regular	expression	with	it.

boolean	 startsWith(String	 newprefix,	 int	 totaloffset)	 –	This	 function	 checks	 if	 the	 given
string	has	the	prefix	at	the	specified	index.

boolean	 startsWith(String	 newprefix)	 –	 This	 function	 checks	 if	 the	 given	 string	 begins
with	the	prefix	sent	with	the	function	call.

String	substring(int	beginIndexloc)	-	This	function	returns	a	string,	which	is	substring	of
the	specified	string.	The	substring	is	determined	by	the	beginning	index	to	the	end	of	the
string.

CharSequence	subSequence(int	beginIndexloc,	int	endIndexloc)	-	This	function	returns	a
character	sequence,	which	is	sub-character	sequence	of	the	specified	character	sequence.
The	substring	is	determined	by	the	beginning	and	ending	indexes.

char[]	 toCharArray()	 –	This	 function	 performs	 the	 conversion	 of	 a	 string	 to	 a	 character
array.

String	substring(int	beginIndexloc,	int	endIndexloc)	–	This	function	returns	a	string,	which
is	 substring	 of	 the	 specified	 string.	 The	 substring	 is	 determined	 by	 the	 beginning	 and
ending	index.

String	 toLowerCase(Locale	 localenew)	 -	This	 function	converts	 all	 the	characters	 in	 the
specified	string	to	lower	case	using	given	locale	rules.

String	toLowerCase()	-	This	function	converts	all	the	characters	in	the	specified	string	to
lower	case	using	default	locale	rules.

String	toUpperCase()	-	This	function	converts	all	the	characters	in	the	specified	string	to
upper	case	using	default	locale	rules.

String	toString()	–	This	function	returns	the	string	itself.

String	 toUpperCase(Locale	 localenew)	–	This	 function	converts	all	 the	characters	 in	 the
specified	string	to	upper	case	using	locale	rules.

static	String	valueOf(primitive	data	 type	x)	–	A	 string	 representation	 is	 returned	by	 this
function.

String	trim()	–	Omits	the	whitespace	that	trails	and	leads	a	string.

	

	

Arrays

Java	 supports	 an	 information	 structure,	 which	 is	 similar	 to	 a	 cluster.	 This	 information
structure	is	called	an	array.	It	is	capable	of	storing	an	altered	size	successive	accumulation
of	 components	 of	 the	 same	 data	 type.	 An	 array	 is	 utilized	 to	 store	 an	 accumulation	 of
information,	yet	 it	 is	 frequently	more	valuable	 to	 think	about	 it	as	an	exhibit	 for	storing
variables	of	the	same	sort.

As	opposed	to	making	declarations	of	individual	variables,	for	example,	num0,	num1	and
num99,	 you	 can	 declare	 one	 array	 variable.	 For	 example,	 an	 array	 of	 four	 elements	 is
declared	as	arrayname[4].	This	chapter	discusses	all	the	facets	of	array	declaration,	access
and	manipulation.

How	To	Declare	array	Variables

To	utilize	an	array	as	a	part	of	a	system,	you	must	declare	a	variable	to	reference	the	array.
Besides	this,	you	must	determine	the	sort	of	array	the	variable	can	reference.	Here	is	the
syntax	for	declaring	a	variable	of	the	type	array:

datatype[]	myarray;

Sample	Implementation:

The	accompanying	code	bits	are	illustrations	of	this	concept:

double[]	myarray;

Making	Arrays

You	can	make	an	exhibit	by	utilizing	the	new	operator	with	the	accompanying	statement:

myarray	=	new	datatype[sizeofarray];

The	above	declaration	does	two	things:

It	makes	an	exhibit	with	the	help	of	the	new	operator	in	the	following	manner:

new	datatype[arraysize];

It	relegates	the	reference	of	the	recently	made	array	to	the	variable	myarray.

Proclaiming	a	array	variable,	making	an	exhibit,	and	doling	out	the	reference	of	the	show
to	the	variable	can	be	consolidated	in	one	declaration,	as	appeared:

datatype[]	myarray	=	new	datatype[sizeofarray];

On	the	other	hand,	you	can	also	make	clusters	in	the	following	manner:

datatype[]	myarray	=	{val0,	val1,	…,	valk};

The	components	of	the	array	are	gotten	to	through	the	record.	Array	lists	are	0-based;	that
is,	they	begin	from	0	to	go	up	to	myarray.length-1.

Sample	Implementation:

The	 declaration	 shown	 below	 declares	 an	 array,	 myarray,	 makes	 a	 cluster	 of	 10
components	of	double	type	and	doles	out	its	reference	to	myarray:

double[]	myarray	=	new	double[10];

Handling	Arrays

At	 the	 point	when	 handling	 components	 of	 an	 array,	we	 frequently	 utilize	 either	 for	 or
foreach	in	light	of	the	fact	that	the	majority	of	the	components	in	an	array	are	of	the	same
sort	and	the	extent	of	the	exhibit	is	known.

Example:

public	class	Mytestarray	{

public	static	void	main(string[]	args)	{

double[]	myarray	=	{0.5,	1.2,	2.2,	3.4,	4.7};

for	(int	k	=	0;	k	<	myarray.length;	k++)	{

System.out.println(myarray[k]	+	”	“);

}

double	aggregate	=	0;

for	(int	k	=	0;	k	<	myarray.length;	k++)	{

aggregate	+=	myarray[k];

}

System.out.println(“Aggregate	value	=	”	+	aggregate);

double	maxval	=	myarray[0];

for	(int	k	=	1;	k	<	mylist.length;	k++)	{

if	(myarray[i]	>	maxval)

maxval	=	myarray[k];

}

System.out.println(“Max	Value	is	”	+	maxval);

}

This	would	create	the	accompanying	result:

0.5	1.2	2.2	3.4	4.7

Aggregate	=	12.0

Max	Value	is	4.7

The	foreach	Loops

JDK	1.5	presented	another	for	construct,	which	is	known	as	foreach	loop	or	extended	for
loop.	 This	 construct	 empowers	 you	 to	 cross	 the	 complete	 array	 successively	 without
utilizing	an	extra	variable.

Sample	Implementation:

public	class	Mytestarray	{

public	static	void	main(string[]	args)	{

double[]	myarray	=	{0.5,	1.2,	2.2,	3.4,	4.7};

for	(double	i:	myarray)	{

System.out.println(i);

}

}

This	would	deliver	the	accompanying	result:

0.5	1.2	2.2	3.4	4.7

Passing	Arrays	to	Methods:

Generally,	just	as	you	can	pass	primitive	values	to	methods	or	functions,	you	can	likewise
pass	arrays	to	systems.	Case	in	point,	the	accompanying	method	shows	the	components	in
an	int	array:

public	static	void	printarr(int[]	arr)	{

for	(int	k	=	0;	k	<	arr.length;	k++)	{

System.out.print(arr[k]	+	”	“);

}

You	 can	 summon	 it	 by	 passing	 an	 array.	 Case	 in	 point,	 the	 accompanying	 declaration
conjures	the	printarr	function	to	show	the	elements	of	the	array.

printarr(new	int[]{0,	3,	5,	3,	1});

The	compilation	and	execution	of	this	code	yields	the	following	result:

0	3	5	3	1

How	Can	A	Method	Return	An	Array

A	 system	 might	 likewise	 give	 back	 an	 array.	 Case	 in	 point,	 the	 method	 demonstrated
underneath	returns	an	array	that	is	the	inversion	of	an	alternate	array:

public	static	int[]	revarr(int[]	myarr)	{

int[]	resultarr	=	new	int[myarr.length];

for	(int	k	=	0,	i	=	resultarr.length	-	1;	k	<=	myarr.length/2;	k++,	i-	-)	{

resultarr[j]	=	myarr[k];

}

return	resultarr;

}

The	Arrays	Class

The	java.util.arrays	class	contains	different	functions	for	sorting	and	seeking	values	from
array,	looking	at	arrays,	and	filling	components	into	arrays.	These	functions	are	available
for	all	primitive	data	types.

public	static	boolean	equals(long[]	a,	long[]	a2)	-	returns	true	if	the	two	indicated
arrays	are	equivalent	to	each	other.	Two	arrays	are	viewed	as	equivalent	if	both	of
them	contain	the	same	number	of	components,	and	all	relating	sets	of	components
in	the	two	arrays	are	equivalent.	This	returns	true	if	the	two	shows	are	equivalent.
Same	function	could	be	utilized	by	all	other	primitive	data	types.
public	static	int	binarysearch(object[]	an,	Object	key)	-	looks	the	pointed	out	array
of	Object		for	the	defined	value	utilizing	the	double	calculation.	The	array	must	be
sorted	before	making	this	call.	This	returns	list	of	 the	keys,	 in	 the	event	 that	 it	 is
contained	in	the	list;	generally,	(-(insertion	point	+	1).
public	static	void	sort(Object[]	a)	–	This	function	can	be	used	to	sort	a	given	array

in	the	ascending	order.	It	can	likewise	be	used	for	any	data	type.
public	 static	 void	 fill(int[]	 an,	 int	 val)	 -	 appoints	 the	 detailed	 int	 value	 to	 every
component	 of	 the	 pointed	 out	 array	 of	 ints.	 Same	 function	 could	 be	 utilized	 for
arrays	of	other	data	types	as	well.

	

	

Regular	Expressions

Java	includes	the	java.util.regex	package	to	match	with	regular	expressions.	Java’s	normal
outflows	 are	 fundamentally	 the	 same	 to	 the	 Perl	 programming	 language	 and	 simple	 to
learn.	A	consistent	outflow	is	an	exceptional	succession	of	characters	that	helps	you	match
or	discover	different	strings	or	sets	of	strings,	utilizing	a	specific	syntax	held	as	a	part	of
an	example.	They	can	be	utilized	 to	 find,	 alter,	 or	 control	 content	 and	 information.	The
java.util.regex	package	essentially	comprises	of	the	accompanying	three	classes:

Pattern	 Class:	 A	 Pattern	 article	 is	 an	 arranged	 representation	 of	 a	 consistent
declaration.	The	Pattern	class	does	not	have	any	public	constructors.	To	make	an
example,	you	should	first	conjure	one	of	its	public	static	methods,	which	will	then
give	back	a	Pattern	object.	These	functions	acknowledge	a	normal	statement	as	the
first	contention.
Matcher	 Class:	 A	 Matcher	 article	 is	 the	 motor	 that	 translates	 the	 example	 and
performs	match	 operations	 against	 an	 information	 string.	 Like	 the	 Pattern	 class,
Matcher	 has	 no	 public	 constructors.	 You	 get	 a	Matcher	 object	 by	 conjuring	 the
matcher	method	on	a	Pattern	object.
Patternsyntaxexception:	 A	 Patternsyntaxexception	 object	 is	 an	 unchecked
exemption	that	shows	a	sentence	structure	mistake	in	a	consistent	statement	design.

Catching	Groups

Catching	 groups	 are	 an	 approach	 to	 treat	 various	 characters	 as	 an	 issue	 unit.	 They	 are
made	by	putting	the	characters	to	be	assembled	inside	a	set	of	enclosures.	Case	in	point,
the	normal	declaration	(canine)	makes	a	solitary	gathering	containing	the	letters	“d”,	“o”,
and	“g”.	Catching	gatherings	are	numbered	by	numbering	their	opening	enclosures	from
left	to	right.	In	the	representation	((A)(b(c))),	for	instance,	there	are	four	such	gatherings:

(a)
(c)
(b(c))
((a)(b(c)))

To	 discover	 what	 number	 of	 gatherings	 are	 available	 in	 the	 declaration,	 call	 the
groupcount	 strategy	 on	 a	 matcher	 object.	 The	 groupcount	 technique	 gives	 back	 an	 int
demonstrating	the	quantity	of	catching	gatherings	show	in	the	matcher’s	example.	There	is
likewise	 an	 uncommon	 gathering,	 gathering	 0,	 which	 dependably	 speaks	 to	 the	 whole

outflow.	This	gathering	is	excluded	in	the	aggregate	reported	by	groupcount.

Sample	Implementation:

This	 sample	 code	 emulates	 how	 to	 discover	 from	 the	 given	 alphanumeric	 string	 a	 digit
string:

import	java.util.regex.matcher;

import	java.util.regex.pattern;

public	class	Myregexmatches	{

public	static	void	primary(String	args[]){

String	line	=	“Request	for	Qt3000!	“;

String	example	=	“(.*)(\d+)(.*)”;

Pattern	myr	=	Pattern.compile(pattern);

Matcher	mym	=	myr.matcher(line);

if	(mym.find())	{

System.out.println(“Value	=	”	+	mym.group(0));

System.out.println(“Value	=	”	+	mym.group(1));

System.out.println(“Value	=	”	+	mym.group(2));

}

else	{

System.out.print(“No	match	found!”);

}

}

Regular	Expression	Syntax

Given	below	is	a	list	of	regular	expression	syntax	for	your	reference.

Matches Subexpression

Matches	line	beginning ^

Matches	line	end $

Matches	 single	 characters	 except	 for	 the	 newline
character

.

Matches	single	character	in	braces […]

Matches	single	character,	which	are	not	in	braces [^…]

String	beginning \A

String	end \z

String	 end	 except	 for	 the	 final	 line	 terminating
character

\Z

Matches	0	or	more	instances	of	expression re*

Matches	1	or	more	instances	of	the	expression re+

Matches	0	or	1	instances	of	expression. re?

Matches	exactly	n	of	instances	of	expression. re{	n}

Matches	 n	 or	 more	 instances	 of	 the	 specified
expression.

re{	n,}

Matches	minimum	n	and	maximum	m	instances	of	the
expression.

re{	n,	m}

Matches	one	of	these:	a	or	b. a|	b

Groups	 regular	 expressions.	 The	 matching	 text	 is
remembered.

(re)

Groups	 regular	 expressions.	 The	 text	 is	 not
remembered.

(?:	re)

Matches	 independent	 pattern.	 No	 backtracking	 is
supported.

(?>	re)

Matches	characters	in	a	word. \w

Matches	characters,	which	are	non-word. \W

Matches	 whitespace.	 These	 characters	 are	 equivalent
to	[\t\n\r\f].

\s

Matches	space,	which	is	non-whitespace. \S

Matches	digits.	These	are	typically	equal	to	0	to	9. \d

Matches	non-digits. \D

Matches	string	beginning. \A

Matches	 string	 end	 just	 before	 the	 newline	 character
appears.

\Z

Matches	string	end. \z

Matches	 the	 point	 where	 the	 last	matching	 condition
was	found.

\G

Group	number	n	back-reference \n

Matches	 boundaries	 of	 the	 word	 when	 used	 without
brackets.	 However,	 backspace	 is	 matched	 when	 it	 is
used	inside	brackets.

\b

Matches	boundaries,	which	are	non-word \B

Matches	carriage	returns,	newlines,	and	tabs \n,	\t,	etc.

Escape	all	the	characters	until	a	\E	is	found \Q

Ends	any	quotes	that	begin	with	\Q \E

Methods	of	the	Matcher	Class

Index	Methods:

The	following	table	gives	a	list	of	methods	hat	show	correctly	where	the	match	was	found
in	the	info	string:

public	int	start(int	bunch)

Furnishes	 a	 proportional	 payback	 record	 of	 the	 subsequent	 caught	 by	 the	 given
group	amid	the	past	match	operation.

public	int	begin()

Furnishes	a	proportional	payback	record	of	the	past	match.

public	int	end(int	bunch)

Furnishes	a	proportional	payback	after	the	last	character	of	the	subsequent	caught
by	the	given	group	amid	the	past	match	operation.

public	int	end()

Furnishes	a	proportional	payback	after	the	last	character	matched.

Study	Methods:

Study	methods	 survey	 the	 info	 string	 and	 return	 a	 Boolean	 demonstrating	 whether	 the
example	is	found:

public	boolean	find()

Endeavors	 to	 discover	 the	 following	 subsequence	 of	 the	 info	 arrangement	 that
matches	the	example.

public	boolean	lookingat()

Endeavors	to	match	the	info	arrangement,	beginning	toward	the	start	of	the	district,
against	the	example.

public	boolean	matches()

Endeavors	to	match	the	whole	district	against	the	example.

public	boolean	find(int	begin)

Resets	this	matcher	and	after	that	endeavors	to	discover	the	following	subsequence
of	 the	 information	grouping	 that	matches	 the	 example,	 beginning	 at	 the	 detailed
list.

Substitution	Methods:

Substitution	methods	are	valuable	methods	for	supplanting	content	in	a	data	string:

public	static	String	quotereplacement(string	mystr)

Gives	 back	 an	 exacting	 substitution	 String	 for	 the	 tagged	 String.	 This	 method
creates	 a	 String	 that	 will	 function	 as	 an	 issue	 substitution	 s	 in	 the
appendreplacement	system	for	the	Matcher	class.

public	Stringbuffer	appendtail(stringbuffer	strbuff)

Actualizes	a	terminal	annex	and-supplant	step.

public	Matcher	appendreplacement(stringbuffer	strbuff,	String	strsubstitution)

Actualizes	a	non-terminal	annex	and-supplant	step.

public	String	replacefirst(string	strsubstitution)

Replaces	 the	 first	 subsequence	 of	 the	 data	 succession	 that	matches	 the	 example
with	the	given	substitution	string.

public	String	replaceall(string	strsubstitution)

Replaces	each	subsequence	of	the	data	succession	that	matches	the	example	with
the	given	substitution	string.

The	begin	and	end	Methods:

Taking	after	is	the	sample	that	tallies	the	quantity	of	times	the	statement	“felines”	shows
up	in	the	data	string:

import	java.util.regex.pattern;

import	java.util.regex.matcher;

public	class	Regexmatches	{

private	static	last	String	INPUT	=			“feline	cattie	feline”;

private	static	last	String	REGEX	=	“\bcat\b”;

public	static	void	principle(String	args[]){

Pattern	myp	=	Pattern.compile(regex);

Matcher	mym	=	myp.matcher(input);

int	checkval	=	0;

while(mym.find())	{

count++;

System.out.println(“match	number	“+count);

System.out.println(“start():	“+mym.start());

System.out.println(“end():	“+mym.end());

}

}

You	can	see	that	this	sample	uses	word	limits	to	guarantee	that	the	letters	“c”	“a”	“t”	are
not	only	a	substring	in	a	more	extended	word.	It	likewise	provides	for	some	helpful	data
about	where	in	the	information	string	the	match	has	happened.	The	begin	technique	gives
back	where	 its	 due	 record	 of	 the	 subsequence	 caught	 by	 the	 given	 group	 amid	 the	 past
match	operation,	and	end	furnishes	a	proportional	payback	of	the	last	character	matched,
in	addition	to	one.

The	matches	and	lookingat	Methods:

The	matches	 and	 lookingat	methods	 both	 endeavor	 to	match	 an	 information	 succession
against	an	example.	The	distinction,	 then	again,	 is	 that	matches	requires	 the	whole	enter
grouping	 to	 be	 matched,	 while	 lookingat	 does	 not.	 Both	 techniques	 dependably	 begin
toward	the	start	of	the	data	string.

The	replacefirst	and	replaceall	Methods:

The	 replacefirst	 and	 replaceall	 routines	 supplant	 content	 that	 matches	 a	 given	 standard
representation.	As	 their	 names	 show,	 replacefirst	 replaces	 the	 first	 event,	 and	 replaceall
replaces	all	events.

The	appendreplacement	and	appendtail	Methods:

The	 Matcher	 class	 additionally	 gives	 appendreplacement	 and	 appendtail	 routines	 to
content	substitution.

PatternSyntaxException	Class	Methods:

A	PatternSyntaxException	is	an	exception,	which	is	unchecked.	This	exception	indicates	a
syntactical	error	in	the	pattern	of	the	regular	expression.	The	PatternSyntaxException	class
offers	the	following	methods	to	the	developer	for	use.

public	int	getIndex()

This	function	returns	the	index	of	error.

public	String	getDescription()

This	function	returns	the	description	of	error.

public	String	getMessage()

This	function	returns	the	description	and	index	of	error.

public	String	getPattern()

This	function	returns	the	error-causing	regular	expression	pattern.

	

	

	

Methods

A	Java	method	is	an	accumulation	of	explanations	that	are	gathered	together	to	perform	an
operation.	 When	 you	 call	 the	 System.out.println	 function,	 for	 instance,	 the	 framework
executes	a	few	articulations	so	as	to	show	a	message	on	the	output	screen.	Presently,	you
will	 figure	 out	 how	 to	make	 your	 own	 routines	with	 or	 without	 return	 qualities,	 call	 a
method	with	or	without	parameters,	 over-loaded	methods	utilizing	 the	 same	names,	 and
apply	method	deliberation	in	the	system	plan.

How	To	Create	Methods

Considering	the	accompanying	sample	to	clarify	the	structure	of	a	method:

public	static	int	functionname(int	x,	int	y)	{

//Statements

}

Here,	the	method	uses	the	following	elements:

Modifier:	public	static
Data	type	of	the	return	value:	int
Method	name:	functionname
Formal	Parameters:	x,	y

Such	 constructs	 are	 otherwise	 called	 Functions	 or	 Procedures.	 However,	 there	 is	 a
distinctive	quality	of	these	two:

Functions:	They	return	an	explicit	value.
Procedures:	They	don’t	give	back	any	quality.

Function	definition	comprises	of	a	system	header	and	body.	The	construct	given	above	can
be	generalized	to	the	following	arrangement:

modifier	returndatatype	methodname	(List	of	Parameter)	{	//Statements	}

The	structure	indicated	above	incorporates:

Modifier:	 It	 characterizes	 the	 right	 to	 gain	 entrance	 to	 the	method	 and	 it	 is	 non-
compulsory	to	utilize.
Returntype:	Method	may	give	back	a	value	of	this	data	type.
Methodname:	 This	 is	 the	 method	 name,	 which	 comprise	 of	 the	 name	 and	 the

parameter	list	of	the	method.
List	of	Parameters:	The	rundown	of	parameters,	which	entails	data	 type,	 request,
and	number	of	parameters	of	a	method.	A	method	may	contain	zero	parameters	as
well.
Statements:	 The	 method	 body	 characterizes	 what	 the	 method	 does	 with
explanations.

Sample	Implementation:

Here	is	the	source	code	of	the	above	characterized	method	called	maxval().	This	technique
takes	 two	 parameters	 number1	 and	 number2	 and	 furnishes	 a	 proportional	 payback
between	the	two:

public	static	int	minval(int	num1,	int	num2)	{

int	minvalue;

if	(num1	>	num2)		minvalue	=	num2;

else		minvalue	=	num1;

return	minvalue;

}

Calling	A	Method

For	utilizing	a	method,	it	ought	to	be	called.	There	are	two	courses	in	which	a	technique	is
called	i.e.	technique	gives	back	a	value	or	nothing	(no	return	value).	The	methodology	of
system	calling	is	basic.	At	the	point	when	a	project	summons	a	method,	the	system	control
gets	exchanged	to	the	called	method.	This	called	method	then	returns	control	to	the	guest
in	two	conditions.	These	conditions	include:

Reaches	the	method	closure	brace.
Return	articulation	is	executed.

The	methods	 returning	 void	 is	 considered	 as	 call	 to	 an	 announcement.	 Lets	 consider	 a
sample:

System.out.println(“This	is	the	end	of	the	method!”);

The	method	returning	a	value	can	be	seen	by	the	accompanying	illustration:

double	resultant	=	sumval(4.2,	2.5);

Sample	Implementation:

public	class	Minnumber{

public	static	void	main(string[]	args)	{

double	x	=	21.5;

double	y	=	2.0;

double	z	=	minvalfunc	(x,	y);

System.out.println(“The	returned	value	=	”	+	z);

}

public	static	double	minvalfunc	(double	num1,	double	num2)	{

double	minval;

if	(num1	>	num2)

minval	=	num2;

else

minval	=	num1;

return	minval;

}

This	would	create	the	accompanying	result:

The	returned	value	=	2.0

The	void	Keyword:

The	void	keyword	permits	us	to	make	methods,	which	don’t	give	back	a	value.	Here,	 in
the	 accompanying	 illustration	we’re	 considering	 a	 void	method.	This	 function	 is	 a	 void
method,	 which	 does	 not	 give	 back	 any	 value.	 Call	 to	 a	 void	 system	 must	 be	 an
announcement	 i.e.	 rankpoints(657.3);.	 It	 is	 a	 Java	 explanation	 which	 closes	 with	 a
semicolon	as	appeared.

Sample	Implementation:

public	class	Myexample	{

public	static	void	main(string[]	args)	{

rankpoints(657.3);

}

public	static	void	rankpoints(double	valfoc)	{

if	(valfoc	>=	100.5)	{

System.out.println(“A1	Rank”);

}

else	if	(valfoc	>=	55.4)	{

System.out.println(“A2	Rank”);

}

else	{

System.out.println(“A3	Rank”);

}

}

This	would	deliver	the	accompanying	result:

A1	Rank

Passing	Parameters	by	Value

While	working	under	calling	procedure,	contentions	is	to	be	passed.	These	ought	to	be	in
the	 same	 request	 as	 their	 particular	 parameters	 in	 the	 function	 call.	 Parameters	 can	 be
passed	by	reference	or	value.	Passing	parameters	by	value	means	calling	a	method	with	a
parameter.	Through,	this	is	the	contention	value	is	gone	to	the	parameter.

Sample	Implementation:

The	accompanying	project	demonstrates	an	illustration	of	passing	parameter	by	value.

public	class	Myswapping	{

public	static	void	main(string[]	args)	{

double	x	=	0.43;

double	y	=	34.65;

System.out.println(“Values	of	X	and	Y	before	swapping,	x	=	”	+	x	+	”	and	y	=	”	+	y);

myswapfunc	(x,	y);

System.out.println(“\nValues	of	X	and	Y	after	swapping:	“);

System.out.println(“x	=	”	+		x	+	”	and	y	is	”	+	y);

}

public	static	void	myswapfunc	(int	x,	int	y)	{

System.out.println(“Inside	the	function:	Values	of	X	and	Y	before	swapping,	x	=	”	+	x		+	”
y	=	”	+	y);

System.out.println(“Inside	the	function:	Values	of	X	and	Y	after	swapping,	x	=	”	+	x		+	”	y
=	”	+	y);

}

Function	Overloading

At	 the	 point	 when	 a	 class	 has	 two	 or	 more	 methods	 by	 same	 name	 however	 diverse
parameters,	 it	 is	 known	 as	 method	 overloading.	 It	 is	 not	 the	 same	 as	 overriding.	 In
overriding	a	method	has	same	name,	number	of	parameters,	data	type	and	so	on.

The	underneath	illustration	clarifies	the	same:

public	class	Myoverloading{

public	static	void	main(string[]	args)	{

int	x	=	50;

int	y	=	34;

double	s	=	14.3;

double	r	=	13.6;

int	resultant1	=	minfunc	(x,	y);

double	resultant2	=	minfunc	(s,	r);

System.out.println(“Value	of	minfunc	=	”	+	resultant1);

System.out.println(“Value	of	minfunc	=	”	+	resultant2);

}

public	static	int	minfunc(int	num1,	int	num2)	{

int	minval;

if	(num1	>	num2)

minval	=	num2;

else

minval	=	num1;

return	minval;

}

public	static	double	minfunc(double	num1,	double	num2)	{

double	minval;

if	(num1	>	num2)

minval	=	num2;

else

minval	=	num1;

return	minval;

}

Over-loading	systems	makes	program	clear.	Here,	 two	systems	are	given	same	name	yet
with	distinctive	parameters.

Utilizing	Command-Line	Arguments

Frequently	you	will	 need	 to	pass	data	 into	 a	 system	when	you	 run	 it.	This	 is	 expert	 by
passing	order	 line	contentions	 to	principle().	A	summon	 line	contention	 is	 the	data	 that
specifically	takes	after	the	program’s	name	on	the	order	line	when	it	is	executed.	To	get	to
the	order	line	contentions	inside	a	Java	system	is	truly	easy.they	are	put	away	as	strings	in
the	String	cluster	went	to	fundamental().

Sample	Implementation:

public	class	Mycommandline	{

public	static	void	main(string	args[]){

for(int	k=0;	k<args.length;	k++){

System.out.println(“ARGS[”	+	k	+	“]:	”	+			args[k]);

}

}

The	Constructors:

A	constructor	 instates	an	 item	when	 it	 is	made.	 It	has	 the	same	name	as	 its	class	and	 is
linguistically	 like	 a	 system.	 On	 the	 other	 hand,	 constructors	 have	 no	 return	 data	 type.
Regularly,	you	will	utilize	a	constructor	to	give	beginning	values	to	the	instance	variables
characterized	 by	 the	 class,	 or	 to	 perform	whatever	 other	 startup	methods	 are	 needed	 to
make	a	completely	structured	item.

All	 classes	 have	 constructors,	whether	 you	 characterize	 one	 or	 not,	 on	 the	 grounds	 that
Java	naturally	gives	 a	 default	 constructor	 that	 instates	 all	 variables	 to	 zero.	Then	 again,
once	you	characterize	your	own	constructor,	the	default	constructor	is	no	more	utilized.

Sample	Implementation:

class	Myconsclass	{

int	i;

Myconsclass()	{

i	=	0;

}

You	would	call	constructor	to	introduce	objects	as	shown	below:

public	class	Myconsdemo	{

public	static	void	main(string	args[])	{

Myconsclass	tcons1	=	new	Myconsclass	();

Myconsclass	tcons2	=	new	Myconsclass	();

System.out.println(tcons1.i	+	”	+	tcons2.i);

}

Regularly,	 you	 will	 require	 a	 constructor	 that	 acknowledges	 one	 or	 more	 parameters.
Parameters	are	added	to	a	constructor	 in	 the	same	way	that	 they	are	added	to	a	strategy,
simply	declare	them	inside	the	brackets	after	the	constructor’s	name.

Sample	Implementation:

class	MyNewclass	{

int	x;

MyNewclass(int	k)	{

x	=	k;

}

You	would	call	constructor	to	introduce	objects	in	the	manner	shown	below:

public	class	Myconsdemo	{

public	static	void	main(string	args[])	{

Myconsclass	tcons1	=	new	Myclass(35);

Myconsclass	tcons2	=	new	Myclass(67);

System.out.println(tcons1.x	+	”	“+	tcons2.x);

}

This	would	create	the	accompanying	result:

35	67

Variable	Arguments(var-args)

Java	Development	 Kit	 1.5	 empowers	 you	 to	 pass	 arguments,	 which	 can	 be	 of	 variable
number.	However,	 the	data	type	of	the	parameters	should	be	the	same.	The	parameter	in
the	system	is	declared	in	the	following	manner:

typename…	nameofparameter

In	the	statement,	you	define	the	data	type	emulated	by	an	ellipsis	(…).	Only	one	variable-
length	 parameter	 may	 be	 determined	 in	 a	 method,	 and	 this	 parameter	 must	 be	 the	 last
parameter.	Any	customary	parameters	must	go	before	it.

Sample	Implementation:

public	class	Mysampleclass	{

public	static	void	main(string	args[])	{

printmaxval(33,	45,	43,	22,	5);

printmaxval(new	double[]{5,	8,	1});

}

public	static	void	printmaxval(double…	mynum)	{

if	(mynum.length	==	0)	{

System.out.println(“No	Arguments!”);

return;

}

double	resultant	=	mynum	[0];

for	(int	x	=	1;	x	<		mynum.length;	x++)

if	(mynum[x]	>		resultant)		resultant	=	mynum[x];

System.out.println(“Max	val	=	”	+	resultant);		}

This	would	deliver	the	accompanying	result:

Max	val	=	45.0

Max	val	=	1.0

The	finalize()	Method:

It	 is	 conceivable	 to	 call	 a	 method	 that	 will	 be	 called	 just	 before	 an	 object’s	 last
annihilation.	This	method	 is	 referred	 to	 as	 finalize(),	 and	 it	 can	be	utilized	 to	guarantee
that	 an	 item	ends	neatly.	For	 instance,	you	may	utilize	 finalize()	 to	verify	 that	 an	open
record	possessed	by	that	object	is	shut.	To	add	a	finalizer	to	a	class,	you	basically	jus	call
finalize().	The	Java	runtime	calls	that	technique	at	whatever	point	it	 is	going	to	reuse	an
object	of	that	class.

Inside	this	function,	you	will	point	out	those	activities	that	must	be	performed	before	an
object	is	removed.	The	syntax	of	using	and	implementing	this	function	is:

protected	void	finalize()	{

//Statements

}

The	access	modifier	used	for	 the	method	ensures	that	 the	method	cannot	be	accessed	by
elements	outside	 the	particular	class.	This	 implies	 that	you	can’t	know	when	or	how	the
method	executes.

	

	

File	Handling

All	the	classes	that	you	may	require	on	a	day	to	day	I/O	programming	basis	are	contained
in	the	package	java.io.	The	streams	present	 in	this	package	broadly	represent	output	and
input	 locations.	Moreover,	 the	 streams	 supported	 in	 Java	 include	 object,	 primitives	 and
localized	characters.	 	A	stream	can	simply	be	described	as	data,	arranged	in	a	sequence.
While	the	inputStream	can	be	used	for	inputting	data	from	a	source,	the	OutputStream	can
be	sued	for	outputting	data	to	a	sink.	The	support	for	I/O	provided	by	Java	is	flexible	and
extensive.	This	chapter	sims	to	cover	all	the	basic	facets	of	File	Handling	in	Java.

Byte	Streams

Byte	streams	in	Java	are	utilized	to	perform	output	and	input	of	8-bit	bytes.	In	spite	of	the
fact	that	there	are	numerous	classes	identified	with	byte	streams	yet	most	utilized	classes
are,	Fileoutputstream	and	Fileinputstream.	Here	is	an	example	of	they	can	be	used	in	real-
life	programming.

import	java.io.*;

public	class	Filecopy	{

public	static	void	main(string	args[])	throws	IOException		{

FileInputStream	inputx	=	invalid;

FileOutputStream	outputx	=	invalid;

try	{

inputx	=	new	FileInputStream(“inputfile.txt”);

outputx	=	new	FileOutputStream(“outputfile.txt”);

int	charx;

while	((charx	=	inputx.read())	!=	-1)	{

outputx.write(charx);

}

}

finally	{

if	(inputx	!=	invalid)	{

inputx.close();

}

if	(outputx	!=	invalid)	{

outputx.close();

}

}

}

Presently	we	should	have	a	record	inputfile.txt	with	the	accompanying	content:

This	is	for	testing	purpose	only.

As	an	 important	step,	compile	and	execute	 the	code	shown	above.	The	execution	of	 the
code	shall	result	in	the	creation	of	outputfile.txt	file.

Character	Streams

Java	Byte	 streams	 are	 utilized	 to	 perform	output	 and	 input	 of	 8-bit	 bytes.	On	 the	 other
hand,	Java	Character	streams	are	utilized	to	perform	output	and	input	for	16-bit	unicode.
In	spite	of	the	fact	that	there	are	numerous	classes	identified	with	character	streams	yet	the
most	commonly	used	ones	include	Filereader	and	Filewriter.

It	is	worth	mentioning	here	that	the	implementation	of	Filereader	utilizes	Fileinputstream
and	 Filewriter	 utilizes	 Fileoutputstream.	 This	 may	make	 you	 wonder	 as	 to	 what	 is	 the
difference	 between	 the	 former	 and	 latter.	 Filereader	 peruses	 two	 bytes	 at	 once	 and
Filewriter	 composes	 two	bytes	 at	once.	We	can	 re-compose	above	 sample	which	makes
utilization	of	these	two	classes	to	duplicate	an	info	record	(having	unicode	characters)	into
an	outputfile.txt.

import	java.io.*;

public	class	Mycopyfile	{

public	static	void	main(string	args[])	throws	IOException		{

FileReader	inputx	=	invalid;

FileWriter	outputx	=	invalid;

try	{

inputx	=	new	FileReader(“inputfile.txt”);

outputx	=	new	FileWriter(“outputfile.txt”);

int	charx;

while	((charx	=	inputx.read())	!=	-1)	{

outputx.write(charx);

}

}

finally	{

if	(inputx	!=	invalid)	{

inputx.close();

}

if	(outputx	!=	invalid)	{

outputx.close();

}

}

}

Presently	how	about	we	have	a	record	inputfile.txt	with	the	accompanying	text:

This	is	for	testing	purpose	only.

Compile	 and	 execute	 the	 file	 containing	 this	 code.	 The	 execution	 of	 this	 code	 should
create	an	output	file	outputfile.txt.

Standard	Streams

All	the	programming	languages	give	backing	to	standard	I/O	where	client’s	code	can	take
information	 from	 a	 console	 and	 afterward	 deliver	 appropriate	 output	 on	 the	 machine
screen.	On	the	off	chance	that	you	have	some	knowledge	of	C	or	C++,	then	you	must	be
mindful	of	 three	 standard	 tools	namely,	STDIN,	STDOUT	and	STDERR.	 Java	provides
three	standard	streams,	which	are	discussed	below:

Standard	Error:	This	is	utilized	to	yield	the	error	information	created	by	the	client’s
code	 and	 normally	 a	 machine	 screen	 is	 utilized	 as	 standard	 error	 stream	 and
referred	to	as	System.err.
Standard	Output:	This	 is	 utilized	 to	 yield	 the	 information	 created	 by	 the	 client’s

code	 and	 normally	 a	 machine	 screen	 is	 utilized	 to	 standard	 output	 stream	 and
referred	to	as	System.out.
Standard	Input:	This	 is	utilized	 to	encourage	 the	 information	 to	client’s	code	and
normally	a	console	is	utilized	as	standard	data	stream	and	referred	to	as	System.in.

Sample	Implementation:

import	java.io.*;

public	class	Myreadconsole	{

public	static	void	main(string	args[])	throws	IOException		{

InputStreamReader	cinx	=	invalid;

try	{

cinx	=	new	InputStreamReader(system.in);

System.out.println(“Input	string,	press	“e”	to	exit.”);

char	charx;

do	{

charx	=	(char)	cinx.read();

System.out.print(charx);

}	while(charx	!=	‘e’);

}

finally	{

if	(cinx	!=	invalid)	{

cinx.close();

}

}

}

The	 code	 mentioned	 above	 must	 be	 saved	 in	 a	 file	 named	 Myreadconsole.java.	 Upon
compilation	and	execution	of	 this	code,	 the	system	must	be	able	to	receive	and	interpret
characters.

Perusing	and	Writing	Files

As	 mentioned	 previously,	 a	 stream	 can	 be	 defined	 as	 a	 sequence	 of	 information.	 The
Inputstream	 is	 utilized	 to	 peruse	 information	 from	 a	 source	 and	 the	 Outputstream	 is
utilized	for	outputting	information	to	a	terminus.

Here	 is	 a	 chain	of	 importance	of	 classes	 to	manage	 Input	 and	Output	 streams.	The	 two
essential	streams	are	Fileinputstream	and	Fileoutputstream,	which	would	be	talked	about
in	the	following	section:

Fileinputstream:

This	stream	is	utilized	for	perusing	information	from	the	documents.	Objects	can	be	made
utilizing	the	keyword	new	and	there	are	a	few	sorts	of	constructors	accessible.	Inputstream
can	be	used	for	reading	files	in	the	following	manner:

Inputstream	myfx	=	new	Fileinputstream(“c:/java/hi”);

The	constructor	takes	a	record	item	to	make	a	data	stream	object	to	peruse	the	document.
Initially,	we	make	a	record	item	utilizing	File()	technique	in	the	following	manner:

File	myfx	=	new	File(“c:/java/hi”);

Inputstream	myfx	=	new	Fileinputstream(myfx);

When	you	have	 the	object	of	 Inputstream	under	control,	 there	 is	a	 rundown	of	assistant
methods,	which	 can	be	 utilized	 to	 peruse	 to	 stream	or	 to	 do	different	 operations	 on	 the
stream.

protected	void	finalize()	throws	IOException	{}

This	 system	cleans	up	any	association	with	 the	 file	and	guarantees	 that	 the	 local
method	for	this	output	stream	for	the	file	is	called.	Besides	this,	this	method	is	also
capable	of	throwing	an	exception.

public	void	close()	throws	IOException	{}

This	 system	 shuts	 the	 output	 stream	 of	 the	 file	 and	 discharges	 any	 framework
assets	connected	with	the	the	same.	It	is	also	capable	of	throwing	an	exception.

public	int	available()	throws	IOException{}

This	function	returns	an	 int,	 indicating	 the	number	of	bytes	 that	 the	 input	stream
can	still	read.

public	int	read(int	r)throws	IOException{}

The	read	method	is	used	for	reading	content	from	the	InputStream	and	returns	the

next	byte	of	data	in	int	data	type.	However,	upon	reaching	the	end	of	file,	it	returns
-1.

public	int	read(byte[]	r)	throws	IOException{}

This	read	method	is	similar	in	operation	to	the	read	method	described	above	with
the	exception	that	it	reads	data	length	of	r	in	the	given	array.	The	function	returns
the	number	of	bytes	read	and	-1	upon	reaching	the	end	of	file.

Other	input	streams	are	also	available	for	use.	Some	of	these	include:

DataInputStream
ByteArrayInputStream

FileOutputStream:

Fileoutputstream	is	utilized	to	make	a	file	and	write	text	into	it.	The	stream	would	create	a
file,	in	the	event	that	it	doesn’t	as	of	now	exist,	before	opening	it	for	outputting.	Here	are
two	constructors	which	can	be	utilized	to	make	a	Fileoutputstream	object.

Method	1:

OutputStream	myfx	=	new	FileOutputStream(“c:/java/hi”)

Method	2:

File	myfx	=	new	File(“c:/java/hi”);

OutputStream	myfx	=	new	FileOutputStream(myfx);

When	you	have	OutputStream	object	under	control,	 there	is	a	rundown	of	aide	methods,
which	 can	be	 utilized	 to	 keep	 in	 touch	with	 stream	or	 to	 do	 different	 operations	 on	 the
stream.

public	void	write(int	w)	throws	IOException	{}

This	method	composes	the	tagged	byte	to	the	output	stream.

protected	void	finalize()	throws	IOException	{}

This	 strategy	 cleans	 up	 any	 associations	 with	 the	 record.	 Besides	 this,	 it	 also
guarantees	 that	 the	 local	 method	 for	 this	 output	 stream	 for	 file	 is	 called.	 This
method	is	capable	of	throwing	an	exception.

public	void	close()	throws	IOException	{}

This	 method	 shuts	 the	 output	 stream	 of	 the	 file.	 Moreover,	 it	 discharges	 any

framework	 assets	 connected	 with	 the	 document.	 This	 method	 also	 throws	 an
IOException.

public	void	write(byte[]	w)

This	 method	 composes	 w.length	 bytes	 from	 the	 specified	 byte	 exhibit	 to	 the
Outputstream.

There	are	other	imperative	output	streams	accessible,	which	are	as	follows:

ByteArrayOutputStream
DataOutputStream

Sample	Implementations:

import	java.io.*;

public	class	Mytestfile{

public	static	void	main(string	args[]){

try{

byte	bytewrite	[]	=	{45,64,22,49,1};

OutputStream	myos	=	new	FileOutputStream(“mytest.txt”);

for(int	i=0;	i	<	bytewrite.length	;	i++){

myos.write(bytewrite[x]);

}

myos.close();

InputStream	myis	=	new	FileInputStream(“mytest.txt”);

int	sizex	=	myis.available();

for(int	z=0;	z<	sizex;	z++){

System.out.print((char)myis.read()	+	“		“);

}

myis.close();

}catch(IOException	e){

System.out.print(“Exception	Caught!”);

}

}

The	 above	 code	 would	 make	 a	 file	 mytest.txt	 and	 would	 compose	 given	 numbers	 in
parallel	organization.	Same	would	be	outputted	to	the	stdout	screen.

File	Navigation	and	I/O

There	 are	 a	 few	 different	 classes	 that	 we	 would	 be	 experiencing	 to	 get	 to	 know	 the
fundamentals	of	File	Navigation	and	I/O.

File	Class
FileWriter	Class
FileReader	Class

Directories

A	directory	 is	a	File,	which	can	contains	a	 rundown	of	different	catalogs	and	 files.	You
utilize	 the	 object	 File	 to	 make	 catalogs,	 to	 rundown	 down	 documents	 accessible	 in	 an
index.	 For	 complete	 point	 of	 interest	 check	 a	 rundown	 of	 every	 last	 one	 of	 techniques
which	you	can	approach	File	item	and	what	are	identified	with	indexes.

Making	Directories:

There	are	two	valuable	File	utility	methods,	which	can	be	utilized	to	make	directories:

The	mkdirs()	method	makes	both	a	directory	and	all	the	elements	of	the	index.
The	mkdir()	method	makes	a	directory,	returning	valid	on	achievement	and	false
on	disappointment.	Failure	demonstrates	that	the	way	determined	in	the	File	object
exists,	or	that	the	index	can’t	be	made	in	light	of	the	fact	that	the	whole	way	does
not	exist	yet.

Sample	Implementation:

import	java.io.File;

public	class	MyCreateDir	{

public	static	void	main(String	args[])	{

String	directoryname	=	“/tmp/user/java/bin”;

File	dir	=	new	File(directoryname);

dir.mkdirs();

}

}

Listing	Directories:

You	can	utilize	list()	method	provided	by	the	File	class	to	provide	a	list	of	all	the	records
and	directories	accessible	in	an	index.

Sample	Implementation:

import	java.io.File;

public	class	MyReadDir	{

public	static	void	main(String[]	args)	{

File	myfile	=	null;

String[]	paths;

try{

myfile	=	new	File(“/tmp”);

mypaths	=	file.list();

for(String	path:mypaths)

{

System.out.println(path);

}

}catch(Exception	e){

e.printStackTrace();

}

}

}

	

Exception	Handling

During	 the	 execution	 of	 your	 program,	 it	 may	 experience	 abnormal	 or	 exceptional
conditions.	As	a	result	of	these,	the	system	may	crash.	An	exception	may	occur	due	to	a
number	of	reasons.	Some	of	these	include:

A	file	that	needs	to	be	opened	can’t	be	found.
A	client	has	entered	invalid	information.
A	system	association	has	been	lost	amidst	correspondences	or	the	JVM	has	used	up
all	the	available	memory.

Some	of	these	special	cases	are	created	by	client	mistake,	others	by	developer	blunder,	and
others	 by	 physical	 assets	 that	 have	 fizzled	 into	 your	 code	 in	 some	 way.	 To	 see	 how
exception	 handling	works	 in	 Java,	 you	 have	 to	 comprehend	 the	 three	 classifications	 of
exceptions:

Errors:	These	are	not	special	cases	whatsoever.	Therefore,	errors	can	be	defined	as
issues	that	are	beyond	the	understanding	and	the	ability	to	control	of	the	client	or
the	software	engineer.	They	are	normally	overlooked	in	your	code	on	the	grounds
that	 you	 can	 once	 in	 a	 while	 take	 care	 of	 a	 mistake.	 Case	 in	 point,	 if	 a	 stack
overflow	happens,	it	is	sure	to	result	in	an	error.	They	are	additionally	disregarded
at	the	time	of	compiling.
Runtime	Exceptions:	It	 is	a	special	case	that	most	likely	could	have	been	dodged
by	 the	 software	 engineer.	 Runtime	 exceptions	 are	 disregarded	 at	 the	 time	 of
assemblage.
Checked	 Exceptions:	 It	 is	 a	 special	 case	 that	 is	 regularly	 a	 client	mistake	 or	 an
issue	 that	 can’t	 be	 predicted	 by	 the	 developer.	 Case	 in	 point,	 if	 a	 file	 is	 to	 be
opened,	 yet	 the	 file	 can’t	 be	 found,	 an	 exception	 of	 this	 type	 happens.	 These
special	cases	can’t	just	be	disregarded	at	the	time	of	compilation	and	dry	runs.

Hierarchy	of	Exceptions

All	 classes	 of	 exceptions	 are	 subtypes	 of	 the	 java.lang.exception	 class.	 This	 class	 is	 a
subclass	 of	 the	 Throwable	 class.	 Other	 than	 the	 exception	 class,	 there	 is	 an	 alternate
subclass	 called	 Error	 which	 is	 gotten	 from	 the	 Throwable	 class.	 These	 special	 case
scenarios	 are	 not	 ordinarily	 caught	 by	 the	 Java	 programs.	 These	 conditions	 ordinarily
happen	 if	 alternate	 scenarios	 are	 not	 taken	 care	 of	 by	 the	 java	 programs.	 Errors	 are
produced	to	demonstrate	lapses	created	by	the	runtime	environment.	A	sample	exception

is:	Out	of	Memory	or	Stack	Overflow.	The	Exception	class	has	 two	primary	subclasses:
IOException	and	RuntimeException	Classes.

Exception	Methods:

Here	is	a	list	of	methods	that	are	available	as	part	of	the	Throwable	class.

public	Throwable	getcause()

This	method	gives	back	the	cause	of	the	exemption	as	mentioned	by	a	Throwable
item.

public	String	getmessage()

This	 method	 gives	 back	 the	 exception’s	 complete	 message	 and	 details.	 This
message	is	usually	included	in	the	Throwable	constructor.

public	void	printstacktrace()

This	 method	 prints	 the	 aftereffect	 of	 tostring()	 alongside	 the	 stack	 follow	 to
System.err,	the	output	stream	for	error.

public	String	tostring()

The	method	 gives	 back	where	 its	 due	 of	 the	 class	 linked	with	 the	 aftereffect	 of
getmessage()

public	Throwable	fillinstacktrace()

The	method	fills	the	stack	of	this	Throwable	object	with	the	current	trace	of	stack,
adding	to	any	past	data	in	the	trace	of	stack.

public	Stacktraceelement	[]	getstacktrace()

The	method	gives	back	a	array	containing	every	component	on	the	trace	of	stack.
The	component	at	file	0	speaks	to	the	highest	point	of	the	call	stack,	and	the	last
component	in	the	show	speaks	to	the	system	at	the	base	of	the	call	stack.

Getting	Exceptions:

A	system	discovers	a	special	case	utilizing	a	blend	of	 the	 try	and	catch	keywords.	A	try
scope	 is	 set	 around	 the	 code	 that	may	produce	 an	 exemption.	Code	 inside	 this	 scope	 is
alluded	to	as	secured	code,	and	the	structure	for	utilizing	try/catch	is	given	below:

try	{

//Code	that	may	produce	an	exception

}catch(nameofexception	exp_1)	{

//Code	to	be	executed	once	an	exception	occurs

}

A	try	block	 includes	announcing	 the	kind	of	exception	you	are	attempting	 to	get.	 In	 the
event	that	an	exception	happens	in	ensured	code,	the	catch	square	that	executes	after	the
attempt	is	checked.	In	the	event	that	this	sort	of	special	case	that	happened	in	a	try	block,
the	exception	goes	to	the	catch	block,	which	is	also	passed	as	a	system	parameter.

Sample	Implementation:

import	java.io.*;

public	class	MyException{

public	static	void	main(string	args[]){

try{

int	myarr[]	=	new	int[2];

System.out.println(“This	 statement	 attempts	 to	 access	 the	 third	 element	 of	 the	 array:”	+
a[3]);

}catch(arrayindexoutofboundsexception	e_1){

System.out.println(“The	thrown	exception	is:	”	+	e_1);

}

System.out.println(“Exception:	Out	of	Bounds”);

}

This	would	deliver	the	accompanying	result:

The	thrown	exception	is:	java.lang.arrayindexoutofboundsexception:	3

Exception:	Out	of	Bounds

Using	Multiple	Try	Blocks

A	 single	 piece	 of	 code	 can	 have	 a	 number	 of	 catch	 blocks	 for	 catching	 different
exceptions.	The	structure	of	the	multiple	try/catch	blocks	is	given	below:

try	{

//Statements	to	be	tested

}catch(exceptiontype1	e_1)	{

//Catch	block	1

}

catch(exceptiontype2	e_2)	{

//Catch	block	2

}catch(exceptiontype3	e_3)	{

//Catch	block	3

}

This	code	uses	three	catches.	However,	you	can	use	as	many	catch	blocks	as	you	need	for
your	 code.	 On	 the	 off	 chance	 that	 an	 exception	 happens	 in	 the	 protected	 code,	 the
exemption	 is	 thrown	 and	 caught	 firstly	 by	 the	 first	 catch	 block.	 If	 the	 exception	 type
matches,	then	the	catch	block	executes.	However,	if	the	exception	type	doesn’t	match,	the
exception	 is	 open	 to	 be	 caught	 by	 the	 next	 catch	 block.	 This	 process	 continues	 until	 a
matching	exception	type	is	found	or	all	the	catch	blocks	have	been	checked.

Sample	Implementation:

try{

filex	=	new	Fileinputstream(nameoffile);

num	=	(byte)	filex.read();

}catch(IOException	e_1)	{

e_1.printstacktrace();

return	-1;

}catch(filenotfoundexception	f_1){

f_1.printstacktrace();

return	-1;

}

Throws	Keyword

On	 the	off	 chance	 that	 a	 system	does	not	handle	a	checked	exception,	 the	method	must
proclaim	it	utilizing	the	keyword	throws.	The	throws	keyword	shows	up	toward	the	end	of

a	the	method’s	signature.	You	can	throw	an	exemption,	either	a	recently	instantiated	one	or
a	special	case	that	you	simply	found,	by	utilizing	the	keyword	throw.

Finally	Keyword

The	keyword	finally	is	utilized	to	make	a	piece	of	code	that	last	code	to	be	executed	for	a
program.	 A	 finally	 square	 of	 code	 dependably	 executes,	 irrespective	 of	 whether	 an
exemption	has	happened	or	not.	Utilizing	a	finally	piece	permits	you	to	run	any	cleanup-
sort	statements	that	you	need	to	execute,	regardless	of	what	happens	in	the	secured	code.

Creating	An	Exception

You	can	make	your	own	exemptions	in	Java.	Remember	the	accompanying	focuses	when
composing	your	classes	for	exceptions:

All	exemptions	must	be	an	offspring	of	Throwable.
If	 you	need	 to	 compose	 a	 checked	 exemption	 that	 is	 naturally	 authorized	by	 the
Handle	or	Declare	Rule,	you	have	to	create	an	extension	of	the	Exception	class.
If	you	need	to	compose	a	runtime	exemption,	you	will	have	to	create	an	extension
of	the	Runtimeexception	class.

You	can	create	your	own	exceptions	using	the	following	structure:

class	MyNewException	extends	Exception{	}

Common	Exceptions

In	Java,	it	is	conceivable	to	characterize	two	categories	of	Exceptions	and	Errors.

Programmatic	 exceptions:	 -	 These	 special	 cases	 are	 tossed	 unequivocally	 by	 the
application	 or	 the	 API	 software	 engineers	 Examples:	 Illegalargumentexception,
IllegalStateException.
JVM	Exceptions:	 -	These	are	exemptions/mistakes	 that	are	 solely	or	consistently
thrown	 by	 the	 JVM.	 Some	 exceptions	 of	 this	 class	 are
ArrayIndexOutOfBoundsException,	 NullPointerException	 and
ClassCastException.

Interfaces	and	Packages

Abstract	methods	when	brought	together	form	a	package.	A	class	actualizes	an	interface,
consequently	 inheriting	 the	 interface’s	 abstract	 methods.	 An	 interface	 is	 not	 a	 class.
Composing	an	interface	is	like	composing	a	class.	However,	they	are	two	separate	ideas.	A
class	portrays	the	properties	and	behaviours	of	an	object.	On	the	other	hand,	An	interface
contains	behaviours	that	a	class	shall	implement.

Unless	the	class	that	actualizes	the	interface	is	abstract,	all	 the	methods	for	 the	interface
need	 to	 be	 implemented	 in	 the	 class.	 An	 interface	 is	 like	 a	 class	 in	 the	 accompanying
ways:

An	interface	is	composed	in	a	file	with	a	.java	augmentation,	with	the	name	of	the
interface	matching	the	name	of	the	file.
An	interface	can	contain	any	number	of	methods.
Interfaces	 show	 up	 in	 packages,	 and	 their	 relating	 bytecode	 file	 must	 be	 in	 a
directory	structure	that	matches	the	name	of	the	package.
The	bytecode	of	an	interface	shows	up	in	a	.class	record.

On	the	other	hand,	an	interface	is	unique	and	different	from	a	class	in	a	few	ways.	These
are:

An	interface	does	not	contain	any	constructors.
Interface	cannot	be	instantiated
Instance	fields	cannot	be	contained	in	an	interface.	It	is	a	requirement	of	interfaces
that	the	main	fields	in	them	must	be	final	and	static.
It	is	a	requirement	that	all	of	the	methods	must	be	abstract	methods.
An	interface	can	extend	different	interfaces.
A	class	does	not	access	an	interface.	Actually,	a	class	implements	an	interface.

Declaring	Interfaces

In	 order	 to	 declare	 an	 interface,	 you	 must	 use	 the	 interface	 keyword.	 Here	 is	 a
straightforward	 illustration	 that	 can	 be	 used	 for	 declaring	 an	 interface.	 The	 standard
structure	and	order	of	statements	that	can	be	used	for	this	purpose	are	as	follows:

import	java.lang.*;

public	interface	Interfacename	{

//Statements

}

Interfaces	have	the	accompanying	properties:

An	interface	is	verifiably	dynamic.	You	don’t	have	to	utilize	the	keyword	abstract
when	declaring	an	interface.
Each	method	in	an	interface	is	additionally	dynamic,	so	the	keyword	abstract	is	not
required.
Methods	in	an	interface	are	certainly	public.

Sample	Implementation

interface	MyAnimal	{

public	void	eatinghabits();

public	void	walkinghabits();

}

Packages

Packages	are	utilized	as	a	part	of	Java	so	as	to	avert	naming	clashes,	to	control	access,	to
make	seeking/placing	and	utilization	of	classes,	interfaces,	identifications	and	annotations
less	demanding,	in	addition	to	several	others.	A	Package	can	be	described	as	a	collection
of	 related	 types	 (classes,	 interfaces,	 counts	 and	 annotations)	 giving	 access	 security	 and
name	space	administration.

A	few	packages	available	in	Java	are::

java.io	–	all	the	classes	for	output	and	input	are	available	in	this	package
java.lang	–	all	the	major	classes	are	available	in	this	package

Developers	can	create	their	own	packages	or	package	collections	of	classes/interfaces,	and
so	on.	It	is	a	decent	practice	to	collect	related	classes	executed	by	you	so	that	a	software
engineer	can	undoubtedly	discover	that	the	interfaces,	classes,	annotations	and	counts	can
be	 connected.	 Since	 the	 package	 makes	 another	 namespace,	 there	 won’t	 be	 any	 name
clashes	with	names	in	different	packages.	Utilizing	packages,	it	is	less	demanding	to	give
access	control	and	it	is	likewise	simpler	to	find	the	related	classes.

At	the	point	when	you	create	a	package,	you	ought	to	pick	a	name	and	put	a	explanation
with	 that	 name	 at	 the	 highest	 point	 of	 each	 source	 record	 that	 contains	 the	 classes,
interfaces,	 lists,	 and	 annotation	 sorts	 that	 you	 need	 to	 incorporate	 in	 the	 package.	 The
package	declaration	ought	to	be	the	first	line	in	the	source	record.	There	can	be	one	and

only	declaration	in	each	one	source	record,	and	it	applies	to	various	sorts	in	the	file.	In	the
event	 that	 a	declaration	of	 interface	 is	not	utilized,	 then	 the	 interfaces,	 class,	 annotation
and	specifications	will	be	put	in	a	package,	which	will	be	unnamed.

Java	Applets

In	order	 to	run	an	applet,	you	must	have	a	web	browser.	An	applet	can	be	a	completely
utilitarian	Java	application	on	the	grounds	that	it	has	the	whole	Java	API’s	available	to	it.
There	are	 some	essential	contrasts	between	an	applet	and	a	 standalone	Java	application,
including	the	accompanying:

A	main()	 function	 is	not	conjured	on	an	applet,	 and	an	applet	class	won’t	define
main().
An	applet	is	a	Java	class	that	extends	and	enhances	the	java.applet.applet	class.
When	a	client	sees	a	HTML	page	that	contains	an	applet,	the	code	for	the	applet	is
automatically	downloaded	to	the	client’s	machine.
Applets	are	intended	to	be	inserted	inside	a	HTML	page.
The	 JVM	 on	 the	 client’s	 machine	 makes	 an	 instance	 of	 the	 applet	 class	 and
conjures	different	routines	amid	the	applet’s	lifetime.
The	security	requirements	for	an	applets	are	very	strict.	The	security	of	an	applet	is
frequently	alluded	to	as	sandbox	security,	contrasting	the	applet	with	a	youngster
playing	in	a	sandbox	with	different	decides	that	must	be	emulated.
A	 JVM	 is	 a	 base	 requirement	 for	 viewing	 an	 applet.	 The	 JVM	 can	 be	 either	 a
module	of	the	Web	program	or	a	different	runtime	environment.
Other	classes	 that	 the	applet	needs	can	be	downloaded	in	a	solitary	Java	Archive
(JAR)	file.

Life	Cycle	of	an	Applet

The	 creation	 of	 any	 applet	 requires	 the	 implementation	 of	 four	 methods	 of	 the	 Applet
class.	These	methods	have	been	discussed	in	the	text	below.

init:	This	method	is	planned	for	whatever	introduction	is	required	for	your	applet.
It	is	called	after	the	param	labels	inside	the	applet	tag	have	been	transformed.
start:	This	method	is	naturally	called	after	the	program	calls	the	init	strategy.	It	is
likewise	called	at	whatever	point	the	client	comes	back	to	the	page	containing	the
applet	in	the	wake	of	having	gone	off	to	different	pages.
stop:	This	method	is	consequently	called	when	the	client	leaves	the	page	on	which
the	applet	sits.	It	can,	accordingly,	be	called	over	and	over	in	the	same	applet.
destroy:	This	technique	is	just	called	when	the	program	closes	down.	Since	applets
are	intended	to	live	on	a	HTML	page,	you	ought	not	regularly	desert	assets	after	a

client	leaves	the	page	that	contains	the	applet.
paint:	 This	 method	 is	 invoked	 quickly	 after	 the	 start()	 method.	 Furthermore,
whenever	the	applet	needs	to	repaint	itself	in	the	program,	this	method	needs	to	be
called.	The	paint()	method	is	inherited	from	the	java.awt.

A	“Welcome,	World”	Applet

The	accompanying	is	a	basic	applet	named	BasicApplet.java:

import	java.applet.*;

import	java.awt.*;

public	class	BasicApplet	extends	Applet	{

public	void	paint	(Graphics	gx)		{

gx.drawstring	(“Say	Hello	To	The	World!”,	35,	70);

}

These	import	explanations	bring	the	classes	into	the	extent	of	our	applet	class:

java.awt.graphics
java.applet.applet

Without	 those	 import	 explanations,	 the	 Java	 compiler	 would	 not	 perceive	 the	 classes
Applet	and	Graphics,	which	the	applet	class	alludes	to.

The	Applet	Class

Each	applet	is	an	augmentation	of	the	java.applet.applet	class.	The	base	Applet	class	gives
techniques	 that	a	determined	Applet	class	may	call	 to	get	data	and	administrations	from
the	program	connection.	These	incorporate	techniques	that	do	the	accompanying:

Get	parameters	of	the	applet
Get	the	system	area	of	the	HTML	record	that	contains	the	applet
Get	the	system	area	of	the	applet	class	registry
Print	a	status	message	in	the	program
Fetch	a	picture
Fetch	a	sound
Play	a	sound
Perform	resizing	of	the	applet

Moreover,	 the	Applet	class	gives	an	 interface	by	which	 the	viewer	or	program	gets	data

about	the	applet	and	controls	the	applet’s	execution.	The	viewer	might:

Request	data	about	the	form,	creator	and	copyright	of	the	applet
Request	a	depiction	of	the	parameters	the	applet	perceives
Perform	applet	initialization
Perform	applet	destruction
Begin	the	execution	of	the	applet
Stop	the	execution	of	the	applet

The	Applet	class	allows	default	usage	of	each	of	these	routines.	Those	executions	may	be
overridden	 as	 essential.	 The	 “Say	 Hello	 To	 The	 World!”	 applet	 is	 complete	 in	 itself.
However,	as	part	of	the	implementation,	only	the	paint()	function	is	over-ridden.

A	Simple	Start	to	jQuery,	JavaScript,	and	Html5	for
Beginners			

	

Written	by	a	Software	Engineer			
	

By

Scott	Sanderson		

	

TABLE	OF	CONTENTS�

Chapter	1:	Introduction													

Chapter	2:	Basics	of	HTML5													

Chapter	3:	Basics	of	JavaScript													

Chapter	4:	Basics	of	CSS3													

Chapter	5:	HTML5	Explained													

Chapter	6:	JavaScript	and	jQuery													

Chapter	7:	Forms													

Chapter	8:		Web	Services													

Chapter	9:	WebSocket	Communications													

Chapter	10:	Managing	Local	Data	With	the	Help	of	Web	Storage													

Chapter	11:	Offline	Web	Applications													

Appendix														

Copyright	2015	by	Globalized	Healing,	LLC	-	All	rights	reserved.

https://docs.google.com/document/d/1PEmpr_dft0fjFxGmZpN0Vk8E1eNfbwhMsOYisITJptw/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1PEmpr_dft0fjFxGmZpN0Vk8E1eNfbwhMsOYisITJptw/edit#heading=h.1ci93xb
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.3whwml4
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.qsh70q
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.3as4poj
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.1pxezwc
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.49x2ik5
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.2p2csry
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.147n2zr
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.3o7alnk
https://docs.google.com/document/d/12YBHe7wYK07gdt9Lpl8LCpRyx2SVBnKprZK1EWgGujM/edit#heading=h.23ckvvd
http://www.globalizedhealing.com

Click	here	to	receive	incredible	ebooks	absolutely	free!
	

CHAPTER	1:	INTRODUCTION

If	there	is	one	application	development	framework	that	can	be	termed	as	comprehensive,

then	HTML5	wins	the	bid	hands	down.	Although,	the	specification	for	HTML5	is	not	yet

complete,	most	modern	web	browsers	support	the	popular	features	on	device,	which	range

from	 a	 Smartphone	 to	 a	 desktop.	 What	 that	 means	 is	 that	 you	 just	 have	 to	 write	 one

application	and	it	will	run	on	your	devices	without	any	interoperability	issues.

There	is	no	doubt	about	the	fact	that	HTML5	is	the	future	of	web	application	development

and	if	you	wish	to	remain	in	the	league,	you	need	to	think	futuristically	and	equip	yourself

to	deal	the	technological	challenges	that	the	future	is	about	to	throw	at	you.	The	scope	of

HTML5	is	evident	from	the	fact	that	most	of	the	major	players	of	the	industry	and	setting

their	eyes	on	this	technology	and	giving	in	full	support	to	the	same.

If	the	multi-faceted	functionality	and	high-on	features	characteristics	of	HTML5	intrigue

you	and	you	want	to	start	writing	your	own	applications	right	away,	but	you	do	not	know

how	and	where	to	begin,	then	this	book	is	just	for	you.	This	book	covers	everything	that

you	 shall	 require	 to	 create	 working	 applications	 with	 the	 help	 of	 HTML,

JavaScript/JQuery	 and	CSS.	However,	 it	 is	 not	 a	 reference	guide.	We	hope	 to	 give	you

practical	knowledge	so	that	you	can	get	to	development	as	quickly	as	possible.

This	book	is	a	perfect	start-up	guide	and	covers	all	the	basic	facets	of	HTML5,	JavaScript

and	 CSS	 development.	 It	 covers	 everything	 from	 the	 very	 basics	 to	 all	 that	 you	 shall

require	in	your	tryst	with	this	framework.	The	first	three	chapters	introduce	you	to	these

three	technologies,	giving	you	some	ground	to	start	with.		

	

https://globalizedhealing1.leadpages.net/kindle-books/

CHAPTER	2:	BASICS	OF	HTML5

HTML	(Hyper	Text	Markup	Language)	is	a	language	used	for	creating	web	pages.	In	fact,

this	 language	 has	 been	 in	 use	 since	 the	 first	 webpage	 was	 made.	 However,	 the

functionality	has	evolved	as	newer	and	better	versions	of	 the	 language	were	 introduced.

The	 language	 is	 known	 to	 have	 originated	 from	 SGML	 (Standard	Generalized	Markup

Language),	 which	 was	 earlier	 used	 for	 document	 publishing.	 HTML	 has	 inherited	 the

concept	of	formatting	features	and	their	syntax	from	SGML.

One	of	 the	most	 interesting	and	beneficial	 facet	of	HTML	usage,	as	 far	as	browsers	are

concerned,	is	that	browsers	support	both	backward	as	well	as	forward	compatibility.	While

backward	compatibility	 is	usually	easy	 to	achieve,	 forward	compatibility	 is	 tricky	as	 the

problem	 domain,	 in	 this	 case,	 is	 infinitely	 large.	 However,	 in	 order	 to	 implement	 this,

browsers	were	designed	to	ignore	tags	that	it	did	not	recognize.				

For	years,	HTML	 remained	 all	 that	 people	wanted.	However,	with	 time,	 people	 felt	 the

need	for	more,	which	was	catalyzed	by	 the	presence	of	another	 technology	called	XML

(eXtensible	Markup	Language).	Although,	XML	shares	a	lot	of	similarities	with	HTML,

there	 exist	 many	 fundamental	 differences	 between	 the	 two.	 Firstly,	 XML	 requires	 tag

matching	 in	 the	 sense	 that	 for	 every	 starting	 tag,	 a	 closing	 tag	 must	 inevitably	 exist.

Besides	this,	XML	allow	you	to	create	your	own	tags	as	it	does	not	possess	a	fixed	set	of

tags	like	HTML.

The	tags	used	in	XML	are	meta-tags	or	tags	that	describe	the	data	that	is	included	between

the	 starting	 and	 closing	 tag.	 In	 order	 to	 ensure	 the	 validity	 of	 the	 XML	 document,	 a

technology	 called	 XSD	 (XML	 Schema	 Definition)	 is	 used.	 However,	 this	 technology

cannot	be	used	for	validating	HTML	documents	because	HTML	documents	 lack	a	well-

defined	structure.

The	W3C	 (World	Wide	Web	Consortium)	 introduced	XHTML	 as	 an	 attempt	 to	 fix	 the

flaws	of	HTML.	According	to	the	XHTML	specification,	HTML	documents	were	forced

to	adhere	 to	 the	 format	 specifications	used	 for	XML.	Therefore,	 this	allowed	 the	use	of

XSD	tools	for	validation	of	HTML	documents.	Although,	the	integration	of	XML	in	the

framework	 fixed	 some	 issues,	 some	 issues	 continued	 to	 crop	 up.	One	 of	 the	 staggering

issues	 of	 the	modern	 times	was	 the	 growing	 need	 for	 integration	 of	multimedia.	While

CSS	did	perform	formatting	of	some	 level,	 it	was	becoming	 inadequate	 for	 the	growing

demands	of	users.

	

In	order	to	provide	support	for	interactivity	and	animated	visuals,	a	programmable	support

called	 JavaScript	was	 added	 to	 this	 ensemble.	However,	 initial	 versions	 of	 this	 support

were	difficult	 for	programmers	 to	understand	and	slow	on	execution	 time	incurred.	This

led	to	the	introduction	of	plug-ins	like	Flash	to	get	the	attention	that	it	did.	These	plugins

did	what	was	expected	of	them,	but	the	browser-multimedia	integration	was	still	loose	in

nature.

HTML5	 is	 not	 an	 evolved	 form	 of	 XHTML.	 On	 the	 contrary,	 HTML5	 can	 be	 better

described	as	the	reinvented	form	of	HTML	4.01	and	how	HTML,	CSS	and	JavaScript	can

be	used	together	to	solve	the	growing	needs	of	the	user	base.						

Semantic	Markup

The	 fundamental	 feature	 of	 HTML5	 is	 that	 it	 stresses	 on	 separation	 of	 behaviour,

presentation	and	structure.	The	semantic	markup	of	a	website	development	specifies	 the

structure	of	the	document.	In	other	words,	it	specifies	the	meaning	of	tags	and	what	they

will	do	for	you.	On	the	other	hand,	behaviour	and	presentation	are	governed	by	CSS	and

JavaScript	respectively.

HTML5	Elements

In	HTML,	an	element	is	simply	a	statement	that	contains	a	beginning	tag,	content	and	a

closing	tag.	Therefore,	when	you	write,

<div>

This	is	my	world!

</div>

In	this	example,	the	div	elements	includes	everything	from	<div>	to	</div>.	therefore,	the

	tag	is	also	a	part	of	the	div	element.

It	 is	 important	 to	 state	 here	 that	HTML5	 is	 not	 case	 sensitive.	 Therefore,	 regardless	 of

whether	you	write		or		for	the	bold	tag,	the	browser	will	consider	the	two	same.

However,	the	use	of	lower	case	for	tags	is	recommended	by	the	W3C	standards.

Working	with	Elements	in	HTML5

HTML5	 defines	 more	 than	 a	 100	 elements.	 These	 elements,	 with	 their	 definitions	 are

provided	in	Appendix.

How	to	add	attributes	to	elements?

Additional	data	can	be	added	to	the	begin	tag	in	the	form	of	attributes.	An	attribute	can	be

generally	 represented	 as,	 name=”value”.	 The	 value	 for	 the	 attribute	 name	 is	 enclosed

within	quotes.	There	is	no	restriction	on	the	number	of	attributes	that	can	be	added	to	the

begin	tag.	For	these	attributes,	the	attribute	has	a	name,	but	it	does	not	have	a	value.		

Example:

<div	id=”main”	class=”mainContent”></div>

Here,	 id	 and	 class	 are	 attributes	 where	 id	 uniquely	 identifies	 the	 element	 and	 class

specifies	the	CSS	style	to	which	this	div	belongs.

Boolean	Attributes

Several	types	of	attributes	can	be	used.	One	of	the	most	commonly	used	types	is	Boolean

attribute.	The	Boolean	attribute	can	take	a	value	from	the	allowable	set	of	values.	Some

possible	values	include:

Checked

Disabled

Selected

Readonly

There	are	two	ways	to	indicate	the	value	of	a	Boolean	attribute.

<input	type=“checkbox”	name=“vegetable”	value=“Broccoli”	checked=”	/>

<input	type=“checkbox”	name=“vegetable”	value=“Broccoli”	checked=‘checked’	/>

In	the	first	case,	the	value	is	not	given	and	is	assumed.	Although,	the	latter	seems	like	a

redundant	form,	it	is	the	more	preferred	form,	particularly	if	you	are	using	jQuery.

Global	Attribute	Reference

There	 is	 a	 set	 of	 named	 attributes	 available	 in	 HTML5,	 which	 can	 be	 used	 with	 any

element.	 Examples	 of	 these	 attributes	 include	 accesskey,	 spellcheck	 and	 draggable,	 in

addition	to	several	others.		

Void	Elements

Some	elements	 do	not	 have	 to	 contain	 content	 under	 any	 circumstance.	These	 elements

include	<link>,	
	and	<area>,	in	addition	to	many	others.

Self-closing	Tags

If	 you	 are	 using	 an	 element	 that	 does	 not	 contain	 any	 content,	 then	 you	 can	 use	 a	 self

closing	 tag.	An	 example	 of	 this	 tag	 is	
.	However,	 please	 note	 that	 other	 tags	 like

<div>	have	to	be	written	as	<div></div>	even	if	they	do	not	have	any	content.

How	to	Add	Expando	Attributes

Any	attribute	 that	you	as	 the	author	define	 is	known	as	expando	attribute.	You	can	give

this	custom	attribute	a	name	and	assign	a	value	to	the	same	as	and	when	required.		

How	to	Add	Comments

Comments	can	be	added	using	a	!	and	two	hyphens	(-).	The	syntax	for	adding	comments	is

as	follows:

<!—text	—>

You	can	also	add	conditional	comments	using	the	following	syntax:

<!—[if	lte	IE	7]>	<html	class=“no-js	ie6”	lang=“en”>	<![endif]—>

This	comment	determines	if	 the	browser	being	used	is	an	earlier	version	released	earlier

than	IE7.		

How	to	Create	HTML	Document

An	HTML	document	can	simply	be	described	as	a	frame	that	contains	metadata,	content

and	a	structure.

The	 HTML	 document	 must	 start	 with	 the	 tag	 <!DOCTYPE	 html>.	 In	 HTML5,	 the

declaration	 is	 an	 indication	 to	 the	 browser	 that	 it	 should	 work	 in	 no-quirks	 mode	 or

HTML5	compliant	mode.

The	next	tag	should	be	<html>.	This	element	includes	within	itself	 the	elements	<head>

and	 <body>.	 The	 <head>	 element	 can	 contain	 the	 metadata	 for	 the	 HTML	 document,

which	is	declared	and	defined	using	the	<meta>	tag.	The	<head>	element	also	contains	the

<title>	element,	which	serves	the	following	purposes:

Used	by	search	engines

This	content	is	displayed	in	the	browser	toolbar

Gives	a	default	name	to	the	page.

The	<body>	element	includes	any	other	information	that	is	to	be	displayed	on	the	HTML

document.

A	sample	HTML	document	is	given	below:

<!DOCTYPE	html>

<html>

<head>

<meta	charset=“utf-8”	/>

<title>TITLE	OF	DOC</title>

</head>

<body>

CONTENT

</body>

</html>

Note:

1.	 Special	character	like	‘>’	or	‘<’,	which	are	a	part	of	the	HTML	syntax,	can	be	used

on	the	HTML	doc	using	their	name	or	number.	The	syntax	for	their	usage	is:

&entity_name	or	&entity_number

The	appendix	contains	the	table	of	entity	names	and	numbers	to	be	used.		

2.													White	space	created	using	tabs,	line	breaks	and	spaces	is	normalized	by	HTML	into

a	 single	 space.	 Therefore,	 if	 you	 want	 to	 use	 multiple	 spaces,	 you	 must	 use	 the	 non-

breaking	 space	character.	For	example,	 if	you	want	 to	display	10	mph	such	 that	10	and

mph	are	not	separated	by	a	newline,	you	can	write	10	 mph.

How	to	Embed	Content

Now	that	you	know	how	to	create	HTML	documents	with	your	content,	you	may	want	to

embed	 content	 into	 the	 document	 from	 other	 sources.	 This	 content	 may	 be	 text	 from

another	HTML	document	or	flash	applications.

Inline	Frames

Inline	frames	are	used	to	embed	HTML	documents	inline	with	the	content	of	the	current

HTML	document.	Therefore,	 in	a	way,	 this	element	creates	nested	browsers	as	multiple

web	 page	 are	 loaded	 in	 the	 same	 window.	 These	 are	 implemented	 using	 the	 <iframe>

element.	Nested	browsing	contexts	can	be	navigated	using:

window.parent	–	This	WindowProxy	object	represents	the	parent	browsing	context.

window.top		–	This	WindowProxy	object	represents	the	top-level	browsing	context

window.frameElement	 –	 This	 represents	 the	 browsing	 context	 container	 and	 if

there	is	no	context	container,	it	returns	null.

The	syntax	of	the	<iframe>	element	is	as	follows:

<iframe	src=“name”></iframe>

Here	the	name	of	the	attribute	defines	the	name	of	the	browsing	context.	This	name	can	be

any	string	like	‘sample.html’.	However,	the	strong	should	not	start	with	an	underscore	as

names	starting	with	underscore	are	reserved	for	special	key	names	like	_blank.

Sandboxing

Sandboxing	is	used	for	avoiding	the	introduction	of	pop-ups	or	any	other	malware	in	your

HTML	document.	In	order	to	implement	this,	the	attribute	‘sandbox’	is	used.	You	can	use

this	attribute	in	the	following	manner:

<iframe	sandbox=”keywords”	src=“name”>

</iframe>

When	you	use	sandboxing,	several	 restrictions	are	 imposed	on	 the	called	context.	These

restrictions	include	disabling	forms,	scripts,	plugins	and	any	frame	other	than	itself.	You

can	force	the	system	to	override	these	restrictions	using	keywords	like:

allow-same-origin

allow-scripts

allow-forms

allow-top-navigation

Multiple	keywords	can	be	used	by	separating	them	using	a	space.

Seamless	Embedding

The	seamless	attribute	can	be	used	in	the	<iframe>	element	for	embedding	of	content	in	a

manner	than	this	content	appears	to	be	part	of	the	main	content.	This	attribute	can	be	used

in	the	following	manner:

<iframe	seamless=””	src=“name”></iframe>

<iframe	seamless	src=“name”></iframe>

<iframe	seamless=“seamless”	src=“name”></iframe>

This	 attribute	may	not	 be	 supported	 by	many	browsers.	Therefore,	 you	 can	use	CSS	 to

achieve	a	similar	effect.

Hyperlinks

Hyperlinks	can	be	implemented	using	the	<a>	element.	This	element	can	be	used	to	link

both	 external	 (a	 different	HTML	document)	 as	well	 as	 internal	 (another	 location	 in	 the

same	HTML	document)	links.

All	links	are	underlined	and	depending	upon	the	nature	of	the	link,	the	colour	of	the	link

changes.

Blue	-	Unvisited	link

Purple	-	Visited	link

Red	-	Active	link

The	first	attribute	of	the	<a>	element	is	href,	which	is	given	the	value	of	the	URL.

Syntax	for	external	links:

Text

Syntax	for	internal	links:

Text

The	id	here	is	the	id	of	the	tag	to	which	you	want	the	link	to	jump	onto.	However,	if	you

use	only	the	#	value,	the	link	jumps	to	the	top	of	the	page.

The	other	attribute	used	with	 the	<a>	element	 is	 target,	which	allows	you	 to	control	 the

behaviour	of	the	link.	For	instance,	if	you	want	the	link	to	open	in	another	window,	then

this	requirement	can	be	specified	using	this	attribute.	The	following	can	be	used:

_blank

This	opens	the	link	in	a	new	browser	window.

_parent

This	opens	the	link	in	the	parent	window.

_self

This	opens	the	link	in	the	current	window	and	is	the	default	setting.

_top

This	opens	the	link	in	the	topmost	frame	of	the	current	window.

<iframe_name>

This	 opens	 the	 link	 in	 the	 <iframe>	 element	 of	 the	 specified	 name.	 This	 is

generally	used	in	menus.

Hyperlinks	can	also	be	used	to	send	emails	using	the	following	syntax:

Text

When	the	user	clicks	on	the	link,	an	email	will	be	sent	to	the	specified	email	address.

Embedding	Images

The		element	is	used	for	adding	images	to	the	HTML	document.	The		tag	is	a

void	element	and	does	not	require	a	closing	tag.

The	required	tag	for	this	element	is	src,	which	specifies	the	absolute	or	relative	address	at

which	the	image	is	stored.	Another	attribute	than	can	be	used	with	the		tag	is	target,

which	is	used	to	specify	the	text	that	must	be	displayed	in	case	the	image	is	not	available.

Syntax:

It	is	important	to	note	that	you	only	give	references	to	images	and	they	are	not	embedded

into	the	HTML	document,	in	actuality.	The	allowed	image	formats	are	jpeg,	svg,	png	and

gif.

How	to	Create	Image	Map

The	<map>	element	can	be	used	to	create	a	clickable	image	map.	In	order	to	create	a	link

between	 the	map	and	 image,	you	must	 set	 a	name	of	 the	map	and	use	 this	name	 in	 the

usemap	attribute	of	the	img	tag.		

The	area	of	 the	map	element	 is	defined	using	<area>	element.	This	 is	a	 self-closing	 tag

that	 is	 used	 to	 define	 the	 area	 of	 the	 map.	 The	 area	 of	 the	 map	 can	 be	 set	 using	 the

attributes	shape,	href,	alt	and	coords.

The	shape	attribute	can	be	give	the	values	poly,	circle,	rect	or	default.	The	default	value

sets	 the	 area	 as	 the	 size	 of	 the	 image.	 The	 href	 and	 alt	 attributes	 are	 used	 in	 the	 same

manner	 as	 they	 are	 used	 in	 the	 <a>	 element.	 Lastly,	 the	 coords	 attribute	 are	 defined

according	to	the	shape	chosen	in	the	following	manner:

poly	–	x1,	y1,	x2,	y2,	…	,	xn,	yn

circle	–	x,	y,	radius

rect	-		x1,	y1,	x2,	y2

For	 the	 polygon,	 the	 starting	 and	 ending	 coordinates	 should	 be	 the	 same.	 In	 case	 a

discrepancy	in	this	regard	exists,	a	closing	value	is	added.

Example:

<img	src	=“worldmap.gif”	width=“145”	height=“126”

alt=“World	Map”	usemap	=”#country”	/>

<map	name=“country”>

<area	shape=“circle”	coords=“105,50,30”

href=“China.html”	alt=“China”	/>

<area	shape=“default”	href=“InvalidCountry.html”	alt=“Please	Try	Again”	/>

</map>

Embedding	Plug-ins

Plugins	can	 likewise	be	embedded	 into	HTML	documents	using	<embed>	and	<object>

elements.	 Although,	 both	 these	 elements	 perform	 similar	 tasks,	 they	 were	 created	 by

different	 browsers.	 As	 a	 result,	 they	 coexist	 in	 HTML5.	 While	 the	 <embed>	 element

provides	ease	of	use,	the	<object>	element	provides	more	functionality	to	the	user.	Syntax

for	these	two	elements	is	given	below:

The	<embed>	tag

<embed	src=“Flash.swf”>	</embed>

The	src	attribute	specifies	 the	url	or	address	of	 the	file	 to	be	embedded.	Other	attributes

that	are	taken	by	the	<embed>	element	includes:

type		-	used	to	specify	the	MIME	type	of	the	content

height	–	used	to	specify	the	content	height	in	pixels

width	–	used	to	specify	the	content	width	in	pixels

As	mentioned	previously,	some	browsers	may	not	support	<embed>	element.	Therefore,	if

you	 are	 using	 it	 in	 your	 document,	 you	 must	 add	 fallback	 content	 specification.	 For

instance,	if	you	are	embedding	a	flash	file,	you	must	redirect	the	user	to	the	download	link

of	flash	player	if	the	browser	does	not	support	it	already.

You	can	do	this	in	the	following	manner:

<embed	src=“Flash.swf”	>

<img	src=”address	of	the	image	for	download	flash	player”

alt=“Download	Adobe	Flash	player”	/>

</embed>

The	<object>	tag

The	 <object>	 tag	 allows	 you	 to	 embed	 a	 variety	 of	multimedia	 files	 like	 video,	 audio,

PDF,	applets	and	Flash.	The	element	accepts	the	following	attributes:

type	–	used	to	specify	the	MIME	type	of	data

form	–	used	to	specify	the	form	id	or	ids	of	the	object

data	–	used	to	specify	the	URL	of	the	resources	that	the	object	uses

usemap	–	used	to	specify	the	name	of	a	client-side	image	map	that	the	object	uses

name	–	used	to	specify	the	object	name

height		–	used	to	specify	the	height	of	the	object	in	pixels

width		–	used	to	specify	the	width	of	the	object	in	pixels

Of	 all	 the	 attributes	mentioned	 above,	 it	 is	 necessary	 to	mention	 either	 the	data	or	 type

attribute.

Data	 can	 be	 passed	 into	 the	 <object>	 element	 using	 the	 <param>	 tag,	 which	 is	 a

combination	of	name	and	value	attributes.	Multiple	parameters	can	be	declared	using	this

tag.

<object	data=“file.wav”>

<param	name=“autoplay”	value=“false”	/>

</object>

Note:

1.	 The	<object>	element	must	always	be	used	inside	the	<body>	element.

2.	 HTML5	 supports	 only	 the	 attributes	 listed	 above	 and	 global	 attributes	 for	 the

<object>	element.

CHAPTER	3:	BASICS	OF	JAVASCRIPT

Interaction	is	an	important	facet	of	any	website.	In	order	to	connect	with	the	audience	in	a

better	way,	it	is	vital	to	add	behaviour	to	the	website.	This	can	be	as	simple	as	buttons	or

as	complex	as	animations.	These	tasks	can	be	added	using	JavaScript,	which	is	a	web	and

programming	language.	This	chapter	introduces	JavaScript	and	shall	help	you	get	started

with	JavaScript	on	an	immediate	basis.		

Background

JavaScript	 is	 the	 preferred	 programming	 language	 for	 client	 side	 scripting.	 Contrary	 to

popular	 belief,	 JavaScript	 is	 in	 no	way	 related	 to	 Java.	 In	 fact,	 it	 finds	 resemblance	 to

ECMAScript.	Besides	 this,	 the	only	common	 thing	between	 this	programming	 language

and	 other	 programming	 languages	 like	 C	 and	 C++	 is	 that	 it	 uses	 curly	 braces.	 The

international	 standard	 for	 JavaScript	 is	 given	 in	 ISO/IEC	 16262	 and	 ECMA-262

specification.				

One	of	the	most	important	features	of	this	programming	language	is	that	it	is	untyped.	In

other	words,	specifying	the	type	of	a	variable	is	not	necessary	for	using	it.	For	example,	if

you	 have	 assigned	 a	 string	 to	 a	 variable,	 you	 can	 later	 assign	 an	 integer	 to	 the	 same

variable.	Variables	are	declared	using	the	keyword	var.

Data	and	Expressions

Any	program	accesses,	manipulates	 and	 represents	data	 to	 the	user.	Data	 is	 available	 in

different	types	and	forms.	This	data	can	be	easily	decomposed	into	values.	In	JavaScript,

data	may	be	represented	as	a	primitive	value,	object	or	function.

The	data	 representation	at	 the	 lowest	 level	 is	known	as	primitive	data	 type	and	 includes

null,	undefined,	number,	string	and	Boolean.

Several	 built-in	objects	 are	defined	 in	 JavaScript.	These	 entail	 the	Object	 object,	 global

object,	Array	object,	Function	object,	Boolean	object,	String	object,	Math	object,	Number

object,	the	RegExp	object,	Date	object,	Error	object	and	JSON	object.

Any	object	that	is	callable	is	called	a	function.	It	may	also	be	referred	to	as	a	method	if	the

function	is	associated	with	an	object.

Data	is	produced	by	using	expressions,	which	is	a	name	given	to	any	code	that	generates	a

value.	It	may	be	assigned	a	value	directly	or	the	value	may	be	computed	by	substituting

and	computing	an	expression	composed	of	operands	and	operators.	It	is	important	to	note

that	an	operand	can	be	another	expression	as	well.		

Number	Data	Type

The	number	data	type	is	a	primitive	data	type	and	it	is	internally	stored	as	a	floating	point

number,	 which	 is	 a	 64	 bit,	 double	 precision	 number.	 This	 64	 bit	 field	 stores	 the	 sign,

exponent	 and	 fraction.	While	 the	 leftmost	 bit	 is	 reserved	 for	 sign,	 the	 bits	 0	 to	 51	 are

reserved	for	storing	the	fraction	and	bits	52-62	are	used	for	the	exponent.			

Because	of	memory	limitation	on	the	system,	253	is	the	highest	integer	that	can	be	stored.

It	 is	 important	 to	 note	 that	 integer	 calculations	 generate	 a	 precise	 value.	 However,

fractional	data	calculation	may	give	imprecise	results.	Therefore,	these	values	have	to	be

truncated.

In	 addition	 to	 numbers	 and	 strings,	 JavaScript	 also	 supports	 the	 use	 of	 the	 following

special	characters.

undefined	specifies	that	the	value	has	not	been	assigned	yet.

NaN	stands	for	‘Not	a	Number’

-Infinity	any	number	that	is	less	than	-1.7976931348623157E	+	10308	is	denoted

by	Infinity.

Infinity	 -	 any	 number	 that	 exceeds	 the	 value	 1.7976931348623157E	 +	 10308	 is

denoted	by	Infinity.

String	Data	Type

A	 string	 can	 simply	 be	 described	 as	 a	 collection	 of	 characters.	 Whenever	 you	 declare

character(s)	within	quotes,	the	system	interprets	as	a	string.	Sample	strings	include:

‘Hello	World!’

“Hello	World!”

However,	if	you	want	to	include	quotes	as	characters	in	the	string,	then	you	must	add	‘\’

before	the	character.	Sample	string:

‘You\’re	Welcome’

“You\’re	Welcome”

JavaScript	also	supports	other	escape	sequences	like	\t	for	tab	and	\n	for	newline.		

Boolean	Data	Type

The	Boolean	data	type	is	a	binary	data	type	and	return	either	true	or	false.	These	operators

are	commonly	used	to	indicate	results	of	comparisons.	For	example,

10	>	5	will	give	‘true’	while	5	>	10	will	give	‘false’.		

Operations	on	Number	data	Type

In	 order	 to	 perform	 calculations,	 operators	 are	 used.	 JavaScript	 supports	 all	 the	 basic

operators	and	the	operator	precedence	is	as	follows:

Addition	and	subtraction	have	the	same	precedence.

Multiplication	and	division	have	the	same	precedence.

The	precedence	of	multiplication	and	division	 is	higher	 than	 that	of	addition	and

subtraction.

If	 an	 expression	 contains	 several	 operators	 of	 the	 same	 precedence,	 then	 the

expression	is	evaluated	from	left	to	right.

In	 addition	 to	 the	 basic	 operators,	 JavaScript	 also	 supports	 modulo	 (%)	 operator.	 This

operator	 performs	 division	 and	 returns	 the	 remainder	 as	 result.	 For	 example,	 23%7	 is

equal	to	2.		

Unary	Operators

While	operators	like	addition	and	subtraction	need	to	operands	to	execute,	some	operators

require	only	one.	An	example	of	such	operators	is	typeof,	which	returns	the	datatype	of	the

data.	For	example,	typeof	12	returns	‘number’.	Please	note	that	‘+’	and	‘-‘	can	also	be	used

as	unary	operators.	This	is	the	case	when	they	are	used	to	specify	the	sign	of	a	number.			

Logical	Operators

Three	logical	operators	are	available	for	use	in	JavaScript	namely,	Not	(!),	Or	(||)	and	And

(&&).	The	 results	of	operations	 that	 involve	 these	operators	are	Boolean	 (true	or	 false).

The	results	of	these	operations	are	computed	in	accordance	with	the	following:

AND	(&&) Binary	operator

Both	the	conditions	must	be	true

OR	(||) Binary	operator

At	least	one	of	the	conditions	must	be	true

NOT	(!) Unary	operator

The	value	of	the	condition	determined	is	complemented.

For	example,

‘Red’	!=	‘Blue’	&&	5	>	1	=	‘true’

‘Red’	!=	‘Blue’	&&	5	<	1	=	‘false’

‘Red’	==	‘Blue’	&&	5	<	1	=	‘false’

For	conditional	operators,	 JavaScript	uses	short-circuit	evaluation.	 In	other	words,	 if	 the

value	 of	 the	 first	 condition	 is	 computed	 to	 be	 ‘false’,	 the	 system	 does	 not	 evaluate	 the

other	condition	and	directly	presents	the	result.

Writing	Code	in	JavaScript

Any	statement	followed	by	a	semicolon	is	referred	to	as	a	statement.	This	statement	may

or	may	not	produce	a	value	unlike	expressions,	which	must	inadvertently	produce	a	value.

Variables

Manipulation	of	data	is	performed	with	the	help	of	variables.	Data	is	stored	in	the	memory

and	 a	 named	 reference	 to	 this	 memory	 location	 is	 called	 a	 variable.	 Any	 identifier	 is

declared	 as	 a	 variable	 by	 preceding	 it	 with	 a	 keyword	 var.	 A	 sample	 declaration	 of	 a

variable	is:

var	result;

This	statement	declares	a	variable	result.	You	may	also	define	the	variable	as	you	declare

it	using	a	statement	like	this:

var	result	=	0;

or

var	result	=	23*4+6;

Certain	rules	have	to	be	followed	while	naming	variables.	These	rules	are	as	follows:

A	variable	name	can	be	a	combination	of	numbers	and	characters.

A	variable	name	cannot	start	with	a	number.

The	only	special	characters	allowed	in	variable	names	is	underscore	(_)	and	dollar

sign($).

There	 should	 not	 be	 any	 whitespace	 in	 the	 variable	 name.	 For	 example,	 ‘result

value’	is	not	allowed.

JavaScript	keywords	are	reserved	and	cannot	be	used.

Please	note	that	JavaScript,	unlike	HTML	is	case	sensitive.	Therefore	VAL	and	val	are	two

different	variables.	Also,	it	is	recommended	that	the	variable	name	should	be	such	that	it

describes	the	purpose	for	which	it	is	being	used.	For	example,	if	we	name	a	variable	result,

it	is	evident	that	this	variable	will	contain	the	result	value	computed	by	the	code.			

Another	convention	used	in	JavaScript	is	to	name	variables	such	that	the	first	letter	of	the

variable	name	is	lowercase.	However,	every	subsequent	word	in	variable	name	starts	with

a	capital	letter.	An	example	of	this	is	the	variable	name,	arrayResult.	Besides	this,	the	use

of	underscore	and	dollar	sign	is	discouraged.	However,	they	are	used	in	jQuery	objects.

Environment

A	 complete	 set	 of	 variables	 and	 the	 values	 they	 contain	 form	 what	 is	 called	 the

environment.	 Therefore,	 whenever	 you	 load	 a	 new	 webpage	 in	 the	 browser,	 you	 are

creating	 a	 new	 environment.	 If	 you	 take	 the	 example	 of	 Windows	 8,	 it	 creates	 an

environment	when	 an	 application	 starts	 and	 the	 same	 is	 destroyed	when	 the	 application

ends.		

Functions

A	set	of	statements	that	solve	a	purpose	are	referred	to	as	a	function.	The	purpose	of	using

functions	is	code	reuse.	If	your	program	uses	functionality	multiple	times	in	the	program,

then	it	is	implemented	as	a	function,	which	can	be	called	as	and	when	required.	Since,	a

function	is	to	be	called	from	within	the	code,	parameters	can	be	sent	to	the	function	from

the	code.	Upon	execution,	the	function	returns	a	value	to	the	calling	function.	The	syntax

for	function	declaration	and	definition	is	as	follows:

function	multiply(a,	b){

return	a*b;

}			

The	 name	 of	 the	 function	 must	 always	 be	 preceded	 with	 the	 keyword	 function.	 The

variables	a	and	b	are	parameters	passed	into	the	function	and	the	function	return	the	value

obtained	by	 computing	 a*b.	This	 is	 a	 simple	 function,	 but	 you	 can	 implement	 complex

and	large	function	depending	upon	the	functionality	desired.

Now	 that	 you	 have	 implemented	 the	 function,	 you	 must	 be	 wondering	 as	 to	 how	 the

function	is	called.	Here	is	an	example:

var	x=2;

var	y=5

var	c=multiply(x,	y);

Here,	x	and	y	are	arguments	that	the	function	multiply	will	receive	as	parameters.

JavaScript	 is	 a	 loosely	 typed	 language.	 What	 that	 means	 is	 that	 if	 you	 pass	 more

arguments	 to	 a	 function	 than	 what	 it	 is	 expecting,	 the	 system	 simply	 uses	 the	 first	 n

arguments	 required	and	discards	 the	rest.	The	advantage	of	 this	 functionality	 is	 that	you

can	use	already	implemented	functions	and	pass	the	extra	argument	to	scale	the	function

and	add	functionality	to	it.	On	the	other	hand,	you	will	not	be	able	to	get	any	indication	of

error	if	you	unintentionally	pass	the	wrong	number	of	arguments.		

JavaScript	 also	 provides	 some	 built-in	 functions	 for	 interacting	 with	 the	 user.	 These

functions	are	as	follows:

alert

This	function	raises	an	alert	with	a	message	and	the	system	resumes	operation	after

the	user	clicks	on	the	OK	button.	Sample	implementation:

alert(‘Alert	message!’);

prompt

This	function	presents	a	textbox	to	the	user	and	asks	him	or	her	to	give	input.	You

can	supply	the	default	value	in	the	presented	textbox	and	the	user	can	click	on	the

OK	button	to	accept	that	the	value	entered	is	correct.	Sample	implementation:

var	result	=	prompt(‘Enter	a	value’,	‘default	value’);

confirm

This	 message	 gives	 the	 user	 the	 choice	 to	 OK	 or	 CANCEL	 an	 action.	 Sample

implementation:

var	result	=	confirm(‘Do	you	wish	to	proceed?’);

Function	Scope

Each	variable	that	you	declare	possesses	a	scope	of	operation,	which	is	the	function	within

which	the	variable	has	been	declared.	This	 is	called	the	 local	scope.	Unlike,	many	other

languages,	which	 define	 local	 scope	 by	 the	 curly	 braces	within	which	 the	 variable	 lies,

JavaScript’s	local	scope	is	same	as	function	scope.		

In	addition	to	this,	JavaScript	also	supports	the	concept	of	global	scope,	in	which	variables

can	be	declared	global	and	thus,	can	be	used	anywhere	in	the	program.

Nesting	Functions

Functions	can	be	nested	at	any	level.	In	other	words,	a	function	can	be	called	from	within

another	function,	which	could	have	been	called	from	a	different	function.	However,	 it	 is

important	 to	 note	 that	 the	 scope	 of	 variable	 is	 within	 the	 function	 in	 which	 they	 are

declared.

Conversion	of	One	Data	Type	to	Another

The	prompt	function	discussed	in	the	previous	function	returns	a	string.	However,	you	had

asked	the	user	to	enter	a	number.	In	such	a	scenario,	a	string	to	number	conversion	may	be

required.	 In	 JavaScript,	 a	 variable	 can	 be	 converted	 from	one	 type	 to	 another	 using	 the

following	functions:

Number	Function

This	function	converts	the	object	supplied	to	it	into	number	data	type.	However,	if

the	function	is	unable	to	perform	the	conversion,	NaN	is	returned.

String	Function

This	function	converts	the	object	supplied	to	it	into	string	data	type.

Conditional	Programming

While	writing	 code,	 you	will	 faced	with	 several	 situation	where	 you	 need	 to	 execute	 a

different	 set	 of	 instructions	 if	 the	 condition	 is	 true	 and	 another	 set	 of	 instructions	 if	 the

same	is	false.

if-else

In	order	to	implement	such	scenarios,	you	can	use	the	if-else	construct.

Syntax:

If(condition)

{

//code

}

else

{

//code

}

Consider	 a	 scenario	 in	 which	 you	 ask	 the	 user	 to	 enter	 his	 or	 her	 age	 using	 prompt

function.	 Now,	 you	 must	 validate	 if	 the	 age	 is	 a	 valid	 number,	 before	 performing	 any

computation	on	the	value	supplied.	This	is	an	ideal	scenario	of	implementing	conditional

programming.	Sample	implementation	for	this	scenario	is:

var	userAge	=	prompt(‘Enter	your	age:	’,	‘’);

if(isNaN(userAge))

{

alert(‘Age	entered	is	invalid!’);

}

else

{

//code		

}

In	this	sample	code,	the	if	clause	checks	if	the	entered	value	is	a	number.	If	the	condition

is	 true,	 that	 is	 the	 object	 entered	 is	 not	 a	 number,	 the	 user	 is	 given	 an	 alert	 message.

However,	if	the	condition	is	false,	the	code	for	else	is	executed.		

It	 is	 important	 to	 note	 here	 that	 for	 single	 statements,	 it	 is	 not	 necessary	 to	 use	 curly

braces.	The	above	mentioned	code	can	also	be	written	as:

var	userAge	=	prompt(‘Enter	your	age:	’,	‘’);

if(isNaN(userAge))

alert(‘Age	entered	is	invalid!’);

else

//code		

However,	 it	 is	a	good	practice	 to	use	curly	braces	as	 there	 is	scope	of	adding	additional

code	later	on.

if-else	if

Another	 conditional	programming	construct	 is	 if-else	 if	 construct.	This	 construct	 allows

you	to	declare	multiple	conditions	and	the	actions	associated	with	them.	The	syntax	is:

if(condition)

{

//code

}

else	if(condition)

{

//code

}

else

{

//code

}

Switch

Multiple	else	ifs	can	be	implemented	using	this	construct.	The	execution	overhead	is	high

for	 this	 conditional	 programming	 construct	 as	 conditions	 are	 sequentially	 checked	 for

validity.	 As	 an	 alternative,	 another	 keyword,	 switch,	 is	 available,	 which	 implements

multiple	 conditions	 in	 the	 form	 of	 a	 jump	 table.	 Therefore,	 the	 execution	 overhead	 for

switch	is	lesser	than	that	of	if-else	if.

Sample	implementation:

var	userChoice	=	prompt(‘Choose	an	alphabet:	a,	b,	c’,	‘e’);

switch	(userChoice)	{

case	‘a’:

alert(‘a	chosen\n’);

break;

case	‘b’:

alert(‘b	chosen\n’);

break;

case	‘c’:

alert(‘c	chosen\n’);

break;

default:

alert(‘None	of	the	alphabets	chosen\n’);

break;

};

The	switch	construct	matches	that	value	entered	by	the	user	with	the	values	presented	in

the	cases.	If	a	matching	value	is	found,	the	case	is	executed.	However,	in	case,	none	of	the

case	values	match	 the	 entered	 input,	 the	default	 case	 is	 executed.	Besides	 this,	 you	 can

also	 use	 conditions	 in	 case	 values	 and	 the	 case	 for	 which	 the	 condition	 holds	 true	 is

executed.

If	you	do	not	use	the	break	statement	after	the	code	of	a	case,	all	the	cases	following	the

matching	case	will	be	executed.	For	example,	if		the	user	enters	‘b’	for	the	above	example

and	there	are	no	break	statements	after	the	case	code,	then	the	output	will	be:

b	chosen

c	chosen

None	of	the	alphabets	chosen

Also,	it	is	a	good	practice	to	use	a	break	statement	in	the	default	case	as	well.

Note:

If	you	wish	to	determine	if	a	keyword	has	been	assigned	any	value	or	not,	you	can	use	the

following	code:

if(c)

{

//code

}

else

{

//code

}

If	 the	variable	c	has	been	assigned	a	not-null	value,	 then	 the	 if	condition	 is	 true	and	 the

corresponding	code	is	executed.	On	the	other	hand,	if	the	value	of	variable	c	is	undefined

or	null,	the	code	within	the	else	construct	is	executed.

Note:

The	value	of	the	following	conditions	will	always	be	true:

”	==	0

null	==	undefined

‘123’	==	123

false	==	0;

Please	note	that	JavaScript	converts	the	type	of	the	variable	concerned	for	compatibility	in

comparisons.		

However,	if	you	want	to	compare	both	the	value	and	type	of	two	variables,	then	JavaScript

provides	another	set	of	operators,	===	and	!===.	 	When	 the	comparisons	 for	 the	values

mentioned	in	the	above	example	are	done	using	this	operator,	the	resultant	will	always	be

false.		

Implementing	Code	Loops

Looping	is	an	important	and	commonly	used	construct	of	any	programming	language.	You

will	be	faced	by	several	situations	when	you	need	to	perform	the	same	set	of	instructions,

a	given	number	of	times.	In	order	to	implement	this	scenario,	loops	have	to	be	used.	Loop

constructs	available	in	JavaScript	include	for,	while	and	do-while.			

The	while	 loop	 includes	a	condition	and	as	 long	as	 the	condition	 remains	 true,	 the	 loop

continues	 to	 execute.	 The	 do	 –	 while	 loop	 is	 a	 modification	 of	 the	 while	 loop.	 If	 the

condition	in	the	while	is	false,	 the	while	loop	will	not	execute	at	all.	On	the	other	hand,

even	if	the	while	condition	is	false,	the	do-while	loop	executes	at	least	once.		

Syntax	for	while	loop:

while(condition)

{

//code

}

Syntax	for	do-while	loop:

do

{

//code

}

while(condition)

The	 last	 type	 of	 loop	 available	 in	 JavaScript	 is	 for	 loop.	 The	 for	 loop	 allows	 you	 to

initialize	the	looping	variable,	check	for	condition	and	modify	the	looping	variable	in	the

same	statement.

Syntax:

for(initialize;	condition;	modify)

{

//code

}

Sample	code:

for(i=0;	i<10;	i=i+1)

{

//code

}

This	loop	will	run	10	times.

Note:

1.	 If	at	any	point	in	time,	you	wish	the	loop	to	break,	you	can	use	the	break	statement.

2.	 If	you	do	not	specify	a	condition	or	specify	a	condition	that	is	always	true,	the	loop

will	run	infinitely.

Error	Handling

Exceptions	 are	 expected	 to	occur	 at	 several	 points	 in	your	 code.	Therefore,	 it	 is	 best	 to

implement	a	mechanism	that	can	help	you	deal	with	these	exceptions	and	avoid	crashing.

An	exception	can	be	described	as	an	illegal	operation	or	any	condition	that	is	unexpected

and	not	ordinary.	A	few	examples	of	exceptions	include	unauthorized	memory	access.

You	 can	 perform	 exception	 handling	 at	 your	 own	 level	 by	 validating	 the	 values	 of

variables	before	performing	any	operations.	for	instance,	before	performing	division,	it	is

advisable	 to	 check	 if	 the	 value	 of	 the	 denominator	 is	 equal	 to	 zero.	Any	 operation	 that

involves	division	of	a	number	by	zero	raises	the	divide-by-zero	exception.

However,	there	are	other	situations	that	cannot	be	handled	in	this	manner.	For	instance,	if

the	network	connection	breaks	abruptly,	you	cannot	do	anything	to	pre-emptively	handle

the	situation.	Therefore,	for	situations	like	these,	try,	catch	and	finally	keywords	are	used.

The	code	that	is	expected	to	throw	an	exception	is	put	inside	the	try	block.	This	exception,

upon	its	occurrence,	is	caught	by	the	catch	block,	which	executes	code	that	is	supposed	to

be	executed	immediately	after	an	exception	is	caught.		The	catch	may	also	be	followed	by

the	 finally	 block,	 which	 performs	 the	 final	 cleanup.	 This	 block	 is	 executed	 after	 the

execution	of	try	and	catch	blocks.			

Syntax:

try

{

//code

}

catch(exception	name)

{

//code

}

finally

{

//code

}

Working	with	Objects

JavaScript	allows	user	access	to	a	number	of	existing	objects.	One	of	these	objects	is	an

array.	This	section	discusses	all	the	basics	related	to	this	chapter.	Dealing	with	objects	in

JavaScript	also	includes	creation	and	handling	of	customized	objects.	However,	this	topic

shall	be	covered	in	the	chapter	on	JavaScript	and	jQuery.

Arrays

A	collection	of	similar	objects	that	are	sequenced	contiguously	are	referred	to	as	an	array.

This	 array	 is	 given	 a	 name	 and	 each	 element	 can	 be	 accessed	 using	 the	 indexer,	 in	 the

following	form:

Let	arrName[]	be	an	array	of	names.	The	element	arrName[2]	refers	to	the	third	element

of	the	array.

An	array	can	be	created	using	the	following	three	methods:

Insertion	of	Items	Using	Indexer

An	array	can	be	created	using	the	new	keyword	and	then,	elements	can	be	added

into	the	array	by	assigning	values	to	independent	elements	of	the	array.	The	new

keyword	creates	an	instance	of	the	object	Array	using	the	constructor	for	the	same.

Sample	implementation:

var	arrName	=	new	Array();

arrName	[0]	=	‘Jack’;

arrName	[1]	=	‘Alex’;

Condensed	Array

The	second	type	of	implementation	also	uses	the	new	keyword.	However,	 in	this

case,	the	values	are	assigned	to	the	elements	as	arguments	to	the	constructor	of	the

Array	object.

Sample	implementation:

var	arrName	=	new	Array(‘Jack,	‘Alex’);

Literal	Array

In	this	type	of	array	definition,	values	are	provided	within	the	square	brackets.

Sample	implementation:

var	arrName	=	[‘Jack,	‘Alex’];

The	advantage	of	using	the	first	type	of	definition	is	that	it	allows	you	to	assign	values	to

the	 elements	 anywhere	 in	 the	 code.	 On	 the	 other	 hand,	 the	 second	 and	 third	 type	 of

implementation	requires	you	to	have	the	exact	list	of	elements	with	you	beforehand.

There	are	some	properties	associated	with	all	object.	The	one	property	 that	can	come	in

handy	to	you	is	length,	which	is	a	read-only	value	and	when	called	return	the	number	of

elements	present	in	the	array.	You	can	use	this	property	in	loops	and	conditions.

Objects	 can	 also	 have	 their	 own	 functions.	 These	 functions	 are	 called	 methods.	 The

methods	available	for	Array	include:

concat

Returns	an	array,	which	is	the	concatenation	of	the	two	arrays	supplied	to	it.

indexOf

Finds	the	location	of	 the	element	concerned	in	the	array	and	returns	the	index	of

the	same.

join

This	method	 concatenates	 all	 the	 values	 present	 in	 the	 array.	However,	 all	 these

values	are	separated	by	a	comma	by	default.	You	can	specify	a	delimiter	of	your

choice	as	well.		

lastIndexOf

This	method	works	similarly	as	indexOf.	However,	it	performs	the	search	from	the

last	 element	 of	 the	 array.	Therefore,	 it	 returns	 the	 index	 of	 the	 last	 element	 that

matches	the	specified	criterion.

pop

Removes	the	last	element	and	returns	its	value.

push

Adds	the	concerned	element	to	the	end	of	the	array	and	returns	the	changed	value

of	length.

reverse

This	 method	 reverses	 the	 order	 of	 the	 array	 elements.	 The	 original	 array	 is

modified	by	this	method.

shift

Removes	 and	 returns	 the	 first	 value.	 If	 the	 array	 is	 empty,	 then	 undefined	 is

returned.

slice

This	method	 requires	 two	 arguments,	 start	 index	 and	 end	 index.	A	 new	 array	 is

created	with	 elements	 same	 as	 the	 elements	 present	 at	 indexes	 (start	 index)	 and

(end	index	–	1).

sort

This	method	sorts	the	elements	and	modifies	the	original	array.

splice

This	 method	 removes	 and	 adds	 elements	 to	 the	 specified	 array.	 The	 arguments

taken	 by	 this	method	 are	 start	 index	 (index	 from	where	 the	 system	 should	 start

removing	elements),	number	of	elements	to	be	removed	and	elements	to	be	added.

If	the	value	passed	for	number	of	elements	is	0,	then	no	elements	are	deleted.	On

the	other	hand,	if	this	value	is	greater	than	the	size	of	the	array,	all	elements	from

the	start	index	to	the	end	of	the	array	are	deleted.

toString

This	method	creates	a	string,	which	 is	a	comma	separated	concatenated	string	of

all	the	elements	present	in	the	array.

unshift

This	 method	 adds	 an	 element	 at	 the	 first	 location	 of	 the	 array	 and	 return	 the

modified	value	of	length.

valueOf

This	method	 returns	a	 string,	which	 is	 the	concatenated,	 comma-separated	 string

containing	all	the	values	present	in	the	array.

Note:

1.	 When	working	with	functions,	you	can	pass	the	whole	array	(using	the	array	name)

or	a	particular	element	of	the	array	(using	array	name[indexer]).

2.	 Array	elements	can	be	modified	by	accessing	 the	element	using	 the	 indexer.	For

example,	arrName[1]	=	‘Danny’;	assigns	the	value	‘Danny’	to	the	second	element

of	the	array.

DOM	objects

The	primary	objects	that	you	need	to	access	while	building	an	application,	are	the	DOM

objects	 associated	 with	 it.	 This	 access	 is	 necessary	 for	 you	 to	 control	 and	 get	 notified

about	events	that	are	occurring	on	the	webpage.			

The	DOM	 is	 a	 representation	 of	 a	 hierarchy	 of	 objects.	 These	 objects	 can	 be	 accessed

using	 the	 document	 variable,	 which	 is	 built-in.	 This	 variable	 references	 the	 DOM	 and

performs	 a	 search,	 which	 may	 return	 an	 active	 or	 static	 NodeList.	While	 the	 active

NodeList	 contains	 a	 list	 of	 elements	 that	 keep	 changing,	 the	 static	 NodeList	 contains

elements	 that	 do	 not	 change	 over	 time.	 Since	 the	 retrieval	 of	 the	 static	NodeList	 takes

longer,	it	is	advisable	to	choose	search	methods	that	work	with	active	NodeList.

The	search	methods	available	for	DOM	include:

getElementById

This	method	returns	a	reference	to	the	first	element	that	has	the	specified	ID.

getElementsByTagName

This	method	returns	the	active	NodeList,	which	has	the	specified	tag	name.		

getElementsByName

This	method	returns	the	active	NodeList,	which	has	the	specified	name.	This	is	a

preferred	method	for	option	buttons.				

getElementsByClass

This	 method	 returns	 the	 active	 NodeList,	 which	 has	 the	 specified	 class	 name.

However,	this	method	is	not	supported	by	Internet	Explorer	version	8	and	earlier.		

querySelector

This	 method	 accepts	 CSS	 selector	 as	 parameter	 and	 return	 the	 first	 matched

element.	However,	this	method	is	not	supported	by	Internet	Explorer	version	7	and

earlier.		

querySelectorAll

This	 method	 accepts	 CSS	 selector	 as	 parameter	 and	 return	 all	 the	 matched

elements.	 Therefore,	 it	 returns	 a	 static	 NodeList.	 However,	 this	 method	 is	 not

supported	by	Internet	Explorer	version	7	and	earlier.		

Events

If	 you	 look	 at	 JavaScript	 as	 an	 engine,	 then	 events	 are	what	 give	 it	 the	 required	 spark.

Events	can	occur	in	two	situations.	The	first	type	of	events	are	those	that	occur	during	user

interactions.	A	user	may	click	an	 image	or	 enter	 text.	All	 these	 are	 classified	as	 events.

Besides	this,	changes	in	state	of	the	system	are	also	considered	an	event.	For	instance,	if	a

video	starts	or	stops,	an	event	is	said	to	have	occurred.	The	DOM	allows	you	to	capture

events	and	execute	code	for	the	same.

In	JavaScript,	events	are	based	on	the	publish-subscribe	methodology.	Upon	creation	of	an

object,	the	developer	can	publish	the	events	that	are	related	to	this	object.	Moreover,	event

handlers	 can	 be	 added	 to	 this	 object	 whenever	 it	 is	 used.	 The	 event	 handler	 function

notifies	the	subscribed	events	that	the	event	has	been	triggered.	This	notification	includes

information	 about	 the	 event	 like	 location	 of	 the	 mouse	 and	 key-presses,	 in	 addition	 to

several	other	details	relevant	to	the	event.

Capturing	events:

There	may	be	situations	when	an	event	may	be	attached	to	a	button	click,	which	may	lie

inside	 a	 hyperlink.	 In	 this	 situation,	 there	 is	 nesting	 of	 elements.	 Therefore,	 the	 event,

when	 triggered,	 is	 passed	 down	 the	 DOM	 hierarchy.	 This	 process	 is	 called	 event

capturing.	However,	once	the	event	has	reached	the	element,	this	event	is	bubbled	up	the

hierarchy.	This	process	 is	called	event	bubbling.	This	movement	of	 the	event	across	 the

hierarchy	gives	 the	developer	 an	opportunity	 to	 subscribe	or	 cancel	 the	propagation,	 on

need	basis.		

Subscribing	to	event:

The	 function,	 addEventListener,	 can	be	 used	 for	 the	 subscription	process.	This	 function

requires	three	arguments,	the	event,	the	function	that	needs	to	be	called	for	the	event	and	a

Boolean	value	that	determines	if	the	function	will	be	called	during	the	capture	or	bubble

process	 (true	 –	 capture,	 false	 –	 bubble).	 Mostly,	 this	 value	 is	 set	 to	 false.	 This	 is	 the

preferred	method	for	subscription	as	it	is	mentioned	in	the	W3C	standard.

Sample	Code:

var	btn	=	document.getElementById(‘btnDownload’);

btn.addEventListener(‘click’,	initiateDownload,	false);

However,	 other	 methods	 also	 exist,	 which	 include	 giving	 an	 online	 subscription	 to	 the

html	 tag.	 This	 subscribes	 the	 event	 to	 the	 bubble	 process.	 The	 advantage	 of	 using	 this

method	is	that	it	 is	the	oldest	and	most	accepted	method.	therefore,	you	can	be	sure	that

this	method	will	work,	regardless	of	what	browser	you	are	using.	Please	see	the	tag	below

to	understand	how	this	can	be	done.		

<button	id=‘btnDownload’	onclick=‘initiateDownload();’	>Download</button>

You	can	also	use	the	traditional	subscription	process	that	uses	JavaScript	for	subscribing

the	event.

var	btn	=	document.getElementById(‘btnDownload’);

btn.onclick	=	initiateDownload;

Unsubscribing:

Events	 can	 be	 unsubscribed	 using	 the	 function,	 removeEventListener,	 which	 takes	 the

same	 set	 of	 parameters	 as	 addEventListener.	 For	 the	 btn	 variable	 used	 in	 the	 previous

example,	this	can	be	done	in	the	following	manner:

var	btn	=	document.getElementById(‘btnDownload’);

btn.removeEventListener(‘click’,	initiateDownload,	false);

How	to	cancel	propagation?

The	function,	stopPropagation,	is	used	for	performing	this	operation.	This	can	be	done	in

the	following	manner:

var	btn	=	document.getElementById(‘btnDownload’);

btn.addEventListener(‘click’,	initiateDownload,	false);

function	initiateDownload	(e){

//download

e.stopPropagation();

}

How	to	prevent	the	default	operation?

This	can	be	done	by	using	the	function,	preventDefault,	in	the	following	manner:

var	hyperlink	=	document.getElementById(‘linkSave’);

hyperlink.addEventListener(‘click’,	saveData,	false);

function	saveData(e){

//save	data

e.preventDefault();

}

JavaScript	 also	provides	 the	 this	 keyword,	which	 can	be	used	 if	 you	wish	 to	 access	 the

event	causing	element,	on	a	frequent	basis.

Window	Event	Reference

The	current	browser	window	is	represented	by	the	window	variable,	which	is	an	instance

of	the	Window	object.	The	following	events	are	associated	with	this	object:

afterprint

beforeonload

beforeprint

error

blur

haschange

load

message

focus

online

offline

pageshow

pagehide

redo

popstate

storage

resize

unload

undo

Form	Event	Reference

The	actions	that	occur	inside	an	HTML	form	trigger	the	flowing	events:

change

blur

focus

contextmenu

forminput

formchange

invalid

input

submit

select

Keyboard	Event	Reference

The	keyboard	triggers	the	following	events:

keyup

keypress

keydown

Mouse	Event	Reference

The	mouse	triggers	the	following	events:

click

drag

drop

scroll

dblclick

dragenter

dragstart

dragend

dragover

dragleave

mousemove

mousedown

mouseover

mouseout

mousewheel

mouseup

Media	Event	Reference

Media	elements	like	videos,	images	and	audios	also	trigger	events,	which	are	as	follows:

canplay

abort

waiting

durationchange

canplaythrough

ended

emptied

loadeddata

error

loadstart

loadedmetadata

play

pause

progress

playing

readystatechange

ratechange

seeking

seeked

suspend

stalled

volumechange

timeupdate

CHAPTER	4:	BASICS	OF	CSS3

Cascading	 Style	 Sheets	 or	 CSS	 provide	 the	 presentation	 that	 webpages	 are	 known	 for.

Although,	HTML	 is	 capable	 of	 providing	 a	 basic	 structure	 to	 the	webpage,	 CSS	 offers

developers	host	of	design	options.	Besides	this,	it	is	fast	and	efficient,	which	makes	it	an

all	more	popular	design	tool.				

CSS	is	known	to	have	evolved	from	SGML	(Standardized	Generalized	Markup

Language).	The	 goal	 of	 efforts	made	 in	 this	 direction	was	 to	 standardize	 the	manner	 in

which	 web	 pages	 looked.	 The	 latest	 version	 of	 this	 technology	 is	 CSS3,	 which	 is	 a

collection	of	50	modules.

The	 most	 powerful	 characteristic	 of	 CSS	 is	 its	 cascading	 ability.	 Simply,	 it	 allows	 a

webpage	to	take	its	styles	from	multiple	sheets	in	such	a	manner	that	changes	to	the	style

in	subsequently	read	sheets	overwrite	the	style	already	implemented	from	one	or	more	of

the	previous	sheets.

How	to	Define	and	Apply	Style

The	 definition	 and	 application	 of	 a	 style	 involves	 two	 facets	 or	 parts,	 selector	 and

declaration.	While	the	selector	determines	the	area	of	the	webpage	that	needs	to	be	styled,

the	 declaration	 block	 describes	 the	 style	 specifications	 that	 have	 to	 be	 implemented.	 In

order	to	illustrate	how	it	works,	let	us	consider	the	following	example,			

body	{

color:	white;

}

In	 this	 example,	 the	 selector	 selects	 the	body	of	 the	webpage	 and	 the	declaration	block

defines	 that	 the	 font	 color	 should	 be	 changed	 to	 white.	 This	 is	 a	 simple	 example	 and

declarations	and	selectors	can	be	much	more	complex	than	this.

How	to	Add	Comments

Comments	can	be	added	to	the	style	sheet	using	the	following	format:

/*write	the	comment	here*/

How	to	Create	an	Inline	Style

Every	 element	 has	 an	 associated	 global	 attribute,	 style.	 This	 global	 attribute	 can	 be

manipulated	within	the	tag	for	that	element	to	modify	the	appearance	of	that	element.	This

type	of	styling	does	not	require	you	to	specify	the	selector.	Only	the	declaration	block	is

required.	An	example	of	how	this	is	done	is	given	below:

<body	style=‘color:	white;’>

</body>

This	HTML	tag	performs	the	same	functionality	as	the	CSS	code	specified	in	the	previous

section.	The	advantage	of	using	 this	 approach	 is	 that	 the	 style	 information	given	 in	 this

manner	overwrites	any	other	styling	 information.	Therefore,	 if	you	need	 to	use	different

style	for	one	element	while	the	rest	of	the	document	needs	to	follow	a	different	style,	then

you	can	use	a	stylesheet	for	the	document	and	specify	the	style	for	this	element	in	its	tag.

How	to	Use	Embedded	Style

Another	 approach	 for	 accomplishing	 the	 same	 outcome	 as	 inline	 styles	 is	 to	 use	 the

<style>	element	within	the	element	concerned,	for	defining	its	style	specification.	Here	is

how	this	can	be	done:

<!DOCTYPE	html>

<html	xmlns=‘http://www.w3.org/1999/xhtml’>

<head>

<title></title>

<style>

body	{

color:	white;

}

</style>

</head>

<body>

</body>

</html>

How	to	Create	External	Style	Sheet

For	usages	where	you	wish	to	use	the	same	style	for	the	complete	webpage	or	a	number	of

webpages,	the	best	approach	is	to	use	an	external	style	sheet.

This	external	style	sheet	can	be	linked	to	the	HTML	page	in	the	following	manner:

<!DOCTYPE	html>

<html	xmlns=‘http://www.w3.org/1999/xhtml’>

<head>

<title></title>

<link	rel=‘stylesheet’	type=‘text/css’	href=‘Content/mainstyle.css’	/>

</head>

<body>

</body>

</html>

You	must	create	a	file	mainstyle.css,	in	the	Content	folder,	and	put	the	style	rule	specified

below	into	the	file.

body	{

color:	white;

}

Defining	Media

It	 is	 important	 to	 note	 that	 a	 style	 sheet	 can	 contain	 as	many	 style	 rules	 as	 you	 want.

Besides	this,	you	can	also	link	different	CSS	files	for	different	media.	The	different	media

types	are	as	follows:

all

embossed

	

braille

print

handheld

speech

screen

tv

tty

The	media	used	can	be	defined	in	the	following	manner:

<link	rel=‘stylesheet’	type=‘text/css’	href=‘Content/all.css’	media=’all’	/>

Defining	Character	Encoding

You	can	also	define	the	character	encoding	used,	using	the	following	format:

Style	sheet:

Place	the	following	line	above	the	style	rule	in	the	style	sheet.

@charset	‘UTF-8’;

HTML	page:

You	must	place	this	line	above	the	link	element.

<meta	http-equiv=‘Content-Type’	content=‘text/html;charset=UTF-8’	>

Importing	style	Sheets

As	your	web	pages	becomes	complex,	the	style	sheets	used	shall	also	grow	in	complexity.

Therefore,	you	may	need	to	use	many	style	sheets.	You	can	import	the	style	rules	present

in	one	style	sheet	to	another	by	using:

@import	url(‘/Content/header.css’);

Here,	header.css	is	imported	and	the	url	gives	the	relative	address	of	the	style	sheet	to	be

imported.

Importing	Fonts

Fonts	can	be	imported	using	the	following	format:

@font-face	{

font-family:	newFont;

src:	url(‘New_Font.ttf’),

url(‘New_Font.eot’);	/*	IE9	*/

Selectors,	Specificity	and	Cascading

Selectors	 can	 be	 of	 three	 types,	 class	 selectors,	 ID	 selectors	 and	 element	 selectors.	 The

element	 selector	 type	 is	 the	 simplest	 and	 requires	 you	 to	 simply	 name	 the	 element	 that

needs	 to	be	used.	For	 instance,	 if	you	wish	to	change	the	background	color	of	 the	body,

then	the	element	selector	used	is	body.

While	declaring	any	element,	you	can	assign	an	ID	to	it	using	the	id	attribute.	You	can	use

this	ID	prefixed	with	a	#	as	a	selector.	For	example,	if	you	have	created	a	button	with	ID

btnID,	then	the	ID	selector	for	this	will	be	#btnID.	Similarly,	you	can	assign	a	class	name

to	an	element	using	the	class	attribute.	Class	name	can	be	used	prefixed	by	a	dot(.)	in	the

following	manner,	.className.				

However,	if	you	wish	to	select	all	the	elements	of	the	webpage,	then	asterisk	(*)	to	it.		

Using	Descendent	and	Child	Selectors

You	may	wish	to	apply	a	particular	style	to	a	descendant	of	a	selector.	This	can	be	done	by

specifying	the	complete	selector	change.	It	can	be	done	in	the	following	manner:

li	a	{

text-color:	black;

}

On	the	other	hand,	you	may	want	to	apply	to	an	element	only	if	it	is	a	direct	child	of	the

selector.	 This	 can	 be	 implemented	 by	 specifying	 the	 parent	 and	 child	 separated	 by	 a

greater	than	(>)	sign,	in	the	following	manner:

li	>	a	{

color:	white;

}

Pseudo-element	and	Pseudo-class	Selectors

Now	 that	 you	 know	 how	 to	 apply	 styles	 to	 specific	 elements,	 let	 us	 move	 on	 to

implementing	styles	to	more	specific	sections	like	the	first	line	of	the	second	paragraph.	In

order	to	style	elements	that	cannot	be	classified	on	the	basis	of	name,	content	or	is	not	a

part	 of	 the	DOM	 tree	 can	 be	 styled	 using	 pseudo-classes.	 The	 available	 pseudo-classes

include:

:visited

:link

:hover

:active

:checked

:focus

:nth-last-child(n)

:not

:only-child

:nth-child(formula)

:lang(language)

:first-of-type

:only-of-type

If	you	want	 to	access	 information	of	 the	DOM	tree	 that	 is	not	accessible	otherwise,	you

can	use	pseudo-elements.	Pseudo-elements	include:

::first-letter

::first-line

::after

::before

Grouping	Selectors

Multiple	 selectors	 can	 be	 used	 for	 a	 style	 rule.	 These	 selectors	 must	 be	 separated	 by

commas.	Sample	implementation:

body,	button	{

color:	white;

}

Using	Adjacent	Selectors

If	you	want	to	style	the	first	heading	in	a	div	or	any	similar	adjacent	elements,	the	selector

is	constructed	using	a	plus	sign	(+)	between	the	two	selectors.	Sample	implementation:

div	+	h1	{

color:	white;

}

Sibling	Selectors

Sibling	selectors	are	similar	to	adjacent	selectors	except	for	the	fact	that	all	the	matching

elements	 are	 styled	 as	 against	 adjacent	 selectors,	 which	 only	 style	 the	 first	 matching

element.	 The	 selector	 is	 constructed	 using	 a	 ~	 sign	 between	 the	 two	 selectors.	 Sample

implementation:

div	~	h1	{

color:	white;

}

Using	Attribute	Selector

This	selector	selects	all	the	elements	for	which	the	specified	attribute	exists.	The	selector

is	written	in	this	form:

a[title]

This	 selector	 will	 select	 all	 the	 links	 for	 which	 the	 title	 attribute	 has	 been	 specified.

Moreover,	this	selector	type	can	be	modified	into	attribute-value	selector	by	specifying	the

attribute	value	in	the	following	manner:

a[title	=	value]		

In-Built	Styles	of	Browsers

Every	browser	has	a	built-in	stylesheet,	which	is	applied	to	all	the	webpages	opened	using

this	browser.	In	fact,	this	stylesheet	is	applied	before	any	other	style	sheet.	You	can	define

your	 own	 style	 sheet	 for	 the	 browser	 using	 the	Accessibility	 option	 in	Tools.	However,

user	style	sheets	are	browser	specific.	Therefore,	if	you	open	a	different	browser,	the	style

sheet	you	defined	may	not	be	accessible.			

In	case,	you	want	your	user-defined	stylesheet	to	override	any	other	style	specified	in	the

HTML	 page,	 then	 you	 can	 use	 the	 ‘!important’	 modifier.	 This	 modifier	 sets	 highest

priority	for	the	specified	style	statement.	Sample	implementation:

body	{

color:	white	!important;

}

Cascading	of	Styles

The	 precedence	 and	 priority	 of	 the	 styles	 are	 decided	 on	 the	 basis	 of	 the	 following

parameters.

Importance

Specificity

Textual	Order

Working	with	CSS	Properties

Now	 that	 you	 are	 thorough	 with	 the	 use	 of	 selectors,	 the	 next	 step	 is	 to	 look	 at	 CSS

properties.

Color

One	 of	 the	most	 crucial	 properties	 that	 are	 used	 in	 a	web	 page	 is	 color,	 which	 can	 be

defined	using	ARGB,	RGB	and	color	names.

RGB	value	are	typically	defined	using	a	decimal	number,	which	lies	between	0-255.		

white	#ffffff

red	#ff0000

black	#000000

green	#008000

Color	values	can	also	be	used	instead	of	the	color	name.	An	example	of	how	this	can	be

used	is	given	below.

body	{

color:	#ffffff;

}

Another	way	to	specify	the	color	is	using	the	RGB	function,	which	specifies	the	values	of

parameters	 using	 a	 number	 between	 0-255	 or	 percentage.	 Example	 of	 this	 type	 of

declaration	is	given	below:

h1	{	color:	rgb(255,0,0);	}

Other	ways	to	specify	color	are	RGBA,	which	accepts	4	values	and	HSL,	which	defines

values	for	hue,	saturation	and	lightness.

Transparency

The	 transparency	 or	 opacity	 are	 defined	 by	 a	 value	 between	 0.0	 (invisible)	 and	 1.0

(opaque).

Text

As	far	as	text	is	concerned,	font-face	and	font-size	can	be	specified.	These	properties	can

be	defined	in	the	following	manner:

h1	{	font-family:	arial,	verdana,	sans-serif;	}

h1	{	font-size:	12px;	}

The	CSS	Box	Model

The	CSS	Box	Model	assumes	that	a	webpage	can	be	considered	to	be	made	up	of	boxes.

The	 spacing	 between	 these	 boxes	 are	 given	 by	 margins	 and	 padding	 settings.	 These

properties	can	be	given	values	in	the	following	manner:

margin:	15px;

padding:	25px;

border:	10px;

Positioning	<div>	elements

The	element	used	for	creating	page	layouts	is	<div>.	Although,	HTML5	recommends	the

use	of	semantic	markup	instead	of	div	elements,	there	are	still	used	for	content	that	cannot

be	styled	using	semantic	markup.	A	div	element	can	be	imagined	as	a	rectangular	block

and	is	declared	in	the	following	manner:

<div>

<!—other	elements	are	enclosed	within	this	area—>

</div>

Properties	used	to	define	the	position	of	a	div	element	include:

The	position	of	 the	div	element	can	be	defined	using	 the	properties,	 top,	bottom,

left	and	right,	in	pixels.

A	property,	position,	is	used	to	define	if	the	position	specified	is	static	or	relative.		

The	float	property	can	be	used	to	allow	elements	to	float	to	the	right	or	left	and	is

defined	as	float:	left	or	float:	right.

The	clear	property	places	a	clear	element	right	after	the	floating	element.

You	 can	 also	 change	 the	manner	 in	which	 the	 browser	 calculates	width	with	 the

help	of	 the	box-sizing	property.	This	property	 can	 take	 three	values:	 content-box

(default	setting),	border-box	and	padding-box.

Centering	Content

If	 you	 are	 using	 a	 fixed	 width,	 the	 div	 element	 can	 be	 centered	 using	 the	 properties,

margin-left	and	margin-right.	 If	you	 fix	 the	width	and	set	 the	margins	 to	auto,	 the	extra

space	on	the	margins	is	equally	divided.	It	can	be	done	in	the	following	manner:			

#container	{

width:	850px;

margin-left:	auto;

margin-right:	auto;

}

CHAPTER	5:	HTML5	EXPLAINED

The	chapter	focuses	on	the	basics	of	HTML5	and	how	they	can	be	used	for	creating	high

performance,	 new-generation	 pages.	 However,	 most	 of	 the	 elements	 explained	 in	 that

chapter	 included	elements	 that	HTML5	has	 received	 from	its	predecessors.	This	chapter

takes	you	a	step	further	in	your	quest	of	 learning	HTML5,	introducing	concepts	that	are

newly	added	to	this	technology.		

In	the	previous	chapter	on	CSS,	we	introduced	the	concept	of	<div>	element	to	you.	This

element	 is	preferred	over	 all	 its	 alternatives	as	 far	 as	page	 layout	 creation	 is	 concerned.

While	some	people	also	use	the	<table>	element,	it	is	usually	not	a	recommended	solution

as	it	is	difficult	to	maintain	as	well	use.	However,	both	the	concepts	are	elaborated	upon

this	chapter.

Semantic	Markup

The	<div>	and		elements	are	the	most	commonly	used	and	recommended	elements

for	positioning	and	formatting	content.	However,	 it	 is	recommended	that	you	should	use

different	 <div>	 elements	 for	 specifying	 different	 sections	 of	 the	 page	 like	 header	 and

footer.	This	shall	allow	you	to	position	them	individually	and	in	a	more	organized	manner.

Therefore,	 the	 W3C	 has	 named	 these	 new	 elements	 with	 names	 like	 <footer>	 and

<header>.

Browser	Support

It	is	true	that	your	HTML	code	will	not	be	read	by	any	of	your	users.	However,	there	are

other	 tools	and	machines	 that	are	constantly	parsing	your	code.	These	tools	 include	web

crawlers,	which	indexes	webpages	for	searching	and	NVDA	(Non-Visual	Desktop	Access)

devices,	which	are	used	by	many	users	with	special	needs	as	an	alternative	for	reading	and

comprehending	 web	 pages.	 Therefore,	 they	 require	 you	 to	 use	 tags	 that	 are

understandable.

How	to	Create	HTML5	Documents

Although,	 the	 above	 discussion	 clearly	mentions	 the	 importance	 of	 using	meaning	 tags

and	prohibits	 the	use	of	 tags	 like	<div>	and	,	you	may	still	have	 to	use	 them	for

styling	purposes.	As	you	read	on,	you	will	realize	how	semantic	tags	must	be	supplied	for

providing	meaning	to	your	tags.	It	is	important	to	mention	here	that	semantic	tags	should

be	used	carefully,	and	if	you	realize	that	there	is	a	need	to	define	custom	elements,	then	go

ahead	and	use	the	<div>	and		elements.	However,	be	sure	to	add	an	ID	and	class-

name	to	the	elements	that	describe	their	meaning	as	well	as	possible.

How	to	Create	HTML5	Layout	Container

A	layout	container,	as	the	name	suggests,	is	a	container	that	entails	the	layout	of	a	page.	In

other	words,	 the	container	contains	 the	different	 sections	of	 the	 layout	or	 its	 children	 in

such	a	manner	that	they	can	be	positioned	in	a	flexible	manner.	As	a	developer,	you	can

easily	 distinguish	 between	 <div>	 elements	 on	 the	 basis	 of	 their	 class	 names	 and	 IDs.

However,	this	is	not	true	for	browsers.

Therefore,	 there	 has	 got	 to	 be	 a	 way	 by	 which	 you	 can	 ask	 the	 browser	 to	 interpret

elements.	 For	 instance,	 you	 may	 want	 to	 ask	 the	 browser	 to	 focus	 on	 a	 certain	 <div>

element	upon	opening.	All	 this	and	more	can	be	done	with	the	help	of	layout	containers

that	express	elements	in	such	a	manner	that	 they	are	understandable	to	both	the	browser

and	the	user.		

Some	of	the	commonly	used	elements	for	creating	a	layout	container	include:

<header>

It	 is	 used	 to	 define	 the	 header	 section	 or	 the	 topmost	 section	 of	 the	 HTML

document.	This	element	can	also	be	defined	inside	the	<article>	element.			

<footer>

It	 is	 used	 to	 define	 the	 footer	 section	 or	 the	 bottom-most	 section	 of	 the	HTML

document.	This	element	can	also	be	defined	inside	the	<article>	element.			

<nav>

It	is	used	to	define	the	section	that	contains	all	the	navigational	links.

<aside>

This	element	is	generally	used	for	sidebars	and	separates	the	content	in	the	<aside>

element	from	the	content	that	is	outside	this	element.

<section>

This	element	defines	a	part	of	 the	whole	section	and	is	named	with	 the	elements

<h1>,	<h2>,	<h3>,	<h4>,	<h5>	and	<h6>.

<article>

This	 element	 defines	 a	 complete	 unit	 of	 content,	which	 you	 can	 copy	 from	 one

location	to	another.	An	example	of	such	a	unit	is	a	blog	post.

Using	Roles

The	role	attribute	can	be	declared	inside	the	<div>	and	<aside>	elements.	The	role	class

hierarchy	 and	 the	 usage	 of	 roles	 for	 providing	 specific	 meanings,	 as	 far	 as	 far	 as

accessibility	 is	 concerned,	 	 is	 defined	 in	 WAI-ARIA	 (Web	 Accessible	 Initiative	 -

Accessible	Rich	Internet

Applications).

One	of	 the	parent	 role	classes	 is	 the	 landmark	role	class,	which	defines	 the	navigational

landmarks	on	the	webpage.	The	child	classes	of	the	parent	role	class	include:

banner

This	 defines	 website	 specific	 content	 that	 is	 	 not	 expected	 to	 change	 from	 one

webpage	to	another	like	headers.

application

This	defines	that	the	specified	area	is	a	web	application.

contentinfo

This	 defines	 the	 information	 included	 in	 the	 webpage	 about	 the	 webpage	 like

copyright	information.	This	information	is	mostly	a	part	of	the	footer	content.

complementary

This	defines	a	section	of	the	page	that	is	meaningful	when	detached	from	the	page

as	well.

main

The	main	web	page	content	is	defined	using	this	child	role	class.

form

This	defines	the	area	of	the	webpage	that	is	expected	to	take	webpage	inputs.

search

This	child	role	class	is	used	to	define	the	location	on	the	webpage	that	is	used	for

getting	the	search	query	from	the	user	and	displaying	the	results	of	the	search.

navigation

The	area	containing	navigational	links	is	a	part	of	this	child	role	class.

These	roles	can	be	used	for	providing	meaning.	However,	 the	new	elements	 included	 in

HTML5	are	meaningful	themselves.	Yet,	there	are	some	utilities	that	are	not	available	in

HTML5	and	for	these,	role	attribute	can	be	used.

How	to	Control	format	using	<div>	element?

As	mentioned	previously,	the	<div>	element	is	essentially	invisible	and	does	not	provide

any	meaning	to	the	element.	However,	if	you	wish	to	use	it	for	formatting	purposes	only,

then	it	is	perfect	for	this	purpose.

How	to	Add	Thematic	Breaks?

The	 void	 element	 <hr/>	 can	 be	 used	 for	 adding	 thematic	 breaks,	 which	 are	 used	 for

denoting	a	transition	from	one	set	of	content	to	another.

How	to	Annotate	Content?

There	 are	 several	 elements	 available	 for	 annotation.	 These	 include	 	 and	<i>,	which

you	have	been	using	for	ages.	However,	they	have	new	meanings	now,	in	addition	to	the

style	that	they	denote.	For	instance,	the		element	denotes	the	style	‘bold’.	In	addition

to	this,	HTML5	adds	the	meaning	‘span	of	text	with	special	focus,	but	no	change	in	mood,

importance	level	or	implication.’

Although,	the	use	of	the	bold	style	makes	more	sense	in	this	context,	but	you	can	still	use

this	 element	 for	 denoting	 names	 of	 products	 in	 reviews	 or	 keywords.	 Similarly,	 the

element		indicates	the	relative	importance	of	content	and	<i>	denotes	a	change	in

mood	or	implication	of	the	content	concerned.	Besides	this,	the		element	is	used	for

text	that	will	be	alternatively	pronounced	by	the	reader.

How	to	Use	<abbr>	for	Acronyms	and	Abbreviations?

In	 the	 previous	 versions	 of	HTML,	 the	 <acronym>	 element	was	 used	 for	 this	 purpose.

However,	this	element	has	become	obsolete	and	the	new	element	used	for	this	purpose	is

<abbr>.	 It	 is	 an	 inline	 element,	which	 is	 generally	 used	with	 other	 inline	 elements	 like

	and	.

Element	-	<address>

This	element	is	used	for	defining	the	contact	information	of	the	owner	or	the	author	of	the

webpage.

Quotations	and	Citations

You	can	indicate	that	a	particular	text	is	a	quote	by	using	the	element	<blackquote>,	which

is	 used	 for	 a	 long	 quotation,	 and	 <q>,	 which	 is	 used	 for	 an	 inline	 quotation.	 You	 can

mention	 the	 source	 of	 the	 quotation	 using	 the	 cite	 attribute	 or	 the	 <cite>	 element.

However,	using	the	<cite>	element	inside	<q>	and	<blackquote>	elements	is	considered	a

better	approach.	Please	remember	that	 the	<cite>	element	can	only	mention	the	name	of

the	work	and	other	 information	elements	 like	author’s	name	and	 location	of	publishing,

are	not	included	here.

How	to	Document	Code	in	HTML5?

There	are	two	elements,	<code>	and	<samp>,	are	used	for	documenting	code.	While	the

element	<code>	is	used	for	documenting	the	source	code,	 the	element	<sample>	is	used

for	the	output	of	the	code.	A	sample	HTML	for	how	this	is	done	is	given	below:

<code	class=“maintainWhiteSpace”>

echoContent(‘Screen’);

function	echoContent(name)

{

alert(‘This	is’	+	name	+	‘.’);

}

</code>

<samp	class=“maintainWhiteSpace”>

This	is	Screen.

</samp>

The	<pre>	Element

It	 is	 important	 to	 mention	 here	 that	 these	 elements	 do	 not	 preserve	 the	 whitespace.

Therefore,	a	class	needs	to	be	implemented	for	this	purpose.	This	class	should	look	like:

style	rule.

.maintainWhiteSpace	{

white-space:	pre;

}

Some	 browsers	 may	 not	 support	 this	 style	 rule.	 Therefore,	 for	 such	 browsers,	 it	 is

advisable	to	use	the	element	<pre>.	Therefore,	<pre>	element	can	be	used	for	defining	the

pre-formatting	rules.

The	<var>	Element

This	element	is	used	to	declare		that	the	text	specified	inside	it,	is	a	variable.	Example:

<p>

The	variable	<var>i</var>	represents	the	number	of	iterations	for	the	loop	to	perform.

</p>

The	
	and	<wbr	/>	Elements

The	
	element	implements	a	line	break.	On	the	other	hand,	the	<wbr/>	implements	a

word	break.		

The	<dfn>	Element

There	may	 be	 occasions	 when	 you	 wish	 to	 define	 a	 term.	 This	 can	 be	 done	 using	 the

<dfn>	element,	which	takes	title	as	one	of	its	attributes.

Working	with	Figures

Images	and	figures	are	an	integral	part	of	any	web	page	content.	Therefore,	every	figure

can	also	be	viewed	as	a	unit	of	content,	which	may	consist	of	a	caption	and	a	reference

from	the	page	to	which	it	may	belong.	In	order	to	define	one	or	more	images,	the	<figure>

element	is	used.	The	element	<figurecaption>	can	be	used	for	defining	the	caption	of	the

figure.

However,	 it	 is	 important	 to	 mention	 here	 that	 the	 <figure>	 element	 does	 not	 give	 any

importance	to	the	position	of	the	figure	and	the	same	is	included	along	with	the	content.

However,	if	the	position	and	location	of	the	figure	is	of	importance	to	you.,	then	you	must

consider	using	the	<div>	element.		

The	<summary>	and	<details>	Elements

The	element	<summary>	contains	the	summary	of	the	content	of	the	webpage,	which	can

be	displayed	in	the	form	of	a	collapsible	list	using	the	<details>	element.	Therefore,	when

you	load	a	page,	only	the	contents	of	the	<summary>	element	will	be	displayed,	while	the

contents	of	the	<details>	element	are	displayed	when	the	user	clicks	on	the	summary.				

Other	Annotations

In	 addition	 to	 the	 above	mentioned,	 there	 are	 a	 few	more	 annotations	 available,	 which

include:

<s>		-	Used	for	striking	out	text

<u>		-	Used	for	underlining	text

<mark>		-	Used	for	highlighting	text

<ins>		-	Used	for	indicating	that	the	text	has	been	inserted

	-	Used	for	indicating	that	the	text	has	been	deleted

<small>		-	used	for	indicating	that	the	text	must	be	printed	in	fine	letters

<sub>		-	Indicates	that	the	text	is	a	subscript

<sup>		-	Indicates	that	the	text	is	a	superscript

<time>		-	Used	for	indicating	that	the	text	denotes	time	and	date

<kbd>		-	used	for	indicating	that	the	text	is	a	user	input

Language	Elements

You	may	need	 to	 use	 characters	 of	Chinese,	 Japanese	 or	Korean	 origin	 in	 your	 text.	 In

order	to	support	this	inclusion,	the	element	<ruby>	can	be	used.	Inside	this	element,	other

elements	 like	<bdi>	and	<bdo>,	 for	defining	 the	 isolation	and	direction	of	 text.	Besides

this,	<rt>	and	<rp>	elements	can	also	be	used	for	placing	notation	or	parentheses	 in	 the

text	of	<ruby>	element.

Working	with	Lists

In	HTML5,	several	elements	for	defining	unordered,	ordered	and	descriptive	lists	exist.	A

fourth	category	of	‘Custom	lists’	is	also	present	to	allow	customization	by	the	developer.

The	 list	 items	 for	 all	 these	 are	 declared	 using	 the		 element.	Moreover,	 all	 the	 three

types	of	lists	support	list	nesting.

Ordered	Lists

Ordered	lists	are	declared	using	the	element		and	the	elements	of		‘order’	in	this	list

are	brought	about	by	an	automatic	numbering	of	the	elements	that	are	included	in	this	list.

The	attributes	that	can	be	used	with	ordered	lists	include:

start		-	Used	to	set	the	starting	number	of	the	list

reversed	 	 -	 Used	 for	 declaring	 if	 the	 list	 has	 to	 be	 ordered	 in	 an	 ascending	 or

descending	order

type	–	Used	for	declaring	the	type	of	the	list,	which	can	be	A,	a,	1	or	I.

Unordered	Lists

This	 type	 of	 a	 list	 is	 declared	 using	 the	 	 element	 and	 there	 is	 no	 numbering	 of

elements	in	this	case.	The	elements	of	the	lists	are	simply	represented	as	bullet	points.

Description	Lists

This	type	of	a	list	is	declared	using	the	<dl>	element.	Using	this	element,	you	can	give	a

description	 containing	 zero	 or	 more	 terms.	 Besides	 this,	 the	 elements	 of	 the	 list	 are

declared	 using	 the	 <dt>	 element,	 which	 specifies	 the	 term,	 and	 <dd>,	 which	 gives	 a

description	of	the	term.

Custom	Lists

The	developer	can	make	use	of	CSS	styles	to	create	custom	lists.	In	this	case,	a	different

style	rule	can	be	created	for	each	level	of	a	nested	list.

Working	with	Tables

Another	 format	 for	 arranging	 and	 presenting	 data	 in	 webpages	 is	 tables.	 Tables	 are

declared	 using	 the	 <table>	 element	 and	 represents	 data	 in	 a	 rows-columns	 format.	 The

cells	of	 the	 tables	are	defined	using	 the	<tr>	and	<td>	elements.	While	<tr>	 is	used	 for

rows,	<td>	is	used	for	columns.

Despite	that	fact	that	HTML5	tables	are	one	of	the	most	powerful	constructs	available	to

the	 developer,	 it	 is	 important	 to	 understand	 how	 and	 where	 tables	 can	 be	 most

appropriately	used.	Here	are	the	reasons	why	tables	should	not	be	used:

The	table	created	for	a	web	page	is	not	rendered	until	the	</table>	tag	is	read.	On

the	other	hand,	if	the	same	construct	is	created	using	the	<div>	element,	the	content

will	be	rendered	as	it	is	read.		

Tables	are	extremely	difficult	to	maintain.

Tables	are	difficult	to	interpret	for	accessibility	devices.		

Sample	Implementation:

<table>

<tr>

<td>Frank</td>

<td>1978</td>

</tr>

<tr>

<td>David</td>

<td>1967</td>

</tr>

<tr>

<td>Alex</td>

<td>1989</td></tr>

</table>

The	table	created	above	will	look	like:

Frank 1978

David 1967

Alex 1989

As	you	observe	the	table,	you	must	have	realized	that	the	table	is	not	complete	unless	we

define	what	is	called	the	table	headers.	This	can	be	done	using	the	<th>	element.	You	can

create	 table	 headers	 both	 vertically	 and	 horizontally.	 For	 example,	 we	 can	 define	 the

following	table	header	in	the	code	used	above.

<table>

<tr>

<th>Name</td>

<th>Year	of	Birth</td>

</tr>

<tr>

<td>Franky</td>

<td>1978</td>

</tr>

<tr>

<td>David</td>

<td>1967</td>

</tr>

<tr>

<td>Alex</td>

<td>1989</td></tr>

</table>

The	resulting	table	for	this	code	will	look	like	this:

Name Year	of	Birth

Franky 1978

David 1967

Alex 1989

In	 the	 above	 case,	 the	 table	 headers	 are	 simply	of	 a	 larger	 font	 size.	However,	 you	 can

style	these	as	you	want	by	style	rules.	This	can	be	done	in	the	following	manner:

th	{

background-color:	black;

color:	white

}

This	style	rule	will	color	the	cells	of	the	table	headers	with	black	color	and	the	text	will	be

written	in	white.

The	normal	behavior	of	most	browsers	 is	 to	automatically	place	all	 the	<tr>	elements	 in

the	<tbody>,	indicating	that	this	is	the	body	of	the	table.	However,	it	is	a	good	practice	to

define	the	<tbody>	explicitly.	Besides	this,	the	<thead>	and	<tfoot>	can	also	be	explicitly

defined.	The	header,	body	and	footer	of	the	table	can	be	individually	styled	using	CSS.	As

a	 rule,	 you	 can	 have	 one	 header	 element,	 one	 or	 more	 body	 elements	 and	 one	 footer

element.

The	next	 important	 content	 feature	 that	must	be	 added	 to	 the	 table	 created	 above	 is	 the

table	caption.	In	order	to	define	the	table	caption,	the	<caption>	element	is	used.

In	some	cases,	you	may	feel	the	need	to	style	individual	columns.	This	may	seem	like	a

difficult	task	considering	the	fact	that	tables	are	essentially	row	centric	in	HTML.	While

you	 have	 <tr>	 elements	 to	 identify	 rows,	 there	 are	 no	 <tc>	 elements	 for	 identifying

columns.	 The	 <td>	 element	 identifies	 a	 cell.	 However,	 you	 can	 still	 style	 individual

columns	 using	 the	 <colgroup>	 or	 <col>	 elements.	 The	 <table>	 element	 can	 have	 the

<colgroup>	element,	which	includes	the	<col>	elements	for	columns	that	are	a	part	of	this

group	of	elements.	In	addition,	the	<col>	element	also	has	a	span	attribute	for	defining	the

columns	that	are	a	part	of	this	group.		A	sample	implementation	to	explain	how	this	works

is	given	below:

<colgroup>

<col	span=“2”	class=“vHeader”	/>

</colgroup>

The	CSS	style	rule	for	styling	this	group	of	columns	can	be	something	like	this	–

.vHeader	{

color:	red;

}

While	 the	 tables	 discussed	 till	 now	 are	 regular	 tables,	 HTML5	 also	 supports	 irregular

tables,	which	can	be	described	as	tables	that	have	a	different	number	of	columns	for	each

row.	The	rowspan	and	colspan	attributes	can	be	used	for	managing	the	layout	of	the	table.

	

CHAPTER	6:	JAVASCRIPT	AND	JQUERY

You	must	have	got	a	hang	of	the	power	of	JavaScript	already.	In	the	chapter	on	JavaScript,

you	 have	 already	 learnt	 how	 to	 create	 and	 adding	 JavaScript	 for	 making	 web	 pages

dynamic.	The	biggest	challenge	of	web	development	is	 to	design	webpage	elements	that

can	 run	 just	 as	well	 on	 any	 browser	 as	 different	 browsers	 provide	 support	 for	 different

elements,	making	it	difficult	to	find	a	common	ground.

This	chapter	 takes	you	a	step	further	 in	JavaScript	development	by	teaching	you	how	to

create	objects	and	use	them.	Besides	this,	it	also	introduces	you	to	the	concept	of	jQuery,

which	attempts	at	 creating	browser-compatible	 code.	Although,	 it	 cannot	promise	100%

browser	compatibility,	but	it	certainly	solves	the	day-to-day	issues	regarding	the	same.		

How	to	Create	JavaScript	Objects

Anything	 from	numbers	 to	 strings	 are	objects	 in	 JavaScript.	Therefore,	 it	 is	 essential	 to

know	how	to	create	and	deal	with	these	effectively.	The	simplest	way	to	create	objects	in

JavaScript	 is	 using	 the	object	 literal	 syntax.	The	 following	example	 illustrates	how	 it	 is

done.

var	customer1	=	{

yearOfBirth:	2000,

name:	‘Alex’,

getCustomerInfo:	function	()	{

return	‘Customer:	‘	+	this.name	+	‘	‘	+	this.yearOfBirth;

}

};

This	code	creates	an	object	customer1,	with	the	data	members,	name	and	yearOfBirth	and

the	member	function	getCustomerInformation.	It	is	also	important	to	note	the	use	of	this

keyword,	 which	 accesses	 the	 values	 correctly	 being	 used	 or	 referenced	 for	 the	 object

concerned.

Besides	 this,	 you	 can	 also	 create	 objects	 dynamically	 using	 the	 new	 keyword.	 The

methods	inherited	include:

constructor

isPrototypeOf

hasOwnProperty

toLocalString

propertyIsEnumerable

valueOf

toString

Once	 the	object	has	been	created,	properties	 can	be	 added	 to	 the	 same	 in	 the	 following

manner:		

function	getCustomer(myName,	myYearOfBirth)	{

var	newCust	=	new	Object();

newCust.name	=	myName;

newCust.yearOfBirth	=	myYearOfBirth;

newCust.getCustomerInfo	=	function	()	{

return	‘Customer:	‘	+	this.name	+	‘	‘	+	this.yearOfBirth;

};

return	newCust;

}

This	code	creates	an	object	newCust	dynamically.	Several	instances	of	this	can	be	created

in	the	following	manner:

var	cust1	=	getCustomer	(‘Alex’,	1978);

var	cust2	=	getCustomer	(‘David’,	1986);

Although,	 JavaScript	doesn’t	 support	 a	particular	keyword	 ‘class’,	 but	you	can	 simulate

classes	using	the	method	mentioned	above.

Namespaces

There	 is	 no	 specific	 keyword	 like	 namespace	 for	 implementing	 namespaces.	 However,

namespaces	can	be	implemented	using	the	concepts	of	classes	and	objects.	If	you	classify

variables	and	methods	into	objects	and	access	them	as	instances	of	these	objects,	then	you

are	placing	only	the	names	of	these	objects	in	the	global	namespace,	reducing	the	scope	of

the	variables	to	the	object	that	they	belong.

Implementing	Inheritance

You	can	define	‘is-a’	relationships	between	objects	 in	JavaScript	by	creating	objects	and

then	classifying	those	objects	on	the	basis	of	their	common	characteristics.	For	instance,	if

you	are	 implementing	an	object	 for	 employee	of	 a	 company.	You	can	create	objects	 for

specific	 types	 of	 objects	 like	 managerTechnical,	 managerGeneral,	 technicalStaff,

recruitmentStaff	and	officeStaff	and	then	classify	them	into	objects,	technicalStaff,	which

includes	the	objects	managerTechnical	and	technicalStaff,	and	adminStaff,	which	includes

the	managerGeneral,	recruitmentStaff	and	officeStaff.	In	a	similar	manner,	new	functions

can	also	be	defined.

Working	with	jQuery

JQuery	 is	 a	 library	 of	 browser-compatible	 helper	 functions,	which	 you	 can	 use	 in	 your

code	 to	 minimize	 the	 efforts	 required	 for	 typing,	 implementation	 and	 testing.	 These

functions	 are	 essentially	 written	 in	 JavaScript.	 Therefore,	 you	 can	 also	 call	 jQuery,	 a

JavaScript	library.

The	list	of	functionalities	that	are	available	in	jQuery	include:

Attributes,	which	are	a	group	of	methods	that	can	be	used	for	getting	and	setting

attributes	of	the	DOM	elements.

Ajax,	 which	 is	 a	 group	 of	 methods	 that	 provide	 support	 for	 synchronous	 and

asynchronous	server	calls.

Core	Methods	are	the	fundamental	jQuery	functions.

Callbacks	object	is	an	object	provided	for	management	of	callbacks.

Data	Methods	are	methods	that	facilitate	the	creation	of	association	between	DOM

elements	and	arbitrary	data.

CSS	Methods	 are	 methods	 that	 can	 be	 used	 for	 getting	 and	 setting	 CSS-related

properties.

Dimensions	 are	 methods	 that	 can	 be	 used	 for	 accessing	 and	 manipulating	 the

dimensions	of	DOM	elements.

Deferred	object	is	an	object	that	is	capable	of	registering	multiple	callbacks	while

maintaining	the	data	of	state	change	and	propagating	the	same	from	one	callback	to

the	next.

Forms	are	methods	that	are	used	for	controlling	form-related	controls.

Traversing,	this	is	a	group	of	methods	that	provide	support	for	traversing	the	DOM.

Effects	 are	methods	 that	 can	 be	 used	 for	 creating	 animations	 for	 your	webpage.

Events	are	methods	used	to	perform	event-based	execution.

Selectors	 are	methods	 that	 can	 be	 used	 for	 accessing	 elements	 of	DOM	 in	CSS

selectors.

Offset	are	methods	that	are	used	to	position	the	DOM	elements.

Utilities,	which	is	a	group	of	utility	methods

Before	getting	to	use	jQuery,	you	will	need	to	include	it	into	your	project.	Once	you	have

installed	it	and	you	are	ready	to	use	it	to	your	project,	the	next	step	is	to	learn	how	to	use

it.

First	things	first,	you	need	to	reference	the	jQuery	library	on	the	webpage	that	needs	to	use

it	in	the	following	manner:

<script	type=“text/javascript”	src=“Scripts/qunit.js”></script>

<script	src=“Scripts/jquery-1.8.2.js”></script>

The	next	thing	to	know	is	that	the	jQuery	code	that	you	are	hoping	to	use	in	your	HTML

page	lies	in	the	jQuery	namespace,	which	has	an	alias	$.	Therefore,	you	can	write	either

	jQuery.jFeature	or	$.jFeature	when	referring	to	a	feature	of	jQuery.

Before,	you	can	start	using	it	in	your	webpages,	you	will	also	need	to	change	the	default.js

file	as	follows:

function	initialize()	{

txtInput	=	$(‘#txtInput’);

txtResult	=	$(‘#txtResult’);

clear();

}

This	allows	you	to	use	jQuery	and	CSS	selectors	by	matching	them	using	their	IDs.

Also,	as	you	move	ahead	with	coding	using	jQuery,	remember	to	refresh	the	screen	using

Ctrl+F5	after	making	any	changes	as	the	browser	may	not	be	able	to	catch	the	JavaScript

modification	 right	 away.	Moreover,	use	 jQuery	objects	 as	much	as	possible	because	 the

cross-browser	compatibility	that	they	offer.

A	DOM	object	can	be	referenced	from	a	jQuery	wrapper	in	the	following	manner:

var	domElement	=	$(‘#txtInput’)[0];

Here	is	a	simple	code	that	checks	if	the	element	exists	before	referencing	it.		

var	domElement;

if($(‘#txtInput’).length	>	0){

domElement	=	$(‘#txtInput’)[0];

}

How	to	Create	a	jQuery	wrapper	for	Referencing	a	DOM	element

A	jQuery	wrapper	can	be	created	from	a	DOM	element	reference	in	the	following	manner:

var	myDoc	=	$(document);

var	inText	=	$(this).text();

The	 first	 statement	 assigns	 the	 wrapped	 object	 to	 the	 variable.	 On	 the	 other	 hand,	 the

second	statement	wraps	the	object	referenced	using	this.

How	to	Add	Event	Listeners

jQuery	 provides	 the	 .on	 method	 for	 subscribing	 to	 events.	 Besides	 this,	 you	 can

unsubscribe	using	the	.off	method.	These	methods	can	be	used	in	the	following	manner:

$(‘#btnSubmitInfo’).on(‘click’,	onSubmit);

$(‘#btnSubmitInfo’).off(‘click’,	onSubmit);

How	to	Trigger	Event	Handlers

JQuery	provides	 triggers	or	 the	method,	 triggerHandler,	 for	 triggering	event	handlers	or

handler	code	execution.	This	can	be	done	in	the	following	manner:

$(‘#btnSubmitInfo’).triggerHandler(‘click’);

Initialization	Code

You	will	often	be	faced	with	the	requirement	to	run	an	initialization	code	upon	the	loading

of	an	HTML	document.	You	can	do	this	using	jQuery	in	the	following	manner:

<script>

$(document).ready(function	()	{

initializationFunction();

});

</script>

This	 can	 be	 placed	 at	 the	 bottom	 of	 the	 HTML	 document.	 It	 will	 call	 the

initializationFunction.

CHAPTER	7:	FORMS

In	the	previous	chapters,	you	have	already	studied	how	HTML	documents	can	be	created

and	manipulated.	Taking	a	lead	from	them,	we	can	now	move	on	to	understanding	forms,

which	 is	 one	 of	 the	 most	 crucial	 and	 commonly	 used	 units	 of	 content	 in	 webpage

development.

Simply,	a	form	is	a	way	in	which	data	is	collected	and	sent	to	a	location	where	it	can	be

processed,	which	 is	a	 server	 in	most	cases.	However,	 since	we	are	yet	 to	discuss	 server

side	 	 scripting,	 we	 will	 focus	 on	 sending	 the	 data	 to	 an	 email	 address.	 However,	 it	 is

important	 to	 note	 that	 we	 do	 not	 recommend	 this	 practice	 and	 it	 is	 used	 only	 for

understanding	purposes.		

Web	Communications

Before	moving	to	the	working	of	forms,	it	is	important	to	know	some	basics	of	HTTP.	A

typical	web	communication	consists	of	the	following	activities:

1.	 When	a	user	browses	a	webpage,	a	request	for	access	to	a	web	server	resource	is

initiated	by	sending	a	GET	HTTP	request.

2.	 The	request	is	processed	by	the	server	and	sends	a	response	to	the	browser	using

HTTP	protocol.

3.	 The	browser	process	the	server	response	and	presents	it	to	the	user	in	the	form	of	a

‘form’.

4.	 The	user	enters	inputs	to	the	form	and	upon	hitting	the	submit	or	enter	button,	this

data	is	sent	to	the	server,	using	HTTP	protocol	again.				

5.	 This	data	is	again	processed	by	the	server	and	the	server	posts	its	response	to	the

browser,	which	is	displayed	on	the	webpage.		

Web	Servers

Originally,	web	servers	were	designed	to	receive	and	process	requests	and	send	the	results

back	 to	 the	 browser	 using	HTTP.	 Initially,	when	 the	web	 pages	were	 simple,	 such	web

servers	were	able	to	process	a	good	number	of	requests	per	unit	time.	There	were	no	states

involved	 as	 sending	 and	 receiving	 requests	 were	 as	 simple	 as	 opening	 a	 connection,

transferring	data	and	closing	the	connection.			

The	new	age	web	servers	are	much	more	equipped	that	these	simple	web	servers.	The	web

servers	of	today	implement	what	is	called	the	‘keep	alive’	features,	which	ensures	that	the

connection	remains	open	for	a	definite	period	of	time	in	which	subsequent	requests	by	the

same	browser	to	the	server	can	be	entertained.		

Web	Browsers

The	web	browser	 is	 a	desktop	application,	which	displays	web	pages	and	manages	user

interactions	between	 the	webpages	and	 the	server.	The	communication	between	 the	web

servers	 and	 pages	 is	 established	 using	 technologies	 like	 AJAX	 and	 Asynchronous

JavaScript.		

How	is	Data	Submitted	to	the	Web	Server

An	HTML	form	can	be	created	using	the	<form>	element	in	the	following	manner:

<form	method=“post”	action=“getCustomerInformation.aspx”	>

Enter	Customer	Number:

<input	type=“text”	name=“Number”	/>

<input	type=“submit”	value=“Get	Customer	Information”	/>

</form>

This	form	takes	in	the	customer	number	and	returns	a	page	that	displays	the	details	of	the

customer.

However,	it	is	important	to	note	that	not	all	elements	can	be	used	for	submitting	data	in	a

form.	The	allowed	elements	for	this	purpose	are:

<textarea>			-	It	takes	a	multi-line	input

<button>	-	It	is	a	clickable	button,	which	can	be	placed	on	any	content	or	image.

<select>	 -	 It	 is	 a	 drop-down	 list,	which	 allows	multiple	 selections.	 The	 selected

options	can	be	identified	using	jQuery:	$(‘option:selected’)

<input	type=’checkbox’>		-	It	is	a	checkbox,	which	has	a	value	attribute	used	for

setting	 as	well	 as	 reading	 the	 status	of	 the	 checkbox.	The	 jQuery	 for	 identifying

checked	checkboxes	is:	$(‘input[type=checkbox]:checked’)

<input	type=’button’>		-	It	is	a	clickable	button,	which	has	a	text	prompt.

<input	type=’datetime’>	-	It	is	a	control,	which	is	date	and	time	(UTC).

<input	type=’date’>	-	It	is	a	control,	which	is	date-only.

<input	 type=’email’>	 -	 It	 is	 a	 file-select	 field,	 which	 has	 a	 browse	 button	 for

uploading	a	file.

<input	type=’color’>	-	It	is	a	color	picker.

<input	type=’hidden’>	-	It	is	a	hidden	input	field.

<input	 type=’datetime-local’>	 -	 It	 is	 a	 control,	 which	 is	 date	 and	 time	 (any

timezone).

<input	type=’month’>	-	It	is	a	month-year	control.

<input	type=’image’>	-	It	is	an	image	submit	button.

<input	type=’password’>	-	It	is	a	password	field,	with	masked	characters.

<input	type=’number’>	-	It	is	a	numeric	field.

<input	type=’range’>	-	It	 is	a	control,	which	accepts	a	numeric	value	and	defines

the	allowed	range	of	values.

<input	type=’radio’>	-	It	is	an	option	button,	which	has	a	value	attribute	for	setting

and	 reading	 the	 status	of	 the	button.	The	 jQuery	used	 for	 identifying	 the	marked

radio	buttons	is	$(‘input[type=radio]:checked’)

<input	 type=’search’>	 -	 It	 is	 a	 text	 field,	 which	 is	 used	 for	 entering	 the	 search

string.

<input	 type=’reset’>	 -	 It	 is	 a	button	 that	 can	be	used	 for	 resetting	 the	 fields	of	a

form.

<input	type=’url’>	-	It	is	a	URL	field.

<input	type=’tel’>	-	It	is	a	telephone	number	field.

<input	type=’submit’>	-	It	is	a	submit	button.

<input	type=’time’>		-	It	is	a	control,	which	accepts	a	time	value.

<input	type=’text’>	-	It	is	a	single-line	text	field.

<input	type=’week’>		-	It	is	a	week-year	control.

The	<label>	Element

It	is	the	element	that	is	used	to	convey	the	meaning	of	an	element	to	the	user.	The	text	in

this	element	is	displayed	inside	the	textbox,	which	is	auto-removed	when	the	user	clicks

on	it.	You	can	also	specify	the	style	of	a	label.

Specifying	Parent	Forms

There	may	be	situations	where	the	submission	elements	of	a	form	may	not	lie	inside	the

same	construct.	Therefore,	gathering	data,	in	this	case,	can	be	quite	a	challenge.	In	order

to	address	this	issue,	HTML5	provides	an	attribute,	id,	which	can	be	set	for	multiple	form

elements.	This	shall	allow	data	collection	from	different	form	elements	in	one	go.

How	to	Trigger	Form	Submission

Upon	triggering,	all	the	data	collected	from	the	submission	elements	of	the	form	or	forms

of	the	same	id	is	sent	to	the	server	using	an	HTTP	method.	The	<input>	element	can	be

used	 for	 triggering	 form	 submission.	 Besides	 this,	 you	 can	 also	 use	 JavaScript	 for	 this

purpose.	 In	 order	 to	 implement	 this,	 you	 must	 give	 an	 id	 to	 the	 concerned	 form,

myFirstForm.	The	default.js	file,	which	is	linked	to	the	HTML	document,	must	contain	the

following	code:		

$(document).ready(function	()	{

$(‘#myFirstButton’).on(‘click’,	submitMyFirstForm);

});

function	submitMyFirstForm()	{

$(‘#myFirstForm’).submit();

}

If	the	method	attribute	of	the	form	is	not	given	any	value,	then	it	is	set	to	a	default	GET.

Moreover,	 the	action	attribute	will	also	have	a	default	value.	Therefore,	 the	button	click

will	reference	the	page	to	same	page.	However,	the	URL	will	now	include	a	QueryString,

which	is	a	combination	of	values	selection	or	entered	by	the	user.	For	instance,	if	the	form

requests	the	user	to	enter	Customer	ID	and	the	user	enters	1245,	then	the	QueryString	will

be:

customerID=1245		

This	QueryString	will	be	appended	to	the	URL	in	the	following	manner:

Mywebpage.asp?	customerID=1245		

It	 is	 also	 important	 to	 mention	 here	 that	 the	 QueryString	 is	 URI	 encoded.	 Therefore,

special	characters	are	represented	by	specific	values.	For	instance,	a	space	is	represented

as	‘+’	and	exclamation	mark	(!)	as	‘%21’.	Name-value	pair	is	represented	as	‘name=value’

and	name-value	pairs	are	separated	by	‘&’.		

How	to	Serialize	the	Form

You	 can	 serialize	 the	 form	 using	 the	 jQuery	 serialize	method.	 This	 can	 be	 done	 in	 the

following	manner:

var	myFormData	=	$(‘#myFirstForm’).serialize();

You	can	decode	the	URI-encoded	string	using	the	following:

var	data	=	decodeURIComponent(myFormData);

Using	Autofocus	Attribute

By	default,	 the	 focus	 is	not	set	 to	any	element	of	 the	 form.	However,	you	can	set	 focus

using	the	focus	method,	which	can	be	implemented	in	the	following	manner:

$(‘input[name=“firstName”]’).focus();

However,	you	can	also	set	autofocus	in	the	following	manner:

<input	type=“text”	name=“firstName”	autofocus=“autofocus”/>

How	to	Use	Data	Submission	Constraints

A	form	can	send	data	only	if	it	satisfies	the	following	constraints:

Name	attribute	must	be	set.

You	must	have	set	the	value	of	form	submission	element.

The	 <form>	 element	 must	 have	 its	 form	 submission	 element	 defined	 and	 form

submission	elements	should	not	be	disabled.

If	multiple	submit	buttons	have	in	implemented,	the	values	will	be	submitted	only

on	the	click	of	the	activated	submit	button.

Select	the	check	boxes

Select	the	Option	buttons

The	<option>	elements	must	have	set	<option>	elements.

If	there	is	a	file	selection	field,	one	of	the	fields	must	be	selected.

The	declare	attribute	of	the	object	elements	must	be	set

Always	remember	that	the	reset	buttons	don’t	send	any	data	and	the	form	need	not	have	an

ID	for	its	data	to	be	sent.

How	to	Use	POST	or	GET

There	are	two	HTTP	methods	available	for	submitting	data	to	the	server.	These	methods

are	 GET	 and	 POST.	 In	 the	 former	 case,	 the	 URL	 is	 appended	 with	 the	 QueryString.

However,	in	case	of	the	latter,	the	information	is	sent	within	the	message	body.				

Form	Validation

It	is	beneficial	to	understand	that	the	root	of	all	security	issues	in	web	application	is	user

data.	The	moment	you	decide	to	open	your	application	to	user	data	and	interactions,	you

are	making	your	application	vulnerable	to	security	threats.	Therefore,	you	need	to	validate

any	 data	 that	 you	 receive	 before	 processing	 it	 to	 prevent	 any	 issues	 from	 cropping	 up.

Validation	can	be	provided	at	the	browser	or	server	end.	However,	server	side	validation	is

recommended	as	browser-level	validation	can	be	easily	manipulated.		

The	simplest	form	of	validation	that	you	can	implement	is	using	the	required	attribute	in

the	<select>	element.	You	can	set	this	attribute	in	the	following	manner:

<select	name=“dateOfBirth”	required=“required”>

The	 validation	 error	 generated	 is	 browser	 dependent	 and	 each	 browser	 has	 a	 different

method	of	communication	to	the	user	that	a	field	is	required	for	submission.

Besides	 this,	 the	placeholder	attribute	 is	 also	available,	which	keep	 the	prompt	 fixed	on

the	unfilled	field	until	a	value	for	the	same	is	provided	by	the	user.	It	can	be	implemented

in	the	following	manner:

<input	type=“text”	name=“Date	of	birth”	required=“required”	placeholder=“enter	the	date

of	birth”/>

The	 addition	 of	 time,	 date	 and	 type	 based	 inputs	 in	 HTML5	 makes	 validation	 much

simpler	 as	 they	 can	 directly	 be	 matched	 to	 see	 if	 they	 have	 valid	 input	 values	 or	 not.

Besides	this,	email,	numbers	and	ranges	can	also	be	easily	validated.

HTML5	performs	validation	 and	matches	 it	with	 the	 :valid	or	 :invalid	pseudoclasses.	 If

the	validation	is	successful,	 the	value	is	matched	to	:valid,	else	 it	 is	matched	to	:invalid.

However,	if	a	value	is	not	‘required’,	it	is	matched	to	:optional	pseudoclass.

CHAPTER	8:		WEB	SERVICES

All	 the	 chapters	 discussed	 till	 now	 dealt	 with	 browser	 level	 coding	 and	 scripting.

However,	now	it	is	time	to	move	on	to	server	side	scripting.	This	chapter	focuses	on	the

use	of	JavaScript	at	the	server	level,	which	is	possible	with	the	help	of	Node.js,	and	how

you	can	work	around	with	web	services.			

Basics	of	Node.js

Node.js	 is	 a	 platform,	which	 is	made	 on	Google	Chrome,	 and	 can	 be	 used	 for	 creating

scalable	 and	 flexible	 applications.	 It	 allows	you	 to	write	 JavaScript	 code	 for	 the	 server.

However,	before	you	can	begin,	you	must	download	and	install	Node.js	on	your	system.

Writing	a	Basic	Code

The	first	step	is	to	open	any	text	editor	and	create	a	file	named	myFile.js.	In	the	file,	write

the	code:

var	http	=	require(‘http’);

http.createServer(function	(request,	response)	{

response.writeHead(200,	{‘Content-Type’:	‘text/plain’});

response.end(‘Hello	World!\n’);

console.log(‘Handled	request’);

}).listen(8080,	‘localhost’);

console.log(‘Server	running	at	http://localhost:8080/’);

The	 first	 line	 loads	 the	 http	module	 while	 the	 second	 line	 creates	 a	 server	 object.	 The

function	 createServer	 takes	 in	 two	 parameters,	 request	 and	 response.	 All	 the	 website

handling	 is	 done	 from	 these	 functions.	 In	 this	 example,	 the	 response	 function	 ends	 by

writing	‘Hello	World’	on	the	screen.		

The	 function	 createServer,	 returns	 a	 server	 object,	 which	 call	 the	 function,	 listen.	 This

function	listens	at	the	port	8080	and	the	IP	address	of	the	host	is	set	to	127.0.0.1.	therefore,

if	there	is	a	network	adapter	installed	on	your	system,	your	web	server	will	start	listening

to	web	requests	rights	away.	The	last	line	prints	a	line	on	the	screen	to	let	the	user	know

that	the	server	is	running	and	listening	to	requests.		

Once	you	have	created	the	file	and	saved	the	contents	of	the	file	as	mentioned	above,	you

must	open	the	command	prompt	and	write	the	command:

Node	myFile.js

Now,	keeping	the	command	prompt	active,	you	must	open	the	web	browser	and	type	the

address:	http://localhost:8080/

As	soon	as	the	request	is	sent	and	a	response	is	received,	the	same	is	communicated	to	the

user	 using	 the	 console	window.	 If	 you	 have	 been	 able	 to	 do	 this	 successfully,	 then	 you

have	just	created	your	first	node.js	website.	 If	you	wish	to	stop	the	running	of	 the	code,

you	can	just	press	Ctrl+C.

Now	that	you	know	how	requests	are	received,	it	is	time	to	look	at	how	these	requests	are

processed	and	responses	are	generated.	You	may	need	to	use	 the	url	module	for	parsing

the	QueryString.

The	 code	 mentioned	 below	 shows	 how	 you	 can	 parse	 the	 URL	 string	 and	 generate	 a

response	in	accordance	with	it.			

var	http	=	require(‘http’);

var	url	=	require(‘url’);

http.createServer(function	(request,	response)	{

var	url_parts	=	url.parse(request.url,	true);

response.writeHead(200,	{‘Content-Type’:	‘text/plain’});

response.end(‘Hey	‘	+	url_parts.query.name	+	‘.\n’);

console.log(‘Handled	request	from	‘	+	url_parts.query.name);

}).listen(8080,	‘localhost’);

console.log(‘Server	is	running	at:	http://localhost:8080/’);

You	can	test	the	running	of	this	code	in	the	similar	manner	as	the	previous	code.

How	to	Create	Node.js	Module

You	can	create	modules	by	writing	code	in	the	form	of	functions	and	then,	calling	these

modules	from	the	main	code.

var	myHttp	=	require(‘http’);

var	myUrl	=	require(‘url’);

function	start(){

http.createServer(function	(request,	response)	{

var	url_parts	=	url.parse(request.url,	true);

response.writeHead(200,	{‘Content-Type’:	‘text/plain’});

response.end(‘Hello	‘	+	url_parts.query.name	+	‘!\n’);

console.log(‘Handled	request	from	‘	+	url_parts.query.name);

}).listen(8080,	‘localhost’);

console.log(‘Server	running	at	http://localhost:8080/’);

}

exports.start	=	start;

when	you	save	this	piece	of	code	in	a	file,	a	module	is	created.	This	module	can	be	used

by	 other	 functions	 using	 the	 require	 function.	 For	 instance,	 if	 the	 file	 is	 saved	 as

sample1.js,	then	the	start()	can	be	used	in	another	function	using:

var	samplex	=	require(‘./sample1.js’);

sample1.start();

How	to	Create	a	Node.js	package

A	collection	of	modules	 is	 referred	 to	 as	 an	 application.	Once	you	have	published	your

package,	 it	 can	 be	 installed	 and	 used.	 Consider	 for	 example,	 a	 package	 of	 different

mathematical	modules.

The	root	folder	must	have	the	following:

README.md

\packName

\lib

main.js

\bin

mod1.js

mod2.js

Creating	Aggregate	Module

You	may	wish	to	make	only	one	object	for	the	user	to	access.	The	user	should	be	able	to

access	all	 the	modules	of	 the	package	 through	this	object.	 In	order	 to	accomplish	 this,	a

main.js	 module	 must	 be	 created	 in	 the	 bin	 folder	 that	 must	 define	 the	 modules	 to	 be

included	in	the	module.exports.		

How	to	Create	README.md	File

The	README.md	file	is	a	help	file	that	can	be	used	by	the	developer	as	a	startup	guide

for	using	your	package.	The	extension	of	this	file	is	.md,	which	is	a	short	form	for	mark-

down.	This	format	gives	readability	to	the	text	written	in	this	file.

A	sample	file	of	this	type	is	given	below:

samplePackage	package

====================

In	samplePackage,	the	following	functions	are	available:

-	**add**	Performs	addition	of	two	numbers	and	presents	the	result.

-	**sub**	Performs	subtraction	of	one	number	from	the	other	and	presents	the	result.

How	to	Create	package.json	File

This	 file	 contains	 the	metadata	 for	 the	 package	 and	 can	 be	 created	manually	 using	 the

command:

npm	init

This	command	creates	the	file,	which	can	later	be	edited.	A	sample	file	is	given	below:

{

“name”:	“sampleFile”,

“version”:	“0.0.0”,

“description”:	“This	is	a	sample	file	“,

“main”:	“bin/main.js”,

“scripts”:	{

“test”:	“echo	"This	is	a	test	file"	&&	exit	1”

},

“repository”:	””,

“keywords”:	[

“sample”,

“example”,

“add”,

“sub”

],

“author”:	“XYZ”,

“license”:	“ABC”

}

In	addition	to	test	scripts,	you	can	also	give	git	scripts,	which	are	the	best	available	source

control	managers.

How	to	Publish	a	Package

As	mentioned	previously,	a	package	can	be	defined	in	terms	of	a	folder	structure.	When

you	 publish	 your	 package,	 you	make	 it	 accessible	 to	 all	 users.	 In	 order	 to	 perform	 this

operation,	you	must	use	the	npm	command,	which	is	also	the	command	used	for	searching

and	installing	packages.	However,	you	shall	be	required	to	create	an	account	for	yourself

before	publishing	any	of	your	packages	using	the	command:	npm	adduser.	After	you	enter

the	required	information,	your	account	is	created.	However,	what	this	also	means	us	that

there	 is	 no	 validation	 required.	 Therefore,	 anyone	 can	 add	 code	 to	 the	 repository.

Therefore,	 you	 should	 be	 careful	 while	 downloading	 and	 installing	 packages	 from	 the

registry.

In	order	to	publish	a	package,	you	simply	need	to	go	to	the	root	directory	of	the	package

and	enter	the	command	npm	publish	in	the	command	prompt.

How	to	Install	and	Use	the	Package

A	package	that	is	published	can	be	downloaded	and	installed	by	any	user.	You	simply	need

to	go	 to	 the	 folder	and	give	 the	command,	npm	 install	 samplePackage.	This	 installs	 the

package	 locally.	On	 the	other	hand,	 if	you	wish	 to	 install	 the	package	globally,	you	can

give	the	command,	npm	install	–g	samplePackage.	For	a	global	installation,	you	will	need

to	create	a	link	from	each	application	to	the	global	install	using	the	command,		npm	link

samplePackage.

The	route	to	a	global	install	is	a	junction.	You	can	get	into	the	node_modules	folder	and

back	using	the	cd	command.	Once	you	are	inside	the	folder,	you	can	give	the	command:

npm	 install	 contoso,	 to	 initiate	 an	 install.	 You	 can	 now	 write	 some	 code	 that	 uses	 the

package.	A	sample	is	given	below:

var	samplePackage	=	require(‘samplePackage’);

var	finalResult	=	0;

console.log();

finalResult	=	samplePackage.add	(5,10);

console.log(‘add	(5,10)	=	‘	+	finalResult);

console.log();

result	=	samplePackage.sub	(50,10);

console.log(‘sub(50,10)	=	‘	+	finalResult);

console.log();

console.log(‘done’);

This	code	tests	the	modules	of	the	package.	You	can	execute	the	code	using:

node	main

The	package	can	be	uninstalled	locally	using:

npm	uninstall	samplePackage

However,	if	you	wish	to	uninstall	the	package	globally,	you	can	do	it	using

npm	uninstall	-g	samplePackage

How	to	Use	Express

1.	 The	first	step	is	to	install	Node.js	and	create	a	sample	for	keeping	all	.js	files	and

projects.	Besides	 this,	 you	must	 also	 install	Express,	which	 is	 a	web	 application

framework	for	Node.js	development.		

2.	 You	can	create	a	package	using	the	following	set	of	commands	and	instructions.

1.													npm	init

2.													You	can	create	myPackage.js	file	containing	the	following	contents:

{

“name”:	“Sample”,

“version”:	“0.0.0”,

“description”:	“This	is	a	sample	website.”,

“main”:	“main.js”,

“scripts”:	{

“test”:	“echo	"Error:	Test	not	specified"	&&	exit	1”

},

“repository”:	””,

“author”:	“XYZ”,

“license”:	“BSD”

}

“private”:	true,

“dependencies”:	{

“express”:	“3.0.0”

}

}

In	 order	 to	 use	 the	 file	 in	 Express,	 dependencies	 have	 to	 be	 added.

Moreover,	if	you	do	not	define	it	to	be	private,	you	may	get	an	error	from

the	firewall	of	your	computer	as	it	tries	to	load	the	page.

3.	 Give	the	install	command:	npm	install

4.													You	can	use	the	command,	npm	ls,	to	see	if	the	package	is	present	in	the	registry.

4.													You	can	create	a	simple	application	using	the	following	set	of	instructions:

0.																			Create	a	file	myApp.js	and	add	the	following	to	the	file:

var	express	=	require(‘express’);

var	app	=	express();

2.	 You	can	define	the	route	using	the	myApp.Method()	syntax.

app.get(‘/’,	function(request,	response){

response.send(‘Hey	World!’);

});

The	 code	 mentioned	 above	 will	 send	 the	 response	 ‘Hey	World!’	 as	 and

when	a	request	is	received.

3.	 The	last	section	of	code	that	must	be	added	is	for	listening	to	the	request.

This	code	is	as	follows:

var	port	=	8080;

app.listen(port);

console.log(‘Listening	on	port:	‘	+	port);

4.	 Once	 the	file	 is	complete,	you	can	save	 it	and	run	 it	using	 the	command,

node	 app.	 So,	 now	 if	 you	 open	 the	 browser	 and	 enter	 the	 address

http://localhost:8080/,	you	will	get	the	response	Hey	World!.

5.		 	 	 	 	 	 	 	 	 	 	 	You	can	add	webpages	 to	applications	by	replacing	 the	app.get	statement	with

app.use(express.static(__dirname	+	‘/public’));	This	will	allow	you	to	use	the	same	code

for	a	number	of	webpages.	Sample	implementation	of	this	concept	is	given	below:

<!DOCTYPE	html>

<html	xmlns=“http://www.w3.org/1999/xhtml”>

<head>

<title></title>

</head>

<body>

<form	method=“get”	action=”/submitHey”>

Enter	First	Name:	<input	type=“text”	name=“firstName”	/>

<input	type=“submit”	value=“Submit”	/>

</form>

</body>

http://localhost:8080/

</html>

Please	 note	 that	 the	 action	 attribute	 is	 set	 to	 /submitHey.	 In	 other	 words,	 this

resource	is	called	at	the	server	for	handling	the	data	that	is	passed	to	it	using	the

QueryString.	The	myApp.js	file	should	contain	the	following:

var	express	=	require(‘express’);

var	app	=	express();

app.use(express.static(__dirname	+	‘/public’));

app.get(‘/SubmitHey’,	function	(request,	response)	{

response.writeHead(200,	{	‘Content-Type’:	‘text/html’	});

response.write(‘Hey	‘	+	request.query.userName	+	‘!
’);

response.end(‘Enjoy.’);

console.log(‘Handled	request	from	‘	+	request.query.userName);

});

var	port	=	8080;

app.listen(port);

console.log(‘Listening	on	port:	‘	+	port);

The	app	can	be	run	in	the	manner	mentioned	above.

5.		 	 	 	 	 	 	 	 	 	 	 	The	formidable	package	can	be	used	for	posting	back	data.	While	 the	previous

method	used	the	GET	method,	this	method	uses	the	POST	method.

1.													To	illustrate	how	it	works,	create	an	HTML	as	follows:

<!DOCTYPE	html>

<html	xmlns=“http://www.w3.org/1999/xhtml”>

<head>

<title></title>

</head>

<body>

<form	method=”post”	action=”/SubmitHeyPost”>

Enter	Name:	<input	type=“text”	name=“firstName”	/>

<input	type=“submit”	value=“Submit”	/>

</form>

</body>

</html>

2.	 Now,	in	the	command	prompt,	you	need	to	a	give	a	command	for	retrieving

the	formidable	package,	which	is:

npm	info	formidable

3.	 You	can	also	modify	the	package.jason	file	in	the	following	manner:

{

“name”:	“HelloExpress”,

“version”:	“0.0.0”,

“description”:	“Sample	Website”,

“main”:	“index.js”,

“scripts”:	{

“test”:	“echo	"Error:	test	not	specified"	&&	exit	1”

},

“repository”:	””,

“author”:	“XYZ”,

“license”:	“BSD”,

“private”:	true,

“dependencies”:	{

“formidable”:	“1.x”,

“express”:	“3.0.0”

}

}

4.	 Now	 you	 can	 install	 the	 formidable	 package	 by	 typing	 the	 following

command	into	the	command	prompt:

npm	install

This	command	installs	the	package	locally.	Therefore,	you	will	need	to	add

a	line	to	myApp.js	that	allows	the	file	to	reference	the	package:

var	formidable	=	require(‘formidable’);

5.	 A	sample	myApp.js	file	shall	look	like	this:

var	express	=	require(‘express’);

var	app	=	express();

var	formidable	=	require(‘formidable’);

app.use(‘/forms’,	express.static(__dirname	+	‘/public’));

app.post(‘/SubmitHeyPost’,	function	(request,	response)	{

if	(request.method.toLowerCase()	==	‘post’)	{

var	form	=	new	formidable.IncomingForm();

form.parse(request,	function	(err,	fields)	{

response.writeHead(200,	{	‘Content-Type’:	‘text/html’	});

response.write(‘Hey	‘	+	fields.userName	+	‘!
’);

response.end(‘Enjoy	this	POST.’);

console.log(‘Handled	request	from	‘	+	fields.userName);

});

}

});

app.get(‘/SubmitHey’,	function	(request,	response)	{

response.writeHead(200,	{	‘Content-Type’:	‘text/html’	});

response.write(‘Hey	‘	+	request.query.userName	+	‘!
’);

response.end(‘Enjoy.	‘);

console.log(‘Handled	request	from	‘	+	request.query.userName);

});

var	port	=	8080;

app.listen(port);

console.log(‘Listening	on:	‘	+	port	+	‘port’);

6.	 You	 can	 now	 run	 the	 application	 in	 a	 similar	manner	 as	 you	 did	 for	 the

previous	example.

Working	with	web	services

One	 of	 the	 biggest	 drawbacks	 of	 a	 typical	 website	 scenario	 is	 that	 the	 HTML	 page	 is

repainted	even	if	the	new	page	is	the	same	as	the	previous	page.	This	causes	you	to	lose

bandwidth	and	resources.	This	drawback	can	be	addressed	using	web	services,	which	can

be	 used	 for	 sending	 and	 receiving	 data,	 with	 the	 benefit	 that	 the	 HTML	 page	 is	 not

repainted.	The	technology	used	for	sending	requests	is	AJAX	or	Asynchronous	JavaScript

and	 XML.	 This	 technology	 allow	 you	 to	 perform	 the	 data	 sending	 operation

asynchronously.

Before	moving	any	 further,	 it	 is	 important	 to	know	 the	basics	of	web	 services	 and	how

they	can	be	used.	A	client	needs	 to	communicate	with	 the	web	server	on	a	regular	basis

and	 this	 communication	 is	 facilitated	by	 the	web	 service.	 In	 this	 case,	 the	 client	 can	be

anyone	 from	 a	machine	 using	 the	web	 service	 to	 the	web	 service	 itself.	 Therefore,	 the

client,	 regardless	what	 it	 is,	 needs	 to	 create	 and	 send	 a	 request	 to	 the	web	 service,	 and

receive	and	parse	the	responses.		

You	must	have	heard	of	the	term	mashups,		which	is	a	term	used	to	describe	applications

that	 pierce	 together	 web	 services.	 Two	 main	 classes	 of	 web	 services	 exist,	 which	 are

arbitrary	 web	 services	 and	 REST	 or	 representational	 state	 transfer.	 While	 the	 set	 of

operations	 are	 arbitrary	 in	 the	 first	 case,	 there	 exists	 a	 uniform	 operations	 set	 in	 the

second.

Representational	State	Transfer	(REST)

This	 framework	 uses	 the	 standard	 HTTP	 operations,	 which	 are	 mapped	 to	 its	 create,

delete,	update	and	retrieve	operations.	Moreover,	REST	does	not	focus	on	interacting	with

messages.	Instead,	its	interactions	are	focused	towards	stateless	resources.	This	is	perhaps

the	reason	why	REST	concept	is	known	for	creation	of	clean	URLs.	Examples	of	REST

URLs	 include	 http://localhost:8080/Customers/2,	 which	 deletes	 a	 customer	 and

http://localhost:8080/Customers/2

	 http://localhost:8080/Vehicles?VIN=XYZ12,	 which	 is	 used	 to	 retrieve	 the	 information

about	a	vehicle	for	which	a	parameter	is	passed	using	GET	method.		

Some	 firewalls	 may	 not	 allow	 the	 use	 of	 POST	 and	 GET	 methods.	 Therefore,	 it	 is

advisable	to	use	‘verb’	in	the	QueryString.	An	example	of	how	the	URL	will	look	like	is:

http://localhost:8080/Vehicles?verb=DELETE&VIN=XYZ987

The	 HTTP	 protocol	 also	 allows	 you	 to	 implement	 security	 using	 the	 HTTPS	 version.

REST	 provides	 several	 benefits	 like	 easy	 connection,	 faster	 operation	 and	 lesser

consumption	of	resources.	However,	many	developers	prefer	to	use	JSON	or		(JavaScript

Object	Notation)	because	it	is	compact	in	size.	Besides	this,	REST	only	supports	GET	and

POST,	which	restricts	its	capabilities,	Therefore,	some	developers	switch	to	RESTFUL.

Arbitrary	Web	Services

This	 type	 of	web	 services	 is	 also	 referred	 to	 as	 big	web	 services.	An	 example	 of	 such

services	is	WCF	or	Windows	Communication	Foundation.	Arbitrary	web	services	expand

their	realm	of	operations	by	not	mapping	their	operations	to	only	aspects	of	the	protocol.

As	a	result,	they	provide	more	functionality,	which	include	many	security	mechanisms	and

message	routing.		

This	 type	 of	web	 services	 possess	 a	 typical	 interface	 format,	which	 can	 be	 used	 by	 the

client	 for	 reading	 and	 parsing	 information.	As	 a	 result,	 the	 client	 can	make	 calls	 to	 the

service	 immediately.	A	 common	API	 format	 is	 the	Web	Services	Description	Language

(WSDL).	In	case	of	arbitrary	web	services,	 the	client	must	assemble	its	request	with	the

help	of	a	SOAP	(Simple	Object	Access	Protocol)	message.	This	web	service	does	not	use

the	HTTP	protocol	and	instead	uses	the	TCP.			

How	to	Create	RESTful	Web	Service	using	Node.js

In	the	example	mentioned	previously,	the	samplePackage	can	be	exposed	as	web	service.

http://localhost:8080/Vehicles?VIN=XYZ12

The	GET	method	can	be	used	on	the	package	and	the	operation	is	passed	as	a	parameter.	A

good	RESTful	implementation	of	this	package	can	look	something	like	this:

http://localhost:8080/samplePackage?operation=add&x=1&y=5

How	to	Use	AJAX	to	Call	Web	Service

Web	 services	 can	 be	 called	 asynchronously	 using	 AJAX,	 which	 is	 in	 actuality	 a

JavaScript.	 Instead	 of	making	 a	 call	 to	 the	 server	 and	 repainting	 the	HTML	 document,

AJAX	 just	 calls	 back	 to	 the	 server.	 In	 this	 case,	 the	 screen	 is	 not	 repainted.	 A	 sample

implementation	is	given	below:

A	MyPage.html	can	be	created	with	the	following	code:

<!DOCTYPE	html>

<html	xmlns=“http://www.w3.org/1999/xhtml”>

<head>

<title></title>

<script	type=“text/javascript”	src=”/scripts/jquery-1.8.2.min.js”></script>

<script	type=“text/javascript”	src=”/scripts/default.js”></script>

</head>

<body>

<form	id=“myForm”>

Enter	Value	of	X:<input	type=“text”	id=“x”	/>

Enter	Value	of	Y:<input	type=“text”	id=“y”	/>

Result	of	Operation:	

<button	id=“btnAdd”	type=“button”>Add	the	Numbers</button>

</form>

</body>

</html>

The	 default.js	 file	 must	 be	 modified	 to	 contain	 the	 code	 required	 for	 processing	 these

functions.	Be	sure	to	check	the	version	of	jQuery	and	whether	it	matches	the	version	name

that	you	have	mentioned	in	your	default.js	file.	The	<form>	element	used	here	is	only	a

means	of	arranging	the	format	of	data	and	the	data	is	not	actually	sent	via	the	form	to	the

server.	The	JavaScript	and	jQuery	access	the	data	entered	and	perform	the	AJAX	call.		

How	to	Use	XMLHttpRequest

The	object	that	actually	makes	an	AJAX	call	is	XMLHttpRequest,	which	can	be	used	for

sending/receiving	XML	and	other	types	of	data.	This	object	can	be	used	in	the	following

manner:

var	xmlhttp=new	XMLHttpRequest();

xmlhttp.open(“GET”,”/add?x=50&y=1”,false);

xmlhttp.send();

var	xmlDoc=xmlhttp.responseXML;

The	first	line	creates	the	object	while	the	second	line	sets	up	the	use	of	GET	method	with

the	 specified	 QueryString	 and	 the	 use	 of	 ‘false’	 indicates	 that	 the	 operation	 must	 be

performed	 asynchronously.	 The	 next	 line	 sends	 the	 request	 and	 the	 last	 line	 sets	 the

response	to	a	variable,	which	can	be	later	read	and	parsed	for	processing	the	response.

However,	the	output	generated	is	JSON	and	not	XML,	therefore,	the	default.js	file	must	be

changed	to:

$(document).ready(function	()	{

$(‘#btnAdd’).on(‘click’,	addTwoNum)

});

function	addTwoNum()	{

var	x	=	document.getElementById(‘x’).value;

var	y	=	document.getElementById(‘y’).value;

var	result	=	document.getElementById(‘finalResult’);

var	xmlhttp	=	new	XMLHttpRequest();

xmlhttp.open(“GET”,	“/add?x=”	+	x	+	“&y=”	+	y	,	false);

xmlhttp.send();

var	jsonObject	=	JSON.parse(xmlhttp.response);

result.innerHTML	=	jsonObject.result;

}

The	code	extracts	the	x	and	y	values	from	the	<input>	element	for	the	same.	After	this,	the

XMLHttpObject	is	created	and	the	open	method	is	called	using	the	QueryString.	After	the

execution	of	the	send	function,	the	response	string	is	parsed.	In	order	to	test	the	page,	you

can	give	the	command:

node	app

This	command	starts	the	web	service,	after	which	you	can	open	the	browser	window	with

the	link:

http://localhost:8080/SamplePage.html

this	 code	 is	 operational	 now.	However,	 you	may	wish	 to	 perform	 the	AJAX	 call	 in	 an

asynchronous	manner.	For	 this,	you	must	 locate	 the	open	method	and	change	 the	‘false’

parameter	 to	 ‘true’.	 Besides	 this,	 you	 will	 also	 be	 required	 to	 subscribe	 to

onreadystateschange	 for	 managing	 asynchronous	 call.	 This	 can	 be	 implemented	 in	 the

following	manner:

function	addTwoNum	()	{

var	a	=	document.getElementById(‘a’).value;

var	b	=	document.getElementById(‘b’).value;

var	result	=	document.getElementById(‘finalResult’);

var	xmlhttp	=	new	XMLHttpRequest();

xmlhttp.onreadystatechange	=	function	()	{

if	(xmlhttp.readyState	==	4	&&	xmlhttp.status	==	200)	{

var	jsonObject	=	JSON.parse(xmlhttp.response);

result.innerHTML	=	jsonObject.result;

}

}

xmlhttp.open(“GET”,	“/add?a=”	+	a	+	“&b=”	+	b	,	true);

xmlhttp.send();

}

The	codes	for	states	are	as	follows:

0	-	Uninitialized

1	-	Loading

2	-	Loaded

3	-	Interactive

4	-	Completed

If	progress	events	are	provided	by	the	server,	you	can	subscribe	to	the	browser’s	progress

event.	Then,	an	event	listener	can	be	added	to	initiate	the	execution	of	the	code	when	the

event	is	triggered.	This	can	be	done	in	the	following	manner:

	

	

Click	Here	To	Read	More…

http://www.amazon.com/gp/product/B00YG4N3LE/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B0112BRQWK&linkCode=as2&tag=wwwglobaliz07-20&linkId=LPVGA5QOY65FX5KK

	Java - Basic Syntax
	First Java Program:
	Basic Syntax
	Java Keywords:
	Comments in Java
	Using Blank Lines:
	Inheritance:
	Interfaces:

	Objects and Classes
	Basic Data Types
	Variable Types
	Operators in Java
	The Arithmetic Operators
	The Relational Operators
	The Bitwise Operators
	The Logical Operators
	The Assignment Operators
	Misc Operators
	Conditional Operator (?):
	instanceof Operator:
	Precedence of Java Operators

	Loops in Java
	The while Loop:

	Decision Making
	Strings in Java
	String Methods

	Arrays
	Regular Expressions
	Regular Expression Syntax
	Methods of the Matcher Class
	Index Methods:
	PatternSyntaxException Class Methods:

	Methods
	File Handling
	Byte Streams
	FileOutputStream:

	Exception Handling
	Throws Keyword
	Finally Keyword
	Creating An Exception
	Common Exceptions

	Interfaces and Packages
	Java Applets

