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Introduction
Why	I	hated	calculus	but	love	statistics

I	 have	 always	 had	 an	 uncomfortable	 relationship	 with	 math.	 I	 don’t	 like
numbers	 for	 the	 sake	 of	 numbers.	 I	 am	 not	 impressed	 by	 fancy	 formulas	 that
have	 no	 real-world	 application.	 I	 particularly	 disliked	 high	 school	 calculus	 for
the	simple	reason	that	no	one	ever	bothered	to	tell	me	why	I	needed	to	learn	it.
What	is	the	area	beneath	a	parabola?	Who	cares?
In	fact,	one	of	the	great	moments	of	my	life	occurred	during	my	senior	year	of

high	school,	at	the	end	of	the	first	semester	of	Advanced	Placement	Calculus.	I
was	working	away	on	the	final	exam,	admittedly	less	prepared	for	the	exam	than
I	 ought	 to	 have	 been.	 (I	 had	 been	 accepted	 to	 my	 first-choice	 college	 a	 few
weeks	 earlier,	 which	 had	 drained	 away	 what	 little	 motivation	 I	 had	 for	 the
course.)	 As	 I	 stared	 at	 the	 final	 exam	 questions,	 they	 looked	 completely
unfamiliar.	 I	 don’t	mean	 that	 I	 was	 having	 trouble	 answering	 the	 questions.	 I
mean	 that	 I	 didn’t	 even	 recognize	what	was	being	 asked.	 I	was	no	 stranger	 to
being	 unprepared	 for	 exams,	 but,	 to	 paraphrase	 Donald	 Rumsfeld,	 I	 usually
knew	 what	 I	 didn’t	 know.	 This	 exam	 looked	 even	 more	 Greek	 than	 usual.	 I
flipped	 through	 the	 pages	 of	 the	 exam	 for	 a	 while	 and	 then	 more	 or	 less
surrendered.	I	walked	to	the	front	of	the	classroom,	where	my	calculus	teacher,
whom	we’ll	call	Carol	Smith,	was	proctoring	the	exam.	“Mrs.	Smith,”	I	said,	“I
don’t	recognize	a	lot	of	the	stuff	on	the	test.”
Suffice	it	to	say	that	Mrs.	Smith	did	not	like	me	a	whole	lot	more	than	I	liked

her.	Yes,	 I	can	now	admit	 that	 I	 sometimes	used	my	 limited	powers	as	student
association	president	to	schedule	all-school	assemblies	just	so	that	Mrs.	Smith’s
calculus	 class	 would	 be	 canceled.	 Yes,	 my	 friends	 and	 I	 did	 have	 flowers
delivered	 to	Mrs.	 Smith	 during	 class	 from	 “a	 secret	 admirer”	 just	 so	 that	 we
could	 chortle	 away	 in	 the	 back	 of	 the	 room	 as	 she	 looked	 around	 in
embarrassment.	And	yes,	I	did	stop	doing	any	homework	at	all	once	I	got	in	to
college.



So	when	I	walked	up	to	Mrs.	Smith	in	the	middle	of	the	exam	and	said	that
the	material	did	not	look	familiar,	she	was,	well,	unsympathetic.	“Charles,”	she
said	 loudly,	ostensibly	 to	me	but	 facing	 the	rows	of	desks	 to	make	certain	 that
the	whole	 class	 could	 hear,	 “if	 you	had	 studied,	 the	material	would	 look	 a	 lot
more	familiar.”	This	was	a	compelling	point.
So	I	slunk	back	to	my	desk.	After	a	few	minutes,	Brian	Arbetter,	a	far	better

calculus	 student	 than	 I,	walked	 to	 the	 front	 of	 the	 room	 and	whispered	 a	 few
things	 to	Mrs.	Smith.	She	whispered	back	and	 then	a	 truly	extraordinary	 thing
happened.	“Class,	I	need	your	attention,”	Mrs.	Smith	announced.	“It	appears	that
I	have	given	you	 the	 second	 semester	 exam	by	mistake.”	We	were	 far	 enough
into	the	test	period	that	the	whole	exam	had	to	be	aborted	and	rescheduled.
I	 cannot	 fully	 describe	 my	 euphoria.	 I	 would	 go	 on	 in	 life	 to	 marry	 a

wonderful	 woman.	We	 have	 three	 healthy	 children.	 I’ve	 published	 books	 and
visited	places	like	the	Taj	Mahal	and	Angkor	Wat.	Still,	the	day	that	my	calculus
teacher	got	her	comeuppance	 is	a	 top	 five	 life	moment.	 (The	 fact	 that	 I	nearly
failed	 the	makeup	final	exam	did	not	significantly	diminish	 this	wonderful	 life
experience.)
The	calculus	exam	incident	 tells	you	much	of	what	you	need	to	know	about

my	 relationship	 with	 mathematics—but	 not	 everything.	 Curiously,	 I	 loved
physics	in	high	school,	even	though	physics	relies	very	heavily	on	the	very	same
calculus	that	I	refused	to	do	in	Mrs.	Smith’s	class.	Why?	Because	physics	has	a
clear	purpose.	I	distinctly	remember	my	high	school	physics	teacher	showing	us
during	the	World	Series	how	we	could	use	the	basic	formula	for	acceleration	to
estimate	how	far	a	home	run	had	been	hit.	That’s	cool—and	 the	same	formula
has	many	more	socially	significant	applications.
Once	 I	arrived	 in	college,	 I	 thoroughly	enjoyed	probability,	again	because	 it

offered	insight	into	interesting	real-life	situations.	In	hindsight,	I	now	recognize
that	it	wasn’t	the	math	that	bothered	me	in	calculus	class;	it	was	that	no	one	ever
saw	 fit	 to	 explain	 the	 point	 of	 it.	 If	 you’re	 not	 fascinated	 by	 the	 elegance	 of
formulas	 alone—which	 I	 am	 most	 emphatically	 not—then	 it	 is	 just	 a	 lot	 of
tedious	and	mechanistic	formulas,	at	least	the	way	it	was	taught	to	me.
That	 brings	me	 to	 statistics	 (which,	 for	 the	 purposes	 of	 this	 book,	 includes

probability).	 I	 love	 statistics.	Statistics	 can	be	used	 to	 explain	 everything	 from
DNA	testing	 to	 the	 idiocy	of	playing	 the	 lottery.	Statistics	can	help	us	 identify
the	factors	associated	with	diseases	like	cancer	and	heart	disease;	it	can	help	us
spot	 cheating	 on	 standardized	 tests.	 Statistics	 can	 even	 help	 you	win	 on	 game
shows.	There	was	a	 famous	program	during	my	childhood	called	Let’s	Make	a



Deal,	with	its	equally	famous	host,	Monty	Hall.	At	the	end	of	each	day’s	show,	a
successful	 player	would	 stand	with	Monty	 facing	 three	big	doors:	Door	no.	 1,
Door	no.	2,	and	Door	no.	3.	Monty	Hall	explained	to	the	player	that	there	was	a
highly	desirable	prize	behind	one	of	the	doors—something	like	a	new	car—and	a
goat	behind	the	other	two.	The	idea	was	straightforward:	the	player	chose	one	of
the	doors	and	would	get	the	contents	behind	that	door.
As	each	player	stood	facing	the	doors	with	Monty	Hall,	he	or	she	had	a	1	in	3

chance	of	choosing	the	door	that	would	be	opened	to	reveal	the	valuable	prize.
But	Let’s	Make	a	Deal	had	a	 twist,	which	has	delighted	statisticians	ever	since
(and	perplexed	everyone	else).	After	the	player	chose	a	door,	Monty	Hall	would
open	one	of	 the	 two	remaining	doors,	always	revealing	a	goat.	For	 the	sake	of
example,	assume	that	the	player	has	chosen	Door	no.	1.	Monty	would	then	open
Door	no.	3;	the	live	goat	would	be	standing	there	on	stage.	Two	doors	would	still
be	 closed,	 nos.	 1	 and	2.	 If	 the	valuable	prize	was	behind	no.	 1,	 the	 contestant
would	 win;	 if	 it	 was	 behind	 no.	 2,	 he	 would	 lose.	 But	 then	 things	 got	 more
interesting:	Monty	would	 turn	 to	 the	 player	 and	 ask	whether	 he	would	 like	 to
change	his	mind	and	switch	doors	(from	no.	1	to	no.	2	in	this	case).	Remember,
both	 doors	were	 still	 closed,	 and	 the	 only	 new	 information	 the	 contestant	 had
received	was	that	a	goat	showed	up	behind	one	of	the	doors	that	he	didn’t	pick.
Should	he	switch?
The	answer	is	yes.	Why?	That’s	in	Chapter	5½.

The	paradox	of	statistics	is	that	they	are	everywhere—from	batting	averages	to
presidential	 polls—but	 the	 discipline	 itself	 has	 a	 reputation	 for	 being
uninteresting	 and	 inaccessible.	 Many	 statistics	 books	 and	 classes	 are	 overly
laden	with	math	 and	 jargon.	Believe	me,	 the	 technical	 details	 are	 crucial	 (and
interesting)—but	 it’s	 just	Greek	 if	you	don’t	understand	 the	 intuition.	And	you
may	not	even	care	about	 the	 intuition	 if	you’re	not	convinced	 that	 there	 is	any
reason	 to	 learn	 it.	 Every	 chapter	 in	 this	 book	 promises	 to	 answer	 the	 basic
question	that	I	asked	(to	no	effect)	of	my	high	school	calculus	teacher:	What	is
the	point	of	this?
This	 book	 is	 about	 the	 intuition.	 It	 is	 short	 on	math,	 equations,	 and	graphs;

when	 they	 are	 used,	 I	 promise	 that	 they	 will	 have	 a	 clear	 and	 enlightening
purpose.	Meanwhile,	the	book	is	long	on	examples	to	convince	you	that	there	are
great	reasons	to	learn	this	stuff.	Statistics	can	be	really	interesting,	and	most	of	it
isn’t	that	difficult.
The	 idea	 for	 this	 book	 was	 born	 not	 terribly	 long	 after	 my	 unfortunate



experience	in	Mrs.	Smith’s	AP	Calculus	class.	I	went	to	graduate	school	to	study
economics	 and	public	policy.	Before	 the	program	even	 started,	 I	was	 assigned
(not	 surprisingly)	 to	 “math	 camp”	 along	 with	 the	 bulk	 of	 my	 classmates	 to
prepare	us	 for	 the	quantitative	 rigors	 that	were	 to	 follow.	For	 three	weeks,	we
learned	math	all	day	in	a	windowless,	basement	classroom	(really).
On	one	of	 those	days,	 I	had	something	very	close	 to	a	career	epiphany.	Our

instructor	was	 trying	 to	 teach	us	 the	circumstances	under	which	 the	sum	of	an
infinite	 series	 converges	 to	 a	 finite	 number.	 Stay	 with	 me	 here	 for	 a	 minute
because	this	concept	will	become	clear.	(Right	now	you’re	probably	feeling	the
way	 I	 did	 in	 that	 windowless	 classroom.)	 An	 infinite	 series	 is	 a	 pattern	 of
numbers	that	goes	on	forever,	such	as	1	+	½	+	¼	+	⅛	.	.	.	The	three	dots	means
that	the	pattern	continues	to	infinity.
This	 is	 the	 part	 we	 were	 having	 trouble	 wrapping	 our	 heads	 around.	 Our

instructor	was	trying	to	convince	us,	using	some	proof	I’ve	long	since	forgotten,
that	 a	 series	 of	 numbers	 can	 go	 on	 forever	 and	 yet	 still	 add	 up	 (roughly)	 to	 a
finite	 number.	One	 of	my	 classmates,	Will	Warshauer,	would	 have	 none	 of	 it,
despite	 the	 impressive	mathematical	proof.	 (To	be	honest,	 I	was	a	bit	skeptical
myself.)	How	can	something	that	is	infinite	add	up	to	something	that	is	finite?
Then	 I	 got	 an	 inspiration,	 or	 more	 accurately,	 the	 intuition	 of	 what	 the

instructor	was	trying	to	explain.	I	turned	to	Will	and	talked	him	through	what	I
had	 just	 worked	 out	 in	 my	 head.	 Imagine	 that	 you	 have	 positioned	 yourself
exactly	2	feet	from	a	wall.
Now	move	half	the	distance	to	that	wall	(1	foot),	so	that	you	are	left	standing

1	foot	away.
From	1	foot	away,	move	half	the	distance	to	the	wall	once	again	(6	inches,	or

½	a	foot).	And	from	6	inches	away,	do	it	again	(move	3	inches,	or	¼	of	a	foot).
Then	do	it	again	(move	1½	inches,	or	⅛	of	a	foot).	And	so	on.
You	will	gradually	get	pretty	darn	close	to	the	wall.	(For	example,	when	you

are	 1/1024th	 of	 an	 inch	 from	 the	 wall,	 you	 will	 move	 half	 the	 distance,	 or
another	 1/2048th	 of	 an	 inch.)	 But	 you	 will	 never	 hit	 the	 wall,	 because	 by
definition	each	move	takes	you	only	half	the	remaining	distance.	In	other	words,
you	 will	 get	 infinitely	 close	 to	 the	 wall	 but	 never	 hit	 it.	 If	 we	 measure	 your
moves	in	feet,	the	series	can	be	described	as	1	+	½	+	¼	+	⅛	.	.	.
Therein	lies	the	insight:	Even	though	you	will	continue	moving	forever—with

each	move	taking	you	half	the	remaining	distance	to	the	wall—the	total	distance
you	travel	can	never	be	more	than	2	feet,	which	is	your	starting	distance	from	the
wall.	 For	 mathematical	 purposes,	 the	 total	 distance	 you	 travel	 can	 be



approximated	 as	 2	 feet,	 which	 turns	 out	 to	 be	 very	 handy	 for	 computation
purposes.	A	mathematician	would	say	that	the	sum	of	this	infinite	series	1	ft	+	½
ft	+	¼	ft	+	⅛	ft	.	.	.	converges	to	2	feet,	which	is	what	our	instructor	was	trying
to	teach	us	that	day.
The	point	is	that	I	convinced	Will.	I	convinced	myself.	I	can’t	remember	the

math	proving	that	the	sum	of	an	infinite	series	can	converge	to	a	finite	number,
but	 I	 can	 always	 look	 that	 up	 online.	 And	 when	 I	 do,	 it	 will	 probably	 make
sense.	In	my	experience,	the	intuition	makes	the	math	and	other	technical	details
more	understandable—but	not	necessarily	the	other	way	around.
The	point	of	this	book	is	to	make	the	most	important	statistical	concepts	more

intuitive	 and	more	 accessible,	 not	 just	 for	 those	 of	 us	 forced	 to	 study	 them	 in
windowless	classrooms	but	for	anyone	interested	in	the	extraordinary	power	of
numbers	and	data.

Now,	having	just	made	the	case	that	the	core	tools	of	statistics	are	less	intuitive
and	 accessible	 than	 they	 ought	 to	 be,	 I’m	 going	 to	 make	 a	 seemingly
contradictory	point:	Statistics	can	be	overly	accessible	 in	 the	sense	that	anyone
with	data	and	a	computer	can	do	sophisticated	statistical	procedures	with	a	few
keystrokes.	 The	 problem	 is	 that	 if	 the	 data	 are	 poor,	 or	 if	 the	 statistical
techniques	 are	 used	 improperly,	 the	 conclusions	 can	 be	wildly	misleading	 and
even	 potentially	 dangerous.	Consider	 the	 following	 hypothetical	 Internet	 news
flash:	People	Who	 Take	 Short	 Breaks	 at	Work	 Are	 Far	More	 Likely	 to	Die	 of
Cancer.	 Imagine	 that	 headline	 popping	 up	 while	 you	 are	 surfing	 the	 Web.
According	 to	 a	 seemingly	 impressive	 study	 of	 36,000	 office	 workers	 (a	 huge
data	set!),	 those	workers	who	reported	leaving	their	offices	 to	 take	regular	 ten-
minute	breaks	during	the	workday	were	41	percent	more	likely	to	develop	cancer
over	 the	next	 five	years	 than	workers	who	don’t	 leave	 their	 offices	during	 the
workday.	Clearly	we	need	to	act	on	this	kind	of	finding—perhaps	some	kind	of
national	awareness	campaign	to	prevent	short	breaks	on	the	job.
Or	maybe	we	 just	 need	 to	 think	more	 clearly	 about	what	many	workers	 are

doing	 during	 that	 ten-minute	 break.	My	 professional	 experience	 suggests	 that
many	 of	 those	 workers	 who	 report	 leaving	 their	 offices	 for	 short	 breaks	 are
huddled	outside	the	entrance	of	the	building	smoking	cigarettes	(creating	a	haze
of	smoke	through	which	the	rest	of	us	have	to	walk	in	order	to	get	in	or	out).	I
would	further	infer	that	it’s	probably	the	cigarettes,	and	not	the	short	breaks	from
work,	that	are	causing	the	cancer.	I’ve	made	up	this	example	just	so	that	it	would
be	 particularly	 absurd,	 but	 I	 can	 assure	 you	 that	 many	 real-life	 statistical



abominations	are	nearly	this	absurd	once	they	are	deconstructed.
Statistics	 is	 like	 a	 high-caliber	 weapon:	 helpful	 when	 used	 correctly	 and

potentially	 disastrous	 in	 the	 wrong	 hands.	 This	 book	 will	 not	 make	 you	 a
statistical	expert;	it	will	teach	you	enough	care	and	respect	for	the	field	that	you
don’t	do	the	statistical	equivalent	of	blowing	someone’s	head	off.
This	is	not	a	textbook,	which	is	liberating	in	terms	of	the	topics	that	have	to	be

covered	 and	 the	 ways	 in	 which	 they	 can	 be	 explained.	 The	 book	 has	 been
designed	 to	 introduce	 the	 statistical	 concepts	 with	 the	 most	 relevance	 to
everyday	 life.	How	do	 scientists	 conclude	 that	 something	 causes	 cancer?	How
does	polling	work	(and	what	can	go	wrong)?	Who	“lies	with	statistics,”	and	how
do	 they	 do	 it?	How	 does	 your	 credit	 card	 company	 use	 data	 on	what	 you	 are
buying	 to	predict	 if	 you	 are	 likely	 to	miss	 a	payment?	 (Seriously,	 they	 can	do
that.)
If	you	want	to	understand	the	numbers	behind	the	news	and	to	appreciate	the

extraordinary	(and	growing)	power	of	data,	this	is	the	stuff	you	need	to	know.	In
the	 end,	 I	 hope	 to	 persuade	 you	 of	 the	 observation	 first	 made	 by	 Swedish
mathematician	and	writer	Andrejs	Dunkels:	It’s	easy	to	lie	with	statistics,	but	it’s
hard	to	tell	the	truth	without	them.
But	I	have	even	bolder	aspirations	than	that.	I	think	you	might	actually	enjoy

statistics.	The	underlying	ideas	are	fabulously	interesting	and	relevant.	The	key
is	to	separate	the	important	ideas	from	the	arcane	technical	details	that	can	get	in
the	way.	That	is	Naked	Statistics.



CHAPTER	1

What’s	the	Point?

I’ve	 noticed	 a	 curious	 phenomenon.	 Students	 will	 complain	 that	 statistics	 is
confusing	and	 irrelevant.	Then	 the	 same	students	will	 leave	 the	classroom	and
happily	 talk	 over	 lunch	 about	 batting	 averages	 (during	 the	 summer)	 or	 the
windchill	factor	(during	the	winter)	or	grade	point	averages	(always).	They	will
recognize	 that	 the	 National	 Football	 League’s	 “passer	 rating”—a	 statistic	 that
condenses	 a	 quarterback’s	 performance	 into	 a	 single	 number—is	 a	 somewhat
flawed	 and	 arbitrary	 measure	 of	 a	 quarterback’s	 game	 day	 performance.	 The
same	 data	 (completion	 rate,	 average	 yards	 per	 pass	 attempt,	 percentage	 of
touchdown	passes	per	pass	attempt,	and	interception	rate)	could	be	combined	in
a	different	way,	such	as	giving	greater	or	lesser	weight	to	any	of	those	inputs,	to
generate	 a	 different	 but	 equally	 credible	measure	 of	 performance.	 Yet	 anyone
who	has	watched	football	recognizes	that	it’s	handy	to	have	a	single	number	that
can	be	used	to	encapsulate	a	quarterback’s	performance.
Is	 the	quarterback	 rating	perfect?	No.	Statistics	 rarely	offers	a	single	“right”

way	 of	 doing	 anything.	 Does	 it	 provide	 meaningful	 information	 in	 an	 easily
accessible	 way?	 Absolutely.	 It’s	 a	 nice	 tool	 for	 making	 a	 quick	 comparison
between	the	performances	of	two	quarterbacks	on	a	given	day.	I	am	a	Chicago
Bears	fan.	During	the	2011	playoffs,	 the	Bears	played	the	Packers;	 the	Packers
won.	There	 are	 a	 lot	 of	ways	 I	 could	describe	 that	 game,	 including	pages	 and
pages	 of	 analysis	 and	 raw	data.	But	 here	 is	 a	more	 succinct	 analysis.	Chicago
Bears	quarterback	Jay	Cutler	had	a	passer	rating	of	31.8.	In	contrast,	Green	Bay
quarterback	 Aaron	 Rodgers	 had	 a	 passer	 rating	 of	 55.4.	 Similarly,	 we	 can
compare	Jay	Cutler’s	performance	to	that	in	a	game	earlier	in	the	season	against
Green	Bay,	when	he	had	a	passer	rating	of	85.6.	That	tells	you	a	lot	of	what	you
need	to	know	in	order	to	understand	why	the	Bears	beat	the	Packers	earlier	in	the
season	but	lost	to	them	in	the	playoffs.
That	is	a	very	helpful	synopsis	of	what	happened	on	the	field.	Does	it	simplify

things?	 Yes,	 that	 is	 both	 the	 strength	 and	 the	 weakness	 of	 any	 descriptive
statistic.	One	number	tells	you	that	Jay	Cutler	was	outgunned	by	Aaron	Rodgers



in	the	Bears’	playoff	loss.	On	the	other	hand,	that	number	won’t	tell	you	whether
a	quarterback	had	a	bad	break,	such	as	throwing	a	perfect	pass	that	was	bobbled
by	the	receiver	and	then	intercepted,	or	whether	he	“stepped	up”	on	certain	key
plays	(since	every	completion	is	weighted	the	same,	whether	it	is	a	crucial	third
down	or	a	meaningless	play	at	the	end	of	the	game),	or	whether	the	defense	was
terrible.	And	so	on.
The	 curious	 thing	 is	 that	 the	 same	 people	 who	 are	 perfectly	 comfortable

discussing	statistics	in	the	context	of	sports	or	the	weather	or	grades	will	seize	up
with	anxiety	when	a	researcher	starts	 to	explain	something	like	the	Gini	 index,
which	 is	 a	 standard	 tool	 in	 economics	 for	 measuring	 income	 inequality.	 I’ll
explain	what	 the	Gini	 index	 is	 in	 a	moment,	 but	 for	 now	 the	 most	 important
thing	to	recognize	is	that	the	Gini	index	is	just	like	the	passer	rating.	It’s	a	handy
tool	for	collapsing	complex	information	into	a	single	number.	As	such,	it	has	the
strengths	of	most	descriptive	 statistics,	namely	 that	 it	 provides	 an	easy	way	 to
compare	 the	 income	 distribution	 in	 two	 countries,	 or	 in	 a	 single	 country	 at
different	points	in	time.
The	Gini	 index	measures	how	evenly	wealth	 (or	 income)	 is	 shared	within	a

country	on	a	scale	from	zero	to	one.	The	statistic	can	be	calculated	for	wealth	or
for	 annual	 income,	 and	 it	 can	 be	 calculated	 at	 the	 individual	 level	 or	 at	 the
household	 level.	 (All	 of	 these	 statistics	 will	 be	 highly	 correlated	 but	 not
identical.)	The	Gini	index,	like	the	passer	rating,	has	no	intrinsic	meaning;	it’s	a
tool	 for	 comparison.	A	country	 in	which	every	household	had	 identical	wealth
would	 have	 a	 Gini	 index	 of	 zero.	 By	 contrast,	 a	 country	 in	 which	 a	 single
household	held	the	country’s	entire	wealth	would	have	a	Gini	index	of	one.	As
you	can	probably	 surmise,	 the	closer	a	country	 is	 to	one,	 the	more	unequal	 its
distribution	of	wealth.	The	United	States	has	a	Gini	 index	of	 .45,	according	 to
the	Central	Intelligence	Agency	(a	great	collector	of	statistics,	by	the	way).1	So
what?
Once	that	number	is	put	into	context,	it	can	tell	us	a	lot.	For	example,	Sweden

has	 a	Gini	 index	 of	 .23.	Canada’s	 is	 .32.	China’s	 is	 .42.	Brazil’s	 is	 .54.	 South
Africa’s	is	.65.*	As	we	look	across	those	numbers,	we	get	a	sense	of	where	the
United	 States	 falls	 relative	 to	 the	 rest	 of	 the	 world	 when	 it	 comes	 to	 income
inequality.	We	can	also	compare	different	points	in	time.	The	Gini	index	for	the
United	States	was	.41	in	1997	and	grew	to	.45	over	the	next	decade.	(The	most
recent	CIA	data	are	 for	2007.)	This	 tells	us	 in	an	objective	way	 that	while	 the
United	 States	 grew	 richer	 over	 that	 period	 of	 time,	 the	 distribution	 of	 wealth
grew	more	unequal.	Again,	we	can	compare	the	changes	in	the	Gini	index	across



countries	over	roughly	the	same	time	period.	Inequality	in	Canada	was	basically
unchanged	over	the	same	stretch.	Sweden	has	had	significant	economic	growth
over	the	past	two	decades,	but	the	Gini	index	in	Sweden	actually	fell	from	.25	in
1992	to	.23	in	2005,	meaning	that	Sweden	grew	richer	and	more	equal	over	that
period.
Is	 the	Gini	 index	 the	perfect	measure	of	 inequality?	Absolutely	not—just	as

the	 passer	 rating	 is	 not	 a	 perfect	 measure	 of	 quarterback	 performance.	 But	 it
certainly	 gives	 us	 some	 valuable	 information	 on	 a	 socially	 significant
phenomenon	in	a	convenient	format.
We	have	also	slowly	backed	our	way	into	answering	the	question	posed	in	the

chapter	title:	What	is	the	point?	The	point	is	that	statistics	helps	us	process	data,
which	is	really	just	a	fancy	name	for	information.	Sometimes	the	data	are	trivial
in	 the	 grand	 scheme	 of	 things,	 as	 with	 sports	 statistics.	 Sometimes	 they	 offer
insight	into	the	nature	of	human	existence,	as	with	the	Gini	index.
But,	as	any	good	infomercial	would	point	out,	That’s	not	all!	Hal	Varian,	chief

economist	 at	Google,	 told	 the	New	York	Times	 that	 being	 a	 statistician	will	 be
“the	sexy	job”	over	the	next	decade.2	I’ll	be	the	first	to	concede	that	economists
sometimes	 have	 a	 warped	 definition	 of	 “sexy.”	 Still,	 consider	 the	 following
disparate	questions:
How	can	we	catch	schools	that	are	cheating	on	their	standardized	tests?
How	does	Netflix	know	what	kind	of	movies	you	like?
How	can	we	figure	out	what	substances	or	behaviors	cause	cancer,	given	that

we	cannot	conduct	cancer-causing	experiments	on	humans?
Does	praying	for	surgical	patients	improve	their	outcomes?
Is	there	really	an	economic	benefit	to	getting	a	degree	from	a	highly	selective

college	or	university?
What	is	causing	the	rising	incidence	of	autism?
Statistics	can	help	answer	these	questions	(or,	we	hope,	can	soon).	The	world

is	 producing	more	 and	more	 data,	 ever	 faster	 and	 faster.	Yet,	 as	 the	New	York
Times	has	noted,	“Data	is	merely	the	raw	material	of	knowledge.”3*	Statistics	is
the	most	powerful	tool	we	have	for	using	information	to	some	meaningful	end,
whether	 that	 is	 identifying	underrated	baseball	players	or	paying	teachers	more
fairly.	Here	is	a	quick	tour	of	how	statistics	can	bring	meaning	to	raw	data.

Description	and	Comparison
A	bowling	score	is	a	descriptive	statistic.	So	is	a	batting	average.	Most	American



sports	fans	over	the	age	of	five	are	already	conversant	in	the	field	of	descriptive
statistics.	We	use	numbers,	 in	sports	and	everywhere	else	 in	 life,	 to	summarize
information.	How	good	a	baseball	player	was	Mickey	Mantle?	He	was	a	career
.298	hitter.	To	a	baseball	fan,	that	is	a	meaningful	statement,	which	is	remarkable
when	 you	 think	 about	 it,	 because	 it	 encapsulates	 an	 eighteen-season	 career.4
(There	 is,	 I	 suppose,	 something	mildly	depressing	about	having	one’s	 lifework
collapsed	 into	 a	 single	 number.)	 Of	 course,	 baseball	 fans	 have	 also	 come	 to
recognize	 that	 descriptive	 statistics	 other	 than	 batting	 average	 may	 better
encapsulate	a	player’s	value	on	the	field.
We	evaluate	the	academic	performance	of	high	school	and	college	students	by

means	of	a	grade	point	average,	or	GPA.	A	letter	grade	is	assigned	a	point	value;
typically	an	A	is	worth	4	points,	a	B	is	worth	3,	a	C	is	worth	2,	and	so	on.	By
graduation,	 when	 high	 school	 students	 are	 applying	 to	 college	 and	 college
students	 are	 looking	 for	 jobs,	 the	 grade	 point	 average	 is	 a	 handy	 tool	 for
assessing	 their	 academic	 potential.	 Someone	 who	 has	 a	 3.7	 GPA	 is	 clearly	 a
stronger	student	than	someone	at	the	same	school	with	a	2.5	GPA.	That	makes	it
a	nice	descriptive	statistic.	It’s	easy	to	calculate,	it’s	easy	to	understand,	and	it’s
easy	to	compare	across	students.
But	it’s	not	perfect.	The	GPA	does	not	reflect	the	difficulty	of	the	courses	that

different	 students	may	 have	 taken.	How	 can	we	 compare	 a	 student	with	 a	 3.4
GPA	in	classes	that	appear	to	be	relatively	nonchallenging	and	a	student	with	a
2.9	GPA	who	has	taken	calculus,	physics,	and	other	tough	subjects?	I	went	to	a
high	 school	 that	 attempted	 to	 solve	 this	 problem	 by	 giving	 extra	 weight	 to
difficult	classes,	so	that	an	A	in	an	“honors”	class	was	worth	five	points	instead
of	 the	 usual	 four.	 This	 caused	 its	 own	 problems.	 My	 mother	 was	 quick	 to
recognize	the	distortion	caused	by	this	GPA	“fix.”	For	a	student	taking	a	lot	of
honors	 classes	 (me),	 any	 A	 in	 a	 nonhonors	 course,	 such	 as	 gym	 or	 health
education,	would	actually	pull	my	GPA	down,	even	though	it	is	impossible	to	do
better	 than	 an	A	 in	 those	 classes.	 As	 a	 result,	my	 parents	 forbade	me	 to	 take
driver’s	education	in	high	school,	 lest	even	a	perfect	performance	diminish	my
chances	 of	 getting	 into	 a	 competitive	 college	 and	 going	 on	 to	 write	 popular
books.	Instead,	 they	paid	to	send	me	to	a	private	driving	school,	at	nights	over
the	summer.
Was	that	insane?	Yes.	But	one	theme	of	this	book	will	be	that	an	overreliance

on	 any	 descriptive	 statistic	 can	 lead	 to	 misleading	 conclusions,	 or	 cause
undesirable	 behavior.	 My	 original	 draft	 of	 that	 sentence	 used	 the	 phrase
“oversimplified	 descriptive	 statistic,”	 but	 I	 struck	 the	 word	 “oversimplified”



because	 it’s	 redundant.	 Descriptive	 statistics	 exist	 to	 simplify,	 which	 always
implies	some	loss	of	nuance	or	detail.	Anyone	working	with	numbers	needs	 to
recognize	as	much.



Inference
How	 many	 homeless	 people	 live	 on	 the	 streets	 of	 Chicago?	 How	 often	 do
married	 people	 have	 sex?	 These	 may	 seem	 like	 wildly	 different	 kinds	 of
questions;	in	fact,	they	both	can	be	answered	(not	perfectly)	by	the	use	of	basic
statistical	tools.	One	key	function	of	statistics	is	to	use	the	data	we	have	to	make
informed	 conjectures	 about	 larger	 questions	 for	 which	 we	 do	 not	 have	 full
information.	 In	 short,	 we	 can	 use	 data	 from	 the	 “known	 world”	 to	 make
informed	inferences	about	the	“unknown	world.”
Let’s	 begin	 with	 the	 homeless	 question.	 It	 is	 expensive	 and	 logistically

difficult	to	count	the	homeless	population	in	a	large	metropolitan	area.	Yet	it	is
important	 to	 have	 a	 numerical	 estimate	 of	 this	 population	 for	 purposes	 of
providing	social	services,	earning	eligibility	for	state	and	federal	 revenues,	and
gaining	 congressional	 representation.	 One	 important	 statistical	 practice	 is
sampling,	which	is	the	process	of	gathering	data	for	a	small	area,	say,	a	handful
of	 census	 tracts,	 and	 then	 using	 those	 data	 to	make	 an	 informed	 judgment,	 or
inference,	 about	 the	 homeless	 population	 for	 the	 city	 as	 a	 whole.	 Sampling
requires	 far	 less	 resources	 than	 trying	 to	 count	 an	 entire	 population;	 done
properly,	it	can	be	every	bit	as	accurate.
A	political	poll	is	one	form	of	sampling.	A	research	organization	will	attempt

to	 contact	 a	 sample	of	households	 that	 are	broadly	 representative	of	 the	 larger
population	and	ask	them	their	views	about	a	particular	issue	or	candidate.	This	is
obviously	much	cheaper	and	faster	than	trying	to	contact	every	household	in	an
entire	 state	 or	 country.	 The	 polling	 and	 research	 firm	 Gallup	 reckons	 that	 a
methodologically	sound	poll	of	1,000	households	will	produce	roughly	the	same
results	as	a	poll	that	attempted	to	contact	every	household	in	America.
That’s	how	we	figured	out	how	often	Americans	are	having	sex,	with	whom,

and	what	kind.	 In	 the	mid-1990s,	 the	National	Opinion	Research	Center	at	 the
University	 of	 Chicago	 carried	 out	 a	 remarkably	 ambitious	 study	 of	 American
sexual	behavior.	The	results	were	based	on	detailed	surveys	conducted	in	person
with	a	large,	representative	sample	of	American	adults.	If	you	read	on,	Chapter
10	will	tell	you	what	they	learned.	How	many	other	statistics	books	can	promise
you	that?

Assessing	Risk	and	Other	Probability-Related	Events



Casinos	make	money	in	the	long	run—always.	That	does	not	mean	that	they	are
making	money	at	any	given	moment.	When	the	bells	and	whistles	go	off,	some
high	 roller	 has	 just	won	 thousands	of	 dollars.	The	whole	gambling	 industry	 is
built	on	games	of	chance,	meaning	that	the	outcome	of	any	particular	roll	of	the
dice	 or	 turn	 of	 the	 card	 is	 uncertain.	 At	 the	 same	 time,	 the	 underlying
probabilities	for	the	relevant	events—drawing	21	at	blackjack	or	spinning	red	in
roulette—are	 known.	When	 the	 underlying	 probabilities	 favor	 the	 casinos	 (as
they	 always	 do),	 we	 can	 be	 increasingly	 certain	 that	 the	 “house”	 is	 going	 to
come	out	 ahead	as	 the	number	of	bets	wagered	gets	 larger	 and	 larger,	 even	as
those	bells	and	whistles	keep	going	off.
This	 turns	 out	 to	 be	 a	 powerful	 phenomenon	 in	 areas	 of	 life	 far	 beyond

casinos.	Many	businesses	must	assess	the	risks	associated	with	assorted	adverse
outcomes.	They	cannot	make	those	risks	go	away	entirely,	just	as	a	casino	cannot
guarantee	 that	you	won’t	win	every	hand	of	blackjack	 that	you	play.	However,
any	business	facing	uncertainty	can	manage	these	risks	by	engineering	processes
so	 that	 the	probability	of	an	adverse	outcome,	anything	from	an	environmental
catastrophe	 to	 a	 defective	 product,	 becomes	 acceptably	 low.	Wall	 Street	 firms
will	often	evaluate	 the	 risks	posed	 to	 their	portfolios	under	different	 scenarios,
with	 each	 of	 those	 scenarios	 weighted	 based	 on	 its	 probability.	 The	 financial
crisis	of	2008	was	precipitated	in	part	by	a	series	of	market	events	that	had	been
deemed	 extremely	 unlikely,	 as	 if	 every	 player	 in	 a	 casino	 drew	 blackjack	 all
night.	 I	will	argue	 later	 in	 the	book	 that	 these	Wall	Street	models	were	 flawed
and	that	 the	data	 they	used	 to	assess	 the	underlying	risks	were	 too	 limited,	but
the	 point	 here	 is	 that	 any	model	 to	 deal	with	 risk	must	 have	probability	 as	 its
foundation.
When	 individuals	 and	 firms	 cannot	make	 unacceptable	 risks	 go	 away,	 they

seek	 protection	 in	 other	 ways.	 The	 entire	 insurance	 industry	 is	 built	 upon
charging	customers	to	protect	them	against	some	adverse	outcome,	such	as	a	car
crash	 or	 a	 house	 fire.	 The	 insurance	 industry	 does	 not	 make	 money	 by
eliminating	these	events;	cars	crash	and	houses	burn	every	day.	Sometimes	cars
even	 crash	 into	 houses,	 causing	 them	 to	 burn.	 Instead,	 the	 insurance	 industry
makes	money	by	charging	premiums	that	are	more	than	sufficient	to	pay	for	the
expected	payouts	from	car	crashes	and	house	fires.	(The	insurance	company	may
also	try	to	lower	its	expected	payouts	by	encouraging	safe	driving,	fences	around
swimming	pools,	installation	of	smoke	detectors	in	every	bedroom,	and	so	on.)
Probability	 can	 even	 be	 used	 to	 catch	 cheats	 in	 some	 situations.	 The	 firm

Caveon	Test	Security	specializes	in	what	it	describes	as	“data	forensics”	to	find



patterns	that	suggest	cheating.5	For	example,	the	company	(which	was	founded
by	a	former	test	developer	for	the	SAT)	will	flag	exams	at	a	school	or	test	site	on
which	 the	 number	 of	 identical	 wrong	 answers	 is	 highly	 unlikely,	 usually	 a
pattern	 that	 would	 happen	 by	 chance	 less	 than	 one	 time	 in	 a	 million.	 The
mathematical	logic	stems	from	the	fact	that	we	cannot	learn	much	when	a	large
group	of	students	all	answer	a	question	correctly.	That’s	what	they	are	supposed
to	do;	they	could	be	cheating,	or	they	could	be	smart.	But	when	those	same	test
takers	 get	 an	 answer	 wrong,	 they	 should	 not	 all	 consistently	 have	 the	 same
wrong	answer.	If	they	do,	it	suggests	that	they	are	copying	from	one	another	(or
sharing	 answers	 via	 text).	 The	 company	 also	 looks	 for	 exams	 in	which	 a	 test
taker	 does	 significantly	 better	 on	 hard	 questions	 than	 on	 easy	 questions
(suggesting	that	he	or	she	had	answers	in	advance)	and	for	exams	on	which	the
number	of	“wrong	to	right”	erasures	 is	significantly	higher	 than	 the	number	of
“right	to	wrong”	erasures	(suggesting	that	a	teacher	or	administrator	changed	the
answer	sheets	after	the	test).
Of	course,	you	can	see	the	limitations	of	using	probability.	A	large	group	of

test	takers	might	have	the	same	wrong	answers	by	coincidence;	in	fact,	the	more
schools	we	evaluate,	the	more	likely	it	is	that	we	will	observe	such	patterns	just
as	a	matter	of	chance.	A	statistical	anomaly	does	not	prove	wrongdoing.	Delma
Kinney,	a	fifty-year-old	Atlanta	man,	won	$1	million	in	an	instant	lottery	game
in	2008	and	then	another	$1	million	in	an	instant	game	in	2011.6	The	probability
of	 that	 happening	 to	 the	 same	 person	 is	 somewhere	 in	 the	 range	 of	 1	 in	 25
trillion.	We	cannot	 arrest	Mr.	Kinney	 for	 fraud	on	 the	basis	of	 that	 calculation
alone	(though	we	might	inquire	whether	he	has	any	relatives	who	work	for	the
state	 lottery).	 Probability	 is	 one	 weapon	 in	 an	 arsenal	 that	 requires	 good
judgment.



Identifying	Important	Relationships
(Statistical	Detective	Work)
Does	smoking	cigarettes	cause	cancer?	We	have	an	answer	for	 that	question—
but	 the	process	of	answering	 it	was	not	nearly	as	straightforward	as	one	might
think.	The	scientific	method	dictates	that	if	we	are	testing	a	scientific	hypothesis,
we	should	conduct	a	controlled	experiment	in	which	the	variable	of	interest	(e.g.,
smoking)	 is	 the	only	thing	that	differs	between	the	experimental	group	and	the
control	group.	If	we	observe	a	marked	difference	in	some	outcome	between	the
two	groups	(e.g.,	lung	cancer),	we	can	safely	infer	that	the	variable	of	interest	is
what	caused	that	outcome.	We	cannot	do	that	kind	of	experiment	on	humans.	If
our	working	hypothesis	is	 that	smoking	causes	cancer,	 it	would	be	unethical	 to
assign	 recent	 college	 graduates	 to	 two	 groups,	 smokers	 and	 nonsmokers,	 and
then	 see	who	 has	 cancer	 at	 the	 twentieth	 reunion.	 (We	 can	 conduct	 controlled
experiments	on	humans	when	our	hypothesis	is	that	a	new	drug	or	treatment	may
improve	 their	 health;	 we	 cannot	 knowingly	 expose	 human	 subjects	 when	 we
expect	an	adverse	outcome.)*
Now,	you	might	point	out	that	we	do	not	need	to	conduct	an	ethically	dubious

experiment	 to	observe	 the	effects	of	smoking.	Couldn’t	we	 just	skip	 the	whole
fancy	methodology	and	compare	cancer	 rates	at	 the	 twentieth	 reunion	between
those	who	have	smoked	since	graduation	and	those	who	have	not?
No.	 Smokers	 and	 nonsmokers	 are	 likely	 to	 be	 different	 in	 ways	 other	 than

their	smoking	behavior.	For	example,	smokers	may	be	more	likely	to	have	other
habits,	 such	 as	 drinking	 heavily	 or	 eating	 badly,	 that	 cause	 adverse	 health
outcomes.	If	the	smokers	are	particularly	unhealthy	at	the	twentieth	reunion,	we
would	 not	 know	 whether	 to	 attribute	 this	 outcome	 to	 smoking	 or	 to	 other
unhealthy	things	that	many	smokers	happen	to	do.	We	would	also	have	a	serious
problem	with	the	data	on	which	we	are	basing	our	analysis.	Smokers	who	have
become	seriously	ill	with	cancer	are	 less	 likely	to	attend	the	twentieth	reunion.
(The	dead	 smokers	definitely	won’t	 show	up.)	As	a	 result,	 any	analysis	of	 the
health	of	the	attendees	at	the	twentieth	reunion	(related	to	smoking	or	anything
else)	will	be	seriously	flawed	by	the	fact	that	the	healthiest	members	of	the	class
are	the	most	likely	to	show	up.	The	further	the	class	gets	from	graduation,	say,	a
fortieth	or	a	fiftieth	reunion,	the	more	serious	this	bias	will	be.
We	cannot	treat	humans	like	laboratory	rats.	As	a	result,	statistics	is	a	lot	like



good	detective	work.	The	data	yield	clues	and	patterns	that	can	ultimately	lead	to
meaningful	 conclusions.	 You	 have	 probably	 watched	 one	 of	 those	 impressive
police	procedural	shows	like	CSI:	New	York	 in	which	very	attractive	detectives
and	forensic	experts	pore	over	minute	clues—DNA	from	a	cigarette	butt,	 teeth
marks	 on	 an	 apple,	 a	 single	 fiber	 from	 a	 car	 floor	 mat—and	 then	 use	 the
evidence	to	catch	a	violent	criminal.	The	appeal	of	the	show	is	that	these	experts
do	 not	 have	 the	 conventional	 evidence	 used	 to	 find	 the	 bad	 guy,	 such	 as	 an
eyewitness	 or	 a	 surveillance	 videotape.	 So	 they	 turn	 to	 scientific	 inference
instead.	 Statistics	 does	 basically	 the	 same	 thing.	The	 data	 present	 unorganized
clues—the	crime	scene.	Statistical	analysis	 is	 the	detective	work	 that	crafts	 the
raw	data	into	some	meaningful	conclusion.
After	Chapter	11,	you	will	appreciate	the	television	show	I	hope	to	pitch:	CSI:

Regression	Analysis,	which	would	 be	 only	 a	 small	 departure	 from	 those	 other
action-packed	 police	 procedurals.	 Regression	 analysis	 is	 the	 tool	 that	 enables
researchers	to	isolate	a	relationship	between	two	variables,	such	as	smoking	and
cancer,	 while	 holding	 constant	 (or	 “controlling	 for”)	 the	 effects	 of	 other
important	variables,	such	as	diet,	exercise,	weight,	and	so	on.	When	you	read	in
the	newspaper	that	eating	a	bran	muffin	every	day	will	reduce	your	chances	of
getting	colon	cancer,	you	need	not	 fear	 that	 some	unfortunate	group	of	human
experimental	 subjects	 has	 been	 force-fed	 bran	 muffins	 in	 the	 basement	 of	 a
federal	 laboratory	somewhere	while	 the	control	group	in	the	next	building	gets
bacon	 and	 eggs.	 Instead,	 researchers	 will	 gather	 detailed	 information	 on
thousands	of	people,	 including	how	frequently	 they	eat	bran	muffins,	and	 then
use	 regression	 analysis	 to	 do	 two	 crucial	 things:	 (1)	 quantify	 the	 association
observed	 between	 eating	 bran	 muffins	 and	 contracting	 colon	 cancer	 (e.g.,	 a
hypothetical	 finding	 that	 people	who	 eat	 bran	muffins	 have	 a	 9	 percent	 lower
incidence	 of	 colon	 cancer,	 controlling	 for	 other	 factors	 that	 may	 affect	 the
incidence	 of	 the	 disease);	 and	 (2)	 quantify	 the	 likelihood	 that	 the	 association
between	bran	muffins	and	a	lower	rate	of	colon	cancer	observed	in	this	study	is
merely	a	coincidence—a	quirk	in	the	data	for	this	sample	of	people—rather	than
a	meaningful	insight	about	the	relationship	between	diet	and	health.
Of	 course,	CSI:	 Regression	 Analysis	 will	 star	 actors	 and	 actresses	 who	 are

much	 better	 looking	 than	 the	 academics	 who	 typically	 pore	 over	 such	 data.
These	hotties	 (all	 of	whom	would	have	PhDs,	 despite	 being	only	 twenty-three
years	old)	would	study	large	data	sets	and	use	the	latest	statistical	tools	to	answer
important	social	questions:	What	are	the	most	effective	tools	for	fighting	violent
crime?	What	individuals	are	most	likely	to	become	terrorists?	Later	in	the	book



we	will	discuss	the	concept	of	a	“statistically	significant”	finding,	which	means
that	the	analysis	has	uncovered	an	association	between	two	variables	that	is	not
likely	to	be	the	product	of	chance	alone.	For	academic	researchers,	this	kind	of
statistical	finding	is	the	“smoking	gun.”	On	CSI:	Regression	Analysis,	I	envision
a	 researcher	working	 late	 at	 night	 in	 the	 computer	 lab	 because	 of	 her	 daytime
commitment	as	a	member	of	the	U.S.	Olympic	beach	volleyball	team.	When	she
gets	the	printout	from	her	statistical	analysis,	she	sees	exactly	what	she	has	been
looking	 for:	 a	 large	 and	 statistically	 significant	 relationship	 in	 her	 data	 set
between	 some	 variable	 that	 she	 had	 hypothesized	might	 be	 important	 and	 the
onset	of	autism.	She	must	share	this	breakthrough	immediately!
The	researcher	takes	the	printout	and	runs	down	the	hall,	slowed	somewhat	by

the	 fact	 that	 she	 is	wearing	high	heels	 and	a	 relatively	 small,	 tight	black	 skirt.
She	finds	her	male	partner,	who	is	inexplicably	fit	and	tan	for	a	guy	who	works
fourteen	hours	a	day	in	a	basement	computer	lab,	and	shows	him	the	results.	He
runs	his	fingers	through	his	neatly	trimmed	goatee,	grabs	his	Glock	9-mm	pistol
from	the	desk	drawer,	and	slides	it	into	the	shoulder	holster	beneath	his	$5,000
Hugo	Boss	suit	(also	inexplicable	given	his	starting	academic	salary	of	$38,000
a	year).	Together	the	regression	analysis	experts	walk	briskly	to	see	their	boss,	a
grizzled	veteran	who	has	overcome	failed	relationships	and	a	drinking	problem	.
.	.
Okay,	 you	 don’t	 have	 to	 buy	 into	 the	 television	 drama	 to	 appreciate	 the

importance	of	this	kind	of	statistical	research.	Just	about	every	social	challenge
that	we	 care	 about	 has	 been	 informed	by	 the	 systematic	 analysis	 of	 large	 data
sets.	 (In	many	cases,	gathering	 the	relevant	data,	which	 is	expensive	and	 time-
consuming,	plays	a	crucial	role	in	this	process	as	will	be	explained	in	Chapter	7.)
I	may	have	embellished	my	characters	 in	CSI:	Regression	Analysis	but	not	 the
kind	of	significant	questions	they	could	examine.	There	is	an	academic	literature
on	terrorists	and	suicide	bombers—a	subject	that	would	be	difficult	to	study	by
means	 of	 human	 subjects	 (or	 lab	 rats	 for	 that	 matter).	 One	 such	 book,	What
Makes	 a	 Terrorist,	 was	 written	 by	 one	 of	 my	 graduate	 school	 statistics
professors.	 The	 book	 draws	 its	 conclusions	 from	 data	 gathered	 on	 terrorist
attacks	around	the	world.	A	sample	finding:	Terrorists	are	not	desperately	poor,
or	poorly	educated.	The	author,	Princeton	economist	Alan	Krueger,	 concludes,
“Terrorists	 tend	 to	 be	 drawn	 from	well-educated,	middle-class	 or	 high-income
families.”7
Why?	Well,	that	exposes	one	of	the	limitations	of	regression	analysis.	We	can

isolate	 a	 strong	association	between	 two	variables	by	using	 statistical	 analysis,



but	 we	 cannot	 necessarily	 explain	 why	 that	 relationship	 exists,	 and	 in	 some
cases,	we	cannot	know	for	certain	that	the	relationship	is	causal,	meaning	that	a
change	 in	 one	 variable	 is	 really	 causing	 a	 change	 in	 the	 other.	 In	 the	 case	 of
terrorism,	Professor	Krueger	hypothesizes	that	since	terrorists	are	motivated	by
political	 goals,	 those	 who	 are	 most	 educated	 and	 affluent	 have	 the	 strongest
incentive	 to	change	society.	These	 individuals	may	also	be	particularly	 rankled
by	 suppression	 of	 freedom,	 another	 factor	 associated	 with	 terrorism.	 In
Krueger’s	 study,	 countries	 with	 high	 levels	 of	 political	 repression	 have	 more
terrorist	activity	(holding	other	factors	constant).
This	discussion	leads	me	back	to	the	question	posed	by	the	chapter	title:	What

is	the	point?	The	point	is	not	to	do	math,	or	to	dazzle	friends	and	colleagues	with
advanced	statistical	techniques.	The	point	is	to	learn	things	that	inform	our	lives.

Lies,	Damned	Lies,	and	Statistics
Even	in	the	best	of	circumstances,	statistical	analysis	rarely	unveils	“the	truth.”
We	 are	 usually	 building	 a	 circumstantial	 case	 based	 on	 imperfect	 data.	 As	 a
result,	 there	 are	 numerous	 reasons	 that	 intellectually	 honest	 individuals	 may
disagree	about	statistical	results	or	their	implications.	At	the	most	basic	level,	we
may	disagree	on	the	question	that	is	being	answered.	Sports	enthusiasts	will	be
arguing	for	all	eternity	over	“the	best	baseball	player	ever”	because	there	is	no
objective	 definition	 of	 “best.”	 Fancy	 descriptive	 statistics	 can	 inform	 this
question,	but	they	will	never	answer	it	definitively.	As	the	next	chapter	will	point
out,	more	 socially	 significant	 questions	 fall	 prey	 to	 the	 same	 basic	 challenge.
What	 is	happening	 to	 the	economic	health	of	 the	American	middle	class?	That
answer	depends	on	how	one	defines	both	“middle	class”	and	“economic	health.”
There	are	 limits	on	 the	data	we	can	gather	and	 the	kinds	of	experiments	we

can	 perform.	 Alan	 Krueger’s	 study	 of	 terrorists	 did	 not	 follow	 thousands	 of
youth	 over	multiple	 decades	 to	 observe	which	 of	 them	 evolved	 into	 terrorists.
It’s	just	not	possible.	Nor	can	we	create	two	identical	nations—except	that	one	is
highly	repressive	and	the	other	is	not—and	then	compare	the	number	of	suicide
bombers	 that	 emerge	 in	 each.	 Even	 when	 we	 can	 conduct	 large,	 controlled
experiments	on	human	beings,	they	are	neither	easy	nor	cheap.	Researchers	did	a
large-scale	 study	on	whether	 or	 not	 prayer	 reduces	 postsurgical	 complications,
which	was	one	of	the	questions	raised	earlier	in	this	chapter.	That	study	cost	$2.4
million.	(For	the	results,	you’ll	have	to	wait	until	Chapter	13.)
Secretary	of	Defense	Donald	Rumsfeld	 famously	 said,	 “You	go	 to	war	with



the	 army	 you	 have—not	 the	 army	 you	might	 want	 or	 wish	 to	 have	 at	 a	 later
time.”	 Whatever	 you	 may	 think	 of	 Rumsfeld	 (and	 the	 Iraq	 war	 that	 he	 was
explaining),	 that	 aphorism	 applies	 to	 research,	 too.	 We	 conduct	 statistical
analysis	 using	 the	 best	 data	 and	 methodologies	 and	 resources	 available.	 The
approach	 is	 not	 like	 addition	 or	 long	 division,	 in	 which	 the	 correct	 technique
yields	the	“right”	answer	and	a	computer	is	always	more	precise	and	less	fallible
than	a	human.	Statistical	 analysis	 is	more	 like	good	detective	work	 (hence	 the
commercial	potential	of	CSI:	Regression	Analysis).	Smart	and	honest	people	will
often	disagree	about	what	the	data	are	trying	to	tell	us.
But	who	says	that	everyone	using	statistics	is	smart	or	honest?	As	mentioned,

this	 book	 began	 as	 an	 homage	 to	How	 to	 Lie	 with	 Statistics,	 which	 was	 first
published	in	1954	and	has	sold	over	a	million	copies.	The	reality	is	that	you	can
lie	 with	 statistics.	 Or	 you	 can	 make	 inadvertent	 errors.	 In	 either	 case,	 the
mathematical	precision	attached	to	statistical	analysis	can	dress	up	some	serious
nonsense.	 This	 book	 will	 walk	 through	 many	 of	 the	 most	 common	 statistical
errors	and	misrepresentations	(so	 that	you	can	recognize	 them,	not	put	 them	to
use).
So,	to	return	to	the	title	chapter,	what	is	the	point	of	learning	statistics?
To	summarize	huge	quantities	of	data.
To	make	better	decisions.
To	answer	important	social	questions.
To	 recognize	 patterns	 that	 can	 refine	 how	 we	 do	 everything	 from	 selling

diapers	to	catching	criminals.
To	catch	cheaters	and	prosecute	criminals.
To	 evaluate	 the	 effectiveness	 of	 policies,	 programs,	 drugs,	 medical

procedures,	and	other	innovations.
And	 to	 spot	 the	 scoundrels	 who	 use	 these	 very	 same	 powerful	 tools	 for

nefarious	ends.
If	you	can	do	all	of	 that	while	 looking	great	 in	a	Hugo	Boss	 suit	or	a	 short

black	skirt,	then	you	might	also	be	the	next	star	of	CSI:	Regression	Analysis.

*	The	Gini	index	is	sometimes	multiplied	by	100	to	make	it	a	whole	number.	In	that	case,	the	United	States
would	have	a	Gini	Index	of	45.
*	 The	word	 “data”	 has	 historically	 been	 considered	 plural	 (e.g.,	 “The	 data	 are	 very	 encouraging.”)	 The
singular	 is	 “datum,”	which	would	 refer	 to	 a	 single	 data	 point,	 such	 as	 one	 person’s	 response	 to	 a	 single
question	on	a	poll.	Using	 the	word	“data”	as	a	plural	noun	 is	a	quick	way	 to	signal	 to	anyone	who	does
serious	research	that	you	are	conversant	with	statistics.	That	said,	many	authorities	on	grammar	and	many
publications,	such	as	the	New	York	Times,	now	accept	that	“data”	can	be	singular	or	plural,	as	the	passage
that	I’ve	quoted	from	the	Times	demonstrates.



*	This	is	a	gross	simplification	of	the	fascinating	and	complex	field	of	medical	ethics.



CHAPTER	2

Descriptive	Statistics
Who	was	the	best	baseball	player	of	all	time?

Let	 us	 ponder	 for	 a	moment	 two	 seemingly	 unrelated	 questions:	 (1)	What	 is
happening	to	the	economic	health	of	America’s	middle	class?	and	(2)	Who	was
the	greatest	baseball	player	of	all	time?
The	 first	 question	 is	 profoundly	 important.	 It	 tends	 to	 be	 at	 the	 core	 of

presidential	 campaigns	 and	 other	 social	 movements.	 The	 middle	 class	 is	 the
heart	of	America,	so	the	economic	well-being	of	that	group	is	a	crucial	indicator
of	 the	 nation’s	 overall	 economic	 health.	 The	 second	 question	 is	 trivial	 (in	 the
literal	sense	of	 the	word),	but	baseball	enthusiasts	can	argue	about	 it	endlessly.
What	the	two	questions	have	in	common	is	that	they	can	be	used	to	illustrate	the
strengths	 and	 limitations	 of	 descriptive	 statistics,	 which	 are	 the	 numbers	 and
calculations	we	use	to	summarize	raw	data.
If	 I	want	 to	demonstrate	 that	Derek	Jeter	 is	a	great	baseball	player,	 I	can	sit

you	 down	 and	 describe	 every	 at	 bat	 in	 every	 Major	 League	 game	 that	 he’s
played.	That	would	be	raw	data,	and	it	would	take	a	while	to	digest,	given	that
Jeter	has	played	seventeen	seasons	with	the	New	York	Yankees	and	taken	9,868
at	bats.
Or	 I	 can	 just	 tell	 you	 that	 at	 the	 end	 of	 the	 2011	 season	Derek	 Jeter	 had	 a

career	 batting	 average	 of	 .313.	 That	 is	 a	 descriptive	 statistic,	 or	 a	 “summary
statistic.”
The	batting	average	is	a	gross	simplification	of	Jeter’s	seventeen	seasons.	It	is

easy	to	understand,	elegant	in	its	simplicity—and	limited	in	what	it	can	tell	us.
Baseball	 experts	 have	 a	 bevy	 of	 descriptive	 statistics	 that	 they	 consider	 to	 be
more	 valuable	 than	 the	 batting	 average.	 I	 called	 Steve	 Moyer,	 president	 of
Baseball	 Info	 Solutions	 (a	 firm	 that	 provides	 a	 lot	 of	 the	 raw	 data	 for	 the
Moneyball	 types),	 to	 ask	 him,	 (1)	 What	 are	 the	 most	 important	 statistics	 for
evaluating	baseball	talent?	and	(2)	Who	was	the	greatest	player	of	all	time?	I’ll
share	his	answer	once	we	have	more	context.
Meanwhile,	 let’s	return	to	the	less	trivial	subject,	 the	economic	health	of	the



middle	class.	Ideally	we	would	like	to	find	the	economic	equivalent	of	a	batting
average,	or	something	even	better.	We	would	like	a	simple	but	accurate	measure
of	 how	 the	 economic	 well-being	 of	 the	 typical	 American	 worker	 has	 been
changing	in	recent	years.	Are	the	people	we	define	as	middle	class	getting	richer,
poorer,	or	just	running	in	place?	A	reasonable	answer—though	by	no	means	the
“right”	 answer—would	 be	 to	 calculate	 the	 change	 in	 per	 capita	 income	 in	 the
United	States	over	the	course	of	a	generation,	which	is	roughly	thirty	years.	Per
capita	 income	 is	 a	 simple	 average:	 total	 income	 divided	 by	 the	 size	 of	 the
population.	By	that	measure,	average	income	in	the	United	States	climbed	from
$7,787	in	1980	to	$26,487	in	2010	(the	latest	year	for	which	the	government	has
data).1	Voilà!	Congratulations	to	us.
There	is	just	one	problem.	My	quick	calculation	is	technically	correct	and	yet

totally	wrong	 in	 terms	 of	 the	 question	 I	 set	 out	 to	 answer.	 To	 begin	with,	 the
figures	above	are	not	adjusted	 for	 inflation.	 (A	per	capita	 income	of	$7,787	 in
1980	 is	 equal	 to	 about	 $19,600	 when	 converted	 to	 2010	 dollars.)	 That’s	 a
relatively	quick	fix.	The	bigger	problem	is	that	the	average	income	in	America	is
not	equal	to	the	income	of	the	average	American.	Let’s	unpack	that	clever	little
phrase.
Per	 capita	 income	merely	 takes	 all	 of	 the	 income	earned	 in	 the	 country	 and

divides	by	the	number	of	people,	which	tells	us	absolutely	nothing	about	who	is
earning	 how	much	 of	 that	 income—in	 1980	 or	 in	 2010.	 As	 the	Occupy	Wall
Street	 folks	 would	 point	 out,	 explosive	 growth	 in	 the	 incomes	 of	 the	 top	 1
percent	 can	 raise	 per	 capita	 income	 significantly	 without	 putting	 any	 more
money	 in	 the	pockets	of	 the	other	99	percent.	 In	other	words,	 average	 income
can	go	up	without	helping	the	average	American.
As	with	the	baseball	statistic	query,	I	have	sought	outside	expertise	on	how	we

ought	to	measure	the	health	of	the	American	middle	class.	I	asked	two	prominent
labor	 economists,	 including	 President	 Obama’s	 top	 economic	 adviser,	 what
descriptive	 statistics	 they	 would	 use	 to	 assess	 the	 economic	 well-being	 of	 a
typical	American.	Yes,	you	will	get	that	answer,	too,	once	we’ve	taken	a	quick
tour	of	descriptive	statistics	to	give	it	more	meaning.
From	baseball	 to	 income,	 the	most	basic	 task	when	working	with	data	 is	 to

summarize	a	great	deal	of	information.	There	are	some	330	million	residents	in
the	 United	 States.	 A	 spreadsheet	 with	 the	 name	 and	 income	 history	 of	 every
American	 would	 contain	 all	 the	 information	 we	 could	 ever	 want	 about	 the
economic	health	of	 the	country—yet	 it	would	also	be	so	unwieldy	as	 to	 tell	us
nothing	at	all.	The	irony	is	 that	more	data	can	often	present	 less	clarity.	So	we



simplify.	We	 perform	 calculations	 that	 reduce	 a	 complex	 array	 of	 data	 into	 a
handful	 of	 numbers	 that	 describe	 those	 data,	 just	 as	 we	 might	 encapsulate	 a
complex,	multifaceted	Olympic	gymnastics	performance	with	one	number:	9.8.
The	good	news	 is	 that	 these	descriptive	 statistics	 give	us	 a	manageable	 and

meaningful	summary	of	the	underlying	phenomenon.	That’s	what	this	chapter	is
about.	 The	 bad	 news	 is	 that	 any	 simplification	 invites	 abuse.	 Descriptive
statistics	 can	be	 like	 online	 dating	profiles:	 technically	 accurate	 and	yet	 pretty
darn	misleading.

Suppose	 you	 are	 at	 work,	 idly	 surfing	 the	 Web	 when	 you	 stumble	 across	 a
riveting	 day-by-day	 account	 of	 Kim	 Kardashian’s	 failed	 seventy-two-day
marriage	 to	 professional	 basketball	 player	Kris	Humphries.	You	 have	 finished
reading	 about	 day	 seven	 of	 the	marriage	 when	 your	 boss	 shows	 up	 with	 two
enormous	files	of	data.	One	file	has	warranty	claim	information	for	each	of	the
57,334	laser	printers	that	your	firm	sold	last	year.	(For	each	printer	sold,	the	file
documents	 the	 number	 of	 quality	 problems	 that	 were	 reported	 during	 the
warranty	 period.)	 The	 other	 file	 has	 the	 same	 information	 for	 each	 of	 the
994,773	 laser	 printers	 that	 your	 chief	 competitor	 sold	 during	 the	 same	 stretch.
Your	boss	wants	to	know	how	your	firm’s	printers	compare	in	terms	of	quality
with	the	competition.
Fortunately	 the	 computer	 you’ve	 been	 using	 to	 read	 about	 the	 Kardashian

marriage	has	a	basics	statistics	package,	but	where	do	you	begin?	Your	instincts
are	probably	correct:	The	first	descriptive	task	is	often	to	find	some	measure	of
the	“middle”	of	a	set	of	data,	or	what	statisticians	might	describe	as	its	“central
tendency.”	What	 is	 the	 typical	 quality	 experience	 for	 your	 printers	 compared
with	 those	 of	 the	 competition?	 The	most	 basic	 measure	 of	 the	 “middle”	 of	 a
distribution	is	the	mean,	or	average.	In	this	case,	we	want	to	know	the	average
number	 of	 quality	 problems	 per	 printer	 sold	 for	 your	 firm	 and	 for	 your
competitor.	 You	 would	 simply	 tally	 the	 total	 number	 of	 quality	 problems
reported	for	all	printers	during	the	warranty	period	and	then	divide	by	the	total
number	 of	 printers	 sold.	 (Remember,	 the	 same	 printer	 can	 have	 multiple
problems	while	under	warranty.)	You	would	do	 that	 for	 each	 firm,	 creating	 an
important	 descriptive	 statistic:	 the	 average	 number	 of	 quality	 problems	 per
printer	sold.
Suppose	 it	 turns	 out	 that	 your	 competitor’s	 printers	 have	 an	 average	 of	 2.8

quality-related	problems	per	printer	 during	 the	warranty	period	 compared	with
your	 firm’s	 average	 of	 9.1	 reported	 defects.	 That	was	 easy.	You’ve	 just	 taken



information	on	a	million	printers	sold	by	two	different	companies	and	distilled	it
to	the	essence	of	the	problem:	your	printers	break	a	lot.	Clearly	it’s	time	to	send
a	short	e-mail	to	your	boss	quantifying	this	quality	gap	and	then	get	back	to	day
eight	of	Kim	Kardashian’s	marriage.
Or	maybe	not.	I	was	deliberately	vague	earlier	when	I	referred	to	the	“middle”

of	a	distribution.	The	mean,	or	average,	turns	out	to	have	some	problems	in	that
regard,	namely,	that	it	is	prone	to	distortion	by	“outliers,”	which	are	observations
that	 lie	 farther	 from	the	center.	To	get	your	mind	around	 this	concept,	 imagine
that	ten	guys	are	sitting	on	bar	stools	in	a	middle-class	drinking	establishment	in
Seattle;	each	of	these	guys	earns	$35,000	a	year,	which	makes	the	mean	annual
income	for	the	group	$35,000.	Bill	Gates	walks	into	the	bar	with	a	talking	parrot
perched	on	his	shoulder.	(The	parrot	has	nothing	to	do	with	the	example,	but	it
kind	 of	 spices	 things	 up.)	 Let’s	 assume	 for	 the	 sake	 of	 the	 example	 that	 Bill
Gates	has	an	annual	income	of	$1	billion.	When	Bill	sits	down	on	the	eleventh
bar	stool,	the	mean	annual	income	for	the	bar	patrons	rises	to	about	$91	million.
Obviously	 none	 of	 the	 original	 ten	 drinkers	 is	 any	 richer	 (though	 it	 might	 be
reasonable	to	expect	Bill	Gates	to	buy	a	round	or	two).	If	I	were	to	describe	the
patrons	 of	 this	 bar	 as	 having	 an	 average	 annual	 income	 of	 $91	 million,	 the
statement	would	be	both	statistically	correct	and	grossly	misleading.	This	isn’t	a
bar	 where	 multimillionaires	 hang	 out;	 it’s	 a	 bar	 where	 a	 bunch	 of	 guys	 with
relatively	 low	 incomes	 happen	 to	 be	 sitting	 next	 to	Bill	Gates	 and	 his	 talking
parrot.	The	 sensitivity	of	 the	mean	 to	outliers	 is	why	we	 should	not	gauge	 the
economic	health	of	the	American	middle	class	by	looking	at	per	capita	income.
Because	 there	 has	 been	 explosive	 growth	 in	 incomes	 at	 the	 top	 end	 of	 the
distribution—CEOs,	 hedge	 fund	 managers,	 and	 athletes	 like	 Derek	 Jeter—the
average	income	in	the	United	States	could	be	heavily	skewed	by	the	megarich,
making	it	look	a	lot	like	the	bar	stools	with	Bill	Gates	at	the	end.
For	 this	 reason,	we	have	another	statistic	 that	also	signals	 the	“middle”	of	a

distribution,	albeit	differently:	the	median.	The	median	is	the	point	that	divides	a
distribution	 in	half,	meaning	that	half	of	 the	observations	 lie	above	 the	median
and	half	lie	below.	(If	there	is	an	even	number	of	observations,	the	median	is	the
midpoint	 between	 the	 two	middle	 observations.)	 If	 we	 return	 to	 the	 bar	 stool
example,	the	median	annual	income	for	the	ten	guys	originally	sitting	in	the	bar
is	$35,000.	When	Bill	Gates	walks	in	with	his	parrot	and	perches	on	a	stool,	the
median	 annual	 income	 for	 the	 eleven	 of	 them	 is	 still	 $35,000.	 If	 you	 literally
envision	lining	up	the	bar	patrons	on	stools	in	ascending	order	of	their	incomes,
the	income	of	the	guy	sitting	on	the	sixth	stool	represents	the	median	income	for



the	group.	If	Warren	Buffett	comes	in	and	sits	down	on	the	twelfth	stool	next	to
Bill	Gates,	the	median	still	does	not	change.*
For	 distributions	without	 serious	 outliers,	 the	median	 and	 the	mean	will	 be

similar.	 I’ve	 included	 a	 hypothetical	 summary	 of	 the	 quality	 data	 for	 the
competitor’s	printers.	In	particular,	I’ve	laid	out	the	data	in	what	is	known	as	a
frequency	 distribution.	 The	 number	 of	 quality	 problems	 per	 printer	 is	 arrayed
along	 the	bottom;	 the	height	of	 each	bar	 represents	 the	percentages	of	printers
sold	 with	 that	 number	 of	 quality	 problems.	 For	 example,	 36	 percent	 of	 the
competitor’s	 printers	 had	 two	 quality	 defects	 during	 the	 warranty	 period.
Because	 the	distribution	 includes	 all	 possible	quality	outcomes,	 including	 zero
defects,	the	proportions	must	sum	to	1	(or	100	percent).

Frequency	Distribution	of	Quality	Complaints	for	Competitor’s
Printers

Because	 the	 distribution	 is	 nearly	 symmetrical,	 the	 mean	 and	 median	 are
relatively	close	to	one	another.	The	distribution	is	slightly	skewed	to	the	right	by
the	small	number	of	printers	with	many	reported	quality	defects.	These	outliers
move	 the	mean	slightly	 rightward	but	have	no	 impact	on	 the	median.	Suppose
that	 just	 before	 you	 dash	 off	 the	 quality	 report	 to	 your	 boss	 you	 decide	 to
calculate	the	median	number	of	quality	problems	for	your	firm’s	printers	and	the
competition’s.	With	a	few	keystrokes,	you	get	the	result.	The	median	number	of
quality	 complaints	 for	 the	 competitor’s	 printers	 is	 2;	 the	 median	 number	 of
quality	complaints	for	your	company’s	printers	is	1.
Huh?	Your	firm’s	median	number	of	quality	complaints	per	printer	is	actually

lower	 than	 your	 competitor’s.	 Because	 the	 Kardashian	 marriage	 is	 getting
monotonous,	 and	 because	 you	 are	 intrigued	 by	 this	 finding,	 you	 print	 a
frequency	distribution	for	your	own	quality	problems.



Frequency	Distribution	of	Quality	Complaints	at	Your	Company

What	 becomes	 clear	 is	 that	 your	 firm	 does	 not	 have	 a	 uniform	 quality
problem;	you	have	a	“lemon”	problem;	a	small	number	of	printers	have	a	huge
number	 of	 quality	 complaints.	 These	 outliers	 inflate	 the	 mean	 but	 not	 the
median.	More	important	from	a	production	standpoint,	you	do	not	need	to	retool
the	 whole	 manufacturing	 process;	 you	 need	 only	 figure	 out	 where	 the
egregiously	low-quality	printers	are	coming	from	and	fix	that.*
Neither	the	median	nor	the	mean	is	hard	to	calculate;	the	key	is	determining

which	 measure	 of	 the	 “middle”	 is	 more	 accurate	 in	 a	 particular	 situation	 (a
phenomenon	 that	 is	 easily	 exploited).	Meanwhile,	 the	median	has	 some	useful
relatives.	As	we’ve	already	discussed,	the	median	divides	a	distribution	in	half.
The	 distribution	 can	 be	 further	 divided	 into	 quarters,	 or	 quartiles.	 The	 first
quartile	consists	of	the	bottom	25	percent	of	the	observations;	the	second	quartile
consists	of	the	next	25	percent	of	the	observations;	and	so	on.	Or	the	distribution
can	be	divided	 into	deciles,	 each	with	10	percent	 of	 the	observations.	 (If	 your
income	is	 in	 the	 top	decile	of	 the	American	income	distribution,	you	would	be
earning	more	than	90	percent	of	your	fellow	workers.)	We	can	go	even	further
and	 divide	 the	 distribution	 into	 hundredths,	 or	 percentiles.	 Each	 percentile
represents	1	percent	of	 the	distribution,	so	that	 the	1st	percentile	represents	 the
bottom	1	percent	of	the	distribution	and	the	99th	percentile	represents	the	top	1
percent	of	the	distribution.
The	benefit	of	these	kinds	of	descriptive	statistics	is	that	they	describe	where	a

particular	observation	 lies	compared	with	everyone	else.	 If	 I	 tell	you	 that	your
child	scored	 in	 the	3rd	percentile	on	a	 reading	comprehension	 test,	you	should
know	 immediately	 that	 the	 family	 should	 be	 logging	more	 time	 at	 the	 library.
You	don’t	need	to	know	anything	about	the	test	itself,	or	the	number	of	questions
that	 your	 child	 got	 correct.	 The	 percentile	 score	 provides	 a	 ranking	 of	 your



child’s	score	relative	to	that	of	all	the	other	test	takers.	If	the	test	was	easy,	then
most	test	takers	will	have	a	high	number	of	answers	correct,	but	your	child	will
have	 fewer	 correct	 than	most	 of	 the	others.	 If	 the	 test	was	 extremely	difficult,
then	 all	 the	 test	 takers	 will	 have	 a	 low	 number	 of	 correct	 answers,	 but	 your
child’s	score	will	be	lower	still.
Here	 is	 a	 good	 point	 to	 introduce	 some	 useful	 terminology.	 An	 “absolute”

score,	number,	or	 figure	has	some	intrinsic	meaning.	 If	 I	shoot	83	for	eighteen
holes	of	golf,	that	is	an	absolute	figure.	I	may	do	that	on	a	day	that	is	58	degrees,
which	 is	 also	 an	 absolute	 figure.	 Absolute	 figures	 can	 usually	 be	 interpreted
without	any	context	or	additional	information.	When	I	tell	you	that	I	shot	83,	you
don’t	 need	 to	 know	what	 other	 golfers	 shot	 that	 day	 in	 order	 to	 evaluate	 my
performance.	(The	exception	might	be	if	the	conditions	are	particularly	awful,	or
if	 the	 course	 is	 especially	 difficult	 or	 easy.)	 If	 I	 place	 ninth	 in	 the	 golf
tournament,	 that	 is	a	relative	statistic.	A	“relative”	value	or	figure	has	meaning
only	 in	 comparison	 to	 something	 else,	 or	 in	 some	 broader	 context,	 such	 as
compared	with	 the	 eight	golfers	who	 shot	better	 than	 I	did.	Most	 standardized
tests	produce	results	 that	have	meaning	only	as	a	 relative	statistic.	 If	 I	 tell	you
that	 a	 third	grader	 in	 an	 Illinois	 elementary	 school	 scored	43	out	of	60	on	 the
mathematics	portion	of	 the	Illinois	State	Achievement	Test,	 that	absolute	score
doesn’t	have	much	meaning.	But	when	I	convert	it	to	a	percentile—meaning	that
I	put	that	raw	score	into	a	distribution	with	the	math	scores	for	all	other	Illinois
third	 graders—then	 it	 acquires	 a	 great	 deal	 of	meaning.	 If	 43	 correct	 answers
falls	 into	 the	83rd	percentile,	 then	 this	 student	 is	doing	better	 than	most	of	his
peers	statewide.	If	he’s	in	the	8th	percentile,	 then	he’s	really	struggling.	In	this
case,	 the	percentile	 (the	 relative	score)	 is	more	meaningful	 than	 the	number	of
correct	answers	(the	absolute	score).
Another	statistic	that	can	help	us	describe	what	might	otherwise	be	a	jumble

of	numbers	 is	 the	standard	deviation,	which	 is	a	measure	of	how	dispersed	 the
data	are	from	their	mean.	In	other	words,	how	spread	out	are	the	observations?
Suppose	I	collected	data	on	the	weights	of	250	people	on	an	airplane	headed	for
Boston,	 and	 I	 also	 collected	 the	weights	 of	 a	 sample	 of	 250	 qualifiers	 for	 the
Boston	Marathon.	Now	assume	that	the	mean	weight	for	both	groups	is	roughly
the	 same,	 say	 155	 pounds.	 Anyone	 who	 has	 been	 squeezed	 into	 a	 row	 on	 a
crowded	 flight,	 fighting	 for	 the	 armrest,	 knows	 that	many	 people	 on	 a	 typical
commercial	flight	weigh	more	than	155	pounds.	But	you	may	recall	from	those
same	unpleasant,	overcrowded	flights	 that	 there	were	 lots	of	crying	babies	and
poorly	 behaved	 children,	 all	 of	 whom	 have	 enormous	 lung	 capacity	 but	 not



much	mass.	When	it	comes	to	calculating	the	average	weight	on	the	flight,	 the
heft	of	the	320-pound	football	players	on	either	side	of	your	middle	seat	is	likely
offset	by	 the	 tiny	screaming	 infant	across	 the	 row	and	 the	six-year-old	kicking
the	back	of	your	seat	from	the	row	behind.
On	 the	 basis	 of	 the	 descriptive	 tools	 introduced	 so	 far,	 the	 weights	 of	 the

airline	passengers	and	the	marathoners	are	nearly	identical.	But	they’re	not.	Yes,
the	weights	of	 the	 two	groups	have	 roughly	 the	same	“middle,”	but	 the	airline
passengers	 have	 far	more	 dispersion	 around	 that	midpoint,	 meaning	 that	 their
weights	are	spread	farther	from	the	midpoint.	My	eight-year-old	son	might	point
out	 that	 the	marathon	runners	 look	 like	 they	all	weigh	 the	same	amount,	while
the	 airline	 passengers	 have	 some	 tiny	people	 and	 some	bizarrely	 large	 people.
The	 weights	 of	 the	 airline	 passengers	 are	 “more	 spread	 out,”	 which	 is	 an
important	attribute	when	it	comes	to	describing	the	weights	of	these	two	groups.
The	standard	deviation	is	the	descriptive	statistic	that	allows	us	to	assign	a	single
number	 to	 this	 dispersion	 around	 the	 mean.	 The	 formulas	 for	 calculating	 the
standard	 deviation	 and	 the	 variance	 (another	 common	 measure	 of	 dispersion
from	which	the	standard	deviation	is	derived)	are	included	in	an	appendix	at	the
end	of	 the	chapter.	For	now,	 let’s	 think	about	why	 the	measuring	of	dispersion
matters.
Suppose	you	walk	into	the	doctor’s	office.	You’ve	been	feeling	fatigued	ever

since	 your	 promotion	 to	 head	 of	 North	 American	 printer	 quality.	 Your	 doctor
draws	 blood,	 and	 a	 few	 days	 later	 her	 assistant	 leaves	 a	 message	 on	 your
answering	 machine	 to	 inform	 you	 that	 your	 HCb2	 count	 (a	 fictitious	 blood
chemical)	 is	 134.	 You	 rush	 to	 the	 Internet	 and	 discover	 that	 the	 mean	 HCb2
count	 for	 a	 person	 your	 age	 is	 122	 (and	 the	median	 is	 about	 the	 same).	Holy
crap!	If	you’re	like	me,	you	would	finally	draft	a	will.	You’d	write	tearful	letters
to	your	parents,	spouse,	children,	and	close	friends.	You	might	take	up	skydiving
or	try	to	write	a	novel	very	fast.	You	would	send	your	boss	a	hastily	composed	e-
mail	comparing	him	to	a	certain	part	of	the	human	anatomy—IN	ALL	CAPS.
None	of	these	things	may	be	necessary	(and	the	e-mail	to	your	boss	could	turn

out	 very	 badly).	 When	 you	 call	 the	 doctor’s	 office	 back	 to	 arrange	 for	 your
hospice	care,	the	physician’s	assistant	informs	you	that	your	count	is	within	the
normal	 range.	 But	 how	 could	 that	 be?	 “My	 count	 is	 12	 points	 higher	 than
average!”	you	yell	repeatedly	into	the	receiver.
“The	standard	deviation	for	the	HCb2	count	is	18,”	the	technician	informs	you

curtly.
What	the	heck	does	that	mean?



There	is	natural	variation	in	the	HCb2	count,	as	there	is	with	most	biological
phenomena	(e.g.,	height).	While	the	mean	count	for	the	fake	chemical	might	be
122,	plenty	of	healthy	people	have	counts	 that	are	higher	or	 lower.	The	danger
arises	only	when	 the	HCb2	count	gets	excessively	high	or	 low.	So	how	do	we
figure	out	what	“excessively”	means	in	this	context?	As	we’ve	already	noted,	the
standard	 deviation	 is	 a	 measure	 of	 dispersion,	 meaning	 that	 it	 reflects	 how
tightly	the	observations	cluster	around	the	mean.	For	many	typical	distributions
of	data,	a	high	proportion	of	the	observations	lie	within	one	standard	deviation	of
the	mean	(meaning	that	they	are	in	the	range	from	one	standard	deviation	below
the	mean	to	one	standard	deviation	above	the	mean).	To	illustrate	with	a	simple
example,	 the	 mean	 height	 for	 American	 adult	 men	 is	 5	 feet	 10	 inches.	 The
standard	 deviation	 is	 roughly	 3	 inches.	 A	 high	 proportion	 of	 adult	 men	 are
between	5	feet	7	inches	and	6	feet	1	inch.
Or,	 to	 put	 it	 slightly	 differently,	 any	man	 in	 this	 height	 range	would	 not	 be

considered	 abnormally	 short	 or	 tall.	 Which	 brings	 us	 back	 to	 your	 troubling
HCb2	 results.	 Yes,	 your	 count	 is	 12	 above	 the	mean,	 but	 that’s	 less	 than	 one
standard	deviation,	which	is	the	blood	chemical	equivalent	of	being	about	6	feet
tall—not	particularly	unusual.	Of	course,	far	fewer	observations	lie	two	standard
deviations	 from	 the	mean,	 and	 fewer	 still	 lie	 three	 or	 four	 standard	 deviations
away.	(In	the	case	of	height,	an	American	man	who	is	three	standard	deviations
above	average	in	height	would	be	6	feet	7	inches	or	taller.)
Some	 distributions	 are	 more	 dispersed	 than	 others.	 Hence,	 the	 standard

deviation	 of	 the	weights	 of	 the	 250	 airline	 passengers	will	 be	 higher	 than	 the
standard	 deviation	 of	 the	 weights	 of	 the	 250	 marathon	 runners.	 A	 frequency
distribution	with	 the	weights	 of	 the	 airline	 passengers	would	 literally	 be	 fatter
(more	spread	out)	 than	a	frequency	distribution	of	 the	weights	of	 the	marathon
runners.	Once	we	know	 the	mean	and	 standard	deviation	 for	 any	collection	of
data,	we	have	some	serious	intellectual	traction.	For	example,	suppose	I	tell	you
that	the	mean	score	on	the	SAT	math	test	is	500	with	a	standard	deviation	of	100.
As	with	height,	 the	bulk	of	students	 taking	the	test	will	be	within	one	standard
deviation	 of	 the	 mean,	 or	 between	 400	 and	 600.	 How	many	 students	 do	 you
think	score	720	or	higher?	Probably	not	very	many,	since	that	is	more	than	two
standard	deviations	above	the	mean.
In	fact,	we	can	do	even	better	 than	“not	very	many.”	This	 is	a	good	 time	 to

introduce	 one	 of	 the	 most	 important,	 helpful,	 and	 common	 distributions	 in
statistics:	 the	 normal	 distribution.	 Data	 that	 are	 distributed	 normally	 are
symmetrical	around	their	mean	in	a	bell	shape	that	will	look	familiar	to	you.



The	 normal	 distribution	 describes	 many	 common	 phenomena.	 Imagine	 a
frequency	distribution	describing	popcorn	popping	on	a	stove	top.	Some	kernels
start	to	pop	early,	maybe	one	or	two	pops	per	second;	after	ten	or	fifteen	seconds,
the	 kernels	 are	 exploding	 frenetically.	 Then	 gradually	 the	 number	 of	 kernels
popping	per	 second	 fades	away	at	 roughly	 the	same	 rate	at	which	 the	popping
began.	 The	 heights	 of	 American	 men	 are	 distributed	 more	 or	 less	 normally,
meaning	that	they	are	roughly	symmetrical	around	the	mean	of	5	feet	10	inches.
Each	SAT	test	is	specifically	designed	to	produce	a	normal	distribution	of	scores
with	 mean	 500	 and	 standard	 deviation	 of	 100.	 According	 to	 the	Wall	 Street
Journal,	Americans	even	tend	to	park	in	a	normal	distribution	at	shopping	malls;
most	 cars	 park	 directly	 opposite	 the	mall	 entrance—the	 “peak”	 of	 the	 normal
curve—with	“tails”	of	cars	going	off	to	the	right	and	left	of	the	entrance.
The	beauty	of	the	normal	distribution—its	Michael	Jordan	power,	finesse,	and

elegance—comes	 from	 the	 fact	 that	 we	 know	 by	 definition	 exactly	 what
proportion	of	 the	observations	 in	 a	normal	distribution	 lie	within	one	 standard
deviation	of	the	mean	(68.2	percent),	within	two	standard	deviations	of	the	mean
(95.4	percent),	within	 three	standard	deviations	(99.7	percent),	and	so	on.	This
may	sound	like	trivia.	In	fact,	it	is	the	foundation	on	which	much	of	statistics	is
built.	We	will	come	back	to	this	point	in	much	great	depth	later	in	the	book.

The	Normal	Distribution

The	mean	is	the	middle	line	which	is	often	represented	by	the	Greek	letter	µ.
The	 standard	 deviation	 is	 often	 represented	 by	 the	 Greek	 letter	 σ.	 Each	 band
represents	one	standard	deviation.



Descriptive	 statistics	 are	 often	 used	 to	 compare	 two	 figures	 or	 quantities.	 I’m
one	 inch	 taller	 than	my	brother;	 today’s	 temperature	 is	nine	degrees	 above	 the
historical	 average	 for	 this	 date;	 and	 so	 on.	 Those	 comparisons	 make	 sense
because	most	of	us	recognize	the	scale	of	the	units	involved.	One	inch	does	not
amount	 to	much	when	 it	 comes	 to	a	person’s	height,	 so	you	can	 infer	 that	my
brother	 and	 I	 are	 roughly	 the	 same	 height.	 Conversely,	 nine	 degrees	 is	 a
significant	temperature	deviation	in	just	about	any	climate	at	any	time	of	year,	so
nine	degrees	above	average	makes	for	a	day	that	is	much	hotter	than	usual.	But
suppose	 that	 I	 told	 you	 that	 Granola	 Cereal	 A	 contains	 31	 milligrams	 more
sodium	than	Granola	Cereal	B.	Unless	you	know	an	awful	lot	about	sodium	(and
the	serving	sizes	for	granola	cereal),	that	statement	is	not	going	to	be	particularly
informative.	Or	what	 if	 I	 told	 you	 that	my	 cousin	Al	 earned	 $53,000	 less	 this
year	 than	 last	 year?	 Should	 we	 be	 worried	 about	 Al?	 Or	 is	 he	 a	 hedge	 fund
manager	for	whom	$53,000	is	a	rounding	error	in	his	annual	compensation?
In	 both	 the	 sodium	 and	 the	 income	 examples,	 we’re	 missing	 context.	 The

easiest	 way	 to	 give	 meaning	 to	 these	 relative	 comparisons	 is	 by	 using
percentages.	 It	would	mean	something	 if	 I	 told	you	 that	Granola	Bar	A	has	50
percent	 more	 sodium	 than	 Granola	 Bar	 B,	 or	 that	 Uncle	 Al’s	 income	 fell	 47
percent	 last	 year.	 Measuring	 change	 as	 a	 percentage	 gives	 us	 some	 sense	 of
scale.
You	probably	learned	how	to	calculate	percentages	in	fourth	grade	and	will	be

tempted	 to	 skip	 the	next	 few	paragraphs.	Fair	 enough.	But	 first	do	one	 simple
exercise	for	me.	Assume	that	a	department	store	is	selling	a	dress	for	$100.	The
assistant	 manager	 marks	 down	 all	 merchandise	 by	 25	 percent.	 But	 then	 that
assistant	manager	is	fired	for	hanging	out	in	a	bar	with	Bill	Gates,*	and	the	new
assistant	manager	raises	all	prices	by	25	percent.	What	 is	 the	final	price	of	 the
dress?	 If	 you	 said	 (or	 thought)	 $100,	 then	 you	 had	 better	 not	 skip	 any
paragraphs.
The	final	price	of	the	dress	is	actually	$93.75.	This	is	not	merely	a	fun	parlor

trick	that	will	win	you	applause	and	adulation	at	cocktail	parties.	Percentages	are
useful—but	 also	 potentially	 confusing	 or	 even	 deceptive.	 The	 formula	 for
calculating	a	percentage	difference	 (or	 change)	 is	 the	 following:	 (new	 figure	–
original	 figure)/original	 figure.	 The	 numerator	 (the	 part	 on	 the	 top	 of	 the
fraction)	gives	us	the	size	of	the	change	in	absolute	terms;	the	denominator	(the
bottom	of	the	fraction)	is	what	puts	this	change	in	context	by	comparing	it	with
our	starting	point.	At	first,	this	seems	straightforward,	as	when	the	assistant	store
manager	cuts	the	price	of	the	$100	dress	by	25	percent.	Twenty-five	percent	of



the	original	$100	price	is	$25;	that’s	the	discount,	which	takes	the	price	down	to
$75.	 You	 can	 plug	 the	 numbers	 into	 the	 formula	 above	 and	 do	 some	 simple
manipulation	to	get	to	the	same	place:	($100	–	$75)/$100	=	.25,	or	25	percent.
The	dress	is	selling	for	$75	when	the	new	assistant	manager	demands	that	the

price	 be	 raised	 25	 percent.	 That’s	 where	 many	 of	 the	 people	 reading	 this
paragraph	probably	made	a	mistake.	The	25	percent	markup	 is	 calculated	as	 a
percentage	of	the	dress’s	new	reduced	price,	which	is	$75.	The	increase	will	be
.25($75),	 or	 $18.75,	 which	 is	 how	 the	 final	 price	 ends	 up	 at	 $93.75	 (and	 not
$100).	 The	 point	 is	 that	 a	 percentage	 change	 always	 gives	 the	 value	 of	 some
figure	relative	to	something	else.	Therefore,	we	had	better	understand	what	that
something	else	is.
I	once	invested	some	money	in	a	company	that	my	college	roommate	started.

Since	it	was	a	private	venture,	there	were	no	requirements	as	to	what	information
had	 to	 be	 provided	 to	 shareholders.	 A	 number	 of	 years	 went	 by	 without	 any
information	on	the	fate	of	my	investment;	my	former	roommate	was	fairly	tight-
lipped	on	the	subject.	Finally,	I	received	a	letter	in	the	mail	informing	me	that	the
firm’s	 profits	 were	 46	 percent	 higher	 than	 the	 year	 before.	 There	 was	 no
information	on	the	size	of	those	profits	in	absolute	terms,	meaning	that	I	still	had
absolutely	no	 idea	how	my	 investment	was	performing.	Suppose	 that	 last	year
the	firm	earned	27	cents—essentially	nothing.	This	year	the	firm	earned	39	cents
—also	essentially	nothing.	Yet	the	company’s	profits	grew	from	27	cents	to	39
cents,	 which	 is	 technically	 a	 46	 percent	 increase.	 Obviously	 the	 shareholder
letter	 would	 have	 been	 more	 of	 a	 downer	 if	 it	 pointed	 out	 that	 the	 firm’s
cumulative	profits	over	two	years	were	less	than	the	cost	of	a	cup	of	Starbucks
coffee.
To	be	fair	to	my	roommate,	he	eventually	sold	the	company	for	hundreds	of

millions	of	dollars,	 earning	me	a	100	percent	 return	on	my	 investment.	 (Since
you	have	no	idea	how	much	I	invested,	you	also	have	no	idea	how	much	money
I	made—which	reinforces	my	point	here	very	nicely!)
Let	 me	 make	 one	 additional	 distinction.	 Percentage	 change	 must	 not	 be

confused	 with	 a	 change	 in	 percentage	 points.	 Rates	 are	 often	 expressed	 in
percentages.	 The	 sales	 tax	 rate	 in	 Illinois	 is	 6.75	 percent.	 I	 pay	my	 agent	 15
percent	of	my	book	royalties.	These	rates	are	levied	against	some	quantity,	such
as	 income	in	 the	case	of	 the	 income	tax	rate.	Obviously	 the	rates	can	go	up	or
down;	 less	 intuitively,	 the	 changes	 in	 the	 rates	 can	 be	 described	 in	 vastly
dissimilar	 ways.	 The	 best	 example	 of	 this	 was	 a	 recent	 change	 in	 the	 Illinois
personal	 income	 tax,	which	was	 raised	 from	3	percent	 to	 5	 percent.	There	 are



two	ways	to	express	this	tax	change,	both	of	which	are	technically	accurate.	The
Democrats,	 who	 engineered	 this	 tax	 increase,	 pointed	 out	 (correctly)	 that	 the
state	income	tax	rate	was	increased	by	2	percentage	points	(from	3	percent	to	5
percent).	The	Republicans	pointed	out	(also	correctly)	that	the	state	income	tax
had	been	raised	by	67	percent.	 [This	 is	a	handy	test	of	 the	formula	from	a	few
paragraphs	back:	(5	–	3)/3	=	2/3,	which	rounds	up	to	67	percent.]
The	Democrats	 focused	on	 the	 absolute	 change	 in	 the	 tax	 rate;	Republicans

focused	on	the	percentage	change	in	the	tax	burden.	As	noted,	both	descriptions
are	 technically	 correct,	 though	 I	 would	 argue	 that	 the	 Republican	 description
more	accurately	conveys	the	impact	of	the	tax	change,	since	what	I’m	going	to
have	to	pay	to	the	government—the	amount	that	I	care	about,	as	opposed	to	the
way	it	is	calculated—really	has	gone	up	by	67	percent.

Many	 phenomena	 defy	 perfect	 description	 with	 a	 single	 statistic.	 Suppose
quarterback	 Aaron	 Rodgers	 throws	 for	 365	 yards	 but	 no	 touchdowns.
Meanwhile,	 Peyton	 Manning	 throws	 for	 a	 meager	 127	 yards	 but	 three
touchdowns.	Manning	 generated	more	 points,	 but	 presumably	 Rodgers	 set	 up
touchdowns	by	marching	his	team	down	the	field	and	keeping	the	other	team’s
offense	 off	 the	 field.	 Who	 played	 better?	 In	 Chapter	 1,	 I	 discussed	 the	 NFL
passer	rating,	which	is	the	league’s	reasonable	attempt	to	deal	with	this	statistical
challenge.	The	passer	 rating	 is	 an	 example	of	 an	 index,	which	 is	 a	 descriptive
statistic	made	up	of	other	descriptive	statistics.	Once	these	different	measures	of
performance	are	consolidated	into	a	single	number,	that	statistic	can	be	used	to
make	 comparisons,	 such	 as	 ranking	 quarterbacks	 on	 a	 particular	 day,	 or	 even
over	a	whole	career.	If	baseball	had	a	similar	index,	then	the	question	of	the	best
player	ever	would	be	solved.	Or	would	it?
The	advantage	of	any	index	is	that	it	consolidates	lots	of	complex	information

into	 a	 single	 number.	 We	 can	 then	 rank	 things	 that	 otherwise	 defy	 simple
comparison—anything	 from	 quarterbacks	 to	 colleges	 to	 beauty	 pageant
contestants.	In	the	Miss	America	pageant,	the	overall	winner	is	a	combination	of
five	 separate	 competitions:	 personal	 interview,	 swimsuit,	 evening	wear,	 talent,
and	 onstage	 question.	 (Miss	 Congeniality	 is	 voted	 on	 separately	 by	 the
participants	themselves.)
Alas,	 the	 disadvantage	 of	 any	 index	 is	 that	 it	 consolidates	 lots	 of	 complex

information	into	a	single	number.	There	are	countless	ways	to	do	that;	each	has
the	potential	to	produce	a	different	outcome.	Malcolm	Gladwell	makes	this	point
brilliantly	in	a	New	Yorker	piece	critiquing	our	compelling	need	to	rank	things.2



(He	comes	down	particularly	hard	on	the	college	rankings.)	Gladwell	offers	the
example	of	Car	and	Driver’s	ranking	of	three	sports	cars:	the	Porsche	Cayman,
the	 Chevrolet	 Corvette,	 and	 the	 Lotus	 Evora.	 Using	 a	 formula	 that	 includes
twenty-one	different	variables,	Car	and	Driver	ranked	the	Porsche	number	one.
But	Gladwell	points	out	 that	“exterior	styling”	counts	for	only	4	percent	of	 the
total	 score	 in	 the	Car	and	Driver	 formula,	which	 seems	 ridiculously	 low	 for	 a
sports	 car.	 If	 styling	 is	 given	more	weight	 in	 the	 overall	 ranking	 (25	 percent),
then	the	Lotus	comes	out	on	top.
But	 wait.	 Gladwell	 also	 points	 out	 that	 the	 sticker	 price	 of	 the	 car	 gets

relatively	little	weight	in	the	Car	and	Driver	formula.	If	value	is	weighted	more
heavily	 (so	 that	 the	 ranking	 is	 based	 equally	 on	 price,	 exterior	 styling,	 and
vehicle	characteristics),	the	Chevy	Corvette	is	ranked	number	one.
Any	 index	 is	 highly	 sensitive	 to	 the	 descriptive	 statistics	 that	 are	 cobbled

together	to	build	it,	and	to	the	weight	given	to	each	of	those	components.	As	a
result,	 indices	 range	 from	useful	 but	 imperfect	 tools	 to	 complete	 charades.	An
example	 of	 the	 former	 is	 the	 United	 Nations	 Human	 Development	 Index,	 or
HDI.	The	HDI	was	created	as	a	measure	of	economic	well-being	that	is	broader
than	 income	 alone.	 The	 HDI	 uses	 income	 as	 one	 of	 its	 components	 but	 also
includes	 measures	 of	 life	 expectancy	 and	 educational	 attainment.	 The	 United
States	 ranks	 eleventh	 in	 the	 world	 in	 terms	 of	 per	 capita	 economic	 output
(behind	several	oil-rich	nations	like	Qatar,	Brunei,	and	Kuwait)	but	fourth	in	the
world	 in	 human	 development.3	 It’s	 true	 that	 the	 HDI	 rankings	 would	 change
slightly	if	the	component	parts	of	the	index	were	reconfigured,	but	no	reasonable
change	is	going	to	make	Zimbabwe	zoom	up	the	rankings	past	Norway.	The	HDI
provides	 a	 handy	 and	 reasonably	 accurate	 snapshot	 of	 living	 standards	 around
the	globe.

Descriptive	statistics	give	us	insight	into	phenomena	that	we	care	about.	In	that
spirit,	we	can	return	to	the	questions	posed	at	the	beginning	of	the	chapter.	Who
is	 the	best	baseball	player	of	all	 time?	More	 important	 for	 the	purposes	of	 this
chapter,	 what	 descriptive	 statistics	 would	 be	 most	 helpful	 in	 answering	 that
question?	According	 to	Steve	Moyer,	 president	of	Baseball	 Info	Solutions,	 the
three	most	valuable	statistics	 (other	 than	age)	 for	evaluating	any	player	who	 is
not	a	pitcher	would	be	the	following:

1.	On-base	percentage	(OBP),	sometimes	called	the	on-base	average	(OBA):
Measures	 the	 proportion	 of	 the	 time	 that	 a	 player	 reaches	 base
successfully,	 including	 walks	 (which	 are	 not	 counted	 in	 the	 batting



average).
2.	 Slugging	 percentage	 (SLG):	 Measures	 power	 hitting	 by	 calculating	 the
total	bases	reached	per	at	bat.	A	single	counts	as	1,	a	double	is	2,	a	triple	is
3,	and	a	home	run	is	4.	Thus,	a	batter	who	hit	a	single	and	a	triple	in	five	at
bats	would	have	a	slugging	percentage	of	(1	+	3)/5,	or	.800.

3.	At	bats	(AB):	Puts	 the	above	in	context.	Any	mope	can	have	impressive
statistics	 for	 a	 game	or	 two.	A	 superstar	 compiles	 impressive	 “numbers”
over	thousands	of	plate	appearances.

In	Moyer’s	view	(without	hesitation,	I	might	add),	the	best	baseball	player	of	all
time	was	Babe	Ruth	because	of	his	unique	ability	to	hit	and	to	pitch.	Babe	Ruth
still	holds	the	Major	League	career	record	for	slugging	percentage	at	.690.4
What	 about	 the	 economic	 health	 of	 the	 American	 middle	 class?	 Again,	 I

deferred	 to	 the	 experts.	 I	 e-mailed	 Jeff	 Grogger	 (a	 colleague	 of	 mine	 at	 the
University	 of	Chicago)	 and	Alan	Krueger	 (the	 same	Princeton	 economist	who
studied	 terrorists	 and	 is	now	serving	as	chair	of	President	Obama’s	Council	of
Economic	Advisers).	Both	gave	variations	on	the	same	basic	answer.	To	assess
the	economic	health	of	America’s	“middle	class,”	we	should	examine	changes	in
the	median	wage	(adjusted	for	inflation)	over	the	last	several	decades.	They	also
recommended	 examining	 changes	 to	 wages	 at	 the	 25th	 and	 75th	 percentiles
(which	 can	 reasonably	 be	 interpreted	 as	 the	 upper	 and	 lower	 bounds	 for	 the
middle	class).
One	more	 distinction	 is	 in	 order.	When	 assessing	 economic	 health,	 we	 can

examine	income	or	wages.	They	are	not	the	same	thing.	A	wage	is	what	we	are
paid	for	some	fixed	amount	of	labor,	such	as	an	hourly	or	weekly	wage.	Income
is	the	sum	of	all	payments	from	different	sources.	If	workers	take	a	second	job	or
work	more	hours,	their	income	can	go	up	without	a	change	in	the	wage.	(For	that
matter,	 income	 can	 go	 up	 even	 if	 the	wage	 is	 falling,	 provided	 a	worker	 logs
enough	hours	on	the	job.)	However,	if	individuals	have	to	work	more	in	order	to
earn	more,	it’s	hard	to	evaluate	the	overall	effect	on	their	well-being.	The	wage
is	a	 less	ambiguous	measure	of	how	Americans	are	being	compensated	for	 the
work	they	do;	the	higher	the	wage,	the	more	workers	take	home	for	every	hour
on	the	job.
Having	 said	 all	 that,	 here	 is	 a	graph	of	American	wages	over	 the	past	 three

decades.	I’ve	also	added	the	90th	percentile	to	illustrate	changes	in	the	wages	for
middle-class	workers	compared	over	this	time	frame	to	those	workers	at	the	top
of	the	distribution.



Source:	“Changes	 in	 the	Distribution	of	Workers’	Hourly	Wages	between	1979	and	2009,”	Congressional
Budget	 Office,	 February	 16,	 2011.	 The	 data	 for	 the	 chart	 can	 be	 found	 at
http://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/120xx/doc12051/02-16-wagedispersion.pdf.

A	variety	of	conclusions	can	be	drawn	from	these	data.	They	do	not	present	a
single	“right”	answer	with	regard	to	the	economic	fortunes	of	the	middle	class.
They	do	tell	us	that	the	typical	worker,	an	American	worker	earning	the	median
wage,	has	been	“running	 in	place”	 for	nearly	 thirty	years.	Workers	 at	 the	90th
percentile	have	done	much,	much	better.	Descriptive	statistics	help	to	frame	the
issue.	What	we	do	about	it,	if	anything,	is	an	ideological	and	political	question.

APPENDIX	TO	CHAPTER	2

Data	for	the	printer	defects	graphics

Formula	for	variance	and	standard	deviation
Variance	and	standard	deviation	are	the	most	common	statistical	mechanisms	for
measuring	and	describing	the	dispersion	of	a	distribution.	The	variance,	which	is



often	 represented	 by	 the	 symbol	σ2,	 is	 calculated	 by	 determining	 how	 far	 the
observations	within	a	distribution	lie	from	the	mean.	However,	 the	twist	 is	 that
the	 difference	 between	 each	 observation	 and	 the	mean	 is	 squared;	 the	 sum	 of
those	squared	terms	is	then	divided	by	the	number	of	observations.
Specifically:

Because	 the	 difference	 between	 each	 term	 and	 the	 mean	 is	 squared,	 the
formula	 for	calculating	variance	puts	particular	weight	on	observations	 that	 lie
far	 from	 the	 mean,	 or	 outliers,	 as	 the	 following	 table	 of	 student	 heights
illustrates.

*	Absolute	value	is	the	distance	between	two	figures,	regardless	of	direction,	so	that	it	is	always	positive.	In
this	case,	it	represents	the	number	of	inches	between	the	height	of	the	individual	and	the	mean.

Both	 groups	 of	 students	 have	 a	 mean	 height	 of	 70	 inches.	 The	 heights	 of
students	 in	both	groups	also	differ	 from	the	mean	by	 the	same	number	of	 total
inches:	 14.	 By	 that	 measure	 of	 dispersion,	 the	 two	 distributions	 are	 identical.
However,	the	variance	for	Group	2	is	higher	because	of	the	weight	given	in	the
variance	 formula	 to	 values	 that	 lie	 particularly	 far	 from	 the	mean—Sahar	 and
Narciso	in	this	case.
Variance	 is	 rarely	 used	 as	 a	 descriptive	 statistic	 on	 its	 own.	 Instead,	 the

variance	is	most	useful	as	a	step	toward	calculating	the	standard	deviation	of	a
distribution,	which	is	a	more	intuitive	tool	as	a	descriptive	statistic.



The	standard	deviation	for	a	set	of	observations	is	the	square	root	of	the
variance:

For	any	set	of	n	observations	x1,	x2,	x3	.	.	.	xn	with	mean	µ,
standard	deviation	=	σ	=	square	root	of	this	whole	quantity	=

*	With	twelve	bar	patrons,	the	median	would	be	the	midpoint	between	the	income	of	the	guy	on	the	sixth
stool	and	the	income	of	the	guy	on	the	seventh	stool.	Since	they	both	make	$35,000,	the	median	is	$35,000.
If	one	made	$35,000	and	the	other	made	$36,000,	the	median	for	the	whole	group	would	be	$35,500.
*	Manufacturing	update:	It	turns	out	that	nearly	all	of	the	defective	printers	were	being	manufactured	at	a
plant	 in	 Kentucky	 where	 workers	 had	 stripped	 parts	 off	 the	 assembly	 line	 in	 order	 to	 build	 a	 bourbon
distillery.	Both	the	perpetually	drunk	employees	and	the	random	missing	pieces	on	the	assembly	line	appear
to	have	compromised	the	quality	of	the	printers	being	produced	there.
*	Remarkably,	this	person	was	one	of	the	ten	people	with	annual	incomes	of	$35,000	who	were	sitting	on
bar	stools	when	Bill	Gates	walked	in	with	his	parrot.	Go	figure!



CHAPTER	3

Deceptive	Description
“He’s	got	a	great	personality!”	and	other
true	but	grossly	misleading	statements

To	 anyone	 who	 has	 ever	 contemplated	 dating,	 the	 phrase	 “he’s	 got	 a	 great
personality”	 usually	 sets	 off	 alarm	 bells,	 not	 because	 the	 description	 is
necessarily	wrong,	but	for	what	it	may	not	 reveal,	such	as	the	fact	 that	 the	guy
has	a	prison	record	or	that	his	divorce	is	“not	entirely	final.”	We	don’t	doubt	that
this	 guy	 has	 a	 great	 personality;	 we	 are	 wary	 that	 a	 true	 statement,	 the	 great
personality,	is	being	used	to	mask	or	obscure	other	information	in	a	way	that	is
seriously	 misleading	 (assuming	 that	 most	 of	 us	 would	 prefer	 not	 to	 date	 ex-
felons	who	are	still	married).	The	statement	 is	not	a	 lie	per	se,	meaning	 that	 it
wouldn’t	get	you	convicted	of	perjury,	but	it	still	could	be	so	inaccurate	as	to	be
untruthful.
And	 so	 it	 is	 with	 statistics.	 Although	 the	 field	 of	 statistics	 is	 rooted	 in

mathematics,	and	mathematics	is	exact,	the	use	of	statistics	to	describe	complex
phenomena	is	not	exact.	That	leaves	plenty	of	room	for	shading	the	truth.	Mark
Twain	famously	remarked	that	there	are	three	kinds	of	lies:	lies,	damned	lies,	and
statistics.*	As	the	last	chapter	explained,	most	phenomena	that	we	care	about	can
be	described	 in	multiple	ways.	Once	 there	are	multiple	ways	of	describing	 the
same	thing	(e.g.,	“he’s	got	a	great	personality”	or	“he	was	convicted	of	securities
fraud”),	the	descriptive	statistics	that	we	choose	to	use	(or	not	to	use)	will	have	a
profound	 impact	 on	 the	 impression	 that	 we	 leave.	 Someone	 with	 nefarious
motives	can	use	perfectly	good	facts	and	figures	to	support	entirely	disputable	or
illegitimate	conclusions.
We	 ought	 to	 begin	 with	 the	 crucial	 distinction	 between	 “precision”	 and

“accuracy.”	 These	 words	 are	 not	 interchangeable.	 Precision	 reflects	 the
exactitude	with	which	we	can	express	something.	In	a	description	of	the	length
of	your	commute,	“41.6	miles”	is	more	precise	than	“about	40	miles,”	which	is
more	 precise	 than	 “a	 long	 f——ing	way.”	 If	 you	 ask	me	 how	 far	 it	 is	 to	 the



nearest	gas	station,	and	I	tell	you	that	it’s	1.265	miles	to	the	east,	that’s	a	precise
answer.	Here	is	the	problem:	That	answer	may	be	entirely	inaccurate	if	 the	gas
station	 happens	 to	 be	 in	 the	 other	 direction.	 On	 the	 other	 hand,	 if	 I	 tell	 you,
“Drive	ten	minutes	or	so	until	you	see	a	hot	dog	stand.	The	gas	station	will	be	a
couple	 hundred	 yards	 after	 that	 on	 the	 right.	 If	 you	 pass	 the	 Hooters,	 you’ve
gone	 too	 far,”	 my	 answer	 is	 less	 precise	 than	 “1.265	 miles	 to	 the	 east”	 but
significantly	better	because	I	am	sending	you	in	the	direction	of	the	gas	station.
Accuracy	is	a	measure	of	whether	a	figure	is	broadly	consistent	with	the	truth—
hence	the	danger	of	confusing	precision	with	accuracy.	If	an	answer	is	accurate,
then	more	precision	 is	usually	better.	But	no	amount	of	precision	can	make	up
for	inaccuracy.
In	fact,	precision	can	mask	inaccuracy	by	giving	us	a	false	sense	of	certainty,

either	 inadvertently	 or	 quite	 deliberately.	 Joseph	 McCarthy,	 the	 Red-baiting
senator	 from	Wisconsin,	 reached	 the	 apogee	 of	 his	 reckless	 charges	 in	 1950
when	 he	 alleged	 not	 only	 that	 the	 U.S.	 State	 Department	 was	 infiltrated	 with
communists,	but	that	he	had	a	list	of	their	names.	During	a	speech	in	Wheeling,
West	Virginia,	McCarthy	waved	in	the	air	a	piece	of	paper	and	declared,	“I	have
here	 in	my	 hand	 a	 list	 of	 205—a	 list	 of	 names	 that	were	made	 known	 to	 the
Secretary	 of	 State	 as	 being	 members	 of	 the	 Communist	 Party	 and	 who
nevertheless	 are	 still	working	and	 shaping	policy	 in	 the	State	Department.”1	 It
turns	out	that	the	paper	had	no	names	on	it	at	all,	but	the	specificity	of	the	charge
gave	it	credibility,	despite	the	fact	that	it	was	a	bald-faced	lie.
I	 learned	 the	 important	 distinction	between	precision	 and	 accuracy	 in	 a	 less

malicious	 context.	 For	 Christmas	 one	 year	 my	 wife	 bought	 me	 a	 golf	 range
finder	 to	 calculate	 distances	 on	 the	 course	 from	my	 golf	 ball	 to	 the	 hole.	 The
device	works	with	some	kind	of	laser;	I	stand	next	to	my	ball	in	the	fairway	(or
rough)	 and	 point	 the	 range	 finder	 at	 the	 flag	 on	 the	 green,	 at	which	 point	 the
device	calculates	the	exact	distance	that	I’m	supposed	to	hit	the	ball.	This	is	an
improvement	upon	 the	standard	yardage	markers,	which	give	distances	only	 to
the	 center	 of	 the	 green	 (and	 are	 therefore	 accurate	 but	 less	 precise).	With	my
Christmas-gift	range	finder	I	was	able	to	know	that	I	was	147.2	yards	from	the
hole.	I	expected	the	precision	of	this	nifty	technology	to	improve	my	golf	game.
Instead,	it	got	appreciably	worse.
There	 were	 two	 problems.	 First,	 I	 used	 the	 stupid	 device	 for	 three	 months

before	I	realized	that	it	was	set	to	meters	rather	than	to	yards;	every	seemingly
precise	calculation	(147.2)	was	wrong.	Second,	I	would	sometimes	inadvertently
aim	the	laser	beam	at	the	trees	behind	the	green,	rather	than	at	the	flag	marking



the	hole,	so	that	my	“perfect”	shot	would	go	exactly	the	distance	it	was	supposed
to	go—right	over	the	green	into	the	forest.	The	lesson	for	me,	which	applies	to
all	statistical	analysis,	is	that	even	the	most	precise	measurements	or	calculations
should	be	checked	against	common	sense.
To	take	an	example	with	more	serious	implications,	many	of	the	Wall	Street

risk	management	models	 prior	 to	 the	 2008	 financial	 crisis	were	 quite	 precise.
The	 concept	 of	 “value	 at	 risk”	 allowed	 firms	 to	 quantify	 with	 precision	 the
amount	 of	 the	 firm’s	 capital	 that	 could	 be	 lost	 under	 different	 scenarios.	 The
problem	was	 that	 the	 supersophisticated	models	were	 the	 equivalent	 of	 setting
my	 range	 finder	 to	 meters	 rather	 than	 to	 yards.	 The	 math	 was	 complex	 and
arcane.	The	answers	it	produced	were	reassuringly	precise.	But	the	assumptions
about	what	might	happen	 to	global	markets	 that	were	embedded	 in	 the	models
were	 just	 plain	wrong,	making	 the	 conclusions	wholly	 inaccurate	 in	ways	 that
destabilized	not	only	Wall	Street	but	the	entire	global	economy.
Even	 the	 most	 precise	 and	 accurate	 descriptive	 statistics	 can	 suffer	 from	 a

more	fundamental	problem:	a	lack	of	clarity	over	what	exactly	we	are	trying	to
define,	 describe,	 or	 explain.	 Statistical	 arguments	 have	much	 in	 common	with
bad	marriages;	the	disputants	often	talk	past	one	another.	Consider	an	important
economic	question:	How	healthy	 is	American	manufacturing?	One	often	hears
that	 American	 manufacturing	 jobs	 are	 being	 lost	 in	 huge	 numbers	 to	 China,
India,	 and	 other	 low-wage	 countries.	 One	 also	 hears	 that	 high-tech
manufacturing	still	thrives	in	the	United	States	and	that	America	remains	one	of
the	world’s	top	exporters	of	manufactured	goods.	Which	is	it?	This	would	appear
to	 be	 a	 case	 in	 which	 sound	 analysis	 of	 good	 data	 could	 reconcile	 these
competing	narratives.	Is	U.S.	manufacturing	profitable	and	globally	competitive,
or	is	it	shrinking	in	the	face	of	intense	foreign	competition?
Both.	The	British	news	magazine	the	Economist	reconciled	the	two	seemingly

contradictory	views	of	American	manufacturing	with	the	following	graph.

“The	Rustbelt	Recovery,”	March	10,	2011



The	 seeming	 contradiction	 lies	 in	 how	 one	 defines	 the	 “health”	 of	 U.S.
manufacturing.	In	terms	of	output—the	total	value	of	goods	produced	and	sold—
the	U.S.	manufacturing	sector	grew	steadily	in	the	2000s,	took	a	big	hit	during
the	 Great	 Recession,	 and	 has	 since	 bounced	 back	 robustly.	 This	 is	 consistent
with	data	from	the	CIA’s	World	Factbook	showing	that	the	United	States	is	the
third-largest	manufacturing	 exporter	 in	 the	world,	 behind	China	 and	Germany.
The	United	States	remains	a	manufacturing	powerhouse.
But	 the	 graph	 in	 the	Economist	 has	 a	 second	 line,	 which	 is	 manufacturing

employment.	The	number	of	manufacturing	jobs	in	the	United	States	has	fallen
steadily;	 roughly	 six	 million	 manufacturing	 jobs	 were	 lost	 in	 the	 last	 decade.
Together,	 these	 two	 stories—rising	 manufacturing	 output	 and	 falling
employment—tell	 the	 complete	 story.	Manufacturing	 in	 the	 United	 States	 has
grown	 steadily	 more	 productive,	 meaning	 that	 factories	 are	 producing	 more
output	 with	 fewer	 workers.	 This	 is	 good	 from	 a	 global	 competitiveness
standpoint,	for	it	makes	American	products	more	competitive	with	manufactured
goods	from	low-wage	countries.	(One	way	to	compete	with	a	firm	that	can	pay
workers	 $2	 an	 hour	 is	 to	 create	 a	manufacturing	 process	 so	 efficient	 that	 one
worker	 earning	 $40	 can	 do	 twenty	 times	 as	much.)	But	 there	 are	 a	 lot	 fewer
manufacturing	 jobs,	 which	 is	 terrible	 news	 for	 the	 displaced	 workers	 who
depended	on	those	wages.
Since	this	is	a	book	about	statistics	and	not	manufacturing,	let’s	go	back	to	the

main	 point,	 which	 is	 that	 the	 “health”	 of	 U.S.	 manufacturing—something
seemingly	 easy	 to	 quantify—depends	 on	 how	 one	 chooses	 to	 define	 health:
output	or	employment?	In	this	case	(and	many	others),	the	most	complete	story
comes	 from	 including	both	 figures,	 as	 the	Economist	wisely	chose	 to	do	 in	 its
graph.
Even	when	we	agree	on	a	single	measure	of	success,	say,	student	test	scores,

there	is	plenty	of	statistical	wiggle	room.	See	if	you	can	reconcile	the	following
hypothetical	statements,	both	of	which	could	be	true:



Politician	A	(the	challenger):	“Our	schools	are	getting	worse!	Sixty	percent	of
our	schools	had	lower	test	scores	this	year	than	last	year.”
Politician	B	(the	incumbent):	“Our	schools	are	getting	better!	Eighty	percent

of	our	students	had	higher	test	scores	this	year	than	last	year.”
Here’s	 a	 hint:	 The	 schools	 do	 not	 all	 necessarily	 have	 the	 same	 number	 of

students.	 If	 you	 take	 another	 look	 at	 the	 seemingly	 contradictory	 statements,
what	 you’ll	 see	 is	 that	 one	 politician	 is	 using	 schools	 as	 his	 unit	 of	 analysis
(“Sixty	percent	of	our	schools	.	.	.”),	and	the	other	is	using	students	as	the	unit	of
analysis	(“Eighty	percent	of	our	students	.	.	.”).	The	unit	of	analysis	is	the	entity
being	 compared	 or	 described	 by	 the	 statistics—school	 performance	 by	 one	 of
them	and	student	performance	by	the	other.	It’s	entirely	possible	for	most	of	the
students	 to	 be	 improving	 and	most	 of	 the	 schools	 to	 be	 getting	worse—if	 the
students	showing	improvement	happen	to	be	 in	very	big	schools.	To	make	 this
example	more	intuitive,	let’s	do	the	same	exercise	by	using	American	states:
Politician	A	 (a	 populist):	 “Our	 economy	 is	 in	 the	 crapper!	Thirty	 states	 had

falling	incomes	last	year.”
Politician	B	(more	of	an	elitist):	“Our	economy	is	showing	appreciable	gains:

Seventy	percent	of	Americans	had	rising	incomes	last	year.”
What	 I	would	 infer	 from	 those	statements	 is	 that	 the	biggest	 states	have	 the

healthiest	economies:	New	York,	California,	Texas,	Illinois,	and	so	on.	The	thirty
states	 with	 falling	 average	 incomes	 are	 likely	 to	 be	 much	 smaller:	 Vermont,
North	Dakota,	Rhode	 Island,	 and	 so	 on.	Given	 the	 disparity	 in	 the	 size	 of	 the
states,	it’s	entirely	possible	that	the	majority	of	states	are	doing	worse	while	the
majority	of	Americans	are	doing	better.	The	key	lesson	is	to	pay	attention	to	the
unit	of	analysis.	Who	or	what	 is	being	described,	and	is	 that	different	from	the
“who”	or	“what”	being	described	by	someone	else?
Although	 the	 examples	 above	 are	 hypothetical,	 here	 is	 a	 crucial	 statistical

question	that	is	not:	Is	globalization	making	income	inequality	around	the	planet
better	 or	 worse?	 By	 one	 interpretation,	 globalization	 has	 merely	 exacerbated
existing	income	inequalities;	richer	countries	in	1980	(as	measured	by	GDP	per
capita)	tended	to	grow	faster	between	1980	and	2000	than	poorer	countries.2	The
rich	 countries	 just	 got	 richer,	 suggesting	 that	 trade,	 outsourcing,	 foreign
investment,	and	the	other	components	of	“globalization”	are	merely	tools	for	the
developed	world	 to	 extend	 its	 economic	 hegemony.	Down	with	 globalization!
Down	with	globalization!
But	hold	on	a	moment.	The	same	data	can	(and	should)	be	interpreted	entirely

differently	 if	 one	 changes	 the	 unit	 of	 analysis.	 We	 don’t	 care	 about	 poor



countries;	we	care	about	poor	people.	And	a	high	proportion	of	the	world’s	poor
people	 happen	 to	 live	 in	 China	 and	 India.	 Both	 countries	 are	 huge	 (with	 a
population	 over	 a	 billion);	 each	 was	 relatively	 poor	 in	 1980.	 Not	 only	 have
China	and	India	grown	rapidly	over	the	past	several	decades,	but	they	have	done
so	in	large	part	because	of	their	increased	economic	integration	with	the	rest	of
the	world.	They	 are	 “rapid	globalizers,”	 as	 the	Economist	 has	 described	 them.
Given	 that	 our	 goal	 is	 to	 ameliorate	 human	misery,	 it	makes	 no	 sense	 to	 give
China	 (population	 1.3	 billion)	 the	 same	 weight	 as	 Mauritius	 (population	 1.3
million)	when	examining	the	effects	of	globalization	on	the	poor.
The	 unit	 of	 analysis	 should	 be	 people,	 not	 countries.	What	 really	 happened

between	1980	and	2000	is	a	lot	like	my	fake	school	example	above.	The	bulk	of
the	world’s	poor	happened	to	live	in	two	giant	countries	that	grew	extremely	fast
as	 they	 became	more	 integrated	 into	 the	 global	 economy.	 The	 proper	 analysis
yields	an	entirely	different	conclusion	about	the	benefits	of	globalization	for	the
world’s	 poor.	 As	 the	 Economist	 points	 out,	 “If	 you	 consider	 people,	 not
countries,	global	inequality	is	falling	rapidly.”
The	 telecommunications	 companies	 AT&T	 and	 Verizon	 have	 recently

engaged	in	an	advertising	battle	that	exploits	this	kind	of	ambiguity	about	what
is	being	described.	Both	companies	provide	cellular	phone	 service.	One	of	 the
primary	concerns	of	most	cell	phone	users	is	the	quality	of	the	service	in	places
where	 they	 are	 likely	 to	make	 or	 receive	 phone	 calls.	Thus,	 a	 logical	 point	 of
comparison	 between	 the	 two	 firms	 is	 the	 size	 and	 quality	 of	 their	 networks.
While	 consumers	 just	 want	 decent	 cell	 phone	 service	 in	 lots	 of	 places,	 both
AT&T	 and	 Verizon	 have	 come	 up	 with	 different	 metrics	 for	 measuring	 the
somewhat	amorphous	demand	for	“decent	cell	phone	service	in	lots	of	places.”
Verizon	 launched	 an	 aggressive	 advertising	 campaign	 touting	 the	 geographic
coverage	of	its	network;	you	may	remember	the	maps	of	the	United	States	that
showed	 the	 large	 percentage	 of	 the	 country	 covered	 by	 the	 Verizon	 network
compared	with	the	relatively	paltry	geographic	coverage	of	the	AT&T	network.
The	unit	of	analysis	chosen	by	Verizon	is	geographic	area	covered—because	the
company	has	more	of	it.
AT&T	countered	by	launching	a	campaign	that	changed	the	unit	of	analysis.

Its	billboards	advertised	that	“AT&T	covers	97	percent	of	Americans.”	Note	the
use	of	the	word	“Americans”	rather	than	“America.”	AT&T	focused	on	the	fact
that	most	 people	 don’t	 live	 in	 rural	Montana	 or	 the	Arizona	 desert.	 Since	 the
population	is	not	evenly	distributed	across	the	physical	geography	of	the	United
States,	the	key	to	good	cell	service	(the	campaign	argued	implicitly)	is	having	a



network	 in	 place	 where	 callers	 actually	 live	 and	 work,	 not	 necessarily	 where
they	 go	 camping.	 As	 someone	 who	 spends	 a	 fair	 bit	 of	 time	 in	 rural	 New
Hampshire,	however,	my	sympathies	are	with	Verizon	on	this	one.

Our	old	friends	the	mean	and	the	median	can	also	be	used	for	nefarious	ends.	As
you	 should	 recall	 from	 the	 last	 chapter,	 both	 the	 median	 and	 the	 mean	 are
measures	of	the	“middle”	of	a	distribution,	or	its	“central	tendency.”	The	mean	is
a	 simple	 average:	 the	 sum	 of	 the	 observations	 divided	 by	 the	 number	 of
observations.	(The	mean	of	3,	4,	5,	6,	and	102	is	24.)	The	median	is	the	midpoint
of	 the	 distribution;	 half	 of	 the	 observations	 lie	 above	 the	median	 and	 half	 lie
below.	(The	median	of	3,	4,	5,	6,	and	102	is	5.)	Now,	the	clever	reader	will	see
that	there	is	a	sizable	difference	between	24	and	5.	If,	for	some	reason,	I	would
like	 to	 describe	 this	 group	 of	 numbers	 in	 a	way	 that	makes	 it	 look	 big,	 I	will
focus	on	the	mean.	If	I	want	to	make	it	look	smaller,	I	will	cite	the	median.
Now	let’s	look	at	how	this	plays	out	in	real	life.	Consider	the	George	W.	Bush

tax	cuts,	which	were	 touted	by	 the	Bush	administration	as	 something	good	 for
most	American	families.	While	pushing	the	plan,	the	administration	pointed	out
that	 92	 million	 Americans	 would	 receive	 an	 average	 tax	 reduction	 of	 over
$1,000	 ($1,083	 to	 be	 precise).	But	was	 that	 summary	 of	 the	 tax	 cut	 accurate?
According	 to	 the	New	 York	 Times,	 “The	 data	 don’t	 lie,	 but	 some	 of	 them	 are
mum.”
Would	92	million	Americans	be	getting	a	tax	cut?	Yes.
Would	most	of	 those	people	be	getting	a	 tax	cut	of	around	$1,000?	No.	The

median	tax	cut	was	less	than	$100.
A	relatively	small	number	of	extremely	wealthy	individuals	were	eligible	for

very	 large	 tax	cuts;	 these	big	numbers	skew	 the	mean,	making	 the	average	 tax
cut	look	bigger	than	what	most	Americans	would	likely	receive.	The	median	is
not	sensitive	to	outliers,	and,	in	this	case,	is	probably	a	more	accurate	description
of	how	the	tax	cuts	affected	the	typical	household.
Of	course,	 the	median	can	also	do	 its	share	of	dissembling	because	 it	 is	not

sensitive	to	outliers.	Suppose	that	you	have	a	potentially	fatal	illness.	The	good
news	 is	 that	 a	 new	 drug	 has	 been	 developed	 that	 might	 be	 effective.	 The
drawback	is	that	it’s	extremely	expensive	and	has	many	unpleasant	side	effects.
“But	does	it	work?”	you	ask.	The	doctor	informs	you	that	the	new	drug	increases
the	median	life	expectancy	among	patients	with	your	disease	by	two	weeks.	That
is	 hardly	 encouraging	 news;	 the	 drug	 may	 not	 be	 worth	 the	 cost	 and
unpleasantness.	Your	insurance	company	refuses	to	pay	for	the	treatment;	it	has



a	pretty	good	case	on	the	basis	of	the	median	life	expectancy	figures.
Yet	 the	median	may	be	 a	 horribly	misleading	 statistic	 in	 this	 case.	 Suppose

that	 many	 patients	 do	 not	 respond	 to	 the	 new	 treatment	 but	 that	 some	 large
number	of	patients,	say	30	or	40	percent,	are	cured	entirely.	This	success	would
not	show	up	in	the	median	(though	the	mean	life	expectancy	of	those	taking	the
drug	would	look	very	impressive).	In	this	case,	the	outliers—those	who	take	the
drug	and	live	for	a	long	time—would	be	highly	relevant	to	your	decision.	And	it
is	not	merely	a	hypothetical	case.	Evolutionary	biologist	Stephen	Jay	Gould	was
diagnosed	 with	 a	 form	 of	 cancer	 that	 had	 a	 median	 survival	 time	 of	 eight
months;	he	died	of	a	different	and	unrelated	kind	of	cancer	twenty	years	later.3
Gould	 subsequently	 wrote	 a	 famous	 article	 called	 “The	 Median	 Isn’t	 the
Message,”	 in	which	he	 argued	 that	 his	 scientific	 knowledge	of	 statistics	 saved
him	 from	 the	 erroneous	 conclusion	 that	 he	would	necessarily	 be	dead	 in	 eight
months.	The	definition	of	 the	median	 tells	us	 that	half	 the	patients	will	 live	 at
least	 eight	months—and	 possibly	much,	much	 longer	 than	 that.	 The	mortality
distribution	is	“right-skewed,”	which	is	more	than	a	technicality	if	you	happen	to
have	the	disease.4
In	 this	 example,	 the	 defining	 characteristic	 of	 the	median—that	 it	 does	 not

weight	observations	on	the	basis	of	how	far	they	lie	from	the	midpoint,	only	on
whether	they	lie	above	or	below—turns	out	 to	be	its	weakness.	In	contrast,	 the
mean	 is	 affected	 by	 dispersion.	 From	 the	 standpoint	 of	 accuracy,	 the	 median
versus	 mean	 question	 revolves	 around	 whether	 the	 outliers	 in	 a	 distribution
distort	what	is	being	described	or	are	instead	an	important	part	of	the	message.
(Once	 again,	 judgment	 trumps	 math.)	 Of	 course,	 nothing	 says	 that	 you	 must
choose	 the	median	 or	 the	mean.	Any	 comprehensive	 statistical	 analysis	would
likely	present	both.	When	just	the	median	or	the	mean	appears,	it	may	be	for	the
sake	 of	 brevity—or	 it	may	be	 because	 someone	 is	 seeking	 to	 “persuade”	with
statistics.

Those	of	a	certain	age	may	remember	the	following	exchange	(as	I	recollect	it)
between	 the	 characters	 played	 by	 Chevy	 Chase	 and	 Ted	Knight	 in	 the	movie
Caddyshack.	The	two	men	meet	in	the	locker	room	after	both	have	just	come	off
the	golf	course:

TED	KNIGHT:	What	did	you	shoot?
CHEVY	CHASE:	Oh,	I	don’t	keep	score.
TED	KNIGHT:	Then	how	do	you	compare	yourself	to	other	golfers?



CHEVY	CHASE:	By	height.

I’m	not	going	to	try	to	explain	why	this	is	funny.	I	will	say	that	a	great	many
statistical	 shenanigans	 arise	 from	 “apples	 and	 oranges”	 comparisons.	 Suppose
you	are	trying	to	compare	the	price	of	a	hotel	room	in	London	with	the	price	of	a
hotel	 room	 in	 Paris.	 You	 send	 your	 six-year-old	 to	 the	 computer	 to	 do	 some
Internet	 research,	 since	 she	 is	much	 faster	 and	 better	 at	 it	 than	 you	 are.	 Your
child	 reports	back	 that	hotel	 rooms	 in	Paris	 are	more	 expensive,	 around	180	a
night;	a	comparable	room	in	London	is	150	a	night.
You	would	 likely	 explain	 to	 your	 child	 the	 difference	 between	 pounds	 and

euros,	and	then	send	her	back	to	the	computer	to	find	the	exchange	rate	between
the	 two	 currencies	 so	 that	 you	 could	 make	 a	 meaningful	 comparison.	 (This
example	 is	 loosely	 rooted	 in	 truth;	 after	 I	 paid	 100	 rupees	 for	 a	 pot	 of	 tea	 in
India,	my	daughter	wanted	to	know	why	everything	in	India	was	so	expensive.)
Obviously	the	numbers	on	currency	from	different	countries	mean	nothing	until
we	convert	 them	into	comparable	units.	What	is	 the	exchange	rate	between	the
pound	and	the	euro,	or,	in	the	case	of	India,	between	the	dollar	and	the	rupee?
This	seems	like	a	painfully	obvious	lesson—yet	one	that	is	routinely	ignored,

particularly	by	politicians	and	Hollywood	studios.	These	folks	clearly	recognize
the	difference	between	euros	and	pounds;	 instead,	 they	overlook	a	more	subtle
example	 of	 apples	 and	 oranges:	 inflation.	A	 dollar	 today	 is	 not	 the	 same	 as	 a
dollar	 sixty	years	 ago;	 it	 buys	much	 less.	Because	of	 inflation,	 something	 that
cost	$1	in	1950	would	cost	$9.37	in	2011.	As	a	result,	any	monetary	comparison
between	1950	and	2011	without	adjusting	for	changes	in	the	value	of	the	dollar
would	be	 less	accurate	 than	comparing	 figures	 in	euros	and	pounds—since	 the
euro	and	the	pound	are	closer	to	each	other	in	value	than	a	1950	dollar	is	to	a
2011	dollar.
This	is	such	an	important	phenomenon	that	economists	have	terms	to	denote

whether	figures	have	been	adjusted	for	inflation	or	not.	Nominal	figures	are	not
adjusted	 for	 inflation.	 A	 comparison	 of	 the	 nominal	 cost	 of	 a	 government
program	 in	 1970	 to	 the	 nominal	 cost	 of	 the	 same	 program	 in	 2011	 merely
compares	 the	 size	 of	 the	 checks	 that	 the	 Treasury	wrote	 in	 those	 two	 years—
without	any	recognition	that	a	dollar	in	1970	bought	more	stuff	than	a	dollar	in
2011.	If	we	spent	$10	million	on	a	program	in	1970	to	provide	war	veterans	with
housing	 assistance	 and	 $40	million	 on	 the	 same	 program	 in	 2011,	 the	 federal
commitment	to	that	program	has	actually	gone	down.	Yes,	spending	has	gone	up
in	 nominal	 terms,	 but	 that	 does	 not	 reflect	 the	 changing	 value	 of	 the	 dollars



being	spent.	One	1970	dollar	 is	equal	 to	$5.83	 in	2011;	 the	government	would
need	 to	 spend	 $58.3	million	 on	 veterans’	 housing	 benefits	 in	 2011	 to	 provide
support	comparable	to	the	$10	million	it	was	spending	in	1970.
Real	 figures,	 on	 the	 other	 hand,	 are	 adjusted	 for	 inflation.	 The	 most

commonly	 accepted	methodology	 is	 to	 convert	 all	 of	 the	 figures	 into	 a	 single
unit,	 such	 as	 2011	dollars,	 to	make	 an	 “apples	 and	 apples”	 comparison.	Many
websites,	 including	 that	 of	 the	 U.S.	 Bureau	 of	 Labor	 Statistics,	 have	 simple
inflation	calculators	that	will	compare	the	value	of	a	dollar	at	different	points	in
time.*	For	a	real	(yes,	a	pun)	example	of	how	statistics	can	look	different	when
adjusted	 for	 inflation,	 check	 out	 the	 following	 graph	 of	 the	 U.S.	 federal
minimum	wage,	which	plots	both	the	nominal	value	of	the	minimum	wage	and
its	real	purchasing	power	in	2010	dollars.

Source:	http://oregonstate.edu/instruct/anth484/minwage.html.

The	federal	minimum	wage—the	number	posted	on	the	bulletin	board	in	some
remote	corner	of	your	office—is	set	by	Congress.	This	wage,	currently	$7.25,	is
a	nominal	figure.	Your	boss	does	not	have	to	ensure	that	$7.25	buys	as	much	as
it	did	two	years	ago;	he	just	has	to	make	sure	that	you	get	a	minimum	of	$7.25
for	every	hour	of	work	that	you	do.	It’s	all	about	the	number	on	the	check,	not
what	that	number	can	buy.
Yet	 inflation	 erodes	 the	 purchasing	 power	 of	 the	minimum	wage	 over	 time

(and	every	other	nominal	wage,	which	is	why	unions	typically	negotiate	“cost	of
living	 adjustments”).	 If	 prices	 rise	 faster	 than	 Congress	 raises	 the	 minimum
wage,	the	real	value	of	that	minimum	hourly	payment	will	fall.	Supporters	of	a
minimum	wage	should	care	about	 the	 real	value	of	 that	wage,	 since	 the	whole



point	 of	 the	 law	 is	 to	 guarantee	 low-wage	 workers	 some	 minimum	 level	 of
consumption	for	an	hour	of	work,	not	to	give	them	a	check	with	a	big	number	on
it	 that	buys	 less	 than	 it	 used	 to.	 (If	 that	were	 the	 case,	 then	we	could	 just	pay
low-wage	workers	in	rupees.)
Hollywood	studios	may	be	 the	most	 egregiously	oblivious	 to	 the	distortions

caused	 by	 inflation	 when	 comparing	 figures	 at	 different	 points	 in	 time—and
deliberately	so.	What	were	the	top	five	highest-grossing	films	(domestic)	of	all
time	as	of	2011?5

1.	Avatar	(2009)
2.	Titanic	(1997)
3.	The	Dark	Knight	(2008)
4.	Star	Wars	Episode	IV	(1977)
5.	Shrek	2	(2004)

Now	you	may	feel	that	list	looks	a	little	suspect.	These	were	successful	films
—but	Shrek	2?	Was	that	really	a	greater	commercial	success	than	Gone	with	the
Wind?	The	Godfather?	 Jaws?	 No,	 no,	 and	 no.	 Hollywood	 likes	 to	make	 each
blockbuster	 look	bigger	and	more	 successful	 than	 the	 last.	One	way	 to	do	 that
would	 be	 to	 quote	 box	 office	 receipts	 in	 Indian	 rupees,	 which	 would	 inspire
headlines	such	as	 the	following:	“Harry	Potter	Breaks	Box	Office	Record	with
Weekend	Receipts	 of	 1.3	Trillion!”	But	 even	 the	most	 dim-witted	moviegoers
would	be	suspicious	of	figures	that	are	large	only	because	they	are	quoted	in	a
currency	with	relatively	little	purchasing	power.	Instead,	Hollywood	studios	(and
the	 journalists	who	 report	 on	 them)	merely	 use	 nominal	 figures,	which	makes
recent	movies	look	successful	largely	because	ticket	prices	are	higher	now	than
they	were	ten,	twenty,	or	fifty	years	ago.	(When	Gone	with	the	Wind	came	out	in
1939,	a	 ticket	cost	somewhere	in	the	range	of	$.50.)	The	most	accurate	way	to
compare	 commercial	 success	 over	 time	 would	 be	 to	 adjust	 ticket	 receipts	 for
inflation.	 Earning	 $100	million	 in	 1939	 is	 a	 lot	more	 impressive	 than	 earning
$500	million	in	2011.	So	what	are	the	top	grossing	films	in	the	U.S.	of	all	time,
adjusted	for	inflation?6

1.	Gone	with	the	Wind	(1939)
2.	Star	Wars	Episode	IV	(1977)
3.	The	Sound	of	Music	(1965)
4.	E.T.	(1982)
5.	The	Ten	Commandments	(1956)



In	real	terms,	Avatar	falls	to	number	14;	Shrek	2	falls	all	the	way	to	31st.
Even	comparing	apples	and	apples	leaves	plenty	of	room	for	shenanigans.	As

discussed	 in	 the	 last	 chapter,	 one	 important	 role	 of	 statistics	 is	 to	 describe
changes	in	quantities	over	time.	Are	taxes	going	up?	How	many	cheeseburgers
are	 we	 selling	 compared	 with	 last	 year?	 By	 how	 much	 have	 we	 reduced	 the
arsenic	in	our	drinking	water?	We	often	use	percentages	to	express	these	changes
because	they	give	us	a	sense	of	scale	and	context.	We	understand	what	it	means
to	reduce	the	amount	of	arsenic	in	the	drinking	water	by	22	percent,	whereas	few
of	 us	 would	 know	 whether	 reducing	 arsenic	 by	 one	 microgram	 (the	 absolute
reduction)	would	be	a	significant	change	or	not.	Percentages	don’t	lie—but	they
can	 exaggerate.	One	way	 to	make	 growth	 look	 explosive	 is	 to	 use	 percentage
change	 to	describe	 some	change	 relative	 to	 a	very	 low	 starting	point.	 I	 live	 in
Cook	County,	 Illinois.	 I	was	 shocked	 one	 day	 to	 learn	 that	 the	 portion	 of	my
taxes	 supporting	 the	 Suburban	 Cook	 County	 Tuberculosis	 Sanitarium	 District
was	slated	to	rise	by	527	percent!	However,	I	called	off	my	massive	antitax	rally
(which	was	 really	 still	 in	 the	 planning	 phase)	when	 I	 learned	 that	 this	 change
would	cost	me	 less	 than	a	good	 turkey	sandwich.	The	Tuberculosis	Sanitarium
District	deals	with	roughly	a	hundred	cases	a	year;	it	is	not	a	large	or	expensive
organization.	 The	 Chicago	 Sun-Times	 pointed	 out	 that	 for	 the	 typical
homeowner,	the	tax	bill	would	go	from	$1.15	to	$6.7	Researchers	will	sometimes
qualify	a	growth	figure	by	pointing	out	that	it	is	“from	a	low	base,”	meaning	that
any	increase	is	going	to	look	large	by	comparison.
Obviously	the	flip	side	is	true.	A	small	percentage	of	an	enormous	sum	can	be

a	 big	 number.	 Suppose	 the	 secretary	 of	 defense	 reports	 that	 defense	 spending
will	grow	only	4	percent	this	year.	Great	news!	Not	really,	given	that	the	Defense
Department	 budget	 is	 nearly	 $700	billion.	 Four	 percent	 of	 $700	billion	 is	 $28
billion,	which	can	buy	a	lot	of	turkey	sandwiches.	In	fact,	that	seemingly	paltry	4
percent	increase	in	the	defense	budget	is	more	than	the	entire	NASA	budget	and
about	 the	 same	 as	 the	 budgets	 of	 the	 Labor	 and	 Treasury	 Departments
combined.
In	 a	 similar	 vein,	 your	 kindhearted	boss	might	 point	 out	 that	 as	 a	matter	 of

fairness,	 every	 employee	 will	 be	 getting	 the	 same	 raise	 this	 year,	 10	 percent.
What	 a	magnanimous	gesture—except	 that	 if	 your	 boss	makes	 $1	million	 and
you	make	 $50,000,	 his	 raise	 will	 be	 $100,000	 and	 yours	 will	 be	 $5,000.	 The
statement	“everyone	will	get	the	same	10	percent	raise	this	year”	just	sounds	so
much	better	 than	 “my	 raise	will	 be	 twenty	 times	 bigger	 than	yours.”	Both	 are
true	in	this	case.



Any	comparison	of	a	quantity	changing	over	time	must	have	a	start	point	and
an	end	point.	One	can	sometimes	manipulate	those	points	in	ways	that	affect	the
message.	 I	 once	 had	 a	 professor	 who	 liked	 to	 speak	 about	 his	 “Republican
slides”	 and	 his	 “Democratic	 slides.”	 He	 was	 referring	 to	 data	 on	 defense
spending,	 and	 what	 he	 meant	 was	 that	 he	 could	 organize	 the	 same	 data	 in
different	ways	in	order	to	please	either	Democratic	or	Republican	audiences.	For
his	 Republican	 audiences,	 he	 would	 offer	 the	 following	 slide	 with	 data	 on
increases	 in	 defense	 spending	 under	 Ronald	 Reagan.	 Clearly	 Reagan	 helped
restore	our	commitment	to	defense	and	security,	which	in	turn	helped	to	win	the
Cold	 War.	 No	 one	 can	 look	 at	 these	 numbers	 and	 not	 appreciate	 the	 steely
determination	of	Ronald	Reagan	to	face	down	the	Soviets.

Defense	Spending	in	Billions,	1981–1988

For	the	Democrats,	my	former	professor	merely	used	the	same	(nominal)	data,
but	 a	 longer	 time	 frame.	 For	 this	 group,	 he	 pointed	 out	 that	 Jimmy	 Carter
deserves	 credit	 for	 beginning	 the	 defense	 buildup.	 As	 the	 following
“Democratic”	 slide	 shows,	 the	 defense	 spending	 increases	 from	 1977	 to	 1980
show	the	same	basic	trend	as	the	increases	during	the	Reagan	presidency.	Thank
goodness	that	Jimmy	Carter—a	graduate	of	Annapolis	and	a	former	naval	officer
—began	the	process	of	making	America	strong	again!

Defense	Spending	in	Billions,	1977–1988



Source:	 http://www.usgovernmentspending.com/spend.php?
span=usgs302&year=1988&view=1&expand=30&expandC=&units=b&fy=fy12&local=s&state=US&pie=#usgs302.

While	the	main	point	of	statistics	is	to	present	a	meaningful	picture	of	things
we	care	about,	in	many	cases	we	also	hope	to	act	on	these	numbers.	NFL	teams
want	 a	 simple	measure	 of	 quarterback	 quality	 so	 that	 they	 can	 find	 and	 draft
talented	 players	 out	 of	 college.	 Firms	 measure	 the	 performance	 of	 their
employees	so	that	they	can	promote	those	who	are	valuable	and	fire	those	who
are	 not.	 There	 is	 a	 common	 business	 aphorism:	 “You	 can’t	manage	what	 you
can’t	 measure.”	 True.	 But	 you	 had	 better	 be	 darn	 sure	 that	 what	 you	 are
measuring	is	really	what	you	are	trying	to	manage.
Consider	 school	 quality.	This	 is	 a	 crucial	 thing	 to	measure,	 since	we	would

like	 to	 reward	 and	 emulate	 “good”	 schools	 while	 sanctioning	 or	 fixing	 “bad”
schools.	 (And	within	 each	 school,	we	have	 the	 similar	 challenge	of	measuring
teacher	quality,	for	the	same	basic	reason.)	The	most	common	measure	of	quality
for	both	schools	and	teachers	is	test	scores.	If	students	are	achieving	impressive
scores	 on	 a	well-conceived	 standardized	 test,	 then	 presumably	 the	 teacher	 and
school	are	doing	a	fine	job.	Conversely,	bad	test	scores	are	a	clear	signal	that	lots
of	people	should	be	fired,	sooner	rather	than	later.	These	statistics	can	take	us	a
long	way	toward	fixing	our	public	education	system,	right?
Wrong.	 Any	 evaluation	 of	 teachers	 or	 schools	 that	 is	 based	 solely	 on	 test

scores	will	present	a	dangerously	inaccurate	picture.	Students	who	walk	through
the	 front	 door	 of	 different	 schools	 have	 vastly	 different	 backgrounds	 and
abilities.	We	 know,	 for	 example,	 that	 the	 education	 and	 income	 of	 a	 student’s
parents	have	a	significant	impact	on	achievement,	regardless	of	what	school	he
or	she	attends.	The	statistic	that	we’re	missing	in	this	case	happens	to	be	the	only
one	that	matters	for	our	purposes:	How	much	of	a	student’s	performance,	good



or	bad,	can	be	attributed	to	what	happens	inside	the	school	(or	inside	a	particular
classroom)?
Students	who	live	in	affluent,	highly	educated	communities	are	going	to	test

well	 from	the	moment	 their	parents	drop	 them	off	at	school	on	 the	first	day	of
kindergarten.	 The	 flip	 side	 is	 also	 true.	 There	 are	 schools	 with	 extremely
disadvantaged	populations	in	which	teachers	may	be	doing	a	remarkable	job	but
the	student	test	scores	will	still	be	low—albeit	not	nearly	as	low	as	they	would
have	been	if	the	teachers	had	not	been	doing	a	good	job.	What	we	need	is	some
measure	of	“value-added”	at	the	school	level,	or	even	at	the	classroom	level.	We
don’t	want	to	know	the	absolute	level	of	student	achievement;	we	want	to	know
how	much	that	student	achievement	has	been	affected	by	the	educational	factors
we	are	trying	to	evaluate.
At	 first	 glance,	 this	 seems	 an	 easy	 task,	 as	 we	 can	 simply	 give	 students	 a

pretest	and	a	posttest.	If	we	know	student	test	scores	when	they	enter	a	particular
school	 or	 classroom,	 then	 we	 can	 measure	 their	 performance	 at	 the	 end	 and
attribute	the	difference	to	whatever	happened	in	that	school	or	classroom.
Alas,	wrong	again.	Students	with	different	abilities	or	backgrounds	may	also

learn	at	different	rates.	Some	students	will	grasp	the	material	faster	than	others
for	 reasons	 that	 have	 nothing	 to	 do	 with	 the	 quality	 of	 the	 teaching.	 So	 if
students	in	Affluent	School	A	and	Poor	School	B	both	start	algebra	at	the	same
time	and	level,	the	explanation	for	the	fact	that	students	at	Affluent	School	A	test
better	in	algebra	a	year	later	may	be	that	the	teachers	are	better,	or	it	may	be	that
the	students	were	capable	of	 learning	faster—or	both.	Researchers	are	working
to	develop	statistical	 techniques	 that	measure	 instructional	quality	 in	ways	 that
account	 appropriately	 for	 different	 student	 backgrounds	 and	 abilities.	 In	 the
meantime,	 our	 attempts	 to	 identify	 the	 “best”	 schools	 can	 be	 ridiculously
misleading.
Every	 fall,	 several	Chicago	newspapers	 and	magazines	publish	 a	 ranking	of

the	“best”	high	schools	in	the	region,	usually	on	the	basis	of	state	test	score	data.
Here	is	the	part	that	is	laugh-out-loud	funny	from	a	statistical	standpoint:	Several
of	 the	 high	 schools	 consistently	 at	 the	 top	 of	 the	 rankings	 are	 selective
enrollment	schools,	meaning	that	students	must	apply	to	get	in,	and	only	a	small
proportion	of	those	students	are	accepted.	One	of	the	most	important	admissions
criteria	 is	 standardized	 test	 scores.	 So	 let’s	 summarize:	 (1)	 these	 schools	 are
being	recognized	as	“excellent”	for	having	students	with	high	test	scores;	(2)	to
get	 into	 such	 a	 school,	 one	 must	 have	 high	 test	 scores.	 This	 is	 the	 logical
equivalent	of	giving	an	award	to	the	basketball	team	for	doing	such	an	excellent



job	of	producing	tall	students.

Even	 if	 you	 have	 a	 solid	 indicator	 of	 what	 you	 are	 trying	 to	 measure	 and
manage,	 the	 challenges	 are	 not	 over.	 The	 good	 news	 is	 that	 “managing	 by
statistics”	can	change	the	underlying	behavior	of	the	person	or	institution	being
managed	for	the	better.	If	you	can	measure	the	proportion	of	defective	products
coming	 off	 an	 assembly	 line,	 and	 if	 those	 defects	 are	 a	 function	 of	 things
happening	 at	 the	 plant,	 then	 some	 kind	 of	 bonus	 for	workers	 that	 is	 tied	 to	 a
reduction	in	defective	products	would	presumably	change	behavior	 in	 the	right
kinds	of	ways.	Each	of	us	 responds	 to	 incentives	 (even	 if	 it	 is	 just	praise	or	 a
better	parking	spot).	Statistics	measure	the	outcomes	that	matter;	incentives	give
us	a	reason	to	improve	those	outcomes.
Or,	in	some	cases,	just	to	make	the	statistics	look	better.	That’s	the	bad	news.
If	 school	 administrators	 are	 evaluated—and	 perhaps	 even	 compensated—on

the	 basis	 of	 the	 high	 school	 graduation	 rate	 for	 students	 in	 a	 particular	 school
district,	 they	 will	 focus	 their	 efforts	 on	 boosting	 the	 number	 of	 students	 who
graduate.	 Of	 course,	 they	 may	 also	 devote	 some	 effort	 to	 improving	 the
graduation	rate,	which	is	not	necessarily	 the	same	thing.	For	example,	students
who	 leave	school	before	graduation	can	be	classified	as	“moving	away”	 rather
than	dropping	out.	This	is	not	merely	a	hypothetical	example;	it	is	a	charge	that
was	leveled	against	former	secretary	of	education	Rod	Paige	during	his	tenure	as
the	 Houston	 school	 superintendent.	 Paige	 was	 hired	 by	 President	 George	 W.
Bush	 to	 be	 U.S.	 secretary	 of	 education	 because	 of	 his	 remarkable	 success	 in
Houston	in	reducing	the	dropout	rate	and	boosting	test	scores.
If	 you’re	 keeping	 track	 of	 the	 little	 business	 aphorisms	 I	 keep	 tossing	 your

way,	here	is	another	one:	“It’s	never	a	good	day	when	60	Minutes	 shows	up	at
your	door.”	Dan	Rather	and	the	60	Minutes	II	crew	made	a	trip	to	Houston	and
found	 that	 the	 manipulation	 of	 statistics	 was	 far	 more	 impressive	 than	 the
educational	 improvement.8	High	 schools	 routinely	 classified	 students	who	quit
high	school	as	transferring	to	another	school,	returning	to	their	native	country,	or
leaving	to	pursue	a	General	Equivalency	Diploma	(GED)—none	of	which	count
as	dropping	out	in	the	official	statistics.	Houston	reported	a	citywide	dropout	rate
of	1.5	percent	in	the	year	that	was	examined;	60	Minutes	calculated	that	the	true
dropout	rate	was	between	25	and	50	percent.
The	statistical	chicanery	with	test	scores	was	every	bit	as	impressive.	One	way

to	improve	test	scores	(in	Houston	or	anywhere	else)	is	to	improve	the	quality	of
education	 so	 that	 students	 learn	 more	 and	 test	 better.	 This	 is	 a	 good	 thing.



Another	 (less	 virtuous)	 way	 to	 improve	 test	 scores	 is	 to	 prevent	 the	 worst
students	from	taking	the	test.	If	the	scores	of	the	lowest-performing	students	are
eliminated,	the	average	test	score	for	the	school	or	district	will	go	up,	even	if	all
the	 rest	 of	 the	 students	 show	 no	 improvement	 at	 all.	 In	 Texas,	 the	 statewide
achievement	 test	 is	 given	 in	 tenth	 grade.	 There	 was	 evidence	 that	 Houston
schools	were	trying	to	keep	the	weakest	students	from	reaching	tenth	grade.	In
one	 particularly	 egregious	 example,	 a	 student	 spent	 three	 years	 in	 ninth	 grade
and	 then	was	 promoted	 straight	 to	 eleventh	 grade—a	deviously	 clever	way	 of
keeping	 a	 weak	 student	 from	 taking	 a	 tenth-grade	 benchmark	 exam	 without
forcing	him	to	drop	out	(which	would	have	showed	up	on	a	different	statistic).
It’s	not	clear	that	Rod	Paige	was	complicit	in	this	statistical	trickery	during	his

tenure	 as	 Houston	 superintendent;	 however,	 he	 did	 implement	 a	 rigorous
accountability	 program	 that	 gave	 cash	 bonuses	 to	 principals	 who	 met	 their
dropout	and	 test	score	goals	and	 that	 fired	or	demoted	principals	who	failed	 to
meet	 their	 targets.	 Principals	 definitely	 responded	 to	 the	 incentives;	 that’s	 the
larger	 lesson.	But	you	had	better	be	darn	certain	 that	 the	folks	being	evaluated
can’t	make	themselves	 look	better	(statistically)	 in	ways	 that	are	not	consistent
with	the	goal	at	hand.
The	 state	 of	 New	 York	 learned	 this	 the	 hard	 way.	 The	 state	 introduced

“scorecards”	 that	 evaluate	 the	 mortality	 rates	 for	 the	 patients	 of	 cardiologists
performing	 coronary	 angioplasty,	 a	 common	 treatment	 for	 heart	 disease.9	This
seems	 like	 a	 perfectly	 reasonable	 and	 helpful	 use	 of	 descriptive	 statistics.	The
proportion	of	a	cardiologist’s	patients	who	die	in	surgery	is	an	important	thing	to
know,	and	it	makes	sense	for	the	government	to	collect	and	promulgate	such	data
since	 individual	 consumers	would	not	otherwise	have	 access	 to	 it.	So	 is	 this	 a
good	policy?	Yes,	other	than	the	fact	that	it	probably	ended	up	killing	people.
Cardiologists	 obviously	 care	 about	 their	 “scorecard.”	 However,	 the	 easiest

way	for	a	surgeon	to	 improve	his	mortality	rate	 is	not	by	killing	fewer	people;
presumably	most	doctors	are	already	trying	very	hard	to	keep	their	patients	alive.
The	 easiest	 way	 for	 a	 doctor	 to	 improve	 his	 mortality	 rate	 is	 by	 refusing	 to
operate	on	the	sickest	patients.	According	to	a	survey	conducted	by	the	School
of	Medicine	and	Dentistry	at	 the	University	of	Rochester,	 the	scorecard,	which
ostensibly	 serves	 patients,	 can	 also	work	 to	 their	 detriment:	 83	 percent	 of	 the
cardiologists	surveyed	said	that,	because	of	the	public	mortality	statistics,	some
patients	who	might	benefit	from	angioplasty	might	not	receive	the	procedure;	79
percent	 of	 the	 doctors	 said	 that	 some	 of	 their	 personal	medical	 decisions	 had
been	 influenced	 by	 the	 knowledge	 that	mortality	 data	 are	 collected	 and	made



public.	 The	 sad	 paradox	 of	 this	 seemingly	 helpful	 descriptive	 statistic	 is	 that
cardiologists	 responded	 rationally	 by	 withholding	 care	 from	 the	 patients	 who
needed	it	most.
A	 statistical	 index	 has	 all	 the	 potential	 pitfalls	 of	 any	 descriptive	 statistic—

plus	 the	 distortions	 introduced	 by	 combining	multiple	 indicators	 into	 a	 single
number.	By	definition,	any	index	is	going	to	be	sensitive	to	how	it	is	constructed;
it	will	be	affected	both	by	what	measures	go	into	the	index	and	by	how	each	of
those	measures	 is	weighted.	For	example,	why	does	 the	NFL	passer	 rating	not
include	 any	 measure	 of	 third	 down	 completions?	 And	 for	 the	 Human
Development	 Index,	 how	 should	 a	 country’s	 literacy	 rate	 be	 weighted	 in	 the
index	relative	to	per	capita	income?	In	the	end,	the	important	question	is	whether
the	 simplicity	 and	ease	of	use	 introduced	by	collapsing	many	 indicators	 into	a
single	number	outweighs	the	inherent	inaccuracy	of	the	process.	Sometimes	that
answer	 may	 be	 no,	 which	 brings	 us	 back	 (as	 promised)	 to	 the	U.S.	 News	 &
World	Report	(USNWR)	college	rankings.
The	USNWR	 rankings	 use	 sixteen	 indicators	 to	 score	 and	 rank	 America’s

colleges,	 universities,	 and	 professional	 schools.	 In	 2010,	 for	 example,	 the
ranking	 of	 national	 universities	 and	 liberal	 arts	 colleges	 used	 “student
selectivity”	as	15	percent	of	the	index;	student	selectivity	is	in	turn	calculated	on
the	basis	 of	 a	 school’s	 acceptance	 rate,	 the	proportion	of	 the	 entering	 students
who	were	in	the	top	10	percent	of	their	high	school	class,	and	the	average	SAT
and	ACT	scores	of	entering	students.	The	benefit	of	the	USNWR	rankings	is	that
they	 provide	 lots	 of	 information	 about	 thousands	 of	 schools	 in	 a	 simple	 and
accessible	way.	Even	the	critics	concede	that	much	of	the	information	collected
on	America’s	colleges	and	universities	 is	valuable.	Prospective	students	should
know	an	institution’s	graduation	rate	and	the	average	class	size.
Of	course,	providing	meaningful	information	is	an	enterprise	entirely	different

from	that	of	collapsing	all	of	that	information	into	a	single	ranking	that	purports
to	be	authoritative.	To	critics,	the	rankings	are	sloppily	constructed,	misleading,
and	 detrimental	 to	 the	 long-term	 interests	 of	 students.	 “One	 concern	 is	 simply
about	its	being	a	list	that	claims	to	rank	institutions	in	numerical	order,	which	is
a	level	of	precision	that	those	data	just	don’t	support,”	says	Michael	McPherson,
the	former	president	of	Macalester	College	in	Minnesota.10	Why	should	alumni
giving	count	for	5	percent	of	a	school’s	score?	And	if	it’s	important,	why	does	it
not	count	for	ten	percent?
According	to	U.S.	News	&	World	Report,	“Each	indicator	is	assigned	a	weight

(expressed	 as	 a	 percentage)	 based	 on	 our	 judgments	 about	which	measures	 of



quality	matter	most.”11	Judgment	is	one	thing;	arbitrariness	is	another.	The	most
heavily	weighted	variable	in	the	ranking	of	national	universities	and	colleges	is
“academic	 reputation.”	 This	 reputation	 is	 determined	 on	 the	 basis	 of	 a	 “peer
assessment	survey”	filled	out	by	administrators	at	other	colleges	and	universities
and	from	a	survey	of	high	school	guidance	counselors.	In	his	general	critique	of
rankings,	Malcolm	Gladwell	offers	a	scathing	(though	humorous)	indictment	of
the	peer	assessment	methodology.	He	cites	a	questionnaire	sent	out	by	a	former
chief	 justice	 of	 the	Michigan	 Supreme	Court	 to	 roughly	 one	 hundred	 lawyers
asking	them	to	rank	ten	law	schools	in	order	of	quality.	Penn	State’s	was	one	of
the	 law	schools	on	 the	 list;	 the	 lawyers	 ranked	 it	near	 the	middle.	At	 the	 time,
Penn	State	did	not	have	a	law	school.12
For	 all	 the	 data	 collected	 by	 USNWR,	 it’s	 not	 obvious	 that	 the	 rankings

measure	what	prospective	 students	ought	 to	care	about:	How	much	 learning	 is
going	 on	 at	 any	 given	 institution?	 Football	 fans	 may	 quibble	 about	 the
composition	of	the	passer	index,	but	no	one	can	deny	that	its	component	parts—
completions,	yardage,	touchdowns,	and	interceptions—are	an	important	part	of	a
quarterback’s	 overall	 performance.	 That	 is	 not	 necessarily	 the	 case	 with	 the
USNWR	criteria,	most	of	which	focus	on	inputs	(e.g.,	what	kind	of	students	are
admitted,	 how	much	 faculty	 are	 paid,	 the	 percentage	 of	 faculty	 who	 are	 full-
time)	rather	than	educational	outputs.	Two	notable	exceptions	are	the	freshman
retention	rate	and	the	graduation	rate,	but	even	those	indicators	do	not	measure
learning.	 As	 Michael	 McPherson	 points	 out,	 “We	 don’t	 really	 learn	 anything
from	U.S.	News	about	whether	 the	 education	 they	got	during	 those	 four	years
actually	improved	their	talents	or	enriched	their	knowledge.”
All	of	this	would	still	be	a	harmless	exercise,	but	for	the	fact	that	it	appears	to

encourage	behavior	that	is	not	necessarily	good	for	students	or	higher	education.
For	 example,	 one	 statistic	 used	 to	 calculate	 the	 rankings	 is	 financial	 resources
per	student;	the	problem	is	that	there	is	no	corresponding	measure	of	how	well
that	money	is	being	spent.	An	institution	that	spends	less	money	to	better	effect
(and	 therefore	 can	 charge	 lower	 tuition)	 is	 punished	 in	 the	 ranking	 process.
Colleges	and	universities	also	have	an	incentive	to	encourage	large	numbers	of
students	to	apply,	including	those	with	no	realistic	hope	of	getting	in,	because	it
makes	 the	 school	 appear	 more	 selective.	 This	 is	 a	 waste	 of	 resources	 for	 the
schools	soliciting	bogus	applications	and	for	students	who	end	up	applying	with
no	meaningful	chance	of	being	accepted.
Since	we	are	about	to	move	on	to	a	chapter	on	probability,	I	will	bet	that	the

U.S.	News	&	World	Report	rankings	are	not	going	away	anytime	soon.	As	Leon



Botstein,	president	of	Bard	College,	has	pointed	out,	“People	love	easy	answers.
What	is	the	best	place?	Number	1.”13

The	overall	lesson	of	this	chapter	is	that	statistical	malfeasance	has	very	little	to
do	 with	 bad	 math.	 If	 anything,	 impressive	 calculations	 can	 obscure	 nefarious
motives.	The	fact	that	you’ve	calculated	the	mean	correctly	will	not	alter	the	fact
that	the	median	is	a	more	accurate	indicator.	Judgment	and	integrity	turn	out	to
be	 surprisingly	 important.	 A	 detailed	 knowledge	 of	 statistics	 does	 not	 deter
wrongdoing	 any	 more	 than	 a	 detailed	 knowledge	 of	 the	 law	 averts	 criminal
behavior.	With	both	statistics	and	crime,	the	bad	guys	often	know	exactly	what
they’re	doing!

*	 Twain	 attributed	 this	 phrase	 to	 British	 prime	 minister	 Benjamin	 Disraeli,	 but	 there	 is	 no	 record	 of
Disraeli’s	ever	saying	or	writing	it.
*	Available	at	http://www.bls.gov/data/inflation_calculator.htm.



CHAPTER	4

Correlation
How	does	Netflix	know	what	movies	I	like?

Netflix	 insists	 that	I’ll	 like	 the	film	Bhutto,	a	documentary	that	offers	an	“in-
depth	and	at	times	incendiary	look	at	the	life	and	tragic	death	of	former	Pakistani
prime	minister	Benazir	Bhutto.”	I	probably	will	like	the	film	Bhutto.	(I’ve	added
it	to	my	queue.)	The	Netflix	recommendations	that	I’ve	watched	in	the	past	have
been	 terrific.	 And	 when	 a	 film	 is	 recommended	 that	 I’ve	 already	 seen,	 it’s
typically	one	I’ve	really	enjoyed.
How	does	Netflix	do	that?	Is	there	some	massive	team	of	interns	at	corporate

headquarters	who	have	used	a	 combination	of	Google	 and	 interviews	with	my
family	and	friends	to	determine	that	I	might	like	a	documentary	about	a	former
Pakistani	prime	minister?	Of	course	not.	Netflix	has	merely	mastered	some	very
sophisticated	 statistics.	Netflix	 doesn’t	 know	me.	 But	 it	 does	 know	what	 films
I’ve	 liked	 in	 the	past	 (because	 I’ve	 rated	 them).	Using	 that	 information,	 along
with	 ratings	 from	other	 customers	 and	a	powerful	 computer,	Netflix	 can	make
shockingly	accurate	predictions	about	my	tastes.
I’ll	 come	back	 to	 the	 specific	Netflix	 algorithm	 for	making	 these	 picks;	 for

now,	the	important	point	is	that	it’s	all	based	on	correlation.	Netflix	recommends
movies	 that	are	similar	 to	other	films	 that	 I’ve	 liked;	 it	also	recommends	films
that	have	been	highly	rated	by	other	customers	whose	ratings	are	similar	to	mine.
Bhutto	 was	 recommended	 because	 of	 my	 five-star	 ratings	 for	 two	 other
documentaries,	Enron:	The	Smartest	Guys	in	the	Room	and	Fog	of	War.
Correlation	measures	 the	degree	 to	which	 two	phenomena	are	related	 to	one

another.	For	example,	 there	 is	 a	 correlation	between	 summer	 temperatures	and
ice	 cream	 sales.	 When	 one	 goes	 up,	 so	 does	 the	 other.	 Two	 variables	 are
positively	correlated	if	a	change	in	one	is	associated	with	a	change	in	the	other	in
the	 same	 direction,	 such	 as	 the	 relationship	 between	 height	 and	weight.	 Taller
people	 weigh	 more	 (on	 average);	 shorter	 people	 weigh	 less.	 A	 correlation	 is
negative	if	a	positive	change	in	one	variable	is	associated	with	a	negative	change
in	the	other,	such	as	the	relationship	between	exercise	and	weight.



The	tricky	thing	about	these	kinds	of	associations	is	that	not	every	observation
fits	the	pattern.	Sometimes	short	people	weigh	more	than	tall	people.	Sometimes
people	who	 don’t	 exercise	 are	 skinnier	 than	 people	who	 exercise	 all	 the	 time.
Still,	there	is	a	meaningful	relationship	between	height	and	weight,	and	between
exercise	and	weight.
If	we	were	to	do	a	scatter	plot	of	the	heights	and	weights	of	a	random	sample

of	American	adults,	we	would	expect	to	see	something	like	the	following:

Scatter	Plot	for	Height	and	Weight

If	 we	 were	 to	 create	 a	 scatter	 plot	 of	 the	 association	 between	 exercise	 (as
measured	 by	 minutes	 of	 intensive	 exercise	 per	 week)	 and	 weight,	 we	 would
expect	 a	 negative	 correlation,	with	 those	who	 exercise	more	 tending	 to	weigh
less.	 But	 a	 pattern	 consisting	 of	 dots	 scattered	 across	 the	 page	 is	 a	 somewhat
unwieldy	tool.	(If	Netflix	tried	to	make	film	recommendations	for	me	by	plotting
the	 ratings	 for	 thousands	 of	 films	 by	millions	 of	 customers,	 the	 results	would
bury	 the	 headquarters	 in	 scatter	 plots.)	 Instead,	 the	 power	 of	 correlation	 as	 a
statistical	tool	is	that	we	can	encapsulate	an	association	between	two	variables	in
a	single	descriptive	statistic:	the	correlation	coefficient.
The	correlation	coefficient	has	two	fabulously	attractive	characteristics.	First,

for	math	reasons	that	have	been	relegated	to	the	appendix,	it	is	a	single	number
ranging	from	–1	to	1.	A	correlation	of	1,	often	described	as	perfect	correlation,
means	that	every	change	in	one	variable	is	associated	with	an	equivalent	change
in	the	other	variable	in	the	same	direction.
A	correlation	of	–1,	or	perfect	negative	correlation,	means	that	every	change

in	one	variable	 is	associated	with	an	equivalent	change	 in	 the	other	variable	 in



the	opposite	direction.
The	 closer	 the	 correlation	 is	 to	 1	 or	 –1,	 the	 stronger	 the	 association.	 A

correlation	 of	 0	 (or	 close	 to	 it)	 means	 that	 the	 variables	 have	 no	 meaningful
association	with	one	another,	such	as	the	relationship	between	shoe	size	and	SAT
scores.
The	 second	 attractive	 feature	 of	 the	 correlation	 coefficient	 is	 that	 it	 has	 no

units	attached	to	it.	We	can	calculate	the	correlation	between	height	and	weight
—even	though	height	is	measured	in	inches	and	weight	is	measured	in	pounds.
We	 can	 even	 calculate	 the	 correlation	 between	 the	 number	 of	 televisions	 high
school	 students	 have	 in	 their	 homes	 and	 their	 SAT	 scores,	which	 I	 assure	 you
will	 be	 positive.	 (More	 on	 that	 relationship	 in	 a	 moment.)	 The	 correlation
coefficient	does	 a	 seemingly	miraculous	 thing:	 It	 collapses	 a	 complex	mess	of
data	measured	in	different	units	(like	our	scatter	plots	of	height	and	weight)	into
a	single,	elegant	descriptive	statistic.
How?
As	usual,	 I’ve	 put	 the	most	 common	 formula	 for	 calculating	 the	 correlation

coefficient	 in	 the	appendix	at	 the	end	of	 the	chapter.	This	 is	not	a	statistic	 that
you	are	going	to	be	calculating	by	hand.	(After	you’ve	entered	the	data,	a	basic
software	package	like	Microsoft	Excel	will	calculate	the	correlation	between	two
variables.)	Still,	the	intuition	is	not	that	difficult.	The	formula	for	calculating	the
correlation	coefficient	does	the	following:

1.	Calculates	the	mean	and	standard	deviation	for	both	variables.	If	we	stick
with	the	height	and	weight	example,	we	would	then	know	the	mean	height
for	people	in	the	sample,	the	mean	weight	for	people	in	the	sample,	and	the
standard	deviation	for	both	height	and	weight.

2.	Converts	all	the	data	so	that	each	observation	is	represented	by	its	distance
(in	 standard	 deviations)	 from	 the	 mean.	 Stick	 with	 me;	 it’s	 not	 that
complicated.	Suppose	that	the	mean	height	in	the	sample	is	66	inches	(with
a	standard	deviation	of	5	inches)	and	that	the	mean	weight	is	177	pounds
(with	 a	 standard	 deviation	 of	 10	 pounds).	Now	 suppose	 that	 you	 are	 72
inches	tall	and	weigh	168	pounds.	We	can	also	say	that	you	your	height	is
1.2	 standard	 deviations	 above	 the	 mean	 in	 height	 [(72	 –	 66)/5)]	 and	 .9
standard	deviations	below	the	mean	in	weight,	or	–0.9	for	purposes	of	the
formula	 [(168	 –	 177)/10].	Yes,	 it’s	 unusual	 for	 someone	 to	 be	 above	 the
mean	in	height	and	below	the	mean	in	weight,	but	since	you’ve	paid	good
money	 for	 this	 book,	 I	 figured	 I	 should	 at	 least	make	 you	 tall	 and	 thin.



Notice	 that	your	height	and	weight,	 formerly	 in	 inches	and	pounds,	have
been	reduced	to	1.2	and	–0.9.	This	is	what	makes	the	units	go	away.

3.	Here	I’ll	wave	my	hands	and	let	the	computer	do	the	work.	The	formula
then	 calculates	 the	 relationship	between	height	 and	weight	 across	 all	 the
individuals	in	the	sample	as	measured	by	standard	units.	When	individuals
in	 the	 sample	 are	 tall,	 say,	 1.5	 or	 2	 standard	deviations	 above	 the	mean,
what	do	their	weights	tend	to	be	as	measured	in	standard	deviations	from
the	mean	for	weight?	And	when	individuals	are	near	to	the	mean	in	terms
of	height,	what	are	their	weights	as	measured	in	standard	units?

If	the	distance	from	the	mean	for	one	variable	tends	to	be	broadly	consistent
with	distance	from	the	mean	for	the	other	variable	(e.g.,	people	who	are	far	from
the	mean	for	height	in	either	direction	tend	also	to	be	far	from	the	mean	in	the
same	direction	for	weight),	then	we	would	expect	a	strong	positive	correlation.
If	 distance	 from	 the	mean	 for	 one	 variable	 tends	 to	 correspond	 to	 a	 similar

distance	 from	 the	 mean	 for	 the	 second	 variable	 in	 the	 other	 direction	 (e.g.,
people	who	are	far	above	the	mean	in	terms	of	exercise	tend	to	be	far	below	the
mean	in	terms	of	weight),	then	we	would	expect	a	strong	negative	correlation.
If	 two	 variables	 do	 not	 tend	 to	 deviate	 from	 the	 mean	 in	 any	 meaningful

pattern	 (e.g.,	 shoe	 size	 and	 exercise)	 then	 we	 would	 expect	 little	 or	 no
correlation.
You	 suffered	 mightily	 in	 that	 section;	 we’ll	 get	 back	 to	 film	 rentals	 soon.

Before	we	return	to	Netflix,	however,	let’s	reflect	on	another	aspect	of	life	where
correlation	matters:	the	SAT.	Yes,	that	SAT.	The	SAT	Reasoning	Test,	formerly
known	as	the	Scholastic	Aptitude	Test,	is	a	standardized	exam	made	up	of	three
sections:	math,	 reading,	and	writing.	You	probably	 took	 the	SAT,	or	will	 soon.
You	 probably	 did	 not	 reflect	 deeply	 on	 why	 you	 had	 to	 take	 the	 SAT.	 The
purpose	 of	 the	 test	 is	 to	 measure	 academic	 ability	 and	 predict	 college
performance.	Of	course,	one	might	reasonably	ask	(particularly	those	who	don’t
like	 standardized	 tests):	 Isn’t	 that	what	high	 school	 is	 for?	Why	 is	 a	 four-hour
test	so	important	when	college	admissions	officers	have	access	to	four	years	of
high	school	grades?
The	 answer	 to	 those	 questions	 is	 lurking	 back	 in	 Chapters	 1	 and	 2.	 High

school	grades	are	an	imperfect	descriptive	statistic.	A	student	who	gets	mediocre
grades	while	taking	a	tough	schedule	of	math	and	science	classes	may	have	more
academic	 ability	 and	 potential	 than	 a	 student	 at	 the	 same	 school	 with	 better
grades	 in	 less	 challenging	 classes.	 Obviously	 there	 are	 even	 larger	 potential



discrepancies	across	 schools.	According	 to	 the	College	Board,	which	produces
and	administers	the	SAT,	the	test	was	created	to	“democratize	access	to	college
for	all	students.”	Fair	enough.	The	SAT	offers	a	standardized	measure	of	ability
that	 can	be	compared	easily	across	all	 students	applying	 to	college.	But	 is	 it	 a
good	measure	of	ability?	If	we	want	a	metric	that	can	be	compared	easily	across
students,	we	could	also	have	all	high	school	seniors	run	the	100	yard	dash,	which
is	cheaper	and	easier	than	administering	the	SAT.	The	problem,	of	course,	is	that
performance	in	the	100	yard	dash	is	uncorrelated	with	college	performance.	It’s
easy	to	get	the	data;	they	just	won’t	tell	us	anything	meaningful.
So	how	well	does	the	SAT	fare	in	this	regard?	Sadly	for	future	generations	of

high	school	students,	the	SAT	does	a	reasonably	good	job	of	predicting	first-year
college	grades.	The	College	Board	publishes	the	relevant	correlations.	On	a	scale
of	0	(no	correlation	at	all)	to	1	(perfect	correlation),	the	correlation	between	high
school	grade	point	average	and	first-year	college	grade	point	average	is	.56.	(To
put	that	in	perspective,	the	correlation	between	height	and	weight	for	adult	men
in	 the	United	 States	 is	 about	 .4.)	 The	 correlation	 between	 the	 SAT	 composite
score	(critical	reading,	math,	and	writing)	and	first-year	college	GPA	is	also	.56.1
That	would	seem	to	argue	for	ditching	the	SAT,	as	the	test	does	not	seem	to	do
any	better	at	predicting	college	performance	than	high	school	grades.	In	fact,	the
best	predictor	of	all	is	a	combination	of	SAT	scores	and	high	school	GPA,	which
has	a	correlation	of	.64	with	first-year	college	grades.	Sorry	about	that.

One	 crucial	 point	 in	 this	 general	 discussion	 is	 that	 correlation	 does	 not	 imply
causation;	 a	 positive	 or	 negative	 association	 between	 two	 variables	 does	 not
necessarily	mean	that	a	change	in	one	of	the	variables	is	causing	the	change	in
the	other.	For	example,	I	alluded	earlier	to	a	likely	positive	correlation	between	a
student’s	SAT	scores	 and	 the	number	of	 televisions	 that	 his	 family	owns.	This
does	 not	mean	 that	 overeager	 parents	 can	 boost	 their	 children’s	 test	 scores	 by
buying	 an	 extra	 five	 televisions	 for	 the	 house.	 Nor	 does	 it	 likely	 mean	 that
watching	lots	of	television	is	good	for	academic	achievement.
The	 most	 logical	 explanation	 for	 such	 a	 correlation	 would	 be	 that	 highly

educated	parents	 can	afford	 a	 lot	of	 televisions	 and	 tend	 to	have	 children	who
test	better	than	average.	Both	the	televisions	and	the	test	scores	are	likely	caused
by	 a	 third	 variable,	 which	 is	 parental	 education.	 I	 can’t	 prove	 the	 correlation
between	TVs	in	the	home	and	SAT	scores.	(The	College	Board	does	not	provide
such	data.)	However,	 I	can	prove	 that	students	 in	wealthy	families	have	higher
mean	 SAT	 scores	 than	 students	 in	 less	 wealthy	 families.	 According	 to	 the



College	Board,	students	with	a	family	income	over	$200,000	have	a	mean	SAT
math	score	of	586,	compared	with	a	mean	SAT	math	score	of	460	for	students
with	 a	 family	 income	 of	 $20,000	 or	 less.2	 Meanwhile,	 it’s	 also	 likely	 that
families	with	 incomes	 over	 $200,000	 have	more	 televisions	 in	 their	 (multiple)
homes	than	families	with	incomes	of	$20,000	or	less.

I	 began	writing	 this	 chapter	many	 days	 ago.	 Since	 then,	 I’ve	 had	 a	 chance	 to
watch	 the	 documentary	 film	Bhutto.	Wow!	 This	 is	 a	 remarkable	 film	 about	 a
remarkable	family.	The	original	footage,	stretching	all	the	way	from	the	partition
of	India	and	Pakistan	in	1947	to	the	assassination	of	Benazir	Bhutto	in	2007,	is
extraordinary.	 Bhutto’s	 voice	 is	 woven	 effectively	 throughout	 the	 film	 in	 the
form	of	 speeches	 and	 interviews.	Anyway,	 I	 gave	 the	 film	 five	 stars,	which	 is
pretty	much	what	Netflix	predicted.
At	the	most	basic	level,	Netflix	is	exploiting	the	concept	of	correlation.	First,	I

rate	a	set	of	films.	Netflix	compares	my	ratings	with	those	of	other	customers	to
identify	 those	whose	 ratings	 are	highly	 correlated	with	mine.	Those	 customers
tend	to	like	the	films	that	I	like.	Once	that	is	established,	Netflix	can	recommend
films	that	like-minded	customers	have	rated	highly	but	that	I	have	not	yet	seen.
That’s	 the	“big	picture.”	The	actual	methodology	 is	much	more	complex.	 In

fact,	Netflix	 launched	 a	 contest	 in	 2006	 in	which	members	of	 the	public	were
invited	 to	 design	 a	 mechanism	 that	 improved	 on	 existing	 Netflix
recommendations	by	at	least	10	percent	(meaning	that	the	system	was	10	percent
more	 accurate	 in	predicting	how	a	 customer	would	 rate	 a	 film	after	 seeing	 it).
The	winner	would	get	$1,000,000.
Every	 individual	 or	 team	 that	 registered	 for	 the	 contest	was	 given	 “training

data”	 consisting	 of	more	 than	 100	million	 ratings	 of	 18,000	 films	 by	 480,000
Netflix	customers.	A	separate	set	of	2.8	million	ratings	was	“withheld,”	meaning
that	 Netflix	 knew	 how	 the	 customers	 rated	 these	 films	 but	 the	 contest
participants	did	not.	The	competitors	were	judged	on	how	well	their	algorithms
predicted	the	actual	customer	reviews	for	these	withheld	films.	Over	three	years,
thousands	 of	 teams	 from	 over	 180	 countries	 submitted	 proposals.	 There	 were
two	 requirements	 for	 entry.	 First,	 the	 winner	 had	 to	 license	 the	 algorithm	 to
Netflix.	And	second,	the	winner	had	to	“describe	to	the	world	how	you	did	it	and
why	it	works.”3
In	 2009	 Netflix	 announced	 a	 winner:	 a	 seven-person	 team	 made	 up	 of

statisticians	and	computer	scientists	from	the	United	States,	Austria,	Canada,	and
Israel.	 Alas,	 I	 cannot	 describe	 the	 winning	 system,	 even	 in	 an	 appendix.	 The



paper	 explaining	 the	 system	 is	 ninety-two	 pages	 long.*	 I’m	 impressed	 by	 the
quality	 of	 the	Netflix	 recommendations.	 Still,	 the	 system	 is	 just	 a	 super	 fancy
variation	on	what	people	have	been	doing	since	the	dawn	of	film:	find	someone
with	similar	tastes	and	ask	for	a	recommendation.	You	tend	to	like	what	I	 like,
and	to	dislike	what	I	dislike,	so	what	did	you	think	of	the	new	George	Clooney
film?
That	is	the	essence	of	correlation.

APPENDIX	TO	CHAPTER	4
To	calculate	the	correlation	coefficient	between	two	sets	of	numbers,	you	would
perform	 the	 following	 steps,	 each	of	which	 is	 illustrated	by	use	of	 the	data	on
heights	and	weights	for	15	hypothetical	students	in	the	table	below.

1.	 Convert	 the	 height	 of	 each	 student	 to	 standard	 units:	 (height	 –
mean)/standard	deviation.

2.	 Convert	 the	 weight	 of	 each	 student	 to	 standard	 units:	 (weight	 –
mean)/standard	deviation.

3.	 Calculate	 the	 product	 for	 each	 student	 of	 (weight	 in	 standard	 units)	×
(height	in	standard	units).	You	should	see	that	this	number	will	be	largest
in	absolute	value	when	a	student’s	height	and	weight	are	both	relatively	far
from	the	mean.

4.	 The	 correlation	 coefficient	 is	 the	 sum	 of	 the	 products	 calculated	 above
divided	 by	 the	 number	 of	 observations	 (15	 in	 this	 case).	The	 correlation
between	height	and	weight	for	this	group	of	students	is	.83.	Given	that	the
correlation	 coefficient	 can	 range	 from	 –1	 to	 1,	 this	 is	 a	 relatively	 high
degree	of	positive	correlation,	as	we	would	expect	with	height	and	weight.



The	formula	for	calculating	the	correlation	coefficient	requires	a	little	detour
with	regard	to	notation.	The	figure	∑,	known	as	the	summation	sign,	is	a	handy
character	 in	 statistics.	 It	 represents	 the	 summation	 of	 the	 quantity	 that	 comes
after	it.	For	example,	 if	 there	is	a	set	of	observations	x1,	x2,	x3,	and	x4,	 then	∑
(xi)	tells	us	that	we	should	sum	the	four	observations:	x1	+	x2	+	x3	+	x4.	Thus,	∑
(xi)	=	x1	+	x2	+	x3	+	x4.	Our	formula	for	the	mean	of	a	set	of	i	observations	could
be	represented	as	the	following:	mean	=	∑	(xi)/n.

We	can	make	 the	 formula	even	more	adaptable	by	writing	 ,	which	sums
the	quantity	x1	+	x2	+	x3	+	.	.	.	xn,	or,	in	other	words,	all	the	terms	beginning	with
x1	(because	i	=	1)	up	to	xn	(because	i	=	n).	Our	formula	for	the	mean	of	a	set	of	n
observations	could	be	represented	as	the	following:

Given	 that	 general	 notation,	 the	 formula	 for	 calculating	 the	 correlation
coefficient,	r,	for	two	variables	x	and	y	is	the	following:



where

n	=	the	number	of	observations;
	is	the	mean	for	variable	x;
	is	the	mean	for	variable	y;
σx	is	the	standard	deviation	for	variable	x;
σy	is	the	standard	deviation	for	variable	y.

Any	 statistical	 software	 program	with	 statistical	 tools	 can	 also	 calculate	 the
correlation	coefficient	between	 two	variables.	 In	 the	 student	height	and	weight
example,	using	Microsoft	Excel	yields	the	same	correlation	between	height	and
weight	for	the	fifteen	students	as	the	hand	calculation	in	the	chart	above:	0.83.

*	You	can	read	it	at	http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf.



CHAPTER	5

Basic	Probability
Don’t	buy	the	extended	warranty	on	your	$99

printer

In	 1981,	 the	 Joseph	 Schlitz	 Brewing	 Company	 spent	 $1.7	 million	 for	 what
appeared	to	be	a	shockingly	bold	and	risky	marketing	campaign	for	its	flagging
brand,	 Schlitz.	At	 halftime	 of	 the	 Super	 Bowl,	 in	 front	 of	 100	million	 people
around	 the	world,	 the	 company	 broadcast	 a	 live	 taste	 test	 pitting	 Schlitz	Beer
against	 a	 key	 competitor,	 Michelob.1	 Bolder	 yet,	 the	 company	 did	 not	 pick
random	beer	drinkers	to	evaluate	the	two	beers;	it	picked	100	Michelob	drinkers.
This	 was	 the	 culmination	 of	 a	 campaign	 that	 had	 run	 throughout	 the	 NFL
playoffs.2	There	were	five	live	television	taste	tests	in	all,	each	of	which	had	100
consumers	 of	 a	 competing	 brand	 (Budweiser,	 Miller,	 or	 Michelob)	 conduct	 a
blind	taste	test	between	their	supposed	favorite	beer	and	Schlitz.	Each	of	the	beer
taste-offs	was	promoted	aggressively,	just	like	the	playoff	game	during	which	it
would	be	held	(e.g.,	“Watch	Schlitz	v.	Bud,	Live	during	the	AFC	Playoffs”).
The	marketing	message	 was	 clear:	 Even	 beer	 drinkers	 who	 think	 they	 like

another	brand	will	prefer	Schlitz	in	a	blind	taste	test.	For	the	Super	Bowl	spot,
Schlitz	 even	 hired	 a	 former	 NFL	 referee	 to	 oversee	 the	 test.	 Given	 the	 risky
nature	of	conducting	blind	taste	tests	in	front	of	huge	audiences	on	live	TV,	one
can	assume	that	Schlitz	produced	a	spectacularly	delicious	beer,	right?
Not	 necessarily.	 Schlitz	 needed	 only	 a	 mediocre	 beer	 and	 a	 solid	 grasp	 of

statistics	to	know	that	this	ploy—a	term	I	do	not	use	lightly,	even	when	it	comes
to	beer	advertising—would	almost	certainly	work	out	in	its	favor.	Most	beers	in
the	Schlitz	category	taste	about	the	same;	ironically,	that	is	exactly	the	fact	that
this	advertising	campaign	exploited.	Assume	that	the	typical	beer	drinker	off	the
street	 cannot	 tell	 Schlitz	 from	 Budweiser	 from	Michelob	 from	Miller.	 In	 that
case,	a	blind	taste	test	between	any	two	of	the	beers	is	essentially	a	coin	flip.	On
average,	half	 the	 taste	 testers	will	pick	Schlitz,	and	half	will	pick	 the	beer	 it	 is
“challenging.”	This	fact	alone	would	probably	not	make	a	particularly	effective



advertising	campaign.	(“You	can’t	tell	the	difference,	so	you	might	as	well	drink
Schlitz.”)	 And	 Schlitz	 absolutely,	 positively	 would	 not	 want	 to	 do	 this	 test
among	 its	 own	 loyal	 customers;	 roughly	 half	 of	 these	 Schlitz	 drinkers	 would
pick	 the	competing	beer.	 It	 looks	bad	when	 the	beer	drinkers	 supposedly	most
committed	 to	 your	 brand	 choose	 a	 competitor	 in	 a	 blind	 taste	 test—which	 is
exactly	what	Schlitz	was	trying	to	do	to	its	competitors.
Schlitz	did	 something	cleverer.	The	genius	of	 the	 campaign	was	 conducting

the	 taste	 test	 exclusively	among	beer	drinkers	who	 stated	 that	 they	preferred	a
competing	beer.	If	the	blind	taste	test	is	really	just	a	coin	flip,	then	roughly	half
of	 the	 Budweiser	 or	Miller	 or	Michelob	 drinkers	will	 end	 up	 picking	 Schlitz.
That	makes	Schlitz	look	really	good.	Half	of	all	Bud	drinkers	like	Schlitz	better!
And	 it	 looks	particularly	good	 at	 halftime	of	 the	Super	Bowl	with	 a	 former

NFL	referee	(in	uniform)	conducting	the	taste	test.	Still,	it’s	live	television.	Even
if	the	statisticians	at	Schlitz	had	determined	with	loads	of	previous	private	trials
that	the	typical	Michelob	drinker	will	pick	Schlitz	50	percent	of	the	time,	what	if
the	100	Michelob	drinkers	taking	the	test	at	halftime	of	the	Super	Bowl	turn	out
to	be	quirky?	Yes,	the	blind	taste	test	is	the	equivalent	of	a	coin	toss,	but	what	if
most	of	the	tasters	chose	Michelob	just	by	chance?	After	all,	if	we	lined	up	the
same	 100	 guys	 and	 asked	 them	 to	 flip	 a	 coin,	 it’s	 entirely	 possible	 that	 they
would	 flip	 85	 or	 90	 tails.	 That	 kind	 of	 bad	 luck	 in	 the	 taste	 test	 would	 be	 a
disaster	for	the	Schlitz	brand	(not	to	mention	a	waste	of	the	$1.7	million	for	the
live	television	coverage).
Statistics	to	the	rescue!	If	there	were	some	kind	of	statistics	superhero,*	this	is

when	he	or	she	would	have	swooped	into	the	Schlitz	corporate	headquarters	and
unveiled	the	details	of	what	statisticians	call	a	binomial	experiment	(also	called	a
Bernoulli	 trial).	 The	 key	 characteristics	 of	 a	 binomial	 experiment	 are	 that	 we
have	 a	 fixed	 number	 of	 trials	 (e.g.,	 100	 taste	 testers),	 each	 with	 two	 possible
outcomes	(Schlitz	or	Michelob),	and	the	probability	of	“success”	is	the	same	in
each	trial.	(I	am	assuming	the	probability	of	picking	one	beer	or	the	other	is	50
percent,	and	I	am	defining	“success”	as	a	tester	picking	Schlitz.)	We	also	assume
that	all	the	“trials”	are	independent,	meaning	that	one	blind	taste	tester’s	decision
has	no	impact	on	any	other	tester’s	decision.
With	only	this	information,	a	statistical	superhero	can	calculate	the	probability

of	 all	 the	 different	 outcomes	 for	 the	 100	 trials,	 such	 as	 52	 Schlitz	 and	 48
Michelob	 or	 31	 Schlitz	 and	 69	Michelob.	 Those	 of	 us	 who	 are	 not	 statistical
superheroes	 can	 use	 a	 computer	 to	 do	 the	 same	 thing.	The	 chances	 of	 all	 100
taste	 testers	 picking	 Michelob	 were	 1	 in



1,267,650,600,228,229,401,496,703,205,376.	 There	 was	 probably	 a	 bigger
chance	 that	 all	 of	 the	 testers	would	 be	 killed	 at	 halftime	by	 an	 asteroid.	More
important,	the	same	basic	calculations	can	give	us	the	cumulative	probability	for
a	 range	of	outcomes,	 such	as	 the	chances	 that	40	or	 fewer	 testers	pick	Schlitz.
These	numbers	would	clearly	have	assuaged	 the	 fears	of	 the	Schlitz	marketing
folks.
Let’s	 assume	 that	Schlitz	would	have	been	pleased	 if	 at	 least	 40	of	 the	100

tasters	 picked	Schlitz—an	 impressive	 number	 given	 that	 all	 of	 the	men	 taking
the	 live	blind	 taste	 test	had	professed	 to	be	Michelob	drinkers.	An	outcome	at
least	that	good	was	highly	likely.	If	the	taste	test	is	really	like	a	flip	of	the	coin,
then	basic	probability	tells	us	that	there	was	a	98	percent	chance	that	at	least	40
of	the	tasters	would	pick	Schlitz,	and	an	86	percent	chance	that	at	least	45	of	the
tasters	would.†	In	theory,	this	wasn’t	a	very	risky	gambit	at	all.
So	what	happened	to	Schlitz?	At	halftime	of	the	1981	Super	Bowl,	exactly	50

percent	of	the	Michelob	drinkers	chose	Schlitz	in	the	blind	taste	test.
There	 are	 two	 important	 lessons	 here:	 probability	 is	 a	 remarkably	 powerful

tool,	 and	 many	 leading	 beers	 in	 the	 1980s	 were	 indistinguishable	 from	 one
another.	This	chapter	will	focus	primarily	on	the	first	lesson.

Probability	 is	 the	 study	 of	 events	 and	 outcomes	 involving	 an	 element	 of
uncertainty.	Investing	in	the	stock	market	involves	uncertainty.	So	does	flipping
a	coin,	which	may	come	up	heads	or	 tails.	Flipping	a	coin	four	 times	 in	a	row
involves	additional	layers	of	uncertainty,	because	each	of	the	four	flips	can	result
in	 a	 head	 or	 a	 tail.	 If	 you	 flip	 a	 coin	 four	 times	 in	 a	 row,	 I	 cannot	 know	 the
outcome	in	advance	with	certainty	(nor	can	you).	Yet	I	can	determine	in	advance
that	 some	 outcomes	 (two	 heads,	 two	 tails)	 are	 more	 likely	 than	 others	 (four
heads).	 As	 the	 folks	 at	 Schlitz	 reckoned,	 those	 kinds	 of	 probability-based
insights	 can	 be	 extremely	 helpful.	 In	 fact,	 if	 you	 can	 understand	 why	 the
probability	of	 flipping	four	heads	 in	a	 row	with	a	 fair	coin	 is	1	 in	16,	you	can
(with	some	work)	understand	everything	from	how	the	insurance	industry	works
to	whether	a	pro	football	team	should	kick	the	extra	point	after	a	touchdown	or
go	for	a	two-point	conversion.
Let’s	 start	 with	 the	 easy	 part:	 Many	 events	 have	 known	 probabilities.	 The

probability	of	flipping	heads	with	a	fair	coin	 is	½.	The	probability	of	rolling	a
one	with	a	single	die	is	 .	Other	events	have	probabilities	that	can	be	inferred	on
the	 basis	 of	 past	 data.	 The	 probability	 of	 successfully	 kicking	 the	 extra	 point
after	 touchdown	 in	professional	 football	 is	 .94,	meaning	 that	kickers	make,	on



average,	94	out	of	every	100	extra-point	attempts.	(Obviously	this	figure	might
vary	slightly	for	different	kickers,	under	different	weather	circumstances,	and	so
on,	but	 it’s	not	going	to	change	radically.)	Simply	having	and	appreciating	this
kind	of	information	can	often	clarify	decision	making	and	render	risks	explicit.
For	 example,	 the	 Australian	 Transport	 Safety	 Board	 published	 a	 report
quantifying	the	fatality	risks	for	different	modes	of	transport.	Despite	widespread
fear	of	flying,	the	risks	associated	with	commercial	air	travel	are	tiny.	Australia
hasn’t	had	a	commercial	air	fatality	since	the	1960s,	so	the	fatality	rate	per	100
million	kilometers	traveled	is	essentially	zero.	The	rate	for	drivers	is	.5	fatalities
per	 100	 million	 kilometers	 traveled.	 The	 really	 impressive	 number	 is	 for
motorcycles—if	you	aspire	to	be	an	organ	donor.	The	fatality	rate	is	 thirty-five
times	higher	for	motorcycles	than	for	cars.3
In	September	of	2011,	a	6.5-ton	NASA	satellite	was	plummeting	to	earth	and

was	expected	 to	break	apart	 once	 it	 hit	 the	 earth’s	 atmosphere.	What	were	 the
chances	of	being	struck	by	 the	debris?	Should	I	have	kept	 the	kids	home	from
school?	 The	 rocket	 scientists	 at	 NASA	 estimated	 that	 the	 probability	 of	 any
individual	person’s	being	hit	by	a	part	of	the	falling	satellite	was	1	in	21	trillion.
Yet	 the	 chances	 that	 anyone	 anywhere	 on	 earth	 might	 get	 hit	 were	 a	 more
sobering	 1	 in	 3,200.*	 In	 the	 end,	 the	 satellite	 did	 break	 apart	 on	 reentry,	 but
scientists	aren’t	entirely	certain	where	all	the	pieces	ended	up.4	No	one	reported
being	 hurt.	 Probabilities	 do	 not	 tell	 us	what	will	 happen	 for	 sure;	 they	 tell	 us
what	is	likely	 to	happen	and	what	 is	 less	 likely	 to	happen.	Sensible	people	can
make	use	of	these	kinds	of	numbers	in	business	and	life.	For	example,	when	you
hear	 on	 the	 radio	 that	 a	 satellite	 is	 plummeting	 to	 earth,	 you	 should	 not	 race
home	on	your	motorcycle	to	warn	the	family.
When	it	comes	to	risk,	our	fears	do	not	always	track	with	what	the	numbers

tell	us	we	should	be	afraid	of.	One	of	the	striking	findings	from	Freakonomics,
by	Steve	Levitt	and	Stephen	Dubner,	was	that	swimming	pools	in	the	backyard
are	far	more	dangerous	than	guns	in	the	closet.5	Levitt	and	Dubner	calculate	that
a	child	under	 ten	 is	one	hundred	 times	more	 likely	 to	die	 in	a	 swimming	pool
than	 from	 a	 gun	 accident.†	 An	 intriguing	 paper	 by	 three	 Cornell	 researchers,
Garrick	 Blalock,	 Vrinda	Kadiyali,	 and	Daniel	 Simon,	 found	 that	 thousands	 of
Americans	 may	 have	 died	 since	 the	 September	 11	 attacks	 because	 they	 were
afraid	to	fly.6	We	will	never	know	the	true	risks	associated	with	terrorism;	we	do
know	 that	 driving	 is	 dangerous.	When	 more	 Americans	 opted	 to	 drive	 rather
than	 to	 fly	after	9/11,	 there	were	an	estimated	344	additional	 traffic	deaths	per
month	 in	October,	November,	 and	December	 of	 2001	 (taking	 into	 account	 the



average	 number	 of	 fatalities	 and	 other	 factors	 that	 typically	 contribute	 to	 road
accidents,	such	as	weather).	This	effect	dissipated	over	time,	presumably	as	the
fear	 of	 terrorism	 diminished,	 but	 the	 authors	 of	 the	 study	 estimate	 that	 the
September	11	attacks	may	have	caused	more	than	2,000	driving	deaths.

Probability	 can	 also	 sometimes	 tell	 us	after	 the	 fact	what	 likely	happened	 and
what	 likely	 did	 not	 happen—as	 in	 the	 case	 of	 DNA	 analysis.	 When	 the
technicians	on	CSI:	Miami	find	a	trace	of	saliva	on	an	apple	core	near	a	murder
victim,	that	saliva	does	not	have	the	murderer’s	name	on	it,	even	when	viewed
under	a	powerful	microscope	by	a	very	attractive	technician.	Instead,	the	saliva
(or	 hair,	 or	 skin,	 or	 bone	 fragment)	 will	 contain	 a	 DNA	 segment.	 Each	DNA
segment	in	turn	has	regions,	or	loci,	that	can	vary	from	individual	to	individual
(except	 for	 identical	 twins,	 who	 share	 the	 same	 DNA).	 When	 the	 medical
examiner	 reports	 that	a	DNA	sample	 is	a	“match,”	 that’s	only	part	of	what	 the
prosecution	has	to	prove.	Yes,	the	loci	tested	on	the	DNA	sample	from	the	crime
scene	must	match	the	loci	on	the	DNA	sample	taken	from	the	suspect.	However,
the	prosecutors	must	also	prove	that	the	match	between	the	two	DNA	samples	is
not	merely	a	coincidence.
Humans	 share	 similarities	 in	 their	DNA,	 just	 as	we	 share	 other	 similarities:

shoe	size,	height,	eye	color.	(More	than	99	percent	of	all	DNA	is	identical	among
all	humans.)	If	researchers	have	access	to	only	a	small	sample	of	DNA	on	which
only	 a	 few	 loci	 can	 be	 tested,	 it’s	 possible	 that	 thousands	 or	 even	millions	 of
individuals	may	share	that	genetic	fragment.	Therefore,	the	more	loci	that	can	be
tested,	and	the	more	natural	genetic	variation	there	 is	 in	each	of	 those	 loci,	 the
more	certain	the	match	becomes.	Or,	to	put	it	a	bit	differently,	the	less	likely	it
becomes	that	the	DNA	sample	will	match	more	than	one	person.7
To	get	your	mind	around	 this,	 imagine	 that	your	“DNA	number”	consists	of

your	phone	number	attached	to	your	Social	Security	number.	This	nineteen-digit
sequence	 uniquely	 identifies	 you.	 Consider	 each	 digit	 a	 “locus”	 with	 ten
possibilities:	0,	1,	2,	3,	and	so	on.	Now	suppose	 that	crime	scene	 investigators
find	the	remnant	of	a	“DNA	number”	at	a	crime	scene:	4	5	9	4	0	_	9	8	1	7	_.	This
happens	to	match	exactly	with	your	“DNA	number.”	Are	you	guilty?
You	should	see	three	things.	First,	anything	less	than	a	full	match	of	the	entire

genome	leaves	some	room	for	uncertainty.	Second,	the	more	“loci”	that	can	be
tested,	 the	 less	 uncertainty	 remains.	 And	 third,	 context	 matters.	 This	 match
would	 be	 extremely	 compelling	 if	 you	 also	 happened	 to	 be	 caught	 speeding
away	from	the	crime	scene	with	the	victim’s	credit	cards	in	your	pocket.



When	 researchers	 have	 unlimited	 time	 and	 resources,	 the	 typical	 process
involves	 testing	 thirteen	 different	 loci.	 The	 chances	 that	 two	 people	 share	 the
same	DNA	profile	 across	 all	 thirteen	 loci	 are	 extremely	 low.	When	DNA	was
used	to	identify	the	remains	found	in	the	World	Trade	Center	after	September	11,
samples	 found	 at	 the	 scene	 were	 matched	 to	 samples	 provided	 by	 family
members	 of	 the	 victims.	 The	 probability	 required	 to	 establish	 positive
identification	 was	 one	 in	 a	 billion,	 meaning	 that	 the	 probability	 that	 the
discovered	remains	belonged	to	someone	other	than	the	identified	victim	had	to
be	 judged	 as	 one	 in	 one	 billion	 or	 less.	 Later	 in	 the	 search,	 this	 standard	was
relaxed,	as	there	were	fewer	unidentified	victims	with	whom	the	remains	could
be	confused.
When	resources	are	limited,	or	the	available	DNA	sample	is	too	small	or	too

contaminated	 for	 thirteen	 loci	 to	 be	 tested,	 things	 get	 more	 interesting	 and
controversial.	The	Los	Angeles	Times	ran	a	series	in	2008	examining	the	use	of
DNA	 as	 criminal	 evidence.8	 In	 particular,	 the	 Times	 questioned	 whether	 the
probabilities	 typically	 used	 by	 law	 enforcement	 understate	 the	 likelihood	 of
coincidental	 matches.	 (Since	 no	 one	 knows	 the	 DNA	 profile	 of	 the	 entire
population,	 the	 probabilities	 presented	 in	 court	 by	 the	 FBI	 and	 other	 law
enforcement	 entities	 are	 estimates.)	 The	 intellectual	 pushback	 was	 instigated
when	a	crime	lab	analyst	in	Arizona	running	tests	with	the	state’s	DNA	database
discovered	two	unrelated	felons	whose	DNA	matched	at	nine	loci;	according	to
the	FBI,	the	chances	of	a	nine-loci	match	between	two	unrelated	persons	are	1	in
113	billion.	Subsequent	searches	of	other	DNA	databases	turned	up	more	than	a
thousand	human	pairs	with	genetic	matches	at	nine	loci	or	more.	I’ll	 leave	this
issue	for	law	enforcement	and	defense	lawyers	to	work	out.	For	now,	the	lesson
is	that	the	dazzling	science	of	DNA	analysis	is	only	as	good	as	the	probabilities
used	to	support	it.

Often	 it	 is	 extremely	 valuable	 to	 know	 the	 likelihood	 of	 multiple	 events’
happening.	What	is	the	probability	that	the	electricity	goes	out	and	the	generator
doesn’t	work?	The	probability	of	two	independent	events’	both	happening	is	the
product	of	their	respective	probabilities.	In	other	words,	the	probability	of	Event
A	happening	and	Event	B	happening	is	the	probability	of	Event	A	multiplied	by
the	 probability	 of	 Event	 B.	 An	 example	makes	 it	 much	more	 intuitive.	 If	 the
probability	 of	 flipping	 heads	 with	 a	 fair	 coin	 is	½,	 then	 the	 probability	 of
flipping	heads	twice	in	a	row	is	½	×	½,	or	¼.	The	probability	of	flipping	three
heads	in	a	row	is	⅛,	 the	probability	of	four	heads	 in	a	row	is	1/16,	and	so	on.



(You	should	see	that	the	probability	of	throwing	four	tails	in	a	row	is	also	1/16.)
This	explains	why	the	system	administrator	at	your	school	or	office	is	constantly
on	your	case	to	improve	the	“quality”	of	your	password.	If	you	have	a	six-digit
password	using	only	numerical	digits,	we	can	calculate	 the	number	of	possible
passwords:	10	×	10	×	10	×	10	×	10	×	10,	which	equals	106,	or	1,000,000.
That	 sounds	 like	 a	 lot	 of	 possibilities,	 but	 a	 computer	 could	 blow	 through	 all
1,000,000	possible	combinations	in	a	fraction	of	a	second.
So	 let’s	 suppose	 that	 your	 system	administrator	 harangues	you	 long	 enough

that	you	include	letters	in	your	password.	At	that	point,	each	of	the	6	digits	now
has	36	combinations:	26	letters	and	10	digits.	The	number	of	possible	passwords
grows	to	36	×	36	×	36	×	36	×	36	×	36,	or	366,	which	is	over	two	billion.	If
your	administrator	demands	eight	digits	and	urges	you	to	use	symbols	like	#,	@,
%	and	!,	as	the	University	of	Chicago	does,	the	number	of	potential	passwords
climbs	to	468,	or	just	over	20	trillion.
There	 is	 one	 crucial	 distinction	 here.	 This	 formula	 is	 applicable	 only	 if	 the

events	 are	 independent,	meaning	 that	 the	outcome	of	 one	has	no	 effect	 on	 the
outcome	of	 another.	 For	 example,	 the	 probability	 that	 you	 throw	heads	 on	 the
first	 flip	does	not	change	 the	 likelihood	of	your	 throwing	heads	on	 the	 second
flip.	On	the	other	hand,	the	probability	that	it	rains	today	is	not	independent	of
whether	 it	 rained	yesterday,	 since	 storm	 fronts	 can	 last	 for	days.	Similarly,	 the
probability	of	 crashing	your	car	 today	and	crashing	your	car	next	year	 are	not
independent.	Whatever	 caused	 you	 to	 crash	 this	 year	might	 also	 cause	 you	 to
crash	next	year;	you	might	be	prone	to	drunk	driving,	drag	racing,	texting	while
driving,	or	just	driving	badly.	(This	is	why	your	auto	insurance	rates	go	up	after
an	accident;	it	is	not	simply	that	the	company	wants	to	recover	the	money	that	it
has	 paid	 out	 for	 the	 claim;	 rather,	 it	 now	 has	 new	 information	 about	 your
probability	of	crashing	in	the	future,	which—after	you’ve	driven	the	car	through
your	garage	door—has	gone	up.)
Suppose	 you	 are	 interested	 in	 the	 probability	 that	 one	 event	 happens	 or

another	event	happens:	outcome	A	or	outcome	B	(again	assuming	that	they	are
independent).	In	this	case,	the	probability	of	getting	A	or	B	consists	of	the	sum
of	 their	 individual	probabilities:	 the	probability	of	A	plus	 the	probability	of	B.
For	example,	the	likelihood	of	throwing	a	1,	2,	or	3,	with	a	single	die	is	the	sum
of	their	individual	probabilities:	 	+	 	+	 	=	 	=	½.	This	should	make	intuitive
sense.	There	are	six	possible	outcomes	for	 the	roll	of	a	die.	The	numbers	1,	2,
and	3	collectively	make	up	half	of	those	possible	outcomes.	Therefore	you	have
a	50	percent	chance	of	rolling	a	1,	2,	or	3.	If	you	are	playing	craps	in	Las	Vegas,



the	chance	of	rolling	a	7	or	11	in	a	single	throw	is	the	number	of	combinations
that	 sum	 to	 7	 or	 11	 divided	 by	 the	 total	 number	 of	 combinations	 that	 can	 be
thrown	with	two	dice,	or	 .*
Probability	also	enables	us	to	calculate	what	might	be	the	most	useful	tool	in

all	 of	 managerial	 decision	 making,	 particularly	 finance:	 expected	 value.	 The
expected	 value	 takes	 basic	 probability	 one	 step	 further.	The	 expected	 value	 or
payoff	 from	 some	 event,	 say	 purchasing	 a	 lottery	 ticket,	 is	 the	 sum	 of	 all	 the
different	 outcomes,	 each	weighted	 by	 its	 probability	 and	 payoff.	 As	 usual,	 an
example	makes	 this	 clearer.	 Suppose	 you	 are	 invited	 to	 play	 a	 game	 in	which
you	roll	a	single	die.	The	payoff	to	this	game	is	$1	if	you	roll	a	1;	$2	if	you	roll	a
2;	$3	if	you	roll	a	3;	and	so	on.	What	is	the	expected	value	for	a	single	roll	of	the
die?	Each	possible	outcome	has	a	 	probability,	so	the	expected	value	is:

	($1)	+	 	($2)	+	 	($3)	+	 	($4)	+	 	($5)	+	 	($6)	=	 ,	or	$3.50.
At	 first	 glance,	 the	 expected	 value	 of	 $3.50	might	 appear	 to	 be	 a	 relatively

useless	figure.	After	all,	you	can’t	actually	earn	$3.50	with	a	single	roll	of	the	die
(since	your	payoff	has	to	be	a	whole	number).	In	fact,	the	expected	value	turns
out	to	be	extremely	powerful	because	it	can	tell	you	whether	a	particular	event	is
“fair,”	 given	 its	 price	 and	 expected	 outcome.	 Suppose	 you	 have	 the	 chance	 to
play	the	above	game	for	$3	a	throw.	Does	it	make	sense	to	play?	Yes,	because
the	 expected	 value	 of	 the	 outcome	 ($3.50)	 is	 higher	 than	 the	 cost	 of	 playing
($3.00).	This	does	not	guarantee	that	you	will	make	money	by	playing	once,	but
it	does	help	clarify	which	risks	are	worth	taking	and	which	are	not.
We	can	 take	 this	hypothetical	 example	 and	apply	 it	 to	professional	 football.

As	 noted	 earlier,	 after	 a	 touchdown,	 teams	 have	 a	 choice	 between	 kicking	 an
extra	point	and	attempting	a	two-point	conversion.	The	former	involves	kicking
the	 ball	 through	 the	 goalposts	 from	 the	 three	 yard	 line;	 the	 latter	 involves
running	 or	 passing	 it	 into	 the	 end	 zone	 from	 the	 three	 yard	 line,	 which	 is
significantly	more	difficult.	Teams	can	choose	the	easy	option	and	get	one	point,
or	they	can	choose	the	harder	option	and	get	two	points.	What	to	do?
Statisticians	may	not	play	football	or	date	cheerleaders,	but	they	can	provide

statistical	guidance	for	football	coaches.9	As	pointed	out	earlier,	the	probability
of	making	the	kick	after	a	touchdown	is	.94.	This	means	that	the	expected	value
of	a	point-after	attempt	is	also	.94,	since	it	equals	the	payoff	(1	point)	multiplied
by	 the	 probability	 of	 success	 (.94).	 No	 team	 ever	 scores	 .94	 points,	 but	 this
figure	 is	 helpful	 in	 quantifying	 the	 value	 of	 attempting	 this	 option	 after	 a
touchdown	 relative	 to	 the	 alternative,	 which	 is	 the	 two-point	 conversion.	 The
expected	value	of	“going	for	two”	is	much	lower:	.74.	Yes,	the	payoff	is	higher



(2	points),	but	the	success	rate	is	dramatically	lower	(.37).	Obviously	if	there	is
one	second	left	 in	the	game	and	a	team	is	behind	by	two	points	after	scoring	a
touchdown,	it	has	no	choice	but	to	go	for	a	two-point	conversion.	But	if	a	team’s
goal	is	to	maximize	points	scored	over	time,	then	kicking	the	extra	point	is	the
strategy	that	will	do	that.
The	 same	 basic	 analysis	 can	 illustrate	 why	 you	 should	 never	 buy	 a	 lottery

ticket.	 In	 Illinois,	 the	probabilities	associated	with	 the	various	possible	payoffs
for	 the	 game	 are	 printed	 on	 the	 back	 of	 each	 ticket.	 I	 purchased	 a	 $1	 instant
ticket.	(Note	to	self:	Is	this	tax	deductible?)	On	the	back—in	tiny,	tiny	print—are
the	chances	of	winning	different	cash	prizes,	or	a	free	new	ticket:	1	in	10	(free
ticket);	1	in	15	($2);	1	in	42.86	($4);	1	in	75	($5);	and	so	on	up	to	the	1	in	40,000
chance	of	winning	$1,000.	I	calculated	the	expected	payout	for	my	instant	ticket
by	adding	up	each	possible	cash	prize	weighted	by	its	probability.*	 It	 turns	out
that	my	$1	 lottery	 ticket	has	an	expected	payout	of	 roughly	$.56,	making	 it	an
absolutely	miserable	way	to	spend	$1.	As	luck	would	have	it,	I	won	$2.
My	$2	prize	notwithstanding,	buying	the	ticket	was	a	stupid	thing	to	do.	This

is	one	of	the	crucial	lessons	of	probability.	Good	decisions—as	measured	by	the
underlying	probabilities—can	turn	out	badly.	And	bad	decisions—like	spending
$1	on	 the	 Illinois	 lottery—can	 still	 turn	out	well,	 at	 least	 in	 the	 short	 run.	But
probability	triumphs	in	the	end.	An	important	theorem	known	as	the	law	of	large
numbers	 tells	 us	 that	 as	 the	 number	 of	 trials	 increases,	 the	 average	 of	 the
outcomes	will	get	closer	and	closer	to	its	expected	value.	Yes,	I	won	$2	playing
the	lotto	today.	And	I	might	win	$2	again	tomorrow.	But	if	I	buy	thousands	of	$1
lottery	 tickets,	 each	 with	 an	 expected	 payout	 of	 $.56,	 then	 it	 becomes	 a	 near
mathematical	certainty	that	I	will	lose	money.	By	the	time	I’ve	spent	$1	million
on	tickets,	I’m	going	to	end	up	with	something	strikingly	close	to	$560,000.
The	 law	of	 large	numbers	 explains	why	 casinos	 always	make	money	 in	 the

long	 run.	 The	 probabilities	 associated	 with	 all	 casino	 games	 favor	 the	 house
(assuming	 that	 the	 casino	 can	 successfully	 prevent	 blackjack	 players	 from
counting	cards).	If	enough	bets	are	wagered	over	a	long	enough	time,	the	casino
will	 be	 certain	 to	 win	 more	 than	 it	 loses.	 The	 law	 of	 large	 numbers	 also
demonstrates	 why	 Schlitz	 was	 much	 better	 off	 doing	 100	 blind	 taste	 tests	 at
halftime	 of	 the	 Super	 Bowl	 rather	 than	 just	 10.	 Check	 out	 the	 “probability
density	 functions”	 for	 a	 Schlitz	 type	 of	 test	 with	 10,	 100,	 and	 1,000	 trials.
(Although	 it	 sounds	 fancy,	 a	 probability	 density	 function	 merely	 plots	 the
assorted	outcomes	along	the	x-axis	and	the	expected	probability	of	each	outcome
on	 the	 y-axis;	 the	 weighted	 probabilities—each	 outcome	 multiplied	 by	 its



expected	frequency—will	add	up	to	1.)	Again	I’m	assuming	that	the	taste	test	is
just	 like	a	coin	flip	and	each	tester	has	a	 .5	probability	of	choosing	Schlitz.	As
you	can	see	below,	the	expected	outcome	converges	around	50	percent	of	tasters’
choosing	 Schlitz	 as	 the	 number	 of	 tasters	 gets	 larger.	 At	 the	 same	 time,	 the
probability	 of	 getting	 an	 outcome	 that	 deviates	 sharply	 from	 50	 percent	 falls
sharply	as	the	number	of	trials	gets	large.

10	Trials

100	Trials

1,000	Trials



I	 stipulated	 earlier	 that	 Schlitz	 executives	 would	 be	 happy	 if	 40	 percent	 or
more	of	the	Michelob	drinkers	chose	Schlitz	in	the	blind	taste	test.	The	figures
below	 reflect	 the	 probability	 of	 getting	 that	 outcome	 as	 the	 number	 of	 tasters
gets	larger:

10	blind	taste	testers:	.83
100	blind	taste	testers:	.98
1,000	blind	taste	testers:	.9999999999
1,000,000	blind	taste	testers:	1

By	now	 the	 intuition	 is	 obvious	 behind	 the	 chapter	 subtitle,	 “Don’t	 buy	 the
extended	warranty	on	your	$99	printer.”	Okay,	maybe	that’s	not	so	obvious.	Let
me	back	up.	The	entire	insurance	industry	is	built	on	probability.	(A	warranty	is
just	 a	 form	 of	 insurance.)	 When	 you	 insure	 anything,	 you	 are	 contracting	 to
receive	some	specified	payoff	in	the	event	of	a	clearly	defined	contingency.	For
example,	your	auto	insurance	will	replace	your	car	in	the	event	that	it	gets	stolen
or	crushed	by	a	tree.	In	exchange	for	this	guarantee,	you	agree	to	pay	some	fixed
amount	of	money	for	the	period	in	which	you	are	insured.	The	key	idea	is	that	in
exchange	 for	 a	 regular	 and	 predictable	 payment,	 you	 have	 transferred	 to	 the
insurance	company	 the	risk	of	having	your	car	stolen,	crushed,	or	even	 totaled
by	your	own	bad	driving.
Why	 are	 these	 companies	 willing	 to	 assume	 such	 risks?	 Because	 they	 will

earn	 large	 profits	 in	 the	 long	 run	 if	 they	 price	 their	 premiums	 correctly.
Obviously	some	cars	insured	by	Allstate	will	get	stolen.	Others	will	get	totaled
when	 their	 owners	 drive	 over	 a	 fire	 hydrant,	 as	 happened	 to	 my	 high	 school
girlfriend.	(She	also	had	to	replace	the	fire	hydrant,	which	is	far	more	expensive
than	you	might	think.)	But	most	cars	insured	by	Allstate	or	any	other	company
will	be	just	fine.	To	make	money,	the	insurance	company	need	only	collect	more
in	premiums	than	it	pays	out	in	claims.	And	to	do	that,	the	firm	must	have	a	solid
grasp	of	what	is	known	in	industry	jargon	as	the	“expected	loss”	on	every	policy.



This	is	exactly	the	same	concept	as	expected	value,	only	with	an	insurance	twist.
If	your	 car	 is	 insured	 for	$40,000,	 and	 the	chances	of	 its	getting	 stolen	 in	 any
given	year	are	1	in	1,000,	then	the	annual	expected	loss	on	your	car	is	$40.	The
annual	premium	for	the	theft	portion	of	the	coverage	needs	to	be	more	than	$40.
At	that	point,	the	insurance	company	becomes	just	like	the	casino	or	the	Illinois
lottery.	Yes,	there	will	be	payouts,	but	over	the	long	run	what	comes	in	will	be
more	than	what	goes	out.
As	a	consumer,	you	should	recognize	that	insurance	will	not	save	you	money

in	the	long	run.	What	it	will	do	is	prevent	some	unacceptably	high	loss,	such	as
replacing	a	$40,000	car	that	was	stolen	or	a	$350,000	house	that	burned	down.
Buying	insurance	is	a	“bad	bet”	from	a	statistical	standpoint	since	you	will	pay
the	insurance	company,	on	average,	more	than	you	get	back.	Yet	it	can	still	be	a
sensible	 tool	 for	protecting	against	outcomes	 that	would	otherwise	wreck	your
life.	 Ironically,	 someone	 as	 rich	 as	 Warren	 Buffett	 can	 save	 money	 by	 not
purchasing	 car	 insurance,	 homeowner’s	 insurance,	 or	 even	 health	 insurance
because	he	can	afford	whatever	bad	things	might	happen	to	him.
Which	 finally	brings	us	back	 to	your	$99	printer!	We’ll	 assume	 that	you’ve

just	picked	out	the	perfect	new	laser	printer	at	Best	Buy	or	some	other	retailer.*
When	you	reach	the	checkout	counter,	the	sales	assistant	will	offer	you	a	series
of	 extended	 warranty	 options.	 For	 another	 $25	 or	 $50,	 Best	 Buy	 will	 fix	 or
replace	the	printer	should	it	break	in	the	next	year	or	two.	On	the	basis	of	your
understanding	 of	 probability,	 insurance,	 and	 basic	 economics,	 you	 should
immediately	be	able	to	surmise	all	of	the	following:	(1)	Best	Buy	is	a	for-profit
business	that	seeks	to	maximize	profits.	(2)	The	sales	assistant	is	eager	for	you	to
buy	the	extended	warranty.	(3)	From	numbers	1	and	2,	we	can	infer	that	the	cost
of	the	warranty	to	you	is	greater	than	the	expected	cost	of	fixing	or	repairing	the
printer	 for	 Best	 Buy.	 If	 this	 were	 not	 the	 case,	 Best	 Buy	 would	 not	 be	 so
aggressive	in	trying	to	sell	it	to	you.	(4)	If	your	$99	printer	breaks	and	you	have
to	pay	out	of	pocket	to	fix	or	replace	it,	this	will	not	meaningfully	change	your
life.
On	 average,	 you’ll	 pay	more	 for	 the	 extended	warranty	 than	 you	would	 to

repair	 the	printer.	The	broader	 lesson—and	one	of	 the	core	 lessons	of	personal
finance—is	 that	 you	 should	 always	 insure	 yourself	 against	 any	 adverse
contingency	 that	 you	 cannot	 comfortably	 afford	 to	withstand.	You	 should	 skip
buying	insurance	on	everything	else.

Expected	value	can	also	help	us	untangle	complex	decisions	that	involve	many



contingencies	 at	 different	 points	 in	 time.	 Suppose	 a	 friend	 of	 yours	 has	 asked
you	 to	 invest	 $1	million	 in	 a	 research	venture	 examining	 a	new	cure	 for	male
pattern	baldness.	You	would	probably	ask	what	the	likelihood	of	success	will	be;
you’ll	get	a	complicated	answer.	This	is	a	research	project,	so	there	is	only	a	30
percent	chance	that	the	team	will	discover	a	cure	that	works.	If	the	team	does	not
find	a	cure,	you	will	get	$250,000	of	your	investment	back,	as	those	funds	will
have	been	reserved	for	taking	the	drug	to	market	(testing,	marketing,	etc.)	Even
if	the	researchers	are	successful,	there	is	only	a	60	percent	chance	that	the	U.S.
Food	 and	Drug	Administration	will	 approve	 the	 new	miracle	 baldness	 cure	 as
safe	for	use	on	humans.	Even	then,	if	the	drug	is	safe	and	effective,	there	is	a	10
percent	chance	that	a	competitor	will	come	to	market	with	a	better	drug	at	about
the	 same	 time,	 wiping	 out	 any	 potential	 profits.	 If	 everything	 goes	 well—the
drug	is	safe,	effective,	and	unchallenged	by	competitors—then	the	best	estimate
on	the	return	on	your	investment	is	$25	million.
Should	you	make	the	investment?
This	seems	 like	a	muddle	of	 information.	The	potential	payday	 is	huge—25

times	 your	 initial	 investment—but	 there	 are	 so	 many	 potential	 pitfalls.	 A
decision	tree	can	help	organize	this	kind	of	information	and—if	the	probabilities
associated	with	each	outcome	are	correct—give	you	a	probabilistic	assessment
of	what	you	ought	to	do.	The	decision	tree	maps	out	each	source	of	uncertainty
and	the	probabilities	associated	with	all	possible	outcomes.	The	end	of	the	tree
gives	us	all	the	possible	payoffs	and	the	probability	of	each.	If	we	weight	each
payoff	by	 its	 likelihood,	and	sum	all	 the	possibilities,	we	will	get	 the	expected
value	of	this	investment	opportunity.	As	usual,	the	best	way	to	understand	this	is
to	take	a	look.

The	Investment	Decision



This	 particular	 opportunity	 has	 an	 attractive	 expected	 value.	 The	 weighted
payoff	is	$4.225	million.	Still,	this	investment	may	not	be	the	wisest	thing	to	do
with	 the	 college	 tuition	money	 that	 you’ve	 squirreled	 away	 for	 your	 children.
The	decision	tree	lets	you	know	that	your	expected	payoff	is	far	higher	than	what
you	 are	 being	 asked	 to	 invest.	 On	 the	 other	 hand,	 the	 most	 likely	 outcome,
meaning	 the	 one	 that	 will	 happen	 most	 often,	 is	 that	 the	 company	 will	 not
discover	a	cure	for	baldness	and	you	will	get	only	$250,000	back.	Your	appetite
for	this	investment	might	depend	on	your	risk	profile.	The	law	of	large	numbers
suggests	that	an	investment	firm,	or	a	rich	individual	like	Warren	Buffet,	should
seek	 out	 hundreds	 of	 opportunities	 like	 this	 with	 uncertain	 outcomes	 but
attractive	 expected	 returns.	 Some	 will	 work;	 many	 won’t.	 On	 average,	 these
investors	will	make	a	lot	of	money,	just	like	an	insurance	company	or	a	casino.	If
the	expected	payoff	is	in	your	favor,	more	trials	are	always	better.
The	 same	basic	process	can	be	used	 to	explain	a	 seemingly	counterintuitive

phenomenon.	Sometimes	it	does	not	make	sense	to	screen	the	entire	population
for	a	rare	but	serious	disease,	such	as	HIV/AIDS.	Suppose	we	can	test	for	some
rare	 disease	 with	 a	 high	 degree	 of	 accuracy.	 For	 the	 sake	 of	 example,	 let’s
assume	 the	 disease	 affects	 1	 of	 every	 100,000	 adults	 and	 the	 test	 is	 99.9999
percent	accurate.	The	test	never	generates	a	false	negative	(meaning	that	it	never
misses	 someone	 who	 has	 the	 disease);	 however,	 roughly	 1	 in	 10,000	 tests
conducted	on	 a	healthy	person	will	 generate	 a	 false	positive,	meaning	 that	 the
person	tests	positive	but	does	not	actually	have	the	disease.	The	striking	outcome
here	is	 that	despite	 the	impressive	accuracy	of	 the	test,	most	of	 the	people	who
test	 positive	 will	 not	 have	 the	 disease.	 This	 will	 generate	 enormous	 anxiety
among	 those	 who	 falsely	 test	 positive;	 it	 can	 also	 waste	 finite	 health	 care



resources	on	follow-up	tests	and	treatment.
If	we	test	the	entire	American	adult	population,	or	roughly	175	million	people,

the	decision	tree	looks	like	the	following:

Widespread	Screening	for	a	Rare	Disease

Only	1,750	adults	have	 the	disease.	They	all	 test	positive.	Over	174	million
adults	do	not	have	the	disease.	Of	this	healthy	group	who	are	tested,	99.9999	get
the	 correct	 result	 that	 they	 do	 not	 have	 the	 disease.	 Only	 .0001	 get	 a	 false
positive.	But	 .0001	of	174	million	 is	 still	 a	big	number.	 In	 fact,	17,500	people
will,	on	average,	get	false	positives.
Let’s	look	at	what	that	means.	A	total	of	19,250	people	are	notified	that	they

have	the	disease;	only	9	percent	of	them	are	actually	sick!	And	that’s	with	a	test
that	has	a	very	low	rate	of	false	positives.	Without	going	too	far	off	 topic,	 this
should	 give	 you	 some	 insight	 into	 why	 cost	 containment	 in	 health	 care
sometimes	 involves	 less	 screening	of	healthy	people	 for	diseases,	not	more.	 In
the	 case	 of	 a	 disease	 like	 HIV/AIDS,	 public	 health	 officials	 will	 often



recommend	 that	 the	 resources	 available	 be	 used	 to	 screen	 the	 populations	 at
highest	risk,	such	as	gay	men	or	intravenous	drug	users.

Sometimes	 probability	 helps	 us	 by	 flagging	 suspicious	 patterns.	 Chapter	 1
introduced	 the	 problem	 of	 institutionalized	 cheating	 on	 standardized	 tests	 and
one	 of	 the	 firms	 that	 roots	 it	 out,	 Caveon	 Test	 Security.	 The	 Securities	 and
Exchange	Commission	(SEC),	the	government	agency	responsible	for	enforcing
federal	laws	related	to	securities	trading,	uses	a	similar	methodology	for	catching
inside	 traders.	 (Inside	 trading	involves	 illegally	using	private	 information,	such
as	a	law	firm’s	knowledge	of	an	impending	corporate	acquisition,	to	trade	stock
or	other	securities	in	the	affected	companies.)	The	SEC	uses	powerful	computers
to	 scrutinize	 hundreds	 of	 millions	 of	 stock	 trades	 and	 look	 for	 suspicious
activity,	such	as	a	big	purchase	of	shares	in	a	company	just	before	a	takeover	is
announced,	 or	 the	 dumping	 of	 shares	 just	 before	 a	 company	 announces
disappointing	 earnings.10	 The	 SEC	 will	 also	 investigate	 investment	 managers
with	 unusually	 high	 returns	 over	 long	 periods	 of	 time.	 (Both	 economic	 theory
and	historical	data	suggest	that	it	is	extremely	difficult	for	a	single	investor	to	get
above-average	 returns	 year	 after	 year.)	 Of	 course,	 smart	 investors	 are	 always
trying	 to	 anticipate	good	and	bad	news	and	 to	devise	perfectly	 legal	 strategies
that	 consistently	 beat	 the	 market.	 Being	 a	 good	 investor	 does	 not	 necessarily
make	 one	 a	 criminal.	 How	 does	 a	 computer	 tell	 the	 difference?	 I	 called	 the
enforcement	division	of	the	SEC	several	times	to	ask	what	particular	patterns	are
most	likely	to	signal	criminal	activity.	They	still	have	not	called	me	back.

In	the	2002	film	Minority	Report,	Tom	Cruise	plays	a	“pre-crime”	detective	who
is	 part	 of	 a	 bureau	 that	 uses	 technology	 to	 predict	 crimes	 before	 they’re
committed.
Well	 folks,	 that’s	not	 science	 fiction	anymore.	 In	2011,	 the	New	York	Times

ran	the	following	headline:	“Sending	the	Police	before	There’s	a	Crime.”11	The
story	described	how	detectives	were	dispatched	to	a	parking	garage	in	downtown
Santa	 Cruz	 by	 a	 computer	 program	 that	 predicted	 that	 there	 was	 a	 high
likelihood	 of	 burglaries	 from	 cars	 at	 that	 location	 on	 that	 day.	 Police
subsequently	 arrested	 two	 women	 peering	 into	 car	 windows.	 One	 had
outstanding	arrest	warrants;	the	other	was	carrying	illegal	drugs.
The	 Santa	 Cruz	 system	 was	 designed	 by	 two	 mathematicians,	 an

anthropologist,	and	a	criminologist.	The	Chicago	Police	Department	has	created
an	 entire	 predictive	 analytics	 unit,	 in	 part	 because	 gang	 activity,	 the	 source	 of



much	of	the	city’s	violence,	follows	certain	patterns.	The	book	Data	Mining	and
Predictive	 Analysis:	 Intelligence	 Gathering	 and	 Crime	 Analysis,	 a	 guide	 to
statistics	 for	 law	 enforcement,	 begins	 enthusiastically,	 “It	 is	 now	 possible	 to
predict	 the	 future	 when	 it	 comes	 to	 crime,	 such	 as	 identifying	 crime	 trends,
anticipating	hotspots	in	the	community,	refining	resource	deployment	decisions,
and	 ensuring	 the	greatest	 protection	 for	 citizens	 in	 the	most	 efficient	manner.”
(Look,	I	read	these	kinds	of	things	so	that	you	don’t	have	to.)
“Predictive	 policing”	 is	 part	 of	 a	 broader	 movement	 called	 predictive

analytics.	 Crime	 will	 always	 involve	 an	 element	 of	 uncertainty,	 as	 will
determining	who	is	going	to	crash	his	car	or	default	on	her	mortgage.	Probability
helps	us	navigate	those	risks.	And	information	refines	our	understanding	of	the
relevant	 probabilities.	 Businesses	 facing	 uncertainty	 have	 always	 sought	 to
quantify	their	risks.	Lenders	request	things	like	income	verification	and	a	credit
score.	Yet	 these	blunt	 credit	 instruments	 are	 starting	 to	 feel	 like	 the	prediction
equivalent	of	a	caveman’s	stone	tools.	The	confluence	of	huge	amounts	of	digital
data	and	cheap	computing	power	has	generated	fascinating	insights	into	human
behavior.	Insurance	officials	correctly	describe	their	business	as	the	“transfer	of
risk”—and	 so	 they	 had	 better	 understand	 the	 risks	 being	 transferred	 to	 them.
Companies	 like	 Allstate	 are	 in	 the	 business	 of	 knowing	 things	 that	 might
otherwise	seem	like	random	trivia:12

•	Twenty	to	twenty-four-year-old	drivers	are	the	most	likely	to	be	involved	in
a	fatal	crash.

•	The	most	commonly	stolen	car	in	Illinois	is	the	Honda	Civic	(as	opposed	to
full-size	Chevrolet	pickups	in	Alabama).*

•	Texting	while	driving	causes	crashes,	but	state	laws	banning	the	practice	do
not	seem	to	stop	drivers	from	doing	it.	In	fact,	such	laws	might	even	make
things	worse	by	prompting	drivers	to	hide	their	phones	and	therefore	take
their	eyes	off	the	road	while	texting.

The	credit	 card	companies	are	 at	 the	 forefront	of	 this	kind	of	 analysis,	both
because	they	are	privy	to	so	much	data	on	our	spending	habits	and	because	their
business	model	depends	so	heavily	on	finding	customers	who	are	 just	barely	a
good	credit	risk.	(The	customers	who	are	the	best	credit	risks	tend	to	be	money
losers	because	they	pay	their	bills	 in	full	each	month;	 the	customers	who	carry
large	 balances	 at	 high	 interest	 rates	 are	 the	 ones	who	 generate	 fat	 profits—as
long	as	they	don’t	default.)	One	of	the	most	intriguing	studies	of	who	is	likely	to
pay	a	bill	and	who	is	likely	to	walk	away	was	generated	by	J.	P.	Martin,	“a	math-



loving	 executive”	 at	 Canadian	 Tire,	 a	 large	 retailer	 that	 sells	 a	 wide	 range	 of
automotive	products	and	other	retail	goods.13	When	Martin	analyzed	the	data—
every	 transaction	 using	 a	 Canadian	 Tire	 credit	 card	 from	 the	 prior	 year—he
discovered	that	what	customers	purchased	was	a	remarkably	precise	predictor	of
their	 subsequent	 payment	 behavior	 when	 used	 in	 conjunction	 with	 traditional
tools	like	income	and	credit	history.
A	New	 York	 Times	Magazine	 article	 entitled	 “What	Does	Your	Credit	 Card

Company	 Know	 about	 You?”	 described	 some	 of	 Martin’s	 most	 intriguing
findings:	 “People	who	 bought	 cheap,	 generic	 automotive	 oil	were	much	more
likely	to	miss	a	credit-card	payment	than	someone	who	got	the	expensive,	name-
brand	 stuff.	 People	who	 bought	 carbon-monoxide	monitors	 for	 their	 homes	 or
those	 little	 felt	pads	 that	stop	chair	 legs	from	scratching	 the	floor	almost	never
missed	 payments.	 Anyone	 who	 purchased	 a	 chrome-skull	 car	 accessory	 or	 a
‘Mega	 Thruster	 Exhaust	 System’	 was	 pretty	 likely	 to	 miss	 paying	 his	 bill
eventually.”

Probability	gives	us	tools	for	dealing	with	life’s	uncertainties.	You	shouldn’t	play
the	lottery.	You	should	invest	in	the	stock	market	if	you	have	a	long	investment
horizon	 (because	 stocks	 typically	have	 the	best	 long-term	returns).	You	should
buy	 insurance	 for	 some	 things,	 but	 not	 others.	 Probability	 can	 even	 help	 you
maximize	your	winnings	on	game	shows	(as	the	next	chapter	will	show.)
That	said	(or	written),	probability	is	not	deterministic.	No,	you	shouldn’t	buy

a	lottery	ticket—but	you	still	might	win	money	if	you	do.	And	yes,	probability
can	help	us	catch	cheaters	and	criminals—but	when	used	inappropriately	it	can
also	send	innocent	people	to	jail.	That’s	why	we	have	Chapter	6.

*	I	have	in	mind	“Six	Sigma	Man.”	The	lowercase	Greek	letter	sigma,	σ,	represents	the	standard	deviation.
Six	 Sigma	 Man	 is	 six	 standard	 deviations	 above	 the	 norm	 in	 terms	 of	 statistical	 ability,	 strength,	 and
intelligence.
†	 For	 all	 of	 these	 calculations,	 I’ve	 used	 a	 handy	 online	 binomial	 calculator,	 at
http://stattrek.com/Tables/Binomial.aspx.
*	NASA	also	pointed	out	that	even	falling	space	debris	is	government	property.	Apparently	it	is	illegal	to
keep	a	satellite	souvenir,	even	if	it	lands	in	your	backyard.
†	The	Levitt	and	Dubner	calculations	are	as	follows.	Each	year	roughly	550	children	under	ten	drown	and
175	children	under	 ten	die	 from	gun	accidents.	The	 rates	 they	compare	are	1	drowning	 for	every	11,000
residential	pools	compared	with	1	gun	death	per	“million-plus”	guns.	For	adolescents,	I	suspect	the	numbers
may	change	sharply,	both	because	they	are	better	able	to	swim	and	because	they	are	more	likely	to	cause	a
tragedy	if	they	stumble	upon	a	loaded	gun.	However,	I	have	not	checked	the	data	on	this	point.
*	There	are	6	ways	to	throw	a	7	with	two	dice:	(1,6);	(2,5);	(3,4);	(6,1);	(5,2);	and	(4,3).	There	are	only	2
ways	to	throw	an	11:	(5,6)	and	(6,5).
Meanwhile,	 there	are	36	 total	possible	 throws	with	 two	dice:	 (1,1);	 (1,2);	 (1,3);	 (1,4);	 (1,5);	 (1,6).	And



(2,1);	(2,2);	(2,3);	(2,4);	(2,5);	(2,6).	And	(3,1);	(3,2);	(3,3);	(3,4);	(3,5);	(3,6).	And	(4,1);	(4,2);	(4,3);	(4,4);
(4,5);	(4,6).	And	(5,1);	(5,2);	(5,3);	(5,4);	(5,5);	(5,6).	And,	finally,	(6,1);	(6,2);	(6,3);	(6,4);	(6,5);	and	(6,6).
Thus,	 the	chance	of	 throwing	a	7	or	11	is	 the	number	of	possible	ways	of	 throwing	either	of	 those	two

numbers	divided	by	the	total	number	of	possible	throws	with	two	dice,	which	is	8/36.	Incidentally,	much	of
the	earlier	research	on	probability	was	done	by	gamblers	to	determine	exactly	this	kind	of	thing.
*	 The	 full	 expected	 value	 for	 the	 Illinois	 Dugout	 Doubler	 $1	 ticket	 (rounded	 to	 the	 nearest	 cent)	 is	 as
follows:	1/15	 ($2)	+	1/42.86	 ($4)	+	1/75	 ($5)	+	1/200	 ($10)	+	1/300	 ($25)	+	1/1,589.40	 ($50)	+	1/8000
($100)	+	1/16,000	($200)	+	1/48,000	($500)	+	1/40,000	($1,000)	=	$.13	+	$.09	+	$.07	+	$.05	+	$.08	+	$.03
+	$.01	+	$.01	+	$.01	+	$.03	=	$.51.	However,	there	is	also	a	1/10	chance	of	getting	a	free	ticket,	which	has
an	expected	payout	of	$.51,	so	the	overall	expected	payout	is	$.51	+	.1	($.51)	=	$.51	+	$.05	=	$.56.
*	Earlier	in	the	book	I	used	an	example	that	involved	drunken	employees	producing	defective	laser	printers.
You	will	need	to	forget	that	example	here	and	assume	that	the	company	has	fixed	its	quality	problems.
*	Since	I’ve	admonished	you	to	be	a	stickler	about	descriptive	statistics,	I	feel	compelled	to	point	out	that
the	most	 commonly	 stolen	 car	 is	 not	 necessarily	 the	 kind	 of	 car	 that	 is	most	 likely	 to	 be	 stolen.	A	 high
number	of	Honda	Civics	are	reported	stolen	because	there	are	a	lot	of	them	on	the	road;	the	chances	that
any	 individual	Honda	Civic	 is	 stolen	 (which	 is	what	car	 insurance	companies	care	about)	might	be	quite
low.	In	contrast,	even	if	99	percent	of	all	Ferraris	are	stolen,	Ferrari	would	not	make	the	“most	commonly
stolen”	list,	because	there	are	not	that	many	of	them	to	steal.



CHAPTER	5½

The	Monty	Hall	Problem

The	“Monty	Hall	problem”	is	a	famous	probability-related	conundrum	faced	by
participants	on	the	game	show	Let’s	Make	a	Deal,	which	premiered	in	the	United
States	 in	 1963	 and	 is	 still	 running	 in	 some	 markets	 around	 the	 world.	 (I
remember	 watching	 the	 show	 whenever	 I	 was	 home	 sick	 from	 elementary
school.)	The	program’s	gift	to	statisticians	was	described	in	the	introduction.	At
the	end	of	 each	day’s	 show	a	contestant	was	 invited	 to	 stand	with	host	Monty
Hall	 facing	 three	 big	 doors:	 Door	 no.	 1,	 Door	 no.	 2,	 and	 Door	 no.	 3.	Monty
explained	to	the	contestant	that	there	was	a	highly	desirable	prize	behind	one	of
the	 doors	 and	 a	 goat	 behind	 the	 other	 two	doors.	The	player	 chose	 one	of	 the
three	doors	and	would	get	as	a	prize	whatever	was	behind	it.	(I	don’t	know	if	the
participants	 actually	 got	 to	 keep	 the	 goat;	 for	 our	 purposes,	 assume	 that	most
players	preferred	the	new	car.)
The	initial	probability	of	winning	was	straightforward.	There	were	two	goats

and	one	car.	As	the	participant	stood	facing	the	doors	with	Monty,	he	or	she	had
a	1	in	3	chance	of	choosing	the	door	that	would	be	opened	to	reveal	the	car.	But
as	noted	earlier,	Let’s	Make	a	Deal	had	a	 twist,	which	 is	why	 the	show	and	 its
host	 have	 been	 immortalized	 in	 the	 probability	 literature.	 After	 the	 contestant
chose	a	door,	Monty	would	open	one	of	the	two	doors	that	the	contestant	had	not
picked,	always	revealing	a	goat.	At	that	point,	Monty	would	ask	the	contestant	if
he	would	 like	 to	 change	his	pick—to	 switch	 from	 the	 closed	door	 that	 he	had
picked	originally	to	the	other	remaining	closed	door.
For	 the	 sake	 of	 example,	 assume	 that	 the	 contestant	 has	 originally	 chosen

Door	no.	1.	Monty	would	then	open	Door	no.	3;	a	live	goat	would	be	standing
there	on	a	stage.	Two	doors	would	still	be	closed,	nos.	1	and	2.	If	 the	valuable
prize	 was	 behind	 no.	 1,	 the	 contestant	 would	 win;	 if	 it	 was	 behind	 no.	 2,	 he
would	 lose.	 That’s	when	Monty	would	 turn	 to	 the	 player	 and	 ask	whether	 he
would	like	to	change	his	mind	and	switch	doors,	from	no.	1	to	no.	2	in	this	case.
Remember,	both	doors	are	still	closed.	The	only	new	information	the	contestant
has	 received	 is	 that	 a	 goat	 showed	up	behind	one	of	 the	doors	 that	 he	did	not



pick.
Should	he	switch?
Yes.	The	contestant	has	a	1/3	chance	of	winning	 if	he	 sticks	with	his	 initial

choice	and	a	2/3	chance	of	winning	if	he	switches.	If	you	don’t	believe	me,	read
on.
I’ll	concede	that	this	answer	seems	entirely	unintuitive	at	first.	It	would	appear

that	 the	 contestant	 has	 a	one-third	 chance	of	winning	no	matter	what	 he	does.
There	 are	 three	 closed	 doors.	 At	 the	 beginning,	 each	 door	 has	 a	 one	 in	 three
chance	of	holding	the	valuable	prize.	How	could	it	matter	whether	he	switches
from	one	closed	door	to	another?
The	answer	lies	in	the	fact	that	Monty	Hall	knows	what	is	behind	each	door.	If

the	contestant	picks	Door	no.	1	and	there	is	a	car	behind	it,	then	Monty	can	open
either	no.	2	or	no.	3	to	display	a	goat.
If	 the	 contestant	 picks	Door	 no.	 1	 and	 the	 car	 is	 behind	 no.	 2,	 then	Monty

opens	no.	3.
If	 the	 contestant	 picks	Door	 no.	 1	 and	 the	 car	 is	 behind	 no.	 3,	 then	Monty

opens	no.	2.
By	 switching	 after	 a	 door	 is	 opened,	 the	 contestant	 gets	 the	 benefit	 of

choosing	two	doors	rather	than	one.	I	will	try	to	persuade	you	in	three	different
ways	that	this	analysis	is	correct.
The	first	is	empirical.	In	2008,	New	York	Times	columnist	John	Tierney	wrote

about	 the	Monty	Hall	phenomenon.1	The	Times	 then	constructed	an	 interactive
feature	 that	 allows	 you	 to	 play	 the	 game	 yourself,	 including	 the	 decision	 to
switch	or	not.	(There	are	even	little	goats	and	cars	that	pop	out	from	behind	the
doors.)	 The	 game	 keeps	 track	 of	 your	 success	 when	 you	 switch	 doors	 after
making	your	initial	decision	compared	with	when	you	do	not.	Try	it	yourself.*	I
paid	one	of	my	children	to	play	the	game	100	times,	switching	each	time.	I	paid
her	brother	to	play	the	game	100	times	without	switching.	The	switcher	won	72
times;	the	nonswitcher	won	33	times.	Both	received	two	dollars	for	their	efforts.
The	 data	 from	 episodes	 of	 Let’s	 Make	 a	 Deal	 suggest	 the	 same	 thing.

According	 to	 Leonard	 Mlodinow,	 author	 of	 The	 Drunkard’s	 Walk,	 those
contestants	who	switched	their	choice	won	about	twice	as	often	as	those	who	did
not.2
My	 second	 explanation	 gets	 at	 the	 intuition.	 Let’s	 suppose	 the	 rules	 were

modified	slightly.	Assume	that	the	contestant	begins	by	picking	one	of	the	three
doors:	 no.	 1,	 no.	 2,	 or	 no.	 3,	 just	 as	 the	 game	 is	 ordinarily	 played.	 But	 then,
before	any	door	is	opened	to	reveal	a	goat,	Monty	says,	“Would	you	like	to	give



up	your	choice	in	exchange	for	both	of	the	other	doors	that	you	did	not	choose?”
So	if	you	picked	Door	no.	1,	you	could	ditch	that	door	in	exchange	for	what	is
behind	no.	2	and	no.	3.	If	you	picked	no.	3,	you	could	switch	to	no.	1	and	no.	2.
And	so	on.
That	would	not	be	a	particularly	hard	decision.	Obviously	you	should	give	up

one	door	in	exchange	for	two,	as	it	increases	your	chances	of	winning	from	1/3
to	2/3.	Here	is	the	intriguing	part:	That	is	exactly	what	Monty	Hall	allows	you	to
do	in	the	real	game	after	he	reveals	the	goat.	The	fundamental	insight	is	that	if
you	were	to	choose	two	doors,	one	of	them	would	always	have	a	goat	behind	it
anyway.	When	he	opens	a	door	 to	 reveal	 a	goat	before	asking	 if	you’d	 like	 to
switch,	 he’s	 doing	you	 a	 huge	 favor!	He’s	 saying	 (in	 effect),	 “There	 is	 a	 two-
thirds	chance	that	the	car	is	behind	one	of	the	doors	you	didn’t	choose,	and	look,
it’s	not	that	one!”
Think	of	it	this	way.	Suppose	you	picked	Door	no.	1.	Monty	then	offers	you

the	option	to	take	Doors	2	and	3	instead.	You	take	the	offer,	giving	up	one	door
and	getting	 two,	meaning	 that	you	can	reasonably	expect	 to	win	 the	car	2/3	of
the	 time.	At	 that	 point,	what	 if	Monty	were	 to	 open	Door	 no.	 3—one	of	 your
doors—to	 reveal	 a	 goat?	Should	you	 feel	 less	 certain	 about	 your	 decision?	Of
course	 not.	 If	 the	 car	 were	 behind	 no.	 3,	 he	 would	 have	 opened	 no.	 2!	He’s
shown	you	nothing.
When	 the	 game	 is	 played	 normally,	 Monty	 is	 really	 giving	 you	 a	 choice

between	 the	 door	 you	 originally	 picked	 and	 the	 other	 two	 doors,	 only	 one	 of
which	 could	 possibly	 have	 a	 car	 behind	 it.	When	 he	 opens	 a	 door	 to	 reveal	 a
goat,	he’s	merely	doing	you	the	courtesy	of	showing	you	which	of	the	other	two
doors	does	not	have	the	car.	You	have	the	same	probability	of	winning	in	both	of
the	following	scenarios:

1.	Choosing	Door	no.	1,	then	agreeing	to	switch	to	Door	no.	2	and	Door	no.
3	before	any	door	is	opened.

2.	Choosing	Door	no.	1,	 then	agreeing	to	switch	to	Door	no.	2	after	Monty
reveals	a	goat	behind	Door	no.	3	(or	choosing	no.	3	after	he	reveals	a	goat
behind	no.	2).

In	both	cases,	switching	gives	you	the	benefit	of	two	doors	instead	of	one,	and
you	can	therefore	double	your	chances	of	winning,	from	1/3	to	2/3.

My	 third	 explanation	 is	 a	 more	 extreme	 version	 of	 the	 same	 basic	 intuition.
Assume	that	Monty	Hall	offers	you	a	choice	from	among	100	doors	rather	than



just	 three.	After	you	pick	your	door,	say,	no.	47,	he	opens	98	other	doors	with
goats	 behind	 them.	 Now	 there	 are	 only	 two	 doors	 that	 remain	 closed,	 no.	 47
(your	original	choice)	and	one	other,	say,	no.	61.	Should	you	switch?
Of	course	you	should.	There	 is	a	99	percent	chance	 that	 the	car	was	behind

one	of	the	doors	that	you	did	not	originally	choose.	Monty	did	you	the	favor	of
opening	98	of	those	doors	that	you	did	not	choose,	all	of	which	he	knew	did	not
have	the	car	behind	them.	There	is	only	a	1	in	100	chance	that	your	original	pick
was	correct	(no.	47).	There	is	a	99	in	100	chance	that	your	original	pick	was	not
correct.	And	if	your	original	pick	was	not	correct,	then	the	car	is	sitting	behind
the	other	door,	no.	61.	If	you	want	to	win	99	times	out	of	100,	you	should	switch
to	no.	61.

In	 short,	 if	 you	 ever	 find	 yourself	 as	 a	 contestant	 on	Let’s	Make	 a	Deal,	 you
should	definitely	switch	doors	when	Monty	Hall	(or	his	replacement)	gives	you
the	 option.	 The	 more	 broadly	 applicable	 lesson	 is	 that	 your	 gut	 instinct	 on
probability	can	sometimes	steer	you	astray.

*	 You	 can	 play	 the	 game	 at	 http://www.nytimes.com/2008/04/08/science/08monty.html?
_r=2&oref=slogin&oref=slogin.



CHAPTER	6

Problems	with	Probability
How	overconfident	math	geeks	nearly
destroyed	the	global	financial	system

Statistics	 cannot	be	any	 smarter	 than	 the	people	who	use	 them.	And	 in	 some
cases,	 they	 can	 make	 smart	 people	 do	 dumb	 things.	 One	 of	 the	 most
irresponsible	 uses	 of	 statistics	 in	 recent	 memory	 involved	 the	 mechanism	 for
gauging	risk	on	Wall	Street	prior	to	the	2008	financial	crisis.	At	that	time,	firms
throughout	the	financial	industry	used	a	common	barometer	of	risk,	the	Value	at
Risk	 model,	 or	 VaR.	 In	 theory,	 VaR	 combined	 the	 elegance	 of	 an	 indicator
(collapsing	 lots	 of	 information	 into	 a	 single	 number)	 with	 the	 power	 of
probability	 (attaching	 an	 expected	 gain	 or	 loss	 to	 each	 of	 the	 firm’s	 assets	 or
trading	positions).	The	model	assumed	that	there	is	a	range	of	possible	outcomes
for	every	one	of	the	firm’s	investments.	For	example,	if	 the	firm	owns	General
Electric	 stock,	 the	value	of	 those	 shares	 can	go	up	or	down.	When	 the	VaR	 is
being	calculated	 for	 some	short	period	of	 time,	 say,	one	week,	 the	most	 likely
outcome	 is	 that	 the	 shares	will	have	 roughly	 the	 same	value	at	 the	end	of	 that
stretch	 as	 they	had	 at	 the	beginning.	There	 is	 a	 smaller	 chance	 that	 the	 shares
may	rise	or	fall	by	10	percent.	And	an	even	smaller	chance	that	they	may	rise	or
fall	25	percent,	and	so	on.
On	 the	 basis	 of	 past	 data	 for	 market	 movements,	 the	 firm’s	 quantitative

experts	(often	called	“quants”	in	the	industry	and	“rich	nerds”	everywhere	else)
could	assign	a	dollar	figure,	say	$13	million,	that	represented	the	maximum	that
the	firm	could	lose	on	that	position	over	the	time	period	being	examined,	with	99
percent	probability.	In	other	words,	99	times	out	of	100	the	firm	would	not	lose
more	 than	 $13	 million	 on	 a	 particular	 trading	 position;	 1	 time	 out	 of	 100,	 it
would.
Remember	that	last	part,	because	it	will	soon	become	important.
Prior	to	the	financial	crisis	of	2008,	firms	trusted	the	VaR	model	to	quantify

their	overall	risk.	If	a	single	trader	had	923	different	open	positions	(investments



that	 could	 move	 up	 or	 down	 in	 value),	 each	 of	 those	 investments	 could	 be
evaluated	 as	 described	 above	 for	 the	 General	 Electric	 stock;	 from	 there,	 the
trader’s	 total	 portfolio	 risk	 could	 be	 calculated.	 The	 formula	 even	 took	 into
account	 the	 correlations	 among	 different	 positions.	 For	 example,	 if	 two
investments	had	expected	returns	 that	were	negatively	correlated,	a	 loss	 in	one
would	likely	have	been	offset	by	a	gain	in	the	other,	making	the	two	investments
together	 less	 risky	 than	 either	 one	 separately.	Overall,	 the	 head	 of	 the	 trading
desk	would	know	that	bond	 trader	Bob	Smith	has	a	24-hour	VaR	(the	value	at
risk	over	 the	next	24	hours)	of	$19	million,	 again	with	99	percent	probability.
The	 most	 that	 Bob	 Smith	 could	 lose	 over	 the	 next	 24	 hours	 would	 be	 $19
million,	99	times	out	of	100.
Then,	even	better,	 the	aggregate	 risk	 for	 the	 firm	could	be	calculated	at	any

point	in	time	by	taking	the	same	basic	process	one	step	further.	The	underlying
mathematical	mechanics	 are	 obviously	 fabulously	 complicated,	 as	 firms	 had	 a
dizzying	array	of	 investments	 in	different	currencies,	with	different	amounts	of
leverage	 (the	 amount	 of	 money	 that	 was	 borrowed	 to	 make	 the	 investment),
trading	in	markets	with	different	degrees	of	liquidity,	and	so	on.	Despite	all	that,
the	 firm’s	managers	 ostensibly	 had	 a	 precise	measure	 of	 the	magnitude	 of	 the
risk	 that	 the	 firm	 had	 taken	 on	 at	 any	moment	 in	 time.	 As	 former	New	 York
Times	 business	 writer	 Joe	 Nocera	 has	 explained,	 “VaR’s	 great	 appeal,	 and	 its
great	selling	point	to	people	who	do	not	happen	to	be	quants,	is	that	it	expresses
risk	 as	 a	 single	 number,	 a	 dollar	 figure,	 no	 less.”1	At	 J.	 P.	Morgan,	where	 the
VaR	model	was	developed	and	refined,	the	daily	VaR	calculation	was	known	as
the	 “4:15	 report”	 because	 it	 would	 be	 on	 the	 desks	 of	 top	 executives	 every
afternoon	at	4:15,	 just	 after	 the	American	 financial	markets	had	closed	 for	 the
day.
Presumably	 this	 was	 a	 good	 thing,	 as	more	 information	 is	 generally	 better,

particularly	when	it	comes	to	risk.	After	all,	probability	is	a	powerful	tool.	Isn’t
this	 just	 the	 same	 kind	 of	 calculation	 that	 the	 Schlitz	 executives	 did	 before
spending	a	lot	of	money	on	blind	taste	tests	at	halftime	of	the	Super	Bowl?
Not	necessarily.	VaR	has	been	called	“potentially	catastrophic,”	“a	fraud,”	and

many	 other	 things	 not	 fit	 for	 a	 family	 book	 about	 statistics	 like	 this	 one.	 In
particular,	the	model	has	been	blamed	for	the	onset	and	severity	of	the	financial
crisis.	The	primary	critique	of	VaR	 is	 that	 the	underlying	 risks	associated	with
financial	markets	are	not	as	predictable	as	a	coin	flip	or	even	a	blind	 taste	 test
between	two	beers.	The	false	precision	embedded	in	the	models	created	a	false
sense	 of	 security.	 The	 VaR	 was	 like	 a	 faulty	 speedometer,	 which	 is	 arguably



worse	 than	 no	 speedometer	 at	 all.	 If	 you	 place	 too	 much	 faith	 in	 the	 broken
speedometer,	you	will	be	oblivious	 to	other	 signs	 that	your	 speed	 is	unsafe.	 In
contrast,	if	there	is	no	speedometer	at	all,	you	have	no	choice	but	to	look	around
for	clues	as	to	how	fast	you	are	really	going.
By	around	2005,	with	the	VaR	dropping	on	desks	at	4:15	every	weekday,	Wall

Street	was	driving	pretty	darn	fast.	Unfortunately,	there	were	two	huge	problems
with	 the	 risk	 profiles	 encapsulated	 by	 the	 VaR	 models.	 First,	 the	 underlying
probabilities	 on	 which	 the	 models	 were	 built	 were	 based	 on	 past	 market
movements;	however,	in	financial	markets	(unlike	beer	tasting),	the	future	does
not	 necessarily	 look	 like	 the	 past.	 There	 was	 no	 intellectual	 justification	 for
assuming	that	the	market	movements	from	1980	to	2005	were	the	best	predictor
of	 market	 movements	 after	 2005.	 In	 some	 ways,	 this	 failure	 of	 imagination
resembles	 the	 military’s	 periodic	 mistaken	 assumption	 that	 the	 next	 war	 will
look	 like	 the	 last	 one.	 In	 the	 1990s	 and	 early	 2000s,	 commercial	 banks	 were
using	lending	models	for	home	mortgages	that	assigned	zero	probability	to	large
declines	in	housing	prices.2	Housing	prices	had	never	before	fallen	as	far	and	as
fast	 as	 they	 did	 beginning	 in	 2007.	But	 that’s	what	 happened.	 Former	Federal
Reserve	chairman	Alan	Greenspan	explained	to	a	congressional	committee	after
the	 fact,	 “The	whole	 intellectual	 edifice,	 however,	 collapsed	 in	 the	 summer	 of
[2007]	 because	 the	 data	 input	 into	 the	 risk	 management	 models	 generally
covered	only	the	past	two	decades,	a	period	of	euphoria.	Had	instead	the	models
been	fitted	more	appropriately	to	historic	periods	of	stress,	capital	requirements
would	 have	 been	much	 higher	 and	 the	 financial	 world	 would	 be	 in	 far	 better
shape,	in	my	judgment.”3
Second,	even	if	the	underlying	data	could	accurately	predict	future	risk,	the	99

percent	assurance	offered	by	 the	VaR	model	was	dangerously	useless,	because
it’s	the	1	percent	that	is	going	to	really	mess	you	up.	Hedge	fund	manager	David
Einhorn	explained,	“This	is	like	an	air	bag	that	works	all	the	time,	except	when
you	have	a	car	accident.”	If	a	firm	has	a	Value	at	Risk	of	$500	million,	that	can
be	interpreted	to	mean	that	the	firm	has	a	99	percent	chance	of	losing	no	more
than	 $500	million	 over	 the	 time	 period	 specified.	Well,	 hello,	 that	 also	means
that	 the	 firm	has	a	1	percent	chance	of	 losing	more	 than	$500	million—much,
much	more	 under	 some	 circumstances.	 In	 fact,	 the	models	 had	 nothing	 to	 say
about	how	bad	that	1	percent	scenario	might	turn	out	to	be.	Very	little	attention
was	 devoted	 to	 the	 “tail	 risk,”	 the	 small	 risk	 (named	 for	 the	 tail	 of	 the
distribution)	of	some	catastrophic	outcome.	(If	you	drive	home	from	a	bar	with	a
blood	alcohol	level	of	.15,	there	is	probably	less	than	a	1	percent	chance	that	you



will	 crash	 and	 die;	 that	 does	 not	make	 it	 a	 sensible	 thing	 to	 do.)	Many	 firms
compounded	 this	 error	 by	 making	 unrealistic	 assumptions	 about	 their
preparedness	 for	 rare	 events.	 Former	 treasury	 secretary	 Hank	 Paulson	 has
explained	 that	many	firms	assumed	 they	could	 raise	cash	 in	a	pinch	by	selling
assets.4	But	during	a	crisis,	every	other	firm	needs	cash,	too,	so	all	are	trying	to
sell	 the	same	kinds	of	assets.	 It’s	 the	risk	management	equivalent	of	saying,	“I
don’t	need	to	stock	up	on	water	because	if	there	is	a	natural	disaster,	I’ll	just	go
to	the	supermarket	and	buy	some.”	Of	course,	after	an	asteroid	hits	your	town,
fifty	thousand	other	people	are	also	trying	to	buy	water;	by	the	time	you	get	to
the	supermarket,	the	windows	are	broken	and	the	shelves	are	empty.
The	fact	that	you’ve	never	contemplated	that	your	town	might	be	flattened	by

a	massive	asteroid	was	exactly	the	problem	with	VaR.	Here	is	New	York	Times
columnist	Joe	Nocera	again,	summarizing	thoughts	of	Nicholas	Taleb,	author	of
The	Black	Swan:	The	Impact	of	 the	Highly	Improbable	and	a	scathing	critic	of
VaR:	 “The	greatest	 risks	 are	 never	 the	 ones	 you	 can	 see	 and	measure,	 but	 the
ones	you	can’t	see	and	therefore	can	never	measure.	The	ones	that	seem	so	far
outside	 the	 boundary	 of	 normal	 probability	 that	 you	 can’t	 imagine	 they	 could
happen	 in	 your	 lifetime—even	 though,	 of	 course,	 they	 do	 happen,	more	 often
than	you	care	to	realize.”
In	 some	 ways,	 the	 VaR	 debacle	 is	 the	 opposite	 of	 the	 Schlitz	 example	 in

Chapter	 5.	 Schlitz	 was	 operating	 with	 a	 known	 probability	 distribution.
Whatever	data	the	company	had	on	the	likelihood	of	blind	taste	testers’	choosing
Schlitz	was	a	good	estimate	of	how	similar	testers	would	behave	live	at	halftime.
Schlitz	 even	managed	 its	 downside	by	performing	 the	whole	 test	 on	men	who
said	they	liked	the	other	beers	better.	Even	if	no	more	than	twenty-five	Michelob
drinkers	 chose	Schlitz	 (an	 almost	 impossibly	 low	outcome),	 Schlitz	 could	 still
claim	that	one	 in	 four	beer	drinkers	ought	 to	consider	switching.	Perhaps	most
important,	this	was	all	just	beer,	not	the	global	financial	system.	The	Wall	Street
quants	 made	 three	 fundamental	 errors.	 First,	 they	 confused	 precision	 with
accuracy.	The	VaR	models	were	just	like	my	golf	range	finder	when	it	was	set	to
meters	 instead	 of	 yards:	 exact	 and	wrong.	 The	 false	 precision	 led	Wall	 Street
executives	 to	 believe	 that	 they	 had	 risk	 on	 a	 leash	when	 in	 fact	 they	 did	 not.
Second,	 the	 estimates	 of	 the	 underlying	 probabilities	 were	 wrong.	 As	 Alan
Greenspan	pointed	out	 in	 testimony	quoted	earlier	 in	 the	chapter,	 the	relatively
tranquil	and	prosperous	decades	before	2005	should	not	have	been	used	to	create
probability	 distributions	 for	 what	might	 happen	 in	 the	markets	 in	 the	 ensuing
decades.	This	 is	 the	 equivalent	 of	walking	 into	 a	 casino	 and	 thinking	 that	 you



will	win	at	roulette	62	percent	of	the	time	because	that’s	what	happened	last	time
you	 went	 gambling.	 It	 would	 be	 a	 long,	 expensive	 evening.	 Third,	 firms
neglected	 their	 “tail	 risk.”	 The	 VaR	models	 predicted	 what	 would	 happen	 99
times	 out	 of	 100.	 That’s	 the	way	 probability	works	 (as	 the	 second	 half	 of	 the
book	will	 emphasize	 repeatedly).	Unlikely	 things	 happen.	 In	 fact,	 over	 a	 long
enough	 period	 of	 time,	 they	 are	 not	 even	 that	 unlikely.	 People	 get	 hit	 by
lightning	all	the	time.	My	mother	has	had	three	holes	in	one.
The	 statistical	 hubris	 at	 commercial	 banks	 and	 on	 Wall	 Street	 ultimately

contributed	 to	 the	 most	 severe	 global	 financial	 contraction	 since	 the	 Great
Depression.	The	crisis	that	began	in	2008	destroyed	trillions	of	dollars	in	wealth
in	 the	 United	 States,	 drove	 unemployment	 over	 10	 percent,	 created	 waves	 of
home	 foreclosures	 and	 business	 failures,	 and	 saddled	 governments	 around	 the
world	with	huge	debts	as	they	struggled	to	contain	the	economic	damage.	This	is
a	sadly	ironic	outcome,	given	that	sophisticated	tools	like	VaR	were	designed	to
mitigate	risk.

Probability	 offers	 a	 powerful	 and	 useful	 set	 of	 tools—many	 of	 which	 can	 be
employed	correctly	to	understand	the	world	or	incorrectly	to	wreak	havoc	on	it.
In	 sticking	with	 the	 “statistics	 as	 a	powerful	weapon”	metaphor	 that	 I’ve	used
throughout	the	book,	I	will	paraphrase	the	gun	rights	lobby:	Probability	doesn’t
make	 mistakes;	 people	 using	 probability	 make	 mistakes.	 The	 balance	 of	 this
chapter	 will	 catalog	 some	 of	 the	 most	 common	 probability-related	 errors,
misunderstandings,	and	ethical	dilemmas.

Assuming	 events	 are	 independent	 when	 they	 are	 not.	 The	 probability	 of
flipping	heads	with	a	fair	coin	is	½.	The	probability	of	flipping	two	heads	in	a
row	 is	 (½)2,	 or	 ¼,	 since	 the	 likelihood	 of	 two	 independent	 events’	 both
happening	 is	 the	 product	 of	 their	 individual	 probabilities.	 Now	 that	 you	 are
armed	with	this	powerful	knowledge,	let’s	assume	that	you	have	been	promoted
to	head	of	 risk	management	at	a	major	airline.	Your	assistant	 informs	you	 that
the	probability	of	a	jet	engine’s	failing	for	any	reason	during	a	transatlantic	flight
is	 1	 in	 100,000.	 Given	 the	 number	 of	 transatlantic	 flights,	 this	 is	 not	 an
acceptable	risk.	Fortunately	each	jet	making	such	a	trip	has	at	least	two	engines.
Your	assistant	has	 calculated	 that	 the	 risk	of	both	engines’	 shutting	down	over
the	Atlantic	must	be	(1/100,000)2,	or	1	in	10	billion,	which	is	a	reasonable	safety
risk.	This	would	be	a	good	time	to	tell	your	assistant	to	use	up	his	vacation	days
before	he	is	fired.	The	two	engine	failures	are	not	independent	events.	If	a	plane



flies	 through	 a	 flock	 of	 geese	 while	 taking	 off,	 both	 engines	 are	 likely	 to	 be
compromised	 in	a	 similar	way.	The	 same	would	be	 true	of	many	other	 factors
that	 affect	 the	 performance	 of	 a	 jet	 engine,	 from	 weather	 to	 improper
maintenance.	 If	one	engine	 fails,	 the	probability	 that	 the	second	engine	 fails	 is
going	to	be	significantly	higher	than	1	in	100,000.
Does	this	seem	obvious?	It	was	not	obvious	throughout	 the	1990s	as	British

prosecutors	committed	a	grave	miscarriage	of	justice	because	of	an	improper	use
of	 probability.	 As	 with	 the	 hypothetical	 jet	 engine	 example,	 the	 statistical
mistake	was	in	assuming	that	several	events	were	independent	(as	in	flipping	a
coin)	 rather	 than	dependent	 (when	a	certain	outcome	makes	a	 similar	outcome
more	likely	in	the	future).	This	mistake	was	real,	however,	and	innocent	people
were	sent	to	jail	as	a	result.
The	mistake	arose	in	 the	context	of	sudden	infant	death	syndrome	(SIDS),	a

phenomenon	in	which	a	perfectly	healthy	infant	dies	in	his	or	her	crib.	(The	Brits
refer	to	SIDS	as	a	“cot	death.”)	SIDS	was	a	medical	mystery	that	attracted	more
attention	 as	 infant	 deaths	 from	 other	 causes	 became	 less	 common.*	 Because
these	 infant	 deaths	 were	 so	 mysterious	 and	 poorly	 understood,	 they	 bred
suspicion.	Sometimes	that	suspicion	was	warranted.	SIDS	was	used	on	occasion
to	cover	up	parental	negligence	or	abuse;	a	postmortem	exam	cannot	necessarily
distinguish	 natural	 deaths	 from	 those	 in	 which	 foul	 play	 is	 involved.	 British
prosecutors	 and	 courts	 became	 convinced	 that	 one	 way	 to	 separate	 foul	 play
from	natural	deaths	would	be	to	focus	on	families	in	which	there	were	multiple
cot	 deaths.	 Sir	 Roy	Meadow,	 a	 prominent	British	 pediatrician,	was	 a	 frequent
expert	 witness	 on	 this	 point.	 As	 the	 British	 news	 magazine	 the	 Economist
explains,	 “What	 became	 known	 as	 Meadow’s	 Law—the	 idea	 that	 one	 infant
death	 is	 a	 tragedy,	 two	 are	 suspicious	 and	 three	 are	murder—is	 based	 on	 the
notion	that	if	an	event	is	rare,	two	or	more	instances	of	it	in	the	same	family	are
so	 improbable	 that	 they	are	unlikely	 to	be	 the	 result	 of	 chance.”5	 Sir	Meadow
explained	 to	 juries	 that	 the	 chance	 that	 a	 family	 could	 have	 two	 infants	 die
suddenly	of	natural	causes	was	an	extraordinary	1	 in	73	million.	He	explained
the	calculation:	Since	the	incidence	of	a	cot	death	is	rare,	1	in	8,500,	the	chance
of	 having	 two	 cot	 deaths	 in	 the	 same	 family	 would	 be	 (1/8,500)2	 which	 is
roughly	 1	 in	 73	 million.	 This	 reeks	 of	 foul	 play.	 That’s	 what	 juries	 decided,
sending	many	parents	to	prison	on	the	basis	of	this	testimony	on	the	statistics	of
cot	 deaths	 (often	 without	 any	 corroborating	 medical	 evidence	 of	 abuse	 or
neglect).	 In	 some	 cases,	 infants	 were	 taken	 away	 from	 their	 parents	 at	 birth
because	of	the	unexplained	death	of	a	sibling.



The	Economist	explained	how	a	misunderstanding	of	statistical	independence
became	a	flaw	in	the	Meadow	testimony:

There	is	an	obvious	flaw	in	this	reasoning,	as	the	Royal	Statistical	Society,
protective	 of	 its	 derided	 subject,	 has	 pointed	 out.	 The	 probability
calculation	works	 fine,	 so	 long	as	 it	 is	 certain	 that	 cot	deaths	are	entirely
random	 and	 not	 linked	 by	 some	 unknown	 factor.	 But	 with	 something	 as
mysterious	as	cot	deaths,	it	is	quite	possible	that	there	is	a	link—something
genetic,	for	instance,	which	would	make	a	family	that	had	suffered	one	cot
death	more,	not	less,	likely	to	suffer	another.	And	since	those	women	were
convicted,	 scientists	 have	 been	 suggesting	 that	 there	 may	 be	 just	 such	 a
link.

In	 2004,	 the	British	 government	 announced	 that	 it	 would	 review	 258	 trials	 in
which	parents	had	been	convicted	of	murdering	their	infant	children.

Not	understanding	when	events	ARE	independent.	A	different	kind	of	mistake
occurs	 when	 events	 that	 are	 independent	 are	 not	 treated	 as	 such.	 If	 you	 find
yourself	 in	a	casino	 (a	place,	 statistically	speaking,	 that	you	should	not	go	 to),
you	will	see	people	looking	longingly	at	the	dice	or	cards	and	declaring	that	they
are	 “due.”	 If	 the	 roulette	 ball	 has	 landed	 on	 black	 five	 times	 in	 a	 row,	 then
clearly	now	it	must	turn	up	red.	No,	no,	no!	The	probability	of	the	ball’s	landing
on	a	red	number	remains	unchanged:	16/38.	The	belief	otherwise	is	sometimes
called	“the	gambler’s	fallacy.”	In	fact,	if	you	flip	a	fair	coin	1,000,000	times	and
get	1,000,000	heads	 in	a	row,	 the	probability	of	getting	tails	on	the	next	flip	 is
still	½.	The	very	definition	of	statistical	independence	between	two	events	is	that
the	outcome	of	one	has	no	effect	on	the	outcome	of	the	other.	Even	if	you	don’t
find	the	statistics	persuasive,	you	might	ask	yourself	about	the	physics:	How	can
flipping	a	series	of	tails	in	a	row	make	it	more	likely	that	the	coin	will	turn	up
heads	on	the	next	flip?
Even	in	sports,	the	notion	of	streaks	may	be	illusory.	One	of	the	most	famous

and	 interesting	probability-related	 academic	papers	 refutes	 the	 common	notion
that	basketball	players	periodically	develop	a	 streak	of	good	shooting	during	a
game,	or	“a	hot	hand.”	Certainly	most	 sports	 fans	would	 tell	you	 that	a	player
who	makes	a	shot	is	more	likely	to	hit	the	next	shot	than	a	player	who	has	just
missed.	 Not	 according	 to	 research	 by	 Thomas	 Gilovich,	 Robert	 Vallone,	 and
Amos	 Tversky,	 who	 tested	 the	 hot	 hand	 in	 three	 different	 ways.6	 First,	 they
analyzed	shooting	data	for	the	Philadelphia	76ers	home	games	during	the	1980–



81	 season.	 (At	 the	 time,	 similar	data	were	not	 available	 for	other	 teams	 in	 the
NBA.)	They	found	“no	evidence	for	a	positive	correlation	between	the	outcomes
of	successive	shots.”	Second,	they	did	the	same	thing	for	free	throw	data	for	the
Boston	Celtics,	which	produced	the	same	result.	And	last,	they	did	a	controlled
experiment	with	members	of	 the	Cornell	men’s	and	women’s	basketball	 teams.
The	players	hit	an	average	of	48	percent	of	their	field	goals	after	hitting	their	last
shot	 and	 47	 percent	 after	 missing.	 For	 fourteen	 of	 twenty-six	 players,	 the
correlation	 between	making	 one	 shot	 and	 then	making	 the	 next	was	 negative.
Only	one	player	showed	a	significant	positive	correlation	between	one	shot	and
the	next.
That’s	not	what	most	basketball	fans	will	tell	you.	For	example,	91	percent	of

basketball	 fans	 surveyed	 at	 Stanford	 and	 Cornell	 by	 the	 authors	 of	 the	 paper
agreed	with	 the	statement	 that	a	player	has	a	better	chance	of	making	his	next
shot	after	making	his	last	 two	or	three	shots	than	he	does	after	missing	his	last
two	or	three	shots.	The	significance	of	the	“hot	hand”	paper	lies	in	the	difference
between	 the	 perception	 and	 the	 empirical	 reality.	 The	 authors	 note,	 “People’s
intuitive	 conceptions	 of	 randomness	 depart	 systematically	 from	 the	 laws	 of
chance.”	We	see	patterns	where	none	may	really	exist.
Like	cancer	clusters.

Clusters	happen.	You’ve	probably	 read	 the	 story	 in	 the	newspaper,	or	perhaps
seen	 the	 news	 exposé:	 Some	 statistically	 unlikely	 number	 of	 people	 in	 a
particular	area	have	contracted	a	rare	form	of	cancer.	It	must	be	the	water,	or	the
local	 power	plant,	 or	 the	 cell	 phone	 tower.	Of	 course,	 any	one	of	 those	 things
might	 really	 be	 causing	 adverse	 health	 outcomes.	 (Later	 chapters	will	 explore
how	 statistics	 can	 identify	 such	 causal	 relationships.)	But	 this	 cluster	 of	 cases
may	also	be	the	product	of	pure	chance,	even	when	the	number	of	cases	appears
highly	 improbable.	Yes,	 the	 probability	 that	 five	 people	 in	 the	 same	 school	 or
church	or	workplace	will	contract	the	same	rare	form	of	leukemia	may	be	one	in
a	million,	but	there	are	millions	of	schools	and	churches	and	workplaces.	It’s	not
highly	improbable	that	five	people	might	get	the	same	rare	form	of	leukemia	in
one	of	 those	places.	We	just	aren’t	 thinking	about	all	 the	schools	and	churches
and	workplaces	where	this	hasn’t	happened.	To	use	a	different	variation	on	the
same	basic	example,	the	chance	of	winning	the	lotto	may	be	1	in	20	million,	but
none	 of	 us	 is	 surprised	when	 someone	 wins,	 because	millions	 of	 tickets	 have
been	 sold.	 (Despite	 my	 general	 aversion	 to	 lotteries,	 I	 do	 admire	 the	 Illinois
slogan:	“Someone’s	gonna	Lotto,	might	as	well	be	you.”)



Here	is	an	exercise	that	I	do	with	my	students	to	make	the	same	basic	point.
The	larger	the	class,	the	better	it	works.	I	ask	everyone	in	the	class	to	take	out	a
coin	and	stand	up.	We	all	flip	the	coin;	anyone	who	flips	heads	must	sit	down.
Assuming	we	start	with	100	students,	roughly	50	will	sit	down	after	the	first	flip.
Then	we	do	 it	 again,	 after	which	25	or	 so	 are	 still	 standing.	And	 so	on.	More
often	than	not,	there	will	be	a	student	standing	at	the	end	who	has	flipped	five	or
six	tails	in	a	row.	At	that	point,	I	ask	the	student	questions	like	“How	did	you	do
it?”	 and	 “What	 are	 the	 best	 training	 exercises	 for	 flipping	 so	many	 tails	 in	 a
row?”	 or	 “Is	 there	 a	 special	 diet	 that	 helped	 you	 pull	 off	 this	 impressive
accomplishment?”	 These	 questions	 elicit	 laughter	 because	 the	 class	 has	 just
watched	 the	whole	process	unfold;	 they	know	 that	 the	 student	who	 flipped	six
tails	in	a	row	has	no	special	coin-flipping	talent.	He	or	she	just	happened	to	be
the	one	who	ended	up	with	a	lot	of	tails.	When	we	see	an	anomalous	event	like
that	 out	 of	 context,	 however,	 we	 assume	 that	 something	 besides	 randomness
must	be	responsible.

The	prosecutor’s	fallacy.	Suppose	you	hear	testimony	in	court	to	the	following
effect:	(1)	a	DNA	sample	found	at	the	scene	of	a	crime	matches	a	sample	taken
from	the	defendant;	and	(2)	there	is	only	one	chance	in	a	million	that	the	sample
recovered	at	the	scene	of	the	crime	would	match	anyone’s	besides	the	defendant.
(For	 the	 sake	 of	 this	 example,	 you	 can	 assume	 that	 the	 prosecution’s
probabilities	 are	 correct.)	 On	 the	 basis	 of	 that	 evidence,	 would	 you	 vote	 to
convict?
I	sure	hope	not.
The	 prosecutor’s	 fallacy	 occurs	 when	 the	 context	 surrounding	 statistical

evidence	is	neglected.	Here	are	two	scenarios,	each	of	which	could	explain	the
DNA	evidence	being	used	to	prosecute	the	defendant.
Defendant	1:	This	defendant,	a	spurned	lover	of	the	victim,	was	arrested	three

blocks	from	the	crime	scene	carrying	the	murder	weapon.	After	he	was	arrested,
the	court	compelled	him	to	offer	a	DNA	sample,	which	matched	a	sample	taken
from	a	hair	found	at	the	scene	of	the	crime.
Defendant	2:	This	defendant	was	convicted	of	a	 similar	 crime	 in	a	different

state	several	years	ago.	As	a	result	of	that	conviction,	his	DNA	was	included	in	a
national	DNA	database	of	over	a	million	violent	felons.	The	DNA	sample	taken
from	the	hair	found	at	the	scene	of	the	crime	was	run	through	that	database	and
matched	to	this	individual,	who	has	no	known	association	with	the	victim.
As	noted	above,	in	both	cases	the	prosecutor	can	rightfully	say	that	the	DNA



sample	taken	from	the	crime	scene	matches	the	defendant’s	and	that	there	is	only
a	one	in	a	million	chance	that	it	would	match	with	anyone	else’s.	But	in	the	case
of	 Defendant	 2,	 there	 is	 a	 darn	 good	 chance	 that	 he	 could	 be	 that	 random
someone	else,	the	one	in	a	million	guy	whose	DNA	just	happens	to	be	similar	to
the	real	killer’s	by	chance.	Because	the	chances	of	finding	a	coincidental	one	in
a	million	match	are	relatively	high	if	you	run	the	sample	through	a	database	with
samples	from	a	million	people.

Reversion	to	the	mean	(or	regression	to	the	mean).	Perhaps	you’ve	heard	of	the
Sports	 Illustrated	 jinx,	 whereby	 individual	 athletes	 or	 teams	 featured	 on	 the
cover	 of	 Sports	 Illustrated	 subsequently	 see	 their	 performance	 fall	 off.	 One
explanation	is	that	being	on	the	cover	of	the	magazine	has	some	adverse	effect
on	 subsequent	 performance.	 The	 more	 statistically	 sound	 explanation	 is	 that
teams	 and	 athletes	 appear	 on	 its	 cover	 after	 some	 anomalously	 good	 stretch
(such	as	a	 twenty-game	winning	streak)	and	 that	 their	 subsequent	performance
merely	 reverts	 back	 to	 what	 is	 normal,	 or	 the	mean.	 This	 is	 the	 phenomenon
known	 as	 reversion	 to	 the	 mean.	 Probability	 tells	 us	 that	 any	 outlier—an
observation	that	is	particularly	far	from	the	mean	in	one	direction	or	the	other—
is	likely	to	be	followed	by	outcomes	that	are	more	consistent	with	the	long-term
average.
Reversion	to	the	mean	can	explain	why	the	Chicago	Cubs	always	seem	to	pay

huge	salaries	for	free	agents	who	subsequently	disappoint	fans	like	me.	Players
are	able	to	negotiate	huge	salaries	with	the	Cubs	after	an	exceptional	season	or
two.	Putting	on	a	Cubs	uniform	does	not	necessarily	make	these	players	worse
(though	I	would	not	necessarily	rule	that	out);	rather,	the	Cubs	pay	big	bucks	for
these	superstars	at	the	end	of	some	exceptional	stretch—an	outlier	year	or	two—
after	 which	 their	 performance	 for	 the	 Cubs	 reverts	 to	 something	 closer	 to
normal.
The	 same	 phenomenon	 can	 explain	why	 students	who	 do	much	 better	 than

they	normally	do	on	some	kind	of	test	will,	on	average,	do	slightly	worse	on	a
retest,	 and	 students	 who	 have	 done	 worse	 than	 usual	 will	 tend	 to	 do	 slightly
better	 when	 retested.	 One	 way	 to	 think	 about	 this	 mean	 reversion	 is	 that
performance—both	 mental	 and	 physical—consists	 of	 some	 underlying	 talent-
related	effort	plus	an	element	of	luck,	good	or	bad.	(Statisticians	would	call	this
random	error.)	 In	any	case,	 those	 individuals	who	perform	 far	above	 the	mean
for	some	stretch	are	likely	to	have	had	luck	on	their	side;	those	who	perform	far
below	the	mean	are	likely	to	have	had	bad	luck.	(In	the	case	of	an	exam,	think



about	 students	 guessing	 right	 or	wrong;	 in	 the	 case	 of	 a	 baseball	 player,	 think
about	a	hit	that	can	either	go	foul	or	land	one	foot	fair	for	a	triple.)	When	a	spell
of	 very	 good	 luck	 or	 very	 bad	 luck	 ends—as	 it	 inevitably	will—the	 resulting
performance	will	be	closer	to	the	mean.
Imagine	that	I	am	trying	to	assemble	a	superstar	coin-flipping	team	(under	the

erroneous	impression	that	talent	matters	when	it	comes	to	coin	flipping).	After	I
observe	a	student	flipping	six	tails	in	a	row,	I	offer	him	a	ten-year,	$50	million
contract.	Needless	 to	 say,	 I’m	going	 to	be	disappointed	when	 this	 student	 flips
only	50	percent	tails	over	those	ten	years.
At	 first	 glance,	 reversion	 to	 the	 mean	 may	 appear	 to	 be	 at	 odds	 with	 the

“gambler’s	 fallacy.”	After	 the	 student	 throws	 six	 tails	 in	 a	 row,	 is	 he	 “due”	 to
throw	heads	or	not?	The	probability	that	he	throws	heads	on	the	next	flip	is	the
same	as	it	always	is:	½.	The	fact	that	he	has	thrown	lots	of	tails	in	a	row	does
not	make	heads	more	likely	on	the	next	flip.	Each	flip	is	an	independent	event.
However,	we	 can	 expect	 the	 results	 of	 the	 ensuing	 flips	 to	 be	 consistent	with
what	probability	predicts,	which	is	half	heads	and	half	tails,	rather	than	what	it
has	been	in	the	past,	which	is	all	tails.	It’s	a	virtual	certainty	that	someone	who
has	flipped	all	tails	will	begin	throwing	more	heads	in	the	ensuing	10,	20,	or	100
flips.	And	the	more	flips,	the	more	closely	the	outcome	will	resemble	the	50-50
mean	 outcome	 that	 the	 law	 of	 large	 numbers	 predicts.	 (Or,	 alternatively,	 we
should	start	looking	for	evidence	of	fraud.)
As	 a	 curious	 side	 note,	 researchers	 have	 also	 documented	 a	 Businessweek

phenomenon.	When	CEOs	 receive	high-profile	awards,	 including	being	named
one	 of	 Businessweek’s	 “Best	 Managers,”	 their	 companies	 subsequently
underperform	over	the	next	three	years	as	measured	by	both	accounting	profits
and	stock	price.	However,	unlike	the	Sports	Illustrated	effect,	this	effect	appears
to	 be	more	 than	 reversion	 to	 the	mean.	 According	 to	 Ulrike	Malmendier	 and
Geoffrey	 Tate,	 economists	 at	 the	 University	 of	 California	 at	 Berkeley	 and
UCLA,	respectively,	when	CEOs	achieve	“superstar”	status,	 they	get	distracted
by	their	new	prominence.7	They	write	their	memoirs.	They	are	invited	to	sit	on
outside	boards.	They	begin	searching	for	 trophy	spouses.	 (The	authors	propose
only	 the	 first	 two	 explanations,	 but	 I	 find	 the	 last	 one	 plausible	 as	 well.)
Malmendier	 and	Tate	write,	 “Our	 results	 suggest	 that	media-induced	 superstar
culture	 leads	 to	 behavioral	 distortions	 beyond	mere	mean	 reversion.”	 In	 other
words,	when	a	CEO	appears	on	the	cover	of	Businessweek,	sell	the	stock.

Statistical	discrimination.	When	is	it	okay	to	act	on	the	basis	of	what	probability



tells	 us	 is	 likely	 to	 happen,	 and	 when	 is	 it	 not	 okay?	 In	 2003,	 Anna
Diamantopoulou,	the	European	commissioner	for	employment	and	social	affairs,
proposed	a	directive	declaring	that	insurance	companies	may	not	charge	different
rates	to	men	and	women,	because	it	violates	the	European	Union’s	principle	of
equal	 treatment.8	 To	 insurers,	 however,	 gender-based	 premiums	 aren’t
discrimination;	they’re	just	statistics.	Men	typically	pay	more	for	auto	insurance
because	they	crash	more.	Women	pay	more	for	annuities	(a	financial	product	that
pays	 a	 fixed	 monthly	 or	 yearly	 sum	 until	 death)	 because	 they	 live	 longer.
Obviously	many	women	crash	more	than	many	men,	and	many	men	live	longer
than	many	women.	But,	 as	 explained	 in	 the	 last	 chapter,	 insurance	 companies
don’t	care	about	that.	They	care	only	about	what	happens	on	average,	because	if
they	 get	 that	 right,	 the	 firm	will	make	money.	 The	 interesting	 thing	 about	 the
European	Commission	policy	banning	gender-based	insurance	premiums,	which
is	 being	 implemented	 in	 2012,	 is	 that	 the	 authorities	 are	 not	 pretending	 that
gender	 is	 unrelated	 to	 the	 risks	 being	 insured;	 they	 are	 simply	 declaring	 that
disparate	rates	based	on	sex	are	unacceptable.*
At	 first,	 that	 feels	 like	 an	 annoying	 nod	 to	 political	 correctness.	 Upon

reflection,	I’m	not	so	sure.	Remember	all	that	impressive	stuff	about	preventing
crimes	 before	 they	 happen?	 Probability	 can	 lead	 us	 to	 some	 intriguing	 but
distressing	 places	 in	 this	 regard.	 How	 should	 we	 react	 when	 our	 probability-
based	models	 tell	 us	 that	methamphetamine	 smugglers	 from	Mexico	 are	most
likely	 to	 be	 Hispanic	 men	 aged	 between	 eighteen	 and	 thirty	 and	 driving	 red
pickup	trucks	between	9:00	p.m.	and	midnight	when	we	also	know	that	the	vast
majority	 of	 Hispanic	 men	 who	 fit	 that	 profile	 are	 not	 smuggling
methamphetamine?	 Yep,	 I	 used	 the	 profiling	 word,	 because	 that’s	 the	 less
glamorous	description	of	the	predictive	analytics	that	I	described	so	glowingly	in
the	last	chapter,	or	at	least	one	potential	aspect	of	it.
Probability	tells	us	what	is	more	likely	and	what	is	less	likely.	Yes,	that	is	just

basic	 statistics—the	 tools	 described	 over	 the	 last	 few	 chapters.	 But	 it	 is	 also
statistics	 with	 social	 implications.	 If	 we	 want	 to	 catch	 violent	 criminals	 and
terrorists	 and	 drug	 smugglers	 and	 other	 individuals	 with	 the	 potential	 to	 do
enormous	harm,	then	we	ought	to	use	every	tool	at	our	disposal.	Probability	can
be	one	of	those	tools.	It	would	be	naïve	to	think	that	gender,	age,	race,	ethnicity,
religion,	and	country	of	origin	collectively	tell	us	nothing	about	anything	related
to	law	enforcement.
But	what	we	can	or	should	do	with	that	kind	of	information	(assuming	it	has

some	predictive	value)	is	a	philosophical	and	legal	question,	not	a	statistical	one.



We’re	 getting	 more	 and	 more	 information	 every	 day	 about	 more	 and	 more
things.	 Is	 it	okay	 to	discriminate	 if	 the	data	 tell	us	 that	we’ll	be	 right	 far	more
often	 than	 we’re	 wrong?	 (This	 is	 the	 origin	 of	 the	 term	 “statistical
discrimination,”	or	“rational	discrimination.”)	The	same	kind	of	analysis	that	can
be	used	to	determine	that	people	who	buy	birdseed	are	less	likely	to	default	on
their	credit	cards	(yes,	that’s	really	true)	can	be	applied	everywhere	else	in	life.
How	much	 of	 that	 is	 acceptable?	 If	we	 can	 build	 a	model	 that	 identifies	 drug
smugglers	correctly	80	out	of	100	times,	what	happens	to	the	poor	souls	in	the
20	percent—because	our	model	is	going	to	harass	them	over	and	over	and	over
again.
The	broader	point	here	is	that	our	ability	to	analyze	data	has	grown	far	more

sophisticated	than	our	thinking	about	what	we	ought	to	do	with	the	results.	You
can	 agree	 or	 disagree	with	 the	European	Commission	 decision	 to	 ban	 gender-
based	 insurance	 premiums,	 but	 I	 promise	 you	 it	 will	 not	 be	 the	 last	 tricky
decision	of	that	sort.	We	like	to	think	of	numbers	as	“cold,	hard	facts.”	If	we	do
the	calculations	right,	then	we	must	have	the	right	answer.	The	more	interesting
and	dangerous	reality	is	that	we	can	sometimes	do	the	calculations	correctly	and
end	up	blundering	in	a	dangerous	direction.	We	can	blow	up	the	financial	system
or	harass	a	twenty-two-year-old	white	guy	standing	on	a	particular	street	corner
at	 a	 particular	 time	 of	 day,	 because,	 according	 to	 our	 statistical	 model,	 he	 is
almost	 certainly	 there	 to	 buy	 drugs.	 For	 all	 the	 elegance	 and	 precision	 of
probability,	 there	 is	 no	 substitute	 for	 thinking	 about	 what	 calculations	 we	 are
doing	and	why	we	are	doing	them.

*	SIDS	is	still	a	medical	mystery,	though	many	of	the	risk	factors	have	been	identified.	For	example,	infant
deaths	can	be	reduced	sharply	by	putting	babies	to	sleep	on	their	backs.
*	The	policy	change	was	ultimately	precipitated	by	a	2011	ruling	by	the	Court	of	Justice	of	the	European
Union	that	different	premiums	for	men	and	women	constitute	sex	discrimination.



CHAPTER	7

The	Importance	of	Data
“Garbage	in,	garbage	out”

In	the	spring	of	2012,	researchers	published	a	striking	finding	in	the	esteemed
journal	Science.	According	 to	 this	 cutting-edge	 research,	when	male	 fruit	 flies
are	spurned	repeatedly	by	female	fruit	flies,	they	drown	their	sorrows	in	alcohol.
The	New	 York	 Times	 described	 the	 study	 in	 a	 front	 page	 article:	 “They	 were
young	males	on	the	make,	and	they	struck	out	not	once,	not	twice,	but	a	dozen
times	with	a	group	of	 attractive	 females	hovering	nearby.	So	 they	did	what	 so
many	men	do	after	being	repeatedly	rejected:	they	got	drunk,	using	alcohol	as	a
balm	for	unfulfilled	desire.”1
This	research	advances	our	understanding	of	the	brain’s	reward	system,	which

in	 turn	 can	 help	 us	 find	 new	 strategies	 for	 dealing	 with	 drug	 and	 alcohol
dependence.	A	substance	abuse	expert	described	 reading	 the	 study	as	“looking
back	in	time,	to	see	the	very	origins	of	the	reward	circuit	that	drives	fundamental
behaviors	like	sex,	eating	and	sleeping.”
Since	 I	 am	not	 an	 expert	 in	 this	 field,	 I	 had	 two	 slightly	 different	 reactions

upon	 reading	 about	 spurned	 fruit	 flies.	First,	 it	made	me	nostalgic	 for	 college.
Second,	my	inner	researcher	got	to	wondering	how	fruit	flies	get	drunk.	Is	there
a	miniature	fruit	fly	bar,	with	assorted	fruit	based	liquors	and	an	empathetic	fruit
fly	bartender?	Is	country	western	music	playing	in	the	background?	Do	fruit	flies
even	like	country	western	music?
It	turns	out	that	the	design	of	the	experiment	was	devilishly	simple.	One	group

of	male	fruit	flies	was	allowed	to	mate	freely	with	virgin	females.	Another	group
of	males	was	released	among	female	fruit	flies	that	had	already	mated	and	were
therefore	indifferent	to	the	males’	amorous	overtures.	Both	sets	of	male	fruit	flies
were	then	offered	feeding	straws	that	offered	a	choice	between	standard	fruit	fly
fare,	yeast	and	sugar,	and	the	“hard	stuff”:	yeast,	sugar,	and	15	percent	alcohol.
The	 males	 who	 had	 spent	 days	 trying	 to	 mate	 with	 indifferent	 females	 were
significantly	more	likely	to	hit	the	booze.



The	 levity	 notwithstanding,	 these	 results	 have	 important	 implications	 for
humans.	 They	 suggest	 a	 connection	 between	 stress,	 chemical	 responses	 in	 the
brain,	 and	 an	 appetite	 for	 alcohol.	 However,	 the	 results	 are	 not	 a	 triumph	 of
statistics.	 They	 are	 a	 triumph	 of	 data,	 which	 made	 relatively	 basic	 statistical
analysis	 possible.	The	 genius	 of	 this	 study	was	 figuring	 out	 a	way	 to	 create	 a
group	of	sexually	satiated	male	fruit	flies	and	a	group	of	sexually	frustrated	male
fruit	 flies—and	 then	 to	 find	 a	way	 to	 compare	 their	 drinking	 habits.	Once	 the
researchers	 did	 that,	 the	 number	 crunching	wasn’t	 any	more	 complicated	 than
that	of	a	typical	high	school	science	fair	project.
Data	 are	 to	 statistics	what	 a	 good	 offensive	 line	 is	 to	 a	 star	 quarterback.	 In

front	of	every	star	quarterback	is	a	good	group	of	blockers.	They	usually	don’t
get	much	credit.	But	without	them,	you	won’t	ever	see	a	star	quarterback.	Most
statistics	books	assume	that	you	are	using	good	data,	just	as	a	cookbook	assumes
that	you	are	not	buying	 rancid	meat	 and	 rotten	vegetables.	But	 even	 the	 finest
recipe	isn’t	going	to	salvage	a	meal	that	begins	with	spoiled	ingredients.	So	it	is
with	 statistics;	 no	 amount	 of	 fancy	 analysis	 can	 make	 up	 for	 fundamentally
flawed	 data.	 Hence	 the	 expression	 “garbage	 in,	 garbage	 out.”	 Data	 deserve
respect,	just	like	offensive	linemen.

We	generally	ask	our	data	to	do	one	of	three	things.	First,	we	may	demand	a	data
sample	that	is	representative	of	some	larger	group	or	population.	If	we	are	trying
to	gauge	voters’	attitudes	toward	a	particular	political	candidate,	we	will	need	to
interview	a	sample	of	prospective	voters	who	are	representative	of	all	voters	in
the	relevant	political	jurisdiction.	(And	remember,	we	don’t	want	a	sample	that	is
representative	of	everyone	living	in	that	jurisdiction;	we	want	a	sample	of	those
who	are	 likely	 to	 vote.)	One	of	 the	most	 powerful	 findings	 in	 statistics,	which
will	be	explained	in	greater	depth	over	the	next	two	chapters,	is	that	inferences
made	 from	 reasonably	 large,	 properly	 drawn	 samples	 can	 be	 every	 bit	 as
accurate	as	attempting	to	elicit	the	same	information	from	the	entire	population.
The	easiest	way	to	gather	a	representative	sample	of	a	larger	population	is	to

select	some	subset	of	that	population	randomly.	(Shockingly,	this	is	known	as	a
simple	random	sample.)	The	key	to	this	methodology	is	that	each	observation	in
the	 relevant	 population	 must	 have	 an	 equal	 chance	 of	 being	 included	 in	 the
sample.	If	you	plan	to	survey	a	random	sample	of	100	adults	in	a	neighborhood
with	 4,328	 adult	 residents,	 your	methodology	has	 to	 ensure	 that	 each	 of	 those
4,328	residents	has	 the	same	probability	of	ending	up	as	one	of	 the	100	adults
who	are	surveyed.	Statistics	books	almost	always	illustrate	this	point	by	drawing



colored	marbles	out	of	an	urn.	(In	fact,	it’s	about	the	only	place	where	one	sees
the	word	“urn”	used	with	any	regularity.)	 If	 there	are	60,000	blue	marbles	and
40,000	red	marbles	in	a	giant	urn,	then	the	most	likely	composition	of	a	sample
of	100	marbles	drawn	randomly	from	the	urn	would	be	60	blue	marbles	and	40
red	marbles.	If	we	did	this	more	than	once,	there	would	obviously	be	deviations
from	sample	to	sample—some	might	have	62	blue	marbles	and	38	red	marbles,
or	 58	 blue	 and	 42	 red.	 But	 the	 chances	 of	 drawing	 any	 random	 sample	 that
deviates	hugely	from	the	composition	of	marbles	in	the	urn	are	very,	very	low.
Now,	admittedly,	 there	are	some	practical	challenges	here.	Most	populations

we	 care	 about	 tend	 to	 be	more	 complicated	 than	 an	 urn	 full	 of	marbles.	How,
exactly,	would	one	select	a	random	sample	of	the	American	adult	population	to
be	 included	 in	 a	 telephone	 poll?	 Even	 a	 seemingly	 elegant	 solution	 like	 a
telephone	random	dialer	has	potential	flaws.	Some	individuals	(particularly	low-
income	 persons)	 may	 not	 have	 a	 telephone.	 Others	 (particularly	 high-income
persons)	may	be	more	prone	to	screen	calls	and	choose	not	 to	answer.	Chapter
10	will	 outline	 some	of	 the	 strategies	 that	 polling	 firms	use	 to	 surmount	 these
kinds	 of	 sampling	 challenges	 (most	 of	which	got	 even	more	 complicated	with
the	 advent	 of	 cell	 phones).	The	 key	 idea	 is	 that	 a	 properly	 drawn	 sample	will
look	 like	 the	population	 from	which	 it	 is	drawn.	 In	 terms	of	 intuition,	you	can
envision	 sampling	a	pot	of	 soup	with	 a	 single	 spoonful.	 If	 you’ve	 stirred	your
soup	adequately,	a	single	spoonful	can	tell	you	how	the	whole	pot	tastes.
A	 statistics	 text	 will	 include	 far	 more	 detail	 on	 sampling	 methods.	 Polling

firms	and	market	 research	companies	 spend	 their	days	 figuring	out	how	 to	get
good	 representative	 data	 from	 various	 populations	 in	 the	 most	 cost-effective
way.	 For	 now,	 you	 should	 appreciate	 several	 important	 things:	 (1)	 A
representative	 sample	 is	 a	 fabulously	 important	 thing,	 for	 it	 opens	 the	 door	 to
some	of	 the	most	powerful	 tools	 that	 statistics	has	 to	offer.	 (2)	Getting	a	good
sample	 is	 harder	 than	 it	 looks.	 (3)	 Many	 of	 the	 most	 egregious	 statistical
assertions	are	caused	by	good	statistical	methods	applied	to	bad	samples,	not	the
opposite.	(4)	Size	matters,	and	bigger	is	better.	The	details	will	be	explained	in
the	coming	chapters,	but	 it	should	be	intuitive	that	a	 larger	sample	will	help	to
smooth	 away	 any	 freak	 variation.	 (A	 bowl	 of	 soup	will	 be	 an	 even	 better	 test
than	a	spoonful.)	One	crucial	caveat	is	that	a	bigger	sample	will	not	make	up	for
errors	 in	 its	 composition,	 or	 “bias.”	 A	 bad	 sample	 is	 a	 bad	 sample.	 No
supercomputer	or	fancy	formula	is	going	to	rescue	the	validity	of	your	national
presidential	poll	 if	 the	 respondents	 are	drawn	only	 from	a	 telephone	 survey	of
Washington,	D.C.,	residents.	The	residents	of	Washington,	D.C.,	don’t	vote	like



the	rest	of	America;	calling	100,000	D.C.	residents	rather	than	1,000	is	not	going
to	fix	that	fundamental	problem	with	your	poll.	In	fact,	a	large,	biased	sample	is
arguably	worse	than	a	small,	biased	sample	because	it	will	give	a	false	sense	of
confidence	regarding	the	results.

The	 second	 thing	 we	 often	 ask	 of	 data	 is	 that	 they	 provide	 some	 source	 of
comparison.	 Is	 a	new	medicine	more	effective	 than	 the	 current	 treatment?	Are
ex-convicts	 who	 receive	 job	 training	 less	 likely	 to	 return	 to	 prison	 than	 ex-
convicts	 who	 do	 not	 receive	 such	 training?	 Do	 students	 who	 attend	 charter
schools	perform	better	than	similar	students	who	attend	regular	public	schools?
In	 these	 cases,	 the	 goal	 is	 to	 find	 two	 groups	 of	 subjects	 who	 are	 broadly

similar	 except	 for	 the	 application	 of	whatever	 “treatment”	we	 care	 about.	 In	 a
social	 science	 context,	 the	 word	 “treatment”	 is	 broad	 enough	 to	 encompass
anything	 from	 being	 a	 sexually	 frustrated	 fruit	 fly	 to	 receiving	 an	 income	 tax
rebate.	As	with	any	other	application	of	 the	scientific	method,	we	are	 trying	to
isolate	the	impact	of	one	specific	intervention	or	attribute.	This	was	the	genius
of	the	fruit	fly	experiment.	The	researchers	figured	out	a	way	to	create	a	control
group	(the	males	who	mated)	and	a	“treatment”	group	(the	males	who	were	shot
down);	 the	 subsequent	 difference	 in	 their	 drinking	 behaviors	 can	 then	 be
attributed	to	whether	they	were	sexually	spurned	or	not.
In	the	physical	and	biological	sciences,	creating	treatment	and	control	groups

is	relatively	straightforward.	Chemists	can	make	small	variations	from	test	tube
to	 test	 tube	 and	 then	 study	 the	 difference	 in	 outcomes.	 Biologists	 can	 do	 the
same	 thing	 with	 their	 petri	 dishes.	 Even	 most	 animal	 testing	 is	 simpler	 than
trying	to	get	fruit	flies	to	drink	alcohol.	We	can	have	one	group	of	rats	exercise
regularly	on	a	treadmill	and	then	compare	their	mental	acuity	in	a	maze	with	the
performance	 of	 another	 group	 of	 rats	 that	 didn’t	 exercise.	 But	 when	 humans
become	involved,	things	grow	more	complicated.	Sound	statistical	analysis	often
requires	a	 treatment	and	a	control	group,	yet	we	cannot	 force	people	 to	do	 the
things	 that	we	make	 laboratory	 rats	do.	 (And	many	people	do	not	 like	making
even	 the	 lab	 rats	 do	 these	 things.)	 Do	 repeated	 concussions	 cause	 serious
neurological	 problems	 later	 in	 life?	 This	 is	 a	 really	 important	 question.	 The
future	 of	 football	 (and	 perhaps	 other	 sports)	 hangs	 on	 the	 answer.	 Yet	 it	 is	 a
question	 that	 cannot	 be	 answered	with	 experiments	 on	 humans.	 So	 unless	 and
until	we	can	teach	fruit	flies	to	wear	helmets	and	run	the	spread	offense,	we	have
to	find	other	ways	to	study	the	long-term	impact	of	head	trauma.
One	 recurring	 research	 challenge	with	 human	 subjects	 is	 creating	 treatment



and	control	groups	that	differ	only	in	that	one	group	is	getting	the	treatment	and
the	 other	 is	 not.	 For	 this	 reason,	 the	 “gold	 standard”	 of	 research	 is
randomization,	a	process	by	which	human	subjects	(or	schools,	or	hospitals,	or
whatever	we’re	 studying)	 are	 randomly	 assigned	 to	 either	 the	 treatment	 or	 the
control	group.	We	do	not	assume	that	all	the	experimental	subjects	are	identical.
Instead,	 probability	 becomes	 our	 friend	 (once	 again),	 and	 we	 assume	 that
randomization	 will	 evenly	 divide	 all	 relevant	 characteristics	 between	 the	 two
groups—both	 the	 characteristics	we	can	observe,	 like	 race	or	 income,	but	 also
confounding	characteristics	that	we	cannot	measure	or	had	not	considered,	such
as	perseverance	or	faith.

The	 third	 reason	 we	 collect	 data	 is,	 to	 quote	 my	 teenage	 daughter,	 “Just
because.”	 We	 sometimes	 have	 no	 specific	 idea	 what	 we	 will	 do	 with	 the
information—but	we	suspect	it	will	come	in	handy	at	some	point.	This	is	similar
to	a	crime	scene	detective	who	demands	that	all	possible	evidence	be	captured	so
that	 it	 can	 be	 sorted	 later	 for	 clues.	 Some	 of	 this	 evidence	 will	 prove	 useful,
some	will	not.	If	we	knew	exactly	what	would	be	useful,	we	probably	would	not
need	to	be	doing	the	investigation	in	the	first	place.
You	probably	know	that	smoking	and	obesity	are	risk	factors	for	heart	disease.

You	 probably	 don’t	 know	 that	 a	 long-running	 study	 of	 the	 residents	 of
Framingham,	Massachusetts,	helped	 to	clarify	 those	relationships.	Framingham
is	a	suburban	 town	of	some	67,000	people	about	 twenty	miles	west	of	Boston.
To	nonresearchers,	it	is	best	known	as	a	suburb	of	Boston	with	reasonably	priced
housing	 and	 convenient	 access	 to	 the	 impressive	 and	 upscale	Natick	Mall.	 To
researchers,	Framingham	 is	best	known	as	 the	home	of	 the	Framingham	Heart
Study,	 one	 of	 the	 most	 successful	 and	 influential	 longitudinal	 studies	 in	 the
history	of	modern	science.
A	longitudinal	study	collects	information	on	a	large	group	of	subjects	at	many

different	 points	 in	 time,	 such	 as	 once	 every	 two	 years.	 The	 same	 participants
may	 be	 interviewed	 periodically	 for	 ten,	 twenty,	 or	 even	 fifty	 years	 after	 they
enter	 the	study,	creating	a	 remarkably	 rich	 trove	of	 information.	 In	 the	case	of
the	Framingham	study,	researchers	gathered	information	on	5,209	adult	residents
of	Framingham	in	1948:	height,	weight,	blood	pressure,	educational	background,
family	 structure,	diet,	 smoking	behavior,	 drug	use,	 and	 so	on.	Most	 important,
researchers	have	gathered	follow-up	data	from	the	same	participants	ever	since
(and	 also	 data	 on	 their	 offspring,	 to	 examine	 genetic	 factors	 related	 to	 heart
disease).	The	Framingham	data	 have	 been	 used	 to	 produce	 over	 two	 thousand



academic	 articles	 since	 1950,	 including	 nearly	 a	 thousand	 between	 2000	 and
2009.
These	 studies	 have	 produced	 findings	 crucial	 to	 our	 understanding	 of

cardiovascular	 disease,	 many	 of	 which	 we	 now	 take	 for	 granted:	 cigarette
smoking	increases	the	risk	of	heart	disease	(1960);	physical	activity	reduces	the
risk	 of	 heart	 disease	 and	 obesity	 increases	 it	 (1967);	 high	 blood	 pressure
increases	 the	 risk	of	stroke	 (1970);	high	 levels	of	HDL	cholesterol	 (henceforth
known	 as	 the	 “good	 cholesterol”)	 reduce	 the	 risk	 of	 death	 (1988);	 individuals
with	 parents	 and	 siblings	who	 have	 cardiovascular	 disease	 are	 at	 significantly
higher	risk	of	the	same	(2004	and	2005).
Longitudinal	 data	 sets	 are	 the	 research	 equivalent	 of	 a	Ferrari.	The	data	 are

particularly	 valuable	when	 it	 comes	 to	 exploring	 causal	 relationships	 that	may
take	years	or	decades	to	unfold.	For	example,	the	Perry	Preschool	Study	began
in	the	late	1960s	with	a	group	of	123	African	American	three-and	four-year-olds
from	 poor	 families.	 The	 participating	 children	 were	 randomly	 assigned	 into	 a
group	that	received	an	intensive	preschool	program	and	a	comparison	group	that
did	 not.	 Researchers	 then	measured	 various	 outcomes	 for	 both	 groups	 for	 the
next	 forty	 years.	 The	 results	make	 a	 compelling	 case	 for	 the	 benefits	 of	 early
childhood	 education.	 The	 students	 who	 received	 the	 intensive	 preschool
experience	had	higher	IQs	at	age	five.	They	were	more	likely	to	graduate	from
high	school.	They	had	higher	earnings	at	age	forty.	In	contrast,	 the	participants
who	 did	 not	 receive	 the	 preschool	 program	 were	 significantly	 more	 likely	 to
have	been	arrested	five	or	more	times	by	age	forty.
Not	surprisingly,	we	can’t	always	have	the	Ferrari.	The	research	equivalent	of

a	Toyota	is	a	cross-sectional	data	set,	which	is	a	collection	of	data	gathered	at	a
single	point	in	time.	For	example,	if	epidemiologists	are	searching	for	the	cause
of	a	new	disease	(or	an	outbreak	of	an	old	one),	 they	may	gather	data	from	all
those	afflicted	in	hopes	of	finding	a	pattern	that	leads	to	the	source.	What	have
they	 eaten?	Where	 have	 they	 traveled?	What	 else	 do	 they	 have	 in	 common?
Researchers	may	also	gather	data	from	individuals	who	are	not	afflicted	by	the
disease	to	highlight	contrasts	between	the	two	groups.
In	 fact,	 all	of	 this	exciting	cross-sectional	data	 talk	 reminds	me	of	 the	week

before	 my	 wedding,	 when	 I	 became	 part	 of	 a	 data	 set.	 I	 was	 working	 in
Kathmandu,	 Nepal,	 when	 I	 tested	 positive	 for	 a	 poorly	 understood	 stomach
illness	called	“blue-green	algae,”	which	had	been	found	in	only	two	places	in	the
world.	Researchers	had	 isolated	 the	pathogen	 that	 caused	 the	disease,	but	 they
were	not	yet	sure	what	kind	of	organism	it	was,	as	it	had	never	been	identified



before.	 When	 I	 called	 home	 to	 inform	 my	 fiancée	 about	 my	 diagnosis,	 I
acknowledged	that	there	was	some	bad	news.	The	disease	had	no	known	means
of	 transmission,	 no	 known	 cure,	 and	 could	 cause	 extreme	 fatigue	 and	 other
unpleasant	side	effects	for	anywhere	from	a	few	days	to	many	months.*	With	the
wedding	 only	 one	 week	 away,	 yes,	 this	 could	 be	 a	 problem.	 Would	 I	 have
complete	control	of	my	digestive	system	as	I	walked	down	the	aisle?	Maybe.
But	 then	 I	 really	 tried	 to	 focus	 on	 the	 good	 news.	 First,	 “blue-green	 algae”

was	thought	to	be	nonfatal.	And	second,	experts	in	tropical	diseases	from	as	far
away	as	Bangkok	had	 taken	a	personal	 interest	 in	my	case.	How	cool	 is	 that?
(Also,	 I	 did	 a	 terrific	 job	 of	 repeatedly	 steering	 the	 discussion	 back	 to	 the
wedding	planning:	“Enough	about	my	incurable	disease.	Tell	me	more	about	the
flowers.”)
I	 spent	 my	 final	 hours	 in	 Kathmandu	 filling	 out	 a	 thirty-page	 survey

describing	every	aspect	of	my	life:	Where	did	I	eat?	What	did	I	eat?	How	did	I
cook?	Did	I	go	swimming?	Where	and	how	often?	Everyone	else	who	had	been
diagnosed	with	 the	disease	was	doing	 the	same	 thing.	Eventually	 the	pathogen
was	identified	as	a	water-borne	form	of	cyanobacteria.	(These	bacteria	are	blue,
and	they	are	the	only	kind	of	bacteria	that	get	their	energy	from	photosynthesis;
hence	the	original	description	of	the	disease	as	“blue-green	algae.”)	The	illness
was	found	to	respond	to	treatment	with	traditional	antibiotics,	but,	curiously,	not
to	some	of	the	newer	ones.	All	of	these	discoveries	were	too	late	to	help	me,	but
I	was	lucky	enough	to	recover	quickly	anyway.	I	had	near-perfect	control	of	my
digestive	system	by	wedding	day.

Behind	 every	 important	 study	 there	 are	 good	 data	 that	 made	 the	 analysis
possible.	 And	 behind	 every	 bad	 study	 .	 .	 .	 well,	 read	 on.	 People	 often	 speak
about	 “lying	 with	 statistics.”	 I	 would	 argue	 that	 some	 of	 the	 most	 egregious
statistical	mistakes	involve	lying	with	data;	the	statistical	analysis	is	fine,	but	the
data	on	which	 the	 calculations	 are	performed	are	bogus	or	 inappropriate.	Here
are	some	common	examples	of	“garbage	in,	garbage	out.”

Selection	 bias.	 Pauline	 Kael,	 the	 longtime	 film	 critic	 for	 The	 New	 Yorker,	 is
alleged	to	have	said	after	Richard	Nixon’s	election	as	president,	“Nixon	couldn’t
have	won.	I	don’t	know	anyone	who	voted	for	him.”	The	quotation	is	most	likely
apocryphal,	 but	 it’s	 a	 lovely	 example	 of	 how	 a	 lousy	 sample	 (one’s	 group	 of
liberal	 friends)	 can	 offer	 a	 misleading	 snapshot	 of	 a	 larger	 population	 (voters
from	 across	America).	 And	 it	 introduces	 the	 question	 one	 should	 always	 ask:
How	 have	 we	 chosen	 the	 sample	 or	 samples	 that	 we	 are	 evaluating?	 If	 each



member	of	the	relevant	population	does	not	have	an	equal	chance	of	ending	up
in	 the	 sample,	 we	 are	 going	 to	 have	 a	 problem	with	whatever	 results	 emerge
from	 that	 sample.	One	 ritual	 of	 presidential	 politics	 is	 the	 Iowa	 straw	 poll,	 in
which	 Republican	 candidates	 descend	 on	 Ames,	 Iowa,	 in	 August	 of	 the	 year
before	a	presidential	election	to	woo	participants,	each	of	whom	pays	$30	to	cast
a	vote	in	the	poll.	The	Iowa	straw	poll	does	not	tell	us	that	much	about	the	future
of	 Republican	 candidates.	 (The	 poll	 has	 predicted	 only	 three	 of	 the	 last	 five
Republican	nominees.)	Why?	Because	Iowans	who	pay	$30	to	vote	in	the	straw
poll	 are	 different	 from	 other	 Iowa	 Republicans;	 and	 Iowa	 Republicans	 are
different	from	Republican	voters	in	the	rest	of	the	country.
Selection	bias	can	be	introduced	in	many	other	ways.	A	survey	of	consumers

in	an	airport	is	going	to	be	biased	by	the	fact	that	people	who	fly	are	likely	to	be
wealthier	 than	 the	 general	 public;	 a	 survey	 at	 a	 rest	 stop	 on	 Interstate	 90	may
have	the	opposite	problem.	Both	surveys	are	likely	to	be	biased	by	the	fact	that
people	who	are	willing	 to	answer	a	survey	 in	a	public	place	are	different	 from
people	who	would	prefer	not	to	be	bothered.	If	you	ask	100	people	in	a	public
place	 to	complete	a	 short	 survey,	and	60	are	willing	 to	answer	your	questions,
those	60	are	likely	to	be	different	in	significant	ways	from	the	40	who	walked	by
without	making	eye	contact.
One	of	the	most	famous	statistical	blunders	of	all	time,	the	notorious	Literary

Digest	 poll	 of	 1936,	 was	 caused	 by	 a	 biased	 sample.	 In	 that	 year,	 Kansas
governor	 Alf	 Landon,	 a	 Republican,	 was	 running	 for	 president	 against
incumbent	 Franklin	 Roosevelt,	 a	 Democrat.	 Literary	 Digest,	 an	 influential
weekly	 news	 magazine	 at	 the	 time,	 mailed	 a	 poll	 to	 its	 subscribers	 and	 to
automobile	and	telephone	owners	whose	addresses	could	be	culled	from	public
records.	All	told,	the	Literary	Digest	poll	included	10	million	prospective	voters,
which	is	an	astronomically	large	sample.	As	polls	with	good	samples	get	larger,
they	get	better,	since	the	margin	of	error	shrinks.	As	polls	with	bad	samples	get
larger,	the	pile	of	garbage	just	gets	bigger	and	smellier.	Literary	Digest	predicted
that	Landon	would	beat	Roosevelt	with	57	percent	of	 the	popular	vote.	In	fact,
Roosevelt	won	in	a	landslide,	with	60	percent	of	the	popular	vote	and	forty-six
of	 forty-eight	 states	 in	 the	 electoral	 college.	 The	 Literary	Digest	 sample	 was
“garbage	 in”:	 the	 magazine’s	 subscribers	 were	 wealthier	 than	 average
Americans,	 and	 therefore	more	 likely	 to	 vote	Republican,	 as	were	 households
with	telephones	and	cars	in	1936.2
We	 can	 end	 up	 with	 the	 same	 basic	 problem	 when	 we	 compare	 outcomes

between	a	treatment	and	a	control	group	if	the	mechanism	for	sorting	individuals



into	 one	 group	 or	 the	 other	 is	 not	 random.	 Consider	 a	 recent	 finding	 in	 the
medical	literature	on	the	side	effects	of	treatment	for	prostate	cancer.	There	are
three	 common	 treatments	 for	prostate	 cancer:	 surgical	 removal	of	 the	prostate;
radiation	 therapy;	 or	 brachytherapy	 (which	 involves	 implanting	 radioactive
“seeds”	near	the	cancer).3	Impotence	is	a	common	side	effect	of	prostate	cancer
treatment,	 so	 researchers	 have	 documented	 the	 sexual	 function	 of	 men	 who
receive	each	of	the	three	treatments.	A	study	of	1,000	men	found	that	two	years
after	 treatment,	 35	 percent	 of	 the	men	 in	 the	 surgery	 group	were	 able	 to	 have
sexual	 intercourse,	 compared	 with	 37	 percent	 in	 the	 radiation	 group	 and	 43
percent	in	the	brachytherapy	group.
Can	 one	 look	 at	 these	 data	 and	 assume	 that	 brachytherapy	 is	 least	 likely	 to

damage	a	man’s	sexual	function?	No,	no,	no.	The	authors	of	the	study	explicitly
warn	 that	we	cannot	conclude	 that	brachytherapy	 is	better	at	preserving	sexual
function,	 since	 the	men	who	 receive	 this	 treatment	 are	 generally	 younger	 and
fitter	 than	men	who	 receive	 the	other	 treatment.	The	purpose	of	 the	 study	was
merely	 to	 document	 the	 degree	 of	 sexual	 side	 effects	 across	 all	 types	 of
treatment.
A	 related	 source	 of	 bias,	 known	 as	 self-selection	 bias,	 will	 arise	 whenever

individuals	 volunteer	 to	 be	 in	 a	 treatment	 group.	 For	 example,	 prisoners	 who
volunteer	for	a	drug	treatment	group	are	different	from	other	prisoners	because
they	have	volunteered	to	be	 in	a	drug	treatment	program.	 If	 the	participants	 in
this	 program	 are	 more	 likely	 to	 stay	 out	 of	 prison	 after	 release	 than	 other
prisoners,	 that’s	great—but	 it	 tells	us	absolutely	nothing	about	 the	value	of	 the
drug	 treatment	 program.	 These	 former	 inmates	 may	 have	 changed	 their	 lives
because	 the	program	helped	 them	kick	drugs.	Or	 they	may	have	changed	 their
lives	because	of	 other	 factors	 that	 also	happened	 to	make	 them	more	 likely	 to
volunteer	for	a	drug	treatment	program	(such	as	having	a	really	strong	desire	not
to	 go	 back	 to	 prison).	We	 cannot	 separate	 the	 causal	 impact	 of	 one	 (the	 drug
treatment	program)	from	the	other	(being	the	kind	of	person	who	volunteers	for
a	drug	treatment	program).

Publication	bias.	Positive	findings	are	more	likely	to	be	published	than	negative
findings,	 which	 can	 skew	 the	 results	 that	 we	 see.	 Suppose	 you	 have	 just
conducted	 a	 rigorous,	 longitudinal	 study	 in	 which	 you	 find	 conclusively	 that
playing	 video	 games	 does	 not	 prevent	 colon	 cancer.	 You’ve	 followed	 a
representative	sample	of	100,000	Americans	for	twenty	years;	those	participants
who	spend	hours	playing	video	games	have	roughly	the	same	incidence	of	colon



cancer	as	the	participants	who	do	not	play	video	games	at	all.	We’ll	assume	your
methodology	 is	 impeccable.	 Which	 prestigious	 medical	 journal	 is	 going	 to
publish	your	results?
None,	for	two	reasons.	First,	there	is	no	strong	scientific	reason	to	believe	that

playing	video	games	has	any	 impact	on	colon	cancer,	so	 it	 is	not	obvious	why
you	 were	 doing	 this	 study.	 Second,	 and	 more	 relevant	 here,	 the	 fact	 that
something	does	not	prevent	cancer	is	not	a	particularly	interesting	finding.	After
all,	most	things	don’t	prevent	cancer.	Negative	findings	are	not	especially	sexy,
in	medicine	or	elsewhere.
The	net	effect	is	to	distort	the	research	that	we	see,	or	do	not	see.	Suppose	that

one	 of	 your	 graduate	 school	 classmates	 has	 conducted	 a	 different	 longitudinal
study.	 She	 finds	 that	 people	who	 spend	 a	 lot	 of	 time	 playing	 video	 games	do
have	a	lower	incidence	of	colon	cancer.	Now	that	is	interesting!	That	is	exactly
the	 kind	 of	 finding	 that	 would	 catch	 the	 attention	 of	 a	 medical	 journal,	 the
popular	press,	bloggers,	and	video	game	makers	(who	would	slap	labels	on	their
products	 extolling	 the	 health	 benefits	 of	 their	 products).	 It	 wouldn’t	 be	 long
before	Tiger	Moms	 all	 over	 the	 country	were	 “protecting”	 their	 children	 from
cancer	 by	 snatching	 books	 out	 of	 their	 hands	 and	 forcing	 them	 to	 play	 video
games	instead.
Of	 course,	 one	 important	 recurring	 idea	 in	 statistics	 is	 that	 unusual	 things

happen	 every	 once	 in	 a	while,	 just	 as	 a	matter	 of	 chance.	 If	 you	 conduct	 100
studies,	one	of	 them	 is	 likely	 to	 turn	up	 results	 that	 are	pure	nonsense—like	a
statistical	 association	 between	 playing	 video	 games	 and	 a	 lower	 incidence	 of
colon	 cancer.	 Here	 is	 the	 problem:	 The	 99	 studies	 that	 find	 no	 link	 between
video	games	and	colon	cancer	will	not	get	published,	because	they	are	not	very
interesting.	The	one	study	that	does	find	a	statistical	link	will	make	it	into	print
and	get	loads	of	follow-on	attention.	The	source	of	the	bias	stems	not	from	the
studies	 themselves	 but	 from	 the	 skewed	 information	 that	 actually	 reaches	 the
public.	 Someone	 reading	 the	 scientific	 literature	 on	 video	 games	 and	 cancer
would	 find	only	 a	 single	 study,	 and	 that	 single	 study	will	 suggest	 that	 playing
video	games	can	prevent	cancer.	In	fact,	99	studies	out	of	100	would	have	found
no	such	link.
Yes,	my	example	is	absurd—but	the	problem	is	real	and	serious.	Here	is	 the

first	 sentence	of	 a	New	York	Times	 article	 on	 the	 publication	 bias	 surrounding
drugs	 for	 treating	 depression:	 “The	makers	 of	 antidepressants	 like	 Prozac	 and
Paxil	 never	 published	 the	 results	 of	 about	 a	 third	 of	 the	 drug	 trials	 that	 they
conducted	to	win	government	approval,	misleading	doctors	and	consumers	about



the	 drugs’	 true	 effectiveness.”4	 It	 turns	 out	 that	 94	 percent	 of	 studies	 with
positive	findings	on	the	effectiveness	of	these	drugs	were	published,	while	only
14	percent	 of	 the	 studies	with	nonpositive	 results	were	published.	For	patients
dealing	with	depression,	this	is	a	big	deal.	When	all	the	studies	are	included,	the
antidepressants	are	better	than	a	placebo	by	only	“a	modest	margin.”
To	combat	this	problem,	medical	journals	now	typically	require	that	any	study

be	registered	at	the	beginning	of	the	project	if	it	is	to	be	eligible	for	publication
later	 on.	 This	 gives	 the	 editors	 some	 evidence	 on	 the	 ratio	 of	 positive	 to
nonpositive	 findings.	 If	 100	 studies	 are	 registered	 that	 propose	 to	 examine	 the
effect	of	skateboarding	on	heart	disease,	and	only	one	is	ultimately	submitted	for
publication	with	positive	findings,	the	editors	can	infer	that	the	other	studies	had
nonpositive	findings	(or	they	can	at	least	investigate	this	possibility).

Recall	bias.	Memory	is	a	fascinating	thing—though	not	always	a	great	source	of
good	 data.	 We	 have	 a	 natural	 human	 impulse	 to	 understand	 the	 present	 as	 a
logical	consequence	of	things	that	happened	in	the	past—cause	and	effect.	The
problem	is	that	our	memories	turn	out	to	be	“systematically	fragile”	when	we	are
trying	to	explain	some	particularly	good	or	bad	outcome	in	the	present.	Consider
a	study	looking	at	the	relationship	between	diet	and	cancer.	In	1993,	a	Harvard
researcher	compiled	a	data	set	comprising	a	group	of	women	with	breast	cancer
and	an	age-matched	group	of	women	who	had	not	been	diagnosed	with	cancer.
Women	in	both	groups	were	asked	about	their	dietary	habits	earlier	in	life.	The
study	produced	clear	 results:	The	women	with	breast	cancer	were	significantly
more	likely	to	have	had	diets	that	were	high	in	fat	when	they	were	younger.
Ah,	 but	 this	 wasn’t	 actually	 a	 study	 of	 how	 diet	 affects	 the	 likelihood	 of

getting	cancer.	This	was	a	study	of	how	getting	cancer	affects	a	woman’s	memory
of	her	diet	earlier	in	life.	All	of	the	women	in	the	study	had	completed	a	dietary
survey	 years	 earlier,	 before	 any	 of	 them	had	 been	 diagnosed	with	 cancer.	The
striking	finding	was	that	women	with	breast	cancer	recalled	a	diet	that	was	much
higher	in	fat	 than	what	 they	actually	consumed;	the	women	with	no	cancer	did
not.	The	New	York	Times	Magazine	described	the	insidious	nature	of	this	recall
bias:

The	diagnosis	of	breast	cancer	had	not	just	changed	a	woman’s	present	and
the	 future;	 it	 had	 altered	 her	 past.	 Women	 with	 breast	 cancer	 had
(unconsciously)	 decided	 that	 a	 higher-fat	 diet	was	 a	 likely	 predisposition
for	 their	 disease	 and	 (unconsciously)	 recalled	 a	 high-fat	 diet.	 It	 was	 a
pattern	 poignantly	 familiar	 to	 anyone	 who	 knows	 the	 history	 of	 this



stigmatized	 illness:	 these	women,	 like	 thousands	 of	women	 before	 them,
had	 searched	 their	 own	 memories	 for	 a	 cause	 and	 then	 summoned	 that
cause	into	memory.5

Recall	bias	 is	one	 reason	 that	 longitudinal	 studies	 are	often	preferred	 to	 cross-
sectional	 studies.	 In	 a	 longitudinal	 study	 the	 data	 are	 collected
contemporaneously.	At	 age	 five,	 a	 participant	 can	be	 asked	 about	 his	 attitudes
toward	school.	Then,	thirteen	years	later,	we	can	revisit	that	same	participant	and
determine	whether	he	has	dropped	out	of	high	school.	In	a	cross-sectional	study,
in	which	all	the	data	are	collected	at	one	point	in	time,	we	must	ask	an	eighteen-
year-old	high	school	dropout	how	he	or	she	felt	about	school	at	age	five,	which
is	inherently	less	reliable.

Survivorship	bias.	Suppose	a	high	school	principal	reports	that	test	scores	for	a
particular	 cohort	 of	 students	 has	 risen	 steadily	 for	 four	 years.	 The	 sophomore
scores	 for	 this	 class	 were	 better	 than	 their	 freshman	 scores.	 The	 scores	 from
junior	 year	were	better	 still,	 and	 the	 senior	 year	 scores	were	best	 of	 all.	We’ll
stipulate	 that	 there	 is	 no	 cheating	 going	 on,	 and	 not	 even	 any	 creative	 use	 of
descriptive	 statistics.	Every	year	 this	cohort	of	 students	has	done	better	 than	 it
did	the	preceding	year,	by	every	possible	measure:	mean,	median,	percentage	of
students	at	grade	level,	and	so	on.
Would	you	(a)	nominate	 this	school	 leader	 for	“principal	of	 the	year”	or	 (b)

demand	more	data?
I	say	“b.”	I	smell	survivorship	bias,	which	occurs	when	some	or	many	of	the

observations	 are	 falling	 out	 of	 the	 sample,	 changing	 the	 composition	 of	 the
observations	that	are	left	and	therefore	affecting	the	results	of	any	analysis.	Let’s
suppose	that	our	principal	is	truly	awful.	The	students	in	his	school	are	learning
nothing;	each	year	half	of	them	drop	out.	Well,	that	could	do	very	nice	things	for
the	 school’s	 test	 scores—without	 any	 individual	 student	 testing	 better.	 If	 we
make	 the	 reasonable	 assumption	 that	 the	 worst	 students	 (with	 the	 lowest	 test
scores)	 are	 the	 most	 likely	 to	 drop	 out,	 then	 the	 average	 test	 scores	 of	 those
students	left	behind	will	go	up	steadily	as	more	and	more	students	drop	out.	(If
you	 have	 a	 room	 of	 people	 with	 varying	 heights,	 forcing	 the	 short	 people	 to
leave	 will	 raise	 the	 average	 height	 in	 the	 room,	 but	 it	 doesn’t	 make	 anyone
taller.)
The	 mutual	 fund	 industry	 has	 aggressively	 (and	 insidiously)	 seized	 on

survivorship	bias	to	make	its	returns	look	better	to	investors	than	they	really	are.
Mutual	 funds	 typically	 gauge	 their	 performance	 against	 a	 key	 benchmark	 for



stocks,	 the	 Standard	 &	 Poor’s	 500,	 which	 is	 an	 index	 of	 500	 leading	 public
companies	in	America.*	If	the	S&P	500	is	up	5.3	percent	for	the	year,	a	mutual
fund	is	said	to	beat	the	index	if	it	performs	better	than	that,	or	trail	the	index	if	it
does	worse.	One	cheap	and	easy	option	 for	 investors	who	don’t	want	 to	pay	a
mutual	fund	manager	is	to	buy	an	S&P	500	Index	Fund,	which	is	a	mutual	fund
that	simply	buys	shares	in	all	500	stocks	in	the	index.	Mutual	fund	managers	like
to	believe	that	they	are	savvy	investors,	capable	of	using	their	knowledge	to	pick
stocks	that	will	perform	better	than	a	simple	index	fund.	In	fact,	it	turns	out	to	be
relatively	hard	to	beat	the	S&P	500	for	any	consistent	stretch	of	time.	(The	S&P
500	is	essentially	an	average	of	all	large	stocks	being	traded,	so	just	as	a	matter
of	math	 we	would	 expect	 roughly	 half	 the	 actively	managed	mutual	 funds	 to
outperform	the	S&P	500	in	a	given	year	and	half	to	underperform.)	Of	course,	it
doesn’t	look	very	good	to	lose	to	a	mindless	index	that	simply	buys	500	stocks
and	 holds	 them.	 No	 analysis.	 No	 fancy	 macro	 forecasting.	 And,	 much	 to	 the
delight	of	investors,	no	high	management	fees.
What	 is	a	 traditional	mutual	fund	company	to	do?	Bogus	data	 to	 the	rescue!

Here	 is	 how	 they	 can	 “beat	 the	 market”	 without	 beating	 the	 market.	 A	 large
mutual	 company	 will	 open	 many	 new	 actively	 managed	 funds	 (meaning	 that
experts	are	picking	the	stocks,	often	with	a	particular	focus	or	strategy).	For	the
sake	 of	 example,	 let’s	 assume	 that	 a	mutual	 fund	 company	 opens	 twenty	 new
funds,	each	of	which	has	roughly	a	50	percent	chance	of	beating	the	S&P	500	in
a	 given	 year.	 (This	 assumption	 is	 consistent	with	 long-term	 data.)	Now,	 basic
probability	suggests	that	only	ten	of	the	firm’s	new	funds	will	beat	the	S&P	500
the	 first	year;	 five	 funds	will	beat	 it	 two	years	 in	a	 row;	and	 two	or	 three	will
beat	it	three	years	in	a	row.
Here	 comes	 the	 clever	 part.	 At	 that	 point,	 the	 new	 mutual	 funds	 with

unimpressive	returns	relative	to	the	S&P	500	are	quietly	closed.	(Their	assets	are
folded	 into	 other	 existing	 funds.)	 The	 company	 can	 then	 heavily	 advertise	 the
two	or	 three	 new	 funds	 that	 have	 “consistently	 outperformed	 the	S&P	500”—
even	if	that	performance	is	the	stock-picking	equivalent	of	flipping	three	heads
in	 a	 row.	The	 subsequent	 performance	 of	 these	 funds	 is	 likely	 to	 revert	 to	 the
mean,	 albeit	 after	 investors	 have	 piled	 in.	 The	 number	 of	 mutual	 funds	 or
investment	gurus	who	have	consistently	beaten	the	S&P	500	over	a	long	period
is	shockingly	small.*

Healthy	user	bias.	People	who	 take	vitamins	regularly	are	 likely	 to	be	healthy
—because	they	are	the	kind	of	people	who	take	vitamins	regularly!	Whether	the



vitamins	 have	 any	 impact	 is	 a	 separate	 issue.	 Consider	 the	 following	 thought
experiment.	 Suppose	 public	 health	 officials	 promulgate	 a	 theory	 that	 all	 new
parents	 should	 put	 their	 children	 to	 bed	 only	 in	 purple	 pajamas,	 because	 that
helps	 stimulate	 brain	 development.	 Twenty	 years	 later,	 longitudinal	 research
confirms	 that	 having	 worn	 purple	 pajamas	 as	 a	 child	 does	 have	 an
overwhelmingly	 large	 positive	 association	 with	 success	 in	 life.	 We	 find,	 for
example,	that	98	percent	of	entering	Harvard	freshmen	wore	purple	pajamas	as
children	 (and	 many	 still	 do)	 compared	 with	 only	 3	 percent	 of	 inmates	 in	 the
Massachusetts	state	prison	system.
Of	course,	 the	purple	pajamas	do	not	matter;	but	having	 the	kind	of	parents

who	 put	 their	 children	 in	 purple	 pajamas	 does	 matter.	 Even	 when	 we	 try	 to
control	 for	 factors	 like	 parental	 education,	 we	 are	 still	 going	 to	 be	 left	 with
unobservable	differences	between	 those	parents	who	obsess	about	putting	 their
children	 in	 purple	 pajamas	 and	 those	 who	 don’t.	 As	 New	 York	 Times	 health
writer	Gary	Taubes	 explains,	 “At	 its	 simplest,	 the	 problem	 is	 that	 people	who
faithfully	 engage	 in	 activities	 that	 are	 good	 for	 them—taking	 a	 drug	 as
prescribed,	 for	 instance,	 or	 eating	 what	 they	 believe	 is	 a	 healthy	 diet—are
fundamentally	 different	 from	 those	 who	 don’t.”6	 This	 effect	 can	 potentially
confound	any	study	trying	to	evaluate	the	real	effect	of	activities	perceived	to	be
healthful,	such	as	exercising	regularly	or	eating	kale.	We	think	we	are	comparing
the	health	effects	of	two	diets:	kale	versus	no	kale.	In	fact,	if	the	treatment	and
control	groups	are	not	randomly	assigned,	we	are	comparing	 two	diets	 that	are
being	eaten	by	two	different	kinds	of	people.	We	have	a	treatment	group	that	is
different	from	the	control	group	in	two	respects,	rather	than	just	one.

If	statistics	is	detective	work,	then	the	data	are	the	clues.	My	wife	spent	a	year
teaching	high	school	students	in	rural	New	Hampshire.	One	of	her	students	was
arrested	for	breaking	 into	a	hardware	store	and	stealing	some	tools.	The	police
were	able	to	crack	the	case	because	(1)	it	had	just	snowed	and	there	were	tracks
in	the	snow	leading	from	the	hardware	store	to	the	student’s	home;	and	(2)	the
stolen	tools	were	found	inside.	Good	clues	help.
Like	good	data.	But	 first	you	have	 to	get	good	data,	and	 that	 is	a	 lot	harder

than	it	seems.

*	At	the	time,	the	disease	had	a	mean	duration	of	forty-three	days	with	a	standard	deviation	of	twenty-four
days.
*	The	S&P	500	is	a	nice	example	of	what	an	index	can	and	should	do.	The	index	is	made	up	of	the	share
prices	of	the	500	leading	U.S.	companies,	each	weighted	by	its	market	value	(so	that	bigger	companies	have



more	weight	 in	 the	 index	 than	 smaller	 companies).	The	 index	 is	 a	 simple	 and	accurate	gauge	of	what	 is
happening	to	the	share	prices	of	the	largest	American	companies	at	any	given	time.
*	For	 a	 very	nice	discussion	of	why	you	 should	probably	buy	 index	 funds	 rather	 than	 trying	 to	beat	 the
market,	read	A	Random	Walk	Down	Wall	Street,	by	my	former	professor	Burton	Malkiel.



CHAPTER	8

The	Central	Limit	Theorem
The	Lebron	James	of	statistics

At	times,	statistics	seems	almost	like	magic.	We	are	able	to	draw	sweeping	and
powerful	 conclusions	 from	 relatively	 little	 data.	 Somehow	 we	 can	 gain
meaningful	 insight	 into	 a	 presidential	 election	by	 calling	 a	mere	 one	 thousand
American	 voters.	 We	 can	 test	 a	 hundred	 chicken	 breasts	 for	 salmonella	 at	 a
poultry	 processing	 plant	 and	 conclude	 from	 that	 sample	 alone	 that	 the	 entire
plant	is	safe	or	unsafe.	Where	does	this	extraordinary	power	to	generalize	come
from?
Much	of	it	comes	from	the	central	limit	theorem,	which	is	the	Lebron	James

of	 statistics—if	 Lebron	were	 also	 a	 supermodel,	 a	 Harvard	 professor,	 and	 the
winner	of	the	Nobel	Peace	Prize.	The	central	limit	theorem	is	the	“power	source”
for	 many	 of	 the	 statistical	 activities	 that	 involve	 using	 a	 sample	 to	 make
inferences	about	a	large	population	(like	a	poll,	or	a	test	for	salmonella).	These
kinds	of	 inferences	may	 seem	mystical;	 in	 fact,	 they	are	 just	 a	 combination	of
two	tools	that	we’ve	already	explored:	probability	and	proper	sampling.	Before
plunging	 into	 the	mechanics	of	 the	 central	 limit	 theorem	 (which	aren’t	 all	 that
tricky),	here	is	an	example	to	give	you	the	general	intuition.
Suppose	you	live	in	a	city	that	is	hosting	a	marathon.	Runners	from	all	over

the	 world	 will	 be	 competing,	 which	 means	 that	 many	 of	 them	 do	 not	 speak
English.	The	logistics	of	the	race	require	that	runners	check	in	on	the	morning	of
the	 race,	 after	which	 they	 are	 randomly	 assigned	 to	 buses	 to	 take	 them	 to	 the
starting	 line.	Unfortunately	 one	 of	 the	 buses	 gets	 lost	 on	 the	way	 to	 the	 race.
(Okay,	you’re	going	to	have	to	assume	that	no	one	has	a	cell	phone	and	that	the
driver	 does	 not	 have	 a	GPS	navigation	device;	 unless	 you	want	 to	 do	 a	 lot	 of
unpleasant	math	right	now,	just	go	with	it.)	As	a	civic	leader	in	this	city,	you	join
the	search	team.
As	luck	would	have	it,	you	stumble	upon	a	broken-down	bus	near	your	home

with	 a	 large	group	of	 unhappy	 international	 passengers,	 none	of	whom	speaks
English.	This	must	be	 the	missing	bus!	You’re	going	 to	be	a	hero!	Except	you



have	 one	 lingering	 doubt	 .	 .	 .	 the	 passengers	 on	 this	 bus	 are,	well,	 very	 large.
Based	on	a	quick	glance,	you	reckon	 that	 the	average	weight	 for	 this	group	of
passengers	has	got	to	be	over	220	pounds.	There	is	no	way	that	a	random	group
of	marathon	runners	could	all	be	 this	heavy.	You	radio	your	message	to	search
headquarters:	“I	think	it’s	the	wrong	bus.	Keep	looking.”
Further	 analysis	 confirms	your	 initial	 impression.	When	a	 translator	 arrives,

you	discover	 that	 this	disabled	bus	was	headed	 to	 the	 International	Festival	 of
Sausage,	which	is	also	being	hosted	by	your	city	on	the	same	weekend.	(For	the
sake	 of	 verisimilitude,	 it	 is	 entirely	 possible	 that	 sausage	 festival	 participants
might	also	be	wearing	sweat	pants.)
Congratulations.	If	you	can	grasp	how	someone	who	takes	a	quick	look	at	the

weights	of	passengers	on	a	bus	can	infer	that	they	are	probably	not	on	their	way
to	the	starting	line	of	a	marathon,	then	you	now	understand	the	basic	idea	of	the
central	 limit	 theorem.	 The	 rest	 is	 just	 fleshing	 out	 the	 details.	 And	 if	 you
understand	 the	 central	 limit	 theorem,	 most	 forms	 of	 statistical	 inference	 will
seem	relatively	intuitive.
The	 core	 principle	 underlying	 the	 central	 limit	 theorem	 is	 that	 a	 large,

properly	 drawn	 sample	 will	 resemble	 the	 population	 from	 which	 it	 is	 drawn.
Obviously	there	will	be	variation	from	sample	to	sample	(e.g.,	each	bus	headed
to	the	start	of	the	marathon	will	have	a	slightly	different	mix	of	passengers),	but
the	 probability	 that	 any	 sample	 will	 deviate	 massively	 from	 the	 underlying
population	is	very	low.	This	logic	is	what	enabled	your	snap	judgment	when	you
boarded	 the	 broken-down	 bus	 and	 saw	 the	 average	 girth	 of	 the	 passengers	 on
board.	 Lots	 of	 big	 people	 run	 marathons;	 there	 are	 likely	 to	 be	 hundreds	 of
people	 who	 weigh	 over	 200	 pounds	 in	 any	 given	 race.	 But	 the	 majority	 of
marathon	 runners	 are	 relatively	 thin.	 Thus,	 the	 likelihood	 that	 so	many	 of	 the
largest	runners	were	randomly	assigned	to	 the	same	bus	is	very,	very	low.	You
could	 conclude	 with	 a	 reasonable	 degree	 of	 confidence	 that	 this	 was	 not	 the
missing	marathon	bus.	Yes,	you	could	have	been	wrong,	but	probability	tells	us
that	most	of	the	time	you	would	have	been	right.
That’s	the	basic	intuition	behind	the	central	limit	theorem.	When	we	add	some

statistical	bells	and	whistles,	we	can	quantify	the	likelihood	that	you	will	be	right
or	wrong.	For	 example,	we	might	 calculate	 that	 in	 a	marathon	 field	of	 10,000
runners	with	a	mean	weight	of	155	pounds,	there	is	less	than	a	1	in	100	chance
that	a	random	sample	of	60	of	those	runners	(our	lost	bus)	would	have	a	mean
weight	of	220	pounds	or	more.	For	now,	let’s	stick	with	the	intuition;	there	will
be	plenty	of	time	for	calculations	later.	The	central	 limit	 theorem	enables	us	to



make	the	following	inferences,	all	of	which	will	be	explored	in	greater	depth	in
the	next	chapter.

1.	If	we	have	detailed	information	about	some	population,	then	we	can	make
powerful	 inferences	 about	 any	 properly	 drawn	 sample	 from	 that
population.	 For	 example,	 assume	 that	 a	 school	 principal	 has	 detailed
information	on	the	standardized	test	scores	for	all	the	students	in	his	school
(mean,	 standard	 deviation,	 etc.).	 That	 is	 the	 relevant	 population.	 Now
assume	 that	 a	 bureaucrat	 from	 the	 school	 district	 will	 be	 arriving	 next
week	to	give	a	similar	standardized	test	to	100	randomly	selected	students.
The	 performance	 of	 those	 100	 students,	 the	 sample,	 will	 be	 used	 to
evaluate	the	performance	of	the	school	overall.
How	much	 confidence	 can	 the	 principal	 have	 that	 the	 performance	 of

those	randomly	chosen	100	students	will	accurately	reflect	how	the	entire
student	body	has	been	performing	on	similar	standardized	tests?	Quite	a	bit.
According	 to	 the	 central	 limit	 theorem,	 the	 average	 test	 score	 for	 the
random	sample	of	100	students	will	not	typically	deviate	sharply	from	the
average	test	score	for	the	whole	school.
2.	If	we	have	detailed	information	about	a	properly	drawn	sample	(mean	and
standard	deviation),	we	can	make	strikingly	accurate	inferences	about	the
population	from	which	that	sample	was	drawn.	This	is	essentially	working
in	the	opposite	direction	from	the	example	above,	putting	ourselves	in	the
shoes	of	the	school	district	bureaucrat	who	is	evaluating	various	schools	in
the	district.	Unlike	the	school	principal,	this	bureaucrat	does	not	have	(or
does	not	trust)	the	standardized	test	score	data	that	the	principal	has	for	all
the	 students	 in	 a	 particular	 school,	 which	 is	 the	 relevant	 population.
Instead,	 he	 will	 be	 administering	 a	 similar	 test	 of	 his	 own	 to	 a	 random
sample	of	100	students	in	each	school.
Can	this	administrator	be	reasonably	certain	that	the	overall	performance

of	 any	 given	 school	 can	 be	 evaluated	 fairly	 based	 on	 the	 test	 scores	 of	 a
sample	 of	 just	 100	 students	 from	 that	 school?	 Yes.	 The	 central	 limit
theorem	tells	us	that	a	large	sample	will	not	typically	deviate	sharply	from
its	underlying	population—which	means	that	the	sample	results	(scores	for
the	100	randomly	chosen	students)	are	a	good	proxy	for	 the	results	of	 the
population	overall	(the	student	body	at	a	particular	school).	Of	course,	this
is	how	polling	works.	A	methodologically	sound	poll	of	1,200	Americans
can	tell	us	a	great	deal	about	how	the	entire	country	is	thinking.



Think	about	it:	if	no.	1	above	is	true,	no.	2	must	also	be	true—and	vice
versa.	If	a	sample	usually	looks	like	the	population	from	which	it’s	drawn,
it	must	also	be	true	that	a	population	will	usually	look	like	a	sample	drawn
from	that	population.	 (If	children	 typically	 look	 like	 their	parents,	parents
must	also	typically	look	like	their	children.)
3.	 If	we	 have	 data	 describing	 a	 particular	 sample,	 and	 data	 on	 a	 particular
population,	we	 can	 infer	whether	 or	 not	 that	 sample	 is	 consistent	with	 a
sample	that	is	likely	to	be	drawn	from	that	population.	This	is	the	missing-
bus	example	described	at	the	beginning	of	the	chapter.	We	know	the	mean
weight	(more	or	 less)	for	 the	participants	 in	 the	marathon.	And	we	know
the	mean	weight	(more	or	less)	for	the	passengers	on	the	broken-down	bus.
The	 central	 limit	 theorem	 enables	 us	 to	 calculate	 the	 probability	 that	 a
particular	sample	(the	rotund	people	on	the	bus)	was	drawn	from	a	given
population	 (the	 marathon	 field).	 If	 that	 probability	 is	 low,	 then	 we	 can
conclude	with	a	high	degree	of	confidence	that	the	sample	was	not	drawn
from	 the	population	 in	question	 (e.g.,	 the	people	on	 this	bus	 really	don’t
look	like	a	group	of	marathon	runners	headed	to	the	starting	line).

4.	 Last,	 if	we	 know	 the	 underlying	 characteristics	 of	 two	 samples,	we	 can
infer	 whether	 or	 not	 both	 samples	 were	 likely	 drawn	 from	 the	 same
population.	 Let	 us	 return	 to	 our	 (increasingly	 absurd)	 bus	 example.	We
now	 know	 that	 a	 marathon	 is	 going	 on	 in	 the	 city,	 as	 well	 as	 the
International	Festival	of	Sausage.	Assume	that	both	groups	have	thousands
of	participants,	 and	 that	both	groups	are	operating	buses,	 all	 loaded	with
random	samples	of	either	marathon	runners	or	sausage	enthusiasts.	Further
assume	 that	 two	 buses	 collide.	 (I	 already	 conceded	 that	 the	 example	 is
absurd,	so	 just	 read	on.)	 In	your	capacity	as	a	civic	 leader,	you	arrive	on
the	scene	and	are	tasked	with	determining	whether	or	not	both	buses	were
headed	to	the	same	event	(sausage	festival	or	marathon).	Miraculously,	no
one	 on	 either	 bus	 speaks	 English,	 but	 paramedics	 provide	 you	 with
detailed	information	on	the	weights	of	all	the	passengers	on	each	bus.
From	that	alone,	you	can	infer	whether	the	two	buses	were	likely	headed

to	the	same	event,	or	to	different	events.	Again,	think	about	this	intuitively.
Suppose	 that	 the	 average	 weight	 of	 the	 passengers	 on	 one	 bus	 is	 157
pounds,	 with	 a	 standard	 deviation	 of	 11	 pounds	 (meaning	 that	 a	 high
proportion	of	the	passengers	weigh	between	146	pounds	and	168	pounds).
Now	suppose	that	the	passengers	on	the	second	bus	have	a	mean	weight	of
211	pounds	with	 a	 standard	 deviation	 of	 21	 pounds	 (meaning	 that	 a	 high



proportion	of	the	passengers	weigh	between	190	pounds	and	232	pounds).
Forget	statistical	 formulas	 for	a	moment,	and	 just	use	 logic:	Does	 it	 seem
likely	 that	 the	passengers	on	 those	 two	buses	were	 randomly	drawn	 from
the	same	population?
No.	It	seems	far	more	likely	that	one	bus	is	full	of	marathon	runners	and

the	other	bus	is	full	of	sausage	enthusiasts.	In	addition	to	the	difference	in
average	weight	between	the	two	buses,	you	can	also	see	that	the	variation	in
weights	between	the	two	buses	is	very	large	compared	with	the	variation	in
weights	 within	 each	 bus.	 The	 folks	 who	 weigh	 one	 standard	 deviation
above	the	mean	on	the	“skinny”	bus	are	168	pounds,	which	is	less	than	the
folks	who	 are	 one	 standard	 deviation	 below	 the	mean	on	 the	 “other”	 bus
(190	pounds).	This	is	a	telltale	sign	(both	statistically	and	logically)	that	the
two	samples	likely	came	from	different	populations.

If	 all	 of	 this	makes	 intuitive	 sense,	 then	you	are	93.2	percent	of	 the	way	 to
understanding	the	central	limit	theorem.*	We	need	to	go	one	step	further	to	put
some	 technical	heft	behind	 the	 intuition.	Obviously	when	you	stuck	your	head
inside	the	broken-down	bus	and	saw	a	group	of	large	people	in	sweatpants,	you
had	a	“hunch”	that	 they	weren’t	marathoners.	The	central	 limit	 theorem	allows
us	 to	 go	 beyond	 that	 hunch	 and	 assign	 a	 degree	 of	 confidence	 to	 your
conclusion.
For	example,	some	basic	calculations	will	enable	me	to	conclude	that	99	times

out	of	100	the	mean	weight	of	any	randomly	selected	bus	of	marathoners	will	be
within	nine	pounds	of	the	mean	weight	of	the	entire	marathon	field.	That’s	what
gives	statistical	heft	 to	my	hunch	when	I	stumble	across	 the	broken-down	bus.
These	passengers	have	a	mean	weight	that	is	twenty-one	pounds	higher	than	the
mean	weight	for	the	marathon	field,	something	that	should	only	occur	by	chance
less	 than	 1	 time	 in	 100.	 As	 a	 result,	 I	 can	 reject	 the	 hypothesis	 that	 this	 is	 a
missing	marathon	bus	with	99	percent	confidence—meaning	I	should	expect	my
inference	to	be	correct	99	times	out	of	100.
And	yes,	probability	suggests	that	on	average	I’ll	be	wrong	1	time	in	100.

This	 kind	 of	 analysis	 all	 stems	 from	 the	 central	 limit	 theorem,	which,	 from	 a
statistical	standpoint,	has	Lebron	James–like	power	and	elegance.	According	to
the	 central	 limit	 theorem,	 the	 sample	 means	 for	 any	 population	 will	 be
distributed	roughly	as	a	normal	distribution	around	 the	population	mean.	Hang
on	for	a	moment	as	we	unpack	that	statement.



1.	 Suppose	 we	 have	 a	 population,	 like	 our	 marathon	 field,	 and	 we	 are
interested	in	 the	weights	of	 its	members.	Any	sample	of	runners,	such	as
each	bus	of	sixty	runners,	will	have	a	mean.

2.	 If	 we	 take	 repeated	 samples,	 such	 as	 picking	 random	 groups	 of	 sixty
runners	from	the	field	over	and	over,	then	each	of	those	samples	will	have
its	own	mean	weight.	These	are	the	sample	means.

3.	 Most	 of	 the	 sample	 means	 will	 be	 very	 close	 to	 the	 population	 mean.
Some	will	be	a	little	higher.	Some	will	be	a	little	lower.	Just	as	a	matter	of
chance,	a	very	few	will	be	significantly	higher	than	the	population	mean,
and	a	very	few	will	be	significantly	lower.

Cue	the	music,	because	this	is	where	everything	comes	together	in	a	powerful
crescendo	.	.	.

4.	The	central	limit	theorem	tells	us	that	the	sample	means	will	be	distributed
roughly	as	a	normal	distribution	around	the	population	mean.	The	normal
distribution,	 as	 you	 may	 remember	 from	 Chapter	 2,	 is	 the	 bell-shaped
distribution	 (e.g.,	 adult	 men’s	 heights)	 in	 which	 68	 percent	 of	 the
observations	lie	within	one	standard	deviation	of	the	mean,	95	percent	lie
within	two	standard	deviations,	and	so	on.

5.	All	of	 this	will	be	 true	no	matter	what	 the	distribution	of	 the	underlying
population	 looks	 like.	The	 population	 from	which	 the	 samples	 are	 being
drawn	does	not	have	to	have	a	normal	distribution	in	order	for	the	sample
means	to	be	distributed	normally.

Let’s	think	about	some	real	data,	say,	the	household	income	distribution	in	the
United	 States.	 Household	 income	 is	 not	 distributed	 normally	 in	 America;
instead,	it	tends	to	be	skewed	to	the	right.	No	household	can	earn	less	than	$0	in
a	given	year,	so	that	must	be	the	lower	bound	for	the	distribution.	Meanwhile,	a
small	 group	 of	 households	 can	 earn	 staggeringly	 large	 annual	 incomes—
hundreds	of	millions	or	even	billions	of	dollars	 in	 some	cases.	As	a	 result,	we
would	expect	 the	distribution	of	household	 incomes	 to	have	a	 long	right	 tail—
something	like	this:



The	median	 household	 income	 in	 the	United	 States	 is	 roughly	 $51,900;	 the
mean	 household	 income	 is	 $70,900.1	 (People	 like	 Bill	 Gates	 pull	 the	 mean
household	 income	 to	 the	 right,	 just	 as	he	did	when	he	walked	 in	 to	 the	bar	 in
Chapter	 2.)	Now	 suppose	we	 take	 a	 random	 sample	 of	 1,000	U.S.	 households
and	 gather	 information	 on	 annual	 household	 income.	 On	 the	 basis	 of	 the
information	above,	and	 the	central	 limit	 theorem,	what	can	we	 infer	about	 this
sample?
Quite	a	lot,	it	turns	out.	First	of	all,	our	best	guess	for	what	the	mean	of	any

sample	will	be	is	the	mean	of	the	population	from	which	it’s	drawn.	The	whole
point	of	a	representative	sample	is	that	it	looks	like	the	underlying	population.	A
properly	drawn	sample	will,	on	average,	look	like	America.	There	will	be	hedge
fund	managers	and	homeless	people	and	police	officers	and	everyone	else—all
roughly	in	proportion	to	their	frequency	in	the	population.	Therefore,	we	would
expect	 the	 mean	 household	 income	 for	 a	 representative	 sample	 of	 1,000
American	 households	 to	 be	 about	 $70,900.	Will	 it	 be	 exactly	 that?	No.	But	 it
shouldn’t	be	wildly	different	either.
If	 we	 took	 multiple	 samples	 of	 1,000	 households,	 we	 would	 expect	 the

different	 sample	 means	 to	 cluster	 around	 the	 population	 mean,	 $70,900.	 We
would	expect	some	means	 to	be	higher,	and	some	to	be	 lower.	Might	we	get	a
sample	of	1,000	households	with	a	mean	household	income	of	$427,000?	Sure,
that’s	possible—but	highly	unlikely.	 (Remember,	our	sampling	methodology	 is
sound;	 we	 are	 not	 conducting	 a	 survey	 in	 the	 parking	 lot	 of	 the	 Greenwich
Country	Club.)	It’s	also	highly	unlikely	that	a	proper	sample	of	1,000	American
households	would	have	a	mean	income	of	$8,000.
That’s	all	just	basic	logic.	The	central	limit	theorem	enables	us	to	go	one	step

further	by	describing	the	expected	distribution	of	 those	different	sample	means
as	they	cluster	around	the	population	mean.	Specifically,	the	sample	means	will
form	 a	 normal	 distribution	 around	 the	 population	mean,	 which	 in	 this	 case	 is



$70,900.	Remember,	the	shape	of	the	underlying	population	doesn’t	matter.	The
household	 income	 distribution	 in	 the	 United	 States	 is	 plenty	 skewed,	 but	 the
distribution	 of	 the	 sample	 means	 will	 not	 be	 skewed.	 If	 we	 were	 to	 take	 100
different	samples,	each	with	1,000	households,	and	plotted	the	frequency	of	our
results,	we	would	expect	those	sample	means	to	form	the	familiar	“bell-shaped”
distribution	around	$70,900.
The	 larger	 the	 number	 of	 samples,	 the	 more	 closely	 the	 distribution	 will

approximate	the	normal	distribution.	And	the	larger	the	size	of	each	sample,	the
tighter	that	distribution	will	be.	To	test	this	result,	let’s	do	a	fun	experiment	with
real	data	on	the	weights	of	real	Americans.	The	University	of	Michigan	conducts
a	 longitudinal	 study	 called	 Americans’	 Changing	 Lives,	 which	 consists	 of
detailed	 observations	 on	 several	 thousand	 American	 adults,	 including	 their
weights.	 The	 weight	 distribution	 is	 skewed	 slightly	 right,	 because	 it’s
biologically	 easier	 to	 be	 100	 pounds	 overweight	 than	 it	 is	 to	 be	 100	 pounds
underweight.	The	mean	weight	for	all	adults	in	the	study	is	162	pounds.
Using	basic	statistical	software,	we	can	direct	the	computer	to	take	a	random

sample	of	100	individuals	from	the	Changing	Lives	data.	In	fact,	we	can	do	this
over	and	over	again	to	see	how	the	results	fit	with	what	the	central	limit	theorem
would	predict.	Here	is	a	graph	of	the	distribution	of	100	sample	means	(rounded
to	the	nearest	pound)	randomly	generated	from	the	Changing	Lives	data.

100	Sample	Means,	n	=	100

The	larger	the	sample	size	and	the	more	samples	taken,	the	more	closely	the
distribution	of	 sample	means	will	 approximate	 the	normal	curve.	 (As	a	 rule	of
thumb,	the	sample	size	must	be	at	least	30	for	the	central	limit	theorem	to	hold
true.)	This	makes	sense.	A	larger	sample	is	less	likely	to	be	affected	by	random
variation.	A	sample	of	2	can	be	highly	skewed	by	1	particularly	 large	or	small
person.	 In	 contrast,	 a	 sample	 of	 500	 will	 not	 be	 unduly	 affected	 by	 a	 few
particularly	large	or	small	people.



We	are	now	very	close	to	making	all	of	our	statistical	dreams	come	true!	The
sample	means	are	distributed	roughly	as	a	normal	curve,	as	described	above.	The
power	of	a	normal	distribution	derives	from	the	fact	that	we	know	roughly	what
proportion	of	observations	will	lie	within	one	standard	deviation	above	or	below
the	 mean	 (68	 percent);	 what	 proportion	 of	 observations	 will	 lie	 within	 two
standard	 deviations	 above	 or	 below	 the	mean	 (95	 percent);	 and	 so	 on.	This	 is
powerful	stuff.
Earlier	 in	 this	 chapter,	 I	 pointed	 out	 that	 we	 could	 infer	 intuitively	 that	 a

busload	of	 passengers	with	 a	mean	weight	 twenty-five	pounds	higher	 than	 the
mean	 weight	 for	 the	 whole	 marathon	 field	 was	 probably	 not	 the	 lost	 bus	 of
runners.	To	quantify	that	intuition—to	be	able	to	say	that	this	inference	will	be
correct	95	percent	of	the	time,	or	99	percent,	or	99.9	percent—we	need	just	one
more	technical	concept:	the	standard	error.
The	standard	error	measures	the	dispersion	of	the	sample	means.	How	tightly

do	we	expect	the	sample	means	to	cluster	around	the	population	mean?	There	is
some	 potential	 confusion	 here,	 as	 we	 have	 now	 introduced	 two	 different
measures	 of	 dispersion:	 the	 standard	 deviation	 and	 the	 standard	 error.	Here	 is
what	you	need	to	remember	to	keep	them	straight:

1.	The	standard	deviation	measures	dispersion	in	the	underlying	population.
In	 this	 case,	 it	 might	 measure	 the	 dispersion	 of	 the	 weights	 of	 all	 the
participants	 in	the	Framingham	Heart	Study,	or	 the	dispersion	around	the
mean	for	the	entire	marathon	field.

2.	 The	 standard	 error	measures	 the	 dispersion	 of	 the	 sample	means.	 If	we
draw	 repeated	 samples	 of	 100	 participants	 from	 the	 Framingham	 Heart
Study,	what	will	the	dispersion	of	those	sample	means	look	like?

3.	 Here	 is	 what	 ties	 the	 two	 concepts	 together:	 The	 standard	 error	 is	 the
standard	deviation	of	the	sample	means!	Isn’t	that	kind	of	cool?

A	 large	 standard	 error	means	 that	 the	 sample	means	 are	 spread	 out	 widely
around	the	population	mean;	a	small	standard	error	means	that	they	are	clustered
relatively	tightly.	Here	are	three	real	examples	from	the	Changing	Lives	data.

100	Sample	Means,	n	=	20



100	Sample	Means,	n	=	100

Female	Population	Only/100	Sample	Means,	n	=	100

The	 second	 distribution,	 which	 has	 a	 larger	 sample	 size,	 is	 more	 tightly
clustered	 around	 the	 mean	 than	 the	 first	 distribution.	 The	 larger	 sample	 size
makes	it	less	likely	that	a	sample	mean	will	deviate	sharply	from	the	population
mean.	 The	 final	 set	 of	 sample	 means	 is	 drawn	 only	 from	 a	 subset	 of	 the
population,	women	in	the	study.	Since	the	weights	of	women	in	the	data	set	are
less	diffuse	than	the	weights	of	all	persons	in	the	population,	it	stands	to	reason
that	the	weights	of	samples	drawn	just	from	the	women	would	be	less	dispersed
than	samples	drawn	from	the	whole	Changing	Lives	population.	(These	samples
are	 also	 clustered	 around	 a	 slightly	 different	 population	mean,	 since	 the	mean



weight	 for	 all	 females	 in	 the	Changing	Lives	 study	 is	different	 from	 the	mean
weight	for	the	entire	population	in	the	study.)
The	 pattern	 that	 you	 saw	 above	 holds	 true	 in	 general.	 Sample	 means	 will

cluster	more	tightly	around	the	population	mean	as	the	size	of	each	sample	gets
larger	 (e.g.,	 our	 sample	 means	 were	 more	 tightly	 clustered	 when	 we	 took
samples	of	100	 rather	 than	30).	And	 the	 sample	means	will	 cluster	 less	 tightly
around	the	population	mean	when	the	underlying	population	is	more	spread	out
(e.g.,	 our	 sample	 means	 for	 the	 entire	 Changing	 Lives	 population	 were	 more
dispersed	than	the	sample	means	for	just	the	females	in	the	study).
If	you’ve	 followed	 the	 logic	 this	 far,	 then	 the	 formula	 for	 the	standard	error

follows	naturally:
SE	 	where	s	 is	 the	standard	deviation	of	 the	population	from	which	the

sample	 is	 drawn,	 and	 n	 is	 the	 size	 of	 the	 sample.	Keep	 your	 head	 about	 you!
Don’t	let	the	appearance	of	letters	mess	up	the	basic	intuition.	The	standard	error
will	be	large	when	the	standard	deviation	of	the	underlying	distribution	is	large.
A	 large	 sample	 drawn	 from	 a	 highly	 dispersed	 population	 is	 also	 likely	 to	 be
highly	dispersed;	a	 large	sample	from	a	population	clustered	tightly	around	the
mean	is	also	likely	to	be	clustered	tightly	around	the	mean.	If	we	are	still	looking
at	weight,	we	would	expect	the	standard	error	for	a	sample	drawn	from	the	entire
Changing	 Lives	 population	 to	 be	 larger	 than	 the	 standard	 error	 for	 a	 sample
drawn	only	from	the	men	in	their	twenties.	This	is	why	the	standard	deviation	(s)
is	in	the	numerator.
Similarly,	we	would	expect	the	standard	error	to	get	smaller	as	the	sample	size

gets	larger,	since	large	samples	are	less	prone	to	distortion	by	extreme	outliers.
This	 is	why	the	sample	size	(n)	 is	 in	the	denominator.	(The	reason	we	take	the
square	root	of	n	will	be	 left	 for	a	more	advanced	 text;	 the	basic	relationship	 is
what’s	important	here.)
In	 the	 case	 of	 the	 Changing	 Lives	 data,	 we	 actually	 know	 the	 standard

deviation	of	the	population;	often	that	is	not	the	case.	For	large	samples,	we	can
assume	 that	 the	 standard	 deviation	 of	 the	 sample	 is	 reasonably	 close	 to	 the
standard	deviation	of	the	population.*
Finally,	 we	 have	 arrived	 at	 the	 payoff	 for	 all	 of	 this.	 Because	 the	 sample

means	 are	 distributed	 normally	 (thanks	 to	 the	 central	 limit	 theorem),	 we	 can
harness	the	power	of	the	normal	curve.	We	expect	that	roughly	68	percent	of	all
sample	 means	 will	 lie	 within	 one	 standard	 error	 of	 the	 population	 mean;	 95
percent	of	the	sample	means	will	lie	within	two	standard	errors	of	the	population
mean;	and	99.7	percent	of	the	sample	means	will	lie	within	three	standard	errors



of	the	population	mean.

Frequency	Distribution	of	Sample	Means

So	 let’s	 return	 to	 a	 variation	 on	 our	 lost-bus	 example,	 only	 now	 we	 can
substitute	numbers	for	intuition.	(The	example	itself	will	remain	absurd;	the	next
chapter	will	have	plenty	of	less	absurd,	real-world	examples.)	Suppose	that	the
Changing	Lives	study	has	 invited	all	of	 the	 individuals	 in	 the	study	 to	meet	 in
Boston	for	a	weekend	of	data	gathering	and	revelry.	The	participants	are	loaded
randomly	onto	buses	and	ferried	among	the	buildings	at	the	testing	facility	where
they	 are	weighed,	measured,	 poked,	 prodded,	 and	 so	 on.	 Shockingly,	 one	 bus
goes	missing,	a	fact	that	is	broadcast	on	the	local	news.	At	around	that	time,	you
are	driving	back	from	the	Festival	of	Sausage	when	you	see	a	crashed	bus	on	the
side	 of	 the	 road.	 Apparently	 the	 bus	 swerved	 to	miss	 a	wild	 fox	 crossing	 the
road,	 and	 all	 of	 the	 passengers	 are	 unconscious	 but	 not	 seriously	 hurt.	 (I	 need
them	 to	 be	 uncommunicative	 for	 the	 example	 to	work,	 but	 I	 don’t	 want	 their
injuries	to	be	too	disturbing.)	Paramedics	on	the	scene	inform	you	that	the	mean
weight	of	the	62	passengers	on	the	bus	is	194	pounds.	Also,	the	fox	that	the	bus
swerved	to	avoid	was	clipped	slightly	and	appears	to	have	a	broken	hind	leg.
Fortunately	you	know	the	mean	weight	and	standard	deviation	for	 the	entire

Changing	Lives	population,	you	have	a	working	knowledge	of	the	central	limit
theorem,	and	 you	 know	 how	 to	 administer	 first	 aid	 to	 a	 wild	 fox.	 The	 mean
weight	for	the	Changing	Lives	participants	is	162;	the	standard	deviation	is	36.



From	 that	 information,	 we	 can	 calculate	 the	 standard	 error	 for	 a	 62-person
sample	(the	number	of	unconscious	passengers	on	the	bus):	
The	 difference	 between	 the	 sample	 mean	 (194	 pounds)	 and	 the	 population

mean	 (162	pounds)	 is	 32	pounds,	 or	well	more	 than	 three	 standard	 errors.	We
know	from	the	central	limit	theorem	that	99.7	percent	of	all	sample	means	will
lie	within	three	standard	errors	of	the	population	mean.	That	makes	it	extremely
unlikely	that	this	bus	represents	a	random	group	of	Changing	Lives	participants.
In	your	duty	as	a	civic	leader,	you	call	the	study	officials	to	tell	them	that	this	is
probably	 not	 their	 missing	 bus,	 only	 now	 you	 can	 offer	 statistical	 evidence,
rather	than	just	“a	hunch.”	You	report	to	the	Changing	Lives	folks	that	you	can
reject	 the	possibility	 that	 this	 is	 the	missing	bus	at	 the	99.7	percent	confidence
level.	And	 since	 you	 are	 talking	 to	 researchers,	 they	 actually	 understand	what
you	are	talking	about.
Your	 analysis	 is	 further	 confirmed	when	paramedics	 conduct	 blood	 tests	 on

the	bus	passengers	and	discover	that	the	mean	cholesterol	level	for	the	busload
of	 passengers	 is	 five	 standard	 errors	 above	 the	mean	 cholesterol	 level	 for	 the
Changing	Lives	study	participants.	That	suggests,	correctly	it	later	turns	out,	that
the	unconscious	passengers	are	involved	with	the	Festival	of	Sausage.
[There	 is	a	happy	ending.	When	 the	bus	passengers	 regained	consciousness,

Changing	Lives	study	officials	offered	them	counseling	on	the	dangers	of	a	diet
high	in	saturated	fats,	causing	many	of	them	to	adopt	more	heart-healthy	eating
habits.	 Meanwhile,	 the	 fox	 was	 nurtured	 back	 to	 health	 at	 a	 local	 wildlife
preserve	and	was	eventually	released	back	into	the	wild.]*

I’ve	 tried	 to	 stick	with	 the	 basics	 in	 this	 chapter.	You	 should	 note	 that	 for	 the
central	limit	theorem	to	apply,	the	sample	sizes	need	to	be	relatively	large	(over
30	as	a	rule	of	thumb).	We	also	need	a	relatively	large	sample	if	we	are	going	to
assume	 that	 the	 standard	 deviation	 of	 the	 sample	 is	 roughly	 the	 same	 as	 the
standard	deviation	of	the	population	from	which	it	is	drawn.	There	are	plenty	of
statistical	fixes	that	can	be	applied	when	these	conditions	are	not	met—but	that
is	all	frosting	on	the	cake	(and	maybe	even	sprinkles	on	the	frosting	on	the	cake).
The	“big	picture”	here	is	simple	and	massively	powerful:

1.	 If	 you	 draw	 large,	 random	 samples	 from	 any	 population,	 the	 means	 of
those	 samples	 will	 be	 distributed	 normally	 around	 the	 population	 mean
(regardless	 of	 what	 the	 distribution	 of	 the	 underlying	 population	 looks
like).

2.	Most	sample	means	will	lie	reasonably	close	to	the	population	mean;	the



standard	error	is	what	defines	“reasonably	close.”
3.	The	central	limit	theorem	tells	us	the	probability	that	a	sample	mean	will
lie	within	a	certain	distance	of	the	population	mean.	It	is	relatively	unlikely
that	 a	 sample	 mean	 will	 lie	 more	 than	 two	 standard	 errors	 from	 the
population	 mean,	 and	 extremely	 unlikely	 that	 it	 will	 lie	 three	 or	 more
standard	errors	from	the	population	mean.

4.	 The	 less	 likely	 it	 is	 that	 an	 outcome	 has	 been	 observed	 by	 chance,	 the
more	confident	we	can	be	in	surmising	that	some	other	factor	is	in	play.

That’s	 pretty	 much	 what	 statistical	 inference	 is	 about.	 The	 central	 limit
theorem	 is	 what	 makes	 most	 of	 it	 possible.	 And	 until	 Lebron	 James	 wins	 as
many	 NBA	 championships	 as	Michael	 Jordan	 (six),	 the	 central	 limit	 theorem
will	be	far	more	impressive	than	he	is.

*	Note	the	clever	use	of	false	precision	here.
*	 When	 the	 standard	 deviation	 for	 the	 population	 is	 calculated	 from	 a	 smaller	 sample,	 the	 formula	 is
tweaked	slightly:	 	This	helps	to	account	for	the	fact	that	the	dispersion	in	a	small	sample	may
understate	 the	 dispersion	 of	 the	 full	 population.	 This	 is	 not	 highly	 relevant	 to	 the	 bigger	 points	 in	 this
chapter.
*	 My	 University	 of	 Chicago	 colleague	 Jim	 Sallee	 makes	 a	 very	 important	 critique	 of	 the	 missing-bus
examples.	He	points	out	that	very	few	buses	ever	go	missing.	So	if	we	happen	to	be	looking	for	a	missing
bus,	any	bus	that	turns	up	lost	or	crashed	is	likely	to	be	that	bus,	regardless	of	the	weight	of	the	passengers
on	the	bus.	He’s	right.	(Think	about	it:	if	you	lose	your	child	in	a	supermarket,	and	the	store	manager	tells
you	that	there	happens	to	be	a	lost	child	standing	near	register	six,	you	would	conclude	immediately	that	it’s
probably	your	child.)	We’re	therefore	going	to	have	to	add	one	more	element	of	absurdity	to	these	examples
and	pretend	that	buses	go	missing	all	the	time.



CHAPTER	9

Inference
Why	my	statistics	professor

thought	I	might	have	cheated

In	 the	 spring	 of	my	 senior	 year	 of	 college,	 I	 took	 a	 statistics	 class.	 I	 wasn’t
particularly	enamored	of	statistics	or	of	most	math-based	disciplines	at	that	time,
but	I	had	promised	my	dad	that	I	would	take	the	course	if	I	could	leave	school
for	ten	days	to	go	on	a	family	trip	to	the	Soviet	Union.	So,	I	basically	took	stats
in	 exchange	 for	 a	 trip	 to	 the	 USSR.	 This	 turned	 out	 to	 be	 a	 great	 deal,	 both
because	I	liked	statistics	more	than	I	thought	I	would	and	because	I	got	to	visit
the	USSR	in	the	spring	of	1988.	Who	knew	that	the	country	wouldn’t	be	around
in	its	communist	form	for	much	longer?
This	 story	 is	 actually	 relevant	 to	 the	 chapter;	 the	 point	 is	 that	 I	 wasn’t	 as

devoted	 to	my	 statistics	 course	 during	 the	 term	 as	 I	might	 have	 been.	Among
other	 responsibilities,	 I	 was	 also	 writing	 a	 senior	 honors	 thesis	 that	 was	 due
about	halfway	through	the	term.	We	had	regular	quizzes	in	the	statistics	course,
many	 of	 which	 I	 ignored	 or	 failed.	 I	 studied	 a	 little	 for	 the	midterm	 and	 did
passably	well—literally.	But	a	few	weeks	before	the	end	of	the	term,	two	things
happened.	 First,	 I	 finished	my	 thesis,	 giving	me	 copious	 amounts	 of	 new	 free
time.	And	second,	I	realized	that	statistics	wasn’t	nearly	as	difficult	as	I	had	been
making	 it	 out	 to	be.	 I	 began	 studying	 the	 stats	book	and	doing	 the	work	 from
earlier	in	the	course.	I	earned	an	A	on	the	final	exam.
That’s	when	my	 statistics	 professor,	 whose	 name	 I’ve	 long	 since	 forgotten,

called	 me	 into	 his	 office.	 I	 don’t	 remember	 exactly	 what	 he	 said,	 but	 it	 was
something	along	the	lines	of	“You	really	did	much	better	on	the	final	 than	you
did	 on	 the	midterm.”	 This	 was	 not	 a	 congratulatory	 visit	 during	 which	 I	 was
recognized	 for	 finally	 doing	 serious	 work	 in	 the	 class.	 There	 was	 an	 implicit
accusation	(though	not	an	explicit	one)	in	his	summons;	the	expectation	was	that
I	would	explain	why	I	did	so	much	better	on	the	final	exam	than	the	midterm.	In
short,	 this	 guy	 suspected	 that	 I	 might	 have	 cheated.	 Now	 that	 I’ve	 taught	 for



many	years,	I’m	more	sympathetic	to	his	line	of	thinking.	In	nearly	every	course
I’ve	 taught,	 there	 is	 a	 striking	 degree	 of	 correlation	 between	 a	 student’s
performance	on	the	midterm	and	on	the	final.	It	is	highly	unusual	for	a	student	to
score	below	average	on	 the	midterm	and	 then	near	 the	 top	of	 the	 class	 on	 the
final.
I	explained	that	I	had	finished	my	thesis	and	gotten	serious	about	the	class	(by

doing	 things	 like	 reading	 the	 assigned	 textbook	 chapters	 and	 doing	 the
homework).	He	seemed	content	with	this	explanation,	and	I	left,	still	somewhat
unsettled	by	the	implicit	accusation.
Believe	 it	 or	 not,	 this	 anecdote	 embodies	much	 of	what	 you	 need	 to	 know

about	 statistical	 inference,	 including	 both	 its	 strengths	 and	 its	 potential
weaknesses.	Statistics	cannot	prove	anything	with	certainty.	 Instead,	 the	power
of	statistical	inference	derives	from	observing	some	pattern	or	outcome	and	then
using	 probability	 to	 determine	 the	 most	 likely	 explanation	 for	 that	 outcome.
Suppose	 a	 strange	 gambler	 arrives	 in	 town	 and	 offers	 you	 a	 wager:	 He	 wins
$1,000	if	he	rolls	a	six	with	a	single	die;	you	win	$500	if	he	rolls	anything	else—
a	pretty	good	bet	 from	your	standpoint.	He	 then	proceeds	 to	 roll	 ten	sixes	 in	a
row,	taking	$10,000	from	you.
One	possible	explanation	 is	 that	he	was	 lucky.	An	alternative	explanation	 is

that	he	cheated	somehow.	The	probability	of	rolling	ten	sixes	in	a	row	with	a	fair
die	is	roughly	1	in	60	million.	You	can’t	prove	that	he	cheated,	but	you	ought	at
least	to	inspect	the	die.
Of	 course,	 the	 most	 likely	 explanation	 is	 not	 always	 the	 right	 explanation.

Extremely	rare	things	happen.	Linda	Cooper	is	a	South	Carolina	woman	who	has
been	 struck	 by	 lightning	 four	 times.1	 (The	 Federal	 Emergency	 Management
Administration	estimates	the	probability	of	getting	hit	by	lightning	just	once	as	1
in	 600,000.)	 Linda	 Cooper’s	 insurance	 company	 cannot	 deny	 her	 coverage
simply	 because	 her	 injuries	 are	 statistically	 improbable.	 To	 return	 to	 my
undergraduate	 statistics	 exam,	 the	 professor	 had	 reasonable	 cause	 to	 be
suspicious.	 He	 saw	 a	 pattern	 that	 was	 highly	 unlikely;	 this	 is	 exactly	 how
investigators	 spot	 cheating	 on	 standardized	 exams	 and	 how	 the	 SEC	 catches
insider	 trading.	 But	 an	 unlikely	 pattern	 is	 just	 an	 unlikely	 pattern	 unless	 it	 is
corroborated	by	additional	evidence.	Later	in	the	chapter	we	will	discuss	errors
that	can	arise	when	probability	steers	us	wrong.
For	now,	we	 should	 appreciate	 that	 statistical	 inference	uses	data	 to	 address

important	 questions.	 Is	 a	 new	drug	 effective	 in	 treating	 heart	 disease?	Do	 cell
phones	cause	brain	cancer?	Please	note	that	I’m	not	claiming	that	statistics	can



answer	these	kinds	of	questions	unequivocally;	instead,	inference	tells	us	what	is
likely,	 and	 what	 is	 unlikely.	 Researchers	 cannot	 prove	 that	 a	 new	 drug	 is
effective	 in	 treating	 heart	 disease,	 even	when	 they	 have	 data	 from	 a	 carefully
controlled	clinical	trial.	After	all,	it	is	entirely	possible	that	there	will	be	random
variation	in	the	outcomes	of	patients	in	the	treatment	and	control	groups	that	are
unrelated	to	the	new	drug.	If	53	out	of	100	patients	taking	the	new	heart	disease
medication	showed	marked	improvement	compared	with	49	patients	out	of	100
receiving	 a	 placebo,	 we	 would	 not	 immediately	 conclude	 that	 the	 new
medication	 is	 effective.	 This	 is	 an	 outcome	 that	 can	 easily	 be	 explained	 by
chance	variation	between	the	two	groups	rather	than	by	the	new	drug.
But	suppose	instead	that	91	out	of	100	patients	receiving	the	new	drug	show

marked	improvement,	compared	with	49	out	of	100	patients	in	the	control	group.
It	 is	 still	 possible	 that	 this	 impressive	 result	 is	 unrelated	 to	 the	 new	 drug;	 the
patients	in	the	treatment	group	may	be	particularly	lucky	or	resilient.	But	that	is
now	 a	 much	 less	 likely	 explanation.	 In	 the	 formal	 language	 of	 statistical
inference,	 researchers	 would	 likely	 conclude	 the	 following:	 (1)	 If	 the
experimental	drug	has	no	effect,	we	would	rarely	see	this	amount	of	variation	in
outcomes	between	those	who	are	receiving	the	drug	and	those	who	are	taking	the
placebo.	(2)	It	is	therefore	highly	improbable	that	the	drug	has	no	positive	effect.
(3)	 The	 alternative—and	 more	 likely—explanation	 for	 the	 pattern	 of	 data
observed	is	that	the	experimental	drug	has	a	positive	effect.
Statistical	inference	is	the	process	by	which	the	data	speak	to	us,	enabling	us

to	draw	meaningful	conclusions.	This	is	the	payoff!	The	point	of	statistics	is	not
to	do	myriad	rigorous	mathematical	calculations;	the	point	is	to	gain	insight	into
meaningful	social	phenomena.	Statistical	inference	is	really	just	the	marriage	of
two	 concepts	 that	 we’ve	 already	 discussed:	 data	 and	 probability	 (with	 a	 little
help	 from	 the	 central	 limit	 theorem).	 I	 have	 taken	 one	 major	 methodological
shortcut	 in	 this	 chapter.	All	 of	 the	 examples	will	 assume	 that	we	 are	working
with	large,	properly	drawn	samples.	This	assumption	means	that	the	central	limit
theorem	applies,	and	that	the	mean	and	standard	deviation	for	any	sample	will	be
roughly	 the	 same	 as	 the	mean	 and	 standard	 deviation	 for	 the	 population	 from
which	it	is	drawn.	Both	of	these	things	make	our	calculations	easier.
Statistical	inference	is	not	dependent	on	this	simplifying	assumption,	but	the

assorted	methodological	 fixes	for	dealing	with	small	samples	or	 imperfect	data
often	 get	 in	 the	way	 of	 understanding	 the	 big	 picture.	 The	 purpose	 here	 is	 to
introduce	 the	power	of	 statistical	 inference	and	 to	 explain	how	 it	works.	Once
you	get	that,	it’s	easy	enough	to	layer	on	complexity.



One	 of	 the	 most	 common	 tools	 in	 statistical	 inference	 is	 hypothesis	 testing.
Actually,	 I’ve	 already	 introduced	 this	 concept—just	 without	 the	 fancy
terminology.	As	noted	above,	statistics	alone	cannot	prove	anything;	instead,	we
use	 statistical	 inference	 to	 accept	 or	 reject	 explanations	 on	 the	 basis	 of	 their
relative	 likelihood.	To	be	more	precise,	any	statistical	 inference	begins	with	an
implicit	or	explicit	null	hypothesis.	This	 is	our	starting	assumption,	which	will
be	rejected	or	not	on	the	basis	of	subsequent	statistical	analysis.	If	we	reject	the
null	 hypothesis,	 then	 we	 typically	 accept	 some	 alternative	 hypothesis	 that	 is
more	 consistent	 with	 the	 data	 observed.	 For	 example,	 in	 a	 court	 of	 law	 the
starting	assumption,	or	null	hypothesis,	is	that	the	defendant	is	innocent.	The	job
of	the	prosecution	is	to	persuade	the	judge	or	jury	to	reject	that	assumption	and
accept	 the	 alternative	 hypothesis,	 which	 is	 that	 the	 defendant	 is	 guilty.	 As	 a
matter	of	logic,	the	alternative	hypothesis	is	a	conclusion	that	must	be	true	if	we
can	reject	the	null	hypothesis.	Consider	some	examples.
Null	 hypothesis:	 This	 new	 experimental	 drug	 is	 no	 more	 effective	 at

preventing	malaria	than	a	placebo.
Alternative	 hypothesis:	 This	 new	 experimental	 drug	 can	 help	 to	 prevent

malaria.
The	 data:	 One	 group	 is	 randomly	 chosen	 to	 receive	 the	 new	 experimental

drug,	and	a	control	group	receives	a	placebo.	At	the	end	of	some	period	of	time,
the	group	receiving	the	experimental	drug	has	far	fewer	cases	of	malaria	than	the
control	group.	This	would	be	an	extremely	unlikely	outcome	if	the	experimental
drug	had	no	medical	 impact.	As	a	result,	we	reject	 the	null	hypothesis	 that	 the
new	drug	has	no	 impact	 (beyond	 that	of	 a	placebo),	 and	we	accept	 the	 logical
alternative,	which	is	our	alternative	hypothesis:	This	new	experimental	drug	can
help	to	prevent	malaria.
This	methodological	approach	is	strange	enough	that	we	should	do	one	more

example.	 Again,	 note	 that	 the	 null	 hypothesis	 and	 alternative	 hypothesis	 are
logical	 complements.	 If	 one	 is	 true,	 the	 other	 is	 not	 true.	Or,	 if	we	 reject	 one
statement,	we	must	accept	the	other.
Null	hypothesis:	Substance	abuse	treatment	for	prisoners	does	not	reduce	their

rearrest	rate	after	leaving	prison.
Alternative	 hypothesis:	 Substance	 abuse	 treatment	 for	 prisoners	 will	 make

them	less	likely	to	be	rearrested	after	they	are	released.
The	 (hypothetical)	 data:	Prisoners	were	 randomly	 assigned	 into	 two	groups;

the	“treatment”	group	received	substance	abuse	treatment	and	the	control	group
did	not.	(This	is	one	of	those	cool	occasions	when	the	treatment	group	actually



gets	treatment!)	At	the	end	of	five	years,	both	groups	have	similar	rearrest	rates.
In	 this	case,	we	cannot	reject	 the	null	hypothesis.*	 The	 data	 have	 given	 us	 no
reason	to	discard	our	beginning	assumption	that	substance	abuse	treatment	is	not
an	effective	tool	for	keeping	ex-offenders	from	returning	to	prison.
It	may	seem	counterintuitive,	but	researchers	often	create	a	null	hypothesis	in

hopes	 of	 being	 able	 to	 reject	 it.	 In	 both	 of	 the	 examples	 above,	 a	 research
“success”	(finding	a	new	malaria	drug	or	reducing	recidivism)	involved	rejecting
the	 null	 hypothesis.	The	 data	made	 that	 possible	 in	 only	 one	 of	 the	 cases	 (the
malaria	drug).

In	a	courtroom,	 the	 threshold	for	 rejecting	 the	presumption	of	 innocence	 is	 the
qualitative	assessment	that	the	defendant	is	“guilty	beyond	a	reasonable	doubt.”
The	judge	or	jury	is	 left	 to	define	what	exactly	that	means.	Statistics	harnesses
the	 same	 basic	 idea,	 but	 “guilty	 beyond	 a	 reasonable	 doubt”	 is	 defined
quantitatively	 instead.	Researchers	 typically	 ask,	 If	 the	 null	 hypothesis	 is	 true,
how	likely	is	it	that	we	would	observe	this	pattern	of	data	by	chance?	To	use	a
familiar	example,	medical	 researchers	might	ask,	 If	 this	experimental	drug	has
no	effect	on	heart	disease	 (our	null	hypothesis),	how	 likely	 is	 it	 that	91	out	of
100	patients	getting	the	drug	would	show	improvement	compared	with	only	49
out	of	100	patients	getting	a	placebo?	If	the	data	suggest	that	the	null	hypothesis
is	extremely	unlikely—as	 in	 this	medical	example—then	we	must	 reject	 it	and
accept	 the	 alternative	 hypothesis	 (that	 the	 drug	 is	 effective	 in	 treating	 heart
disease).
In	that	vein,	let	us	revisit	the	Atlanta	standardized	cheating	scandal	alluded	to

at	 several	 points	 in	 the	 book.	 The	Atlanta	 test	 score	 results	were	 first	 flagged
because	 of	 a	 high	 number	 of	 “wrong-to-right”	 erasures.	 Obviously	 students
taking	 standardized	 exams	 erase	 answers	 all	 the	 time.	 And	 some	 groups	 of
students	 may	 be	 particularly	 lucky	 in	 their	 changes,	 without	 any	 cheating
necessarily	 being	 involved.	 For	 that	 reason,	 the	 null	 hypothesis	 is	 that	 the
standardized	test	scores	for	any	particular	school	district	are	legitimate	and	that
any	irregular	patterns	of	erasures	are	merely	a	product	of	chance.	We	certainly
do	not	want	to	be	punishing	students	or	administrators	because	an	unusually	high
proportion	of	students	happened	to	make	sensible	changes	to	their	answer	sheets
in	the	final	minutes	of	an	important	state	exam.
But	 “unusually	 high”	 does	 not	 begin	 to	 describe	 what	 was	 happening	 in

Atlanta.	Some	classrooms	had	answer	sheets	on	which	the	number	of	wrong-to-
right	erasures	were	twenty	to	fifty	standard	deviations	above	the	state	norm.	(To



put	 this	 in	 perspective,	 remember	 that	 most	 observations	 in	 a	 distribution
typically	fall	within	two	standard	deviations	of	the	mean.)	So	how	likely	was	it
that	Atlanta	students	happened	to	erase	massive	numbers	of	wrong	answers	and
replace	them	with	correct	answers	just	as	a	matter	of	chance?	The	official	who
analyzed	 the	 data	 described	 the	 probability	 of	 the	 Atlanta	 pattern	 occurring
without	cheating	as	roughly	equal	to	the	chance	of	having	70,000	people	show
up	for	a	football	game	at	the	Georgia	Dome	who	all	happen	to	be	over	seven	feet
tall.2	Could	it	happen?	Yes.	Is	it	likely?	Not	so	much.
Georgia	officials	 still	 could	not	 convict	 anybody	of	wrongdoing,	 just	 as	my

professor	could	not	(and	should	not)	have	had	me	thrown	out	of	school	because
my	 final	 exam	 grade	 in	 statistics	 was	 out	 of	 sync	 with	 my	 midterm	 grade.
Atlanta	 officials	 could	 not	 prove	 that	 cheating	 was	 going	 on.	 They	 could,
however,	 reject	 the	 null	 hypothesis	 that	 the	 results	 were	 legitimate.	 And	 they
could	 do	 so	 with	 a	 “high	 degree	 of	 confidence,”	 meaning	 that	 the	 observed
pattern	 was	 nearly	 impossible	 among	 normal	 test	 takers.	 They	 therefore
explicitly	accepted	the	alternative	hypothesis,	which	is	that	something	fishy	was
going	 on.	 (I	 suspect	 they	 used	 more	 official-sounding	 language.)	 Subsequent
investigation	did	 in	 fact	 uncover	 the	 “smoking	 erasers.”	There	were	 reports	 of
teachers	changing	answers,	giving	out	answers,	allowing	low-scoring	children	to
copy	 from	high-scoring	 children,	 and	 even	pointing	 to	 answers	while	 standing
over	students’	desks.	The	most	egregious	cheating	involved	a	group	of	teachers
who	held	 a	weekend	pizza	party	during	which	 they	went	 through	exam	sheets
and	changed	students’	answers.
In	the	Atlanta	example,	we	could	reject	 the	null	hypothesis	of	“no	cheating”

because	 the	 pattern	 of	 test	 results	was	 so	wildly	 improbable	 in	 the	 absence	 of
foul	play.	But	how	implausible	does	the	null	hypothesis	have	to	be	before	we	can
reject	it	and	invite	some	alternative	explanation?
One	of	 the	most	common	thresholds	 that	 researchers	use	for	rejecting	a	null

hypothesis	 is	 5	 percent,	 which	 is	 often	 written	 in	 decimal	 form:	 .05.	 This
probability	 is	known	as	a	 significance	 level,	 and	 it	 represents	 the	upper	bound
for	the	likelihood	of	observing	some	pattern	of	data	if	the	null	hypothesis	were
true.	Stick	with	me	for	a	moment,	because	it’s	not	really	that	complicated.
Let’s	think	about	a	significance	level	of	.05.	We	can	reject	a	null	hypothesis	at

the	.05	level	if	there	is	less	than	a	5	percent	chance	of	getting	an	outcome	at	least
as	 extreme	as	what	we’ve	observed	 if	 the	null	 hypothesis	were	 true.	A	 simple
example	can	make	this	much	clearer.	I	hate	to	do	this	 to	you,	but	assume	once
again	that	you’ve	been	put	on	missing-bus	duty	(in	part	because	of	your	valiant



efforts	 in	 the	 last	 chapter).	 Only	 now	 you	 are	 working	 full-time	 for	 the
researchers	at	the	Changing	Lives	study,	and	they	have	given	you	some	excellent
data	to	help	inform	your	work.	Each	bus	operated	by	the	organizers	of	the	study
has	 roughly	 60	 passengers,	 so	 we	 can	 treat	 the	 passengers	 on	 any	 bus	 as	 a
random	 sample	 drawn	 from	 the	 entire	 Changing	 Lives	 population.	 You	 are
awakened	early	one	morning	by	the	news	that	a	bus	in	the	Boston	area	has	been
hijacked	by	a	pro-obesity	terrorist	group.*	Your	job	is	to	drop	from	a	helicopter
onto	 the	roof	of	 the	moving	bus,	sneak	 inside	 through	the	emergency	exit,	and
then	 stealthily	 determine	 whether	 the	 passengers	 are	 Changing	 Lives
participants,	 solely	 on	 the	 basis	 of	 their	 weights.	 (Seriously,	 this	 is	 no	 more
implausible	than	most	action-adventure	plots,	and	it’s	a	lot	more	educational.)
As	the	helicopter	takes	off	from	the	commando	base,	you	are	given	a	machine

gun,	 several	 grenades,	 a	 watch	 that	 also	 functions	 as	 a	 high-resolution	 video
camera,	and	 the	data	 that	we	calculated	 in	 the	 last	chapter	on	 the	mean	weight
and	standard	error	for	samples	drawn	from	the	Changing	Lives	participants.	Any
random	 sample	 of	 60	 participants	 will	 have	 an	 expected	mean	weight	 of	 162
pounds	and	standard	deviation	of	36	pounds,	since	that	is	the	mean	and	standard
deviation	for	all	participants	 in	 the	study	(the	population).	With	 those	data,	we
can	calculate	the	standard	error	for	the	sample	mean:	 	At
mission	 control,	 the	 following	 distribution	 is	 scanned	 onto	 the	 inside	 of	 your
right	 retina,	 so	 that	 you	 can	 refer	 to	 it	 after	 penetrating	 the	 moving	 bus	 and
secretly	weighing	all	the	passengers	inside.

Distribution	of	Sample	Means

As	the	distribution	above	shows,	we	would	expect	 roughly	95	percent	of	all



60-person	samples	drawn	from	the	Changing	Lives	participants	to	have	a	mean
weight	within	 two	standard	errors	of	 the	population	mean,	or	 roughly	between
153	 pounds	 and	 171	 pounds.*	 Conversely,	 only	 5	 times	 out	 of	 100	 would	 a
sample	 of	 60	 persons	 randomly	 drawn	 from	 the	 Changing	 Lives	 participants
have	 a	mean	weight	 that	 is	 greater	 than	 171	 pounds	 or	 less	 than	 153	 pounds.
(You	 are	 conducting	 what	 is	 known	 as	 a	 “two-tailed”	 hypothesis	 test;	 the
difference	between	this	and	a	“one-tailed”	test	will	be	covered	in	an	appendix	at
the	 end	of	 the	 chapter.)	Your	handlers	 on	 the	 counterterrorism	 task	 force	have
decided	that	.05	is	the	significance	level	for	your	mission.	If	the	mean	weight	of
the	60	passengers	on	the	hijacked	bus	is	above	171	or	below	153,	then	you	will
reject	 the	 null	 hypothesis	 that	 the	 bus	 contains	 Changing	 Lives	 participants,
accept	 the	 alternative	 hypothesis	 that	 the	 bus	 contains	 60	 people	 headed
somewhere	else,	and	await	further	orders.
You	 successfully	 drop	 into	 the	 moving	 bus	 and	 secretly	 weigh	 all	 the

passengers.	 The	mean	weight	 for	 this	 60-person	 sample	 is	 136	 pounds,	which
falls	more	than	two	standard	errors	below	the	mean.	(Another	important	clue	is
that	 all	 of	 the	 passengers	 are	 children	 wearing	 “Glendale	 Hockey	 Camp”	 T-
shirts.)
Per	your	mission	instructions,	you	can	reject	the	null	hypothesis	that	this	bus

contains	 a	 random	 sample	 of	 60	 Changing	 Lives	 study	 participants	 at	 the	 .05
significance	level.	This	means	(1)	the	mean	weight	on	the	bus	falls	into	a	range
that	we	would	expect	to	observe	only	5	times	in	100	if	the	null	hypothesis	were
true	and	 this	were	 really	a	bus	 full	of	Changing	Lives	passengers;	 (2)	you	can
reject	 the	 null	 hypothesis	 at	 the	 .05	 significance	 level;	 and	 (3)	 on	 average,	 95
times	out	of	100	you	will	have	correctly	rejected	the	null	hypothesis,	and	5	times
out	of	100	you	will	be	wrong,	meaning	that	you	have	concluded	that	this	is	not	a
bus	of	Changing	Lives	participants,	when	in	fact	it	is.	This	sample	of	Changing
Lives	folks	just	happens	to	have	a	mean	weight	that	is	particularly	high	or	low
relative	to	the	mean	for	the	study	participants	overall.
The	 mission	 is	 not	 quite	 over.	 Your	 handler	 at	 mission	 control	 (played	 by

Angelina	 Jolie	 in	 the	 film	 version	 of	 this	 example)	 asks	 you	 to	 calculate	 a	 p-
value	for	your	result.	The	p-value	is	the	specific	probability	of	getting	a	result	at
least	as	extreme	as	 the	one	you’ve	observed	 if	 the	null	hypothesis	 is	 true.	The
mean	weight	for	the	passengers	on	this	bus	is	136,	which	is	5.7	standard	errors
below	 the	mean	 for	 the	Changing	Lives	 study	 participants.	 The	 probability	 of
getting	 a	 result	 at	 least	 that	 extreme	 if	 this	 really	were	 a	 sample	 of	Changing
Lives	 participants	 is	 less	 than	 .0001.	 (In	 a	 research	 document,	 this	 would	 be



reported	 as	 p<.0001.)	With	 your	mission	 complete,	 you	 leap	 from	 the	moving
bus	and	land	safely	in	the	passenger	seat	of	a	convertible	driving	in	an	adjacent
lane.
[This	story	has	a	happy	ending	as	well.	Once	the	pro–obesity	terrorists	learn

more	about	your	city’s	International	Festival	of	Sausage,	they	agree	to	abandon
violence	and	work	peacefully	 to	promote	obesity	by	expanding	and	promoting
sausage	festivals	around	the	world.]

If	the	.05	significance	level	seems	somewhat	arbitrary,	that’s	because	it	is.	There
is	no	single	standardized	statistical	threshold	for	rejecting	a	null	hypothesis.	Both
.01	and	.1	are	also	reasonably	common	thresholds	for	doing	the	kind	of	analysis
described	above.
Obviously	rejecting	the	null	hypothesis	at	the	.01	level	(meaning	that	there	is

less	 than	 a	 1	 in	 100	 chance	 of	 observing	 a	 result	 in	 this	 range	 if	 the	 null
hypothesis	 were	 true)	 carries	 more	 statistical	 heft	 than	 rejecting	 the	 null
hypothesis	 at	 the	 .1	 level	 (meaning	 that	 there	 is	 less	 than	 a	 1	 in	 10	 chance	 of
observing	 this	 result	 if	 the	 null	 hypothesis	 were	 true).	 The	 pros	 and	 cons	 of
different	significance	 levels	will	be	discussed	 later	 in	 the	chapter.	For	now,	 the
important	point	is	that	when	we	can	reject	a	null	hypothesis	at	some	reasonable
significance	level,	the	results	are	said	to	be	“statistically	significant.”
Here	 is	what	 that	means	 in	 real	 life.	When	 you	 read	 in	 the	 newspaper	 that

people	who	eat	twenty	bran	muffins	a	day	have	lower	rates	of	colon	cancer	than
people	 who	 don’t	 eat	 prodigious	 amounts	 of	 bran,	 the	 underlying	 academic
research	 probably	 looked	 something	 like	 this:	 (1)	 In	 some	 large	 data	 set,
researchers	determined	 that	 individuals	who	ate	 at	 least	 twenty	bran	muffins	 a
day	had	a	 lower	 incidence	of	colon	cancer	 than	 individuals	who	did	not	 report
eating	 much	 bran.	 (2)	 The	 researchers’	 null	 hypothesis	 was	 that	 eating	 bran
muffins	 has	 no	 impact	 on	 colon	 cancer.	 (3)	 The	 disparity	 in	 colon	 cancer
outcomes	between	those	who	ate	lots	of	bran	muffins	and	those	who	didn’t	could
not	 easily	 be	 explained	 by	 chance	 alone.	 More	 specifically,	 if	 eating	 bran
muffins	has	no	true	association	with	colon	cancer,	the	probability	of	getting	such
a	 wide	 gap	 in	 cancer	 incidence	 between	 bran	 eaters	 and	 non–bran	 eaters	 by
chance	alone	 is	 lower	 than	some	threshold,	such	as	 .05.	 (This	 threshold	should
be	established	by	the	researchers	before	they	do	their	statistical	analysis	to	avoid
choosing	a	threshold	after	the	fact	that	is	convenient	for	making	the	results	look
significant.)	 (4)	 The	 academic	 paper	 probably	 contains	 a	 conclusion	 that	 says
something	 along	 these	 lines:	 “We	 find	 a	 statistically	 significant	 association



between	 daily	 consumption	 of	 twenty	 or	 more	 bran	 muffins	 and	 a	 reduced
incidence	of	colon	cancer.	These	results	are	significant	at	the	.05	level.”
When	 I	 subsequently	 read	 about	 that	 study	 in	 the	Chicago	Sun-Times	 while

eating	my	breakfast	of	bacon	and	eggs,	the	headline	is	probably	more	direct	and
interesting:	“20	Bran	Muffins	a	Day	Help	Keep	Colon	Cancer	Away.”	However,
that	newspaper	headline,	while	much	more	interesting	to	read	than	the	academic
paper,	may	also	be	introducing	a	serious	inaccuracy.	The	study	does	not	actually
claim	 that	 eating	 bran	 muffins	 lowers	 an	 individual’s	 risk	 of	 getting	 colon
cancer;	it	merely	shows	a	negative	correlation	between	the	consumption	of	bran
muffins	and	the	incidence	of	colon	cancer	 in	one	large	data	set.	This	statistical
association	 is	not	 sufficient	 to	prove	 that	 the	bran	muffins	cause	 the	 improved
health	outcome.	After	all,	the	kind	of	people	who	eat	bran	muffins	(particularly
twenty	a	day!)	may	do	lots	of	other	 things	that	 lower	their	cancer	risk,	such	as
eating	less	red	meat,	exercising	regularly,	getting	screened	for	cancer,	and	so	on.
(This	is	 the	“healthy	user	bias”	from	Chapter	7.)	Is	it	 the	bran	muffins	at	work
here,	or	 is	 it	other	behaviors	or	personal	attributes	 that	happen	to	be	shared	by
people	who	eat	a	 lot	of	bran	muffins?	This	distinction	between	correlation	and
causation	 is	 crucial	 to	 the	 proper	 interpretation	 of	 statistical	 results.	 We	 will
revisit	the	idea	that	“correlation	does	not	equal	causation”	later	in	the	book.
I	should	also	point	out	that	statistical	significance	says	nothing	about	the	size

of	 the	 association.	 People	 who	 eat	 lots	 of	 bran	 muffins	 may	 have	 a	 lower
incidence	of	colon	cancer—but	how	much	lower?	The	difference	in	colon	cancer
rates	 for	 bran	 muffin	 eaters	 and	 non–bran	 muffin	 eaters	 may	 be	 trivial;	 the
finding	of	statistical	 significance	means	only	 that	 the	observed	effect,	however
tiny,	 is	 not	 likely	 to	 be	 a	 coincidence.	 Suppose	 you	 stumble	 across	 a	 well-
designed	 study	 that	 has	 found	 a	 statistically	 significant	 positive	 relationship
between	 eating	 a	 banana	 before	 the	 SAT	 and	 achieving	 a	 higher	 score	 on	 the
math	portion	of	the	test.	One	of	the	first	questions	you	want	to	ask	is,	How	big	is
this	effect?	It	could	easily	be	.9	points;	on	a	test	with	a	mean	score	of	500,	that	is
not	a	life-changing	figure.	In	Chapter	11,	we	will	return	to	this	crucial	distinction
between	size	and	significance	when	it	comes	to	interpreting	statistical	results.
Meanwhile,	 a	 finding	 that	 there	 is	 “no	 statistically	 significant	 association”

between	two	variables	means	that	any	relationship	between	the	two	variables	can
reasonably	be	explained	by	chance	alone.	The	New	York	Times	 recently	 ran	an
exposé	 on	 technology	 companies	 peddling	 software	 that	 they	 claim	 improves
student	performance,	when	the	data	suggest	otherwise.3	According	to	the	article,
Carnegie	 Mellon	 University	 sells	 a	 software	 program	 called	 Cognitive	 Tutor



with	 this	 bold	 claim:	 “Revolutionary	Math	 Curricula.	 Revolutionary	 Results.”
Yet	 an	 assessment	 of	 Cognitive	 Tutor	 conducted	 by	 the	 U.S.	 Department	 of
Education	 concluded	 that	 the	 product	 had	 “no	 discernible	 effects”	 on	 the	 test
scores	 of	 high	 school	 students.	 (The	 Times	 suggested	 that	 the	 appropriate
marketing	 campaign	 should	 be	 “Undistinguished	 Math	 Curricula.	 Unproven
Results.”)	In	fact,	a	study	of	ten	software	products	designed	to	teach	skills	such
as	math	or	reading	found	that	nine	of	them	“did	not	have	statistically	significant
effects	on	test	scores.”	In	other	words,	federal	researchers	cannot	rule	out	mere
chance	 as	 the	 cause	 of	 any	 variation	 in	 the	 performance	 of	 students	 who	 use
these	software	products	and	students	who	do	not.

Let	me	pause	here	to	remind	you	why	all	of	this	matters.	An	article	in	the	Wall
Street	Journal	in	May	of	2011	carried	the	headline	“Link	in	Autism,	Brain	Size.”
This	 is	 an	 important	 breakthrough,	 as	 the	 causes	 of	 autism	 spectrum	 disorder
remain	 elusive.	 The	 first	 sentence	 of	 the	 Wall	 Street	 Journal	 story,	 which
summarized	 a	 paper	 published	 in	 the	Archives	 of	General	 Psychiatry,	 reports,
“Children	with	autism	have	larger	brains	than	children	without	the	disorder,	and
the	growth	appears	to	occur	before	age	2,	according	to	a	new	study	released	on
Monday.”4	On	the	basis	of	brain	imaging	conducted	on	59	children	with	autism
and	38	children	without	autism,	researchers	at	the	University	of	North	Carolina
reported	 that	 children	with	 autism	have	brains	 that	 are	up	 to	10	percent	 larger
than	those	of	children	of	the	same	age	without	autism.
Here	 is	 the	 relevant	medical	 question:	 Is	 there	 a	 physiological	 difference	 in

the	 brains	 of	 young	 children	 who	 have	 autism	 spectrum	 disorder?	 If	 so,	 this
insight	might	lead	to	a	better	understanding	of	what	causes	the	disorder	and	how
it	can	be	treated	or	prevented.
And	here	is	 the	relevant	statistical	question:	Can	researchers	make	sweeping

inferences	about	autism	spectrum	disorder	in	general	that	are	based	on	a	study	of
a	 seemingly	 small	 group	 of	 children	 with	 autism	 (59)	 and	 an	 even	 smaller
control	 group	 (38)—a	 mere	 97	 subjects	 in	 all?	 The	 answer	 is	 yes.	 The
researchers	 concluded	 that	 the	 probability	 of	 observing	 the	 differences	 in	 total
brain	size	that	they	found	in	their	two	samples	would	be	a	mere	2	in	1,000	(p	=
.002)	if	there	is	in	fact	no	real	difference	in	brain	size	between	children	with	and
without	autism	spectrum	disorder	in	the	overall	population.
I	tracked	down	the	original	study	in	the	Archives	of	General	Psychiatry.5	The

methods	used	by	these	researchers	are	no	more	sophisticated	than	the	concepts
we’ve	covered	so	far.	 I	will	give	you	a	quick	 tour	of	 the	underpinnings	of	 this



socially	and	statistically	significant	result.	First,	you	should	recognize	that	each
group	of	 children,	 the	59	with	autism	and	 the	38	without	 autism,	constitutes	 a
reasonably	 large	 sample	 drawn	 from	 their	 respective	 populations—all	 children
with	and	without	 autism	spectrum	disorder.	The	 samples	are	 large	enough	 that
the	central	limit	will	apply.	If	you’ve	already	tried	to	block	the	last	chapter	out	of
your	mind,	I	will	remind	you	of	what	the	central	limit	theorem	tells	us:	(1)	the
sample	 means	 for	 any	 population	 will	 be	 distributed	 roughly	 as	 a	 normal
distribution	 around	 the	 true	population	mean;	 (2)	we	would	 expect	 the	 sample
mean	 and	 the	 sample	 standard	 deviation	 to	 be	 roughly	 equal	 to	 the	mean	 and
standard	deviation	for	the	population	from	which	it	is	drawn;	and	(3)	roughly	68
percent	 of	 sample	 means	 will	 lie	 within	 one	 standard	 error	 of	 the	 population
mean,	 roughly	95	percent	will	 lie	within	 two	standard	errors	of	 the	population
mean,	and	so	on.
In	 less	 technical	 language,	 this	 all	means	 that	 any	 sample	 should	 look	 a	 lot

like	the	population	from	which	it	is	drawn;	while	every	sample	will	be	different,
it	would	be	relatively	rare	for	the	mean	of	a	properly	drawn	sample	to	deviate	by
a	huge	amount	from	the	mean	for	the	relevant	underlying	population.	Similarly,
we	would	also	expect	two	samples	drawn	from	the	same	population	to	look	a	lot
like	each	other.	Or,	to	think	about	the	situation	somewhat	differently,	if	we	have
two	samples	that	have	extremely	dissimilar	means,	the	most	likely	explanation	is
that	they	came	from	different	populations.
Here	is	a	quick	intuitive	example.	Suppose	your	null	hypothesis	is	 that	male

professional	basketball	players	have	the	same	mean	height	as	the	rest	of	the	adult
male	 population.	 You	 randomly	 select	 a	 sample	 of	 50	 professional	 basketball
players	 and	 a	 sample	 of	 50	 men	 who	 do	 not	 play	 professional	 basketball.
Suppose	 the	mean	height	of	your	basketball	 sample	 is	6	 feet	7	 inches,	and	 the
mean	 height	 of	 the	 non–basketball	 players	 is	 5	 feet	 10	 inches	 (a	 9-inch
difference).	What	is	the	probability	of	observing	such	a	large	difference	in	mean
height	between	the	two	samples	if	in	fact	there	is	no	difference	in	average	height
between	 professional	 basketball	 players	 and	 all	 other	 men	 in	 the	 overall
population?	The	nontechnical	answer:	very,	very,	very	low.*
The	 autism	 research	 paper	 has	 the	 same	 basic	 methodology.	 The	 paper

compares	several	measures	of	brain	size	between	the	samples	of	children.	(The
brain	measurements	were	done	with	magnetic	resonance	imaging	at	age	two,	and
again	between	ages	four	and	five.)	I’ll	focus	on	just	one	measurement,	the	total
brain	volume.	The	researchers’	null	hypothesis	was	presumably	that	there	are	no
anatomical	 differences	 in	 the	 brains	 of	 children	with	 and	without	 autism.	 The



alternative	 hypothesis	 is	 that	 the	 brains	 of	 children	 with	 autism	 spectrum
disorder	 are	 fundamentally	 different.	 Such	 a	 finding	 would	 still	 leave	 lots	 of
questions,	but	it	would	point	to	a	direction	for	further	inquiry.
In	 this	 study,	 the	 children	with	 autism	 spectrum	 disorder	 had	 a	mean	 brain

volume	 of	 1310.4	 cubic	 centimeters;	 the	 children	 in	 the	 control	 group	 had	 a
mean	brain	volume	of	1238.8	cubic	centimeters.	Thus,	the	difference	in	average
brain	 volume	 between	 the	 two	 groups	 is	 71.6	 cubic	 centimeters.	 How	 likely
would	this	result	be	if	in	fact	there	were	no	difference	in	average	brain	size	in	the
general	 population	 between	 children	 who	 have	 autism	 spectrum	 disorder	 and
children	who	do	not?
You	may	 recall	 from	 the	 last	chapter	 that	we	can	create	a	 standard	error	 for

each	of	our	samples:	 	where	s	is	the	standard	deviation	of	the	sample	and	n
is	 the	 number	 of	 observations.	 The	 research	 paper	 gives	 us	 these	 figures.	 The
standard	 error	 for	 the	 total	 brain	 volume	 of	 the	 59	 children	 in	 the	 autism
spectrum	disorder	sample	is	13	cubic	centimeters;	the	standard	error	for	the	total
brain	volume	of	the	38	children	in	the	control	group	is	18	cubic	centimeters.	You
will	recall	that	the	central	limit	theorem	tells	us	that	for	95	samples	out	of	100,
the	sample	mean	is	going	to	lie	within	two	standard	errors	of	the	true	population
mean,	in	one	direction	or	the	other.
As	a	result,	we	can	infer	from	our	sample	that	95	times	out	of	100	the	interval

of	1310.4	cubic	centimeters	±	26	(which	is	two	standard	errors)	will	contain	the
average	 brain	 volume	 for	 all	 children	 with	 autism	 spectrum	 disorder.	 This
expression	 is	 called	 a	 confidence	 interval.	 We	 can	 say	 with	 95	 percent
confidence	 that	 the	 range	 1284.4	 to	 1336.4	 cubic	 centimeters	 contains	 the
average	 total	 brain	 volume	 for	 children	 in	 the	 general	 population	with	 autism
spectrum	disorder.
Using	the	same	methodology,	we	can	say	with	95	percent	confidence	that	the

interval	of	1238.8	±	36,	or	between	1202.8	and	1274.8	cubic	centimeters,	will
include	the	average	brain	volume	for	children	in	the	general	population	who	do
not	have	autism	spectrum	disorder.
Yes,	 there	 are	 a	 lot	 of	 numbers	 here.	 Perhaps	 you’ve	 just	 hurled	 the	 book

across	 the	room.*	 If	not,	or	 if	you	 then	went	and	retrieved	 the	book,	what	you
should	notice	is	that	our	confidence	intervals	do	not	overlap.	The	lower	bound	of
our	 95	 percent	 confidence	 interval	 for	 the	 average	 brain	 size	 of	 children	with
autism	 in	 the	general	population	 (1284.4	cubic	centimeters)	 is	 still	higher	 than
the	upper	bound	for	the	95	percent	confidence	interval	for	the	average	brain	size
for	young	children	in	the	population	without	autism	(1274.8	cubic	centimeters),



as	the	following	diagram	illustrates.

This	is	the	first	clue	that	there	may	be	an	underlying	anatomical	difference	in
the	brains	of	young	children	with	autism	spectrum	disorder.	Still,	it’s	just	a	clue.
All	of	these	inferences	are	based	on	data	from	fewer	than	100	children.	Maybe
we	just	have	wacky	samples.
One	final	statistical	procedure	can	bring	all	 this	 to	fruition.	 If	statistics	were

an	Olympic	event	like	figure	skating,	this	would	be	the	last	program,	after	which
elated	 fans	 throw	bouquets	of	 flowers	onto	 the	 ice.	We	can	calculate	 the	exact
probability	of	observing	a	difference	of	means	at	 least	 this	 large	 (1310.4	cubic
centimeters	 versus	1238.8	 cubic	 centimeters)	 if	 there	 is	 really	no	difference	 in
brain	 size	between	children	with	autism	spectrum	and	all	 other	 children	 in	 the
general	population.	We	can	find	a	p-value	for	the	observed	difference	in	means.
Lest	you	hurl	 the	book	across	 the	 room	again,	 I	 have	put	 the	 formula	 in	 an

appendix.	The	 intuition	 is	quite	 straightforward.	 If	we	draw	 two	 large	 samples
from	the	same	population,	we	would	expect	them	to	have	very	similar	means.	In
fact,	our	best	guess	is	that	they	will	have	identical	means.	For	example,	if	I	were
to	select	100	players	from	the	NBA	and	they	had	an	average	height	of	6	feet	7
inches,	 then	 I	 would	 expect	 another	 random	 sample	 of	 100	 players	 from	 the
NBA	 to	 have	 a	 mean	 height	 close	 to	 6	 feet	 7	 inches.	 Okay,	 maybe	 the	 two
samples	would	be	an	inch	or	2	apart.	But	it’s	less	likely	that	the	means	of	the	two
samples	 will	 be	 4	 inches	 apart—and	 even	 less	 likely	 that	 there	 will	 be	 a
difference	of	6	or	8	inches.	It	turns	out	that	we	can	calculate	a	standard	error	for
the	difference	between	two	sample	means;	this	standard	error	gives	us	a	measure
of	the	dispersion	we	can	expect,	on	average,	when	we	subtract	one	sample	mean
from	 the	other.	 (As	noted	 earlier,	 the	 formula	 is	 in	 the	 chapter	 appendix.)	The
important	thing	is	that	we	can	use	this	standard	error	to	calculate	the	probability
that	two	samples	come	from	the	same	population.	Here	is	how	it	works:

1.	If	two	samples	are	drawn	from	the	same	population,	our	best	guess	for	the
difference	between	their	means	is	zero.

2.	The	central	limit	theorem	tells	us	that	in	repeated	samples,	the	difference



between	the	two	means	will	be	distributed	roughly	as	a	normal	distribution.
(Okay,	have	you	come	to	love	the	central	limit	theorem	yet	or	not?)

3.	 If	 the	 two	 samples	 really	 have	 come	 from	 the	 same	 population,	 then	 in
roughly	68	cases	out	of	100,	the	difference	between	the	two	sample	means
will	be	within	one	standard	error	of	zero.	And	in	roughly	95	cases	out	of
100,	 the	 difference	 between	 the	 two	 sample	 means	 will	 be	 within	 two
standard	errors	of	zero.	And	in	99.7	cases	out	of	100,	the	difference	will	be
within	three	standard	errors	of	zero—which	turns	out	to	be	what	motivates
the	conclusion	in	the	autism	research	paper	that	we	started	with.

As	noted	earlier,	the	difference	in	the	mean	brain	size	between	the	sample	of
children	 with	 autism	 spectrum	 disorder	 and	 the	 control	 group	 is	 71.6	 cubic
centimeters.	 The	 standard	 error	 on	 that	 difference	 is	 22.7,	 meaning	 that	 the
difference	in	means	between	the	two	samples	is	more	than	three	standard	errors
from	zero;	we	would	expect	an	outcome	this	extreme	(or	more	so)	only	2	times
in	1,000	if	these	samples	are	drawn	from	an	identical	population.
In	 the	 paper	 published	 in	 the	 Archives	 of	 General	 Psychiatry,	 the	 authors

report	a	p-value	of	 .002,	as	 I	mentioned	earlier.	Now	you	know	where	 it	came
from!

For	 all	 the	wonders	 of	 statistical	 inference,	 there	 are	 some	 significant	 pitfalls.
They	 derive	 from	 the	 example	 that	 introduced	 the	 chapter:	 my	 suspicious
statistics	 professor.	 The	 powerful	 process	 of	 statistical	 inference	 is	 based	 on
probability,	not	on	some	kind	of	cosmic	certainty.	We	don’t	want	to	be	sending
people	to	jail	just	for	doing	the	equivalent	of	drawing	two	royal	flushes	in	a	row;
it	 can	 happen,	 even	 if	 someone	 is	 not	 cheating.	 As	 a	 result,	 we	 have	 a
fundamental	dilemma	when	it	comes	to	any	kind	of	hypothesis	testing.
This	statistical	reality	came	to	a	head	in	2011	when	the	Journal	of	Personality

and	 Social	 Psychology	 prepared	 to	 publish	 an	 academic	 paper	 that,	 on	 the
surface,	 seemed	 like	 thousands	of	other	academic	papers.6	A	Cornell	professor
explicitly	proposed	 a	null	 hypothesis,	 conducted	 an	 experiment	 to	 test	 his	 null
hypothesis,	 and	 then	 rejected	 the	null	hypothesis	at	 the	 .05	 significance	on	 the
basis	of	 the	experimental	 results.	The	 result	was	uproar,	 in	 scientific	circles	as
well	as	mainstream	media	outlets	like	the	New	York	Times.
Suffice	 it	 to	 say	 that	 articles	 in	 the	 Journal	 of	 Personality	 and	 Social

Psychology	don’t	usually	attract	big	headlines.	What	exactly	made	this	study	so
controversial?	 The	 researcher	 in	 question	 was	 testing	 humans’	 capacity	 to
exercise	extrasensory	perception,	or	ESP.	The	null	hypothesis	was	that	ESP	does



not	 exist;	 the	 alternative	 hypothesis	 was	 that	 humans	 do	 have	 extrasensory
powers.	 To	 study	 this	 question,	 the	 researcher	 recruited	 a	 large	 sample	 of
participants	to	examine	two	“curtains”	posted	on	a	computer	screen.	A	software
program	 randomly	 put	 an	 erotic	 photo	 behind	 one	 curtain	 or	 the	 other.	 In
repeated	 trials,	 study	 participants	were	 able	 to	 pick	 the	 curtain	with	 the	 erotic
photo	behind	it	53	percent	of	the	time,	whereas	probability	says	they	would	be
right	 only	 50	 percent	 of	 the	 time.	 Because	 of	 the	 large	 sample	 size,	 the
researcher	 was	 able	 to	 reject	 the	 null	 hypothesis	 that	 extrasensory	 perception
does	 not	 exist	 and	 accept	 instead	 the	 alternative	 hypothesis	 that	 extrasensory
perception	can	enable	individuals	to	sense	future	events.	The	decision	to	publish
the	 paper	 was	 widely	 criticized	 on	 the	 grounds	 that	 a	 single	 statistically
significant	event	can	easily	be	a	product	of	chance,	especially	when	there	is	no
other	 evidence	 corroborating	 or	 even	 explaining	 the	 finding.	 The	 New	 York
Times	summarized	the	critiques:	“Claims	that	defy	almost	every	law	of	science
are	 by	 definition	 extraordinary	 and	 thus	 require	 extraordinary	 evidence.
Neglecting	to	take	this	into	account—as	conventional	social	science	analyses	do
—makes	many	findings	look	far	more	significant	than	they	really	are.”
One	 answer	 to	 this	 kind	 of	 nonsense	 would	 appear	 to	 be	 a	 more	 rigorous

threshold	 for	 defining	 statistical	 significance,	 such	 as	 .001.*	 But	 that	 creates
problems	 of	 its	 own.	 Choosing	 an	 appropriate	 significance	 level	 involves	 an
inherent	trade-off.
If	our	burden	of	proof	for	rejecting	the	null	hypothesis	is	too	low	(e.g.,	.1),	we

are	going	to	find	ourselves	periodically	rejecting	the	null	hypothesis	when	in	fact
it	 is	 true	(as	I	suspect	was	the	case	with	the	ESP	study).	In	statistical	parlance,
this	is	known	as	a	Type	I	error.	Consider	the	example	of	an	American	courtroom,
where	the	null	hypothesis	is	that	a	defendant	is	not	guilty	and	the	threshold	for
rejecting	that	null	hypothesis	is	“guilty	beyond	a	reasonable	doubt.”	Suppose	we
were	to	relax	that	 threshold	to	something	like	“a	strong	hunch	that	 the	guy	did
it.”	 This	 is	 going	 to	 ensure	 that	 more	 criminals	 go	 to	 jail—and	 also	 more
innocent	 people.	 In	 a	 statistical	 context,	 this	 is	 the	 equivalent	 of	 having	 a
relatively	low	significance	level,	such	as	.1.
Well,	1	in	10	is	not	exactly	wildly	improbable.	Consider	this	challenge	in	the

context	 of	 approving	 a	 new	cancer	 drug.	For	 every	 ten	drugs	 that	we	 approve
with	this	relatively	low	burden	of	statistical	proof,	one	of	them	does	not	actually
work	 and	 showed	 promising	 results	 in	 the	 trial	 just	 by	 chance.	 (Or,	 in	 the
courtroom	 example,	 for	 every	 ten	 defendants	 that	we	 find	 guilty,	 one	 of	 them
was	 actually	 innocent.)	 A	 Type	 I	 error	 involves	 wrongly	 rejecting	 a	 null



hypothesis.	 Though	 the	 terminology	 is	 somewhat	 counterintuitive,	 this	 is	 also
known	as	a	“false	positive.”	Here	is	one	way	to	reconcile	the	jargon.	When	you
go	to	the	doctor	to	get	tested	for	some	disease,	the	null	hypothesis	is	that	you	do
not	have	that	disease.	If	the	lab	results	can	be	used	to	reject	the	null	hypothesis,
then	you	are	said	to	test	positive.	And	if	you	test	positive	but	are	not	really	sick,
then	it’s	a	false	positive.
In	any	case,	the	lower	our	statistical	burden	for	rejecting	the	null	hypothesis,

the	 more	 likely	 it	 is	 to	 happen.	 Obviously	 we	 would	 prefer	 not	 to	 approve
ineffective	cancer	drugs,	or	send	innocent	defendants	to	prison.
But	 there	 is	 a	 tension	 here.	 The	 higher	 the	 threshold	 for	 rejecting	 the	 null

hypothesis,	the	more	likely	it	is	that	we	will	fail	to	reject	a	null	hypothesis	that
ought	 to	be	 rejected.	 If	we	 require	 five	 eyewitnesses	 in	order	 to	 convict	 every
criminal	defendant,	 then	a	 lot	of	guilty	defendants	are	wrongly	going	 to	be	set
free.	 (Of	 course,	 fewer	 innocents	 will	 go	 to	 prison.)	 If	 we	 adopt	 a	 .001
significance	 level	 in	 the	 clinical	 trials	 for	 all	 new	 cancer	 drugs,	 then	 we	 will
indeed	minimize	 the	approval	of	 ineffective	drugs.	 (There	 is	only	a	1	 in	1,000
chance	of	wrongly	rejecting	the	null	hypothesis	that	the	drug	is	no	more	effective
than	a	placebo.)	Yet	now	we	introduce	the	risk	of	not	approving	many	effective
drugs	because	we	have	set	the	bar	for	approval	so	high.	This	is	known	as	a	Type
II	error,	or	false	negative.
Which	kind	of	error	is	worse?	That	depends	on	the	circumstances.	The	most

important	point	 is	 that	you	recognize	 the	 trade-off.	There	 is	no	statistical	“free
lunch.”	Consider	these	nonstatistical	situations,	all	of	which	involve	a	trade-off
between	Type	I	and	Type	II	errors.

1.	Spam	filters.	The	null	hypothesis	is	that	any	particular	e-mail	message	is
not	 spam.	Your	spam	filter	 looks	for	clues	 that	can	be	used	 to	 reject	 that
null	hypothesis	for	any	particular	e-mail,	such	as	huge	distribution	lists	or
phrases	like	“penis	enlargement.”	A	Type	I	error	would	involve	screening
out	an	e-mail	message	that	is	not	actually	spam	(a	false	positive).	A	Type
II	 error	would	 involve	 letting	 spam	 through	 the	 filter	 into	 your	 inbox	 (a
false	negative).	Given	the	costs	of	missing	an	important	e-mail	relative	to
the	 costs	 of	 getting	 the	 occasional	message	 about	 herbal	 vitamins,	most
people	 would	 probably	 err	 on	 the	 side	 of	 allowing	 Type	 II	 errors.	 An
optimally	designed	 spam	 filter	 should	 require	a	 relatively	high	degree	of
certainty	 before	 rejecting	 the	 null	 hypothesis	 that	 an	 incoming	 e-mail	 is
legitimate	and	blocking	it.



2.	Screening	 for	 cancer.	We	have	numerous	 tests	 for	 the	 early	detection	of
cancer,	 such	 as	 mammograms	 (breast	 cancer),	 the	 PSA	 test	 (prostate
cancer),	 and	even	 full-body	MRI	scans	 for	anything	else	 that	might	 look
suspicious.	 The	 null	 hypothesis	 for	 anyone	 undergoing	 this	 kind	 of
screening	is	that	no	cancer	is	present.	The	screening	is	used	to	reject	this
null	 hypothesis	 if	 the	 results	 are	 suspicious.	 The	 assumption	 has	 always
been	that	a	Type	I	error	(a	false	positive	that	turns	out	to	be	nothing)	is	far
preferable	 to	 a	 Type	 II	 error	 (a	 false	 negative	 that	 misses	 a	 cancer
diagnosis).	 Historically,	 cancer	 screening	 has	 been	 the	 opposite	 of	 the
spam	example.	Doctors	and	patients	are	willing	to	tolerate	a	fair	number	of
Type	I	errors	(false	positives)	in	order	to	avoid	the	possibility	of	a	Type	II
error	 (missing	 a	 cancer	 diagnosis).	 More	 recently,	 health	 policy	 experts
have	begun	 to	 challenge	 this	 view	because	of	 the	high	 costs	 and	 serious
side	effects	associated	with	false	positives.

3.	Capturing	terrorists.	Neither	a	Type	I	nor	a	Type	II	error	is	acceptable	in
this	 situation,	 which	 is	 why	 society	 continues	 to	 debate	 about	 the
appropriate	 balance	 between	 fighting	 terrorism	 and	 protecting	 civil
liberties.	The	null	hypothesis	is	that	an	individual	is	not	a	terrorist.	As	in	a
regular	criminal	context,	we	do	not	want	to	commit	a	Type	I	error	and	send
innocent	people	to	Guantánamo	Bay.	Yet	in	a	world	with	weapons	of	mass
destruction,	letting	even	a	single	terrorist	go	free	(a	Type	II	error)	can	be
literally	catastrophic.	This	is	why—whether	you	approve	of	it	or	not—the
United	 States	 is	 holding	 suspected	 terrorists	 at	 Guantánamo	 Bay	 on	 the
basis	of	less	evidence	than	might	be	required	to	convict	them	in	a	regular
criminal	court.

Statistical	inference	is	not	magic,	nor	is	it	infallible,	but	it	is	an	extraordinary
tool	 for	making	 sense	 of	 the	world.	We	 can	 gain	 great	 insight	 into	many	 life
phenomena	just	by	determining	the	most	likely	explanation.	Most	of	us	do	this
all	the	time	(e.g.,	“I	think	that	college	student	passed	out	on	the	floor	surrounded
by	beer	cans	has	had	too	much	to	drink”	rather	than	“I	think	that	college	student
passed	 out	 on	 the	 floor	 surrounded	 by	 beer	 cans	 has	 been	 poisoned	 by
terrorists”).
Statistical	inference	merely	formalizes	the	process.

APPENDIX	TO	CHAPTER	9
Calculating	the	standard	error	for	a	difference	of	means



Formula	for	comparing	two	means

where	 	=	mean	for	sample	x
	=	mean	for	sample	y
sx	=	standard	deviation	for	sample	x
sy	=	standard	deviation	for	sample	y
nx	=	number	of	observations	in	sample	x
ny	=	number	of	observations	in	sample	y

Our	 null	 hypothesis	 is	 that	 the	 two	 sample	means	 are	 the	 same.	 The	 formula
above	 calculates	 the	 observed	 difference	 in	 means	 relative	 to	 the	 size	 of	 the
standard	error	for	the	difference	in	means.	Again,	we	lean	heavily	on	the	normal
distribution.	 If	 the	 underlying	 population	 means	 are	 truly	 the	 same,	 then	 we
would	expect	the	difference	in	sample	means	to	be	less	than	one	standard	error
about	68	percent	of	 the	time;	less	 than	two	standard	errors	about	95	percent	of
the	time;	and	so	on.
In	 the	autism	example	 from	the	chapter,	 the	difference	 in	 the	mean	between

the	 two	samples	was	71.6	cubic	centimeters	with	a	standard	error	of	22.7.	The
ratio	 of	 that	 observed	 difference	 is	 3.15,	 meaning	 that	 the	 two	 samples	 have
means	 that	 are	more	 than	3	 standard	 errors	 apart.	As	noted	 in	 the	 chapter,	 the
probability	 of	 getting	 samples	 with	 such	 different	 means	 if	 the	 underlying
populations	have	the	same	mean	is	very,	very	low.	Specifically,	the	probability	of
observing	a	difference	of	means	that	is	3.15	standard	errors	or	larger	is	.002.



Difference	in	Sample	Means

One-and	Two-Tailed	Hypothesis	Testing
This	 chapter	 introduced	 the	 idea	 of	 using	 samples	 to	 test	 whether	 male
professional	basketball	players	are	the	same	height	as	 the	general	population.	 I
finessed	one	detail.	Our	null	hypothesis	is	that	male	basketball	players	have	the
same	mean	height	as	men	in	the	general	population.	What	I	glossed	over	is	that
we	have	two	possible	alternative	hypotheses.
One	alternative	hypothesis	is	that	male	professional	basketball	players	have	a

different	mean	height	than	the	overall	male	population;	they	could	be	taller	than
other	 men	 in	 the	 population,	 or	 shorter.	 This	 was	 the	 approach	 that	 you	 took
when	 you	 dropped	 into	 the	 hijacked	 bus	 and	 weighed	 the	 passengers	 to
determine	 whether	 they	 were	 participants	 in	 the	 Changing	 Lives	 study.	 You
could	reject	the	null	hypothesis	that	the	bus	participants	were	part	of	the	study	if
the	passengers’	mean	weight	was	significantly	higher	than	the	overall	mean	for
Changing	Lives	participants	or	if	it	was	significantly	lower	(as	turned	out	to	be
the	case).	Our	second	alternative	hypothesis	is	that	male	professional	basketball
players	are	taller	on	average	than	other	men	in	the	population.	In	this	case,	 the
background	 knowledge	 that	 we	 bring	 to	 this	 question	 tells	 us	 that	 basketball
players	 cannot	possibly	be	 shorter	 than	 the	general	population.	The	distinction
between	these	 two	alternative	hypotheses	will	determine	whether	we	do	a	one-
tailed	hypothesis	test	or	a	two-tailed	hypothesis	test.
In	both	cases,	let’s	assume	that	we	are	going	to	do	a	significance	test	at	the	.05

level.	We	will	 reject	 our	 null	 hypothesis	 if	we	 observe	 a	 difference	 in	 heights
between	the	two	samples	that	would	occur	5	times	in	100	or	less	if	all	these	guys



really	are	the	same	height.	So	far,	so	good.
Here	 is	 where	 things	 get	 a	 little	 more	 nuanced.	 When	 our	 alternative

hypothesis	is	that	basketball	players	are	taller	than	other	men,	we	are	going	to	do
a	 one-tailed	 hypothesis	 test.	 We	 will	 measure	 the	 difference	 in	 mean	 height
between	our	sample	of	male	basketball	players	and	our	sample	of	regular	men.
We	know	 that	 if	 our	null	 hypothesis	 is	 true,	 then	we	will	 observe	 a	difference
that	 is	 1.64	 standard	 errors	 or	 greater	 only	 5	 times	 in	 100.	We	 reject	 our	 null
hypothesis	if	our	result	falls	in	this	range,	as	the	following	diagram	shows.



Difference	in	Sample	Means
(Measured	in	Standard	Errors)

Now	 let’s	 revisit	 the	 other	 alternative	 hypothesis—that	 male	 basketball
players	 could	 be	 taller	 or	 shorter	 than	 the	 general	 population.	 Our	 general
approach	 is	 the	same.	Again,	we	will	 reject	our	null	hypothesis	 that	basketball
players	 are	 the	 same	 height	 as	 the	 general	 population	 if	 we	 get	 a	 result	 that
would	occur	5	times	in	100	or	less	if	there	really	is	no	difference	in	heights.	The
difference,	however,	is	that	we	must	now	entertain	the	possibility	that	basketball
players	are	shorter	than	the	general	population.	We	will	therefore	reject	our	null
hypothesis	 if	 our	 sample	 of	male	 basketball	 players	 has	 a	mean	 height	 that	 is
significantly	 higher	 or	 lower	 than	 the	 mean	 height	 for	 our	 sample	 of	 normal
men.	This	 requires	 a	 two-tailed	hypothesis	 test.	 The	 cutoff	 points	 for	 rejecting
our	 null	 hypothesis	 will	 be	 different	 because	 we	 must	 now	 account	 for	 the
possibility	of	a	 large	difference	in	sample	means	in	both	directions:	positive	or
negative.	More	specifically,	the	range	in	which	we	will	reject	our	null	hypothesis
has	been	split	between	the	two	tails.	We	will	still	reject	our	null	hypothesis	if	we
get	 an	 outcome	 that	 would	 occur	 5	 percent	 of	 the	 time	 or	 less	 if	 basketball
players	 are	 the	 same	 height	 as	 the	 general	 population;	 only	 now	we	 have	 two
different	ways	that	we	can	end	up	rejecting	the	null	hypothesis.
We	will	reject	our	null	hypothesis	if	 the	mean	height	for	the	sample	of	male

basketball	players	is	so	much	larger	than	the	mean	for	 the	normal	men	that	we
would	observe	such	an	outcome	only	2.5	times	in	100	 if	basketball	players	are
really	the	same	height	as	everyone	else.
And	we	will	 reject	our	null	hypothesis	 if	 the	mean	height	 for	 the	 sample	of



male	basketball	 players	 is	 so	much	 smaller	 than	 the	mean	 for	 the	normal	men
that	 we	 would	 observe	 such	 an	 outcome	 only	 2.5	 times	 in	 100	 if	 basketball
players	are	really	the	same	height	as	everyone	else.
Together,	these	two	contingencies	add	up	to	5	percent,	as	the	diagram	below

illustrates.



Difference	in	Sample	Means
(Measured	in	Standard	Errors)

Judgment	 should	 inform	 whether	 a	 one-or	 a	 two-tailed	 hypothesis	 is	 more
appropriate	for	the	analysis	being	conducted.

*	 As	 a	 matter	 of	 semantics,	 we	 have	 not	 proved	 the	 null	 hypothesis	 to	 be	 true	 (that	 substance	 abuse
treatment	has	no	effect).	It	may	turn	out	to	be	extremely	effective	for	another	group	of	prisoners.	Or	perhaps
many	more	of	the	prisoners	in	this	treatment	group	would	have	been	rearrested	if	they	had	not	received	the
treatment.	 In	 any	 case,	 on	 the	 basis	 of	 the	 data	 collected,	 we	 have	 merely	 failed	 to	 reject	 our	 null
hypothesis.	There	 is	 a	 similar	distinction	between	“failing	 to	 reject”	 a	null	hypothesis	 and	accepting	 that
null	hypothesis.	Just	because	one	study	could	not	disprove	that	substance	abuse	treatment	has	no	effect	(yes,
a	double	negative)	does	not	mean	that	one	must	accept	that	substance	abuse	treatment	is	useless.	There	is	a
meaningful	 statistical	 distinction	 here.	That	 said,	 research	 is	 often	 designed	 to	 inform	policy,	 and	 prison
officials,	 who	 have	 to	 decide	 where	 to	 allocate	 resources,	 might	 reasonably	 accept	 the	 position	 that
substance	 treatment	 is	 ineffective	until	 they	 are	persuaded	otherwise.	Here,	 as	 in	 so	many	other	 areas	of
statistics,	judgment	matters.
*	This	example	is	inspired	by	real	events.	Obviously	many	details	have	been	changed	for	national	security
reasons.	I	can	neither	confirm	nor	deny	my	own	involvement.
*	To	be	precise,	95	percent	of	 all	 sample	means	will	 lie	within	1.96	standard	errors	 above	or	below	 the
population	mean.
*	There	are	two	possible	alternative	hypotheses.	One	is	that	male	professional	basketball	players	are	taller
than	 the	 overall	 male	 population.	 The	 other	 is	 merely	 that	 male	 professional	 basketball	 players	 have	 a
different	mean	height	 than	 the	overall	male	population	 (leaving	open	 the	possibility	 that	male	basketball
players	may	actually	be	 shorter	 than	other	men).	This	distinction	has	 a	 small	 impact	when	one	performs
significance	tests	and	calculates	p-values.	It	is	explained	in	more	advanced	texts	and	is	not	important	to	our
general	discussion	here.
*	I	will	admit	that	I	did	once	tear	a	statistics	book	in	half	out	of	frustration.
*	Another	answer	is	to	attempt	to	replicate	the	results	in	additional	studies.



CHAPTER	10

Polling
How	we	know	that	64	percent	of

Americans	support	the	death	penalty
(with	a	sampling	error	±	3	percent)

In	late	2011,	the	New	York	Times	 ran	a	front-page	story	reporting	that	“a	deep
sense	of	anxiety	and	doubt	about	 the	future	hangs	over	 the	nation.”1	The	story
delved	 into	 the	 psyche	 of	 America,	 offering	 insights	 into	 public	 opinion	 on
topics	 ranging	 from	 the	 performance	 of	 the	 Obama	 administration	 to	 the
distribution	of	wealth.	Here	 is	a	snapshot	of	what	Americans	had	 to	say	 in	 the
fall	of	2011:

•	A	shocking	89	percent	of	Americans	said	that	they	distrust	government	to
do	the	right	thing,	the	highest	level	of	distrust	ever	recorded.

•	Two-thirds	of	the	public	said	that	wealth	should	be	more	evenly	distributed
in	the	country.

•	Forty-three	percent	of	Americans	said	 that	 they	generally	agreed	with	 the
views	 of	 the	 Occupy	 Wall	 Street	 movement,	 an	 amorphous	 protest
movement	that	began	near	Wall	Street	in	New	York	and	was	spreading	to
other	cities	around	the	country.*	A	slightly	higher	percentage,	46	percent,
said	 that	 the	 views	 of	 the	 people	 involved	 in	 the	 Occupy	 Wall	 Street
movement	“generally	reflect	the	views	of	most	Americans.”

•	Forty-six	percent	of	Americans	approved	of	Barack	Obama’s	handling	of
his	 job	 as	 president—and	 an	 identical	 46	 percent	 disapproved	 of	 his	 job
performance.

•	A	mere	9	percent	of	the	public	approved	of	the	way	Congress	was	handling
its	job.

•	Even	 though	 the	 presidential	 primaries	would	 begin	 in	 only	 two	months,
roughly	80	percent	of	Republican	primary	voters	said	“it	was	still	too	early



to	tell	whom	they	will	support.”

These	are	fascinating	figures	that	provided	meaningful	insight	into	American
opinions	one	year	in	advance	of	a	presidential	race.	Still,	one	might	reasonably
ask,	How	do	we	know	all	 this?	How	can	we	draw	 such	 sweeping	 conclusions
about	 the	 attitudes	 of	 hundreds	 of	 millions	 of	 adults?	 And	 how	 do	 we	 know
whether	these	sweeping	conclusions	are	accurate?
The	answer,	of	course,	is	that	we	conduct	polls.	Or	in	the	example	above,	the

New	 York	 Times	 and	 CBS	News	 can	 do	 a	 poll.	 (The	 fact	 that	 two	 competing
news	organizations	would	collaborate	on	a	project	like	this	is	the	first	clue	that
conducting	a	methodologically	sound	national	poll	is	not	cheap.)	I	have	no	doubt
that	 you	 are	 familiar	 with	 polling	 results.	 It	 may	 be	 less	 obvious	 that	 the
methodology	of	polling	is	just	one	more	form	of	statistical	inference.	A	poll	(or
survey)	 is	an	 inference	about	 the	opinions	of	some	population	 that	 is	based	on
the	views	expressed	by	some	sample	drawn	from	that	population.
The	power	of	polling	 stems	 from	 the	 same	source	as	our	previous	 sampling

examples:	the	central	limit	theorem.	If	we	take	a	large,	representative	sample	of
American	voters	(or	any	other	group),	we	can	reasonably	assume	that	our	sample
will	 look	 a	 lot	 like	 the	 population	 from	 which	 it	 is	 drawn.	 If	 exactly	 half	 of
American	 adults	 disapprove	 of	 gay	 marriage,	 then	 our	 best	 guess	 about	 the
attitudes	 of	 a	 representative	 sample	 of	 1,000	 Americans	 is	 that	 about	 half	 of
them	will	disapprove	of	gay	marriage.
Conversely—and	more	important	from	the	standpoint	of	polling—if	we	have

a	representative	sample	of	1,000	Americans	who	feel	a	certain	way,	such	as	the
46	percent	who	disapprove	of	President	Obama’s	job	performance,	then	we	can
infer	from	that	sample	that	the	general	population	is	likely	to	feel	the	same	way.
In	 fact,	 we	 can	 calculate	 the	 probability	 that	 our	 sample	 results	 will	 deviate
wildly	from	the	true	attitudes	of	the	population.	When	you	read	that	a	poll	has	a
“margin	of	error”	of	±	3	percent,	this	is	really	just	the	same	kind	of	95	percent
confidence	 interval	 that	 we	 calculated	 in	 the	 last	 chapter.	 Our	 “95	 percent
confidence”	means	 that	 if	we	 conducted	100	different	 polls	 on	 samples	drawn
from	the	same	population,	we	would	expect	the	answers	we	get	from	our	sample
in	95	of	those	polls	to	be	within	3	percentage	points	in	one	direction	or	the	other
of	the	population’s	true	sentiment.	In	the	context	of	the	job	approval	question	in
the	New	 York	 Times/CBS	 poll,	 we	 can	 be	 95	 percent	 confident	 that	 the	 true
proportion	of	all	Americans	who	disapprove	of	President	Obama’s	job	rating	lies
in	the	range	of	46	percent	±	3	percent,	or	between	43	percent	and	49	percent.	If



you	read	the	small	print	on	the	New	York	Times/CBS	poll	(as	I	urge	you	to	do),
that’s	pretty	much	what	it	says:	“In	theory,	in	19	cases	out	of	20,	overall	results
based	on	such	samples	will	differ	by	no	more	than	3	percentage	points	in	either
direction	 from	 what	 would	 have	 been	 obtained	 by	 seeking	 to	 interview	 all
American	adults.”

One	fundamental	difference	between	a	poll	and	other	forms	of	sampling	is	that
the	 sample	 statistic	 we	 care	 about	 will	 be	 not	 a	 mean	 (e.g.,	 187	 pounds)	 but
rather	 a	 percentage	 or	 proportion	 (e.g.,	 47	 percent	 of	 voters,	 or	 .47).	 In	 other
respects,	 the	process	 is	 identical.	When	we	have	a	 large,	 representative	sample
(the	poll),	we	would	expect	the	proportion	of	respondents	who	feel	a	certain	way
in	the	sample	(e.g.,	the	9	percent	who	think	Congress	is	doing	a	good	job)	to	be
roughly	equal	 to	 the	proportion	of	all	Americans	who	feel	 that	way.	This	 is	no
different	 from	assuming	 that	 the	mean	weight	 for	a	sample	of	1,000	American
men	should	be	roughly	equal	to	the	mean	weight	for	all	American	men.	Still,	we
expect	some	variation	in	the	percentage	who	approve	of	Congress	from	sample
to	sample,	 just	as	we	would	expect	some	variation	 in	mean	weight	as	we	 took
different	 random	 samples	 of	 1,000	men.	 If	 the	New	 York	 Times	 and	CBS	 had
conducted	a	second	poll—asking	the	same	questions	 to	a	new	sample	of	1,000
U.S.	adults—it	is	highly	unlikely	that	the	results	of	the	second	poll	would	have
been	identical	to	the	results	of	the	first.	On	the	other	hand,	we	should	not	expect
the	answers	from	our	second	sample	to	diverge	widely	from	the	answers	given
by	the	first.	(To	return	to	a	metaphor	used	earlier,	if	you	taste	a	spoonful	of	soup,
stir	 the	pot,	and	 then	 taste	again,	 the	 two	spoonfuls	are	going	 to	 taste	 similar.)
The	 standard	error	 is	what	 tells	us	how	much	dispersion	we	can	expect	 in	our
results	from	sample	to	sample,	which	in	this	case	means	poll	to	poll.
The	formula	for	calculating	a	standard	error	for	a	percentage	or	proportion	is

slightly	different	from	the	formula	introduced	earlier;	the	intuition	is	exactly	the
same.	 For	 any	 properly	 drawn	 random	 sample,	 the	 standard	 error	 is	 equal	 to	

	where	p	is	 the	proportion	of	respondents	expressing	a	particular	view,
(1	–	p)	is	the	proportion	of	respondents	expressing	a	different	view,	and	n	is	the
total	number	of	respondents	in	the	sample.	You	should	see	that	the	standard	error
will	 fall	 as	 the	 sample	 size	 gets	 larger,	 since	 n	 is	 in	 the	 denominator.	 The
standard	 error	 also	 tends	 to	 be	 smaller	 when	 p	 and	 (1	 –	 p)	 are	 far	 apart.	 For
example,	 the	 standard	 error	 will	 be	 smaller	 for	 a	 poll	 in	 which	 95	 percent	 of
respondents	express	a	certain	view	than	for	a	poll	in	which	opinions	tend	to	split
50-50.	This	 is	 just	math,	since	(.05)(.95)	=	 .047,	while	(.5)(.5)	=	 .25;	a	smaller



number	in	the	numerator	of	the	formula	leads	to	a	smaller	standard	error.
As	an	example,	assume	that	a	simple	“exit	poll”	of	500	representative	voters

on	 election	 day	 finds	 that	 53	 percent	 voted	 for	 the	 Republican	 candidate;	 45
percent	of	voters	voted	for	the	Democrat;	and	2	percent	supported	a	third-party
candidate.	If	we	use	the	Republican	candidate	as	our	proportion	of	interest,	 the
standard	 error	 for	 this	 exit	 poll	 would	 be	

For	simplicity,	we’ll	round	the	standard	error	for	this	exit	poll	to	.02.	So	far,
that’s	 just	a	number.	Let’s	work	through	why	that	number	matters.	Assume	the
polls	 have	 just	 closed,	 and	 you	 work	 for	 a	 television	 network	 that	 is	 keen	 to
declare	a	winner	in	the	race	before	the	full	results	are	available.	You	are	now	the
official	 network	data	 cruncher	 (having	 read	 two-thirds	 of	 this	 book),	 and	your
producer	wants	to	know	whether	it	is	possible	to	“call	the	race”	on	the	basis	of
this	exit	poll.
You	 explain	 that	 the	 answer	 depends	 on	 how	 confident	 the	 network	 people

would	like	to	be	in	the	announcement—or,	more	specifically,	what	risk	they	are
willing	to	take	that	they	will	get	it	wrong.	Remember,	the	standard	error	gives	us
a	sense	of	how	often	we	can	expect	our	sample	proportion	(the	exit	poll)	to	lie
reasonably	 close	 to	 the	 true	 population	 proportion	 (the	 election	 outcome).	We
know	that	roughly	68	percent	of	the	time	we	can	expect	the	sample	proportion—
the	53	percent	of	voters	who	said	they	voted	for	the	Republican	in	this	case—to
be	within	 one	 standard	 error	 of	 the	 true	 final	 tally.	 As	 a	 result,	 you	 tell	 your
producer	 “with	 68	 percent	 confidence”	 that	 your	 sample,	 which	 shows	 the
Republican	 getting	 53	 percent	 of	 the	 vote	 ±	 2	 percent,	 or	 between	 51	 and	 55
percent,	has	captured	the	Republican	candidate’s	true	tally.	Meanwhile,	the	same
exit	 poll	 shows	 that	 the	 Democratic	 candidate	 has	 received	 45	 percent	 of	 the
vote.	If	we	assume	that	the	vote	tally	for	the	Democratic	candidate	has	the	same
standard	error	(a	simplification	that	I’ll	explain	in	a	minute),	we	can	say	with	68
percent	confidence	that	the	exit	poll	sample,	which	shows	the	Democrat	with	45
percent	 of	 the	 vote	 ±	 2	 percent,	 or	 between	 43	 and	 47	 percent,	 contains	 the
Democrat’s	 true	 tally.	 According	 to	 this	 calculation,	 the	 Republican	 is	 the
winner.
The	 graphics	 department	 rushes	 to	 do	 a	 fancy	 three-dimensional	 image	 that

you	can	flash	on	the	screen	for	your	viewers:

Republican	53%
Democrat	45%
Independent	2%



(Margin	of	Error	2%)

At	 first,	 your	 producer	 is	 impressed	 and	 excited,	 in	 large	 part	 because	 the
above	 graphic	 is	 3-D,	 multicolored,	 and	 able	 to	 spin	 around	 on	 the	 screen.
However,	 when	 you	 explain	 that	 roughly	 68	 times	 out	 of	 100	 your	 exit	 poll
results	 will	 be	 within	 one	 standard	 error	 of	 the	 true	 election	 outcome,	 your
producer,	who	has	twice	been	sent	by	the	courts	to	anger	management	programs,
points	 out	 the	 obvious	 math—32	 times	 out	 of	 100	 your	 exit	 poll	will	 not	 be
within	one	standard	error	of	the	true	election	outcome.	Then	what?
You	 explain	 that	 there	 are	 two	 possibilities:	 (1)	 the	 Republican	 candidate

could	have	received	even	more	votes	than	your	poll	predicted,	in	which	case	you
still	 will	 have	 called	 the	 election	 correctly.	 Or	 (2)	 there	 is	 a	 reasonably	 high
probability	that	the	Democratic	candidate	has	received	far	more	votes	than	your
poll	has	reported,	in	which	case	your	fancy	3-D,	multicolored,	spinning	graphic
will	have	reported	the	wrong	winner.
Your	producer	hurls	 a	 coffee	mug	across	 the	 room	and	uses	 several	phrases

that	violate	her	probation.	She	screams,	“How	can	we	be	[deleted]	sure	that	we
have	the	right	[deleted]	result?”
Ever	the	statistics	guru,	you	point	out	that	you	cannot	be	certain	of	any	result

until	 all	 of	 the	 votes	 are	 counted.	 However,	 you	 can	 offer	 a	 95	 percent
confidence	 interval	 instead.	 In	 this	 case,	 your	 spinning,	 3-D,	 multicolored
graphic	will	be	wrong,	on	average,	only	5	times	out	of	100.
Your	producer	lights	a	cigarette	and	seems	to	relax.	You	decide	not	to	mention

the	ban	on	smoking	 in	 the	workplace,	as	 that	 turned	out	disastrously	 last	 time.
However,	you	do	share	some	bad	news.	The	only	way	the	station	can	be	more
confident	of	its	polling	results	is	by	broadening	the	“margin	of	error.”	And	when
you	do	that,	there	is	no	longer	a	clear	winner	in	the	election.	You	show	your	boss
the	new	fancy	graphic:

Republican	53%
Democrat	45%
Independent	2%

(Margin	of	Error	4%)

We	know	 from	 the	 central	 limit	 theorem	 that	 roughly	 95	 percent	 of	 sample
proportions	will	lie	within	two	standard	errors	of	the	true	population	proportion
(which	 is	 4%	 in	 this	 case).	Therefore,	 if	we	want	 to	be	more	 confident	of	our
polling	results,	we	have	 to	be	 less	ambitious	 in	what	we	are	predicting.	As	 the



above	 graphic	 illustrates	 (without	 the	 3-D	 and	 color),	 at	 the	 95	 percent
confidence	 level,	 the	 television	 station	 can	 announce	 that	 the	 Republican
candidate	has	earned	53	percent	of	 the	vote	±	4	percent,	or	between	49	and	57
percent	 of	 the	votes	 cast.	Meanwhile,	 the	Democratic	 candidate	has	 earned	45
percent	±	4	percent,	or	between	41	and	49	percent	of	the	votes	cast.
And,	yes,	now	you	have	a	new	problem.	At	the	95	percent	confidence	level,

you	 cannot	 reject	 the	 possibility	 that	 the	 two	 candidates	may	 be	 tied	 with	 49
percent	of	the	vote	each.	This	is	an	inevitable	trade-off;	the	only	way	to	become
more	 certain	 that	 your	 polling	 results	 will	 be	 consistent	 with	 the	 election
outcome	without	 new	data	 is	 to	 become	more	 timid	 in	 your	 prediction.	 Think
about	a	nonstatistical	context.	Suppose	you	tell	a	friend	that	you	are	“pretty	sure”
that	Thomas	Jefferson	was	 the	 third	or	 fourth	president.	How	can	you	become
more	 confident	 of	 your	 historical	 knowledge?	By	 being	 less	 specific.	You	 are
“absolutely	positive”	that	Thomas	Jefferson	was	one	of	the	first	five	presidents.

Your	producer	tells	you	to	order	a	pizza	and	prepare	to	stay	at	work	all	night.	At
that	point,	statistical	good	fortune	shines	upon	you.	The	results	of	a	second	exit
poll	come	across	your	desk	with	a	 sample	of	2,000	voters.	These	 results	 show
the	following:	Republican	(52	percent);	Democrat	(45	percent);	Independent	(3
percent).	Your	producer	is	now	thoroughly	exasperated,	since	this	poll	suggests
that	the	gap	between	the	candidates	has	narrowed,	making	it	even	harder	for	you
to	call	the	race	in	a	timely	manner.	But	wait!	You	point	out	(heroically)	that	the
sample	 size	 (2,000)	 is	 four	 times	 as	 large	 as	 the	 sample	 in	 the	 first	 poll.	As	 a
result,	the	standard	error	will	shrink	significantly.	The	new	standard	error	for	the
Republican	candidate	is	 	which	is	.01.
If	your	producer	 is	still	comfortable	with	a	95	percent	confidence	 level,	you

can	 declare	 the	Republican	 candidate	 the	winner.	With	 your	 new	 .01	 standard
error,	 the	95	percent	 confidence	 intervals	 for	 the	 candidates	 are	 the	 following:
Republican:	52	±	2,	or	between	50	and	54	percent	of	the	votes	cast;	Democrat:
45	±	2,	or	between	43	and	47	percent	of	the	votes	cast.	There	is	no	longer	any
overlap	 between	 the	 two	 confidence	 intervals.	You	 can	 predict	 on	 air	 that	 the
Republican	candidate	is	the	winner;	more	than	95	times	out	of	100	you	will	be
correct.*
But	 this	case	 is	even	better	 than	 that.	The	central	 limit	 theorem	 tells	us	 that

99.7	percent	of	the	time	a	sample	proportion	will	be	within	three	standard	errors
of	 the	 true	 population	 proportion.	 In	 this	 election	 example,	 our	 99.7	 percent
confidence	intervals	for	the	two	candidates	are	the	following:	Republican,	52	±	3



percent,	or	between	49	and	55	percent;	Democrat,	45	±	3	percent,	or	between	42
and	 48	 percent.	 If	 you	 report	 that	 the	Republican	 candidate	 has	won,	 there	 is
only	a	tiny	chance	that	you	and	your	producer	will	be	fired,	thanks	to	your	new
2,000-voter	sample.
You	 should	 see	 that	 a	 bigger	 sample	 makes	 for	 a	 shrinking	 standard	 error,

which	 is	how	 large	national	polls	can	end	up	with	shockingly	accurate	 results.
On	 the	 other	 hand,	 smaller	 samples	 obviously	make	 for	 larger	 standard	 errors
and	therefore	a	larger	confidence	interval	(or	“margin	of	sampling	error,”	to	use
the	polling	lingo).	The	fine	print	in	the	New	York	Times/CBS	poll	points	out	that
the	 margin	 of	 error	 for	 the	 questions	 about	 the	 Republican	 primary	 is	 5
percentage	points,	compared	with	3	percentage	points	for	other	questions	in	the
poll.	 Only	 self-described	 Republican	 primary	 and	 caucus	 voters	 were	 asked
these	 questions,	 so	 the	 sample	 size	 for	 this	 subgroup	 of	 questions	 fell	 to	 455
(compared	with	1,650	adults	for	the	balance	of	the	poll).

As	 usual,	 I’ve	 simplified	 lots	 of	 things	 in	 this	 chapter.	 You	 might	 have
recognized	that	 in	my	election	example	above,	 the	Republican	and	Democratic
candidates	 should	 each	 have	 their	 own	 standard	 error.	 Think	 again	 about	 the
formula:	 	The	size	of	the	sample,	n,	is	the	same	for	both	candidates,
but	 p	 and	 (1	 –	 p)	 will	 be	 slightly	 different.	 In	 the	 second	 exit	 poll	 (with	 the
2,000-voter	sample),	 the	standard	error	for	 the	Republican	is	
for	the	Democrat,	 	Of	course,	for	all	intents	and	purposes,
those	 two	 numbers	 are	 the	 same.	 For	 that	 reason,	 I	 have	 adopted	 a	 common
convention,	which	is	to	take	the	higher	standard	error	of	the	two	and	use	that	for
all	 of	 the	 candidates.	 If	 anything,	 this	 introduces	 a	 little	 extra	 caution	 into	our
confidence	intervals.
Many	national	polls	that	ask	multiple	questions	will	go	one	step	further.	In	the

case	of	 the	New	York	Times/CBS	poll,	 the	 standard	error	 should	 technically	be
different	 for	 each	 question,	 depending	 on	 the	 response.	 For	 example,	 the
standard	error	 for	 the	 finding	 that	9	percent	of	 the	public	approves	of	 the	way
Congress	 is	 handling	 its	 job	 should	 be	 lower	 than	 the	 standard	 error	 for	 the
question	 finding	 that	 46	 percent	 of	 the	 public	 approves	 of	 the	 way	 President
Obama	has	handled	his	 job,	since	 .09	×	 (.91)	 is	 less	 than	 .46	×	 (.54)—.0819
versus	 .2484.	 (The	 intuition	 behind	 this	 formula	 is	 explained	 in	 a	 chapter
appendix.)
Since	 it	 would	 be	 both	 confusing	 and	 inconvenient	 to	 have	 a	 different

standard	error	 for	each	question,	polls	of	 this	nature	will	 typically	assume	 that



the	 sample	 proportion	 for	 each	 question	 is	 .5	 (or	 50	 percent)—generating	 the
largest	 possible	 standard	 error	 for	 any	given	 sample	 size—and	 then	 adopt	 that
standard	error	to	calculate	the	margin	of	sampling	error	for	the	entire	poll.*
When	 done	 properly,	 polls	 are	 uncanny	 instruments.	 According	 to	 Frank

Newport,	editor	in	chief	of	the	Gallup	Organization,	a	poll	of	1,000	people	can
offer	meaningful	 and	 accurate	 insights	 into	 the	 attitudes	 of	 the	 entire	 country.
Statistically	 speaking,	 he’s	 right.	 But	 to	 get	 those	 meaningful	 and	 accurate
results,	we	have	to	conduct	a	proper	poll	and	then	interpret	the	results	correctly,
both	 of	 which	 are	 much	 easier	 said	 than	 done.	 Bad	 polling	 results	 do	 not
typically	stem	from	bad	math	when	calculating	the	standard	errors.	Bad	polling
results	 typically	 stem	 from	 a	 biased	 sample,	 or	 bad	 questions,	 or	 both.	 The
mantra	“garbage	 in,	garbage	out”	applies	 in	spades	when	 it	comes	 to	sampling
public	 opinion.	Below	 are	 the	 key	methodological	 questions	 one	 ought	 to	 ask
when	conducting	a	poll,	or	when	reviewing	the	work	of	others.

Is	this	an	accurate	sample	of	the	population	whose	opinions	we	are	trying	to
measure?	Many	common	data-related	challenges	were	discussed	 in	Chapter	7.
Nonetheless,	I	will	point	out	once	again	the	danger	of	selection	bias,	particularly
self-selection.	Any	poll	that	depends	on	individuals	who	select	into	the	sample,
such	as	a	radio	call-in	show	or	a	voluntary	Internet	survey,	will	capture	only	the
views	of	those	who	make	the	effort	to	voice	their	opinions.	These	are	likely	to	be
the	people	who	feel	particularly	strongly	about	an	issue,	or	those	who	happen	to
have	 a	 lot	 of	 free	 time	 on	 their	 hands.	Neither	 of	 these	 groups	 is	 likely	 to	 be
representative	of	the	public	at	large.	I	once	appeared	as	a	guest	on	a	call-in	radio
show.	One	 of	 the	 callers	 to	 the	 program	 declared	 emphatically	 on	 air	 that	my
views	were	“so	wrong”	that	he	had	pulled	his	car	off	the	highway	and	found	a
pay	phone	in	order	to	call	the	show	and	register	his	dissent.	I’d	like	to	think	that
the	 listeners	who	 did	 not	 pull	 their	 cars	 off	 the	 highway	 to	 call	 the	 show	 felt
differently.
Any	method	of	gathering	opinion	that	systematically	excludes	some	segment

of	 the	 population	 is	 also	 prone	 to	 bias.	 For	 example,	 mobile	 phones	 have
introduced	 a	 host	 of	 new	 methodological	 complexities.	 Professional	 polling
organizations	go	to	great	lengths	to	poll	a	representative	sample	of	the	relevant
population.	The	New	York	Times/CBS	 poll	was	 based	 on	 telephone	 interviews
conducted	 over	 six	 days	 with	 1,650	 adults,	 1,475	 of	 whom	 said	 they	 were
registered	to	vote.
I	 can	only	guess	at	 the	 rest	of	 the	methodology,	but	most	professional	polls



use	 some	variation	on	 the	 following	 techniques.	To	ensure	 that	 the	adults	who
pick	 up	 the	 phone	 are	 representative	 of	 the	 population,	 the	 process	 starts	with
probability—a	variation	on	picking	marbles	out	of	an	urn.	A	computer	randomly
selects	a	set	of	landline	telephone	exchanges.	(An	exchange	is	an	area	code	plus
the	first	three	digits	of	a	phone	number.)	By	randomly	choosing	from	the	69,000
residential	 exchanges	 in	 the	 country,	 each	 in	 proportion	 to	 its	 share	 of	 all
telephone	 numbers,	 the	 survey	 is	 likely	 to	 get	 a	 generally	 representative
geographic	 distribution	 of	 the	 population.	 As	 the	 small	 print	 explains,	 “The
exchanges	 were	 chosen	 so	 as	 to	 ensure	 that	 each	 region	 of	 the	 country	 was
represented	 in	 proportion	 to	 its	 share	 of	 all	 telephone	 numbers.”	 For	 each
exchange	 selected,	 the	 computer	 added	 four	 random	 digits.	 As	 a	 result,	 both
listed	 and	 unlisted	 numbers	 will	 end	 up	 on	 the	 final	 list	 of	 households	 to	 be
called.	The	survey	also	included	a	“random	dialing	of	cell	phone	numbers.”
For	 each	 number	 dialed,	 one	 adult	 is	 designated	 to	 be	 the	 respondent	 by	 a

“random	procedure,”	 such	as	asking	 for	 the	youngest	adult	who	 is	currently	at
home.	 This	 process	 has	 been	 refined	 to	 produce	 a	 sample	 of	 respondents	 that
resembles	the	adult	population	in	terms	of	age	and	gender.	Most	important,	 the
interviewer	 will	 attempt	 to	 make	 multiple	 calls	 at	 different	 times	 of	 day	 and
evening	in	order	to	reach	each	selected	phone	number.	These	repeated	attempts
—as	many	as	ten	or	twelve	calls	to	the	same	number—are	an	important	part	of
getting	an	unbiased	sample.	Obviously	 it	would	be	cheaper	and	easier	 to	make
random	calls	to	different	numbers	until	a	sufficiently	large	sample	of	adults	have
picked	 up	 the	 phone	 and	 answered	 the	 relevant	 questions.	 However,	 such	 a
sample	would	be	biased	toward	people	who	are	likely	to	be	home	and	to	answer
the	 phone:	 the	 unemployed,	 the	 elderly,	 and	 so	 on.	That’s	 just	 fine	 as	 long	 as
you’re	 willing	 to	 qualify	 your	 poll	 results	 in	 the	 following	 way:	 President
Obama’s	 approval	 rating	 stands	 at	 46	 percent	 among	 the	 unemployed,	 old
people,	and	others	who	are	eager	to	answer	random	phone	calls.
One	 indicator	 of	 a	 poll’s	 validity	 is	 the	 response	 rate:	 What	 proportion	 of

respondents	who	were	chosen	 to	be	contacted	ultimately	completed	 the	poll	or
survey?	A	low	response	rate	can	be	a	warning	sign	for	potential	sampling	bias.
The	more	people	there	are	who	opt	not	to	answer	the	poll,	or	who	just	can’t	be
reached,	 the	 greater	 the	 possibility	 that	 this	 large	 group	 is	 different	 in	 some
material	 way	 from	 those	 who	 did	 answer	 the	 questions.	 Pollsters	 can	 test	 for
“nonresponse	bias”	by	analyzing	available	data	on	 the	 respondents	whom	 they
were	not	able	to	contact.	Do	they	live	in	a	particular	area?	Are	they	refusing	to
answer	 for	 a	 particular	 reason?	 Are	 they	 more	 likely	 to	 be	 from	 a	 particular



racial,	ethnic,	or	income	group?	This	kind	of	analysis	can	determine	whether	or
not	a	low	response	rate	will	affect	the	results	of	the	poll.

Have	 the	questions	been	posed	 in	a	way	 that	 elicits	accurate	 information	on
the	 topic	 of	 interest?	 Soliciting	 public	 opinion	 requires	 more	 nuance	 than
measuring	 test	 scores	 or	 putting	 respondents	 on	 a	 scale	 to	 determine	 their
weight.	Survey	results	can	be	extremely	sensitive	to	the	way	a	question	is	asked.
Let’s	 take	a	seemingly	simple	example:	What	proportion	of	Americans	support
capital	punishment?	As	the	chapter	title	suggests,	a	solid	and	consistent	majority
of	Americans	approve	of	the	death	penalty.	According	to	Gallup,	 in	every	year
since	2002	over	60	percent	of	Americans	have	said	they	favor	the	death	penalty
for	 a	 person	 convicted	 of	 murder.	 The	 percentage	 of	 Americans	 supporting
capital	punishment	has	fluctuated	in	a	relatively	narrow	range	from	a	high	of	70
percent	 in	2003	 to	 a	 low	of	64	percent	 at	 several	 different	 points.	The	polling
data	are	clear:	Americans	support	the	death	penalty	by	a	wide	margin.
Or	 not.	 American	 support	 for	 the	 death	 penalty	 plummets	 when	 life

imprisonment	 without	 parole	 is	 offered	 as	 an	 alternative.	 A	 2006	Gallup	 poll
found	 that	 only	 47	 percent	 of	 Americans	 judged	 the	 death	 penalty	 as	 the
appropriate	 penalty	 for	 murder,	 as	 opposed	 to	 48	 percent	 who	 preferred	 life
imprisonment.2	That’s	 not	 just	 a	 statistical	 factoid	 to	 amuse	 guests	 at	 a	 dinner
party;	 it	means	 that	 there	 is	 no	 longer	majority	 support	 for	 capital	 punishment
when	 life	 in	 prison	 without	 parole	 is	 a	 credible	 alternative.	 When	 we	 solicit
public	 opinion,	 the	 phrasing	 of	 the	 question	 and	 the	 choice	 of	 language	 can
matter	enormously.
Politicians	will	often	exploit	this	phenomenon	by	using	polls	and	focus	groups

to	test	“words	that	work.”	For	example,	voters	are	more	inclined	to	support	“tax
relief”	 than	 “tax	 cuts,”	 even	 though	 the	 two	 phrases	 describe	 the	 same	 thing.
Similarly,	voters	are	less	concerned	about	“climate	change”	than	they	are	about
“global	 warming,”	 even	 though	 global	 warming	 is	 a	 form	 of	 climate	 change.
Obviously	 politicians	 are	 trying	 to	 manipulate	 voters’	 responses	 by	 choosing
nonneutral	 words.	 If	 pollsters	 are	 to	 be	 considered	 honest	 brokers	 generating
legitimate	 results,	 they	must	 guard	 against	 language	 that	 is	 prone	 to	 affect	 the
accuracy	of	the	information	collected.	Similarly,	 if	answers	are	to	be	compared
over	 time—such	 as	 how	 consumers	 feel	 about	 the	 economy	 today	 compared
with	how	they	felt	a	year	ago—then	the	questions	eliciting	that	information	over
time	must	be	the	same,	or	very	similar.
Polling	organizations	like	Gallup	will	often	conduct	“split	sample	testing,”	in



which	 variations	 of	 a	 question	 are	 tested	 on	 different	 samples	 to	 gauge	 how
small	changes	in	wording	affect	respondents’	answers.	To	experts	 like	Gallup’s
Frank	 Newport,	 the	 answers	 to	 every	 question	 present	 meaningful	 data,	 even
when	 those	 answers	 may	 appear	 to	 be	 inconsistent.3	 The	 fact	 that	 American
attitudes	 toward	 capital	 punishment	 change	 dramatically	 when	 life	 without
parole	is	offered	as	an	option	tells	us	something	important.	The	key	point,	says
Newport,	is	to	view	any	polling	result	in	context.	No	single	question	or	poll	can
capture	the	full	depth	of	public	opinion	on	a	complex	issue.

Are	respondents	telling	the	truth?	Polling	is	like	Internet	dating:	There	is	a	little
wiggle	room	in	the	veracity	of	information	provided.	We	know	that	people	shade
the	 truth,	 particularly	when	 the	 questions	 asked	 are	 embarrassing	 or	 sensitive.
Respondents	 may	 overstate	 their	 income,	 or	 inflate	 the	 number	 of	 times	 they
have	 sex	 in	 a	 typical	month.	They	may	not	 admit	 that	 they	do	not	 vote.	They
may	hesitate	to	express	views	that	are	unpopular	or	socially	unacceptable.	For	all
these	reasons,	even	the	most	carefully	designed	poll	is	dependent	on	the	integrity
of	the	respondents’	answers.
Election	 polls	 depend	 crucially	 on	 sorting	 those	 who	will	 vote	 on	 Election

Day	from	those	who	will	not.	(If	we	are	trying	to	gauge	the	likely	winner	of	an
election,	we	do	not	care	about	the	opinions	of	anyone	who	is	not	going	to	vote.)
Individuals	 often	 say	 they	 are	 going	 to	 vote	 because	 they	 think	 that	 is	 what
pollsters	want	to	hear.	Studies	that	have	compared	self-reported	voting	behavior
to	election	records	consistently	find	that	one-quarter	to	one-third	of	respondents
say	 they	voted	when	 in	 fact	 they	did	not.4	One	way	 to	minimize	 this	potential
bias	 is	 to	 ask	 whether	 a	 respondent	 voted	 in	 the	 last	 election,	 or	 in	 the	 last
several	elections.	Respondents	who	have	voted	consistently	in	the	past	are	most
likely	to	vote	in	the	future.	Similarly,	if	there	are	concerns	that	respondents	may
be	hesitant	to	express	a	socially	unacceptable	answer,	such	as	a	negative	view	of
a	racial	or	ethnic	group,	the	question	may	be	phrased	in	a	more	subtle	way,	such
as	by	asking	“if	people	you	know”	hold	such	an	opinion.
One	of	 the	most	 sensitive	 surveys	of	 all	 time	was	a	 study	conducted	by	 the

National	Opinion	Research	Center	(NORC)	at	the	University	of	Chicago	called
“The	Social	Organization	of	Sexuality:	Sexual	Practices	 in	 the	United	States,”
which	quickly	became	known	as	the	“Sex	Study.”5	The	formal	description	of	the
study	included	phrases	like	“the	organization	of	the	behaviors	constituting	sexual
transactions”	 and	 “sexual	 partnering	 and	 behavior	 across	 the	 lifecourse.”	 (I’m
not	 even	 sure	 what	 a	 “lifecourse”	 is;	 spell-check	 says	 it’s	 not	 a	 word.)	 I’m



oversimplifying	when	I	write	 that	 the	survey	sought	 to	document	who	is	doing
what	to	whom—and	how	often.	The	purpose	of	the	study,	which	was	published
in	 1995,	 was	 not	 merely	 to	 enlighten	 us	 all	 about	 the	 sexual	 behavior	 of	 our
neighbors	(though	that	was	part	of	it)	but	also	to	gauge	how	sexual	behavior	in
the	United	States	was	likely	to	affect	the	spread	of	HIV/AIDS.
If	Americans	are	hesitant	to	admit	when	they	don’t	vote,	you	can	imagine	how

keen	they	are	to	describe	their	sexual	behavior,	particularly	when	it	may	involve
illicit	activity,	 infidelity,	or	 just	 really	weird	stuff.	The	Sex	Study	methodology
was	 impressive.	The	 research	was	based	on	ninety-minute	 interviews	of	 3,342
adults	 chosen	 to	 be	 representative	 of	 the	 U.S.	 adult	 population.	 Nearly	 80
percent	of	the	selected	respondents	completed	the	survey,	leading	the	authors	to
conclude	 that	 the	 findings	 are	 an	 accurate	 reporting	 of	 America’s	 sexual
behavior	(or	at	least	what	we	were	doing	in	1995).
Since	 you’ve	 suffered	 through	 a	 chapter	 on	 polling	 methodology,	 and	 now

nearly	 an	 entire	 book	 on	 statistics,	 you	 are	 entitled	 to	 a	 glimpse	 at	what	 they
found	(none	of	which	is	particularly	shocking).	As	one	reviewer	noted,	“There	is
much	less	sexual	behavior	going	on	than	we	might	think.”6

•	People	generally	have	 sex	with	others	 like	 themselves.	Ninety	percent	of
couples	shared	the	same	race,	religion,	social	class,	and	general	age	group.

•	 The	 typical	 respondent	 was	 engaging	 in	 sexual	 activity	 “a	 few	 times	 a
month,”	 though	 there	was	wide	variation.	The	number	of	sexual	partners
since	age	eighteen	ranged	from	zero	to	over	1,000.

•	Roughly	5	percent	of	men	and	4	percent	of	women	reported	some	sexual
activity	with	a	same-gender	partner.

•	Eighty	percent	of	respondents	had	either	one	sexual	partner	in	the	previous
year	or	none	at	all.

•	Respondents	with	one	sexual	partner	were	happier	than	those	with	none	or
with	multiple	partners.7

•	 A	 quarter	 of	 the	 married	 men	 and	 10	 percent	 of	 the	 married	 women
reported	having	extramarital	sexual	activity.

•	Most	people	are	doing	it	the	old-fashioned	way:	vaginal	intercourse	was	the
most	appealing	sexual	activity	for	men	and	women.

One	 review	 of	 the	 Sex	 Study	 made	 a	 simple	 but	 potent	 critique:	 The
conclusion	 that	 the	 accuracy	 of	 the	 survey	 represents	 the	 sexual	 practices	 of
adults	in	the	United	States	“assumes	that	respondents	to	the	NORC	survey	both
mirrored	 the	 population	 from	 which	 they	 were	 drawn	 and	 gave	 accurate



answers.”8	That	sentence	could	also	be	the	takeaway	for	 this	entire	chapter.	At
first	glance,	the	most	suspicious	thing	about	polling	is	that	the	opinions	of	so	few
can	 tell	us	about	 the	opinions	of	 so	many.	But	 that’s	 the	easy	part.	One	of	 the
most	 basic	 statistical	 principles	 is	 that	 a	 proper	 sample	 will	 look	 like	 the
population	 from	 which	 it	 is	 drawn.	 The	 real	 challenge	 of	 polling	 is	 twofold:
finding	 and	 reaching	 that	 proper	 sample;	 and	 eliciting	 information	 from	 that
representative	group	in	a	way	that	accurately	reflects	what	its	members	believe.

APPENDIX	TO	CHAPTER	10
Why	is	the	standard	error	larger	when
p	(and	1	–	p)	are	close	to	50	percent?

Here	 is	 the	 intuition	 for	why	 the	standard	error	 is	highest	when	 the	proportion
answering	 a	 particular	 way	 (p)	 is	 near	 50	 percent	 (which,	 just	 as	 a	 matter	 of
math,	means	that	1	–	p	will	also	be	close	to	50	percent).	Let’s	imagine	that	you
are	conducting	two	polls	in	North	Dakota.	The	first	poll	is	designed	to	measure
the	mix	of	Republicans	and	Democrats	in	the	state.	Assume	that	the	true	political
mix	in	the	North	Dakota	population	is	evenly	split	50-50	but	that	your	poll	finds
60	 percent	Republicans	 and	 40	 percent	Democrats.	Your	 results	 are	 off	 by	 10
percentage	 points,	which	 is	 a	 large	margin.	Yet,	 you	 have	 generated	 this	 large
error	without	making	an	unimaginably	 large	data-collecting	mistake.	You	have
overcounted	the	Republicans	relative	to	their	true	incidence	in	the	population	by
20	 percent	 [(60	 –	 50)/50].	 And	 in	 so	 doing,	 you	 have	 also	 undercounted	 the
Democrats	by	20	percent	[(40	–	50)/50].	That	could	happen,	even	with	a	decent
polling	methodology.
Your	second	poll	is	designed	to	measure	the	fraction	of	Native	Americans	in

the	 North	 Dakota	 population.	 Assume	 that	 the	 true	 proportion	 of	 Native
Americans	in	North	Dakota	is	10	percent	while	non–Native	Americans	make	up
90	 percent	 of	 the	 state	 population.	 Now	 let’s	 discuss	 how	 bad	 your	 data
collecting	would	have	to	be	in	order	to	produce	a	poll	with	a	sampling	error	of
10	percentage	points.	This	could	happen	in	two	ways.	First,	you	could	find	that	0
percent	 of	 the	 population	 is	 Native	 American	 and	 100	 percent	 is	 non–Native
American.	 Or	 you	 could	 find	 that	 20	 percent	 of	 the	 population	 is	 Native
American	and	80	percent	is	non–Native	American.	In	one	case	you	have	missed
all	of	the	Native	Americans;	and	in	the	other,	you	have	found	double	their	true
incidence	 in	 the	 population.	 These	 are	 really	 bad	 sampling	 mistakes.	 In	 both



cases,	your	estimate	is	off	by	100	percent:	either	[(0	–	10)/10]	or	[(20	–	10)/10].
And	if	you	missed	just	20	percent	of	the	Native	Americans—the	same	degree	of
error	that	you	had	in	the	Republican-Democrat	poll—your	results	would	find	8
percent	Native	Americans	and	92	percent	non–Native	Americans,	which	is	only
2	percentage	points	from	the	true	split	in	the	population.
When	p	and	1	–	p	are	close	to	50	percent,	relatively	small	sampling	errors	are

magnified	into	large	absolute	errors	in	the	outcome	of	the	poll.
When	either	p	or	1	–	p	is	closer	to	zero,	the	opposite	is	true.	Even	relatively

large	sampling	errors	produce	small	absolute	errors	in	the	outcome	of	the	poll.
The	same	20	percent	sampling	error	distorted	 the	outcome	of	 the	Democrat-

Republican	poll	 by	10	percentage	points	while	distorting	 the	Native	American
poll	by	only	2	percentage	points.	Since	the	standard	error	in	a	poll	is	measured	in
absolute	terms	(e.g.,	±	5	percent),	the	formula	recognizes	that	this	error	is	likely
to	be	largest	when	p	and	1	–	p	are	close	to	50	percent.

*	According	to	its	website,	“Occupy	Wall	Street	is	a	people-powered	movement	that	began	on	September
17,	 2011,	 in	 Liberty	 Square	 in	Manhattan’s	 Financial	 District,	 and	 has	 spread	 to	 over	 100	 cities	 in	 the
United	 States	 and	 actions	 in	 over	 1,500	 cities	 globally.	 Occupy	Wall	 Street	 is	 fighting	 back	 against	 the
corrosive	power	of	major	banks	and	multinational	corporations	over	the	democratic	process,	and	the	role	of
Wall	 Street	 in	 creating	 an	 economic	 collapse	 that	 has	 caused	 the	 greatest	 recession	 in	 generations.	 The
movement	is	inspired	by	popular	uprisings	in	Egypt	and	Tunisia,	and	aims	to	expose	how	the	richest	1%	of
people	are	writing	the	rules	of	an	unfair	global	economy	that	is	foreclosing	on	our	future.”
*	We	would	expect	the	Republican	candidate’s	true	vote	tally	to	be	outside	of	the	confidence	interval	of	the
poll	roughly	5	percent	of	the	time.	In	those	cases,	his	true	vote	tally	would	be	less	than	50	percent	or	greater
than	54	percent.	However,	if	he	gets	more	than	54	percent	of	the	vote,	your	station	has	not	made	an	error	in
declaring	him	the	winner.	(You’ve	only	understated	the	margin	of	his	victory.)	As	a	result,	the	probability
that	your	poll	will	cause	you	to	mistakenly	declare	the	Republican	candidate	the	winner	is	only	2.5	percent.
*	The	formula	for	calculating	the	standard	error	of	a	poll	that	I	have	introduced	here	assumes	that	the	poll	is
conducted	on	a	random	sample	of	the	population.	Sophisticated	polling	organizations	may	deviate	from	this
sampling	method,	in	which	case	the	formula	for	calculating	the	standard	error	will	also	change	slightly.	The
basic	methodology	remains	the	same,	however.



CHAPTER	11

Regression	Analysis
The	miracle	elixir

Can	stress	on	the	job	kill	you?	Yes.	There	is	compelling	evidence	that	rigors	on
the	job	can	lead	to	premature	death,	particularly	of	heart	disease.	But	it’s	not	the
kind	 of	 stress	 you	 are	 probably	 imagining.	 CEOs,	 who	 must	 routinely	 make
massively	important	decisions	that	determine	the	fate	of	their	companies,	are	at
significantly	less	risk	than	their	secretaries,	who	dutifully	answer	the	phone	and
perform	other	tasks	as	instructed.	How	can	that	possibly	make	sense?	It	turns	out
that	the	most	dangerous	kind	of	job	stress	stems	from	having	“low	control”	over
one’s	responsibilities.	Several	studies	of	thousands	of	British	civil	servants	(the
Whitehall	 studies)	 have	 found	 that	 workers	 who	 have	 little	 control	 over	 their
jobs—meaning	 they	 have	minimal	 say	 over	what	 tasks	 are	 performed	 or	 how
those	tasks	are	carried	out—have	a	significantly	higher	mortality	rate	than	other
workers	in	the	civil	service	with	more	decision-making	authority.	According	to
this	 research,	 it	 is	not	 the	stress	associated	with	major	 responsibilities	 that	will
kill	you;	it	is	the	stress	associated	with	being	told	what	to	do	while	having	little
say	in	how	or	when	it	gets	done.
This	is	not	a	chapter	about	job	stress,	heart	disease,	or	British	civil	servants.

The	relevant	question	regarding	 the	Whitehall	studies	 (and	others	 like	 them)	 is
how	researchers	can	possibly	come	to	such	a	conclusion.	Clearly	this	cannot	be	a
randomized	experiment.	We	cannot	arbitrarily	assign	human	beings	to	different
jobs,	 force	 them	 to	work	 in	 those	 jobs	 for	many	years,	 and	 then	measure	who
dies	 at	 the	 highest	 rate.	 (Ethical	 concerns	 aside,	 we	would	 presumably	wreak
havoc	 on	 the	 British	 civil	 service	 by	 randomly	 distributing	 jobs.)	 Instead,
researchers	have	collected	detailed	longitudinal	data	on	thousands	of	individuals
in	 the	 British	 civil	 service;	 these	 data	 can	 be	 analyzed	 to	 identify	meaningful
associations,	 such	 as	 the	 connection	 between	 “low	 control”	 jobs	 and	 coronary
heart	disease.
A	simple	association	is	not	enough	to	conclude	that	certain	kinds	of	jobs	are

bad	for	your	health.	If	we	merely	observe	that	low-ranking	workers	in	the	British



civil	 service	hierarchy	have	higher	 rates	of	heart	disease,	our	 results	would	be
confounded	by	other	factors.	For	example,	we	would	expect	 low-level	workers
to	 have	 less	 education	 than	 senior	 officials	 in	 the	 bureaucracy.	 They	 may	 be
more	likely	to	smoke	(perhaps	because	of	their	job	frustration).	They	may	have
had	less	healthy	childhoods,	which	diminished	their	job	prospects.	Or	their	lower
pay	may	limit	their	access	to	health	care.	And	so	on.	The	point	is	that	any	study
simply	comparing	health	outcomes	across	a	large	group	of	British	workers—or
across	 any	 other	 large	 group—will	 not	 really	 tell	 us	 much.	 Other	 sources	 of
variation	in	the	data	are	likely	to	obscure	the	relationship	that	we	care	about.	Is
“low	 job	 control”	 really	 causing	 heart	 disease?	 Or	 is	 it	 some	 combination	 of
other	factors	that	happen	to	be	shared	by	people	with	low	job	control,	in	which
case	we	may	be	completely	missing	the	real	public	health	threat.
Regression	analysis	is	the	statistical	tool	that	helps	us	deal	with	this	challenge.

Specifically,	regression	analysis	allows	us	to	quantify	the	relationship	between	a
particular	variable	and	an	outcome	that	we	care	about	while	controlling	for	other
factors.	In	other	words,	we	can	isolate	the	effect	of	one	variable,	such	as	having
a	certain	kind	of	job,	while	holding	the	effects	of	other	variables	constant.	The
Whitehall	studies	used	regression	analysis	to	measure	the	health	impacts	of	low
job	 control	 among	 people	 who	 are	 similar	 in	 other	 ways,	 such	 as	 smoking
behavior.	 (Low-level	workers	 do	 in	 fact	 smoke	more	 than	 their	 superiors;	 this
explains	 a	 relatively	 small	 amount	 of	 the	 variation	 in	 heart	 disease	 across	 the
Whitehall	hierarchy.)
Most	 of	 the	 studies	 that	 you	 read	 about	 in	 the	 newspaper	 are	 based	 on

regression	analysis.	When	researchers	conclude	that	children	who	spend	a	lot	of
time	 in	 day	 care	 are	more	 prone	 to	 behavioral	 problems	 in	 elementary	 school
than	children	who	spend	that	time	at	home,	the	study	has	not	randomly	assigned
thousands	of	infants	either	to	day	care	or	to	home	care	with	a	parent.	Nor	has	the
study	 simply	 compared	 the	 elementary	 school	 behavior	 of	 children	 who	 had
different	early	childhood	experiences	without	recognizing	that	these	populations
are	 likely	 to	 be	 different	 in	 other	 fundamental	 ways.	 Different	 families	 make
different	child	care	decisions	because	they	are	different.	Some	households	have
two	parents	present;	some	don’t.	Some	have	 two	parents	working;	some	don’t.
Some	households	are	wealthier	or	more	educated	than	others.	All	of	these	things
affect	 child	 care	 decisions,	and	 they	 affect	 how	 children	 in	 those	 families	will
perform	in	elementary	school.	When	done	properly,	regression	analysis	can	help
us	 estimate	 the	 effects	 of	 day	 care	 apart	 from	 other	 things	 that	 affect	 young
children:	family	income,	family	structure,	parental	education,	and	so	on.



Now,	there	are	two	key	phrases	in	that	last	sentence.	The	first	is	“when	done
properly.”	Given	adequate	data	and	access	to	a	personal	computer,	a	six-year-old
could	 use	 a	 basic	 statistics	 program	 to	 generate	 regression	 results.	 Personal
computing	has	made	the	mechanics	of	regression	analysis	almost	effortless.	The
problem	 is	 that	 the	mechanics	of	 regression	 analysis	 are	not	 the	hard	part;	 the
hard	part	 is	determining	which	variables	ought	to	be	considered	in	the	analysis
and	how	 that	 can	best	 be	done.	Regression	 analysis	 is	 like	one	of	 those	 fancy
power	 tools.	 It	 is	 relatively	 easy	 to	 use,	 but	 hard	 to	 use	well—and	 potentially
dangerous	when	used	improperly.
The	second	important	phrase	above	is	“help	us	estimate.”	Our	child	care	study

does	 not	 give	 us	 a	 “right”	 answer	 for	 the	 relationship	 between	 day	 care	 and
subsequent	 school	performance.	 Instead,	 it	 quantifies	 the	 relationship	observed
for	a	particular	group	of	children	over	a	particular	stretch	of	time.	Can	we	draw
conclusions	 that	might	apply	 to	 the	broader	population?	Yes,	but	we	will	have
the	 same	 limitations	 and	 qualifications	 as	 we	 do	 with	 any	 other	 kind	 of
inference.	 First,	 our	 sample	 has	 to	 be	 representative	 of	 the	 population	 that	we
care	 about.	A	 study	 of	 2,000	 young	 children	 in	 Sweden	will	 not	 tell	 us	much
about	 the	 best	 policies	 for	 early	 childhood	 education	 in	 rural	 Mexico.	 And
second,	there	will	be	variation	from	sample	to	sample.	If	we	do	multiple	studies
of	 children	 and	 child	 care,	 each	 study	will	 produce	 slightly	 different	 findings,
even	if	the	methodologies	are	all	sound	and	similar.
Regression	analysis	is	similar	to	polling.	The	good	news	is	that	if	we	have	a

large	representative	sample	and	solid	methodology,	the	relationship	we	observe
for	our	sample	data	is	not	likely	to	deviate	wildly	from	the	true	relationship	for
the	whole	population.	If	10,000	people	who	exercise	three	or	more	times	a	week
have	sharply	lower	rates	of	cardiovascular	disease	than	10,000	people	who	don’t
exercise	 (but	 are	 similar	 in	 all	 other	 important	 respects),	 then	 the	 chances	 are
pretty	 good	 that	 we	 will	 see	 a	 similar	 association	 between	 exercise	 and
cardiovascular	health	for	the	broader	population.	That’s	why	we	do	these	studies.
(The	point	is	not	to	tell	those	nonexercisers	who	are	sick	at	the	end	of	the	study
that	they	should	have	exercised.)
The	 bad	 news	 is	 that	we	 are	 not	 proving	 definitively	 that	 exercise	 prevents

heart	disease.	We	are	 instead	 rejecting	 the	null	hypothesis	 that	 exercise	has	no
association	with	heart	disease,	on	the	basis	of	some	statistical	threshold	that	was
chosen	 before	 the	 study	was	 conducted.	 Specifically,	 the	 authors	 of	 the	 study
would	report	that	if	exercise	is	unrelated	to	cardiovascular	health,	the	likelihood
of	 observing	 such	 a	marked	 difference	 in	 heart	 disease	 between	 the	 exercisers



and	 nonexercisers	 in	 this	 large	 sample	would	 be	 less	 than	 5	 in	 100,	 or	 below
some	other	threshold	for	statistical	significance.
Let’s	pause	for	a	moment	and	wave	our	first	giant	yellow	flag.	Suppose	that

this	 particular	 study	 compared	 a	 large	 group	 of	 individuals	 who	 play	 squash
regularly	with	those	of	an	equal-sized	group	who	get	no	exercise	at	all.	Playing
squash	 does	 provide	 a	 good	 cardiovascular	 workout.	 However,	 we	 also	 know
that	 squash	 players	 tend	 to	 be	 affluent	 enough	 to	 belong	 to	 clubs	with	 squash
courts.	Wealthy	individuals	may	have	great	access	to	health	care,	which	can	also
improve	cardiovascular	health.	If	our	analysis	is	sloppy,	we	may	attribute	health
benefits	 to	 playing	 squash	 when	 in	 fact	 the	 real	 benefit	 comes	 from	 being
wealthy	 enough	 to	 play	 squash	 (in	 which	 case	 playing	 polo	 would	 also	 be
associated	with	better	heart	health,	even	 though	 the	horse	 is	doing	most	of	 the
work).
Or	 perhaps	 causality	 goes	 the	 other	 direction.	Could	 having	 a	 healthy	 heart

“cause”	exercise?	Yes.	 Individuals	who	are	 infirm,	particularly	 those	who	have
some	incipient	form	of	heart	disease,	will	find	it	much	harder	to	exercise.	They
will	 certainly	 be	 less	 likely	 to	 play	 squash	 regularly.	 Again,	 if	 the	 analysis	 is
sloppy	 or	 oversimplified,	 the	 claim	 that	 exercise	 is	 good	 for	 your	 health	may
simply	 reflect	 the	 fact	 that	 people	 who	 start	 out	 unhealthy	 find	 it	 hard	 to
exercise.	 In	 this	case,	playing	squash	doesn’t	make	anyone	healthier;	 it	merely
separates	the	healthy	from	the	unhealthy.
There	 are	 so	 many	 potential	 regression	 pitfalls	 that	 I’ve	 devoted	 the	 next

chapter	to	the	most	egregious	errors.	For	now,	we’ll	focus	on	what	can	go	right.
Regression	analysis	has	the	amazing	capacity	to	isolate	a	statistical	relationship
that	we	 care	 about,	 such	 as	 that	 between	 job	 control	 and	 heart	 disease,	 while
taking	into	account	other	factors	that	might	confuse	the	relationship.
How	exactly	does	this	work?	If	we	know	that	low-level	British	civil	servants

smoke	more	 than	 their	 superiors,	how	can	we	discern	which	part	of	 their	poor
cardiovascular	health	is	due	to	their	low-level	jobs,	and	which	part	is	due	to	the
smoking?	These	two	factors	seem	inextricably	intertwined.
Regression	 analysis	 (done	 properly!)	 can	 untangle	 them.	 To	 explain	 the

intuition,	 I	 need	 to	 begin	 with	 the	 basic	 idea	 that	 underlies	 all	 forms	 of
regression	 analysis—from	 the	 simplest	 statistical	 relationships	 to	 the	 complex
models	cobbled	together	by	Nobel	Prize	winners.	At	its	core,	regression	analysis
seeks	 to	 find	 the	 “best	 fit”	 for	 a	 linear	 relationship	 between	 two	 variables.	 A
simple	example	 is	 the	 relationship	between	height	and	weight.	People	who	are
taller	 tend	to	weigh	more—though	that	 is	obviously	not	always	the	case.	If	we



were	to	plot	the	heights	and	weights	of	a	group	of	graduate	students,	you	might
recall	what	it	looked	like	from	Chapter	4:

Scatter	Plot	for	Height	and	Weight

If	you	were	asked	to	describe	the	pattern,	you	might	say	something	along	the
lines	of	“Weight	seems	to	increase	with	height.”	This	is	not	a	terribly	insightful
or	specific	statement.	Regression	analysis	enables	us	to	go	one	step	further	and
“fit	a	line”	that	best	describes	a	linear	relationship	between	the	two	variables.
Many	possible	 lines	 are	broadly	 consistent	with	 the	height	 and	weight	 data.

But	how	do	we	know	which	is	the	best	line	for	these	data?	In	fact,	how	exactly
would	 we	 define	 “best”?	 Regression	 analysis	 typically	 uses	 a	 methodology
called	ordinary	least	squares,	or	OLS.	The	technical	details,	including	why	OLS
produces	the	best	fit,	will	have	to	be	left	to	a	more	advanced	book.	The	key	point
lies	in	the	“least	squares”	part	of	the	name;	OLS	fits	the	line	that	minimizes	the
sum	 of	 the	 squared	 residuals.	 That’s	 not	 as	 awfully	 complicated	 as	 it	 sounds.
Each	observation	 in	our	height	and	weight	data	 set	has	a	 residual,	which	 is	 its
vertical	distance	from	the	regression	line,	except	for	 those	observations	that	 lie
directly	on	the	line,	for	which	the	residual	equals	zero.	(On	the	diagram	below,
the	residual	is	marked	for	a	hypothetical	person	A.)	It	should	be	intuitive	that	the
larger	 the	 sum	 of	 residuals	 overall,	 the	 worse	 the	 fit	 of	 the	 line.	 The	 only
nonintuitive	twist	with	OLS	is	that	the	formula	takes	the	square	of	each	residual
before	adding	them	all	up	(which	increases	the	weight	given	to	observations	that
lie	particularly	far	from	the	regression	line,	or	the	“outliers”).
Ordinary	 least	 squares	 “fits”	 the	 line	 that	minimizes	 the	 sum	of	 the	 squared

residuals,	as	illustrated	below.



Line	of	Best	Fit	for	Height	and	Weight

If	the	technical	details	have	given	you	a	headache,	you	can	be	forgiven	for	just
grasping	at	the	bottom	line,	which	is	that	ordinary	least	squares	gives	us	the	best
description	of	a	linear	relationship	between	two	variables.	The	result	is	not	only
a	line	but,	as	you	may	recall	from	high	school	geometry,	an	equation	describing
that	 line.	 This	 is	 known	 as	 the	 regression	 equation,	 and	 it	 takes	 the	 following
form:	y	=	a	+	bx,	where	y	is	weight	in	pounds;	a	is	the	y-intercept	of	the	line	(the
value	for	y	when	x	=	0);	b	is	the	slope	of	the	line;	and	x	is	height	in	inches.	The
slope	of	the	line	we’ve	fitted,	b,	describes	the	“best”	linear	relationship	between
height	and	weight	for	this	sample,	as	defined	by	ordinary	least	squares.
The	regression	 line	certainly	does	not	describe	every	observation	 in	 the	data

set	perfectly.	But	 it	 is	 the	best	description	we	can	muster	 for	what	 is	 clearly	 a
meaningful	 relationship	 between	 height	 and	 weight.	 It	 also	 means	 that	 every
observation	can	be	explained	as	WEIGHT	=	a	+	b(HEIGHT)	+	e,	where	e	 is	a
“residual”	 that	 catches	 the	 variation	 in	 weight	 for	 each	 individual	 that	 is	 not
explained	by	height.	Finally,	it	means	that	our	best	guess	for	the	weight	of	any
person	in	the	data	set	would	be	a	+	b(HEIGHT).	Even	though	most	observations
do	not	lie	exactly	on	the	regression	line,	the	residual	still	has	an	expected	value
of	zero	since	any	person	in	our	sample	is	 just	as	likely	to	weigh	more	than	the
regression	equation	predicts	as	he	is	to	weigh	less.
Enough	of	 this	 theoretical	 jargon!	Let’s	 look	at	some	real	height	and	weight

data	 from	 the	 Changing	 Lives	 study,	 though	 I	 should	 first	 clarify	 some	 basic
terminology.	 The	 variable	 that	 is	 being	 explained—weight	 in	 this	 case—is
known	 as	 the	 dependent	 variable	 (because	 it	 depends	 on	 other	 factors).	 The



variables	 that	 we	 are	 using	 to	 explain	 our	 dependent	 variable	 are	 known	 as
explanatory	variables	since	they	explain	the	outcome	that	we	care	about.	(Just	to
make	 things	 hard,	 the	 explanatory	 variables	 are	 also	 sometimes	 called
independent	variables	or	control	variables.)	Let’s	start	by	using	height	to	explain
weight	 among	 the	Changing	Lives	 participants;	 later	we’ll	 add	 other	 potential
explanatory	factors.*	 There	 are	 3,537	 adult	 participants	 in	 the	Changing	Lives
study.	 This	 is	 our	 number	 of	 observations,	 or	 n.	 (Sometimes	 a	 research	 paper
might	note	 that	n	=	3,537.)	When	we	run	a	simple	regression	on	the	Changing
Lives	 data	 with	 weight	 as	 the	 dependent	 variable	 and	 height	 as	 the	 only
explanatory	variable,	we	get	the	following	results:

WEIGHT	=	–135	+	(4.5)	×	HEIGHT	IN	INCHES

a	=	–135.	This	is	the	y-intercept,	which	has	no	particular	meaning	on	its	own.
(If	 you	 interpret	 it	 literally,	 a	 person	 who	measures	 zero	 inches	 would	 weigh
negative	135	pounds;	obviously	this	is	nonsense	on	several	levels.)	This	figure	is
also	 known	 as	 the	 constant,	 because	 it	 is	 the	 starting	 point	 for	 calculating	 the
weight	of	all	observations	in	the	study.
b	=	4.5.	Our	 estimate	 for	 b,	 4.5,	 is	 known	as	 a	 regression	 coefficient,	 or	 in

statistics	jargon,	“the	coefficient	on	height,”	because	it	gives	us	the	best	estimate
of	 the	 relationship	 between	 height	 and	 weight	 among	 the	 Changing	 Lives
participants.	 The	 regression	 coefficient	 has	 a	 convenient	 interpretation:	 a	 one-
unit	increase	in	the	independent	variable	(height)	is	associated	with	an	increase
of	4.5	units	in	the	dependent	variable	(weight).	For	our	data	sample,	this	means
that	a	1-inch	increase	in	height	is	associated	with	a	4.5	pound	increase	in	weight.
Thus,	if	we	had	no	other	information,	our	best	guess	for	the	weight	of	a	person
who	is	5	feet	10	inches	tall	(70	inches)	in	the	Changing	Lives	study	would	be	–
135	+	4.5	(70)	=	180	pounds.
This	 is	 our	 payoff,	 as	 we	 have	 now	 quantified	 the	 best	 fit	 for	 the	 linear

relationship	between	height	and	weight	for	the	Changing	Lives	participants.	The
same	basic	 tools	 can	be	used	 to	 explore	more	complex	 relationships	 and	more
socially	significant	questions.	For	any	regression	coefficient,	you	will	generally
be	interested	in	three	things:	sign,	size,	and	significance.
Sign.	 The	 sign	 (positive	 or	 negative)	 on	 the	 coefficient	 for	 an	 independent

variable	tells	us	the	direction	of	its	association	with	the	dependent	variable	(the
outcome	we	are	trying	to	explain).	In	the	simple	case	above,	 the	coefficient	on
height	 is	 positive.	 Taller	 people	 tend	 to	 weigh	 more.	 Some	 relationships	 will
work	in	the	other	direction.	I	would	expect	the	association	between	exercise	and



weight	to	be	negative.	If	the	Changing	Lives	study	included	data	on	something
like	“miles	run	per	month,”	I	am	fairly	certain	that	the	coefficient	on	“miles	run”
would	be	negative.	Running	more	is	associated	with	weighing	less.
Size.	How	big	is	the	observed	effect	between	the	independent	variable	and	the

dependent	 variable?	 Is	 it	 of	 a	magnitude	 that	matters?	 In	 this	 case,	 every	 one
inch	in	height	is	associated	with	4.5	pounds,	which	is	a	sizable	percentage	of	a
typical	person’s	body	weight.	In	an	explanation	of	why	some	people	weigh	more
than	others,	height	 is	clearly	an	important	factor.	In	other	studies,	we	may	find
an	explanatory	variable	that	has	a	statistically	significant	impact	on	our	outcome
of	 interest—meaning	 that	 the	 observed	 effect	 is	 not	 likely	 to	 be	 a	 product	 of
chance—but	that	effect	may	be	so	small	as	to	be	trivial	or	socially	insignificant.
For	example,	 suppose	 that	we	are	examining	determinants	of	 income.	Why	do
some	people	make	more	money	than	others?	The	explanatory	variables	are	likely
to	be	things	like	education,	years	of	work	experience,	and	so	on.	In	a	large	data
set,	researchers	might	also	find	that	people	with	whiter	teeth	earn	$86	more	per
year	than	other	workers,	ceteris	paribus.	(“Ceteris	paribus”	comes	from	the	Latin
meaning	 “other	 things	 being	 equal.”)	 The	 positive	 and	 statistically	 significant
coefficient	 on	 the	 “white	 teeth”	 variable	 assumes	 that	 the	 individuals	 being
compared	are	similar	in	other	respects:	same	education,	same	work	experience,
and	so	on.	(I	will	explain	in	a	moment	how	we	pull	off	this	tantalizing	feat.)	Our
statistical	analysis	has	demonstrated	that	whiter	teeth	are	associated	with	$86	in
additional	annual	income	per	year	and	that	this	finding	is	not	likely	to	be	a	mere
coincidence.	This	means	(1)	we’ve	rejected	the	null	hypothesis	that	really	white
teeth	have	no	association	with	income	with	a	high	degree	of	confidence;	and	(2)
if	 we	 analyze	 other	 data	 samples,	 we	 are	 likely	 to	 find	 a	 similar	 relationship
between	good-looking	teeth	and	higher	income.
So	 what?	We’ve	 found	 a	 statistically	 significant	 result,	 but	 not	 one	 that	 is

particularly	meaningful.	To	begin	with,	$86	per	year	is	not	a	life-changing	sum
of	 money.	 From	 a	 public	 policy	 standpoint,	 $86	 is	 also	 probably	 less	 than	 it
would	 cost	 to	 whiten	 an	 individual’s	 teeth	 every	 year,	 so	 we	 can’t	 even
recommend	 that	 young	workers	make	 such	 an	 investment.	 And,	 although	 I’m
getting	 a	 chapter	 ahead	 of	 myself,	 I’d	 also	 be	 worried	 about	 some	 serious
methodological	problems.	For	example,	having	perfect	 teeth	may	be	associated
with	 other	 personality	 traits	 that	 explain	 the	 earnings	 advantage;	 the	 earnings
effect	may	be	caused	by	 the	kind	of	people	who	care	about	 their	 teeth,	not	 the
teeth	themselves.	For	now,	the	point	is	that	we	should	take	note	of	the	size	of	the
association	 that	we	observe	between	 the	explanatory	variable	and	our	outcome



of	interest.
Significance.	Is	the	observed	result	an	aberration	based	on	a	quirky	sample	of

data,	or	does	it	reflect	a	meaningful	association	that	is	likely	to	be	observed	for
the	population	 as	 a	whole?	This	 is	 the	 same	basic	question	 that	we	have	been
asking	for	 the	last	several	chapters.	In	the	context	of	height	and	weight,	do	we
think	that	we	would	observe	a	similar	positive	association	in	other	samples	that
are	representative	of	 the	population?	To	answer	 this	question,	we	use	 the	basic
tools	of	inference	that	have	already	been	introduced.	Our	regression	coefficient
is	based	on	an	observed	relationship	between	height	and	weight	for	a	particular
sample	of	data.	If	we	were	to	test	another	large	sample	of	data,	we	would	almost
certainly	 get	 a	 slightly	 different	 association	 between	 height	 and	 weight	 and
therefore	 a	 different	 coefficient.	 The	 relationship	 between	 height	 and	 weight
observed	in	the	Whitehall	data	(the	British	civil	servants)	is	likely	to	be	different
from	the	relationship	observed	between	height	and	weight	for	the	participants	in
the	Changing	Lives	study.	However,	we	know	from	the	central	limit	theorem	that
the	mean	 for	 a	 large,	 properly	 drawn	 sample	will	 not	 typically	 deviate	wildly
from	the	mean	for	the	population	as	a	whole.	Similarly,	we	can	assume	that	the
observed	relationship	between	variables	like	height	and	weight	will	not	typically
bounce	around	wildly	from	sample	 to	sample,	assuming	 that	 these	samples	are
large	and	properly	drawn	from	the	same	population.
Think	about	 the	 intuition:	 It’s	highly	unlikely	 (though	still	possible)	 that	we

would	 find	 that	 every	 inch	 of	 height	 is	 associated	with	 4.5	 additional	 pounds
among	the	Changing	Lives	participants	but	that	there	is	no	association	between
height	and	weight	in	a	different	representative	sample	of	3,000	adult	Americans.
This	should	give	you	the	first	inkling	of	how	we’ll	test	whether	our	regression

results	 are	 statistically	 significant	 or	 not.	 As	 with	 polling	 and	 other	 forms	 of
inference,	we	 can	 calculate	 a	 standard	 error	 for	 the	 regression	 coefficient.	The
standard	 error	 is	 a	 measure	 of	 the	 likely	 dispersion	 we	 would	 observe	 in	 the
coefficient	 if	we	were	 to	 conduct	 the	 regression	 analysis	 on	 repeated	 samples
drawn	from	the	same	population.	 If	we	were	 to	measure	and	weigh	a	different
sample	of	3,000	Americans,	we	might	find	in	the	subsequent	analysis	that	each
inch	 of	 height	 is	 associated	 with	 4.3	 pounds.	 If	 we	 did	 it	 again	 for	 another
sample	of	3,000	Americans,	we	might	find	that	each	inch	is	associated	with	5.2
pounds.	Once	again,	 the	normal	distribution	is	our	friend.	For	 large	samples	of
data,	 such	 as	 our	 Changing	 Lives	 data	 set,	 we	 can	 assume	 that	 our	 various
coefficients	will	be	distributed	normally	around	 the	“true”	association	between
height	and	weight	in	the	American	adult	population.	On	that	assumption,	we	can



calculate	a	standard	error	for	 the	regression	coefficient	 that	gives	us	a	sense	of
how	 much	 dispersion	 we	 should	 expect	 in	 the	 coefficients	 from	 sample	 to
sample.	I	will	not	delve	into	the	formula	for	calculating	the	standard	error	here,
both	 because	 it	will	 take	 us	 off	 in	 a	 direction	 that	 involves	 a	 lot	 of	math	 and
because	all	basic	statistical	packages	will	calculate	it	for	you.
However,	I	must	warn	that	when	we	are	working	with	a	small	sample	of	data

—such	as	a	group	of	20	adults	rather	 than	the	3,000+	persons	 in	 the	Changing
Lives	 study—the	 normal	 distribution	 is	 no	 longer	 willing	 to	 be	 our	 friend.
Specifically,	 if	 we	 repeatedly	 conduct	 regression	 analysis	 on	 different	 small
samples,	 we	 can	 no	 longer	 assume	 that	 our	 various	 coefficients	 will	 be
distributed	normally	around	the	“true”	association	between	height	and	weight	in
the	American	adult	population.	Instead,	our	coefficients	will	still	be	distributed
around	the	“true”	association	between	height	and	weight	for	the	American	adult
population	 in	what	 is	 known	 as	 a	 t-distribution.	 (Basically	 the	 t-distribution	 is
more	 dispersed	 than	 the	 normal	 distribution	 and	 therefore	 has	 “fatter	 tails.”)
Nothing	else	changes;	any	basic	statistical	software	package	will	easily	manage
the	 additional	 complexity	 associated	 with	 using	 the	 t-distributions.	 For	 this
reason,	 the	 t-distribution	 will	 be	 explained	 in	 greater	 detail	 in	 the	 chapter
appendix.
Sticking	with	 large	 samples	 for	now	 (and	 the	normal	distribution),	 the	most

important	thing	to	understand	is	why	the	standard	error	matters.	As	with	polling
and	 other	 forms	 of	 inference,	 we	 expect	 that	 more	 than	 half	 of	 our	 observed
regression	coefficients	will	 lie	within	one	standard	error	of	 the	 true	population
parameter.*	Roughly	95	percent	will	 lie	within	two	standard	errors.	And	so	on.
With	 that,	 we’re	 just	 about	 home,	 because	 now	we	 can	 do	 a	 little	 hypothesis
testing.	 (Seriously,	 did	 you	 think	 you	 were	 already	 done	 with	 hypothesis
testing?)	Once	we	have	a	coefficient	and	a	 standard	error,	we	can	 test	 the	null
hypothesis	that	there	is	in	fact	no	relationship	between	the	explanatory	variable
and	 the	dependent	variable	 (meaning	 that	 the	 true	association	between	 the	 two
variables	in	the	population	is	zero).
In	our	simple	height	and	weight	example,	we	can	test	how	likely	it	is	that	we

would	find	in	our	Changing	Lives	sample	that	every	inch	of	height	is	associated
with	4.5	pounds	if	there	is	really	no	association	between	height	and	weight	in	the
general	population.	 I’ve	 run	 the	 regression	by	using	a	basic	 statistics	program;
the	standard	error	on	the	height	coefficient	is	.13.	This	means	that	if	we	were	to
do	 this	 analysis	 repeatedly—say	 with	 100	 different	 samples—then	 we	 would
expect	our	observed	regression	coefficient	to	be	within	two	standard	errors	of	the



true	population	parameter	roughly	95	times	out	of	100.
We	can	therefore	express	our	results	 in	 two	different	but	related	ways.	First,

we	can	build	a	95	percent	confidence	interval.	We	can	say	that	95	times	out	of
100,	we	expect	our	confidence	 interval,	which	 is	4.5	±	 .26,	 to	contain	 the	 true
population	parameter.	This	is	the	range	between	4.24	and	4.76.	A	basic	statistics
package	 will	 calculate	 this	 interval	 as	 well.	 Second,	 we	 can	 see	 that	 our	 95
percent	 confidence	 interval	 for	 the	 true	 association	between	height	 and	weight
does	not	 include	 zero.	Thus,	we	can	 reject	 the	null	 hypothesis	 that	 there	 is	no
association	 between	 height	 and	 weight	 for	 the	 general	 population	 at	 the	 95
percent	confidence	level.	This	result	can	also	be	expressed	as	being	statistically
significant	at	the	.05	level;	there	is	only	a	5	percent	chance	that	we	are	wrongly
rejecting	the	null	hypothesis.
In	fact,	our	results	are	even	more	extreme	than	that.	The	standard	error	(.13)	is

extremely	 low	 relative	 to	 the	 size	 of	 the	 coefficient	 (4.5).	 One	 rough	 rule	 of
thumb	 is	 that	 the	 coefficient	 is	 likely	 to	 be	 statistically	 significant	 when	 the
coefficient	 is	 at	 least	 twice	 the	 size	of	 the	 standard	error.*	A	 statistics	package
also	 calculates	 a	 p-value,	 which	 is	 .000	 in	 this	 case,	 meaning	 that	 there	 is
essentially	 zero	 chance	 of	 getting	 an	 outcome	 as	 extreme	 as	 what	 we’ve
observed	(or	more	so)	if	there	is	no	true	association	between	height	and	weight
in	 the	 general	 population.	 Remember,	 we	 have	 not	 proved	 that	 taller	 people
weigh	more	in	the	general	population;	we	have	merely	shown	that	our	results	for
the	Changing	Lives	sample	would	be	highly	anomalous	if	that	were	not	the	case.

Our	basic	regression	analysis	produces	one	other	statistic	of	note:	the	R2,	which
is	 a	 measure	 of	 the	 total	 amount	 of	 variation	 explained	 by	 the	 regression
equation.	We	know	 that	we	 have	 a	 broad	 variation	 in	weight	 in	 our	Changing
Lives	sample.	Many	of	the	persons	in	the	sample	weigh	more	than	the	mean	for
the	group	overall;	many	weigh	less.	The	R2	tells	us	how	much	of	that	variation
around	 the	mean	 is	 associated	with	differences	 in	 height	 alone.	The	 answer	 in
our	case	is	.25,	or	25	percent.	The	more	significant	point	may	be	that	75	percent
of	the	variation	in	weight	for	our	sample	remains	unexplained.	There	are	clearly
factors	 other	 than	 height	 that	 might	 help	 us	 understand	 the	 weights	 of	 the
Changing	Lives	participants.	This	is	where	things	get	more	interesting.
I’ll	admit	that	I	began	this	chapter	by	selling	regression	analysis	as	the	miracle

elixir	of	social	science	research.	So	far	all	 I’ve	done	is	use	a	statistics	package
and	 an	 impressive	 data	 set	 to	 demonstrate	 that	 tall	 people	 tend	 to	weigh	more
than	 short	 people.	 A	 short	 trip	 to	 a	 shopping	 mall	 would	 probably	 have



convinced	you	of	 the	same	 thing.	Now	 that	you	understand	 the	basics,	we	can
unleash	 the	 real	power	of	 regression	analysis.	 It’s	 time	 to	 take	off	 the	 training
wheels!
As	 I’ve	 promised,	 regression	 analysis	 allows	 us	 to	 unravel	 complex

relationships	in	which	multiple	factors	affect	some	outcome	that	we	care	about,
such	 as	 income,	 or	 test	 scores,	 or	 heart	 disease.	 When	 we	 include	 multiple
variables	 in	 the	 regression	 equation,	 the	 analysis	 gives	 us	 an	 estimate	 of	 the
linear	association	between	each	explanatory	variable	and	the	dependent	variable
while	 holding	 other	 dependent	 variables	 constant,	 or	 “controlling	 for”	 these
other	 factors.	 Let’s	 stick	with	weight	 for	 a	while.	We’ve	 found	 an	 association
between	 height	 and	 weight;	 we	 know	 there	 are	 other	 factors	 that	 can	 help	 to
explain	weight	 (age,	 sex,	diet,	 exercise,	 and	 so	on).	Regression	analysis	 (often
called	multiple	regression	analysis	when	more	 than	one	explanatory	variable	 is
involved,	or	multivariate	regression	analysis)	will	give	us	a	coefficient	for	each
explanatory	variable	included	in	the	regression	equation.	In	other	words,	among
people	who	are	 the	 same	sex	and	height,	what	 is	 the	 relationship	between	 age
and	 weight?	 Once	 we	 have	 more	 than	 one	 explanatory	 variable,	 we	 can	 no
longer	plot	these	data	in	two	dimensions.	(Try	to	imagine	a	graph	that	represents
the	weight,	sex,	height,	and	age	of	each	participant	in	the	Changing	Lives	study.)
Yet	 the	 basic	 methodology	 is	 the	 same	 as	 in	 our	 simple	 height	 and	 weight
example.	As	we	 add	 explanatory	 variables,	 a	 statistical	 package	will	 calculate
the	regression	coefficients	 that	minimize	 the	 total	sum	of	 the	squared	residuals
for	the	regression	equation.
Let’s	work	with	the	Changing	Lives	data	for	now;	then	I’ll	go	back	and	give

an	 intuitive	 explanation	 for	 how	 this	 statistical	 parting	 of	 the	 Red	 Sea	 could
possibly	work.	We	 can	 start	 by	 adding	 one	more	 variable	 to	 the	 equation	 that
explains	the	weights	of	the	Changing	Lives	participants:	age.	When	we	run	the
regression	 including	 both	 height	 and	 age	 as	 explanatory	 variables	 for	 weight,
here	is	what	we	get.

WEIGHT	=	–145	+	4.6	×	(HEIGHT	IN	INCHES)	+	.1	×	(AGE	IN	YEARS)

The	 coefficient	 on	 age	 is	 .1.	 That	 can	 be	 interpreted	 to	 mean	 that	 every
additional	year	in	age	is	associated	with	.1	additional	pounds	in	weight,	holding
height	constant.	For	any	group	of	people	who	are	 the	same	height,	on	average
those	who	 are	 ten	 years	 older	will	weigh	 one	 pound	more.	This	 is	 not	 a	 huge
effect,	 but	 it’s	 consistent	 with	 what	 we	 tend	 to	 see	 in	 life.	 The	 coefficient	 is
significant	at	the	.05	level.



You	may	 have	 noticed	 that	 the	 coefficient	 on	 height	 has	 increased	 slightly.
Once	 age	 is	 in	 our	 regression,	 we	 have	 a	 more	 refined	 understanding	 of	 the
relationship	between	height	and	weight.	Among	people	who	are	the	same	age	in
our	 sample,	 or	 “holding	 age	 constant,”	 every	 additional	 inch	 in	 height	 is
associated	with	4.6	pounds	in	weight.
Let’s	add	one	more	variable:	sex.	This	will	be	slightly	different	because	sex

can	only	take	on	two	possibilities,	male	or	female.	How	does	one	put	M	or	F	into
a	 regression?	 The	 answer	 is	 that	 we	 use	 what	 is	 called	 a	 binary	 variable,	 or
dummy	 variable.	 In	 our	 data	 set,	 we	 enter	 a	 1	 for	 those	 participants	 who	 are
female	 and	 a	 0	 for	 those	 who	 are	 male.	 (This	 is	 not	 meant	 to	 be	 a	 value
judgment.)	The	sex	coefficient	can	then	be	interpreted	as	the	effect	on	weight	of
being	female,	ceteris	paribus.	The	coefficient	is	–4.8,	which	is	not	surprising.	We
can	interpret	that	to	mean	that	for	individuals	who	are	the	same	height	and	age,
women	 typically	 weigh	 4.8	 pounds	 less	 than	 men.	 Now	we	 can	 begin	 to	 see
some	of	the	power	of	multiple	regression	analysis.	We	know	that	women	tend	to
be	 shorter	 than	men,	 but	 our	 coefficient	 takes	 this	 into	 account	 since	we	 have
already	controlled	for	height.	What	we	have	isolated	here	is	the	effect	of	being
female.	The	new	regression	becomes:

WEIGHT	=	–118	+	4.3	×	(HEIGHT	IN	INCHES)	+	.12	(AGE	IN	YEARS)	–
4.8	(IF	SEX	IS	FEMALE)

Our	best	estimate	of	the	weight	of	a	fifty-three-year-old	woman	who	is	5	feet
5	inches	is:	–118	+	4.3	(65)	+	.12	(53)	–	4.8	=	163	pounds.
And	our	best	guess	for	a	thirty-five-year-old	male	who	is	6	feet	3	inches	is	–

118	+	4.3	(75)	+	.12	(35)	=	209	pounds.	We	skip	the	last	term	in	our	regression
result	(–4.8)	since	this	person	is	not	female.

Now	we	 can	 start	 to	 test	 things	 that	 are	more	 interesting	 and	 less	 predictable.
What	about	education?	How	might	that	affect	weight?	I	would	hypothesize	that
better-educated	 individuals	are	more	health	conscious	and	 therefore	will	weigh
less,	ceteris	paribus.	We	also	haven’t	 tested	any	measure	of	exercise;	 I	assume
that,	 holding	 other	 factors	 constant,	 the	 people	 in	 the	 sample	 who	 get	 more
exercise	will	weigh	less.
What	 about	 poverty?	 Does	 being	 low-income	 in	 America	 have	 effects	 that

manifest	 themselves	 in	 weight?	 The	 Changing	 Lives	 study	 asks	 whether	 the
participants	 are	 receiving	 food	 stamps,	which	 is	 a	good	measure	of	poverty	 in
America.	 Finally,	 I’m	 interested	 in	 race.	 We	 know	 that	 people	 of	 color	 have



different	 life	 experiences	 in	 the	United	States	because	of	 their	 race.	There	 are
cultural	 and	 residential	 factors	 associated	 with	 race	 in	 America	 that	 have
implications	for	weight.	Many	cities	are	still	characterized	by	a	high	degree	of
racial	segregation;	African	Americans	might	be	more	likely	than	other	residents
to	 live	 in	“food	deserts,”	which	are	areas	with	 limited	access	 to	grocery	stores
that	carry	fruits,	vegetables,	and	other	fresh	produce.
We	can	use	regression	analysis	to	separate	out	the	independent	effect	of	each

of	the	potential	explanatory	factors	described	above.	For	example,	we	can	isolate
the	association	between	race	and	weight,	holding	constant	other	socioeconomic
factors	 like	 educational	 background	 and	 poverty.	Among	 people	 who	 are	 high
school	graduates	and	eligible	for	food	stamps,	what	is	the	statistical	association
between	weight	and	being	black?
At	this	point,	our	regression	equation	is	so	long	that	it	would	be	cumbersome

to	print	the	results	in	their	entirety	here.	Academic	papers	typically	insert	large
tables	that	summarize	the	results	of	various	regression	equations.	I	have	included
a	 table	with	 the	complete	 results	of	 this	 regression	equation	 in	 the	appendix	 to
this	chapter.	In	the	meantime,	here	are	the	highlights	of	what	happens	when	we
add	 education,	 exercise,	 poverty	 (as	measured	 by	 receiving	 food	 stamps),	 and
race	to	our	equation.
All	 of	 our	 original	 variables	 (height,	 age,	 and	 sex)	 are	 still	 significant.	 The

coefficients	 change	 little	 as	 we	 add	 explanatory	 variables.	 All	 of	 our	 new
variables	are	statistically	significant	at	the	.05	level.	The	R2	on	the	regression	has
climbed	 from	 .25	 to	 .29.	 (Remember,	 an	R2	 of	 zero	means	 that	 our	 regression
equation	does	no	better	than	the	mean	at	predicting	the	weight	of	any	individual
in	the	sample;	an	R2	of	1	means	 that	 the	regression	equation	perfectly	predicts
the	weight	of	every	person	in	the	sample.)	A	lot	of	the	variation	in	weight	across
individuals	remains	unexplained.
Education	 turns	 out	 to	 be	 negatively	 associated	 with	 weight,	 as	 I	 had

hypothesized.	 Among	 participants	 in	 the	 Changing	 Lives	 study,	 each	 year	 of
education	is	associated	with	–1.3	pounds.
Not	 surprisingly,	 exercise	 is	 also	 negatively	 associated	 with	 weight.	 The

Changing	 Lives	 study	 includes	 an	 index	 that	 evaluates	 each	 participant	 in	 the
study	on	his	or	her	 level	of	physical	activity.	Those	 individuals	who	are	 in	 the
bottom	 quintile	 of	 physical	 activity	weigh,	 on	 average,	 4.5	 pounds	more	 than
other	 adults	 in	 the	 sample,	 ceteris	 paribus.	 Those	 in	 the	 bottom	 quintile	 for
physical	activity	weigh,	on	average,	nearly	9	pounds	more	than	adults	in	the	top
quintile	for	physical	activity.



Individuals	receiving	food	stamps	(the	proxy	for	poverty	in	this	regression)	are
heavier	than	other	adults.	Food	stamp	recipients	weigh	an	average	of	5.6	pounds
more	than	other	Changing	Lives	participants,	ceteris	paribus.
The	 race	 variable	 turns	 out	 to	 be	 particularly	 interesting.	 Even	 after	 one

controls	for	all	the	other	variables	described	up	to	this	point,	race	still	matters	a
lot	when	 it	 comes	 to	 explaining	weight.	 The	 non-Hispanic	 black	 adults	 in	 the
Changing	 Lives	 sample	weigh,	 on	 average,	 roughly	 10	 pounds	more	 than	 the
other	adults	in	the	sample.	Ten	pounds	is	a	lot	of	weight,	both	in	absolute	terms
and	 compared	 with	 the	 effects	 of	 the	 other	 explanatory	 variables	 in	 the
regression	equation.	This	is	not	a	quirk	of	the	data.	The	p-value	on	the	dummy
variable	for	non-Hispanic	blacks	is	 .000	and	the	95	percent	confidence	interval
stretches	from	7.7	pounds	to	16.1	pounds.
What	is	going	on?	The	honest	answer	is	that	I	have	no	idea.	Let	me	reiterate	a

point	that	was	buried	earlier	in	a	footnote:	I’m	just	playing	around	with	data	here
to	 illustrate	how	regression	analysis	works.	The	analytics	presented	here	are	 to
true	 academic	 research	 what	 street	 hockey	 is	 to	 the	 NHL.	 If	 this	 were	 a	 real
research	project,	there	would	be	weeks	or	months	of	follow-on	analysis	to	probe
this	finding.	What	I	can	say	is	that	I	have	demonstrated	why	multiple	regression
analysis	 is	 the	 best	 tool	 we	 have	 for	 finding	 meaningful	 patterns	 in	 large,
complex	data	sets.	We	started	with	a	ridiculously	banal	exercise:	quantifying	the
relationship	 between	 height	 and	 weight.	 Before	 long,	 we	 were	 knee-deep	 in
issues	with	real	social	significance.
In	that	vein,	I	can	offer	you	a	real	study	that	used	regression	analysis	to	probe

a	socially	significant	issue:	gender	discrimination	in	the	workplace.	The	curious
thing	about	discrimination	is	that	it’s	hard	to	observe	directly.	No	employer	ever
states	 explicitly	 that	 someone	 is	 being	 paid	 less	 because	 of	 his	 or	 her	 race	 or
gender	 or	 that	 someone	 has	 not	 been	 hired	 for	 discriminatory	 reasons	 (which
would	 presumably	 leave	 the	 person	 in	 a	 different	 job	 with	 a	 lower	 salary).
Instead,	what	we	observe	 are	 gaps	 in	 pay	by	 race	 and	gender	 that	may	be	 the
result	 of	 discrimination:	 whites	 earn	 more	 than	 blacks;	 men	 earn	 more	 than
women;	 and	 so	 on.	 The	methodological	 challenge	 is	 that	 these	 observed	 gaps
may	also	be	the	result	of	underlying	differences	in	workers	that	have	nothing	to
do	with	workplace	discrimination,	 such	as	 the	 fact	 that	women	 tend	 to	 choose
more	 part-time	work.	How	much	of	 the	wage	 gap	 is	 due	 to	 factors	 associated
with	productivity	on	 the	 job,	and	how	much	of	 the	gap,	 if	 any,	 is	due	 to	 labor
force	discrimination?	No	one	can	claim	that	this	is	a	trivial	question.
Regression	analysis	can	help	us	answer	it.	However,	our	methodology	will	be



slightly	more	roundabout	than	it	was	with	our	analysis	explaining	weight.	Since
we	 cannot	measure	 discrimination	 directly,	we	will	 examine	 other	 factors	 that
traditionally	 explain	 wages,	 such	 as	 education,	 experience,	 occupational	 field,
and	 so	 on.	 The	 case	 for	 discrimination	 is	 circumstantial:	 If	 a	 significant	wage
gap	remains	after	controlling	for	other	factors	that	typically	explain	wages,	then
discrimination	is	a	likely	culprit.	The	larger	the	unexplained	portion	of	any	wage
gap,	the	more	suspicious	we	should	be.	As	an	example,	let’s	look	at	a	paper	by
three	economists	examining	the	wage	trajectories	of	a	sample	of	roughly	2,500
men	and	women	who	graduated	with	MBAs	from	the	Booth	School	of	Business
at	the	University	of	Chicago.1	Upon	graduation,	male	and	female	graduates	have
very	 similar	 average	 starting	 salaries:	 $130,000	 for	 men	 and	 $115,000	 for
women.	After	 ten	years	 in	 the	workforce,	however,	a	huge	gap	has	opened	up;
women	 on	 average	 are	 earning	 a	 striking	 45	 percent	 less	 than	 their	 male
classmates:	$243,000	versus	$442,000.	In	a	broader	sample	of	more	than	18,000
MBA	 graduates	 who	 entered	 the	 workforce	 between	 1990	 and	 2006,	 being
female	 is	 associated	 with	 29	 percent	 lower	 earnings.	 What	 is	 happening	 to
women	once	they	enter	the	labor	force?
According	to	the	authors	of	the	study	(Marianne	Bertrand	of	the	Booth	School

of	Business	and	Claudia	Goldin	and	Lawrence	Katz	of	Harvard),	discrimination
is	not	a	likely	explanation	for	most	of	the	gap.	The	gender	wage	gap	fades	away
as	the	authors	add	more	explanatory	variables	to	the	analysis.	For	example,	men
take	more	finance	classes	in	the	MBA	program	and	graduate	with	higher	grade
point	 averages.	 When	 these	 data	 are	 included	 as	 control	 variables	 in	 the
regression	equation,	the	unexplained	portion	of	the	gap	in	male-female	earnings
drops	 to	 19	 percent.	When	 variables	 are	 added	 to	 the	 equation	 to	 account	 for
post-MBA	 work	 experience,	 particularly	 spells	 out	 of	 the	 labor	 force,	 the
unexplained	portion	of	the	male-female	wage	gap	drops	to	9	percent.	And	when
explanatory	variables	are	added	for	other	work	characteristics,	such	as	employer
type	and	hours	worked,	the	unexplained	portion	of	the	gender	wage	gap	falls	to
under	4	percent.
For	workers	who	have	been	in	the	labor	force	more	than	ten	years,	the	authors

can	 ultimately	 explain	 all	 but	 1	 percent	 of	 the	 gender	 wage	 gap	 with	 factors
unrelated	 to	 discrimination	 on	 the	 job.*	 They	 conclude,	 “We	 identify	 three
proximate	reasons	for	the	large	and	rising	gender	gap	in	earnings:	differences	in
training	 prior	 to	 MBA	 graduation;	 differences	 in	 career	 interruptions;	 and
differences	 in	weekly	 hours.	These	 three	 determinants	 can	 explain	 the	 bulk	 of
gender	differences	across	the	years	following	MBA	completion.”



I	 hope	 that	 I’ve	 convinced	 you	 of	 the	 value	 of	 multiple	 regression	 analysis,
particularly	the	research	insights	that	stem	from	being	able	to	isolate	the	effect	of
one	explanatory	variable	while	controlling	for	other	confounding	factors.	I	have
not	yet	provided	an	intuitive	explanation	for	how	this	statistical	“miracle	elixir”
works.	When	 we	 use	 regression	 analysis	 to	 evaluate	 the	 relationship	 between
education	and	weight,	ceteris	paribus,	how	does	a	statistical	package	control	for
factors	like	height,	sex,	age,	and	income	when	we	know	that	our	Changing	Lives
participants	are	not	identical	in	these	other	respects?
To	get	your	mind	around	how	we	can	isolate	the	effect	on	weight	of	a	single

variable,	say,	education,	imagine	the	following	situation.	Assume	that	all	of	the
Changing	 Lives	 participants	 are	 convened	 in	 one	 place—say,	 Framingham,
Massachusetts.	Now	assume	 that	 the	men	and	women	are	 separated.	And	 then
assume	 that	both	 the	men	and	 the	women	are	 further	divided	by	height.	There
will	be	a	room	of	six-foot	tall	men.	Next	door,	there	will	be	a	room	of	6-foot	1-
inch	men,	 and	 so	 on	 for	 both	 genders.	 If	 we	 have	 enough	 participants	 in	 our
study,	we	can	further	subdivide	each	of	those	rooms	by	income.	Eventually	we
will	have	lots	of	rooms,	each	of	which	contains	individuals	who	are	identical	in
all	respects	except	for	education	and	weight,	which	are	the	two	variables	we	care
about.	There	would	be	a	room	of	forty-five-year-old	5-foot	5-inch	men	who	earn
$30,000	to	$40,000	a	year.	Next	door	would	be	all	the	forty-five-year-old	5-foot
5-inch	women	who	earn	$30,000	to	$40,000	a	year.	And	so	on	(and	on	and	on).
There	will	still	be	some	variation	in	weight	in	each	room;	people	who	are	the

same	sex	and	height	and	have	the	same	income	will	still	weigh	different	amounts
—though	presumably	there	will	be	much	less	variation	in	weight	in	each	room
than	 there	 is	 for	 the	 overall	 sample.	Our	 goal	 now	 is	 to	 see	 how	much	 of	 the
remaining	variation	 in	weight	 in	 each	 room	can	be	 explained	by	 education.	 In
other	words,	what	is	the	best	linear	relationship	between	education	and	weight	in
each	room?
The	final	challenge,	however,	is	that	we	do	not	want	different	coefficients	in

each	“room.”	The	whole	point	of	this	exercise	is	to	calculate	a	single	coefficient
that	best	expresses	the	relationship	between	education	and	weight	for	the	entire
sample,	while	holding	other	factors	constant.	What	we	would	like	to	calculate	is
the	single	coefficient	 for	education	 that	we	can	use	 in	every	room	 to	minimize
the	sum	of	the	squared	residuals	for	all	of	the	rooms	combined.	What	coefficient
for	 education	 minimizes	 the	 square	 of	 the	 unexplained	 weight	 for	 every
individual	across	all	the	rooms?	That	becomes	our	regression	coefficient	because
it	is	the	best	explanation	of	the	linear	relationship	between	education	and	weight



for	this	sample	when	we	hold	sex,	height,	and	income	constant.
As	an	aside,	you	can	see	why	large	data	sets	are	so	useful.	They	allow	us	to

control	 for	many	 factors	while	 still	having	many	observations	 in	each	“room.”
Obviously	 a	 computer	 can	 do	 all	 of	 this	 in	 a	 split	 second	 without	 herding
thousands	of	people	into	different	rooms.

Let’s	finish	the	chapter	where	we	started,	with	the	connection	between	stress	on
the	 job	 and	 coronary	 heart	 disease.	 The	 Whitehall	 studies	 of	 British	 civil
servants	 sought	 to	measure	 the	 association	 between	 grade	 of	 employment	 and
death	 from	 coronary	 heart	 disease	 over	 the	 ensuing	 years.	 One	 of	 the	 early
studies	 followed	17,530	civil	servants	 for	seven	and	a	half	years.2	The	 authors
concluded,	“Men	in	the	lower	employment	grades	were	shorter,	heavier	for	their
height,	 had	 higher	 blood	 pressure,	 higher	 plasma	 glucose,	 smoked	 more,	 and
reported	 less	 leisure-time	 physical	 activity	 than	men	 in	 the	 higher	 grades.	Yet
when	allowance	was	made	for	the	influence	on	mortality	of	all	of	these	factors
plus	 plasma	 cholesterol,	 the	 inverse	 association	 between	grade	 of	 employment
and	 [coronary	 heart	 disease]	mortality	was	 still	 strong.”	The	 “allowance”	 they
refer	 to	 for	 these	 other	 known	 risk	 factors	 is	 done	 by	 means	 of	 regression
analysis.*	 The	 study	 demonstrates	 that	 holding	 other	 health	 factors	 constant
(including	 height,	 which	 is	 a	 decent	 proxy	 for	 early	 childhood	 health	 and
nutrition),	working	in	a	“low	grade”	job	can	literally	kill	you.
Skepticism	is	always	a	good	first	response.	I	wrote	at	the	outset	of	the	chapter

that	 “low-control”	 jobs	 are	 bad	 for	 your	 health.	 That	 may	 or	 may	 not	 be
synonymous	with	being	low	on	the	administrative	totem	pole.	A	follow-up	study
using	a	second	sample	of	10,308	British	civil	servants	sought	 to	drill	down	on
this	distinction.3	The	workers	were	once	again	divided	into	administrative	grades
—high,	intermediate,	and	low—only	this	time	the	participants	were	also	given	a
fifteen-item	 questionnaire	 that	 evaluated	 their	 level	 of	 “decision	 latitude	 or
control.”	These	 included	questions	 such	as	“Do	you	have	a	choice	 in	deciding
how	 you	 do	 your	 job?”	 and	 categorical	 responses	 (ranging	 from	 “never”	 to
“often”)	 to	 statements	 such	 as	 “I	 can	 decide	 when	 to	 take	 a	 break.”	 The
researchers	 found	 that	 the	 “low-control”	 workers	 were	 at	 significantly	 higher
risk	 of	 developing	 coronary	 heart	 disease	 over	 the	 course	 of	 the	 study	 than
“high-control”	workers.	Yet	 researchers	 also	 found	 that	workers	with	 rigorous
job	 demands	 were	 at	 no	 greater	 risk	 of	 developing	 heart	 disease,	 nor	 were
workers	who	 reported	 low	 levels	of	 social	 support	on	 the	 job.	Lack	of	 control
seems	to	be	the	killer,	literally.



The	 Whitehall	 studies	 have	 two	 characteristics	 typically	 associated	 with
strong	 research.	First,	 the	 results	have	been	 replicated	elsewhere.	 In	 the	public
health	 literature,	 the	 “low-control”	 idea	 evolved	 into	 a	 term	 known	 as	 “job
strain,”	which	characterizes	 jobs	with	“high	psychological	workload	demands”
and	 “low	 decision	 latitude.”	 Between	 1981	 and	 1993,	 thirty-six	 studies	 were
published	on	the	subject;	most	found	a	significant	positive	association	between
job	strain	and	heart	disease.4
Second,	 researchers	 sought	 and	 found	 corroborating	 biological	 evidence	 to

explain	the	mechanism	by	which	this	particular	kind	of	stress	on	the	job	causes
poor	health.	Work	conditions	that	involve	rigorous	demands	but	low	control	can
cause	 physiological	 responses	 (such	 as	 the	 release	 of	 stress-related	 hormones)
that	 increase	 the	 risk	of	heart	 disease	over	 the	 long	 run.	Even	animal	 research
plays	a	 role;	 low-status	monkeys	and	baboons	 (who	bear	 some	 resemblance	 to
civil	servants	at	the	bottom	of	the	authority	chain)	have	physiological	differences
from	their	high-status	peers	that	put	them	at	greater	cardiovascular	risk.5
All	else	equal,	it’s	better	not	to	be	a	low-status	baboon,	which	is	a	point	I	try

to	 make	 to	 my	 children	 as	 often	 as	 possible,	 particularly	 my	 son.	 The	 larger
message	here	is	that	regression	analysis	is	arguably	the	most	important	tool	that
researchers	have	for	finding	meaningful	patterns	in	large	data	sets.	We	typically
cannot	do	controlled	experiments	to	learn	about	job	discrimination	or	factors	that
cause	heart	disease.	Our	insights	into	these	socially	significant	issues	and	many
others	come	from	the	statistical	tools	covered	in	this	chapter.	In	fact,	it	would	not
be	an	exaggeration	to	say	that	a	high	proportion	of	all	important	research	done	in
the	 social	 sciences	 over	 the	 past	 half	 century	 (particularly	 since	 the	 advent	 of
cheap	computing	power)	draws	on	regression	analysis.
Regression	analysis	 supersizes	 the	 scientific	method;	we	are	healthier,	 safer,

and	better	informed	as	a	result.
So	 what	 could	 possibly	 go	 wrong	 with	 this	 powerful	 and	 impressive	 tool?

Read	on.

APPENDIX	TO	CHAPTER	11
The	t-distribution

Life	 gets	 a	 little	 trickier	 when	we	 are	 doing	 our	 regression	 analysis	 (or	 other
forms	 of	 statistical	 inference)	 with	 a	 small	 sample	 of	 data.	 Suppose	 we	 were
analyzing	the	relationship	between	weight	and	height	on	the	basis	of	a	sample	of



only	25	adults,	rather	than	using	a	huge	data	set	like	the	Changing	Lives	study.
Logic	suggests	that	we	should	be	less	confident	about	generalizing	our	results	to
the	 entire	 adult	 population	 from	 a	 sample	 of	 25	 than	 from	 a	 sample	 of	 3,000.
One	 of	 the	 themes	 throughout	 the	 book	 has	 been	 that	 smaller	 samples	 tend	 to
generate	 more	 dispersion	 in	 outcomes.	 Our	 sample	 of	 25	 will	 still	 give	 us
meaningful	information,	as	would	a	sample	of	5	or	10—but	how	meaningful?
The	 t-distribution	 answers	 that	 question.	 If	 we	 analyze	 the	 association

between	height	and	weight	for	repeated	samples	of	25	adults,	we	can	no	longer
assume	 that	 the	 various	 coefficients	 we	 get	 for	 height	 will	 be	 distributed
normally	around	 the	“true”	coefficient	 for	height	 in	 the	adult	population.	They
will	still	be	distributed	around	the	true	coefficient	for	the	whole	population,	but
the	shape	of	that	distribution	will	not	be	our	familiar	bell-shaped	normal	curve.
Instead,	we	have	to	assume	that	repeated	samples	of	just	25	will	produce	more
dispersion	 around	 the	 true	 population	 coefficient—and	 therefore	 a	 distribution
with	 “fatter	 tails.”	 And	 repeated	 samples	 of	 10	 will	 produce	 even	 more
dispersion	than	that—and	therefore	even	fatter	tails.	The	t-distribution	is	actually
a	series,	or	“family,”	of	probability	density	functions	that	vary	according	to	the
size	of	our	sample.	Specifically,	the	more	data	we	have	in	our	sample,	the	more
“degrees	 of	 freedom”	 we	 have	 when	 determining	 the	 appropriate	 distribution
against	which	 to	evaluate	our	 results.	 In	a	more	advanced	class,	you	will	 learn
exactly	how	to	calculate	degrees	of	freedom;	for	our	purposes,	they	are	roughly
equal	 to	 the	 number	 of	 observations	 in	 our	 sample.	 For	 instance,	 a	 basic
regression	analysis	with	a	sample	of	10	and	a	single	explanatory	variable	has	9
degrees	of	freedom.	The	more	degrees	of	freedom	we	have,	the	more	confident
we	can	be	that	our	sample	represents	 the	 true	population,	and	the	“tighter”	our
distribution	will	be,	as	the	following	diagram	illustrates.



When	 the	 number	 of	 degrees	 of	 freedom	 gets	 large,	 the	 t-distribution
converges	 to	 the	 normal	 distribution.	 That’s	 why	 when	 we	 are	 working	 with
large	data	sets,	we	can	use	the	normal	distribution	for	our	assorted	calculations.
The	 t-distribution	 merely	 adds	 nuance	 to	 the	 same	 process	 of	 statistical

inference	that	we	have	been	using	throughout	the	book.	We	are	still	formulating
a	null	hypothesis	and	then	testing	it	against	some	observed	data.	If	the	data	we
observe	would	be	highly	unlikely	if	the	null	hypothesis	were	true,	then	we	reject
the	 null	 hypothesis.	 The	 only	 thing	 that	 changes	 with	 the	 t-distribution	 is	 the
underlying	probabilities	 for	evaluating	 the	observed	outcomes.	The	“fatter”	 the
tail	 in	 a	 particular	 probability	 distribution	 (e.g.,	 the	 t-distribution	 for	 eight
degrees	of	freedom),	the	more	dispersion	we	would	expect	in	our	observed	data
just	as	a	matter	of	chance,	and	therefore	the	less	confident	we	can	be	in	rejecting
our	null	hypothesis.
For	 example,	 suppose	 we	 are	 running	 a	 regression	 equation,	 and	 the	 null

hypothesis	is	that	the	coefficient	on	a	particular	variable	is	zero.	Once	we	get	the
regression	 results,	 we	 would	 calculate	 a	 t-statistic,	 which	 is	 the	 ratio	 of	 the
observed	coefficient	to	the	standard	error	for	that	coefficient.*	This	t-statistic	is
then	evaluated	against	whatever	 t-distribution	 is	 appropriate	 for	 the	 size	of	 the
data	 sample	 (since	 this	 is	 largely	 what	 determines	 the	 number	 of	 degrees	 of
freedom).	When	 the	 t-statistic	 is	 sufficiently	 large,	meaning	 that	 our	 observed
coefficient	is	far	from	what	the	null	hypothesis	would	predict,	we	can	reject	the
null	hypothesis	at	some	level	of	statistical	significance.	Again,	 this	 is	 the	same
basic	process	of	statistical	inference	that	we	have	been	employing	throughout	the
book.



The	fewer	 the	degrees	of	 freedom	(and	 therefore	 the	“fatter”	 the	 tails	of	 the
relevant	t-distribution),	the	higher	the	t-statistic	will	have	to	be	in	order	for	us	to
reject	the	null	hypothesis	at	some	given	level	of	significance.	In	the	hypothetical
regression	 example	 described	 above,	 if	 we	 had	 four	 degrees	 of	 freedom,	 we
would	need	 a	 t-statistic	 of	 at	 least	 2.13	 to	 reject	 the	null	 hypothesis	 at	 the	 .05
level	(in	a	one-tailed	test).
However,	if	we	have	20,000	degrees	of	freedom	(which	essentially	allows	us

to	use	the	normal	distribution),	we	would	need	only	a	t-statistic	of	1.65	to	reject
the	null	hypothesis	at	the	.05	level	in	the	same	one-tailed	test.

Regression	Equation	for	Weight

*	You	should	consider	 this	exercise	“fun	with	data”	rather	 than	an	authoritative	exploration	of	any	of	 the
relationships	described	in	the	subsequent	regression	equations.	The	purpose	here	is	to	provide	an	intuitive
example	of	how	regression	analysis	works,	not	to	do	meaningful	research	on	Americans’	weights.
*	“Parameter”	is	a	fancy	term	for	any	statistic	that	describes	a	characteristic	of	some	population;	the	mean
weight	for	all	adult	men	is	a	parameter	of	that	population.	So	is	the	standard	deviation.	In	the	example	here,
the	true	association	between	height	and	weight	for	the	population	is	a	parameter	of	that	population.
*	When	the	null	hypothesis	is	that	a	regression	coefficient	is	zero	(as	is	most	often	the	case),	the	ratio	of	the
observed	regression	coefficient	to	the	standard	error	is	known	as	the	t-statistic.	This	will	also	be	explained
in	the	chapter	appendix.
*	Broader	discriminatory	forces	in	society	may	affect	the	careers	that	women	choose	or	the	fact	that	they	are
more	likely	than	men	to	interrupt	their	careers	to	take	care	of	children.	However,	these	important	issues	are
distinct	from	the	narrower	question	of	whether	women	are	being	paid	less	than	men	to	do	the	same	jobs.
*	These	studies	differ	slightly	from	the	regression	equations	introduced	earlier	in	the	chapter.	The	outcome
of	 interest,	or	dependent	variable,	 is	binary	 in	 these	 studies.	A	participant	 either	has	 some	kind	of	heart-
related	 health	 problem	during	 the	 period	 of	 study	 or	 he	 does	 not.	As	 a	 result,	 the	 researchers	 use	 a	 tool
called	 multivariate	 logistic	 regression.	 The	 basic	 idea	 is	 the	 same	 as	 the	 ordinary	 least	 squares	 models
described	 in	 this	chapter.	Each	coefficient	expresses	 the	effect	of	a	particular	explanatory	variable	on	 the
dependent	variable	while	holding	the	effects	of	other	variables	in	the	model	constant.	The	key	difference	is
that	the	variables	in	the	equation	all	affect	the	likelihood	 that	some	event	happens,	such	as	having	a	heart



attack	during	the	period	of	study.	In	this	study,	for	example,	workers	in	the	low	control	group	are	1.99	times
as	likely	to	have	“any	coronary	event”	over	the	period	of	study	as	workers	in	the	high	control	group	after
controlling	for	other	coronary	risk	factors.
*	The	more	general	formula	for	calculating	a	t-statistic	is	the	following:

where	b	 is	 the	observed	coefficient,	bo	 is	 the	null	hypothesis	 for	 that	coefficient,	 and	seb	 is	 the	 standard
error	for	the	observed	coefficient	b.



CHAPTER	12

Common	Regression	Mistakes
The	mandatory	warning	label

Here	is	one	of	the	most	important	things	to	remember	when	doing	research	that
involves	 regression	 analysis:	 Try	 not	 to	 kill	 anyone.	You	 can	 even	 put	 a	 little
Post-it	note	on	your	computer	monitor:	“Do	not	kill	people	with	your	research.”
Because	some	very	smart	people	have	inadvertently	violated	that	rule.
Beginning	in	the	1990s,	the	medical	establishment	coalesced	around	the	idea

that	 older	 women	 should	 take	 estrogen	 supplements	 to	 protect	 against	 heart
disease,	 osteoporosis,	 and	 other	 conditions	 associated	 with	 menopause.1	 By
2001,	some	15	million	women	were	being	prescribed	estrogen	in	the	belief	that	it
would	make	them	healthier.	Why?	Because	research	at	the	time—using	the	basic
methodology	laid	out	in	the	last	chapter—suggested	this	was	a	sensible	medical
strategy.	 In	 particular,	 a	 longitudinal	 study	 of	 122,000	 women	 (the	 Nurses’
Health	Study)	 found	 a	 negative	 association	 between	 estrogen	 supplements	 and
heart	 attacks.	Women	 taking	 estrogen	 had	 one-third	 as	 many	 heart	 attacks	 as
women	who	were	not	taking	estrogen.	This	was	not	a	couple	of	teenagers	using
dad’s	 computer	 to	 check	 out	 pornography	 and	 run	 regression	 equations.	 The
Nurses’	 Health	 Study	 is	 run	 by	 the	 Harvard	Medical	 School	 and	 the	 Harvard
School	of	Public	Health.
Meanwhile,	 scientists	 and	 physicians	 offered	 a	 medical	 theory	 for	 why

hormone	supplements	might	be	beneficial	for	female	health.	A	woman’s	ovaries
produce	 less	 estrogen	 as	 she	 ages;	 if	 estrogen	 is	 important	 to	 the	 body,	 then
making	up	for	this	deficit	in	old	age	could	be	protective	of	a	woman’s	long-term
health.	Hence	 the	 name	 of	 the	 treatment:	 hormone	 replacement	 therapy.	 Some
researchers	 even	 began	 to	 suggest	 that	 older	 men	 should	 receive	 an	 estrogen
boost.2
And	 then,	 while	 millions	 of	 women	 were	 being	 prescribed	 hormone

replacement	 therapy,	 estrogen	 was	 subjected	 to	 the	 most	 rigorous	 form	 of
scientific	scrutiny:	clinical	trials.	Rather	than	searching	a	large	data	set	like	the



Nurses’	Health	Study	for	statistical	associations	that	may	or	may	not	be	causal,	a
clinical	 trial	 consists	 of	 a	 controlled	 experiment.	 One	 sample	 is	 given	 a
treatment,	 such	 as	 hormone	 replacement;	 another	 sample	 is	 given	 a	 placebo.
Clinical	 trials	 showed	 that	 women	 taking	 estrogen	 had	 a	 higher	 incidence	 of
heart	 disease,	 stroke,	 blood	 clots,	 breast	 cancer,	 and	 other	 adverse	 health
outcomes.	Estrogen	supplements	did	have	some	benefits,	but	those	benefits	were
far	outweighed	by	other	 risks.	Beginning	 in	2002,	doctors	were	advised	not	 to
prescribe	estrogen	for	their	aging	female	patients.	The	New	York	Times	Magazine
asked	 a	 delicate	 but	 socially	 significant	 question:	 How	 many	 women	 died
prematurely	or	suffered	strokes	or	breast	cancer	because	they	were	taking	a	pill
that	their	doctors	had	prescribed	to	keep	them	healthy?
The	answer:	“A	reasonable	estimate	would	be	tens	of	thousands.”3

Regression	analysis	is	the	hydrogen	bomb	of	the	statistics	arsenal.	Every	person
with	a	personal	computer	and	a	 large	data	set	can	be	a	researcher	 in	his	or	her
own	 home	 or	 cubicle.	 What	 could	 possibly	 go	 wrong?	 All	 kinds	 of	 things.
Regression	 analysis	 provides	 precise	 answers	 to	 complicated	 questions.	 These
answers	may	 or	may	 not	 be	 accurate.	 In	 the	wrong	 hands,	 regression	 analysis
will	yield	 results	 that	 are	misleading	or	 just	plain	wrong.	And,	as	 the	estrogen
example	illustrates,	even	in	the	right	hands	this	powerful	statistical	tool	can	send
us	speeding	dangerously	in	the	wrong	direction.	The	balance	of	this	chapter	will
explain	 the	most	common	 regression	“mistakes.”	 I	put	“mistakes”	 in	quotation
marks,	because,	as	with	all	other	kinds	of	statistical	analysis,	clever	people	can
knowingly	exploit	these	methodological	points	to	nefarious	ends.
Here	 is	 a	 “Top	 Seven”	 list	 of	 the	 most	 common	 abuses	 of	 an	 otherwise

extraordinary	tool.

Using	regression	to	analyze	a	nonlinear	relationship.*	Have	you	ever	read	the
warning	 label	on	a	hair	dryer—the	part	 that	 cautions,	Do	Not	Use	 in	 the	Bath
Tub?	And	you	 think	 to	yourself,	“What	kind	of	moron	uses	a	hair	dryer	 in	 the
bath	 tub?”	 It’s	 an	 electrical	 appliance;	 you	 don’t	 use	 electrical	 appliances
around	water.	They’re	not	designed	for	that.	If	regression	analysis	had	a	similar
warning	 label,	 it	 would	 say,	 Do	 Not	 Use	 When	 There	 Is	 Not	 a	 Linear
Association	 between	 the	 Variables	 That	 You	 Are	 Analyzing.	 Remember,	 a
regression	coefficient	describes	the	slope	of	the	“line	of	best	fit”	for	the	data;	a
line	 that	 is	 not	 straight	 will	 have	 a	 different	 slope	 in	 different	 places.	 As	 an
example,	consider	the	following	hypothetical	relationship	between	the	number	of



golf	lessons	that	I	take	during	a	month	(an	explanatory	variable)	and	my	average
score	for	an	eighteen-hole	round	during	that	month	(the	dependent	variable).	As
you	can	see	from	the	scatter	plot,	there	is	no	consistent	linear	relationship.

Effect	of	Golf	Lessons	on	Score

There	is	a	pattern,	but	it	cannot	be	easily	described	with	a	single	straight	line.
The	 first	 few	 golf	 lessons	 appear	 to	 bring	my	 score	 down	 rapidly.	 There	 is	 a
negative	association	between	lessons	and	my	scores	for	this	stretch;	the	slope	is
negative.	More	lessons	yield	lower	scores	(which	is	good	in	golf).
But	then	when	I	reach	the	point	where	I’m	spending	between	$200	and	$300	a

month	on	lessons,	the	lessons	do	not	seem	to	have	much	effect	at	all.	There	is	no
clear	 association	 over	 this	 stretch	 between	 additional	 instruction	 and	 my	 golf
scores;	the	slope	is	zero.
And	 finally,	 the	 lessons	 appear	 to	 become	 counterproductive.	 Once	 I’m

spending	$300	a	month	on	 instruction,	 incremental	 lessons	are	associated	with
higher	 scores;	 the	 slope	 is	 positive	 over	 this	 stretch.	 (I’ll	 discuss	 the	 distinct
possibility	 that	 the	 bad	 golf	may	 be	 causing	 the	 lessons,	 rather	 than	 the	 other
way	around,	later	in	the	chapter.)
The	most	 important	 point	 here	 is	 that	 we	 cannot	 accurately	 summarize	 the

relationship	 between	 lessons	 and	 scores	 with	 a	 single	 coefficient.	 The	 best
interpretation	 of	 the	 pattern	 described	 above	 is	 that	 golf	 lessons	 have	 several
different	 linear	 relationships	 with	 my	 scores.	 You	 can	 see	 that;	 a	 statistics
package	will	not.	If	you	feed	these	data	into	a	regression	equation,	the	computer
will	give	you	a	single	coefficient.	That	coefficient	will	not	accurately	reflect	the
true	relationship	between	the	variables	of	interest.	The	results	you	get	will	be	the



statistical	equivalent	of	using	a	hair	dryer	in	the	bath	tub.
Regression	 analysis	 is	 meant	 to	 be	 used	 when	 the	 relationship	 between

variables	is	linear.	A	textbook	or	an	advanced	course	in	statistics	will	walk	you
through	the	other	core	assumptions	underlying	regression	analysis.	As	with	any
other	 tool,	 the	 further	one	deviates	 from	 its	 intended	use,	 the	 less	 effective,	or
even	potentially	dangerous,	it’s	going	to	be.

Correlation	does	not	equal	causation.	Regression	analysis	can	only	demonstrate
an	 association	 between	 two	variables.	As	 I	 have	mentioned	 before,	we	 cannot
prove	with	statistics	alone	that	a	change	in	one	variable	is	causing	a	change	in
the	 other.	 In	 fact,	 a	 sloppy	 regression	 equation	 can	 produce	 a	 large	 and
statistically	significant	association	between	two	variables	that	have	nothing	to	do
with	one	another.	Suppose	we	were	searching	for	potential	causes	for	the	rising
rate	 of	 autism	 in	 the	 United	 States	 over	 the	 last	 two	 decades.	 Our	 dependent
variable—the	outcome	we	are	 seeking	 to	 explain—would	be	 some	measure	of
the	incidence	of	the	autism	by	year,	such	as	the	number	of	diagnosed	cases	for
every	 1,000	 children	 of	 a	 certain	 age.	 If	we	were	 to	 include	 annual	 per	 capita
income	 in	China	 as	 an	 explanatory	variable,	we	would	 almost	 certainly	 find	 a
positive	and	statistically	significant	association	between	rising	incomes	in	China
and	rising	autism	rates	in	the	U.S.	over	the	past	twenty	years.
Why?	Because	they	both	have	been	rising	sharply	over	the	same	period.	Yet	I

highly	doubt	that	a	sharp	recession	in	China	would	reduce	the	autism	rate	in	the
United	 States.	 (To	 be	 fair,	 if	 I	 observed	 a	 strong	 relationship	 between	 rapid
economic	 growth	 in	 China	 and	 autism	 rates	 in	China	 alone,	 I	 might	 begin	 to
search	 for	 some	 environmental	 factor	 related	 to	 economic	 growth,	 such	 as
industrial	pollution,	that	might	explain	the	association.)
The	kind	of	false	association	between	two	variables	that	I	have	just	illustrated

is	just	one	example	of	a	more	general	phenomenon	known	as	spurious	causation.
There	are	several	other	ways	 in	which	an	association	between	A	and	B	can	be
wrongly	interpreted.

Reverse	causality.	A	statistical	association	between	A	and	B	does	not	prove	that
A	causes	B.	In	fact,	 it’s	entirely	plausible	 that	B	is	causing	A.	I	alluded	to	this
possibility	 earlier	 in	 the	 golf	 lesson	 example.	 Suppose	 that	 when	 I	 build	 a
complex	 model	 to	 explain	 my	 golf	 scores,	 the	 variable	 for	 golf	 lessons	 is
consistently	associated	with	worse	scores.	The	more	lessons	I	take,	the	worse	I
shoot!	One	explanation	is	that	I	have	a	really,	really	bad	golf	instructor.	A	more
plausible	 explanation	 is	 that	 I	 tend	 to	 take	 more	 lessons	 when	 I’m	 playing



poorly;	bad	golf	 is	causing	more	 lessons,	not	 the	other	way	around.	(There	are
some	 simple	methodological	 fixes	 to	 a	 problem	of	 this	 nature.	 For	 example,	 I
might	 include	 golf	 lessons	 in	 one	 month	 as	 an	 explanatory	 variable	 for	 golf
scores	in	the	next	month.)
As	noted	earlier	in	the	chapter,	causality	may	go	in	both	directions.	Suppose

you	do	some	research	demonstrating	that	states	that	spend	more	money	on	K–12
education	have	higher	 rates	of	 economic	growth	 than	 states	 that	 spend	 less	on
K–12	 education.	 A	 positive	 and	 significant	 association	 between	 these	 two
variables	 does	 not	 provide	 any	 insight	 into	 which	 direction	 the	 relationship
happens	 to	 run.	 Investments	 in	K–12	education	 could	 cause	 economic	growth.
On	the	other	hand,	states	 that	have	strong	economies	can	afford	to	spend	more
on	 K–12	 education,	 so	 the	 strong	 economy	 could	 be	 causing	 the	 education
spending.	Or,	 education	 spending	 could	 boost	 economic	 growth,	which	makes
possible	 additional	 education	 spending—the	 causality	 could	 be	 going	 in	 both
ways.
The	 point	 is	 that	 we	 should	 not	 use	 explanatory	 variables	 that	 might	 be

affected	 by	 the	 outcome	 that	we	 are	 trying	 to	 explain,	 or	 else	 the	 results	will
become	 hopelessly	 tangled.	 For	 example,	 it	would	 be	 inappropriate	 to	 use	 the
unemployment	 rate	 in	 a	 regression	 equation	 explaining	 GDP	 growth,	 since
unemployment	 is	clearly	affected	by	the	rate	of	GDP	growth.	Or,	 to	 think	of	 it
another	 way,	 a	 regression	 analysis	 finding	 that	 lowering	 unemployment	 will
boost	 GDP	 growth	 is	 a	 silly	 and	 meaningless	 finding,	 since	 boosting	 GDP
growth	is	usually	required	in	order	to	reduce	unemployment.
We	 should	 have	 reason	 to	 believe	 that	 our	 explanatory	 variables	 affect	 the

dependent	variable,	and	not	the	other	way	around.

Omitted	 variable	 bias.	 You	 should	 be	 skeptical	 the	 next	 time	 you	 see	 a	 huge
headline	 proclaiming,	 “Golfers	 More	 Prone	 to	 Heart	 Disease,	 Cancer,	 and
Arthritis!”	I	would	not	be	surprised	 if	golfers	have	a	higher	 incidence	of	all	of
those	diseases	than	nongolfers;	I	also	suspect	that	golf	is	probably	good	for	your
health	 because	 it	 provides	 socialization	 and	 modest	 exercise.	 How	 can	 I
reconcile	those	two	statements?	Very	easily.	Any	study	that	attempts	to	measure
the	effects	of	playing	golf	on	health	must	 control	properly	 for	 age.	 In	general,
people	 play	 more	 golf	 when	 they	 get	 older,	 particularly	 in	 retirement.	 Any
analysis	that	leaves	out	age	as	an	explanatory	variable	is	going	to	miss	the	fact
that	golfers,	on	average,	will	be	older	than	nongolfers.	Golf	isn’t	killing	people;
old	age	is	killing	people,	and	they	happen	to	enjoy	playing	golf	while	it	does.	I



suspect	 that	 when	 age	 is	 inserted	 into	 the	 regression	 analysis	 as	 a	 control
variable,	we	will	get	a	different	outcome.	Among	people	who	are	the	same	age,
golf	may	be	mildly	preventive	of	serious	illnesses.	That’s	a	pretty	big	difference.
In	 this	example,	age	 is	an	 important	“omitted	variable.”	When	we	leave	age

out	 of	 a	 regression	 equation	 explaining	 heart	 disease	 or	 some	 other	 adverse
health	outcome,	the	“playing	golf”	variable	takes	on	two	explanatory	roles	rather
than	just	one.	It	tells	us	the	effect	of	playing	golf	on	heart	disease,	and	it	tells	us
the	effect	of	being	old	on	heart	disease	(since	golfers	 tend	 to	be	older	 than	 the
rest	of	the	population).	In	the	statistics	lingo,	we	would	say	that	the	golf	variable
is	 “picking	 up”	 the	 effect	 of	 age.	 The	 problem	 is	 that	 these	 two	 effects	 are
comingled.	 At	 best,	 our	 results	 are	 a	 jumbled	 mess.	 At	 worst,	 we	 wrongly
assume	that	golf	is	bad	for	your	health,	when	in	fact	the	opposite	is	likely	to	be
true.
Regression	results	will	be	misleading	and	inaccurate	if	the	regression	equation

leaves	out	an	important	explanatory	variable,	particularly	if	other	variables	in	the
equation	“pick	up”	that	effect.	Suppose	we	are	trying	to	explain	school	quality.
This	 is	 an	 important	 outcome	 to	 understand:	What	 makes	 good	 schools?	 Our
dependent	variable—the	quantifiable	measure	of	quality—would	most	likely	be
test	 scores.	 We	 would	 almost	 certainly	 examine	 school	 spending	 as	 one
explanatory	variable	 in	hopes	of	quantifying	the	relationship	between	spending
and	test	scores.	Do	schools	that	spend	more	get	better	results?	If	school	spending
were	the	only	explanatory	variable,	I	have	no	doubt	that	we	would	find	a	large
and	 statistically	 significant	 relationship	 between	 spending	 and	 test	 scores.	 Yet
that	finding,	and	the	implication	that	we	can	spend	our	way	to	better	schools,	is
deeply	flawed.
There	are	many	potentially	significant	omitted	variables	here,	but	the	crucial

one	 is	 parental	 education.	Well-educated	 families	 tend	 to	 live	 in	 affluent	 areas
that	 spend	 a	 lot	 of	 money	 on	 their	 schools;	 such	 families	 also	 tend	 to	 have
children	 who	 score	 well	 on	 tests	 (and	 poor	 families	 are	 more	 likely	 to	 have
students	who	struggle).	 If	we	do	not	have	some	measure	of	 the	socioeconomic
status	 of	 the	 student	 body	 as	 a	 control	 variable,	 our	 regression	 results	 will
probably	 show	 a	 large	 positive	 association	 between	 school	 spending	 and	 test
scores—when	 in	 fact,	 those	 results	may	 be	 a	 function	 of	 the	 kind	 of	 students
who	 are	walking	 in	 the	 school	 door,	 not	 the	money	 that	 is	 being	 spent	 in	 the
building.
I	 remember	 a	 college	 professor’s	 pointing	 out	 that	 SAT	 scores	 are	 highly

correlated	with	 the	 number	 of	 cars	 that	 a	 family	 owns.	He	 insinuated	 that	 the



SAT	was	therefore	an	unfair	and	inappropriate	tool	for	college	admissions.	The
SAT	has	 its	flaws	but	 the	correlation	between	scores	and	family	cars	 is	not	 the
one	that	concerns	me	most.	I	do	not	worry	much	that	rich	families	can	get	their
kids	into	college	by	purchasing	three	extra	automobiles.	The	number	of	cars	in	a
family’s	 garage	 is	 a	 proxy	 for	 their	 income,	 education,	 and	 other	measures	 of
socioeconomic	status.	The	fact	that	wealthy	kids	do	better	on	the	SAT	than	poor
kids	 is	 not	 news.	 (As	 noted	 earlier,	 the	 mean	 SAT	 critical	 reading	 score	 for
students	 from	 families	 with	 a	 household	 income	 over	 $200,000	 is	 134	 points
higher	 than	 the	 mean	 score	 for	 students	 in	 households	 with	 income	 below
$20,000.)4	The	bigger	concern	should	be	whether	or	not	the	SAT	is	“coachable.”
How	 much	 can	 students	 improve	 their	 scores	 by	 taking	 private	 SAT	 prep
classes?	Wealthy	 families	 clearly	 are	 better	 able	 to	 send	 their	 children	 to	 test
prep	 classes.	 Any	 causal	 improvement	 between	 these	 classes	 and	 SAT	 scores
would	 favor	 students	 from	 wealthy	 families	 relative	 to	 more	 disadvantaged
students	of	equal	abilities	 (who	presumably	also	could	have	raised	 their	scores
with	a	prep	class	but	never	had	that	opportunity).

Highly	 correlated	 explanatory	 variables	 (multicollinearity).	 If	 a	 regression
equation	 includes	 two	or	more	 explanatory	variables	 that	 are	highly	 correlated
with	 each	 other,	 the	 analysis	 will	 not	 necessarily	 be	 able	 to	 discern	 the	 true
relationship	between	each	of	those	variables	and	the	outcome	that	we	are	trying
to	explain.	An	example	will	make	 this	clearer.	Assume	we	are	 trying	 to	gauge
the	 effect	 of	 illegal	 drug	 use	 on	 SAT	 scores.	 Specifically,	 we	 have	 data	 on
whether	the	participants	in	our	study	have	ever	used	cocaine	and	also	on	whether
they	 have	 ever	 used	 heroin.	 (We	 would	 presumably	 have	 many	 other	 control
variables	 as	well.)	What	 is	 the	 impact	 of	 cocaine	 use	 on	 SAT	 scores,	 holding
other	 factors	constant,	 including	heroin	use?	And	what	 is	 the	 impact	of	heroin
use	on	SAT	scores,	controlling	for	cocaine	use	and	other	factors?
The	coefficients	on	heroin	and	cocaine	use	might	not	actually	be	able	to	tell	us

that.	 The	methodological	 challenge	 is	 that	 people	who	 have	 used	 heroin	 have
likely	also	used	cocaine.	If	we	put	both	variables	in	the	equation,	we	will	have
very	few	individuals	who	have	used	one	drug	but	not	the	other,	which	leaves	us
very	little	variation	in	the	data	with	which	to	calculate	their	independent	effects.
Think	 back	 for	 a	 moment	 to	 the	 mental	 imagery	 used	 to	 explain	 regression
analysis	in	the	last	chapter.	We	divide	our	data	sample	into	different	“rooms”	in
which	each	observation	is	identical	except	for	one	variable,	which	then	allows	us
to	 isolate	 the	 effect	 of	 that	 variable	 while	 controlling	 for	 other	 potential



confounding	factors.	We	may	have	692	individuals	in	our	sample	who	have	used
both	cocaine	and	heroin.	However,	we	may	have	only	3	 individuals	who	have
used	 cocaine	 but	 not	 heroin	 and	 2	 individuals	 who	 have	 used	 heroin	 and	 not
cocaine.	Any	inference	about	the	independent	effect	of	just	one	drug	or	the	other
is	going	to	be	based	on	these	tiny	samples.
We	 are	 unlikely	 to	 get	meaningful	 coefficients	 on	 either	 the	 cocaine	 or	 the

heroin	variable;	we	may	also	obscure	the	larger	and	more	important	relationship
between	SAT	scores	and	using	either	one	of	these	drugs.	When	two	explanatory
variables	are	highly	correlated,	 researchers	will	usually	use	one	or	 the	other	 in
the	 regression	 equation,	 or	 they	may	 create	 some	 kind	 of	 composite	 variable,
such	as	“used	cocaine	or	heroin.”	For	example,	when	researchers	want	to	control
for	 a	 student’s	 overall	 socioeconomic	 background,	 they	may	 include	 variables
for	 both	 “mother’s	 education”	 and	 “father’s	 education,”	 since	 this	 inclusion
provides	 important	 insight	 into	 the	 educational	 background	 of	 the	 household.
However,	if	the	goal	of	the	regression	analysis	is	to	isolate	the	effect	of	either	a
mother’s	or	a	father’s	education,	then	putting	both	variables	into	the	equation	is
more	 likely	 to	 confuse	 the	 issue	 than	 to	 clarify	 it.	 The	 correlation	 between	 a
husband’s	and	a	wife’s	educational	attainments	is	so	high	that	we	cannot	depend
on	regression	analysis	to	give	us	coefficients	that	meaningfully	isolate	the	effect
of	either	parent’s	education	(just	as	 it	 is	hard	 to	separate	 the	 impact	of	cocaine
use	from	the	impact	of	heroin	use).

Extrapolating	beyond	the	data.	Regression	analysis,	like	all	forms	of	statistical
inference,	 is	 designed	 to	 offer	 us	 insights	 into	 the	 world	 around	 us.	We	 seek
patterns	 that	will	 hold	 true	 for	 the	 larger	 population.	However,	 our	 results	 are
valid	only	 for	a	population	 that	 is	 similar	 to	 the	sample	on	which	 the	analysis
has	 been	 done.	 In	 the	 last	 chapter,	 I	 created	 a	 regression	 equation	 to	 predict
weight	based	on	a	number	of	independent	variables.	The	R2	of	my	final	model
was	 .29,	 which	 means	 that	 it	 did	 a	 decent	 job	 of	 explaining	 the	 variation	 in
weight	for	a	large	sample	of	individuals—all	of	whom	happened	to	be	adults.
So	what	happens	if	we	use	our	regression	equation	to	predict	the	likely	weight

of	a	newborn?	Let’s	try	it.	My	daughter	was	21	inches	when	she	was	born.	We’ll
say	that	her	age	at	birth	was	zero;	she	had	no	education	and	did	not	exercise.	She
was	 white	 and	 female.	 The	 regression	 equation	 based	 on	 the	 Changing	 Lives
data	 predicts	 that	 her	weight	 at	 birth	 should	 have	 been	 negative	 19.6	 pounds.
(She	weighed	8½	pounds.)
The	authors	of	one	of	the	Whitehall	studies	referred	to	in	the	last	chapter	were



strikingly	explicit	in	drawing	their	narrow	conclusion:	“Low	control	in	the	work
environment	is	associated	with	an	increased	risk	of	future	coronary	heart	disease
among	men	and	women	employed	in	government	offices”5	(italics	added).

Data	mining	(too	many	variables).	If	omitting	important	variables	is	a	potential
problem,	then	presumably	adding	as	many	explanatory	variables	as	possible	to	a
regression	equation	must	be	the	solution.	Nope.
Your	 results	 can	 be	 compromised	 if	 you	 include	 too	 many	 variables,

particularly	 extraneous	 explanatory	 variables	 with	 no	 theoretical	 justification.
For	 example,	 one	 should	 not	 design	 a	 research	 strategy	 built	 around	 the
following	premise:	Since	we	don’t	know	what	causes	autism,	we	should	put	as
many	potential	explanatory	variables	as	possible	in	the	regression	equation	just
to	see	what	might	turn	up	as	statistically	significant;	then	maybe	we’ll	get	some
answers.	If	you	put	enough	junk	variables	in	a	regression	equation,	one	of	them
is	 bound	 to	meet	 the	 threshold	 for	 statistical	 significance	 just	 by	 chance.	 The
further	 danger	 is	 that	 junk	 variables	 are	 not	 always	 easily	 recognized	 as	 such.
Clever	researchers	can	always	build	a	theory	after	the	fact	for	why	some	curious
variable	that	is	really	just	nonsense	turns	up	as	statistically	significant.
To	make	this	point,	I	often	do	the	same	coin	flipping	exercise	that	I	explained

during	the	probability	discussion.	In	a	class	of	forty	students	or	so,	I’ll	have	each
student	flip	a	coin.	Any	student	who	flips	tails	is	eliminated;	the	rest	flip	again.
In	 the	second	 round,	 those	who	 flip	 tails	are	once	again	eliminated.	 I	continue
the	 rounds	of	 flipping	until	one	student	has	 flipped	 five	or	 six	heads	 in	a	 row.
You	may	recall	some	of	the	silly	follow-up	questions:	“What’s	your	secret?	Is	it
in	the	wrist?	Can	you	teach	us	to	flip	heads	all	the	time?	Maybe	it’s	that	Harvard
sweatshirt	you’re	wearing.”
Obviously	 the	 string	 of	 heads	 is	 just	 luck;	 the	 students	 have	 all	 watched	 it

happen.	 However,	 that	 is	 not	 necessarily	 how	 the	 result	 could	 or	 would	 be
interpreted	in	a	scientific	context.	The	probability	of	flipping	five	heads	in	a	row
is	1/32,	or	 .03.	This	is	comfortably	below	the	.05	threshold	we	typically	use	to
reject	a	null	hypothesis.	Our	null	hypothesis	in	this	case	is	that	the	student	has	no
special	 talent	 for	 flipping	 heads;	 the	 lucky	 string	 of	 heads	 (which	 is	 bound	 to
happen	 for	 at	 least	 one	 student	 when	 I	 start	 with	 a	 large	 group)	 allows	 us	 to
reject	the	null	hypothesis	and	adopt	the	alternative	hypothesis:	This	student	has	a
special	ability	 to	flip	heads.	After	he	has	achieved	this	 impressive	feat,	we	can
study	 him	 for	 clues	 about	 his	 flipping	 success—his	 flipping	 form,	 his	 athletic
training,	his	extraordinary	concentration	while	 the	coin	 is	 in	 the	air,	and	so	on.



And	it	is	all	nonsense.
This	 phenomenon	 can	 plague	 even	 legitimate	 research.	 The	 accepted

convention	is	to	reject	a	null	hypothesis	when	we	observe	something	that	would
happen	by	chance	only	1	in	20	times	or	less	if	the	null	hypothesis	were	true.	Of
course,	 if	we	conduct	20	studies,	or	 if	we	include	20	junk	variables	in	a	single
regression	equation,	then	on	average	we	will	get	1	bogus	statistically	significant
finding.	The	New	York	Times	Magazine	 captured	 this	 tension	wonderfully	 in	 a
quotation	 from	 Richard	 Peto,	 a	 medical	 statistician	 and	 epidemiologist:
“Epidemiology	 is	 so	 beautiful	 and	 provides	 such	 an	 important	 perspective	 on
human	life	and	death,	but	an	incredible	amount	of	rubbish	is	published.”6
Even	the	results	of	clinical	trials,	which	are	usually	randomized	experiments

and	therefore	the	gold	standard	of	medical	research,	should	be	viewed	with	some
skepticism.	 In	 2011,	 the	Wall	 Street	 Journal	 ran	 a	 front-page	 story	 on	what	 it
described	as	one	of	the	“dirty	little	secrets”	of	medical	research:	“Most	results,
including	 those	 that	 appear	 in	 top-flight	 peer-reviewed	 journals,	 can’t	 be
reproduced.”7	 (A	 peer-reviewed	 journal	 is	 a	 publication	 in	 which	 studies	 and
articles	are	reviewed	for	methodological	soundness	by	other	experts	in	the	same
field	before	being	approved	for	publication;	such	publications	are	considered	to
be	 the	 gatekeepers	 for	 academic	 research.)	 One	 reason	 for	 this	 “dirty	 little
secret”	is	the	positive	publication	bias	described	in	Chapter	7.	If	researchers	and
medical	journals	pay	attention	to	positive	findings	and	ignore	negative	findings,
then	they	may	well	publish	the	one	study	that	finds	a	drug	effective	and	ignore
the	nineteen	in	which	it	has	no	effect.	Some	clinical	trials	may	also	have	small
samples	(such	as	for	a	rare	diseases),	which	magnifies	the	chances	that	random
variation	 in	 the	 data	 will	 get	 more	 attention	 than	 it	 deserves.	 On	 top	 of	 that,
researchers	may	have	some	conscious	or	unconscious	bias,	either	because	of	a
strongly	held	prior	belief	or	because	a	positive	finding	would	be	better	for	their
career.	(No	one	ever	gets	rich	or	famous	by	proving	what	doesn’t	cure	cancer.)
For	all	of	these	reasons,	a	shocking	amount	of	expert	research	turns	out	to	be

wrong.	John	Ioannidis,	a	Greek	doctor	and	epidemiologist,	examined	forty-nine
studies	 published	 in	 three	 prominent	 medical	 journals.8	 Each	 study	 had	 been
cited	in	the	medical	literature	at	least	a	thousand	times.	Yet	roughly	one-third	of
the	research	was	subsequently	refuted	by	later	work.	(For	example,	some	of	the
studies	 he	 examined	 promoted	 estrogen	 replacement	 therapy.)	 Dr.	 Ioannidis
estimates	that	roughly	half	of	the	scientific	papers	published	will	eventually	turn
out	 to	 be	wrong.9	 His	 research	was	 published	 in	 the	 Journal	 of	 the	 American
Medical	 Association,	 one	 of	 the	 journals	 in	 which	 the	 articles	 he	 studied	 had



appeared.	 This	 does	 create	 a	 certain	 mind-bending	 irony:	 If	 Dr.	 Ioannidis’s
research	is	correct,	then	there	is	a	good	chance	that	his	research	is	wrong.

Regression	 analysis	 is	 still	 an	 awesome	 statistical	 tool.	 (Okay,	 perhaps	 my
description	of	it	as	a	“miracle	elixir”	in	the	last	chapter	was	a	little	hyperbolic.)
Regression	analysis	enables	us	to	find	key	patterns	in	large	data	sets,	and	those
patterns	 are	 often	 the	 key	 to	 important	 research	 in	 medicine	 and	 the	 social
sciences.	 Statistics	 gives	 us	 objective	 standards	 for	 evaluating	 these	 patterns.
When	 used	 properly,	 regression	 analysis	 is	 an	 important	 part	 of	 the	 scientific
method.	Consider	this	chapter	to	be	the	mandatory	warning	label.
All	of	the	assorted	specific	warnings	on	that	label	can	be	boiled	down	to	two

key	 lessons.	 First,	 designing	 a	 good	 regression	 equation—figuring	 out	 what
variables	 should	be	 examined	 and	where	 the	data	 should	 come	 from—is	more
important	than	the	underlying	statistical	calculations.	This	process	is	referred	to
as	 estimating	 the	 equation,	 or	 specifying	 a	 good	 regression	 equation.	The	best
researchers	are	the	ones	who	can	think	logically	about	what	variables	ought	to	be
included	in	a	regression	equation,	what	might	be	missing,	and	how	the	eventual
results	can	and	should	be	interpreted.
Second,	like	most	other	statistical	inference,	regression	analysis	builds	only	a

circumstantial	case.	An	association	between	two	variables	is	like	a	fingerprint	at
the	scene	of	the	crime.	It	points	us	in	the	right	direction,	but	it’s	rarely	enough	to
convict.	(And	sometimes	a	fingerprint	at	the	scene	of	a	crime	doesn’t	belong	to
the	perpetrator.)	Any	regression	analysis	needs	a	theoretical	underpinning:	Why
are	 the	 explanatory	 variables	 in	 the	 equation?	 What	 phenomena	 from	 other
disciplines	can	explain	the	observed	results?	For	instance,	why	do	we	think	that
wearing	purple	shoes	would	boost	performance	on	the	math	portion	of	the	SAT
or	that	eating	popcorn	can	help	prevent	prostate	cancer?	The	results	need	to	be
replicated,	or	at	least	consistent	with	other	findings.
Even	a	miracle	elixir	won’t	work	when	not	taken	as	directed.

*	There	are	more	sophisticated	methods	that	can	be	used	to	adapt	regression	analysis	for	use	with	nonlinear
data.	 Before	 using	 those	 tools,	 however,	 you	 need	 to	 appreciate	 why	 using	 the	 standard	 ordinary	 least
squares	approach	with	nonlinear	data	will	give	you	a	meaningless	result.



CHAPTER	13

Program	Evaluation
Will	going	to	Harvard	change	your	life?

Brilliant	researchers	in	the	social	sciences	are	not	brilliant	because	they	can	do
complex	 calculations	 in	 their	 heads,	 or	 because	 they	 win	 more	 money	 on
Jeopardy	than	less	brilliant	researchers	do	(though	both	these	feats	may	be	true).
Brilliant	 researchers—those	 who	 appreciably	 change	 our	 knowledge	 of	 the
world—are	often	individuals	or	teams	who	find	creative	ways	to	do	“controlled”
experiments.	 To	measure	 the	 effect	 of	 any	 treatment	 or	 intervention,	 we	 need
something	to	measure	it	against.	How	would	going	to	Harvard	affect	your	life?
Well,	to	answer	that	question,	we	have	to	know	what	happens	to	you	after	you	go
to	Harvard—and	what	happens	to	you	after	you	don’t	go	to	Harvard.	Obviously
we	can’t	have	data	on	both.	Yet	clever	researchers	find	ways	 to	compare	some
treatment	(e.g.,	going	to	Harvard)	with	the	counterfactual,	which	is	what	would
have	happened	in	the	absence	of	that	treatment.
To	illustrate	this	point,	let’s	ponder	a	seemingly	simple	question:	Does	putting

more	 police	 officers	 on	 the	 street	 deter	 crime?	 This	 is	 a	 socially	 significant
question,	 as	 crime	 imposes	 huge	 costs	 on	 society.	 If	 a	 greater	 police	 presence
lowers	 crime,	 either	 through	 deterrence	 or	 by	 catching	 and	 imprisoning	 bad
guys,	then	investments	in	additional	police	officers	could	have	large	returns.	On
the	other	hand,	police	officers	are	relatively	expensive;	 if	 they	have	little	or	no
impact	on	crime	 reduction,	 then	 society	could	make	better	use	of	 its	 resources
elsewhere	 (perhaps	 with	 investments	 in	 crime-fighting	 technology,	 such	 as
surveillance	cameras).
The	challenge	is	that	our	seemingly	simple	question—what	is	the	causal	effect

of	more	police	officers	on	crime?—turns	out	 to	be	very	difficult	 to	answer.	By
this	point	in	the	book,	you	should	recognize	that	we	cannot	answer	this	question
simply	by	examining	whether	jurisdictions	with	a	high	number	of	police	officers
per	 capita	 have	 lower	 rates	 of	 crime.	 Zurich	 is	 not	 Los	 Angeles.	 Even	 a
comparison	of	 large	American	cities	will	be	deeply	 flawed;	Los	Angeles,	New
York,	 Houston,	 Miami,	 Detroit,	 and	 Chicago	 are	 all	 different	 places	 with



different	demographics	and	crime	challenges.
Our	usual	approach	would	be	to	attempt	to	specify	a	regression	equation	that

controls	 for	 these	 differences.	 Alas,	 even	 multiple	 regression	 analysis	 is	 not
going	 to	 save	 us	 here.	 If	 we	 attempt	 to	 explain	 crime	 rates	 (our	 dependent
variable)	 by	 using	 police	 officers	 per	 capita	 as	 an	 explanatory	 variable	 (along
with	other	controls),	we	will	have	a	serious	reverse	causality	problem.	We	have	a
solid	theoretical	reason	to	believe	that	putting	more	police	officers	on	the	street
will	reduce	crime,	but	it’s	also	possible	that	crime	could	“cause”	police	officers,
in	the	sense	that	cities	experiencing	crime	waves	will	hire	more	police	officers.
We	 could	 easily	 find	 a	 positive	 but	misleading	 association	 between	 crime	 and
police:	 the	places	with	the	most	police	officers	have	the	worst	crime	problems.
Of	 course,	 the	 places	 with	 lots	 of	 doctors	 also	 tend	 to	 have	 the	 highest
concentration	of	sick	people.	These	doctors	aren’t	making	people	sick;	they	are
located	in	places	where	they	are	needed	most	(and	at	the	same	time	sick	people
are	moving	to	places	where	they	can	get	appropriate	medical	care).	I	suspect	that
there	 are	 disproportionate	 numbers	 of	 oncologists	 and	 cardiologists	 in	Florida;
banishing	them	from	the	state	will	not	make	the	retiree	population	healthier.
Welcome	 to	 program	 evaluation,	which	 is	 the	 process	 by	which	we	 seek	 to

measure	 the	 causal	 effect	 of	 some	 intervention—anything	 from	 a	 new	 cancer
drug	 to	 a	 job	 placement	 program	 for	 high	 school	 dropouts.	 Or	 putting	 more
police	 officers	 on	 the	 street.	 The	 intervention	 that	 we	 care	 about	 is	 typically
called	the	“treatment,”	though	that	word	is	used	more	expansively	in	a	statistical
context	 than	 in	 normal	 parlance.	 A	 treatment	 can	 be	 a	 literal	 treatment,	 as	 in
some	kind	of	medical	intervention,	or	it	can	be	something	like	attending	college
or	 receiving	 job	 training	 upon	 release	 from	 prison.	 The	 point	 is	 that	 we	 are
seeking	to	isolate	the	effect	of	that	single	factor;	ideally	we	would	like	to	know
how	 the	group	 receiving	 that	 treatment	 fares	 compared	with	 some	other	group
whose	members	are	identical	in	all	other	respects	but	for	the	treatment.
Program	evaluation	offers	a	set	of	tools	for	isolating	the	treatment	effect	when

cause	 and	 effect	 are	 otherwise	 elusive.	 Here	 is	 how	 Jonathan	 Klick	 and
Alexander	Tabarrok,	 researchers	 at	 the	University	of	Pennsylvania	 and	George
Mason	University,	respectively,	studied	how	putting	more	police	officers	on	the
street	 affects	 the	 crime	 rate.	Their	 research	 strategy	made	 use	 of	 the	 terrorism
alert	 system.	Specifically,	Washington,	D.C.,	 responds	 to	 “high	 alert”	 days	 for
terrorism	by	putting	more	officers	in	certain	areas	of	the	city,	since	the	capital	is
a	natural	 terrorism	 target.	We	can	assume	 that	 there	 is	no	 relationship	between
street	crime	and	the	terrorism	threat,	so	this	boost	in	the	D.C.	police	presence	is



unrelated	to	the	conventional	crime	rate,	or	“exogenous.”	The	researchers’	most
valuable	insight	was	recognizing	the	natural	experiment	here:	What	happens	to
ordinary	crime	on	terrorism	“high	alert”	days?
The	answer:	The	number	of	crimes	committed	when	the	terrorism	threat	was

Orange	(high	alert	and	more	police)	was	roughly	7	percent	lower	than	when	the
terrorism	 threat	 level	was	Yellow	 (elevated	alert	 but	no	extra	 law	enforcement
precautions).	The	authors	also	found	that	the	decrease	in	crime	was	sharpest	in
the	police	district	that	gets	the	most	police	attention	on	high-alert	days	(because
it	includes	the	White	House,	the	Capitol,	and	the	National	Mall).	The	important
takeaway	 is	 that	we	 can	 answer	 tricky	 but	 socially	meaningful	 questions—we
just	have	to	be	clever	about	it.	Here	are	some	of	the	most	common	approaches
for	isolating	a	treatment	effect.

Randomized,	controlled	experiments.	The	most	straightforward	way	to	create	a
treatment	 and	 control	 group	 is	 to—wait	 for	 it—create	 a	 treatment	 and	 control
group.	There	are	two	big	challenges	to	this	approach.	First,	there	are	many	kinds
of	experiments	that	we	cannot	perform	on	people.	This	constraint	(I	hope)	is	not
going	 away	 anytime	 soon.	 As	 a	 result,	 we	 can	 do	 controlled	 experiments	 on
human	subjects	only	when	there	is	reason	to	believe	that	the	treatment	effect	has
a	potentially	positive	outcome.	This	is	often	not	the	case	(e.g.,	“treatments”	like
experimenting	with	drugs	or	dropping	out	of	high	school),	which	is	why	we	need
the	strategies	introduced	in	the	balance	of	the	chapter.
Second,	 there	 is	 a	 lot	 more	 variation	 among	 people	 than	 among	 laboratory

rats.	The	treatment	effect	that	we	are	testing	could	easily	be	confounded	by	other
variations	in	the	treatment	and	control	groups;	you	are	bound	to	have	tall	people,
short	people,	sick	people,	healthy	people,	males,	females,	criminals,	alcoholics,
investment	bankers,	and	so	on.	How	can	we	ensure	that	differences	across	these
other	characteristics	don’t	mess	up	the	results?	I	have	good	news:	This	is	one	of
those	rare	 instances	 in	 life	 in	which	 the	best	approach	 involves	 the	 least	work!
The	optimal	way	 to	 create	 any	 treatment	 and	control	group	 is	 to	distribute	 the
study	participants	randomly	across	the	two	groups.	The	beauty	of	randomization
is	that	it	will	generally	distribute	the	non-treatment-related	variables	more	or	less
evenly	between	the	two	groups—both	the	characteristics	that	are	obvious,	such
as	sex,	race,	age,	and	education	and	the	nonobservable	characteristics	that	might
otherwise	mess	up	the	results.
Think	 about	 it:	 If	 we	 have	 1,000	 females	 in	 our	 prospective	 sample,	 then

when	we	split	the	sample	randomly	into	two	groups,	the	most	likely	outcome	is



that	 500	 females	 will	 end	 up	 in	 each.	 Obviously	 we	 can’t	 expect	 that	 split
exactly,	but	once	again	probability	is	our	friend.	The	probability	is	low	that	one
group	 will	 get	 a	 disproportionate	 number	 of	 women	 (or	 a	 disproportionate
number	of	individuals	with	any	other	characteristic).	For	example,	if	we	have	a
sample	of	1,000	people,	half	of	whom	are	women,	there	is	less	than	a	1	percent
chance	of	getting	 fewer	 than	450	women	 in	one	group	or	 the	other.	Obviously
the	bigger	the	samples,	the	more	effective	randomization	will	be	in	creating	two
broadly	similar	groups.
Medical	 trials	 typically	 aspire	 to	 do	 randomized,	 controlled	 experiments.

Ideally	these	clinical	trials	are	double-blind,	meaning	that	neither	the	patient	nor
the	physician	knows	who	is	receiving	the	treatment	and	who	is	getting	a	placebo.
This	 is	 obviously	 impossible	with	 treatments	 such	 as	 surgical	 procedures	 (the
heart	surgeon	will,	one	hopes,	know	which	patients	are	getting	bypass	surgery).
Even	with	surgical	procedures,	however,	it	may	still	be	possible	to	keep	patients
from	learning	whether	they	are	in	the	treatment	or	the	control	group.	One	of	my
favorite	 studies	 involved	 an	 evaluation	 of	 a	 certain	 kind	 of	 knee	 surgery	 to
alleviate	pain.	The	treatment	group	was	given	the	surgery.	The	control	group	was
given	a	“sham”	surgery	in	which	the	surgeon	made	three	small	incisions	in	the
knee	and	“pretended	to	operate.”*	It	turned	out	that	the	real	surgery	was	no	more
effective	than	the	sham	surgery	in	relieving	knee	pain.1
Randomized	 trials	 can	 be	 used	 to	 test	 some	 interesting	 phenomena.	 For

example,	 do	 prayers	 offered	 by	 strangers	 improve	 postsurgical	 outcomes?
Reasonable	people	have	widely	varying	views	on	religion,	but	a	study	published
in	 the	 American	 Heart	 Journal	 conducted	 a	 controlled	 study	 that	 examined
whether	 patients	 recovering	 from	 heart	 bypass	 surgery	 would	 have	 fewer
postoperative	 complications	 if	 a	 large	 group	 of	 strangers	 prayed	 for	 their	 safe
and	speedy	recovery.2	The	study	involved	1,800	patients	and	members	of	three
religious	 congregations	 from	 across	 the	 country.	 The	 patients,	 all	 of	 whom
received	coronary	bypass	surgery,	were	divided	into	three	groups:	one	group	was
not	prayed	for;	one	group	was	prayed	for	and	was	told	so;	 the	third	group	was
prayed	for,	but	the	participants	in	that	group	were	told	that	they	might	or	might
not	receive	prayers	(thereby	controlling	for	a	prayer	placebo	effect).	Meanwhile,
the	members	of	the	religious	congregations	were	told	to	offer	prayers	for	specific
patients	by	 first	name	and	 the	 first	 initial	of	 their	 last	name	 (e.g.,	Charlie	W.).
The	congregants	were	given	latitude	in	how	they	prayed,	so	long	as	 the	prayer
included	the	phrase	“for	a	successful	surgery	with	a	quick,	healthy	recovery	and
no	complications.”



And?	 Will	 prayer	 be	 the	 cost-effective	 solution	 to	 America’s	 health	 care
challenges?	Probably	not.	The	researchers	did	not	find	any	difference	in	the	rate
of	 complications	 within	 thirty	 days	 of	 surgery	 for	 those	 who	 were	 offered
prayers	 compared	with	 those	who	were	 not.	Critics	 of	 the	 study	pointed	out	 a
potential	omitted	variable:	prayers	coming	from	other	sources.	As	the	New	York
Times	 summarized,	 “Experts	 said	 the	 study	 could	 not	 overcome	 perhaps	 the
largest	 obstacle	 to	 prayer	 study:	 the	 unknown	 amount	 of	 prayer	 each	 person
received	 from	 friends,	 families,	 and	 congregations	 around	 the	world	who	pray
daily	for	the	sick	and	dying.”

Experimenting	on	humans	can	get	you	arrested,	or	perhaps	hauled	off	to	appear
before	 some	 international	 criminal	 tribunal.	 You	 should	 be	 aware	 of	 this.
However,	 there	 is	 still	 room	 in	 the	 social	 sciences	 for	 randomized,	 controlled
experiments	involving	“human	subjects.”	One	famous	and	influential	experiment
is	 the	 Tennessee	 Project	 STAR	 experiment,	which	 tested	 the	 effect	 of	 smaller
class	sizes	on	student	learning.	The	relationship	between	class	size	and	learning
is	 hugely	 important.	 Nations	 around	 the	 world	 are	 struggling	 to	 improve
educational	outcomes.	If	smaller	classes	promote	more	effective	learning,	ceteris
paribus,	then	society	ought	to	invest	in	hiring	more	teachers	to	bring	class	sizes
down.	 At	 the	 same	 time,	 hiring	 teachers	 is	 expensive;	 if	 students	 in	 smaller
classes	 are	 doing	better	 for	 reasons	unrelated	 to	 the	 size	 of	 the	 class,	 then	we
could	end	up	wasting	an	enormous	amount	of	money.
The	 relationship	 between	 class	 size	 and	 student	 achievement	 is	 surprisingly

hard	 to	 study.	 Schools	 with	 small	 classes	 generally	 have	 greater	 resources,
meaning	 that	both	 the	 students	 and	 the	 teachers	 are	 likely	 to	be	different	 from
students	and	teachers	in	schools	with	larger	classes.	And	within	schools,	smaller
classes	tend	to	be	smaller	for	a	reason.	A	principal	may	assign	difficult	students
to	 a	 small	 class,	 in	which	 case	we	might	 find	 a	 spurious	 negative	 association
between	 smaller	 classes	 and	 student	 achievement.	 Or	 veteran	 teachers	 may
choose	 to	 teach	 small	 classes,	 in	which	 case	 the	 benefit	 of	 small	 classes	may
come	 from	 the	 teachers	who	 choose	 to	 teach	 them	 rather	 than	 from	 the	 lower
pupil-teacher	ratio.
Beginning	in	1985,	Tennessee’s	Project	STAR	did	a	controlled	experiment	to

test	the	effects	of	smaller	classes.3	(Lamar	Alexander	was	governor	of	Tennessee
at	 the	 time;	he	 later	went	on	 to	become	secretary	of	education	under	President
George	H.	W.	Bush.)	In	kindergarten,	students	in	seventy-nine	different	schools
were	randomly	assigned	to	either	a	small	class	(13–17	students),	a	regular	class



(22–25	students),	or	a	 regular	class	with	both	a	 regular	 teacher	and	a	 teacher’s
aide.	Teachers	were	also	randomly	assigned	to	the	different	classrooms.	Students
stayed	 in	 the	 class	 type	 to	 which	 they	 were	 randomly	 assigned	 through	 third
grade.	Assorted	life	realities	chipped	away	at	the	randomization.	Some	students
entered	 the	 system	 in	 the	middle	of	 the	experiment;	others	 left.	Some	students
were	moved	 from	class	 to	 class	 for	disciplinary	 reasons;	 some	parents	 lobbied
successfully	to	have	students	moved	to	smaller	classes.	And	so	on.
Still,	Project	STAR	remains	the	only	randomized	test	of	the	effects	of	smaller

classes.	The	results	turned	out	to	be	statistically	and	socially	significant.	Overall,
students	 in	 the	 small	 classes	 performed	 .15	 standard	 deviations	 better	 on
standardized	 tests	 than	 students	 in	 the	 regular-size	 classes;	 black	 students	 in
small	classes	had	gains	that	were	twice	as	large.	Now	the	bad	news.	The	Project
STAR	experiment	cost	roughly	$12	million.	The	study	on	the	effect	of	prayer	on
postsurgical	complications	cost	$2.4	million.	The	finest	studies	are	like	the	finest
of	anything	else:	They	cost	big	bucks.

Natural	 experiment.	 Not	 everybody	 has	 millions	 of	 dollars	 lying	 around	 to
create	 a	 large,	 randomized	 trial.	A	more	 economical	 alternative	 is	 to	 exploit	 a
natural	experiment,	which	happens	when	random	circumstances	somehow	create
something	 approximating	 a	 randomized,	 controlled	 experiment.	 This	 was	 the
case	with	our	Washington,	D.C.,	police	example	at	the	beginning	of	the	chapter.
Life	 sometimes	 creates	 a	 treatment	 and	 control	 group	 by	 accident;	 when	 that
occurs,	 researchers	 are	 eager	 to	 leap	 on	 the	 results.	 Consider	 the	 striking	 but
complicated	 link	 between	 education	 and	 longevity.	 People	 who	 get	 more
education	 tend	 to	 live	 longer,	even	after	controlling	 for	 things	 like	 income	and
access	to	health	care.	As	the	New	York	Times	has	noted,	“The	one	social	factor
that	 researchers	 agree	 is	 consistently	 linked	 to	 longer	 lives	 in	 every	 country
where	 it	 has	 been	 studied	 is	 education.	 It	 is	 more	 important	 than	 race;	 it
obliterates	 any	 effects	 of	 income.”4	 But	 so	 far,	 that’s	 just	 a	 correlation.	 Does
more	 education,	 ceteris	 paribus,	 cause	 better	 health?	 If	 you	 think	 of	 the
education	 itself	 as	 the	 “treatment,”	will	 getting	more	 education	make	 you	 live
longer?
This	would	appear	 to	be	a	nearly	 impossible	question	 to	study,	since	people

who	 choose	 to	 get	 more	 education	 are	 different	 from	 people	 who	 don’t.	 The
difference	between	high	school	graduates	and	college	graduates	is	not	just	four
years	 of	 schooling.	 There	 could	 easily	 be	 some	 unobservable	 characteristics
shared	 by	 people	 who	 pursue	 education	 that	 also	 explain	 their	 longer	 life



expectancy.	If	that	is	the	case,	offering	more	education	to	those	who	would	have
chosen	less	education	won’t	actually	improve	their	health.	The	improved	health
would	not	be	a	function	of	the	incremental	education;	it	would	be	a	function	of
the	kind	of	people	who	pursue	that	incremental	education.
We	 cannot	 conduct	 a	 randomized	 experiment	 to	 solve	 this	 conundrum,

because	 that	would	 involve	making	some	participants	 leave	school	earlier	 than
they	would	 like.	 (You	 try	 explaining	 to	 someone	 that	he	 can’t	go	 to	 college—
ever—because	he	 is	 in	 the	control	group.)	The	only	possible	 test	of	 the	causal
effect	of	education	on	longevity	would	be	some	kind	of	experiment	that	forced	a
large	segment	of	the	population	to	stay	in	school	longer	than	its	members	might
otherwise	choose.	That’s	at	 least	morally	acceptable	since	we	expect	a	positive
treatment	 effect.	 Still,	 we	 can’t	 force	 kids	 to	 stay	 in	 school;	 that’s	 not	 the
American	way.
Oh,	 but	 it	 is.	Every	 state	 has	 some	kind	 of	minimum	 schooling	 law,	 and	 at

different	 points	 in	 history	 those	 laws	 have	 changed.	 That	 kind	 of	 exogenous
change	in	schooling	attainment—meaning	that	it’s	not	caused	by	the	individuals
being	 studied—is	exactly	 the	kind	of	 thing	 that	makes	 researchers	 swoon	with
excitement.	 Adriana	 Lleras-Muney,	 a	 graduate	 student	 at	 Columbia,	 saw	 the
research	potential	 in	 the	 fact	 that	different	 states	have	changed	 their	minimum
schooling	laws	at	different	points	in	time.	She	went	back	in	history	and	studied
the	relationship	between	when	states	changed	their	minimum	schooling	laws	and
later	changes	in	life	expectancy	in	those	states	(by	trolling	through	lots	and	lots
of	 census	data).	She	 still	 had	 a	methodological	 challenge;	 if	 the	 residents	 of	 a
state	 live	 longer	 after	 the	 state	 raises	 its	 minimum	 schooling	 law,	 we	 cannot
attribute	the	longevity	to	the	extra	schooling.	Life	expectancy	is	generally	going
up	over	time.	People	lived	longer	in	1900	than	in	1850,	no	matter	what	the	states
did.
However,	Lleras-Muney	had	a	natural	control:	states	that	did	not	change	their

minimum	schooling	laws.	Her	work	approximates	a	giant	laboratory	experiment
in	which	 the	 residents	 of	 Illinois	 are	 forced	 to	 stay	 in	 school	 for	 seven	 years
while	their	neighbors	in	Indiana	can	leave	school	after	six	years.	The	difference
is	 that	 this	controlled	experiment	was	made	possible	by	a	historical	accident—
hence	the	term	“natural	experiment.”
What	happened?	Life	expectancy	of	those	adults	who	reached	age	thirty-five

was	 extended	 by	 an	 extra	 one	 and	 a	 half	 years	 just	 by	 their	 attending	 one
additional	year	of	school.5	Lleras-Muney’s	results	have	been	replicated	in	other
countries	 where	 variations	 in	 mandatory	 schooling	 laws	 have	 created	 similar



natural	experiments.	Some	skepticism	is	in	order.	We	still	do	not	understand	the
mechanism	by	which	additional	schooling	leads	to	longer	lives.

Nonequivalent	 control.	 Sometimes	 the	 best	 available	 option	 for	 studying	 a
treatment	 effect	 is	 to	 create	 nonrandomized	 treatment	 and	 control	 groups.	Our
hope/expectation	 is	 that	 the	 two	 groups	 are	 broadly	 similar	 even	 though
circumstances	 have	 not	 allowed	 us	 the	 statistical	 luxury	 of	 randomizing.	 The
good	news	is	that	we	have	a	treatment	and	a	control	group.	The	bad	news	is	that
any	nonrandom	assignment	creates	at	least	the	potential	for	bias.	There	may	be
unobserved	differences	between	the	treatment	and	control	groups	related	to	how
participants	 are	 assigned	 to	 one	 group	 or	 the	 other.	 Hence	 the	 name
“nonequivalent	control.”
A	nonequivalent	control	group	can	still	be	a	very	helpful	tool.	Let’s	ponder	the

question	posed	in	the	title	of	this	chapter:	Is	there	a	significant	life	advantage	to
attending	 a	 highly	 selective	 college	 or	 university?	 Obviously	 the	 Harvard,
Princeton,	and	Dartmouth	graduates	of	the	world	do	very	well.	On	average,	they
earn	more	money	and	have	more	expansive	life	opportunities	than	students	who
attend	less	selective	institutions.	(A	2008	study	by	PayScale.com	found	that	the
median	 pay	 for	 Dartmouth	 graduates	 with	 ten	 to	 twenty	 years	 of	 work
experience	was	$134,000,	the	highest	of	any	undergraduate	institution;	Princeton
was	 second	with	a	median	of	$131,000.)6	As	 I	hope	you	 realize	by	 this	point,
these	 impressive	 numbers	 tell	 us	 absolutely	 nothing	 about	 the	 value	 of	 a
Dartmouth	 or	 Princeton	 education.	 Students	 who	 attend	 Dartmouth	 and
Princeton	 are	 talented	 when	 they	 apply;	 that’s	 why	 they	 get	 accepted.	 They
would	probably	do	well	in	life	no	matter	where	they	went	to	college.
What	we	don’t	know	is	the	treatment	effect	of	attending	a	place	like	Harvard

or	Yale.	Do	the	graduates	of	these	elite	institutions	do	well	in	life	because	they
were	 hyper-talented	when	 they	walked	onto	 the	 campus?	Or	 do	 these	 colleges
and	universities	add	value	by	taking	talented	individuals	and	making	them	even
more	productive?	Or	both?
We	 cannot	 conduct	 a	 randomized	 experiment	 to	 answer	 this	 question.	 Few

high	 school	 students	 would	 agree	 to	 be	 randomly	 assigned	 to	 a	 college;	 nor
would	 Harvard	 and	 Dartmouth	 be	 particularly	 keen	 about	 taking	 the	 students
randomly	 assigned	 to	 them.	We	 appear	 to	 be	 left	 without	 any	mechanism	 for
testing	 the	 value	 of	 the	 treatment	 effect.	Cleverness	 to	 the	 rescue!	Economists
Stacy	Dale	and	Alan	Krueger	found	a	way	to	answer	this	question	by	exploiting*

the	fact	 that	many	students	apply	to	multiple	colleges.7	Some	of	those	students



are	accepted	at	a	highly	selective	school	and	choose	to	attend	that	school;	others
are	 accepted	 at	 a	 highly	 selective	 school	 but	 choose	 to	 attend	 a	 less	 selective
college	 or	 university	 instead.	 Bingo!	 Now	 we	 have	 a	 treatment	 group	 (those
students	 who	 attended	 highly	 selective	 colleges	 and	 universities)	 and	 a
nonequivalent	 control	 group	 (those	 students	who	 were	 talented	 enough	 to	 be
accepted	 by	 such	 a	 school	 but	 opted	 to	 attend	 a	 less	 selective	 institution
instead).†
Dale	 and	Krueger	 studied	 longitudinal	 data	 on	 the	 earnings	 of	 both	 groups.

This	is	not	a	perfect	apples-and-apples	comparison,	and	earnings	are	clearly	not
the	only	life	outcome	that	matters,	but	their	findings	should	assuage	the	anxieties
of	 overwrought	 high	 school	 students	 and	 their	 parents.	 Students	who	 attended
more	selective	colleges	earned	roughly	the	same	as	students	of	seemingly	similar
ability	who	attended	less	selective	schools.	The	one	exception	was	students	from
low-income	 families,	who	 earned	more	 if	 they	 attended	 a	 selective	 college	 or
university.	 The	 Dale	 and	 Krueger	 approach	 is	 an	 elegant	 way	 to	 sort	 out	 the
treatment	 effect	 (spending	 four	 years	 at	 an	 elite	 institution)	 from	 the	 selection
effect	 (the	 most	 talented	 students	 are	 admitted	 to	 those	 institutions).	 In	 a
summary	 of	 the	 research	 for	 the	 New	 York	 Times,	 Alan	 Krueger	 indirectly
answered	 the	 question	 posed	 in	 the	 title	 of	 this	 chapter,	 “Recognize	 that	 your
own	motivation,	ambition,	and	talents	will	determine	your	success	more	than	the
college	name	on	your	diploma.”8

Difference	in	differences.	One	of	the	best	ways	to	observe	cause	and	effect	is	to
do	 something	 and	 then	 see	 what	 happens.	 This	 is,	 after	 all,	 how	 infants	 and
toddlers	 (and	 sometimes	 adults)	 learn	 about	 the	world.	My	children	were	very
quick	 to	 learn	 that	 if	 they	hurled	pieces	of	 food	across	 the	kitchen	(cause),	 the
dog	 would	 race	 eagerly	 after	 them	 (effect).	 Presumably	 the	 same	 power	 of
observation	 can	 help	 inform	 the	 rest	 of	 life.	 If	we	 cut	 taxes	 and	 the	 economy
improves,	then	the	tax	cuts	must	have	been	responsible.
Maybe.	The	enormous	potential	pitfall	with	this	approach	is	that	life	tends	to

be	more	complex	than	throwing	chicken	nuggets	across	the	kitchen.	Yes,	we	may
have	cut	 taxes	 at	 a	 specific	point	 in	 time,	but	 there	were	other	 “interventions”
unfolding	during	roughly	the	same	stretch:	More	women	were	going	to	college,
the	Internet	and	other	technological	innovations	were	raising	the	productivity	of
American	 workers,	 the	 Chinese	 currency	 was	 undervalued,	 the	 Chicago	 Cubs
fired	 their	 general	 manager,	 and	 so	 on.	 Whatever	 happened	 after	 the	 tax	 cut
cannot	 be	 attributed	 solely	 to	 the	 tax	 cut.	The	 challenge	with	 any	 “before	 and



after”	 kind	 of	 analysis	 is	 that	 just	 because	 one	 thing	 follows	 another	 does	 not
mean	that	there	is	a	causal	relationship	between	the	two.
A	“difference	in	differences”	approach	can	help	us	identify	the	effects	of	some

intervention	by	doing	two	things.	First,	we	examine	the	“before”	and	“after”	data
for	 whatever	 group	 or	 jurisdiction	 has	 received	 the	 treatment,	 such	 as	 the
unemployment	figures	for	a	county	that	has	implemented	a	job	training	program.
Second,	we	 compare	 those	data	with	 the	unemployment	 figures	over	 the	 same
time	period	for	a	similar	county	that	did	not	implement	any	such	program.
The	 important	 assumption	 is	 that	 the	 two	 groups	 used	 for	 the	 analysis	 are

largely	 comparable	 except	 for	 the	 treatment;	 as	 a	 result,	 any	 significant
difference	in	outcomes	between	the	two	groups	can	be	attributed	to	the	program
or	 policy	 being	 evaluated.	 For	 example,	 suppose	 that	 one	 county	 in	 Illinois
implements	 a	 job	 training	 program	 to	 combat	 high	 unemployment.	 Over	 the
ensuing	two	years,	the	unemployment	rate	continues	to	rise.	Does	that	make	the
program	a	failure?	Who	knows?

Effect	of	Job	Training	on	Unemployment	in	County	A

Other	broad	economic	 forces	may	be	at	work,	 including	 the	possibility	of	 a
prolonged	 economic	 slump.	 A	 difference-in-differences	 approach	 would
compare	 the	 change	 in	 the	unemployment	 rate	over	 time	 in	 the	 county	we	 are
evaluating	 with	 the	 unemployment	 rate	 for	 a	 neighboring	 county	 with	 no	 job
training	program;	the	two	counties	must	be	similar	in	all	other	important	ways:
industry	mix,	demographics,	and	so	on.	How	does	the	unemployment	rate	in	the
county	with	the	new	job	training	program	change	over	time	relative	to	the	county
that	did	not	implement	such	a	program?	We	can	reasonably	infer	 the	treatment



effect	 of	 the	 program	 by	 comparing	 the	 changes	 in	 the	 two	 counties	 over	 the
period	of	study—the	“difference	in	differences.”	The	other	county	in	this	study
is	effectively	acting	as	a	control	group,	which	allows	us	to	take	advantage	of	the
data	collected	before	and	after	 the	 intervention.	 If	 the	control	group	 is	good,	 it
will	 be	 exposed	 to	 the	 same	 broader	 forces	 as	 our	 treatment	 group.	 The
difference-in-differences	 approach	 can	 be	 particularly	 enlightening	 when	 the
treatment	initially	appears	ineffective	(unemployment	is	higher	after	the	program
is	implemented	than	before),	yet	the	control	group	shows	us	that	the	trend	would
have	been	even	worse	in	the	absence	of	the	intervention.

Effect	of	Job	Training	on	Unemployment	in	County	A,	with
County	B	as	a	Comparison

Discontinuity	analysis.	One	way	to	create	a	treatment	and	control	group	is	to
compare	the	outcomes	for	some	group	that	barely	qualified	for	an	intervention	or
treatment	with	the	outcomes	for	a	group	that	just	missed	the	cutoff	for	eligibility
and	did	not	receive	the	treatment.	Those	individuals	who	fall	just	above	and	just
below	 some	 arbitrary	 cutoff,	 such	 as	 an	 exam	 score	 or	 a	minimum	household
income,	will	 be	 nearly	 identical	 in	many	 important	 respects;	 the	 fact	 that	 one
group	 received	 the	 treatment	 and	 the	 other	 didn’t	 is	 essentially	 arbitrary.	As	 a
result,	we	can	compare	 their	outcomes	 in	ways	 that	provide	meaningful	 results
about	the	effectiveness	of	the	relevant	intervention.
Suppose	a	school	district	requires	summer	school	for	struggling	students.	The

district	 would	 like	 to	 know	 whether	 the	 summer	 program	 has	 any	 long-term
academic	value.	As	usual,	a	simple	comparison	between	the	students	who	attend



summer	school	and	those	who	do	not	would	be	worse	than	useless.	The	students
who	 attend	 summer	 school	 are	 there	 because	 they	 are	 struggling.	 Even	 if	 the
summer	 school	 program	 is	 highly	 effective,	 the	 participating	 students	 will
probably	still	do	worse	in	the	long	run	than	the	students	who	were	not	required
to	 take	 summer	 school.	What	we	want	 to	know	 is	how	 the	 struggling	 students
perform	after	taking	summer	school	compared	with	how	they	would	have	done	if
they	 had	not	 taken	 summer	 school.	Yes,	we	 could	 do	 some	 kind	 of	 controlled
experiment	in	which	struggling	students	are	randomly	selected	to	attend	summer
school	 or	 not,	 but	 that	 would	 involve	 denying	 the	 control	 group	 access	 to	 a
program	that	we	think	would	be	helpful.
Instead,	 the	 treatment	 and	 control	 groups	 are	 created	 by	 comparing	 those

students	who	just	barely	fell	below	the	threshold	for	summer	school	with	those
who	just	barely	escaped	it.	Think	about	 it:	 the	students	who	fail	a	midterm	are
appreciably	 different	 from	 students	who	 do	 not	 fail	 the	midterm.	But	 students
who	get	a	59	percent	 (a	 failing	grade)	are	not	appreciably	different	 from	those
students	who	get	a	60	percent	(a	passing	grade).	 If	 those	who	fail	 the	midterm
are	enrolled	 in	 some	 treatment,	 such	as	mandatory	 tutoring	 for	 the	 final	 exam,
then	we	would	have	a	 reasonable	 treatment	 and	control	group	 if	we	compared
the	 final	 exam	 scores	 of	 those	 who	 barely	 failed	 the	 midterm	 (and	 received
tutoring)	with	the	scores	of	those	who	barely	passed	the	midterm	(and	did	not	get
tutoring).
This	 approach	 was	 used	 to	 determine	 the	 effectiveness	 of	 incarceration	 for

juvenile	offenders	as	a	deterrent	to	future	crime.	Obviously	this	kind	of	analysis
cannot	 simply	 compare	 the	 recidivism	 rates	 of	 juvenile	 offenders	 who	 are
imprisoned	with	the	recidivism	rates	for	juvenile	offenders	who	received	lighter
sentences.	The	juvenile	offenders	who	are	sent	 to	prison	typically	commit	more
serious	crimes	 than	 the	 juvenile	offenders	who	receive	 lighter	sentences;	 that’s
why	 they	 go	 to	 prison.	 Nor	 can	 we	 create	 a	 treatment	 and	 control	 group	 by
distributing	 prison	 sentences	 randomly	 (unless	 you	 want	 to	 risk	 twenty-five
years	in	the	big	house	the	next	time	you	make	an	illegal	right	turn	on	red).	Randi
Hjalmarsson,	 a	 researcher	 now	 at	 the	 University	 of	 London,	 exploited	 rigid
sentencing	guidelines	 for	 juvenile	offenders	 in	 the	 state	of	Washington	 to	gain
insight	 into	 the	 causal	 effect	 of	 a	 prison	 sentence	 on	 future	 criminal	 behavior.
Specifically,	she	compared	the	recidivism	rate	for	those	juvenile	offenders	who
were	 “just	 barely”	 sentenced	 to	 prison	 with	 the	 recidivism	 rate	 for	 those
juveniles	 who	 “just	 barely”	 got	 a	 pass	 (which	 usually	 involved	 a	 fine	 or
probation).9



The	 Washington	 criminal	 justice	 system	 creates	 a	 grid	 for	 each	 convicted
offender	 that	 is	 used	 to	 administer	 a	 sentence.	 The	 x-axis	 measures	 the
offender’s	prior	adjudicated	offenses.	For	example,	each	prior	 felony	counts	as
one	point;	each	prior	misdemeanor	counts	as	one-quarter	point.	The	point	total	is
rounded	down	to	a	whole	number	(which	will	matter	in	a	moment).	Meanwhile,
the	y-axis	measures	the	severity	of	 the	current	offense	on	a	scale	from	E	(least
serious)	 to	 A+	 (most	 serious).	 A	 convicted	 juvenile’s	 sentence	 is	 literally
calculated	 by	 finding	 the	 appropriate	 box	 on	 the	 grid:	 An	 offender	 with	 two
points’	worth	of	prior	offenses	who	commits	a	Class	B	felony	will	receive	fifteen
to	thirty-six	months	in	a	juvenile	jail.	A	convicted	offender	with	only	one	point
worth	of	prior	offenses	who	commits	the	same	crime	will	not	be	sent	to	jail.	That
discontinuity	is	what	motivated	the	research	strategy.	Hjalmarsson	compared	the
outcomes	 for	 convicted	offenders	who	 fell	 just	 above	 and	below	 the	 threshold
for	 a	 jail	 sentence.	As	 she	 explains	 in	 the	 paper,	 “If	 there	 are	 two	 individuals
with	a	current	offense	class	of	C+	and	[prior]	adjudication	scores	of	2¾	and	3,
then	only	the	latter	individual	will	be	sentenced	to	state	incarceration.”
For	 research	purposes,	 those	 two	 individuals	 are	 essentially	 the	 same—until

one	of	them	goes	to	jail.	And	at	that	point,	their	behavior	does	appear	to	diverge
sharply.	The	juvenile	offenders	who	go	to	jail	are	significantly	less	likely	to	be
convicted	of	another	crime	(after	they	are	released	from	jail).

We	care	about	what	works.	This	is	true	in	medicine,	in	economics,	in	business,
in	criminal	justice—in	everything.	Yet	causality	is	a	tough	nut	to	crack,	even	in
cases	where	cause	and	effect	seems	stunningly	obvious.	To	understand	the	true
impact	 of	 a	 treatment,	 we	 need	 to	 know	 the	 “counterfactual,”	 which	 is	 what
would	have	happened	in	the	absence	of	that	treatment	or	intervention.	Often	the
counterfactual	 is	 difficult	 or	 impossible	 to	 observe.	 Consider	 a	 nonstatistics
example:	Did	the	U.S.	invasion	of	Iraq	make	America	safer?
There	 is	 only	 one	 intellectually	 honest	 answer:	 We	 will	 never	 know.	 The

reason	we	will	 never	 know	 is	 that	we	 do	 not	 know—and	 cannot	 know—what
would	have	happened	if	the	United	States	had	not	invaded	Iraq.	True,	the	United
States	did	not	find	weapons	of	mass	destruction.	But	it	is	possible	that	on	the	day
after	the	United	States	did	not	invade	Iraq	Saddam	Hussein	could	have	climbed
into	 the	 shower	 and	 said	 to	 himself,	 “I	 could	 really	 use	 a	 hydrogen	 bomb.	 I
wonder	if	the	North	Koreans	will	sell	me	one?”	After	that,	who	knows?
Of	course,	it’s	also	possible	that	Saddam	Hussein	could	have	climbed	into	that

same	shower	on	the	day	after	the	United	States	did	not	invade	Iraq	and	said	to



himself,	“I	could	really	use—”	at	which	point	he	slipped	on	a	bar	of	soap,	hit	his
head	on	an	ornate	marble	fixture,	and	died.	In	 that	case,	 the	world	would	have
been	rid	of	Saddam	Hussein	without	the	enormous	costs	associated	with	the	U.S.
invasion.	Who	knows	what	would	have	happened?
The	 purpose	 of	 any	 program	 evaluation	 is	 to	 provide	 some	 kind	 of

counterfactual	against	which	a	treatment	or	intervention	can	be	measured.	In	the
case	 of	 a	 randomized,	 controlled	 experiment,	 the	 control	 group	 is	 the
counterfactual.	In	cases	where	a	controlled	experiment	is	impractical	or	immoral,
we	 need	 to	 find	 some	 other	 way	 of	 approximating	 the	 counterfactual.	 Our
understanding	of	the	world	depends	on	finding	clever	ways	to	do	that.

*	 The	 participants	 did	 know	 that	 they	 were	 participating	 in	 a	 clinical	 trial	 and	might	 receive	 the	 sham
surgery.
*	Researchers	 love	 to	 use	 the	word	 “exploit.”	 It	 has	 a	 specific	meaning	 in	 terms	of	 taking	 advantage	 of
some	data-related	opportunity.	For	example,	when	researchers	find	some	natural	experiment	that	creates	a
treatment	and	control	group,	they	will	describe	how	they	plan	to	“exploit	the	variation	in	the	data.”
†	There	is	potential	for	bias	here.	Both	groups	of	students	are	talented	enough	to	get	into	a	highly	selective
school.	However,	one	group	of	students	chose	to	go	to	such	a	school,	and	the	other	group	did	not.	The	group
of	students	who	chose	to	attend	a	less	selective	school	may	be	less	motivated,	less	hardworking,	or	different
in	 some	 other	ways	 that	we	 cannot	 observe.	 If	Dale	 and	Krueger	 had	 found	 that	 students	who	 attend	 a
highly	selective	school	had	higher	lifetime	earnings	than	students	who	were	accepted	at	such	a	school	but
went	to	a	less	selective	college	instead,	we	still	could	not	be	certain	whether	the	difference	was	due	to	the
selective	 school	 or	 to	 the	 kind	 of	 student	who	 opted	 to	 attend	 such	 a	 school	when	 given	 a	 choice.	 This
potential	bias	turns	out	to	be	unimportant	in	the	Dale	and	Krueger	study,	however,	because	of	its	direction.
Dale	 and	Krueger	 find	 that	 the	 students	who	 attended	highly	 selective	 schools	 did	 not	 earn	 significantly
more	 in	 life	 than	 students	who	were	 accepted	 but	went	 elsewhere	despite	 the	 fact	 that	 the	 students	who
declined	 to	attend	a	highly	selective	school	may	have	had	attributes	 that	caused	 them	to	earn	 less	 in	 life
apart	from	their	education.	If	anything,	the	bias	here	causes	the	findings	to	overstate	the	pecuniary	benefits
of	attending	a	highly	selective	college—which	turn	out	to	be	insubstantial	anyway.



Conclusion
Five	questions	that	statistics

can	help	answer

Not	 that	 long	 ago,	 information	 was	 much	 harder	 to	 gather	 and	 far	 more
expensive	to	analyze.	Imagine	studying	the	information	from	one	million	credit
card	transactions	in	the	era—only	a	few	decades	back—when	there	were	merely
paper	 receipts	 and	 no	 personal	 computers	 for	 analyzing	 the	 accumulated	 data.
During	 the	 Great	 Depression,	 there	 were	 no	 official	 statistics	 with	 which	 to
gauge	the	depth	of	the	economic	problems.	Government	did	not	collect	official
information	on	either	gross	domestic	product	(GDP)	or	unemployment,	meaning
that	 politicians	 were	 attempting	 to	 do	 the	 economic	 equivalent	 of	 navigating
through	 a	 forest	 without	 a	 compass.	 Herbert	 Hoover	 declared	 that	 the	 Great
Depression	was	over	 in	1930,	on	 the	basis	of	 the	 inaccurate	and	outdated	data
that	were	available.	He	 told	 the	country	 in	his	State	of	Union	address	 that	 two
and	a	half	million	Americans	were	out	of	work.	In	fact,	five	million	Americans
were	jobless,	and	unemployment	was	climbing	by	one	hundred	thousand	every
week.	As	James	Surowiecki	recently	observed	in	The	New	Yorker,	“Washington
was	making	policy	in	the	dark.”1
We	 are	 now	 awash	 in	 data.	 For	 the	 most	 part,	 that	 is	 a	 good	 thing.	 The

statistical	tools	introduced	in	this	book	can	be	used	to	address	some	of	our	most
significant	social	challenges.	 In	 that	vein,	 I	 thought	 it	 fitting	 to	finish	 the	book
with	 questions,	 not	 answers.	 As	 we	 try	 to	 digest	 and	 analyze	 staggering
quantities	 of	 information,	 here	 are	 five	 important	 (and	 admittedly	 random)
questions	 whose	 socially	 significant	 answers	 will	 involve	 many	 of	 the	 tools
introduced	in	this	book.

WHAT	IS	THE	FUTURE	OF	FOOTBALL?
In	2009,	Malcolm	Gladwell	posed	a	question	 in	a	New	Yorker	 article	 that	 first



struck	me	 as	 needlessly	 sensationalist	 and	 provocative:	How	 different	 are	 dog
fighting	and	football?2	The	connection	between	the	two	activities	stemmed	from
the	 fact	 that	 quarterback	Michael	Vick,	who	had	 served	 time	 in	 prison	 for	 his
involvement	in	a	dog-fighting	ring,	had	been	reinstated	in	the	National	Football
League	 just	 as	 information	was	beginning	 to	 emerge	 that	 football-related	head
trauma	may	 be	 associated	with	 depression,	memory	 loss,	 dementia,	 and	 other
neurological	 problems	 later	 in	 life.	 Gladwell’s	 central	 premise	 was	 that	 both
professional	 football	 and	 dog	 fighting	 are	 inherently	 devastating	 to	 the
participants.	 By	 the	 end	 of	 the	 article,	 I	 was	 convinced	 that	 he	 had	 raised	 an
intriguing	point.
Here	is	what	we	know.	There	is	mounting	evidence	that	concussions	and	other

brain	injuries	associated	with	playing	football	can	cause	serious	and	permanent
neurological	 damage.	 (Similar	 phenomena	 have	 been	 observed	 in	 boxers	 and
hockey	players.)	Many	prominent	former	NFL	players	have	shared	publicly	their
post-football	 battles	with	 depression,	memory	 loss,	 and	 dementia.	 Perhaps	 the
most	poignant	was	Dave	Duerson,	a	 former	safety	and	Super	Bowl	winner	 for
the	Chicago	Bears,	who	committed	suicide	by	shooting	himself	in	the	chest;	he
left	explicit	instructions	for	his	family	to	have	his	brain	studied	after	his	death.
In	a	phone	survey	of	a	thousand	randomly	selected	former	NFL	players	who

had	played	at	 least	 three	years	 in	 the	 league,	6.1	percent	of	 the	 former	players
over	fifty	reported	that	they	had	received	a	diagnosis	of	“dementia,	Alzheimer’s
disease,	or	other	memory-related	disease.”	That’s	five	times	the	national	average
for	that	age	group.	For	younger	players,	the	rate	of	diagnosis	was	nineteen	times
the	national	average.	Hundreds	of	former	NFL	players	have	now	sued	both	the
league	and	the	makers	of	football	helmets	for	allegedly	hiding	information	about
the	dangers	of	head	trauma.3
One	of	 the	researchers	studying	 the	 impacts	of	brain	 trauma	 is	Ann	McKee,

who	 runs	 the	 neuropathology	 laboratory	 at	 the	 Veterans	 Hospital	 in	 Bedford,
Massachusetts.	 (Coincidentally,	McKee	also	does	 the	neuropathology	work	 for
the	 Framingham	 Heart	 Study.)	 Dr.	 McKee	 has	 documented	 the	 buildup	 of
abnormal	 proteins	 called	 tau	 in	 the	 brains	 of	 athletes	who	 have	 suffered	 brain
trauma,	such	as	boxers	and	football	players.	This	leads	to	a	condition	known	as
chronic	 traumatic	encephalopathy,	or	CTE,	which	is	a	progressive	neurological
disorder	that	has	many	of	the	same	manifestations	as	Alzheimer’s.
Meanwhile,	other	researchers	have	been	documenting	the	connection	between

football	and	brain	 trauma.	Kevin	Guskiewicz,	who	runs	 the	Sports	Concussion
Research	Program	at	the	University	of	North	Carolina,	has	installed	sensors	on



the	 inside	of	 the	helmets	of	North	Carolina	football	players	 to	record	 the	force
and	nature	of	blows	to	the	head.	According	to	his	data,	players	routinely	receive
blows	to	the	head	with	a	force	equivalent	to	hitting	the	windshield	in	a	car	crash
at	twenty-five	miles	per	hour.
Here	 is	what	we	 don’t	 know.	 Is	 the	 brain	 injury	 evidence	 uncovered	 so	 far

representative	 of	 the	 long-term	 neurological	 risks	 that	 all	 professional	 football
players	 face?	 Or	 might	 this	 just	 be	 a	 “cluster”	 of	 adverse	 outcomes	 that	 is	 a
statistical	 aberration?	 Even	 if	 it	 turns	 out	 that	 football	 players	 do	 face
significantly	 higher	 risks	 of	 neurological	 disorder	 later	 in	 life,	 we	 would	 still
have	 to	 probe	 the	 causality.	 Might	 the	 kind	 of	 men	 who	 play	 football	 (and
boxing	and	hockey)	be	prone	 to	 this	kind	of	problem?	 Is	 it	possible	 that	 some
other	factors,	such	as	steroid	use,	are	contributing	to	the	neurological	problems
later	in	life?
If	the	accumulating	evidence	does	suggest	a	clear,	causal	link	between	playing

football	 and	 long-term	 brain	 injury,	 one	 overriding	 question	 will	 have	 to	 be
addressed	 by	 players	 (and	 the	 parents	 of	 younger	 players),	 coaches,	 lawyers,
NFL	officials,	 and	perhaps	even	government	 regulators:	 Is	 there	a	way	 to	play
the	game	of	football	that	reduces	most	or	all	of	the	head	trauma	risk?	If	not,	then
what?	This	is	the	point	behind	Malcolm	Gladwell’s	comparison	of	football	and
dog	fighting.	He	explains	that	dog	fighting	is	abhorrent	to	the	public	because	the
dog	owner	willingly	submits	his	dog	to	a	contest	that	culminates	in	suffering	and
destruction.	“And	why?”	he	asks.	“For	the	entertainment	of	an	audience	and	the
chance	of	a	payday.	In	the	nineteenth	century,	dog	fighting	was	widely	accepted
by	the	American	public.	But	we	no	longer	find	that	kind	of	transaction	morally
acceptable	in	a	sport.”
Nearly	 every	 kind	 of	 statistical	 analysis	 described	 in	 this	 book	 is	 currently

being	used	to	figure	out	whether	or	not	professional	football	as	we	know	it	now
has	a	future.

WHAT	(IF	ANYTHING)	IS	CAUSING	THE
DRAMATIC	RISE	IN	THE	INCIDENCE	OF	AUTISM?
In	2012,	the	Centers	for	Disease	Control	reported	that	1	in	88	American	children
has	been	diagnosed	with	an	autism	spectrum	disorder	(on	the	basis	of	data	from
2008).4	The	rate	of	diagnosis	had	climbed	from	1	in	110	in	2006,	and	1	in	150	in
2002—or	 nearly	 a	 doubling	 in	 less	 than	 a	 decade.	Autism	 spectrum	 disorders
(ASDs)	 are	 a	 group	 of	 developmental	 disabilities	 characterized	 by	 atypical
development	 in	 socialization,	 communication,	 and	 behavior.	 The	 “spectrum”



indicates	 that	 autism	 encompasses	 a	 broad	 range	 of	 behaviorally	 defined
conditions.5	Boys	are	five	times	as	likely	to	be	diagnosed	with	an	ASD	as	girls
(meaning	that	the	incidence	for	boys	is	even	higher	than	1	in	88).
The	 first	 intriguing	 statistical	 question	 is	 whether	 we	 are	 experiencing	 an

epidemic	 of	 autism,	 an	 “epidemic	 of	 diagnosis,”	 or	 some	 combination	 of	 the
two?6	 In	 previous	 decades,	 children	 with	 an	 autism	 spectrum	 disorder	 had
symptoms	that	might	have	gone	undiagnosed,	or	their	developmental	challenges
might	 have	 been	 described	more	 generally	 as	 a	 “learning	 disability.”	Doctors,
parents,	 and	 teachers	 are	 now	 much	 more	 aware	 of	 the	 symptoms	 of	 ASDs,
which	 naturally	 leads	 to	 more	 diagnoses	 regardless	 of	 whether	 or	 not	 the
incidence	of	autism	is	on	the	rise.
In	 any	 case,	 the	 shockingly	 high	 incidence	 of	 ASDs	 represents	 a	 serious

challenge	 for	 families,	 for	 schools,	 and	 for	 the	 rest	 of	 society.	 The	 average
lifetime	cost	of	managing	an	autism	spectrum	disorder	for	a	single	individual	is
$3.5	million.7	 Despite	 what	 is	 clearly	 an	 epidemic,	 we	 know	 amazingly	 little
about	what	causes	the	condition.	Thomas	Insel,	director	of	the	National	Institute
of	Mental	Health,	 has	 said,	 “Is	 it	 cell	 phones?	Ultrasound?	Diet	 sodas?	Every
parent	has	a	theory.	At	this	point,	we	just	don’t	know.”8
What	is	different	or	unique	about	the	lives	and	backgrounds	of	children	with

ASDs?	What	are	the	most	significant	physiological	differences	between	children
with	and	without	an	ASD?	Is	the	incidence	of	ASDs	different	across	countries?
If	so,	why?	Traditional	statistical	detective	work	is	turning	up	clues.
One	 recent	 study	 by	 researchers	 at	 the	 University	 of	 California	 at	 Davis

identified	ten	locations	in	California	with	autism	rates	that	are	double	the	rates	of
surrounding	 areas;	 each	 of	 the	 autism	 clusters	 is	 a	 neighborhood	 with	 a
concentration	of	white,	highly	educated	parents.9	Is	that	a	clue,	or	a	coincidence?
Or	might	it	reflect	that	relatively	privileged	families	are	more	likely	to	have	an
autism	spectrum	disorder	diagnosed?	The	same	researchers	are	also	conducting	a
study	in	which	they	will	collect	dust	samples	from	the	homes	of	1,300	families
with	an	autistic	child	to	test	for	chemicals	or	other	environmental	contaminants
than	may	play	a	causal	role.
Meanwhile,	 other	 researchers	 have	 identified	 what	 appears	 to	 be	 a	 genetic

component	 to	autism	by	studying	ASDs	among	 identical	and	 fraternal	 twins.10
The	 likelihood	 that	 two	 children	 in	 the	 same	 family	 have	 an	 ASD	 is	 higher
among	 identical	 twins	 (who	 share	 the	 same	 genetic	 makeup)	 than	 among
fraternal	twins	(whose	genetic	similarity	is	the	same	as	for	regular	siblings).	This
finding	 does	 not	 rule	 out	 significant	 environmental	 factors,	 or	 perhaps	 the



interaction	 between	 environmental	 and	 genetic	 factors.	After	 all,	 heart	 disease
has	 a	 significant	 genetic	 component,	 but	 clearly	 smoking,	 diet,	 exercise,	 and
many	other	behavioral	and	environmental	factors	all	matter,	too.
One	of	the	most	important	contributions	of	statistical	analysis	so	far	has	been

to	 debunk	 false	 causes,	 many	 of	 which	 have	 arisen	 because	 of	 a	 confusion
between	 correlation	 and	 causation.	An	 autism	 spectrum	disorder	 often	 appears
suddenly	 between	 a	 child’s	 first	 and	 second	 birthdays.	 This	 has	 led	 to	 a
widespread	belief	that	childhood	vaccinations,	particularly	the	triple	vaccine	for
measles,	mumps,	and	rubella	(MMR),	are	causing	the	rising	incidence	of	autism.
Dan	Burton,	a	member	of	Congress	from	Indiana,	told	the	New	York	Times,	“My
grandson	received	nine	shots	 in	one	day,	 seven	of	which	contained	 thimerosal,
which	is	50	percent	mercury	as	you	know,	and	he	became	autistic	a	short	 time
later.”11
Scientists	have	soundly	refuted	 the	false	association	between	 thimerosal	and

ASDs.	 Autism	 rates	 did	 not	 decline	 when	 thimerosal	 was	 removed	 from	 the
MMR	 vaccine,	 nor	 are	 autism	 rates	 lower	 in	 countries	 that	 never	 used	 this
vaccine.	 Nonetheless,	 the	 false	 connection	 persists,	 which	 has	 caused	 some
parents	to	refuse	to	vaccinate	their	children.	Ironically,	this	offers	no	protection
against	autism	while	putting	children	at	risk	of	contracting	other	serious	diseases
(and	contributing	to	the	spread	of	those	diseases	in	the	population).
Autism	poses	one	of	the	greatest	medical	and	social	challenge	of	our	day.	We

understand	so	little	about	the	disorder	relative	to	its	huge	(and	possibly	growing)
impact	 on	 our	 collective	 well-being.	 Researchers	 are	 using	 every	 tool	 in	 this
book	(and	lots	more)	to	change	that.

HOW	CAN	WE	IDENTIFY	AND	REWARD
GOOD	TEACHERS	AND	SCHOOLS?
We	 need	 good	 schools.	 And	 we	 need	 good	 teachers	 in	 order	 to	 have	 good
schools.	 Thus,	 it	 follows	 logically	 that	we	 ought	 to	 reward	 good	 teachers	 and
good	schools	while	firing	bad	teachers	and	closing	bad	schools.
How	exactly	do	we	do	that?
Test	scores	give	us	an	objective	measure	of	student	performance.	Yet	we	know

that	 some	 students	 will	 do	 much	 better	 on	 standardized	 tests	 than	 others	 for
reasons	 that	have	nothing	 to	do	with	what	 is	going	on	 inside	a	classroom	or	a
school.	The	seemingly	simple	solution	is	to	evaluate	schools	and	teachers	on	the
basis	of	the	progress	that	their	students	make	over	some	period	of	time.	What	did
students	know	when	they	started	in	a	certain	classroom	with	a	particular	teacher?



What	 did	 they	 know	 a	 year	 later?	 The	 difference	 is	 the	 “value	 added”	 in	 that
classroom.
We	can	even	use	statistics	to	get	a	more	refined	sense	of	this	value	added	by

taking	 into	 account	 the	 demographic	 characteristics	 of	 the	 students	 in	 a	 given
classroom,	such	as	race,	income,	and	performance	on	other	tests	(which	can	be	a
measure	 of	 aptitude).	 If	 a	 teacher	 makes	 significant	 gains	 with	 students	 who
have	 typically	 struggled	 in	 the	 past,	 then	 he	 or	 she	 can	 be	 deemed	 as	 highly
effective.
Voilà!	We	can	now	evaluate	teacher	quality	with	statistical	precision.	And	the

good	schools,	of	course,	are	just	the	ones	full	of	effective	teachers.
How	do	 these	 handy	 statistical	 evaluations	work	 in	 practice?	 In	 2012,	New

York	 City	 took	 the	 plunge	 and	 published	 ratings	 of	 all	 18,000	 public	 school
teachers	on	the	basis	of	a	“value-added	assessment”	that	measured	gains	in	their
students’	 test	scores	while	 taking	 into	account	various	student	characteristics.12
The	 Los	 Angeles	 Times	 published	 a	 similar	 set	 of	 rankings	 for	 Los	 Angeles
teachers	in	2010.
In	 both	 New	 York	 and	 LA,	 the	 reaction	 has	 been	 loud	 and	 mixed.	 Arne

Duncan,	the	U.S.	secretary	of	education,	has	generally	been	supportive	of	these
kinds	 of	 value-added	 assessments.	 They	 provide	 information	 where	 none
previously	 existed.	 After	 the	 Los	 Angeles	 data	 were	 published,	 Secretary
Duncan	 told	 the	 New	 York	 Times,	 “Silence	 is	 not	 an	 option.”	 The	 Obama
administration	 has	 provided	 financial	 incentives	 for	 states	 to	 develop	 value-
added	 indicators	 for	 paying	 and	 promoting	 teachers.	 Proponents	 of	 these
evaluation	 measures	 rightfully	 point	 out	 that	 they	 are	 a	 huge	 potential
improvement	over	systems	in	which	all	teachers	are	paid	according	to	a	uniform
salary	 schedule	 that	 gives	 zero	 weight	 to	 any	 measure	 of	 performance	 in	 the
classroom.
On	 the	 other	 hand,	 many	 experts	 have	 warned	 that	 these	 kinds	 of	 teacher

assessment	data	have	large	margins	of	error	and	can	deliver	misleading	results.
The	union	representing	New	York	City	teachers	spent	more	than	$100,000	on	a
newspaper	advertising	campaign	built	around	 the	headline	“This	 Is	No	Way	 to
Rate	 a	 Teacher.”13	 Opponents	 argue	 that	 the	 value-added	 assessments	 create
false	 precision	 that	will	 be	 abused	 by	 parents	 and	 public	 officials	who	 do	 not
understand	the	limitations	of	this	kind	of	assessment.
This	 appears	 to	 be	 a	 case	 where	 everybody	 is	 right—up	 to	 a	 point.	 Doug

Staiger,	an	economist	at	Dartmouth	College	who	works	extensively	with	value-
added	data	for	teachers,	warns	that	these	data	are	inherently	“noisy.”	The	results



for	a	given	 teacher	are	often	based	on	a	 single	 test	 taken	on	a	 single	day	by	a
single	group	of	students.	All	kinds	of	factors	can	lead	to	random	fluctuations—
anything	 from	 a	 particularly	 difficult	 group	 of	 students	 to	 a	 broken	 air-
conditioning	unit	clanking	away	in	the	classroom	on	test	day.	The	correlation	in
performance	from	year	 to	year	for	a	single	 teacher	 that	uses	 these	 indicators	 is
only	 about	 .35.	 (Interestingly,	 the	 correlation	 in	 year-to-year	 performance	 for
Major	 League	 baseball	 players	 is	 also	 around	 .35,	 as	 measured	 by	 batting
average	for	hitters	and	earned	run	average	for	pitchers.)14
The	 teacher	effectiveness	data	are	useful,	 says	Staiger,	but	 they	are	 just	one

tool	in	the	process	for	evaluating	teacher	performance.	The	data	get	“less	noisy”
when	authorities	have	more	years	of	data	for	a	particular	teacher	with	different
classrooms	of	students	(just	as	we	can	tell	more	about	an	athlete	when	we	have
data	 for	 more	 games	 and	 more	 seasons).	 In	 the	 case	 of	 the	 New	 York	 City
teacher	ratings,	principals	in	the	system	had	been	prepped	on	the	appropriate	use
of	the	value-added	data	and	the	inherent	limitations.	The	public	did	not	get	that
briefing.	As	a	result,	the	teacher	assessments	are	too	often	viewed	as	a	definitive
guide	to	the	“good”	and	“bad”	teachers.	We	like	rankings—just	think	U.S.	News
&	 World	 Report	 college	 rankings—even	 when	 the	 data	 do	 not	 support	 such
precision.
Staiger	offers	a	final	warning	of	different	sort:	We	had	better	be	certain	 that

the	outcomes	we	are	measuring,	such	as	the	results	of	a	given	standardized	test,
truly	track	with	what	we	care	about	in	the	long	run.	Some	unique	data	from	the
Air	Force	Academy	suggest,	 not	 surprisingly,	 that	 the	 test	 scores	 that	glimmer
now	 may	 not	 be	 gold	 in	 the	 future.	 The	 Air	 Force	 Academy,	 like	 the	 other
military	 academies,	 randomly	 assigns	 its	 cadets	 to	 different	 sections	 of
standardized	 core	 courses,	 such	 as	 introductory	 calculus.	 This	 randomization
eliminates	 any	 potential	 selection	 effect	 when	 comparing	 the	 effectiveness	 of
professors;	over	time,	we	can	assume	that	all	professors	get	students	with	similar
aptitudes	 (unlike	 most	 universities,	 where	 students	 of	 different	 abilities	 can
select	 into	 or	 out	 of	 different	 courses).	 The	Air	 Force	Academy	 also	 uses	 the
same	syllabi	and	exams	in	every	section	of	a	particular	course.	Scott	Carrell	and
James	West,	professors	at	the	University	of	California	at	Davis	and	the	Air	Force
Academy,	 exploited	 this	 elegant	 arrangement	 to	 answer	 one	 of	 the	 most
important	questions	in	higher	education:	Which	professors	are	most	effective?15
The	answer:	The	professors	with	less	experience	and	fewer	degrees	from	fancy

universities.	 These	 professors	 have	 students	 who	 typically	 do	 better	 on	 the
standardized	 exams	 for	 the	 introductory	 courses.	 They	 also	 get	 better	 student



evaluations	 for	 their	 courses.	 Clearly	 these	 young,	 motivated	 instructors	 are
more	committed	to	their	teaching	than	the	old,	crusty	professors	with	PhDs	from
places	 like	Harvard.	The	old	guys	must	 be	using	 the	 same	yellowing	 teaching
notes	that	they	used	in	1978;	they	probably	think	PowerPoint	is	an	energy	drink
—except	that	they	don’t	know	what	an	energy	drink	is	either.	Obviously	the	data
tell	us	that	we	should	fire	these	old	codgers,	or	at	least	let	them	retire	gracefully.
But	hold	on.	Let’s	not	 fire	 anybody	yet.	The	Air	Force	Academy	 study	had

another	 relevant	 finding—about	 student	 performance	 over	 a	 longer	 horizon.
Carrell	 and	West	 found	 that	 in	 math	 and	 science	 the	 students	 who	 had	 more
experienced	 (and	 more	 highly	 credentialed)	 instructors	 in	 the	 introductory
courses	do	better	 in	 their	mandatory	 follow-on	 courses	 than	 students	who	 had
less	 experienced	 professors	 in	 the	 introductory	 courses.	 One	 logical
interpretation	is	that	less	experienced	instructors	are	more	likely	to	“teach	to	the
test”	 in	 the	 introductory	 course.	 This	 produces	 impressive	 exam	 scores	 and
happy	students	when	it	comes	to	filling	out	the	instructor	evaluation.
Meanwhile,	 the	 old,	 crusty	 professors	 (whom	 we	 nearly	 fired	 just	 one

paragraph	 ago)	 focus	 less	 on	 the	 exam	 and	 more	 on	 the	 important	 concepts,
which	are	what	matter	most	in	follow-on	courses	and	in	life	after	the	Air	Force
Academy.
Clearly	we	 need	 to	 evaluate	 teachers	 and	 professors.	We	 just	 have	 to	make

sure	that	we	do	it	right.	The	long-term	policy	challenge,	rooted	in	statistics,	is	to
develop	a	system	that	rewards	a	teacher’s	real	value	added	in	the	classroom.

WHAT	ARE	THE	BEST	TOOLS
FOR	FIGHTING	GLOBAL	POVERTY?
We	know	strikingly	little	about	how	to	make	poor	countries	less	poor.	True,	we
understand	the	things	that	distinguish	rich	countries	from	poor	countries,	such	as
their	 education	 levels	 and	 the	quality	of	 their	governments.	And	 it	 is	 also	 true
that	 we	 have	 watched	 countries	 like	 India	 and	 China	 transform	 themselves
economically	over	the	last	several	decades.	But	even	with	this	knowledge,	 it	 is
not	obvious	what	steps	we	can	 take	 to	make	places	 like	Mali	or	Burkina	Faso,
less	poor.	Where	should	we	begin?
French	 economist	 Esther	 Duflo	 is	 transforming	 our	 knowledge	 of	 global

poverty	by	retrofitting	an	old	tool	for	new	purposes:	the	randomized,	controlled
experiment.	 Duflo,	 who	 teaches	 at	 MIT,	 literally	 conducts	 experiments	 on
different	interventions	to	improve	the	lives	of	the	poor	in	developing	countries.
For	 example,	 one	 of	 the	 longstanding	 problems	 with	 schools	 in	 India	 is



absenteeism	 among	 teachers,	 particularly	 in	 small,	 rural	 schools	 with	 only	 a
single	teacher.	Duflo	and	her	coauthor	Rema	Hanna	tested	a	clever,	technology-
driven	solution	on	a	random	sample	of	60	one-teacher	schools	in	the	Indian	state
of	Rajasthan.16	Teachers	in	these	60	experimental	schools	were	offered	a	bonus
for	good	attendance.	Here	is	the	creative	part:	The	teachers	were	given	cameras
with	 tamperproof	date	and	 time	stamps.	They	proved	 that	 they	had	showed	up
each	day	by	having	their	picture	taken	with	their	students.17
Absenteeism	 dropped	 by	 half	 among	 teachers	 in	 the	 experimental	 schools

compared	 with	 teachers	 in	 a	 randomly	 selected	 control	 group	 of	 60	 schools.
Student	test	scores	went	up,	and	more	students	graduated	into	the	next	level	of
education.	(I	bet	the	photos	are	adorable,	too!)
One	 of	 Duflo’s	 experiments	 in	 Kenya	 involved	 giving	 a	 randomly	 selected

group	of	 farmers	a	 small	 subsidy	 to	buy	 fertilizer	 right	after	 the	harvest.	Prior
evidence	 suggested	 that	 fertilizer	 raises	 crop	 yields	 appreciably.	 Farmers	were
aware	of	this	benefit,	but	when	it	came	time	to	put	a	new	crop	into	the	ground,
they	 often	 did	 not	 have	 enough	 money	 left	 over	 from	 the	 last	 crop	 to	 buy
fertilizer.	 This	 perpetuates	 what	 is	 known	 as	 a	 “poverty	 trap”	 since	 the
subsistence	 farmers	 are	 too	 poor	 to	make	 themselves	 less	 poor.	Duflo	 and	 her
coauthors	found	that	a	tiny	subsidy—free	fertilizer	delivery—offered	to	farmers
when	 they	 still	 had	 cash	 after	 the	 harvest	 increased	 fertilizer	 use	 by	 10	 to	 20
percentage	points	compared	with	use	in	a	control	group.18
Esther	Duflo	has	even	waded	 into	 the	gender	war.	Who	 is	more	 responsible

when	 it	 comes	 to	 handling	 the	 family’s	 finances,	 men	 or	 women?	 In	 rich
countries,	 this	 is	 the	 kind	 of	 thing	 that	 couples	 can	 squabble	 over	 in	marriage
counseling.	In	poor	countries,	it	can	literally	determine	whether	the	children	get
enough	 to	 eat.	 Anecdotal	 evidence	 going	 back	 to	 the	 dawn	 of	 civilization
suggests	 that	 women	 place	 a	 high	 priority	 on	 the	 health	 and	 welfare	 of	 their
children,	while	men	are	more	inclined	to	drink	up	their	wages	at	the	local	pub	(or
whatever	the	caveman	equivalent	was).	At	worst,	this	anecdotal	evidence	merely
reinforces	 age-old	 stereotypes.	 At	 best,	 it	 is	 a	 hard	 thing	 to	 prove,	 because	 a
family’s	finances	are	comingled	to	some	extent.	How	can	we	separate	out	how
husbands	and	wives	choose	to	spend	communal	resources?
Duflo	 did	 not	 shy	 away	 from	 this	 delicate	 question.19	 To	 the	 contrary,	 she

found	a	 fascinating	natural	experiment.	 In	Côte	d’Ivoire,	women	and	men	 in	a
family	 typically	 share	 responsibility	 for	 some	 crops.	 For	 longstanding	 cultural
reasons,	men	and	women	also	cultivate	different	cash	crops	of	their	own.	(Men
grow	 cocoa,	 coffee,	 and	 some	 other	 things;	 women	 grow	 plantains,	 coconuts,



and	 a	 few	 other	 crops.)	 The	 beauty	 of	 this	 arrangement	 from	 a	 research
standpoint	 is	 that	 the	 men’s	 crops	 and	 the	 women’s	 crops	 respond	 to	 rainfall
patterns	in	different	ways.	In	years	in	which	cocoa	and	coffee	do	well,	men	have
more	disposable	 income	to	spend.	In	years	 in	which	plantains	and	coconuts	do
well,	the	women	have	more	extra	cash.
Now	we	 need	merely	 broach	 a	 delicate	 question:	 Are	 the	 children	 in	 these

families	 better-off	 in	 years	 in	 which	 the	men’s	 crops	 do	well,	 or	 in	 the	 years
when	the	women	have	a	particularly	bountiful	harvest?
The	answer:	When	the	women	do	well,	they	spend	some	of	their	extra	cash	on

more	food	for	the	family.	The	men	don’t.	Sorry	guys.
In	 2010,	 Duflo	 was	 awarded	 the	 John	 Bates	 Clark	 Medal.	 This	 prize	 is

presented	by	 the	American	Economic	Association	 to	 the	best	 economist	 under
the	age	of	 forty.*	Among	economist	geeks,	 this	prize	 is	 considered	 to	be	more
prestigious	 than	 the	 Nobel	 Prize	 in	 Economics	 because	 it	 was	 historically
awarded	 only	 every	 two	 years.	 (Beginning	 with	 Duflo’s	 award	 in	 2010,	 the
medal	 is	 now	 presented	 annually.)	 In	 any	 case,	 the	 Clark	Medal	 is	 the	MVP
award	for	people	with	thick	glasses	(metaphorically	speaking).
Duflo	 is	 doing	 program	 evaluation.	 Her	work,	 and	 the	work	 of	 others	 now

using	her	methods,	 is	 literally	changing	the	lives	of	 the	poor.	From	a	statistical
standpoint,	Duflo’s	work	 has	 encouraged	 us	 to	 think	more	 broadly	 about	 how
randomized,	 controlled	 experiments—long	 thought	 to	 be	 the	 province	 of	 the
laboratory	sciences—can	be	used	more	widely	 to	 tease	out	causal	relationships
in	many	other	areas	of	life.

WHO	GETS	TO	KNOW	WHAT	ABOUT	YOU?
Last	summer,	we	hired	a	new	babysitter.	When	she	arrived	at	the	house,	I	began
to	explain	our	family	background:	“I	am	a	professor,	my	wife	is	a	teacher	.	.	.”
“Oh,	I	know,”	the	sitter	said	with	a	wave	of	the	hand.	“I	Googled	you.”
I	was	simultaneously	relieved	that	I	did	not	have	to	finish	my	spiel	and	mildly

alarmed	by	how	much	of	my	life	could	be	cobbled	together	from	a	short	Internet
search.	Our	capacity	to	gather	and	analyze	huge	quantities	of	data—the	marriage
of	digital	 information	with	cheap	computing	power	and	the	Internet—is	unique
in	human	history.	We	are	going	to	need	some	new	rules	for	this	new	era.
Let’s	 put	 the	 power	 of	 data	 in	 perspective	 with	 just	 one	 example	 from	 the

retailer	 Target.	 Like	 most	 companies,	 Target	 strives	 to	 increase	 profits	 by
understanding	its	customers.	To	do	that,	the	company	hires	statisticians	to	do	the
kind	of	“predictive	analytics”	described	earlier	 in	 the	book;	 they	use	sales	data



combined	with	other	information	on	consumers	to	figure	out	who	buys	what	and
why.	Nothing	about	this	is	inherently	bad,	for	it	means	that	the	Target	near	you	is
likely	to	have	exactly	what	you	want.
But	let’s	drill	down	for	a	moment	on	just	one	example	of	the	kinds	of	things

that	 the	 statisticians	 working	 in	 the	 windowless	 basement	 at	 corporate
headquarters	can	 figure	out.	Target	has	 learned	 that	pregnancy	 is	a	particularly
important	 time	 in	 terms	 of	 developing	 shopping	 patterns.	 Pregnant	 women
develop	“retail	relationships”	that	can	last	for	decades.	As	a	result,	Target	wants
to	identify	pregnant	women,	particularly	those	in	their	second	trimester,	and	get
them	 into	 their	 stores	more	 often.	A	writer	 for	 the	New	York	Times	Magazine
followed	 the	predictive	analytics	 team	at	Target	as	 it	 sought	 to	 find	and	attract
pregnant	shoppers.20
The	 first	 part	 is	 easy.	 Target	 has	 a	 baby	 shower	 registry	 in	which	 pregnant

women	 register	 for	 baby	 gifts	 in	 advance	 of	 the	 birth	 of	 their	 children.	 These
women	 are	 already	Target	 shoppers,	 and	 they’ve	 effectively	 told	 the	 store	 that
they	are	pregnant.	But	here	is	 the	statistical	 twist:	Target	figured	out	that	other
women	who	demonstrate	the	same	shopping	patterns	are	probably	pregnant,	too.
For	example,	pregnant	women	often	switch	to	unscented	lotions.	They	begin	to
buy	vitamin	 supplements.	They	 start	buying	extrabig	bags	of	 cotton	balls.	The
Target	 predictive	 analytics	 gurus	 identified	 twenty-five	 products	 that	 together
made	possible	a	“pregnancy	prediction	score.”	The	whole	point	of	this	analysis
was	 to	 send	 pregnant	 women	 pregnancy-related	 coupons	 in	 hopes	 of	 hooking
them	as	long-term	Target	shoppers.
How	good	was	 the	model?	The	New	York	Times	Magazine	 reported	 a	 story

about	a	man	from	Minneapolis	who	walked	into	a	Target	store	and	demanded	to
see	 a	 manager.	 The	 man	 was	 irate	 that	 his	 high	 school	 daughter	 was	 being
bombarded	 with	 pregnancy-related	 coupons	 from	 Target.	 “She’s	 still	 in	 high
school	 and	 you’re	 sending	 her	 coupons	 for	 baby	 clothes	 and	 cribs?	 Are	 you
trying	to	encourage	her	to	get	pregnant?”	the	man	asked.
The	 store	 manager	 apologized	 profusely.	 He	 even	 called	 the	 father	 several

days	later	to	apologize	again.	Only	this	time,	the	man	was	less	irate;	it	was	his
turn	 to	 be	 apologetic.	 “It	 turns	 out	 there’s	 been	 some	 activities	 in	my	 house	 I
haven’t	been	completely	aware	of,”	the	father	said.	“She’s	due	in	August.”
The	Target	statisticians	had	figured	out	that	his	daughter	was	pregnant	before

he	did.
That	is	their	business	.	.	.	and	also	not	their	business.	It	can	feel	more	than	a

little	intrusive.	For	that	reason,	some	companies	now	mask	how	much	they	know



about	you.	For	example,	if	you	are	a	pregnant	woman	in	your	second	trimester,
you	 may	 get	 some	 coupons	 in	 the	 mail	 for	 cribs	 and	 diapers—along	 with	 a
discount	on	a	riding	lawn	mower	and	a	coupon	for	free	bowling	socks	with	the
purchase	of	any	pair	of	bowling	shoes.	To	you,	it	 just	seems	fortuitous	that	the
pregnancy-related	coupons	came	in	 the	mail	along	with	 the	other	 junk.	 In	fact,
the	 company	 knows	 that	 you	 don’t	 bowl	 or	 cut	 your	 own	 lawn;	 it’s	 merely
covering	its	tracks	so	that	what	it	knows	about	you	doesn’t	seem	so	spooky.
Facebook,	a	company	with	virtually	no	physical	assets,	has	become	one	of	the

most	 valuable	 companies	 in	 the	 world.	 To	 investors	 (as	 opposed	 to	 users),
Facebook	has	one	enormous	asset:	data.	Investors	don’t	love	Facebook	because
it	allows	them	to	reconnect	with	their	prom	dates.	They	love	Facebook	because
every	 click	of	 the	mouse	yields	data	 about	where	users	 live,	where	 they	 shop,
what	they	buy,	who	they	know,	and	how	they	spend	their	time.	To	users,	who	are
hoping	 to	 reconnect	 with	 their	 prom	 dates,	 the	 corporate	 data	 gathering	 can
overstep	the	boundaries	of	privacy.
Chris	 Cox,	 Facebook’s	 vice	 president	 of	 product,	 told	 the	New	 York	 Times,

“The	challenge	of	the	information	age	is	what	to	do	with	it.”21
Yep.
And	 in	 the	 public	 arena,	 the	 marriage	 of	 data	 and	 technology	 gets	 even

trickier.	Cities	around	the	world	have	installed	thousands	of	security	cameras	in
public	places,	some	of	which	will	soon	have	facial	recognition	technology.	Law
enforcement	 authorities	 can	 follow	 any	 car	 anywhere	 it	 may	 go	 (and	 keep
extensive	records	of	where	it	has	been)	by	attaching	a	global	positioning	device
to	the	vehicle	and	then	tracking	it	by	satellite.	Is	this	a	cheap	and	efficient	way	to
monitor	potential	criminal	activity?	Or	is	this	the	government	using	technology
to	 trample	 on	 our	 personal	 liberty?	 In	 2012,	 the	U.S.	 Supreme	Court	 decided
unanimously	 that	 it	was	 the	 latter,	 ruling	 that	 law	enforcement	officials	can	no
longer	attach	tracking	devices	to	private	vehicles	without	a	warrant.*
Meanwhile,	governments	around	the	world	maintain	huge	DNA	databases	that

are	a	powerful	tool	for	solving	crimes.	Whose	DNA	should	be	in	the	database?
That	of	all	convicted	criminals?	That	of	every	person	who	is	arrested	(whether	or
not	eventually	convicted)?	Or	a	sample	from	every	one	of	us?
We	are	just	beginning	to	wrestle	with	the	issues	that	lie	at	the	intersection	of

technology	 and	 personal	 data—none	 of	 which	 were	 terribly	 relevant	 when
government	information	was	stored	in	dusty	basement	filing	cabinets	rather	than
in	 digital	 databases	 that	 are	 potentially	 searchable	 by	 anyone	 from	 anywhere.
Statistics	is	more	important	than	ever	before	because	we	have	more	meaningful



opportunities	to	make	use	of	data.	Yet	the	formulas	will	not	tell	us	which	uses	of
data	are	appropriate	and	which	are	not.	Math	cannot	supplant	judgment.

In	 that	 vein,	 let’s	 finish	 the	 book	 with	 some	 word	 association:	 fire,	 knives,
automobiles,	hair	removal	cream.	Each	one	of	these	things	serves	an	important
purpose.	Each	one	makes	our	lives	better.	And	each	one	can	cause	some	serious
problems	when	abused.
Now	you	can	add	statistics	to	that	list.	Go	forth	and	use	data	wisely	and	well!

*	I	was	ineligible	for	the	2010	prize	since	I	was	over	forty.	Also,	I’d	done	nothing	to	deserve	it.
*	The	United	States	v.	Jones.



Appendix
Statistical	software

I	suspect	that	you	won’t	be	doing	your	statistical	analysis	with	a	pencil,	paper,
and	 calculator.	Here	 is	 a	 quick	 tour	 of	 the	 software	 packages	most	 commonly
used	for	the	kinds	of	tasks	described	in	this	book.

Microsoft	Excel
Microsoft	Excel	 is	probably	 the	most	widely	used	program	 to	 compute	 simple
statistics	 such	 as	 mean	 and	 standard	 deviation.	 Excel	 can	 also	 do	 basic
regression	 analysis.	 Most	 computers	 come	 loaded	 with	 Microsoft	 Office,	 so
Excel	is	probably	sitting	on	your	desk	right	now.	Excel	is	user-friendly	compared
with	 more	 sophisticated	 statistical	 software	 packages.	 The	 basic	 statistical
calculations	can	be	done	by	means	of	the	formula	bar.
Excel	 cannot	 perform	 some	 of	 the	 advanced	 tasks	 that	 more	 specialized

programs	 can	 do.	However,	 there	 are	 Excel	 extensions	 that	 you	 can	 buy	 (and
some	that	you	can	download	for	free)	that	will	expand	the	program’s	statistical
capabilities.	One	huge	advantage	to	Excel	is	that	it	offers	simple	ways	to	display
two-dimensional	 data	with	 visually	 appealing	 graphics.	 These	 graphics	 can	 be
easily	dropped	into	Microsoft	PowerPoint	and	Microsoft	Word.

Stata*

Stata	 is	 a	 statistical	 package	 used	 worldwide	 by	 research	 professionals;	 its
interface	has	a	serious,	academic	feel.	Stata	has	a	wide	range	of	capabilities	to	do
basic	tasks,	such	as	creating	data	tables	and	calculating	descriptive	statistics.	Of
course,	that	is	not	why	university	professors	and	other	serious	researchers	choose
Stata.	The	software	is	designed	to	handle	sophisticated	statistical	tests	and	data
modeling	that	are	far	beyond	the	kinds	of	things	described	in	this	book.
Stata	 is	 a	 great	 fit	 for	 those	who	 have	 a	 solid	 understanding	 of	 statistics	 (a



basic	 understanding	 of	 programming	 also	 helps)	 and	 those	 who	 do	 not	 need
fancy	 formatting—just	 the	 answers	 to	 their	 statistical	 queries.	 Stata	 is	 not	 the
best	choice	if	your	goal	is	to	produce	quick	graphics	from	the	data.	Expert	users
say	that	Stata	can	produce	nice	graphics	but	 that	Excel	 is	easier	 to	use	for	 that
purpose.
Stata	 offers	 several	 different	 stand-alone	 software	 packages.	You	 can	 either

license	the	product	for	a	year	(after	a	year,	the	software	no	longer	works	on	your
computer)	or	license	it	forever.	One	of	the	cheapest	options	is	Stata/IC,	which	is
designed	for	“students	and	researchers	with	moderate-sized	datasets.”	There	is	a
discount	 for	 users	 who	 are	 in	 the	 education	 sector.	 Even	 then,	 a	 single-user
annual	license	for	Stata/IC	is	$295	and	a	perpetual	license	is	$595.	If	you	plan	to
launch	a	satellite	to	Mars	and	need	to	do	some	really	serious	number	crunching,
you	can	 look	 into	more	advanced	Stata	packages,	which	can	cost	 thousands	of
dollars.

SAS†

SAS	has	a	broad	appeal	not	only	to	professional	researchers	but	also	to	business
analysts	and	engineers	because	of	its	broad	range	of	analytical	capabilities.	SAS
sells	 two	 different	 statistical	 packages.	 The	 first	 is	 called	 SAS	Analytics	 Pro,
which	can	read	data	in	virtually	any	format	and	perform	advanced	data	analysis.
The	software	also	has	good	data	visualization	tools,	such	as	advanced	mapping
capabilities.	 It’s	 not	 cheap.	 Even	 for	 those	 in	 the	 education	 and	 government
sectors,	a	single	commercial	or	individual	license	for	this	package	is	$8,500,	plus
an	annual	license	fee.
The	second	SAS	statistical	package	is	SAS	Visual	Data	Discovery.	It	has	an

easy-to-use	 interface	 that	 requires	 no	 knowledge	 of	 coding	 or	 programming,
while	still	providing	advanced	data	analysis	capabilities.	As	 its	name	suggests,
this	 package	 is	meant	 to	 allow	 the	 user	 to	 easily	 explore	 data	with	 interactive
visualization.	You	 can	 also	 export	 the	 data	 animations	 into	 presentations,	Web
pages,	and	other	documents.	This	one	is	not	cheap	either.	A	single	commercial	or
individual	license	for	this	package	is	$9,810,	plus	an	annual	license	fee.
SAS	 sells	 some	 specialized	management	 tools,	 such	 as	 a	 product	 that	 uses

statistics	to	detect	fraud	and	financial	crimes.

R



This	may	sound	like	a	character	in	a	James	Bond	movie.	In	fact,	R	is	a	popular
statistical	package	that	is	free	or	“open	source.”	It	can	be	downloaded	and	easily
installed	 on	 your	 computer	 in	 a	matter	 of	minutes.	 There	 is	 also	 an	 active	 “R
community”	that	shares	code	and	can	offer	help	and	guidance	when	needed.
Not	only	is	R	the	cheapest	option,	but	it	is	also	one	of	the	most	malleable	of

all	 of	 the	 packages	 described	 here.	 Depending	 on	 your	 perspective,	 this
flexibility	 is	 either	 frustrating	 or	 one	 of	 R’s	 great	 assets.	 If	 you	 are	 new	 to
statistical	software,	the	program	offers	almost	no	structure.	The	interface	will	not
help	you	 along	much.	On	 the	other	 hand,	 programmers	 (and	 even	people	who
have	just	a	basic	familiarity	with	coding	principles)	can	find	the	lack	of	structure
liberating.	Users	are	free	to	tell	 the	program	to	do	exactly	what	 they	want	 it	 to
do,	including	having	it	work	with	outside	programs.

IBM	SPSS*

IBM	 SPSS	 has	 something	 for	 everyone,	 from	 hard-core	 statisticians	 to	 less
statistically	rugged	business	analysts.	IBM	SPSS	is	good	for	beginners	because	it
offers	 a	 menu-driven	 interface.	 IBM	 SPSS	 also	 offers	 a	 range	 of	 tools	 or
“modules”	 that	 are	designed	 to	perform	 specific	 functions,	 such	 as	 IBM	SPSS
Forecasting,	IBM	SPSS	Advanced	Statistics,	IBM	SPSS	Visualization	Designer,
and	 IBM	 SPSS	 Regression.	 The	 modules	 can	 be	 purchased	 individually	 or
combined	into	packages.
The	 most	 basic	 package	 offered	 is	 IBM	 SPSS	 Statistics	 Standard	 Edition,

which	allows	you	to	calculate	simple	statistics	and	perform	basic	data	analysis,
such	 as	 identifying	 trends	 and	 building	 predictive	models.	A	 single	 fixed-term
commercial	license	is	$2,250.	The	premium	package,	which	includes	most	of	the
modules,	is	$6,750.	Discounts	are	available	for	those	who	work	in	the	education
sector.

*	See	http://www.stata.com/.
†	See	http://www.sas.com/technologies/analytics/statistics/.
*	See	http://www-01.ibm.com/software/analytics/spss/products/statistics/.
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