

GAME PHYSICS
ENGINE

DEVELOPMENT

This page intentionally left blank

GAME PHYSICS
ENGINE

DEVELOPMENT
HOW TO BUILD A ROBUST

COMMERCIAL-GRADE PHYSICS ENGINE

FOR YOUR GAME

Second Edition

IAN MILLINGTON

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

Copyright © 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Millington, Ian.

Game physics engine development : how to build a robust commercial-grade physics engine for your
game / Ian Millington. – 2nd ed.

p. cm.
Includes index.
ISBN 978-0-12-381976-5 (pbk. : alk. paper)

1. Computer games–Programming. 2. Physics–Data processing. I. Title.
QA76.76.C672M55 2010
794.8′1526–dc22

2010014533
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-381976-5

For information on all Morgan Kaufmann publications
visit our Website at www.mkp.com or www.elsevierdirect.com

Typeset by : diacriTech, India

Printed in the United States of America
10 11 12 13 5 4 3 2 1

For Richard

This page intentionally left blank

Contents

List of Figures xix

Preface to the Second Edition xxiii

Preface to the First Edition xxv

Acknowledgments xxvii

About the Author xxix

Chapter

1 Introduction 1

1.1 What Is Game Physics? 2

1.2 What Is a Physics Engine? 2
1.2.1 Advantages of a Physics Engine 3
1.2.2 Weaknesses of a Physics Engine 4

1.3 Approaches to Physics Engines 5
1.3.1 Types of Objects 5
1.3.2 Contact Resolution 6
1.3.3 Impulses and Forces 6
1.3.4 What We’re Building 7

1.4 The Mathematics of Physics Engines 8
1.4.1 The Math You Need to Know 8
1.4.2 The Math We’ll Review 9
1.4.3 The Math I’ll Introduce 10

1.5 The Source Code in the Book 10

1.6 How the Book Is Structured 11
1.6.1 Exercises and Projects 12

vii

viii Contents

PART I Particle Physics 15

Chapter

2 The Mathematics of Particles 17

2.1 Vectors 17
2.1.1 The Handedness of Space 21
2.1.2 Vectors and Directions 23
2.1.3 Scalar and Vector Multiplication 25
2.1.4 Vector Addition and Subtraction 27
2.1.5 Multiplying Vectors 29
2.1.6 The Component Product 30
2.1.7 The Scalar Product 31
2.1.8 The Vector Product 33
2.1.9 The Orthonormal Basis 37

2.2 Calculus 38
2.2.1 Differential Calculus 38
2.2.2 Integral Calculus 43

2.3 Summary 44

2.4 Exercises 45

Chapter

3 The Laws of Motion 47

3.1 The Particle 48

3.2 The First Two Laws 49
3.2.1 The Force Equations 50
3.2.2 Adding Mass to Particles 51
3.2.3 Momentum and Velocity 52
3.2.4 The Force of Gravity 53

3.3 The Integrator 55
3.3.1 The Update Equations 55
3.3.2 The Complete Integrator 57

3.4 Summary 58

3.5 Exercises 59

Chapter

4 The Particle Physics Engine 61

4.1 Ballistics 61
4.1.1 Setting Projectile Properties 62
4.1.2 Implementation 63

Contents ix

4.2 Fireworks 66

4.2.1 The Fireworks Data 66

4.2.2 Firework Rules 67

4.2.3 The Implementation 69

4.3 Summary 73

4.4 Projects 73

PART II Mass Aggregate Physics 75

Chapter

5 Adding General Forces 77

5.1 D’Alembert’s Principle 77

5.2 Force Generators 80

5.2.1 Interfaces and Polymorphism 81

5.2.2 Implementation 81

5.2.3 A Gravity Force Generator 84

5.2.4 A Drag Force Generator 85

5.3 Built-In Gravity and Damping 87

5.4 Summary 87

5.5 Exercises 88

Chapter

6 Springs and Spring-Like Things 89

6.1 Hook’s Law 89

6.2 Spring-Like Force Generators 92

6.2.1 A Basic Spring Force Generator 92

6.2.2 An Anchored Spring Generator 94

6.2.3 An Elastic Bungee Generator 96

6.2.4 A Buoyancy Force Generator 98

6.3 Stiff Springs 101

6.3.1 The Stiff Springs Problem 102

6.3.2 Faking Stiff Springs 104

6.4 Summary 110

6.5 Exercises 110

x Contents

Chapter

7 Hard Constraints 113

7.1 Simple Collision Resolution 113
7.1.1 The Closing Velocity 114
7.1.2 The Coefficient of Restitution 115
7.1.3 The Collision Direction and the Contact Normal 115
7.1.4 Impulses 117

7.2 Collision Processing 118
7.2.1 Collision Detection 121
7.2.2 Resolving Interpenetration 123
7.2.3 Resting Contacts 126

7.3 The Contact Resolver Algorithm 130
7.3.1 Resolution Order 131
7.3.2 Time-Division Engines 135

7.4 Collision-Like Things 136
7.4.1 Cables 137
7.4.2 Rods 140

7.5 Summary 142

7.6 Exercises 142

Chapter

8 The Mass Aggregate Physics Engine 145

8.1 Overview of the Engine 145

8.2 Using the Physics Engine 151
8.2.1 Rope Bridges and Cables 151
8.2.2 Friction 152
8.2.3 Blob Games 153

8.3 Summary 153

8.4 Projects 154

PART III Rigid-Body Physics 155

Chapter

9 The Mathematics of Rotations 157

9.1 Rotating Objects in 2D 158
9.1.1 The Mathematics of Angles 158

Contents xi

9.1.2 Angular Speed 159
9.1.3 The Origin and the Center of Mass 160

9.2 Orientation in 3D 165
9.2.1 Euler Angles 165
9.2.2 Axis-Angle 167
9.2.3 Rotation Matrices 168
9.2.4 Quaternions 169

9.3 Angular Velocity and Acceleration 172
9.3.1 Velocity of a Point 173
9.3.2 Angular Acceleration 173

9.4 Implementing the Mathematics 173
9.4.1 The Matrix Classes 174
9.4.2 Matrix Multiplication 175
9.4.3 Matrix Inverse and Transpose 184
9.4.4 Converting a Quaternion to a Matrix 191
9.4.5 Transforming Vectors 193
9.4.6 Changing the Basis of a Matrix 197
9.4.7 The Quaternion Class 198
9.4.8 Normalizing Quaternions 200
9.4.9 Combining Quaternions 200
9.4.10 Rotating 201
9.4.11 Updating by the Angular Velocity 202

9.5 Summary 203

9.6 Exercises 203

Chapter

10 Laws of Motion for Rigid Bodies 207

10.1 The Rigid Body 207

10.2 Newton-2 for Rotation 211
10.2.1 Torque 211
10.2.2 The Moment of Inertia 213
10.2.3 Inertia Tensor in World Coordinates 216

10.3 D’Alembert for Rotation 220
10.3.1 Force Generators 223

10.4 The Rigid-Body Integration 226

10.5 Summary 228

10.6 Exercises 228

xii Contents

Chapter

11 The Rigid-Body Physics Engine 231

11.1 Overview of the Engine 231

11.2 Using the Physics Engine 234
11.2.1 A Flight Simulator 234
11.2.2 A Sailing Simulator 242

11.3 Summary 247

11.4 Projects 248

PART IV Collision Detection 251

Chapter

12 Collision Detection 253

12.1 The Collision Detection Pipeline 254

12.2 Broad-Phase Collision Detection 255
12.2.1 Requirements 256

12.3 Bounding Volume Hierarchies 257
12.3.1 Hierarchies 259
12.3.2 Building the Hierarchy 266
12.3.3 Subobject Hierarchies 275

12.4 Spatial Partitioning 276
12.4.1 Binary Space Partitioning 276
12.4.2 Oct-Trees and Quad-Trees 281
12.4.3 Grids 283
12.4.4 Multiresolution Maps 287

12.5 Summary 288

12.6 Exercises 288

Chapter

13 Generating Contacts 291

13.1 Collision Geometry 292
13.1.1 Primitive Assemblies 293

13.2 Contact Generation 294
13.2.1 Contact Types 295
13.2.2 Contact Data 298
13.2.3 Vertex–Face Contacts 300

Contents xiii

13.2.4 Edge–Edge Contacts 301
13.2.5 Edge–Face Contacts 301
13.2.6 Face–Face Contacts 302
13.2.7 Testing Before Generating Contacts 303

13.3 Simple Collision Algorithms 304
13.3.1 Colliding Two Spheres 305
13.3.2 Colliding a Sphere and a Plane 307
13.3.3 Colliding a Box and a Plane 310
13.3.4 Colliding a Box and a Sphere 315

13.4 Separating Axis Tests 319
13.4.1 Generating Contact Data with SATs 320
13.4.2 Colliding Two Boxes 322
13.4.3 Colliding Convex Polyhedra 326

13.5 Coherence 328

13.6 Summary 331

13.7 Exercises 331

PART V Contact Physics 333

Chapter

14 Collision Resolution 335

14.1 Impulse and Impulsive Torque 335
14.1.1 Impulsive Torque 336
14.1.2 Rotating Collisions 338
14.1.3 Handling Rotating Collisions 339

14.2 Collision Impulses 340
14.2.1 Change to Contact Coordinates 340
14.2.2 Velocity Change by Impulse 347
14.2.3 Impulse Change by Velocity 351
14.2.4 Calculating the Desired Velocity Change 351
14.2.5 Calculating the Impulse 353
14.2.6 Applying the Impulse 353

14.3 Resolving Interpenetration 355
14.3.1 Choosing a Resolution Method 355
14.3.2 Implementing Nonlinear Projection 359
14.3.3 Avoiding Overrotation 362

14.4 The Collision Resolution Process 364
14.4.1 The Collision Resolution Pipeline 365
14.4.2 Preparing Contact Data 367

xiv Contents

14.4.3 Resolving Penetration 372
14.4.4 Resolving Velocity 379
14.4.5 Alternative Update Algorithms 381

14.5 Summary 384

14.6 Exercises 385

Chapter

15 Resting Contacts and Friction 387

15.1 Resting Forces 388
15.1.1 Force Calculations 389

15.2 Microcollisions 390
15.2.1 Removing Accelerated Velocity 392
15.2.2 Lowering the Restitution 393
15.2.3 The New Velocity Calculation 394

15.3 Types of Friction 395
15.3.1 Static and Dynamic Friction 395
15.3.2 Isotropic and Anisotropic Friction 398

15.4 Implementing Friction 399
15.4.1 Friction as Impulses 400
15.4.2 Modifying the Velocity Resolution Algorithm 402
15.4.3 Putting It All Together 407

15.5 Friction and Sequential Contact Resolution 410

15.6 Summary 411

15.7 Exercises 412

Chapter

16 Stability and Optimization 413

16.1 Stability 413
16.1.1 Quaternion Drift 414
16.1.2 Interpenetration on Slopes 415
16.1.3 Integration Stability 417
16.1.4 The Benefit of Pessimistic Collision Detection 419
16.1.5 Changing Mathematical Accuracy 420

16.2 Optimizations 421
16.2.1 Sleep 422
16.2.2 Margins of Error for Penetration and Velocity 430
16.2.3 Contact Grouping 432
16.2.4 Code Optimizations 434

16.3 Summary 436

Contents xv

Chapter

17 Putting It All Together 437

17.1 Overview of the Engine 437

17.2 Using the Physics Engine 439

17.2.1 Ragdolls 440

17.2.2 Fracture Physics 445

17.2.3 Explosive Physics 451

17.3 Limitations of the Engine 458

17.3.1 Stacks 458

17.3.2 Reaction Force Friction 458

17.3.3 Joint Assemblies 459

17.3.4 Stiff Springs 459

17.4 Summary 459

17.5 Projects 459

PART VI Further Topics in Physics 461

Chapter

18 Physics in Two Dimensions 463

18.1 2D or 3D? 463

18.2 Vector Mathematics 465

18.3 Particle and Mass Aggregate Physics 467

18.4 The Mathematics of Rotation 467

18.4.1 Representing Rotation 467

18.4.2 Matrices 469

18.5 Rigid-Body Dynamics 469

18.6 Collision Detection 471

18.6.1 Vertex–Edge Contacts 472

18.6.2 Edge–Edge Contacts 472

18.6.3 Contact Generation 472

18.7 Collision Response 473

18.8 Summary 473

18.9 Projects 474

xvi Contents

Chapter

19 Other Programming Languages 475

19.1 ActionScript 3 475

19.2 C 479

19.3 Java 480

19.4 C# 481

19.5 Other Scripting Languages 482

Chapter

20 Other Types of Physics 483

20.1 Simultaneous Contact Resolution 483
20.1.1 The Jacobian 484
20.1.2 The Linear-Complementarity Problem 485

20.2 Reduced Coordinate Approaches 488

20.3 Summary 489

Appendix

A Useful Inertia Tensors 491

A.1 Discrete Masses 492

A.2 Continuous Masses 492

A.3 Common Shapes 493
A.3.1 Cuboid 493
A.3.2 Sphere 493
A.3.3 Cylinder 494
A.3.4 Cone 494
A.3.5 Hemisphere 495

A.4 Moments of Inertia in 2D 495
A.4.1 Common 2D Shapes 495

Appendix

B Useful Friction Coefficients 497

Appendix

C Mathematics Summary 499

C.1 Vectors 499

Contents xvii

C.2 Quaternions 500

C.3 Matrices 501

C.4 Integration 502

C.5 Physics 503

C.6 Other Forumlas 504

Glossary 505

Bibliography 509

Index 511

This page intentionally left blank

List of Figures

1.1 Trigonometry and coordinate geometry 9

2.1 3D coordinates 19
2.2 Left- and right-handed axes 22
2.3 A vector as a movement in space 23
2.4 The geometry of scalar-vector multiplication 26
2.5 The geometry of vector addition 27
2.6 Geometric interpretation of the scalar product 33
2.7 Geometric interpretation of the vector product 36
2.8 Same average velocity, different instantaneous velocity 39

4.1 Screenshot of the ballistic demo 63
4.2 Screenshot of the bigballistic demo 65
4.3 Screenshot of the fireworks demo 66

6.1 The game’s camera attached to a spring 92
6.2 A rope bridge held up by springs 95
6.3 A buoyant block submerged and partially submerged 98
6.4 A non-stiff spring over time 102
6.5 A stiff spring over time 103
6.6 The rest length and the equilibrium position 108

7.1 Contact normal is different from the vector between objects in contact 117
7.2 Interpenetrating objects 122
7.3 Interpenetration and reality 124
7.4 Vibration on resting contact 127
7.5 Resolving one contact may resolve another automatically 131

8.1 Screenshot of the bridge demo 151
8.2 Screenshot of the platform demo 152

9.1 Angle that an object is facing 158
9.2 The circle of orientation vectors 160

xix

xx List of Figures

9.3 The relative position of a car component 161
9.4 The car is rotated 162
9.5 Aircraft rotation axes 166
9.6 A matrix basis is changed 198

10.1 A force generating no torque 212
10.2 The moment of inertia is local to an object 217

11.1 Screenshot of the flightsim demo 241
11.2 Different centers of buoyancy 243
11.3 Screenshot of the sailboat demo 247

12.1 The collision detection pipeline 255
12.2 A three-stage collision detection pipeline 256
12.3 A spherical bounding volume 257
12.4 A spherical bounding volume hierarchy 260
12.5 Bottom-up hierarchy building in action 267
12.6 Top-down hierarchy building in action 268
12.7 Insertion hierarchy building in action 269
12.8 Working out a parent bounding sphere 272
12.9 Removing an object from a hierarchy 273
12.10 A subobject bounding volume hierarchy 275
12.11 A BSP for level geometry 280
12.12 Identifying an object’s location in a quad-tree 282
12.13 A quad-tree forms a grid 284
12.14 An object may occupy up to four same-sized grid cells 287

13.1 An object approximated by an assembly of primitives 293
13.2 Collision detection and contact generation 295
13.3 3D cases of contact 296
13.4 Ignoring a vertex–vertex contact 297
13.5 The relationship among the collision point, collision normal, and

penetration depth 299
13.6 The vertex–face contact data 300
13.7 The edge–edge contact data 301
13.8 The edge–face contact data 302
13.9 The face–face contact data 303
13.10 The difference in contact normal for a plane and a half-space 309
13.11 Contacts between a box and a plane 311
13.12 The half-sizes of a box 313
13.13 Contacts between a box and a sphere 316
13.14 A separating axis test 319
13.15 A separating axis test showing maximum interpenetration 321
13.16 Sequence of contacts over two frames 329

List of Figures xxi

14.1 The rotational and linear components of a collision 337
14.2 Three objects with different bounce characteristics 339
14.3 The three sets of coordinates: world, local, and contact 341
14.4 Linear projection causes realism problems 356
14.5 Velocity-based resolution introduces apparent friction 357
14.6 Nonlinear projection is more believable 358
14.7 Nonlinear projection does not add friction 358
14.8 Angular motion cannot resolve the interpenetration 362
14.9 Angular resolution causes other problems 363
14.10 Data flow through the physics engine 365
14.11 Resolution order is significant 373
14.12 Repeating the same pair of resolutions 374
14.13 Resolving penetration can cause unexpected contact changes 376

15.1 A reaction force at a resting contact 388
15.2 The long-distance dependence of reaction forces 390
15.3 Microcollisions replace reaction forces 391
15.4 A microscopic view of dynamic and static friction 397
15.5 Anisotropic friction 399
15.6 The problem with sequential contact resolution 411

16.1 Objects drift down angled planes 416
16.2 Collisions can be missed if they are not initially in contact 419
16.3 A chain of collisions is awakened 429
16.4 Iterative resolution makes microscopic changes 430
16.5 Sets of independent contacts 432

17.1 Data flow through the physics engine 439
17.2 Screenshot of the ragdoll demo 441
17.3 Closeup of a ragdoll joint 441
17.4 Precreated fractures can look very strange for large objects 445
17.5 Screenshot of the fracture demo 446
17.6 The fractures of a concrete block 447
17.7 The force cross-section across a compression wave 454
17.8 Screenshot of the explosion demo 457

18.1 The three types of contact in 2D 471

This page intentionally left blank

Preface to the

Second Edition

This second edition of the text is designed to extend and improve upon the first
edition. There is a broad selection of minor changes and corrections that have been
made throughout the book. A lot of these are due to the dilliegent attention of scores
of readers who sent suggestions and corrections. Thank you for your comments and
ideas.

There are three new features of this edition that were consistently requested by
readers of the first edition:

1. The chapter on fine-grained or narrow-phase collision detection from the first
edition was designed to make it as easy as possible to get some kind of collision
detection running. Collision detection is at least as complex as physical simula-
tion, and there are other books that analyze it in considerable detail. The feedback
has been that it would be worth looking at an algorithm that is generally useful
in detail, rather than skirting several options. In this edition, therefore, I have
rewritten the collision detection chapter to focus on the general-purpose separat-
ing axis test algorithm. This is used as the collision detection system in a number
of commercial middleware products, and many more in-house technologies.

2. Many readers gave me feedback that they wanted to use their physics engines to
build 2D as well as 3D games. This is particularly important as the 2D games
scene has undergone a renaissance with the rapid growth of casual and mobile
games. I have added a chapter that details the steps needed to build a 2D physics
engine on the basis of the 3D code that comprises the majority of this book. I have
decided to present the content this way because the feedback I get indicates that
the majority of the readers are interested in coding for 3D games, and although
2D physics is simpler, having the grounding in 3D is still important to make sen-
sible decisions as you code. If you are only interested in 2D physics, I would still
encourage you to follow through the 3D code, referring forward to Chapter 18
where you implement a chunk of the algorithm.

3. Because the book was designed to lead novice physics programmers through to
a complete engine, it has been picked up and adopted for use in many games

xxiii

xxiv Preface to the Second Edition

development courses at universities around the world. The feedback I have
received from instructors encouraged me to provide more resources for struc-
tured learning alongside the main text. This edition is therefore packaged in a
cheaper, softcover format, so that it is more affordable as a text in a college course.
It includes a glossary of terms, making it useful as a reference during lectures or
to decode other resources. The chapters that introduce new content have a set of
exercises at the end. These exercises can be used by anyone to sharpen their under-
standing, but they are also designed to be assigned by instructors. Answers can
be obtained directly from the author. Unlike some resources on physics, the exer-
cises are designed not to be purely mathematical: some are experimental, while
some require small implementations. Finally, each part of this book ends with a
series of graded projects that can be used by students as short-term assignments
or larger thesis projects. The thesis projects all involve implementing a physics-
based game using the techniques in this book.

I hope you’ll find this edition of the book useful, and will enjoy building your
physics engine with its help. I’m always keen to get feedback on the book, includ-
ing both corrections and suggestions for future editions. Feel free to email me at
idmillington@googlemail.comwith your opinions or observations.

Preface to the

First Edition

When I started writing games, in the 8-bit bedroom coding boom of the 1980s, the
low budgets and short turnaround times of writing games encouraged innovation and
experimentation. This in turn led to some great games (and, it has to be said, a whole
heap of unplayable rubbish—let no one tell you games were better back then!).

There were two games I remember being particularly inspired by, and both used
realistic physics as a core of their game play. The first was Thrust, written by Jeremy
Smith and originally published for the UK’s BBC Micro range of home computers.

Based on the arcade game Gravitar, an ivy-leaf–shaped ship navigates through
underground caverns under the influence of a 2D physical simulation. The aim is to
steal a heavy fuel pod, which is then connected to the ship via a cable. The relatively
simple inertial model of the spaceship then becomes a wonderfully complex inter-
action of two heavy objects. The game play was certainly challenging, but had that
one-more-time feel that marks a classic game.

The second game was Exile, written by Peter Irvin and Jeremy Smith1 (again).
This is perhaps the most innovative and impressive game that I have ever seen, fea-
turing techniques beyond physics such as emergent game play, open world levels, and
procedural content creation that were a decade or more ahead of their time.

Exile’s physics extends to every object in the game. Ammunition follows ballistic
trajectories, you can throw grenades, which explode sending nearby objects flying,
you can carry a heavy object to weigh you down in a strong up-draft, and you float
pleasingly in water. Exile must qualify for the first complete physics engine in a game.

With Exile released in 1988, I feel that I am a relative newcomer to the physics
coding party. I started writing game physics in 1999, creating an engine for modeling
cars in a driving game. What I thought was a month’s project turned into something
of an albatross.

I ran headlong into every physics problem imaginable, from stiff-suspension
springs that sent my car spiraling off to infinity, to wheels that wobbled at high speed,
from friction that moved objects around of its own accord, to hard surfaces that

1. Sadly, Jeremy died in an accident in 1992, but Peter is currently developing an iPhone version of Exile.

xxv

xxvi Preface to the First Edition

looked like they were made of soft rubber. I tried a whole gamut of approaches, from
impulses to Jacobians, from reduced coordinates to faked physics. It was a learning
curve unlike anything before or since in my game coding career.

While I was merrily missing my deadlines (driving physics gave way to third per-
son shooters) and my company examined every middleware physics system we could
find, I learned a lot about the pitfalls and benefits of various approaches. The code I
wrote, and often abandoned, proved to be useful over the intervening years as it got
dusted off and repurposed. I have built several physics engines based on that experi-
ence, and customized them for many applications, and I think I have a good sense of
how to get the best effects from the simplest approach.

We have entered a phase where physics simulation is a commodity in game devel-
opment. Almost every game needs physics simulation, and every major development
company will have an in-house library, or license one of the major middleware solu-
tions. Physics, despite being more common than ever before, is still somewhat of a
black box. The physics developers do their stuff, and the rest of the team relies on the
results.

Most of the information and literature on game physics assumes a level of mathe-
matical and physical sophistication that is uncommon. Other references might give
you all the physical information, but no architecture for how to apply it. And still oth-
ers contain misinformation and advice that will sting you. Physics engines are compli-
cated beasts, and there is a universe of optimizations and refinements out there, most
still waiting to be explored. But before you can wrangle with implementing varia-
tions on LCP solvers or pivot algorithms, you need to understand the basics, and have
a working body of code to experiment with.

This book is grounded in the first few years of painful experimentation I went
through. I wanted this book to be a starting point, to be the book I needed 12 years
ago. I want it to take you from zero to a working physics engine in one logical and
understandable story. It is just the first step on a much longer road, but it is a sure and
dependable step, and a step in the right direction.

Acknowledgments

My quest to create robust game physics, although difficult, would have been impos-
sible without the contributions of a handful of skilled code writers and mathemati-
cians who published papers and articles, and who gave SIGGRAPH presentations and
released source code. Although there are many more, I am thinking particularly of
Chris Hecker, Andrew Watkin, and David Barraf. Their early contributions were the
lifeline that those of us who followed needed.

I would like to thank the hard work and dilligence of the technical review team on
this book, both the first edition team—Dave Eberly, Philip J. Schneider, Dr. Jonathan
Purdy, and Eitan Grinspun—and Matt Smith, who reviewed the second edition mate-
rial with great patience and attention to detail: Thank you for your valuable contri-
butions that helped improve the book’s quality, readability, and usefulness. As always,
the quality of the book owes a great deal to these people, but any remaining short-
comings are my own.

Unlike my first book, which was written during “gardening leave” after selling my
previous business, this text and its second edition were written while working full-
time building the R&D consultancy partnership I still work with. I therefore want to
thank my wife, Mel, who has now suffered my late nights over two editions of this
book.

I first played a copy of Thrust loaned to me by my school friend Richard, who went
on to become my best friend and the best man at my wedding. Each day at school we
would compare our achievements, scores, and the level we had reached. I have such
fond memories of those days. In the last week of writing this second edition, Richard
died suddenly. He leaves a huge lacuna in my life. This second edition is dedicated to
his memory.

xxvii

This page intentionally left blank

About the Author

Ian Millington consults on game technologies and research and development, includ-
ing artificial intelligence, real-time simulation, and physics, through his company, the
R‘n’D Guy. Previously he founded Mindlatthe Ltd., the largest specialist AI middle-
ware company in computer games, working on a huge range of game genres and
technologies. He has an extensive background in AI, including doctoral research in
complexity theory and natural computing. He has published academic and profes-
sional papers and articles on topics ranging from paleontology to hypertext.

xxix

This page intentionally left blank

1
Introduction

hysics is a hot topic in computer games. No self-respecting action game can get
Pby without a good physics engine, and the trend has recently spread through
other genres, including strategy games and puzzles. This growth has been largely
fueled by middleware companies offering high-powered physics simulation. Most
high-profile games now feature commercial physics engines.

But commercial packages come at a high price, and for a huge range of developers
building a custom physics solution can be better, as it can be cheaper, provide more
control, and be more flexible. Unfortunately, physics is a topic shrouded in mystery,
mathematics, and horror stories.

When I came to build a general physics engine in 2000, I found that there was
almost no good information available, almost no code to work from, and lots of con-
tradictory advice. I struggled through and built a commercial engine, and learned a
huge amount in the process. Over the last 10 years I’ve applied my own engine and
other commercial physics systems to a range of real games. Almost a decade of effort
and experience is contained in this book.

There are other books, websites, and articles on game physics, much of it quite
excellent. But there is still almost no reliable information on building a physics engine
from scratch—a complete simulation technology that can be used in game after game.
This book aims to step you through the creation of a physics engine. It goes through
a sample physics engine (provided on the CD), as well as giving you insight into the
design decisions that were made in its construction. You can use the engine as is, use
it as a base for further experimentation, or make various design decisions and create
your own system under the guidance that this book provides.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00001-2 1

2 Chapter 1 Introduction

1.1 What Is Game Physics?

Physics is a huge discipline, and academic physics has hundreds of subfields. Each
describes some aspect of the physical world, from the way light works to the nuclear
reactions inside a star.

Lots of these areas of physics might be useful in games. We could use optics,
for example, to simulate the way light travels and bounces, and use to make great-
looking graphics. This is the way ray tracing works, and (although it is still very slow
compared to other approaches) it has been used in several game titles. Although these
areas are part of academic physics, they are not part of what we mean by game physics
and I won’t consider them in this book.

Other bits of physics have a more tenuous connection with games. I cannot think
of a use for nuclear physics simulation in a game, unless the nuclear reactions were
the whole point of the game play.

When we talk about physics in a game, we really mean classical mechanics, that is,
the laws that govern how large objects move under the influence of gravity and other
forces. In academic physics these laws have largely been superceded by relativity and
quantum mechanics. Almost all of the physics described in this book has long since
stopped being an active area of research; all the results we’ll be relying on were settled
before the turn of the twentieth century.

In games, classical mechanics is used to give game objects the feel of being solid
things, with mass, inertia, bounce, and buoyancy.

Game physics has been around almost since the first games were written. It was
first seen in the way particles move: the ballistics of bullets, sparks, fireworks, smoke,
and explosions. Physics simulation has also been used to create flight simulators for
nearly three decades. Next came automotive physics, with ever-increasing sophistica-
tion of tire, suspension, and engine models.

As processing power became available, we saw crates that could be moved around
or stacked, and walls that could be destroyed and crumble into their constituent
blocks. This is rigid-body physics, which rapidly expanded to include softer objects:
clothes, flags, and rope. Then came the rise of the ragdoll: a physical simulation
of the human skeleton that allows more realistic trips, falls, and death throes. And
recently we’ve seen a lot of effort focused on simulating fluid flow: water, fire, and
smoke.

In this book we’ll cover a representative sample of physics tasks. With a gradually
more comprehensive technology suite, our physics engine will support particle effects,
flight simulation, car physics, crates, destructible objects, cloth, and ragdolls, along
with many other effects.

1.2 What Is a Physics Engine?

Although physics in games is more than 30 years old, there has been a distinct change
in recent years in the way that physics is implemented. Originally, each effect was
programmed for its own sake, creating a game with only the physics needed for that

1.2 What Is a Physics Engine? 3

title. If a game needed arrows to follow trajectories, then the equation of the trajectory
could be programmed into the game. It would be useless for simulating anything but
the trajectory of arrows, but it would be perfect for that.

This is fine for simple simulations, where the amount of code is small and the
scope of the physics is quite limited. As we’ll see, a basic particle system can be pro-
grammed in only a hundred lines or so of code. But directly implementing phyical
behavior becomes a difficult task as the complexity increases.

In the original Half-Life game, for example, you can push crates around, but the
physics code isn’t quite right, and the way crates move looks odd. The difficulty of
getting physics to look good, combined with the need for almost the same effects in
game after game encouraged developers to look for general solutions that could be
reused.

Resuable technology needs to be quite general: a ballistics simulator that will only
deal with arrows can have the behavior of arrows hard coded into it. If the same code
needs to cope with bullets too, then the software needs to abstract away from partic-
ular projectiles and simulate the general physics that they all have in common. This
is what we call a physics engine: a common piece of code that knows about physics in
general, but isn’t programmed with the specifics of each game.

This leaves us with a gap. If we have special code for simulating an arrow, then we
need nothing else in order to simulate an arrow. If we have a general physics engine
for simulating any projectile, and we want to simulate an arrow, we also need to tell
the engine the characteristics of the thing we are simulating. We need the physical
properties of arrows, or bullets, or crates, and so on.

This is an important distinction. The physics engine is basically a big calculator: it
does the mathematics needed to simulate physics. But it doesn’t know what needs to
be simulated. In addition to the engine we also need game-specific data that represents
the objects in our level.

Although we’ll look at the kind of data we need throughout this book, I won’t
focus on how the data gets into the game. In a commercial game, there will likely
be some kind of level-editing tool that allows level designers to place crates, flags,
ragdolls, or aeroplanes to set their weight, the way they move through the air, their
buoyancy, and so on. For a physics engine driving a flight simulator, the data may have
to be acquired from real aircraft capabilities. For simpler games, it may be hardcoded
somewhere in the source code.

The physics engine we’ll be developing throughout this book needs gradually
more and more data to drive it. I’ll cover in depth what kind of data this is, and reason-
able values it can take, but for our purposes we will assume this data can be provided
to the engine. It is beyond the scope of the book to consider the tool chain that you
will use to author these properties for the specific objects in your game.

1.2.1 Advantages of a Physics Engine

There are two compelling advantages for using a physics engine in your games. First,
there is the time savings. If you intend to use physics effects in more than one game

4 Chapter 1 Introduction

(and you’ll probably be using them in most of your games from now on), then putting
the effort into creating a physics engine now pays off when you can simply import
it into each new project. A lightweight, general-purpose physics system, of the kind
we develop in this book, doesn’t have to be difficult to program either. A couple of
thousand lines of code will set you up for most of the game effects you need.

The second reason is quality. You will most likely be including more and more
physical effects in your game as time goes on. You could implement each of these
as you need it, such as building a cloth simulator for capes and flags, and a water
simulator for floating boxes, and a separate particle engine. Each might work perfectly,
but you would have a very hard time combining their effects. When the character with
a flowing cloak comes to stand in the water, how will her clothes behave? If they keep
blowing in the wind even when underwater, then the illusion is spoiled.

A physics engine provides you with the ability to have effects interact in believable
ways. Remember the moveable crates in Half-Life 1? They formed the basis of only one
or two puzzles in the game. When it came to Half-Life 2, crate physics was replaced
by a full physics engine. This opens up all kinds of new opportunities. The pieces of
a shattered crate float on water, objects can be stacked and used as moveable shields,
and so on.

It’s not easy to create a physics engine to cope with water, wind, and clothes, but
it’s much easier than trying to take three separate ad-hoc chunks of code and make
them look good together in all situations.

1.2.2 Weaknesses of a Physics Engine

This isn’t to say that a physics engine is a panacea. There are reasons that you might
not want to use a full physics engine in your game.

The most common reason is speed. A general-purpose physics engine is quite
processor-intensive. Because it has to be general, it can make no assumptions about
the kinds of objects it is simulating. When you are working with a very simple game
environment, this generality can mean wasted processing power. This isn’t an issue
on modern consoles or the PC, but on handheld devices such as phones and PDAs, it
can be significant. You could create a pool game using a full physics engine on a PC,
but the same game on a mobile phone would run faster with some specialized pool
physics.

The need to provide the engine with data can also be a serious issue. In a game
that I worked on we needed no physics other than flags waving in the wind. We could
have used a commercial physics engine (one was available to the developer), but the
developer would need to have calculated the properties of each flag, its mass, springi-
ness, and so on. This data would then need to be fed into the physics engine to get it
to simulate the flags.

There was no suitable level-design tool that could be easily extended to provide
this data, so instead we created a special bit of code just for flag simulation, the char-
acteristics of flags were hardcoded in the software, and the designer needed to do

1.3 Approaches to Physics Engines 5

nothing special to support it. We avoided using a physics engine because special-case
code was more convenient.

A final reason to avoid physics engines is scope. If you are a one-person hobbyist
working on your game in the evenings, then developing a complete physics solution
might take your time away from improving other aspects of your game, such as the
graphics or game play. Or worse, it might distract you from finishing, releasing, and
promoting your game. On the other hand, even amateur games need to compete with
commercial titles for attention, and top-quality physics is a must for a top-quality title
of any kind.

1.3 Approaches to Physics Engines

There are several different approaches to building a physics engine. From the very
simple (and wrong) to the cutting-edge physics engines of top middleware companies.
Creating a usable engine means balancing the complexity of the programming task
with the sophistication of the effects you need to simulate.

There are a few broad distinctions we can make to categorize different approaches.

1.3.1 Types of Objects

The first distinction is between engines that simulate full rigid bodies or so-called
“mass aggregate” engines. Rigid-body engines treat objects as a whole, and work out
the way they move and rotate. A crate is a single object, and can be simulated as a
whole. Mass aggregate engines treat objects as if they were made up of lots of little
masses. A box might be simulated as if it were made up of eight masses, one at each
corner, connected by rods.

Mass aggregate engines are easier to program because they don’t need to under-
stand rotations. A large amount of effort is needed to support rotations, and it forms a
sizable chunk of this book. Mass aggregate engines treat each mass as if it were located
at a single point, and the equations of motion can be expressed purely in terms of lin-
ear motion. The whole object rotates naturally as a result of the connections between
masses.

Because it is very difficult to make things truly rigid in a physics engine, it is
difficult to make really firm objects in a mass aggregate system. Our eight-mass crate
will have a certain degree of flex in it. To avoid this being visible to the player, extra
code is needed to reconstruct the rigid box from the slightly springy set of masses.
While the basic mass aggregate system is very simple to program, these extra checks
and corrections are more hit and miss, and very quickly the engine becomes a mess
of fixes and ugly code.

Fortunately, we can extend a mass aggregate engine into a full rigid-body system,
simply by adding rotations. In this book, we will develop a mass aggregate physics
engine on the way to a full rigid-body physics engine. Because we are heading for a

6 Chapter 1 Introduction

more robust engine, I won’t spend the time creating the correction code for springy
aggregates.

1.3.2 Contact Resolution

The second distinction involves the way in which touching objects are processed. As
we’ll see in this book, a lot of the difficulty in writing a rigid-body physics engine
is simulating contacts—locations where two objects touch or are connected. This
includes objects resting on the floor, objects connected together, and, to some extent,
collisions.

One approach is to handle these contacts one by one, making sure each works
well on its own. This is called the “iterative” approach and it has the advantage of
speed. Each contact is fast to resolve, and with only a few tens of contacts, the whole
set can be resolved quickly. It has the downside that one contact can affect another,
and sometimes these interactions can be significant. This is the easiest approach to
implement, and can form the basics of more complex methods. It is the technique we
will use in the engine in this book.

A more physically realistic way is to calculate the exact interaction between differ-
ent contacts and calculate an overall set of effects to apply to all objects at the same
time. This is called a “Jacobian-based” approach,1 but it is very time consuming. The
mathematics needed to process the Jacobian is very complex, and solving the equa-
tions can involve millions of calculations. In some cases there is simply no valid answer
and the developer needs to add special code to fall back on when the equations can’t
be solved. Most physics middleware packages and several open-source physics engines
use this approach, and each has its own techniques for solving the equations and deal-
ing with inconsistencies.

A third option is to calculate a set of equations based on the contacts and con-
straints between objects. Rather than use Newton’s laws of motion, we can create our
own set of laws for the specific configuration of objects we are dealing with. These
equations will change from frame to frame, and most of the effort for the physics
engine goes into creating them (even though solving them is no picnic either). This
is called a “reduced coordinate” approach. Some physics systems have been created
with this approach, and it is the most common one used in engineering software to
achieve really accurate simulation. Unfortunately, it is very slow, and isn’t very useful
in games, where speed and believability are more important than accuracy.

We’ll return to the Jacobian and reduced coordinate approaches in Chapter 20,
after we’ve looked at the physics involved in the first approach.

1.3.3 Impulses and Forces

The third distinction is in how the engine actually resolves contacts. This takes a little
explaining, so bear with me.

1. The “Jacobian” itself is a way of mathematically representing the effects of one contact on another.

1.3 Approaches to Physics Engines 7

When a book rests on a table, the table is pushing the book upwards with a force
equal to the gravity pulling it down. If there were no force from the table to the book,
then the book would sink into the table. This force is constantly pushing up on the
book as long as the book is there. The speed of the book doesn’t change.

Contrast this with the way a ball bounces on the ground. The ball collides with the
ground, and the ground pushes back on the ball, accelerating the ball upward until it
bounces back off the floor with an upward velocity. This change in velocity is caused
by a force, but the force acts for such a small fraction of a second that it is easier to
think of it as simply a change in velocity. This is called an impulse.

Some physics engines use forces for resting contacts and impulses for collisions.
This is relatively complex, because it involves treating forces and impulses differently.
More commonly physics engines treat everything as a force: impulses are simply forces
acting over a very small space of time. This is a “force-based” physics engine and it
works in the way the real world does. Unfortunately, the mathematics of forces are
more difficult than the mathematics of impulses. Engines that are force-based tend to
employ a Jacobian or reduced coordinate approach.

Other engines use impulses for everything: the book on the table is kept there
by lots of miniature collisions, rather than a constant force. This is, not surprisingly,
called an “impulse-based” physics engine. Each frame of the game, the book receives a
little collision that keeps it on the surface of the table until the next frame. If the frame
rate slows down dramatically, things lying on surfaces can appear to vibrate. Under
most circumstances, however, it is indistinguishable from a forced-based approach.
This is the approach we will use in this book, as it is easy to implement, and has the
advantage of being very flexible and adaptable. It has been used in several middleware
packages, in a large number of the in-house physics systems I have seen, and has been
proven in many commercial titles.

1.3.4 What We’re Building

In this book I will cover in depth the creation of a rigid-body, iterative, impulse-based
physics engine that I call Cyclone. The engine has been written specifically for this
book, although it is broadly based on a commercial physics engine I was involved
with writing a few years ago.

I am confident that the impulsed-based approach is best for developing a simple,
robust, and understandable engine for a wide range of game styles, and for using as a
basis for adding more complex and exotic features. It can be used as a foundation for
experimenting with other approaches: I’ve used the skeleton structure to implement
a Jacobian force-based engine, for example.

As we move through the book, I will give pointers for various approaches, and
Chapter 20 will provide some background to techniques for extending the engine to
take advantage of more complex simulation algorithms. While we won’t cover other
approaches in the same depth, the engine is an excellent starting point for any kind
of game physics. You will need to understand the content of this book to be able to
create a more exotic system.

8 Chapter 1 Introduction

1.4 The Mathematics of Physics Engines

Creating a physics engine involves a lot of mathematics. If you’re the kind of person
who feels nervous working with math, then you may find some bits hard going. I’ve
tried throughout the book to step through the mathematical background slowly, but
unfortunately there’s no way to avoid the mathematics entirely.

If you have difficulty following the mathematics, don’t worry: you can still use
the accompanying source code for the corresponding section. While it is better to
understand all of the engine in case you need to tweak or modify it, you can still
implement and use it quite successfully without such understanding.

As a quick reference, the mathematical equations and formulas in the book are
brought together in Appendix C, for easy location when programming.

If you are an experienced game developer, then chances are you will know a fair
amount of 3D mathematics, including vectors, matrices, and linear algebra. If you are
relatively new to games, then these topics may be beyond your comfort zone.

In this book I will assume you know some mathematics, and I will cover the rest.
If I assume something that you aren’t comfortable with, then it would be worthwhile
to find a reference book, or look for a web tutorial before proceeding, so that you can
stay with the flow of the text.

1.4.1 The Math You Need to Know

I’m going to assume that every potential physics developer knows some mathematics.
The most important thing to be comfortable with is algebraic notation. I will

introduce new concepts directly in notation, and if you flick through this book you
will see many formulas written into the text.

I’ll assume you are happy to read an expression such as:

x = 4

t
sinθ2

and are able to understand that x , t , and θ are variables, and how to combine them
to get a result.

I will also assume you know some basic algebra. You should be able to understand
that, if the formula above is correct, then

t = 4

x
sinθ2

These kinds of algebraic manipulations will pop up throughout the book without
explanation.

Finally, I’ll assume you are familiar with trigonometry and coordinate geometry:
sines, cosines, tangents, their relationship to the right-angled triangles, and to two-
dimensional geometry in general.

1.4 The Mathematics of Physics Engines 9

b

c

a

�

FIGURE 1.1 Trigonometry and coordinate geometry.

In particular, you should know that if we have the triangle shown in Figure 1.1,
then these formulas hold:

b = a sinθ

c = a cos θ

b = c tanθ

Especially when a is of length 1, we will use these results tens of times in the book
without further discussion.

1.4.2 The Math We’ll Review

Because the experience of developers varies so much, I will not assume you are famil-
iar with three-dimensional mathematics to the same extent. This isn’t taught in high
schools and is often quite specialized to computer graphics. If you are a long-standing
game developer, then you will be able to skip through these reviews as they arise.

We will cover the way that vectors work in the next chapter, including the way
a three-dimensional coordinate system relates to the 2D mathematics of high school
geometry. I will review the way that vectors can be combined, including the scalar and
vector product, and their relationship to positions and directions in three dimensions.

We will also review matrices. Matrices are used both to transform vectors, rep-
resenting movement in space, or to change other matrices from one set of coor-
dinates into another. We will also see matrices called tensors at a couple of points,
which have different uses but the same structure. We will review the mathematics of
matrices, including matrix multiplication, the transformation of vectors, and matrix
inversion.

These topics are fundamental to any kind of 3D programming, and are used exten-
sively in graphics development, and in many AI algorithms too. I assume that most
readers will be at least a little familiar with them, and there are comprehensive books
available that cover them in great depth.

10 Chapter 1 Introduction

Each of these topics is reviewed lightly once in the book, but afterwards I’ll assume
that you are happy to see the results used directly. They are the bread and butter topics
for physics development, so it would be inconvenient to step through them each time
they arise.

If you find later sections difficult, rereading the reviews is worthwhile, as well as
finding a more comprehensive reference to linear algebra or computer graphics, and
teaching yourself how they work.

1.4.3 The Math I’ll Introduce

Finally, there is a good deal of mathematics that you may not have discovered unless
you have done some physics programming in the past. This is the content I’ll try not
to assume you know, and cover in more depth.

At the most well-known end of the spectrum this includes quaternions, a vector-
like structure that represents the orientation of an object in 3D space. We will take
some time to understand why such a strange structure is needed, and how it can be
manipulated, converted into a matrix, combined with other quaternions, and affected
by rotations.

We will also need to cover vector calculus, or the way vectors change with time
and through space. Most of the book requires only simple calculus—numerical inte-
gration and first-order differentiation. The more complex physics approaches of
Chapter 20 get considerably more exotic, including both partial differentials and dif-
ferential operators. Fortunately, we will have completely built the physics engine by
this point, so the content is purely optional.

Finally, we will cover a few more advanced topics in matrix manipulation. In par-
ticular, resolving contacts in the engine development involves changing the coordi-
nates of existing transform matrices. This kind of manipulation is rarely needed in
graphics development, so it will be covered in some depth in the relevant section.

1.5 The Source Code in the Book

Throughout the book the source code from the Cyclone physics engine is given in the
text. The complete engine is available on the accompanying website, but repeating the
code in the text has allowed me to comment more fully on how it works.

The latest Cyclone source, including errata and new features, is available at its own
site, http://www.procyclone.com. It is also hosted on Google’s open-source code web-
site at: http://code.google.com/p/game-libraries/. Check the site from time to time for
the latest release of the package.

In each section of the book, we will cover the mathematics or concepts needed, and
then view them in practice in code. I’d encourage you to try to follow the equations
or algorithms in the code, and find how it has been implemented.

1.6 How the Book Is Structured 11

I have used an object-oriented design for the source code, and always tried to err
on the side of clarity. The code is contained within a cyclonenamespace, and its layout
is designed to make naming clashes unlikely.

I have used C++ throughout the code. This is still the most common program-
ming language used for game development worldwide. I’m aware, however, that over
the last few years, C++ has become less exclusive. With the advent of a wide range of
gaming platforms and coding environments, it is no longer C++ or nothing. I know
of readers of the first edition who implemented the engine in languages ranging from
Microsoft’s C# and Apple’s Objective-C, through Adobe’s Actionscript for Flash, to
high-level dynamic languages such as Javascript and Python. I have therefore revised
and extended Chapter 19 in this edition, which discusses implementation for a range
of languages.

There are many parts of the engine that can be optimized, or rewritten, to take
advantage of mathematics hardware on consoles, graphics cards, and some PC pro-
cessors. If you need to eke out every ounce of speed from the engine, you will find
that you need to optimize some of the code to make it less clear and more efficient.
Chances are, however, it will be perfectly usable as is. It has a strong similarity to code
I have used in real game development projects, that has proved to be easily fast enough
to cope with reasonably complex physics tasks.

There are a number of demonstration programs in the source code, and I will
use them as case studies in the course of the book. The demonstrations were cre-
ated to show off physics rather than graphics, so I’ve tried to use the simplest graph-
ics output possible. The source code is based on the GLUT toolkit, which wraps
OpenGL in a platform-independent way. The graphics tend to be as simple as pos-
sible, as in calling GLUT’s built-in commands for drawing cubes, spheres, and other
primitives. This selection doesn’t betray any bias on my part and you should be able
to transfer the physics so that it works with whatever rendering platform you are
using.

The license for your use of the source code is the MIT license. It is designed to allow
it to be used in your own projects, but it is not copyright-free. Please read through
the software license accompanying the source code for more details.

It is my hope that although the source code will provide a foundation, you’ll
implement your own physics system as we go. I make decisions throughout this book
about my implementation, and chances are that you’ll make different decisions at
least some of the time. My aim is to give you enough information to understand the
decision, and to go a different route if you want to.

1.6 How the Book Is Structured

We will build our physics engine in stages, starting with the simplest engine that is
useful and adding new functionality until we have a system capable of running the
physics in your game.

12 Chapter 1 Introduction

The book is split into six sections:

� In Particle Physics, we look at building our initial physics engine, including
the basic vector mathematics and the laws of motion for particles.

� The Mass Aggregate Physics section turns the particle physics engine into one
capable of simulating any kind of object by connecting masses together with
springs and rods.

� In Rigid-Body Physics, rotation and the added complexity of rotational forces
are introduced. Overall, the physics engine we end up with is less powerful
than the mass aggregate system we started with, but is useful in its own right
and as a basis for the final stage.

� The Collision Detection section takes a detour from building engines to look
at how the collisions and contacts are generated. A basic collision detection
system is built, allowing us to look at general techniques.

� The Contact Physics section is the final stage of our engine, adding collisions
and resting contacts to the engine and allowing us to apply the result to almost
any game.

� Finally, in Horizons we look beyond the engine we have built. In Chapter 20 we
examine means of extending the engine to take advantage of other approaches,
without providing the detailed step-by-step source code to do so.

As we begin each part, the content will be quite theoretical, and it can be some-
times difficult to immediately see the kinds of physical effects that the technology
supports. At the end of each part, there is a chapter with the payoff, showing ways in
which our new functionality may be used in a game. As we go through the book we
start with engines controlling fireworks and bullets, and end up with ragdolls and cars.

1.6.1 Exercises and Projects

At the end of most chapters, particularly those that introduce new technical content,
there is a set of exercises. These are designed to solidify the new concepts introduced
in that chapter and to allow you to think about other implications of what you’ve
learned. The chapter exercises are typically quite narrow and focused.

At the end of each part of the book, I’ve included some additional exercises and
project suggestions. These are designed to be broader and bring together the con-
tent of that part into something practical. I’ve split this content into further exercises,
mini-projects, and game projects.

The mini-projects are typically implementation challenges. They are suitable as an
exercise over a week or two, or as a homework assignment in a course on game physics.
I’ve tried to indicate the difficulty of these projects using a three-star system. One star
is a project that should be relatively simple and accessible for all. I’ve reserved one
star for projects that tweak the code in fairly predictable or minor ways, or that merely
apply it to a new scenario. Three stars indicates a problem that requires novel thinking,

1.6 How the Book Is Structured 13

or modifications to the core algorithms or mathematics beyond what is introduced
in the chapter. It should be suitable for readers who really want to stretch themselves.

The game projects give suggestions for how to use the physics engine developed
so far in a complete game, showing off the physics as much as possible. These projects
will take longer, and can be used as an end-of-semester project, or as inspiration for
a complete game.

For all the projects in this book there is no right or wrong answer: you decide
how much or how little you want to develop the physics. I hope they will provide a
framework for applying the content of the book. One of the challenges of learning a
whole new area, like game physics, is seeing how to apply it as you go, without having
to learn everything there is to know before you start.

This page intentionally left blank

Part I

Particle Physics

This page intentionally left blank

2
The Mathematics

of Particles

efore we look at simulating the physics of particles, this chapter reviews 3D
Bmathematics. In particular, it looks at vector mathematics and vector calculus,
the fundamental building blocks on which all our physics code will be built. I’ll avoid
some of the harder topics that we’ll only need later. Matrices and quaternions, for
example, will not be needed until Chapter 9, so I’ll postpone reviewing them until
that point.

2.1 Vectors

Most of the mathematics we are taught at school deals with single numbers, such as
a number to represent how many apples we have, or the time it takes for a train to
make a journey, or the numerical representation of a fraction. We can write algebraic
equations that tell us the value of one number in terms of others. If x = y2 and y = 3,
then we know x = 9. This kind of single number on its own is called a scalar value. One
particular scalar value is a number chosen from the whole range of possible numbers.

Scalar values have properties that we are very familiar with: they can be added,
multiplied, raised to powers, and so on. The rules for carrying out those operations
are taught to us from the first day of school.

Vectors have similarities to scalar values. They are also chosen from a whole set
of possible vectors, we choose them to represent things, and we define operators that
manipulate them according to specific rules.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00002-4 17

18 Chapter 2 The Mathematics of Particles

Mathematically, a vector is an element in a set called a vector space, a structure
that displays certain mathematical properties for addition and multiplication. There
are many different kinds of vector spaces with wildly different properties, but for our
purposes the only vector spaces we’re interested in are regular (called Euclidean) 2D
and 3D space. In this case the vectors we choose can represent features of that space,
such as position, speed and direction of movement, acceleration, and so on.

Because vectors have a range of operations (addition, multiplication, etc.), we can
write them in algebraic equations: x = 2y, for example, where x and y are vectors (and
the number 2 is just a scalar value). Over the course of this chapter, we’ll look at these
operations and how they work, building up our ability to do math with vectors.

Vectors can be thought of as abstract values, but we’re interested in coding them,
so we’ll need a concrete representation. In this book we will represent a vector as an
ordered list of scalar values. This will allow us to define our operations on the vector
in terms of how its constituent scale values are manipulated. So if y is a vector (let’s
say it contains the numbers 2 and 3), and x = 2y, then x will also be a vector of two
numbers, in this case 4 and 6.

Vectors can undergo some of the same mathematical operations as scalars, includ-
ing multiplication, addition, and subtraction. Some of these work in a slightly differ-
ent way to scalar values, and some operations that make sense for scalars (such as
division) aren’t defined for vectors.

Note that when I talk about vectors in this book, I am referring only to this mathe-
matical structure. Many programming languages have a vector data structure that is
some kind of growable array. The name comes from the same source (a set of values,
rather than just one), but that’s where the similarities stop. On the few occasions in
this book where I need to refer to a growable array, I will call it that, to keep the
name “vector” reserved for the mathematical concept. Few languages have a built-in
vector class to represent the kind of vector we are interested in, so we’ll create one
as we go.

One convenient application of vectors is to represent locations in space. Figure 2.1
shows two locations in 3D space. The position can be represented by three coordi-
nate values, one for the distance from a fixed origin point along each of three axes at
right angles to one another. This is called a Cartesian coordinate system, named for
the mathematician and philosopher Rene Descartes who invented it. There are other
ways of specifying coordinates, but we will use Cartesian coordinates throughout
the book.

We group the three coordinates together into a vector, written as

a =
⎡⎢⎣x

y

z

⎤⎥⎦
where x , y , and z are the coordinate values along the X, Y, and Z axes. Note the a
notation. This indicates that a is a vector; we will use this notation throughout the
book to make it easy to discriminate between vector and scalar values.

2.1 Vectors 19

x 5 3

y 5 4

y 5 2.4

x 5 1.4

z 5 1

z 5 3

Y

Z X

a

b

a 5 b 51.4
2.4
3

3
4
1

FIGURE 2.1 3D coordinates.

Every vector specifies a unique position in space, and every position in space has
only one corresponding vector. We will use only vectors to represent positions in
space.

We can begin to implement a class to represent vectors. I have called this class
Vector3 to clearly separate it from any other Vector class in your programming
language (seeing the name Vector on its own is particularly confusing for Java
programmers).

Excerpt from file include/cyclone/core.h

namespace cyclone {
/**
* Holds a vector in three dimensions. Four data members are
allocated

* to ensure alignment in an array.
class Vector3
{
public:

/** Holds the value along the x axis. */
real x;

/** Holds the value along the y axis. */
real y;

/** Holds the value along the z axis. */
real z;

20 Chapter 2 The Mathematics of Particles

private:
/** Padding to ensure four word alignment. */
real pad;

public:
/** The default constructor creates a zero vector. */
Vector3() : x(0), y(0), z(0) {}

/**
* The explicit constructor creates a vector with the given
* components.
*/

Vector3(const real x, const real y, const real z)
: x(x), y(y), z(z) {}

/** Flips all the components of the vector. */
void invert()
{

x = -x;
y = -y;
x = -z;

}
};

Excerpt from file include/cyclone/precision.h

namespace cyclone {
/**
* Defines a real number precision. Cyclone can be compiled in
* single- or double-precision versions. By default, single
* precision is provided.
*/
typedef float real;

}

There are a few things to note about this source code.

� All the code is contained within the cyclone namespace, as promised in the
first chapter. This makes it easier to organize code written in C++, and in par-
ticular it makes sure that names from several libraries will not clash. Wrapping
all the code samples in the namespace declaration is a waste of time, how-
ever, so in the remaining exerpts in this book, I will not show the namespace
explicitly.

� Also to avoid clashing names, I have placed the header files in the directory
include/cyclone/, with the intention of having the include/directory on the

2.1 Vectors 21

include path for a compiler (see your compiler’s documentation for how to
achive this). This means that to include a header we will use an include of the
format:

#include <cyclone/core.h>

or

#include "cyclone/core.h"

I find this to be a useful way of ensuring that the compiler knows which header
to bring in, especially with large projects that are using multiple libraries, sev-
eral of which may have the same name for multiple header files (I have at least
four math.h headers that I use regularly in different libraries, which is part of
my motivation for putting our mathematics code in a header called core.h).

� I have used real rather than float to reserve the storage for my vector compo-
nents. The real data type is a typedef, contained in its own file (precision.h).
I’ve done this to allow the engine to be rapidly compiled in different preci-
sions. In most of the work I’ve done, float precision is fine, but it can be a
huge pain to dig through all the code if you find you need to change to double
precision later. You may have to do this if you end up with numerical rounding
problems that won’t go away (they are particularly painful if you have objects
with a wide range of different masses in the simulation). By consistently using
the real data type, we can easily change the precision of the entire engine by
changing the type definition once. We will add to this file additional defini-
tions for functions (such as sqrt) that come in both float and double forms.

� I’ve added an extra piece of data into the vector structure, called pad. This isn’t
part of the mathematics of vectors, and is purely there for performance. On
many machines, four floating-point values sit more cleanly in memory than
three (memory is optimized for sets of four words), so noticeable speed-ups
can be achieved by adding this padding.

Your physics engine shouldn’t rely on the existence of this extra value for any
of its functionality. If you are programming for a machine that you know is
highly memory limited, and doesn’t optimize in sets of four words, then you
can remove pad safely.

2.1.1 The Handedness of Space

If you are an experienced game developer you will have spied a contentious assump-
tion in Figure 2.1. The figure shows the three axes arranged in a right-handed coor-
dinate system.

22 Chapter 2 The Mathematics of Particles

Y

Z

X

Y

Z X
Left-handed
coordinates

Right-handed
coordinates

FIGURE 2.2 Left- and right-handed axes.

There are two different ways that we can arrange three axes at right angles to one
another: in a left-handed way or a right-handed way,1 as shown in Figure 2.2.

You can tell which is which using your hands: make a gun shape with your hand,
thumb and extended forefinger at right angles to one another. Then, keeping your ring
finger and pinky curled up, extend your middle finger so that it is at right angles to the
first two. If you label your fingers with the axes in order (thumb is X, forefinger Y, and
middle finger Z), then you have a complete set of axes, whether right- or left-handed.

Some people prefer to think of this in terms of the direction that a screw is turned,
but I find making axes with my hands much simpler.

Game engines, rendering toolkits, and modeling software use either left- or right-
handed axes. There is no dependable standard. DirectX favors a left-handed coordi-
nate system, while OpenGL favors a right-handed system. XBox 360, being DirectX
based, is left-handed, Wii, being rather OpenGL-like, is right-handed, and PlaySta-
tion’s sample code is right-handed, although most developers create their own ren-
dering code. On any platform you can actually use either one with a bit more effort
(this is how cross-platform game engines use a consistent system on every plat-
form). For a detailed explanation of various systems and converting between them,
see Eberly [2003].

There are relatively few places where it matters which system we use, as it cer-
tainly doesn’t change the physics code in any way. I have (fairly arbitrarily) chosen
right-handed coordinates throughout this book. Because the demonstration code is
designed to work with OpenGL, this makes things slightly easier.

If you are working on a DirectX-only project and are keen to stay with a left-
handed system, then you’ll need to make the occasional adjustment in the code. I’ll
try to indicate places where this is the case.

1. Strictly speaking, this handedness is called “chirality,” and each alternative is a “enantiomorph,”
although those terms are rarely if ever used in game development.

2.1 Vectors 23

2.1.2 Vectors and Directions

In the previous section, I said that vectors represent quantities in 2D or 3D space. The
most obvious quantity they represent is a position. Just as importantly, a vector can
represent the change in position. Figure 2.3 shows an object that has moved in space
from position a0 to a1. We can write down the change in position as a vector where
each component of the vector is the change along each axis. So,

a =
⎡⎢⎣�x

�y

�z

⎤⎥⎦
where �x is the change in the position along the X axis from a0 to a1, given by

�x = x1 − x0

where x0 is the X coordinate of a0 and x1 is the X coordinate of a1, and similarly for
�y and �z .

Position and change in position are really two sides of the same coin. We can think
of any position as a change of position from the origin (written as 0, where each com-
ponent of the vector is zero) to the target location.

If we think in terms of the geometry of a vector being a movement from the origin
to a point in space, then many of the mathematical operations we’ll meet in this chap-
ter have obvious and intuitive geometric interpretations. Vector addition, subtrac-
tion, multiplication by a scalar, and different vector products, can all be understood

a 5

a�
a1

Y

Z X

 1.6
20.2
22

FIGURE 2.3 A vector as a movement in space.

24 Chapter 2 The Mathematics of Particles

in terms of how these changes in position relate. When drawn as in Figure 2.3, the
visual representation of an operation is often much more intuitive than its list of coor-
dinates. We’ll consider this for each operation we meet.

A change in position, given as a vector, can be split into two elements:

a = dn [2.1]

where d is the straight-line distance of the change (called the “magnitude” of the vec-
tor), and n is the direction of the change. The vector n represents a change, whose
straight-line distance is always 1, in the same direction as the vector a. The vector n
is often called the “unit vector,” since its magnitude is always 1.

We can find d using the 3D version of Pythagoras’s theorem, which has the
formula,

d = |a| = √
x2 + y2 + z2

where x , y , and z are the three components of the vector and |a| is the magnitude of
a vector.

We can use Equation 2.1 to find n:

â = n = 1

d
a [2.2]

where â is a common (but not universal) notation for the unit vector in the direction
of a. The equation is sometimes written as:

â = a

|a|
The process of finding just the direction n from a vector is called “normalizing,”

and the result of decomposing a vector into its two components is sometimes called
the normal form of the vector (i.e., dn is the normal form of a in the above equations).
This decomposition will be a common requirement in our code.

We can add functions to find the magnitude of the vector and its direction, and
to perform a normalization:

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/** Gets the magnitude of this vector. */
real magnitude() const
{

return real_sqrt(x*x+y*y+z*z);
}

/** Gets the squared magnitude of this vector. */
real squareMagnitude() const
{

2.1 Vectors 25

return x*x+y*y+z*z;
}
/** Turns a non-zero vector into a vector of unit length. */
void normalize()
{

real l = magnitude();
if (l > 0)
{

(*this) *= ((real)1)/l;
}

}
};

Note that I’ve also added a function to calculate the square of the magnitude of a
vector. This is a faster process, because it avoids the call to sqrt which can be slow on
some machines. In some cases, we don’t need the exact magnitude; for example, we
may just need to compare two magnitudes to see which is greater. In these cases the
square of the magnitude will do and we can omit the square root. For this reason it is
common to see a squared magnitude function in a vector implementation.

2.1.3 Scalar and Vector Multiplication

In the normalization equations, I have assumed that we can multiply a scalar (1/d)
by a vector. This is our first vector operation, which is a simple process given by:

ka = k

⎡⎢⎣x

y

z

⎤⎥⎦ =
⎡⎢⎣kx

ky

kz

⎤⎥⎦
In other words, we multiply a vector by a scalar by multiplying all the components

of the vector by the scalar.
To divide a vector by a scalar, we make use of the fact that

a ÷ b = a × 1

b
so

a

k
= 1

k
a

which is how we arrived at the normalization Equation 2.2 from Equation 2.1.
This formula also lets us define the additive inverse of a vector:

−a = −1 × a =
⎡⎢⎣−x

−y

−z

⎤⎥⎦

26 Chapter 2 The Mathematics of Particles

We can overload the multiplication operator *= in C++ to support these opera-
tions, with the following code in the Vector3 class.

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/** Multiplies this vector by the given scalar. */
void operator*=(const real value)
{

x *= value;
y *= value;
z *= value;

}

/** Returns a copy of this vector scaled the given value. */
Vector3 operator*(const real value) const
{

return Vector3(x*value, y*value, z*value);
}

};

Geometrically, multiplication of a vector by a scalar changes the length of the vec-
tor. This is shown in Figure 2.4.

The direction of the vector doesn’t change. If a vector has a length of k , we can
write it in normal form as

a = dn

Then multiplication by a scalar gives

ka = kdn

The resulting vector is in the same direction, but now has a length of kd .

x2 5

FIGURE 2.4 The geometry of scalar-vector multiplication.

2.1 Vectors 27

a a a 1b

b

b

FIGURE 2.5 The geometry of vector addition.

2.1.4 Vector Addition and Subtraction

Geometrically, adding two vectors together is equivalent to placing them end to end.
The result is the vector from the origin of the first to the end of the second, shown
in Figure 2.5. Similarly, subtracting one vector from another places the vectors end
to end, but the vector being subtracted is placed so that its tip touches the end of the
first. In other words, to subtract vector b from vector a, we first go forward along a,
then go backward along b.

In code it is very easy to add vectors or subtract them. For two vectors a and b,
their sum is given by

a + b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ +
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ax + bx

ay + by

az + bz

⎤⎥⎦
where ax , ay , and az are the x , y , and z components of the vector a. We will normally
use this notation for the components of a vector, rather than x , y , and z . This avoids
confusion when dealing with more than one vector.

Vector addition is achieved by adding the components of the two vectors together.
This can be implemented using the + operator in C++.

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/** Adds the given vector to this. */
void operator+=(const Vector3& v)
{

x += v.x;
y += v.y;

28 Chapter 2 The Mathematics of Particles

z += v.z;
}

/** Returns the value of the given vector added to this. */
Vector3 operator+(const Vector3& v) const
{

return Vector3(x+v.x, y+v.y, z+v.z);
}

};

In the same way, vector subtraction is also performed by subtracting the compo-
nents of each vector:

a − b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ −
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ax − bx

ay − by

az − bz

⎤⎥⎦
which is implemented in the same way as addition.

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/** Subtracts the given vector from this. */
void operator-=(const Vector3& v)
{

x -= v.x;
y -= v.y;
z -= v.z;

}

/**
* Returns the value of the given vector subtracted from this.
*/
Vector3 operator-(const Vector3& v) const
{

return Vector3(x-v.x, y-v.y, z-v.z);
}

};

A final version of addition, which is useful, combines both addition and scaling
of a vector. We simply merge the two processes into a single function, allowing us to

2.1 Vectors 29

add a scaled vector to another vector:

a + cb =
⎡⎢⎣ax

ay

az

⎤⎥⎦ + c

⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ax + cbx

ay + cby

az + cbz

⎤⎥⎦
We could do this in two steps with the functions above, but having it in one place

is convenient.

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/**
* Adds the given vector to this, scaled by the given amount.
*/

void addScaledVector(const Vector3& vector, real scale)
{

x += vector.x * scale;
y += vector.y * scale;
z += vector.z * scale;

}
};

2.1.5 Multiplying Vectors

Seeing how easy it is to add and subtract vectors may lull you into a false sense of
security. When we come to multiply two vectors, things get considerably more com-
plicated. There are several ways of multiplying two vectors together, and whenever we
produce a formula involving vector multiplication we will have to specify which type
of multiplication to use.

In algebra for scalar values, there is only one kind of multiplication. We write
this in various ways, either with no symbol at all (ab), with a dot (a · b), or with a
multiplication symbol (a × b).

With vectors these three notations have different meanings, and we have to be
more precise. Using no symbol usually denotes a type of multiplication that we will
not need to cover (the vector direct product; see a good mathematical encyclopedia
for information). I will not write ab in this book. The two other notations that we
will encounter are called the scalar product (a · b) and the vector product (a × b).
First, however, we’ll meet a fourth way of multiplying vectors that uses none of these
symbols.

30 Chapter 2 The Mathematics of Particles

2.1.6 The Component Product

The most obvious product is the least useful: the component product, written in this
book as ◦ (it does not have a universal standard symbol the way the other products
do). It is used in several places in the physics engine, but despite being quite obvi-
ous, it is rarely mentioned in books on vector mathematics. This is because it doesn’t
have a simple geometric interpretation—if the two vectors being multiplied together
represent positions, then it isn’t clear geometrically how their component product is
related to their locations. This isn’t true of the other types of product, as we’ll see.

The component product is formed in the same way as vector addition and sub-
traction, by multiplying each component of the vector together.

a ◦ b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ ◦
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣axbx

ay by

az bz

⎤⎥⎦
Note that the end result of the component product is another vector. This is exactly

the same as for vector addition and subtraction, and for multiplication by a scalar: all
end up with a vector as a result.

Because it is not commonly used, we will implement the component product
as a method rather than an overloaded operator. We will reserve overloading the *
operator for the next type of product. The method implementation looks like the
following:

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/**
* Calculates and returns a component-wise product of this
* vector with the given vector.
*/
Vector3 componentProduct(const Vector3 &vector) const
{

return Vector3(x * vector.x, y * vector.y, z * vector.z);
}

/**
* Performs a component-wise product with the given vector and
* sets this vector to its result.
*/
void componentProductUpdate(const Vector3 &vector)
{

x *= vector.x;

2.1 Vectors 31

y *= vector.y;
z *= vector.z;

}
};

2.1.7 The Scalar Product

By far the most common product of two vectors is called the scalar product. It is dif-
ferent from any of our previous vector operations because its result is not a vector,
but rather a single scalar value (hence its name). It is written using a dot symbol, as in
a · b, and so is often called the dot product. For reasons beyond the scope of this book,
it is also more mathematically called the inner product, a term I will not use again.

The dot product is calculated with the following formula:

a · b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ ·
⎡⎢⎣bx

by

bz

⎤⎥⎦ = axbx + ay by + az bz [2.3]

In my vector class, I have used the multiplication operator * to represent the dot
product (it looks quite like a dot, after all). We could overload the dot operator, but in
most C-based languages it controls access to data within an object, and so overloading
it is either illegal or a dangerous thing to do.

The scalar product methods have the following form:

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/**
* Calculates and returns the scalar product of this vector
* with the given vector.
*/

real scalarProduct(const Vector3 &vector) const
{

return x*vector.x + y*vector.y + z*vector.z;
}

/**
* Calculates and returns the scalar product of this vector
* with the given vector.
*/

real operator *(const Vector3 &vector) const

32 Chapter 2 The Mathematics of Particles

{
return x*vector.x + y*vector.y + z*vector.z;

}
};

Note that there is no in-place version of the operator (i.e., no *= operator). This is
because the result is a scalar value, and in most languages an instance of a class can’t
change which class it belongs to—the vector can’t become a scalar.

I have also added a full method version, scalarProduct, in case you are more com-
fortable writing things longhand rather than remembering the slightly odd behavior
of the * operator.

The Trigonometry of the Scalar Product

There is an important result for scalar products that is not obvious from the for-
mula above. It relates the scalar product to the length of the two vectors and the angle
between them:

a · b = axbx + ay by + az bz = |a||b| cos θ [2.4]

where θ is the angle between the two vectors.
So if we have two normalized vectors, â and b̂, then the angle between them is

given by Equation 2.4 as:

θ = cos−1(â · b̂)

These must be normalized vectors here. If a and b are just regular vectors, then
the angle would be given by:

θ = cos−1

(
â · b̂

|a||b|

)
You should be able to convince youreself that Equations 2.3 and 2.4 are equivalent

by using the Pythagoras theorem, and constructing a right-angled triangle where each
vector is the hypotenuse.

The Geometry of the Scalar Product

The scalar product arises time and again in physics programming. In most cases it is
used because it allows us to calculate the magnitude of one vector in the direction of
another.

Figure 2.6 shows vectors in two dimensions (for simplicity’s sake, there is no dif-
ference in three dimensions). Note that vector â has unit length. Vector b is almost
at right angles to â, so most of its length points away and only a small component is
in the direction of â. Its component is shown, and despite the fact that b is long, its
component in the direction of â is small.

2.1 Vectors 33

a a

a ·b 5 0.3

a ·c 521.2

b

c

FIGURE 2.6 Geometric interpretation of the scalar product.

Vector c, however, is smaller in magnitude, but it is not pointing at right angles
to â. Note that it is pointing in almost the opposite direction to â. In this case its
component in the direction of â is negative.

We can see this in the scalar products:

|̂a| ≡ 1

|b| = 2.0

|c| = 1.5

â · b = 0.3

â · b = −1.2

If one vector is not normalized, then the size of the scalar product is multiplied by
its length (from Equation 2.4). In most cases at least one vector, and often both, will
be normalized before performing a scalar product.

When you see scalar products in the physics engines in this book, it will most likely
be as part of a calculation that needs to find how much one vector lies in the direction
of another.

2.1.8 The Vector Product

Where the scalar product multiplies two vectors together to give a scalar value, the
“vector product” multiplies them to get another vector. In this way it is similar to the
component product, but is considerably more common.

The vector product is indicated by a multiplication sign a×b and so is often called
the cross-product. In the same way that the dot product is mathematically called the
inner product, the vector product could be called the outer product; as before, I’ll
avoid using that term.

34 Chapter 2 The Mathematics of Particles

The vector product is calculated with the formula:

a × b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ ×
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ay bz − az by

azbx − ax bz

axby − ay bx

⎤⎥⎦ [2.5]

This is implemented in our vector class in the following way:

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...
/**
* Calculates and returns the vector product of this vector
* with the given vector.
*/
Vector3 vectorProduct(const Vector3 &vector) const
{

return Vector3(y*vector.z-z*vector.y,
z*vector.x-x*vector.z,
x*vector.y-y*vector.x);

}

/**
* Updates this vector to be the vector product of its current
* value and the given vector.
*/
void operator %=(const Vector3 &vector)
{

*this = vectorProduct(vector);
}

/**
* Calculates and returns the vector product of this vector
* with the given vector.
*/
Vector3 operator%(const Vector3 &vector) const
{

return Vector3(y*vector.z-z*vector.y,
z*vector.x-x*vector.z,
x*vector.y-y*vector.x);

}
};

2.1 Vectors 35

To implement this product, I have overloaded the % operator, simply because it
looks most like a cross. This operator is usually reserved for modulo division in most
languages, so purists may balk at reusing it for something else.

If you are easily offended, you can use the longhand vectorProduct methods
instead. Personally, I find the convenience of being able to use operators outweighs
any confusion, especially as vectors have no useful notion of division.

The Trigonometry of the Vector Product

Just like the scalar product, the vector product has a trigonometric correspondence.
Once again the magnitude of the product is related to the magnitude of its arguments
and the angle between them. This time the correspondence is

|a × b| = |a||b| sinθ [2.6]

where θ is the angle between the vectors, as before.
This is the same as the scalar product, with the cosine in place of the sine. In fact,

we can write

|a × b| = |a||b|
√

1 − (a · b)2

using the famous trigonometric relationship between cosine and sine,

cos2 θ + sin2 θ = 1

We could use Equation 2.6 to calculate the angle between two vectors, just as we
did using Equation 2.4 for the scalar product. This would be wasteful, however, since
it is much easier to calculate the scalar product than the vector product. So if we need
to find the angle (which we rarely do), then using the scalar product would be a faster
solution.

Commutativity of the Vector Product

You may have noted in the derivation of the vector product that it is not commutative.
In other words, a × b �= b × a. This is different from each of the previous products
of two vectors, both a ◦ b = b ◦ a and a · b = b · a.

In fact, by comparing the components in Equation 2.5, we can see that

a × b = −b × a

This equivalence will make more sense once we look at the geometrical intepretation
of the vector product.

In practice, the noncommutative nature of the vector product means that we need
to take care to make sure that the orders of arguments are correct in equations. This
is a common error and can manifest itself in the game by objects being sucked into
each other, or by bobbing in and out of supposedly solid surfaces.

36 Chapter 2 The Mathematics of Particles

The Geometry of the Vector Product

Once again, using the scalar product as an example, we can interpret the magnitude
of the vector product of a vector and a normalized vector. For a pair of vectors â and
b, the magnitude of the vector product represents the component of b that is not in
the direction of â. Again, having a vector a that is not normalized simply gives us a
magnitude that is scaled by the length of a. This can be used in some circumstances,
but in practice it is a relatively minor result.

Because it is easier to calculate the scalar product than the vector product, if we
need to know the component of a vector not in the direction of another vector, we are
better performing the scalar product and then using the Pythagoras theorem to give
the result,

c =
√

1 − s2

where c is the component of b not in the direction of â, and s is the scalar product
â · b.

In fact, the vector product is very important geometrically not for its magnitude,
but for its direction.

In three dimensions, the vector product will point in a direction that is at right
angles (i.e., 90◦, also called orthogonal) to both of its operands. This is illustrated
in Figure 2.7. There are several occasions in this book where it will be convenient to
generate a unit vector that is at right angles to other vectors. We can accomplish this
easily using the vector product,

r = ̂a × b

This interpretation shows us an important feature of the vector product: it is only
defined in three dimensions. In two dimensions, there is no possible vector at right
angles to two nonparallel vectors. In higher dimensions (which I admit are not very

a

a 3b

b

FIGURE 2.7 Geometric interpretation of the vector product.

2.1 Vectors 37

useful for a game programmer), there are an infinite number of right-angled vec-
tors available. If you are developing a physics engine for a 2D game, you will not
have a vector product implementation. The scalar product works for any number of
dimensions.

2.1.9 The Orthonormal Basis

In some cases we want to construct a triple of mutually orthogonal vectors, where each
vector is at right angles to the other two. Typically we want each of the three vectors
to be normalized. This kind of triple vector that is both orthogonal and normalized
is called an orthonormal basis.

There are a few ways of doing this. The simplest is to use the cross-product to
generate the orthogonal vectors.

The process starts with two nonparallel vectors. The first of these two will not
have its direction changed at all: call this a. We cannot change its direction during the
process, but if it is not normalized, we will change its magnitude. The other vector,
b, may not already be at right angles to a, so it may need to have its direction as well
as magnitude changed. One constraint on vector b, however, is that it must not be
parallel to vector a. If it is parallel, then we cannot find a unique third vector that is at
right angles to both a and b—there are an infinite number of such vectors. The third
vector, c, is not given at all, as it is determined entirely from the first two.

The algorithm proceeds as follows:

1. Normalize the starting vector a.

2. Find vector c by performing the cross-product c = a × b.

3. If vector c has a zero magnitude, then give up: this means that a and b are parallel.

4. Normalize vector c.

5. Now we need to ensure that a and b are at right angles to one another. We can do
this by recalculating b based on a and c using the cross-product, b = c × a (note
the order). The resulting vector b must already be unit length, because both c and
a were and we know these are orthogonal.

In code, this algorithm might look like the following:

void makeOrthonormalBasis(Vector3 *a, Vector3 *b, Vector3 *c)
{

a->normalize();
(*c) = (*a) % (*b);
if (c.squareMagnitude() == 0.0) return; // Or generate an error.
c->normalize();
(*b) = (*c) % (*a);

}

38 Chapter 2 The Mathematics of Particles

This algorithm is a simple way of generating an orthonormal basis from two given
axes. When we talk about contact detection and contact resolution later in the book,
we will need to create an orthonormal basis, but we’ll only have one fixed axis. We’ll
need to extend this algorithm accordingly.

Note that the construction of an orthonormal basis is a situation where it matters a
great deal whether you are working in a left- or right-handed coordinate system. The
previous algorithm is designed for right-handed systems. If you need a left-handed
coordinate system, then you can simply change the order of the operands for both the
cross-products. This will give you a left-handed orthonormal basis.

2.2 Calculus

Calculus is a complex field with tendrils that reach into all areas of mathematics.
Strictly speaking, “calculus” means any kind of formal mathematical system, but when
we talk about “the calculus” we normally mean analysis or the study of the behavior of
functions. Real analysis is the most common topic of high school and undergraduate
calculus classes, that is, the study of functions that operate on real numbers. We are
interested in vector analysis (usually widened to “matrix analysis,” of which vectors
are just one part). Even this subfield of a subfield is huge, and contains many branches
that have filled countless books on their own.

Fortunately for our immediate purpose, we are only interested in a very limited
part of the whole picture. We are interested in the way something changes over time
such as it might be the position of an object, or the force in a spring or its rotational
speed. The quantities we are tracking in this way are mostly vectors (we’ll return to
the non-vectors later in the book).

There are two ways of understanding changing quantities: we describe the change
itself, or we describe the results of the change. If an object is changing position with
time, we need to be able to understand how it is changing position (i.e., its speed, the
direction it is moving in, whether it is accelerating or slowing), and the effects of the
change (i.e., where it will be when we come to render it at the next frame of the game).

These two viewpoints are represented by the differential and integral calculus,
respectively. We can look at each in turn.

No code will be provided in this section, as it is intended as a review of the concepts
involved. The corresponding code makes up most of the rest of the book, very little
of which will make sense unless you grasp the general idea of this section.

2.2.1 Differential Calculus

For our purposes, we can view the differential of a quantity as being the rate that it
is changing. In the majority of this book, we are interested in the rate it is changing
with respect to time. This is sometimes informally called its “speed,” but that term is
ambiguous. We will call it by the more specific term, “velocity.”

2.2 Calculus 39

Velocity

Think about the position of an object for a moment. If this represents a moving object,
then in the next instance of time, the position of the object will be slightly different.

We can work out the velocity at which the object is moving by looking at the two
positions. We could simply wait for a short time to pass, find the position of the object
again, and use the formula:

v = p′ − p

�t
= �p

�t

where v is the velocity of the object, p′ and p are its positions at the first and second
measurements (so �p is the change in position), and �t is the time that has passed
between the two. This would give us the average velocity over the time period.

It wouldn’t tell us the exact velocity of the object at any point in time, however.
Figure 2.8 shows the position of two objects at different times. Both objects start at the
same place, and end at the same place at the same time. Object A travels at a constant
velocity, whereas object B stays near its start location for a while, then zooms across
the gap very quickly. Clearly they aren’t traveling at the same velocity.

If we want to calculate the exact velocity of an object, we could reduce the gap
between the first and second measurement. As the gap gets smaller we get a more
accurate picture of the velocity of the object at one instant in time. If we could make
this gap infinitely small, then we would have the exact answer.

In mathematics, this is written using “limit” notation, as in

v = lim
�t→0

�p

�t

which simply means that the velocity would be accurately given by the distance trav-
eled divided by the time gap (�p/�t), if we could make the gap infinitely small
(limt→0). Rather than use this limit notation, this is more commonly written with
a lowercase “d” in place of the �:

v = lim
�t→0

�p

�t
= dp

dt

A

B
t � 0

t 5 0

t � ½

t 5 ½ t 5 1

t � 1

FIGURE 2.8 Same average velocity, different instantaneous velocity.

40 Chapter 2 The Mathematics of Particles

Because it is so common in mechanics to be talking about the change with respect to
time, this is often simplified even further:

v = lim
�t→0

�p

�t
= dp

dt
= ṗ

The dot over the p signifies that we’re interested in the velocity at which p is changing,
that is, its differential with respect to time.

Acceleration

If p is the position of an object and v is its velocity (where v = ṗ), we can define its
acceleration too.

Acceleration is the rate that velocity is changing. If an object is accelerating hard,
it is rapidly increasing in velocity. In normal English, we use the word “slowing” to
mean the opposite of acceleration, or “braking” if we are talking about an automobile.
In physics, the term “acceleration” can mean any change in velocity, either increasing
or decreasing velocity. A positive value for acceleration represents speeding up, a zero
acceleration means no change in velocity at all, and negative acceleration represents
slowing down.

Because acceleration represents the rate that velocity is changing, we can follow
the same process to give:

a = lim
�t→0

�v

�t
= dv

dt

where v in this formula is velocity. And velocity is defined in terms of its own limit,
as seen in the previous section.

This is called the second differential: velocity is the first differential of position,
and if we differentiate again we get acceleration, so acceleration is the second differ-
ential. Mathematicians often write it in this way:

a = dv

dt
= d

dt

dp

dt
= d2p

dt 2

which can be confusing if you’re not used to differential notation. Don’t worry about
how we end up with that particular pattern of squared elements—it isn’t important
for us; it simply indicates a second differential. Fortunately, we can completely ignore
this format altogether and use the dotted form again:

a = d2p

dt 2
= p̈

which is the format we’ll use in the remainder of the book.
We could write acceleration in terms of velocity as a = v̇ or

dv

dt

2.2 Calculus 41

if we wanted to, but this causes problems. As long as I use v for velocity, it’s fairly clear
what I mean. But if I write ṁ or

dm

dt

it would not be obvious whether m is a velocity (and therefore, the whole expres-
sion is an acceleration) or a position (making the expression a velocity). To avoid
this confusion, it is typical to write acceleration in terms of position only, using the ẍ
notation.

We’ve seen how to find the velocity and acceleration now. We could carry on, and
find the rate at which the acceleration is changing. This is called the jerk or sometimes
the jolt, and it can be important for some physical simulations.2 We could go further
and find the rate of change of jerk, and so on.

A side effect of the laws of physics at work in our universe is that these quantities
are not connected in the same way as position, velocity, and acceleration. We therefore
do not need them in our physics engine. As we shall see in the next chapter, Newton
discovered that applying a force to an object changes its acceleration only: to make
believable physics involving forces, all we need to track are position, velocity, and
acceleration.

In summary, ṗ, the velocity of p, is measured at one instant in time, not an average
velocity, and p̈ is the acceleration of p, measured in exactly the same way, and it can
be negative to indicate slowing down.

Vector Differential Calculus

So far we’ve looked at differentiation purely in terms of a single scalar quantity. For
full 3D physics, we need to deal with vector positions rather than scalars.

Fortunately, the simple calculus we’ve looked at so far works easily in three dimen-
sions (although you must be careful—as a general rule, most of the equations for one-
dimensional calculus that you find in mathematics reference books cannot be used in
three dimensions).

If the position of the object is given as a vector in three dimensions, then its rate
of change is also represented by a vector. Because a change in the position on one axis
doesn’t change the position on any other axis, we can treat each axis as if it were its
own scalar differential.

The velocity and the acceleration of a vector depends only on the velocity and
acceleration of its components, as in

ȧ =
⎡⎢⎣ȧx

ȧy

ȧz

⎤⎥⎦
2. It is particularly important in the design of roller coasters, among other things, because part of the way
that humans experience a roller coaster has to do with the patterns of jerk at play.

42 Chapter 2 The Mathematics of Particles

and similarly,

ä =
⎡⎢⎣äx

äy

äz

⎤⎥⎦
As long as our formulas do not involve the products of vectors, the way we defined

vector addition and vector–scalar multiplication earlier in the chapter works perfectly.
The upshot of this is that for most of the formulas that involve the differentials of
vectors, we don’t need any more complex math (or code) than if we were dealing with
scalars. We’ll see an example of this in the next section.

As soon as we have formulas that involve multiplying vectors together, or that
involve matrices, things are no longer as simple. Fortunately, they are rare in this
book.

Velocity, Direction, and Speed

Although in everyday English we often use speed and velocity as synonyms, they have
different technical meanings. The velocity of an object, as we’ve seen, is a vector giving
the rate that its position is changing.

The speed of an object is the magnitude of this velocity vector, irrespective of the
direction it is moving in. By decomposing the velocity vector, we can get the speed
and the direction of movement:

ẋ = sd̂

where s is the speed of the object, and d̂ is its direction of movement. Using the equa-
tions for the magnitude and direction of any vector, the speed is given by

s = |ẋ|
and the direction by

d̂ = ẋ

|ẋ|
Both the speed and direction can be calculated from a velocity vector using the

magnitude and normalizemethods developed earlier in the chapter; they do not need
additional code.

The speed of an object is rarely needed in game physics development; it has an
application in calculating aerodynamic drag but little else. Both the speed and the
direction of movement are often used by an animation engine to work out what ani-
mation to play as a character moves. This is less common for physically controlled
characters.

This is largely a terminology issue, and the main point is to get into the habit of
calling velocity by its name.

2.2 Calculus 43

2.2.2 Integral Calculus

In mathematics, integration is the opposite of differentiation. If we differentiate
something and then integrate it, we get back to where we started.

In the same way that we obtained velocity from the position using differentiation,
we go the other way in integration. If we know the velocity, then we integrate to work
out the position at some point in the future. If we know the acceleration, we can find
the velocity at any point in time.

In physics engines, the term “integration” refers to updating the position and
velocity of each object in each frame. The chunk of code that performs this opera-
tion is called the integrator.

Although integration in mathematics is an even more complex process than dif-
ferentiation, in game development it can be very simple. If we know that an object
is moving with a constant velocity (i.e., no acceleration), and we know this velocity
along with how much time has passed, we can update the position of the object using
the formula:

p′ = p + ṗt [2.7]

where ṗ is the constant velocity of the object over the whole time interval.
This is the integral of the velocity—an equation that gives us the position. In the

same way, we could update the object’s velocity in terms of its acceleration using the
formula:

ṗ′ = ṗ + p̈t [2.8]

Equation 2.7 only works for an object that is not accelerating.
Rather than finding the position by the first integral of the velocity, we could find it

as the second integral of the acceleration (just as acceleration was the second derivative
of the position). This would give us an update equation of

p′ = p + ṗt + p̈
t 2

2
[2.9]

where ṗ is the velocity of the object at the start of the time interval, and p̈ is the con-
stant acceleration over the entire time.

Describing how these equations are arrived at is beyond the scope of this book;
any introductary calculus book will derive them from first principles.

Just as Equation 2.7 assumes a constant velocity, Equation 2.9 assumes a con-
stant acceleration. We could generate further equations to cope with changing accel-
erations. As we will see in the next chapter, however, even 2.9 isn’t needed. When it
comes to updating the position, we can make do with the assumption that there is no
acceleration.

In mathematics, when we talk about integrating, we mean converting a formula
for velocity into a formula for position, or a formula for acceleration into one for
velocity—in other words, to do the opposite of a differentiation. In game develop-
ment, the term is often used slightly differently; to integrate means to perform the

44 Chapter 2 The Mathematics of Particles

position or velocity updates. From this point on, I will stick to the second use, since
we will have no need to do any other kind of integration.

Vector Integral Calculus

Just as we saw for differentiation, vectors take the place of scalars in the update func-
tions. Again, this is not the case for mathematics in general, and most of the formulas
you find in mathematical textbooks on integration will not work for vectors. The two
integrals we will use in this book—Equations 2.7 and 2.8—have the same form for
both scalar and vector terms. So we can write

p′ = p + ṗt

and perform the calculation on a component-by-component basis:

p′ = p + ṗt =
⎡⎢⎣px + ṗx t

py + ṗy t

pz + ṗz t

⎤⎥⎦
This could be converted into code as in:

position += velocity * t;

using the overloaded operator forms of + and * we defined earier. In fact, this is exactly
the purpose of the addScaledVectormethod, so we can write:

position.addScaledVector(velocity, t);

and compute it in single operation, rather than risking our compiler deciding to create
and pass around extra vectors on the stack.

We have now implemented almost all the mathematics we need for our particle
engine. We will implement the integration step in the next chapter, after we look at
the physics involved in simulating particles.

2.3 Summary

Vectors form the basis of all the mathematics in this book. As we’ve seen, they are easy
to manipulate numerically and through simple routines in code. It is important to
remember, however, that vectors are geometric—they represent positions and move-
ments in space. It is often simpler to understand the formulas in this book in terms
of their corresponding geometric properties, rather than numerically.

2.4 Exercises 45

Describing positions and movements in terms of vectors is fine, but to make a
physics engine, we’ll need to begin to link the two, that is, to encode into our physics
engine the laws of physics that say how position, movement and time are connected.
That is the subject of Chapter 3.

2.4 Exercises

Exercise 2.1
Decompose the following vector ⎡⎢⎣ 2

−2

−2

⎤⎥⎦
into its magntiude and direction.

Exercise 2.2
(a) Calculate the scalar product: ⎡⎢⎣3

1

2

⎤⎥⎦ ·
⎡⎢⎣ 0

2

−1

⎤⎥⎦
(b) What does the result of (a) tell us about the angle between the two vectors?

Exercise 2.3
Calculate the scalar product of a vector with itself.

(a) Which other method that we have defined corresponds to this value?

(b) Is it more or less efficient to calculate this value using a scalar product?

Exercise 2.4
Assume the following vector, ⎡⎢⎣1

2

3

⎤⎥⎦
and another vector containing an unknown, x ,⎡⎢⎣ 7

−2

x

⎤⎥⎦
If we know that the two vectors are perpendicular to one another, what is the
value of x?

46 Chapter 2 The Mathematics of Particles

Exercise 2.5
(a) Use the scalar product to find the angle between the following vectors:⎡⎢⎣0

1

1

⎤⎥⎦
⎡⎢⎣ 0

−1

0

⎤⎥⎦
(b) Calculate the angle using the vector product. If you are doing this as an assign-

ment, you must show your work.

Exercise 2.6
Assume the following vectors:

â = 1√
2

⎡⎢⎣0

1

1

⎤⎥⎦
and

b =
⎡⎢⎣1

2

3

⎤⎥⎦
(a) Calculate the scalar product c = â · b.

(b) Calculate the value of vector d where d = b − c â.

(c) What is the angle between vectors â and d? Geometrically, what have we done
to get this result?

Exercise 2.7
If a vector starts at ⎡⎢⎣1

2

3

⎤⎥⎦
and changes with velocity ⎡⎢⎣ 1

−1

2

⎤⎥⎦
per second, what will it be after 10 seconds?

3
The Laws of

Motion

hysics engines are based on Newton’s laws of motion. In later sections, we will
Pbegin to use results that were added to Newton’s original work, but the funda-
mentals are his.

Newton discovered three laws of motion that describe with great accuracy how
point masses behave. A point mass is somewhat imaginary: it is an object that has
mass, but no size. It is an object, therefore, that can’t rotate, but otherwise moves
around normally. It might seem that this fantasy is particularly useless: every real
object does have size, after all. But the physics of many things can be simplified to
point masses. Newton used his laws very successfully in describing the motion of plan-
ets. Clearly, planets have considerable size, but on the scale of their orbits, Newton
found he could treat them as point masses.

The term point masses is rarely used in game physics, however. Almost always we
call them “particles.” So we have to be a little careful: what we’re doing shouldn’t be
confused with particle physics, which studies tiny particles such as electrons orphotons
that definitely do not conform to Newton’s laws. For this book we’ll follow the rest of
the game development community and call them particles rather than point masses.

Later in the book we will move beyond particles and add the physics of rotating.
This introduces additional complications and new laws that were added to Newton’s
laws decades later. Even in these cases, however, the point-mass laws still can be seen
at work.

Before we look at the laws themselves, and how they are implemented, we need to
look at how to represent a particle in code.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00003-6 47

48 Chapter 3 The Laws of Motion

3.1 The Particle

A particle has a position, but no orientation. In other words, we can’t tell what direc-
tion a particle is pointing: it either doesn’t matter or it doesn’t make sense. In the
former category are bullets: in a game we don’t really care which direction a bul-
let is pointing in, we just care what direction it is traveling and whether it hits the
target. In the second cateogry are sparks of light, from an explosion for example—
because the spark is a dot of light, it doesn’t make sense to ask which direction it is
pointing.

For each particle we’ll need to keep track of various properties: current position,
velocity, and acceleration. We will add properties to the particle as we go. Position,
velocity, and acceleration are all vectors.

The particle can be implemented with the following structure:

Excerpt from file include/cyclone/particle.h

/**
* A particle is the simplest object that can be simulated in the
* physics system.
*/

class Particle
{
protected:

/**
* Holds the linear position of the particle in
* world space.
*/
Vector3 position;

/**
* Holds the linear velocity of the particle in
* world space.
*/
Vector3 velocity;
/**
* Holds the acceleration of the particle. This value
* can be used to set acceleration due to gravity (its primary
* use), or any other constant acceleration.
*/
Vector3 acceleration;

};

Using this structure, we can apply some basic physics to create our first physics
engine.

3.2 The First Two Laws 49

3.2 The First Two Laws

There are three laws of motion put forward by Newton; for now we will need only
the first two. They deal with the way an object behaves in the presence and absence of
forces.

The first two laws of motion follow:

1. An object continues with a constant velocity unless a force acts upon it.

2. A force acting on an object produces acceleration that is proportional to the
object’s mass.

The First Law

The first law tells us what happens if there are no forces around. The object will con-
tinue to move with a constant velocity. In other words, the velocity of the particle
will never change, and its position will continue to be updated based on the velocity.
This may not be intuitive, as moving objects we see in the real world will slow and
come to a stop eventually if they aren’t being constantly forced along. In this case, the
object is actually experiencing a force, the force of drag. In the real world, we can’t get
away from forces acting on a body; the closest phenomenon that we can imagine is
the movement of objects in space. Newton-1 tells us that if we could remove all forces,
then objects would continue to move at the same speed forever.

In our physics engine we could simply assume that there are no forces at work and
use Newton-1 directly. To simulate drag, we could add special drag forces. This is fine
for the simple engine we are building in this part of the book, but can cause problems
with more complex systems. The problem arises because the processor that performs
the physics calculations isn’t completely accurate. This inaccuracy can lead to objects
getting faster of their own accord.

A better solution is to incorporate a rough approximation of drag directly into
the engine. This allows us to make sure objects aren’t being accelerated by numerical
inaccuracy, and it can allow us to approximate real-world drag. If we need complicated
drag (such as aerodynamic drag in a flight simulator or racing game) we can still do
that the long way, by creating a special drag force. I will call our simple and inaccurate
form of drag “damping” to avoid confusion.

To support damping, we add another property to the particle class as follows:

Excerpt from file include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Holds the amount of damping applied to linear
* motion. Damping is required to remove energy added
* through numerical instability in the integrator.

50 Chapter 3 The Laws of Motion

*/
real damping;

};

When performing the integration, we will remove a proportion of the object’s velocity
at each update. The damping parameter controls how much velocity is left after the
update. If the damping is zero then the velocity will be reduced to nothing, meaning
that the object couldn’t sustain any motion without a force and would look odd to
the player. A value of 1 means that the object keeps all its velocity (equivalent to no
damping). If you don’t want the object to look like it is experiencing drag, but still
want to use damping to avoid numerical problems, then values slightly less than 1 are
optimal. A value of 0.999 might be perfect, for example.

The Second Law

The second law tells us how forces alter the motion of an object. A force is something
that changes the acceleration of an object (i.e., the rate of change of velocity). One
implication of this law is that we cannot do anything to an object to directly change
its position or velocity: we can only do that indirectly by applying a force to change
the accleration and wait until the object reaches our target position or velocity.

Just as for the first law, we will need to abuse this law later on in the book, to make
things look good. For now we’ll leave it intact.

Because of the second law, we will treat the acceleration of the particle differently
to the velocity and position. Both velocity and position keep track of a quantity from
frame to frame during the game. They change, but not directly, and only by the process
of integration.

Acceleration, by contrast, can be different from one moment to another; the forces
applied are different. We can simply set the acceleration of an object as we see fit
(although we’ll use the force equations below) and the behavior of the object will
look fine. If we directly set the velocity or position, the particle will appear to jolt or
jump. Because of this, the position and velocity properties will only be altered by the
physics engine and should not be manually altered (other than setting up the initial
position and velocity for an object, of course). The acceleration property can be set at
any time, and it will be left alone by the integrator.

3.2.1 The Force Equations

The second part of the second law tells us how force is related to the acceleration. For
the same force, two objects will experience different accelerations depending on their
mass. The formula relating the force to the acceleration is the famous

f = ma = mp̈ [3.1]

3.2 The First Two Laws 51

The first form, F = ma, is the more famous; the second form uses our notation for
acceleration as the second derivative of position. We can manipulate this equation to
give us the acceleration in terms of the force:

p̈ = 1

m
f [3.2]

where f is the force and m is the mass.
In a physics engine, we typically find the forces applying to each object and use

Equation 3.2 to find the acceleration, which can then be applied to the object by the
integrator. For the engine we are creating in this part of the book, we won’t be using
forces that vary. We can set the acceleration in advance using this equation, without
having to use it at every update. In the remainder of the book, however, it will be a
crucial step to carry out at least once per frame.

So far all the equations have been given in their mathematics textbook form,
applied to scalar values. As we saw in the last chapter on calculus, we can convert
them easily to use vectors. For instance,

p̈ = 1

m
f

The force is a vector, as was acceleration.

3.2.2 Adding Mass to Particles

We need to add mass to our particle definition, alongside its position, velocity, accel-
eration, and damping. Each particle needs its own mass, so that we can correctly cal-
culate its response to forces. We could just do this in the most obvious way: add a
scalar mass value for each object. There is a better way to get the same effect, however.

First, there is an important thing to note about Equation 3.2. If the mass of an
object is zero, then any non-zero force will generate infinite acceleration. This is not a
situation that should ever occur: no particle that we can simulate should ever have zero
mass. If we try to simulate a zero mass particle it will cause divide-by-zero errors in the
code. Zero mass particles are both physically impossible and practically dangerous.

It is often useful, however, to simulate infinite masses. These are objects that no
force of any magnitude can move. They might be just as physically impossible, but
they are very useful for immovable objects in a game: the walls or floor, for example,
cannot be moved. If we feed an infinite mass into Equation 3.2, then the acceleration
will be zero, as we want. As long as such an object has zero initial velocity, it will always
stay in the same place.

Unfortunately, we cannot represent a true infinity in most computer languages,
and the optimized mathematics instructions on all common game processors do not
cope well with infinities. We have to get slightly creative. Ideally we want a solution
where it is easy to get infinite masses but impossible to get zero masses.

Note that in Equation 3.2 we use 1 over the mass to calculate our acceleration.
Because we never use the 3.1 form of the equation, we can speed up our calculations

52 Chapter 3 The Laws of Motion

by storing 1 over the mass. We call this the inverse mass. This solves our problem for
representing objects of zero or infinite mass: infinite mass objects have a zero inverse
mass, which is easy to set. Objects of zero mass would have an infinite inverse mass,
which cannot be specified in most programming languages.

We update our particle class to include the inverse mass as follows:

Excerpt from file include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Holds the inverse of the mass of the particle. It
* is more useful to hold the inverse mass because
* integration is simpler, and because in real-time
* simulation it is more useful to have objects with
* infinite mass (immovable) than zero mass
* (completely unstable in numerical simulation).
*/
real inverseMass;

};

It is really important to remember that you are dealing with the inverse mass, and
not the mass. It is quite easy to set the mass of the particle directly, without remember-
ing, only to see it have a completely inappropriate behavior on screen, such as barely
movable barrels zooming off at the slightest tap.

To help with this, I’ve made the inverseMassdata field protected in my version of
the Particle class. To set the inverse mass, I use an accessor function. I have provided
functions for setInverseMass and setMass. Most of the time it is more convenient to
use the latter, unless we are trying to set an infinite mass.

3.2.3 Momentum and Velocity

Although Newton-1 is most often introduced in terms of velocity, it is a misrepresen-
tation. It is not velocity that is constant in the absence of any force, but momentum.

Momentum is the product of velocity and mass. Since mass is normally constant,
we can assume that velocity is therefore constant by Newton-1. In the event that a
traveling object is changing mass, then its velocity would also be changing, even with
no force.

We don’t need to worry about this for our physics engine, because we are not
dealing with situations where mass changes. This will be an important distinction
when we consider rotations later, however, because rotating objects can change the

3.2 The First Two Laws 53

way their mass is distributed. Under the rotational form of Newton-1, that means a
change in rotational speed with no other forces acting.

3.2.4 The Force of Gravity

Gravity is the most important force in a physics engine. In the real world, grav-
ity applies between every pair of objects, attracting them together with a force that
depends on their mass and distance. Newton also discovered this fact, and along with
the three laws of motion, he used it to explain the motion of planets and moons with
a new level of accuracy.

The formula he developed is called the law of universal gravitation:

f = G
m1m2

r 2
[3.3]

where m1 and m2 are the masses of the two objects, r is the distance between their cen-
ters, f is the resulting force, and G is the “universal gravitational constant,” a scaling
factor derived from observation of planetary motion.

The effects of gravity between two objects the size of a planet are significant;
the effects between a (relatively) small objects such as a car, or even a building, are
small. Our experience of gravity is completely dominated by the Earth. We notice the
pull of the moon in the way our tides work, but other than that we only experience
gravity pulling us down to the planet’s surface. I don’t notice the gravitational force
beween me and my computer, for example. The same thing will apply to our physics
engine: the only gravity we’ll be interested in simulating is between each object and
the ground.

Because we are only interested in the pull of the Earth, we can simplify Equa-
tion 3.3. First, we can assume that m1 is always constant (i.e., the Earth doesn’t change
mass). Second, and less obviously, we can assume that r is also constant. This is due
to the huge distances involved. The distance from the surface of the Earth to its center
is so huge (6400 km) that there is almost no difference in gravity between standing at
sea level and standing on the top of a mountain. For the accuracy we need in a game,
we can therefore assume the r parameter is constant.

With these assumptions, Equation 3.3 simplifies to:

f = mg [3.4]

where m is the mass of the object we are simulating, f is the force, as before, and g
is a constant that includes the universal gravitational constant, the mass of the Earth,
and its radius:

g = G
mearth

r 2

This constant, g , is an acceleration, which we shall measure in meters per second. On
Earth this g constant has a value of around 10 ms−2 (scientists sometimes use a value

54 Chapter 3 The Laws of Motion

of 9.807 ms−2, although because of the variations in r and other effects, this is a global
average rather than a measured value).

Equation 3.3 tells us the force that a mass experiences. And using our simplifica-
tions, this force depends on the mass of the object. If we work out the acceleration
using Equation 3.2, then we get:

p̈ = 1

m
mg = g

In other words, no matter what mass the object has, it will always accelerate at the same
rate due to gravity. As the legend goes, Galileo dropped a heavy and a light object from
the Tower of Pisa and they hit the ground at the same time.1

This means that the most significant force we need to apply in our engine can be
applied directly as an acceleration. There is no point using Equation 3.4 to calculate a
force, then using Equation 3.2 to convert it back into an acceleration. In this iteration
of the engine we will introduce gravity as the sole force at work on particles, and it
will be applied directly as an acceleration.

The Value of g

It is worth noting that although the acceleration due to gravity on Earth is about
10 ms−2, this doesn’t look very convincing on screen. Games are intended to be more
exciting than the real world: things happen more quickly and at a greater intensity.

Creating simulations with a g value of 10 ms−2 can look dull and insipid. Most
developers use higher values, from around 15 ms−2 for shooters (to avoid projectiles
having arcs that are too curved) up to 20 ms−2 typical of driving games. Some devel-
opers go further and incorporate the facility to tune the g value on an object-by-object
basis. Our engine will include this facility.

Gravity typically acts in the down direction, unless you are going for a special
effect. In most games, the Y axis represents up and down in the game world, and
almost exclusively the positive Y axis points up.

The acceleration due to gravity can therefore be represented as a vector with the
following form:

g =
⎡⎢⎣ 0

−g

0

⎤⎥⎦
where g is the value we discussed above, and g is the acceleration vector we will use
to update the particle in the next section.

1. I say legend, because if you actually do this experiment, you’ll see that they don’t hit the ground at the
same time. As we’ve already seen, on Earth you can’t escape drag, and because drag doesn’t depend on an
object’s mass, it won’t be the same for the two objects. There is excellent footage from the moon, however,
showing a hammer and a feather being dropped and hitting the lunar surface at the same time.

3.3 The Integrator 55

3.3 The Integrator

We now have all the equations and background needed to finish the first implemen-
tation of the engine. At each frame, the engine needs to look at each object in turn,
work out its acceleration, and perform the integration step. The calculation of the
acceleration in this case will be trivial: we will use the acceleration due to gravity
only.

The integrator consists of two parts—one to update the position of the object,
and the other to update its velocity. The position will depend on the velocity and
acceleration, while the velocity will depend only on the acceleration.

Integration requires a time interval over which to update the position and velocity:
because we update every frame, we use the time interval between frames as the update
time. If your engine is running on a console that has a consistent frame rate, then you
can hard code this value (although it is wise not to do so, because the same console
can have different frame rates in different territories, and eventually you’ll want to
port your game or run it slowly for debugging). If you are running on a PC with a
variable frame rate, then you probably need to time the duration of the frame.

Typically developers will time a frame, and then use that value to update the next
frame. This can cause noticeable jolts if the frame durations are dramatically incon-
sistent, but the game is unlikely to feel smooth in this case anyway, so it is a common
rule of thumb.

Another major approach to timing is to decouple the physics entirely from the
drawing loop, running it in its own thread at a fixed update interval (which should
still be adjustable in your code). This is particularly important if you need your physics
to be reproducible in multiplayer games.

In my sample code I use a central timing system that calculates the duration of
each frame. The physics code we will develop here simply takes in a time parameter
when it updates, and doesn’t care how this value was calculated.

3.3.1 The Update Equations

We need to update both position and velocity; each is handled slightly differently.

Position Update

In Chapter 2 we saw that integrating the acceleration twice gives us the following
equation for the position update:

p′ = p + ṗt + 1

2
p̈ t 2

This is a well-known equation seen in high school and undergraduate textbooks on
applied mathematics. We could use this equation to perform the position update in

56 Chapter 3 The Laws of Motion

the engine, with code something like:

object.position += object.velocity * time +
object.acceleration * time * time * 0.5;

or

object.position.addScaledVector(object.velocity, time);
object.position.addScaledVector(object.acceleration, time * time * 0.5);

In fact, if we are running the update every frame, then the time interval will be very
small (typically, 0.033 s for a 30 frames-per-second game). If we look at the accelera-
tion part of this equation, we are taking half of the squared time (which gives 0.0005).
This is such a small value that it is unlikely the acceleration will have much of an
impact on the change in position of an object.

For this reason we typically ignore the acceleration entirely in the position update
and use the simpler form,

p′ = p + ṗt

This is the equation we will use in the integrator throughout this book.
If your game regularly uses short bursts of huge accelerations, then you might

conclude that you would be better off using the longer form of the equation. If you
do intend to use huge accelerations, however, you are likely to get all sorts of other
accuracy problems in your engine—all physics engines typically become unstable with
very large accelerations. Later in the book, we will develop a whole alternative set of
tools for applying very short bursts of high acceleration.

Velocity Update

The velocity update has a similar basic form:

ṗ′ = ṗ + p̈t

Earlier in the chapter, however, we introduced another factor to alter the velocity: the
damping parameter. The damping parameter is used to remove a bit of velocity at
each frame. This is done by simply multiplying the velocity by the damping factor,

ṗ′ = ṗd + p̈t [3.5]

where d is the damping for the object.

3.3 The Integrator 57

This form of the equation hides a problem, however. No matter whether we have
a long or a short time interval over which to update, the amount of velocity being
removed is the same. If our frame rate suddenly improves, then there will be more
updates per second and the object will suddenly appear to have more drag. A more
correct version of the equation solves this problem by incorporating the time into the
drag part of the equation,

ṗ′ = ṗdt + p̈t [3.6]

where the damping parameter d is now the proportion of the velocity retained each
second, rather than each frame.

Calculating one floating-point number to the power of another is a relatively slow
process on most modern hardware. If you are simulating a huge number of objects,
then it is normally best to avoid recaculating this value for each particle. You could, for
example, rewrite your code so that all particles have the same damping value—then
you only have to calculate dt once per frame, and use it for all objects.

A different approach favored by many engine developers is to use Equation 3.5,
with a damping value very near to 1, which is so small that it will not be noticable to
the player, but big enough to solve the numerical instability problem. In this case, a
variation in frame rate will not make any visual difference. Drag forces can then be
created and applied as explicit forces acting on each object (as we’ll see in Chapter 5).
Unfortunately, this simply moves the problem to another part of the code, the part
where we calculate the size of the drag force. For this reason, I prefer to make the
damping parameter more flexible and allow it to be used to simulate visible levels of
drag.

I will use the full form in this book, as given in Equation 3.6.

3.3.2 The Complete Integrator

We can now implement our integrator. The code looks like this:

Excerpt from file include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Integrates the particle forward in time by the given amount.
* This function uses a Newton-Euler integration method, which is a
* linear approximation to the correct integral. For this reason it
* may be inaccurate in some cases.
*/

void integrate(real duration);
};

58 Chapter 3 The Laws of Motion

Excerpt from file include/cyclone/precision.h

/** Defines the precision of the power operator. */
#define real_pow powf

Excerpt from file src/particle.cpp

#include <assert.h>
#include <cyclone/particle.h>

using namespace cyclone;

void Particle::integrate(real duration)
{

// We don’t integrate things with infinite mass.
if (inverseMass <= 0.0f) return;

assert(duration > 0.0);

// Update linear position.
position.addScaledVector(velocity, duration);

// Work out the acceleration from the force.
// (We’ll add to this vector when we come to generate forces.)
Vector3 resultingAcc = acceleration;

// Update linear velocity from the acceleration.
velocity.addScaledVector(resultingAcc, duration);

// Impose drag.
velocity *= real_pow(damping, duration);

// Clear the forces.
clearAccumulator();

}

I have added the integration method to the Particle class because it simply
updates the particle’s internal data. It takes a time interval and updates the position
and velocity of the particle, returning no data.

3.4 Summary

In two short chapters we’ve gone from coding vectors to a first complete physics
engine.

3.5 Exercises 59

The laws of motion are elegant, simple, and incredibly powerful. The fundamental
connections that Newton discovered drive all the physical simulations in this book.
Calculating forces and integrating position and velocity based on force and time are
the fundamental steps of all physics engines, complex or simple.

Although we now have a physics engine that can be used in games (and is equiv-
alent to the systems used in many hundreds of published games), it isn’t yet suit-
able for a wide range of physical applications. In Chapter 4 we’ll look at some of the
applications that it can support and some of its limitations.

3.5 Exercises

Exercise 3.1
An equal force is applied for 1 s to two stationary objects, a and b. The mass of a is
double that of b. After the force has been applied (and assuming no other forces are
involved), which object will be moving the fastest and by how much faster? Give your
answer as a multiplier (e.g., a is moving three times as fast as b—that’s the wrong
answer, by the way).

Exercise 3.2
The value of Newton’s universal gravitational constant is approximately 6.67428 ×
10−11m2 kg1 s−2. Using Equation 3.3, calculate the force between two people, each
weighing 100 kg, who are standing 1 m apart.

Exercise 3.3
Kinetic energy is given by 1

2 m|v|2, where m is the mass of the object and v is its veloc-
ity. Add a method to your Particle class to calculate and return the kinetic energy. We
will see a use for this value at the end of the book when we look at putting a simulation
to sleep.

Exercise 3.4
A particle begins at ⎡⎢⎣1

2

3

⎤⎥⎦
and is moving with velocity ⎡⎢⎣ 1

−1

2

⎤⎥⎦per second,

and acceleration ⎡⎢⎣ 0

1

−1

⎤⎥⎦per second per second.

60 Chapter 3 The Laws of Motion

(a) Use Equation 2.9 to calculate what its position will be after 5 s.

(b) Use Equations 2.7 and 2.8 to calculate its position and velocity after 1 s.

(c) Repeat part b for an additional 4 s.

(d) Compare the results from parts a and c. How much error has been introduced
by using the simpler equation?

Exercise 3.5
In the text we looked at two ways to represent damping: Equations 3.5 and 3.6. Imple-
ment a small test program that repeatedly simulates a pair of particles moving under
gravity for a fixed duration (1 s, for example). One particle should use Equation 3.5
and the other 3.6. Use random durations for the frame (within some small margin)
to simulate a variable frame rate. How much difference, on average, is there between
the velocities of the two particles at the end of each simulation?

4
The Particle

Physics Engine

e now have our first working physics engine. It is capable of simulating the
Wmovement of particles under gravity.

Considering that it is such a simple piece of code, I’ve spent a long time talking
about the theory behind it. This will become important later in the book when we
repeat the same kind of logic for the rotation of objects.

At the moment our engine is fairly limited, as it can only deal with isolated parti-
cles, and they cannot interact in any way with their environment. Although these are
serious limitations that will be addressed in the next part of the book, we can still do
some useful things with we what we have.

In this chapter, we will look at how to set up the engine to process ballistics, that
is, bullets, shells, and the like. We will also use the engine to create a fireworks display.
Both of these applications are presented in skeleton form here, with no rendering
code. They can be found with full source code on the website.

4.1 Ballistics

One of the most common applications of physics simulation in games is to model
ballistics. This has been the case for two decades, predating the current vogue for
physics engines.

In our ballistics simulation, each weapon fires a particle. Particles may represent
anything from bullets to artillery shells, from fireballs to laser bolts. Regardless of the
object being fired, we will call this a “projectile.”

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00004-8 61

62 Chapter 4 The Particle Physics Engine

Each weapon has a characteristic muzzle velocity, the speed at which the projec-
tile is emitted from the weapon. This will be very fast for a laser bolt, and probably
considerably slower for a fireball. For each weapon, the muzzle velocity used in the
game is unlikely to be the same as its real-world equivalent.

4.1.1 Setting Projectile Properties

The muzzle velocity for the slowest real-world guns is on the order of 250 ms−1,
whereas tank rounds designed to penetrate armor plate can move at 1800 ms−1. The
muzzle velocity of an energy weapon such as a laser would be the speed of light:
300,000,000 ms−1. Even for relatively large game levels, any of these values is too high.
A bullet that can cross a game level in half a second would be practically invisible to
the player. If this speed is required, then it is better not to use a physics simulation,
but to simply cast a ray through the level the instant that the weapon is shot and check
if it collides with the target.

Instead, if we want the projectile’s motion to be visible, we use muzzle velocities
that are in the region of 5 to 25 ms−1, for a human-scale game (if your game represents
half a continent, and each unit is the size of a city, then it would be correspondingly
larger). This causes two knock-on effects that we have to cope with.

First, the mass of the particle should be larger than in real life, especially if you are
working with the full physics engine later in the book and you want impacts to look
impressive (being able to shoot a crate and topple it over, for example). The effect
that a projectile has when it impacts depends on both its mass and its velocity: if we
drop the velocity, we should increase the mass to compensate. The equation that links
energy, mass, and speed is

e = ms2

where e is the energy, and s is the speed of the projectile (this equation doesn’t work
with vectors, so we can’t use velocity). If we want to keep the same energy, we can
work out the change in mass for a known change in speed as follows1 :

�m = (�s)2

Real-world ammunition ranges from a gram in mass up to a few kilograms for
heavy shells and beyond for other tactical weapons (the bunker-busting shells used
in the second Gulf War are more than 1000 kg in weight). A typical 5-g bullet that
normally travels at 500 ms−1 might be slowed to 25 ms−1. This is a �s of 20. To get
the same energy, we need to give it 400 times the weight, or 2 kg.

Most projectiles shouldn’t slow too much in flight, so the damping parameter
would be near 1. Shells and mortars may arch under gravity, but other types of pro-
jectiles should barely feel the effect. If they were traveling at very high speed, then
they wouldn’t have time to be pulled down by gravity to a great extent, but since

1. I am using the symbol � here to mean the difference in mass or speed as a factor of the original. So,
500 → 50 has a � value of 0.1 for our purposes. It is more common to see it refer to the difference between
the two quantities, or −450 in the previous example.

4.1 Ballistics 63

FIGURE 4.1 Screenshot of the ballistic demo.

we’ve slowed them down, gravity will have longer to do its work. Likewise, if we are
using a higher gravity coefficient in the game, it will make the ballistic trajectory far
too severe: well-aimed projectiles will hit the ground only a few meters in front of the
character. To avoid this, we lower the gravity. For a known change in speed, we can
work out a “realistic” gravity value using the formula,

gbullet = 1

�s
gnormal

where gnormal is the gravity you’d expect if the particle was traveling at full speed. This
would be 10 ms−2 for most games (Earth gravity, i.e., not the same as the general
gravity being used elsewhere in the simulation, which is typically higher).

For our bullet example, we therefore have a gbullet of 0.5 ms−2.

4.1.2 Implementation

The ballistic demo in the source code (shown in Figure 4.1) gives you the choice of
four weapons: a pistol, an artillery piece, a fireball, and a laser gun (indicated by name
at the bottom of the screen). When you click the mouse, a new round is fired. The code
that creates a new round and fires it looks like this:

Excerpt from file src/demos/ballistic/ballistic.cpp

// Set the properties of the particle.
switch(currentShotType)
{
case PISTOL:

shot->particle.setMass(2.0f); // 2.0kg
shot->particle.setVelocity(0.0f, 0.0f, 35.0f); // 35m/s
shot->particle.setAcceleration(0.0f, -1.0f, 0.0f);
shot->particle.setDamping(0.99f);
break;

64 Chapter 4 The Particle Physics Engine

case ARTILLERY:
shot->particle.setMass(200.0f); // 200.0kg
shot->particle.setVelocity(0.0f, 30.0f, 40.0f); // 50m/s
shot->particle.setAcceleration(0.0f, -20.0f, 0.0f);
shot->particle.setDamping(0.99f);
break;

case FIREBALL:
shot->particle.setMass(1.0f); // 1.0kg - mostly blast damage
shot->particle.setVelocity(0.0f, 0.0f, 10.0f); // 5m/s
shot->particle.setAcceleration(0.0f, 0.6f, 0.0f); // Floats up
shot->particle.setDamping(0.9f);
break;

case LASER:
// Note that this is the kind of laser bolt seen in films,
// not a realistic laser beam!
shot->particle.setMass(0.1f); // 0.1kg - almost no weight
shot->particle.setVelocity(0.0f, 0.0f, 100.0f); // 100m/s
shot->particle.setAcceleration(0.0f, 0.0f, 0.0f); // No gravity
shot->particle.setDamping(0.99f);
break;

}

// Set the data common to all particle types.
shot->particle.setPosition(0.0f, 1.5f, 0.0f);
shot->startTime = TimingData::get().lastFrameTimestamp;
shot->type = currentShotType;

// Clear the force accumulators.
shot->particle.clearAccumulator();

Note that each weapon configures the particle with a different set of values. The sur-
rounding code is skipped here for brevity (you can refer to the source code to see how
and where variables and data types are defined).

The physics update code looks like this:

Excerpt from file src/demos/ballistic/ballistic.cpp

// Update the physics of each particle in turn.
for (AmmoRound *shot = ammo; shot < ammo+ammoRounds; shot++)
{

if (shot->type != UNUSED)
{

4.1 Ballistics 65

// Run the physics.
shot->particle.integrate(duration);

// Check to see if the particle is now invalid.
if (shot->particle.getPosition().y < 0.0f ||

shot->startTime+5000 < TimingData::get().lastFrameTimestamp||
shot->particle.getPosition().z > 200.0f)

{
// We simply set the shot type to be unused, so the
// memory it occupies can be reused by another shot.
shot->type = UNUSED;

}
}

}

It simply calls the integrator on each particle in turn. After it has updated the par-
ticle, it checks whether the particle is below zero height, in which case it is removed.
The particle will also be removed if it is a long way from the firing point (100 m), or
if it has been in flight for more than 5 s. In a real game you would use some kind of
collision detection system to check if the projectile had collided with anything. Addi-
tional game logic could then be used to reduce the hit points of the target character,
or add a bullet-hole graphic to a surface.

Because we have no detailed collision model at this stage, it is difficult to show the
effect of the energy in each projectile. When combined with the collisions and contacts
in the later parts of the book, this is obvious. I’ve provided a version of the demo (see
the screenshot in Figure 4.2) called bigballistic that includes objects to shoot at that
are simulated using the full physics engine. You can clearly see the different impact
effects of the different types of projectiles in this simulation.

FIGURE 4.2 Screenshot of the bigballistic demo.

66 Chapter 4 The Particle Physics Engine

FIGURE 4.3 Screenshot of the fireworks demo.

4.2 Fireworks

Our second example may appear less useful, but demonstrates a common application
of particle physics used in most games. Fireworks are just a very ostentatious applica-
tion of a particle system that could be used to display explosions, flowing water, and
even smoke and fire.

The fireworks demo in the source code allows you to create an interactive fire-
works display. You can see a display in progress in Figure 4.3.

4.2.1 The Fireworks Data

In our fireworks display we need to add extra data to the basic particle structure. First,
we need to know what kind of particle it represents. Fireworks consist of a number
of payloads: the initial rocket may burst into several lightweight minifireworks that
explode again after a short delay. We represent the type of firework by an integer value.

Second, we need to know the age of the particle. Fireworks consist of a chain reac-
tion of pyrotechnics with carefully timed fuses. A rocket will first ignite its rocket
motor, and then after a short time of flight, the motor will burn out as the explo-
sion stage detonates. This may scatter additional units, each of which has a fuse of the
same length, allowing the final bursts to occur at roughly the same time (not exactly
the same time, however, as that would look odd). To support this, we keep the age for
each particle and update it at each frame.

The firework structure can be implemented in this way:

Excerpt from file src/demos/fireworks/fireworks.cpp

/**
* Fireworks are particles, with additional data for rendering and
* evolution.
*/

4.2 Fireworks 67

class Firework : public cyclone::Particle
{
public:

/** Fireworks have an integer type, used for firework rules. */
unsigned type;

/**
* The age of a firework determines when it detonates. Age gradually
* decreases; when it passes zero the firework delivers its payload.
* Think of age as fuse left.
*/

cyclone::real age;
};

I’ve used an object-oriented approach here, and made the firework structure a
subclass of the particle structure. This allows me to add just the new data without
changing the original particle definition.

4.2.2 Firework Rules

To define the effect of a composite firework, which may be made up of several of our
firework effects, we need to be able to specify how one type of particle changes into
another. We do this as a set of rules: for each firework type we store an age, and a set
of data for additional fireworks that will be spawned when the age is passed. This is
held in a rules data structure with the following form:

Excerpt from file src/demos/fireworks/fireworks.cpp

/**
* Firework rules control the length of a firework’s fuse and the
* particles it should evolve into.
*/

struct FireworkRule
{

/** The type of firework that is managed by this rule. */
unsigned type;

/** The minimum length of the fuse. */
cyclone::real minAge;

/** The maximum length of the fuse. */
cyclone::real maxAge;

/** The minimum relative velocity of this firework. */

68 Chapter 4 The Particle Physics Engine

cyclone::Vector3 minVelocity;
/** The maximum relative velocity of this firework. */
cyclone::Vector3 maxVelocity;

/** The damping of this firework type. */
cyclone::real damping;

/**
* The payload is the new firework type to create when this
* firework’s fuse is over.
*/
struct Payload
{

/** The type of the new particle to create. */
unsigned type;

/** The number of particles in this payload. */
unsigned count;

/** Sets the payload properties in one go. */
void set(unsigned type, unsigned count)
{

Payload::type = type;
Payload::count = count;

}
};

/** The number of payloads for this firework type. */
unsigned payloadCount;

/** The set of payloads. */
Payload *payloads;

};

Rules are provided in the code, and defined in a single function that controls the
behavior of all possible fireworks. The following is a sample of that function:

Excerpt from file src/demos/fireworks/fireworks.cpp

void FireworksDemo::initFireworkRules()
{

// Go through the firework types and create their rules.
rules[0].init(2);
rules[0].setParameters(

4.2 Fireworks 69

1, // type
0.5f, 1.4f, // age range
cyclone::Vector3(-5, 25, -5), // min velocity
cyclone::Vector3(5, 28, 5), // max velocity
0.1 // damping
);

rules[0].payloads[0].set(3, 5);
rules[0].payloads[1].set(5, 5);

rules[1].init(1);
rules[1].setParameters(

2, // type
0.5f, 1.0f, // age range
cyclone::Vector3(-5, 10, -5), // min velocity
cyclone::Vector3(5, 20, 5), // max velocity
0.8 // damping
);

rules[1].payloads[0].set(4, 2);

rules[2].init(0);
rules[2].setParameters(

3, // type
0.5f, 1.5f, // age range
cyclone::Vector3(-5, -5, -5), // min velocity
cyclone::Vector3(5, 5, 5), // max velocity
0.1 // damping
);

// ... and so on for other firework types ...
}

In a game development studio, it is often the art staff who need to decide how the
particles in a game will behave. In this case it is inconvenient to have the rules defined
in code. A full game is likely to have some kind of editing tool that allows art staff to
author the particle appearance and behavior. These rules are then inferred from the
resulting data file.

4.2.3 The Implementation

In each frame, each firework has its age updated, and is checked against the rules.
If its age is past the threshold, then it will be removed and more fireworks will
be created in its place (the last stage of the chain reaction spawns no further
fireworks).

70 Chapter 4 The Particle Physics Engine

The firework update function now looks like this:

Excerpt from file src/demos/fireworks/fireworks.cpp

class Firework : public cyclone::Particle
{
public:

/**
* Updates the firework by the given duration of time. Returns true
* if the firework has reached the end of its life and needs to be
* removed.
*/
bool update(cyclone::real duration)
{

// Update our physical state.
integrate(duration);

// We work backward from our age to zero.
age -= duration;
return (age < 0) || (position.y < 0);

}
};

Note that if we don’t have any spare firework slots when a firework explodes into
its components, then not all the new fireworks will be initialized. In other words, when
resources are tight, older fireworks get priority. This allows us to put a hard limit on
the number of fireworks being processed, which can avoid having the physics slow
down when things get busy. Many developers use a different strategy in their engines:
give priority to newly spawned particles, and remove old particles to make way.

Your choice of strategy depends on the application. For particles being constantly
emitted from a source, such as smoke, my approach would produce odd-looking oscil-
lations. In the fireworks demo, it is the better choice.

The code that actually creates new fireworks looks like this:

Excerpt from file src/demos/fireworks/fireworks.cpp

struct FireworkRule
{

/**
* Creates a new firework of this type and writes it into the given
* instance. The optional parent firework is used to base position
* and velocity on.
*/
void create(Firework *firework, const Firework *parent = NULL) const
{

firework->type = type;

4.2 Fireworks 71

firework->age = random.randomReal(minAge, maxAge);

cyclone::Vector3 vel;
if (parent) {

// The position and velocity are based on the parent.
firework->setPosition(parent->getPosition());
vel += parent->getVelocity();

}
else
{

cyclone::Vector3 start;
int x = (int)random.randomInt(3) - 1;
start.x = 5.0f * cyclone::real(x);
firework->setPosition(start);

}

vel += random.randomVector(minVelocity, maxVelocity);
firework->setVelocity(vel);

// We use a mass of 1 in all cases (no point having fireworks
// with different masses, since they are only under the influence
// of gravity).
firework->setMass(1);

firework->setDamping(damping);

firework->setAcceleration(cyclone::Vector3::GRAVITY);

firework->clearAccumulator();
}

};

void FireworksDemo::create(unsigned type, const Firework *parent)
{

// Get the rule needed to create this firework.
FireworkRule *rule = rules + (type - 1);

// Create the firework.
rule->create(fireworks+nextFirework, parent);

// Increment the index for the next firework.
nextFirework = (nextFirework + 1) % maxFireworks;

}

72 Chapter 4 The Particle Physics Engine

As fireworks are spawned, they have their particle properties set, with velocities
determined with a random component. Note that I’ve used high damping values
for several of the firework types; this allows them to drift back down to the ground
slowly, which is especially important for fireworks that need to hang in the air before
exploding.

In each frame, all of the currently active fireworks are updated. This is performed
by a simple loop that first checks whether the firework should be processed (fireworks
with a type of zero are defined to be inactive).

Excerpt from file src/demos/fireworks/fireworks.cpp

for (Firework *firework = fireworks;
firework < fireworks+maxFireworks;
firework++)

{
// Check to see if we need to process this firework.
if (firework->type > 0)
{

// Does it need removing?
if (firework->update(duration))
{

// Find the appropriate rule.
FireworkRule *rule = rules + (firework->type-1);

// Delete the current firework (this doesn’t affect its
// position and velocity for passing to the create function,
// just whether it is processed for rendering or
// physics.
firework->type = 0;

// Add the payload.
for (unsigned i = 0; i < rule->payloadCount; i++)
{

FireworkRule::Payload * payload = rule->payloads + i;
create(payload->type, payload->count, firework);

}
}

}
}

These code fragments are taken from the fireworks demo in the accompa-
nying source code. You can create your own fireworks display using the number keys
to launch new fireworks (there are nine basic firework types).

4.4 Projects 73

Exactly the same kind of particle system is used in many game engines. By setting
the gravity of particles to a very low value, or even having gravity pull some kinds
of particle upward, we can create smoke, fire, waterfalls, explosions, sparks, rain, and
many other effects.

The difference between each type of particle is simply one of rendering. Particles
are normally drawn as a flat bitmap on screen, rather than as a 3D model. This is the
approach I’ve used in the demo.

Most production particle systems also allow particles to rotate—not the full 3D
rotation we will cover later in this book, but a screen rotation, so that each particle
bitmap is not drawn with the same orientation on screen. It can be useful to have this
rotation change over time. I will not try to implement this technique in this book. It
is relatively easy to add a constant-speed rotation to particles, and forms one of the
exercises for this chapter.

4.3 Summary

The particle physics engine is most suitable for special effects, such as the ballistics of
projectile weapons and visual effects for explosions. A system built for visual effects
is often simply called a “particle system.”

In this chapter we’ve used a particle system to render fireworks. There are tens
of other uses. Most games have some kind of particle system at work (often com-
pletely separate from the main physics engine, but increasingly they are united).
By setting particles with different properties for gravity, drag, and initial velocity,
it is possible to simulate everything from sparks to smoke and from fireballs to
fireworks.

Eventually, however, single particles won’t be enough. We’ll need full 3D objects.
In Part II of this book, we’ll look at one way to simulate objects, by building struc-
tures out of particles connected by springs, rods, and cables. To handle these struc-
tures we’ll need to consider more forces than just gravity on particles, the topic of
Chapter 5.

4.4 Projects

Mini-Project 4.1
Add a grenade shot type to the bigballistic demo. Make sure that it behaves differ-
ently, but convincingly alongside the other ammunition types.

Mini-Project 4.2
Add two new firework types to the fireworks demo. Make sure that at least one of the
fireworks you add spawns further fireworks when it reaches its maximum age.

74 Chapter 4 The Particle Physics Engine

Mini-Project 4.3
Add the ability to aim to the bigballisticdemo. Extend the system to use several target
blocks with varying masses, including at least one with infinite mass.

Mini-Project 4.4
Add one or more firework types to the fireworks demo to implement a Catherine
wheel effect. Can this be done without using a force generator to implement the
rotation?

Project 4.1
Create a game where a player has to keep a fireworks display going for as long as possi-
ble. By default, fireworks should not spawn others; they should just age and disappear.
If a firework in flight is clicked, however, it should release a further shower of sparks.
A player’s turn is over when there are no more live fireworks to click. Make sure that
you implement a range of interesting firework effects, with different speeds and age
characteristics, to add variety to the game play.

Project 4.2
Create the training mode for a sniper game. The game level should consist of sev-
eral targets of the same size at different locations and distances from the fixed player
location. The player may turn to aim and fire at the targets, scoring points when the
target is hit. Add a wind force (using a force generator from Chapter 5) that changes
in a random way between each shot. The direction and strength of the wind should
be indicated on screen to help the player plan the next shot.

Part II

Mass Aggregate Physics

This page intentionally left blank

5
Adding General

Forces

n Part I, we built a particle physics engine that included the force of gravity. We
Ilooked at the mathematics of forces in Chapter 3, which let us simulate any force
we liked by calculating the resulting acceleration.

In this chapter, we will extend our physics engine so it can cope with multiple dif-
ferent forces acting at the same time. We will assume that gravity is one force, although
this can be removed or set to zero if required. We will also look at force generators,
that is, code that can calculate forces based on the current state of the game world.

5.1 D’Alembert’s Principle

Although we have equations for the behavior of an object when a force is acting on
it, we haven’t considered what happens when more than one force is acting. Clearly
the behavior is going to be different than if either force acts alone: one force could
be acting in the opposite direction to another or reinforcing it in parallel. We need a
mechanism to work out the overall behavior as a result of all forces.

D’Alembert’s principle comes to the rescue here. The principle itself is more com-
plex and far-reaching than we’ll need to consider. It is based on a different form of the
equations of motion, and relates quantities we’re not directly manipulating. For our
purposes it has two important implications. The first applies here, and the second will
arise in Chapter 10.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00005-X 77

78 Chapter 5 Adding General Forces

For particles, D’Alembert’s principle implies that if we have a set of forces acting
on an object, we can replace all those forces with a single force, which is calculated by:

f =
∑

i

fi

In other words, we simply add the forces together using vector addition, and we apply
the single force that results.

To make use of this result, we use a vector as a force accumulator. In each frame
we zero the vector and add each applied force in turn using vector addition. The final
value will be the resultant force to apply to the object. We add a method to the particle
that is called at the end of each integration step to clear the accumulator of the forces
that have just been applied:

Excerpt from file include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Holds the accumulated force to be applied at the next
* simulation iteration only. This value is zeroed at each
* integration step.
*/
Vector3 forceAccum;
/**
* Clears the forces applied to the particle. This will be
* called automatically after each integration step.
*/
void clearAccumulator();

};

Excerpt from file src/particle.cpp

void Particle::integrate(real duration)
{

// We don’t integrate things with infinite mass.
if (inverseMass <= 0.0f) return;

assert(duration > 0.0);

// Update linear position.
position.addScaledVector(velocity, duration);

// Work out the acceleration from the force.

5.1 D’Alembert’s Principle 79

Vector3 resultingAcc = acceleration;
resultingAcc.addScaledVector(forceAccum, inverseMass);

// Update linear velocity from the acceleration.
velocity.addScaledVector(resultingAcc, duration);

// Impose drag.
velocity *= real_pow(damping, duration);

// Clear the forces.
clearAccumulator();

}
void Particle::clearAccumulator()
{

forceAccum.clear();
}

We then add a method that can be called to add a new force into the accumulator:

Excerpt from file include/cyclone/particle.h

class Particle
{

// ... Other particle code as before ...

/**
* Adds the given force to the particle to be applied at the
* next iteration only.
*/

void addForce(const Vector3 &force);
};

Excerpt from file src/particle.cpp

void Particle::addForce(const Vector3 &force)
{

forceAccum += force;
}

This accumulation stage needs to be completed just before the particle is inte-
grated. All the forces that apply need to have a chance to add themselves to the accu-
mulator. We can do this by manually adding code to our frame update loop that adds
the appropriate forces. This is appropriate for forces that will only occur for a few
frames.

80 Chapter 5 Adding General Forces

For forces that apply over an extended period of time, it would be better to have
some automated mechanism. We can make it easier to manage these long-term forces
by creating a registry. A force registers itself with a particle, and then will be asked to
provide a force each frame. I called these “force generators.”

5.2 Force Generators

We have a mechanism for applying multiple forces to an object. We now need to work
out where these forces come from. The force of gravity is fairly intuitive: it is always
present for all objects in the game.

Some forces arise because of the behavior of an object, such as a dedicated drag
force. Other forces are a consequence of the environment that an object finds itself
in; a buoyancy force for a floating object or the blast force from an explosion are
examples. Still other types of force are a result of the way that objects are connected
together: we will look at forces that behave like springs in the next chapter. Finally,
there are forces that exist because the player (or an AI-controlled character) has
requested them, such as the acceleration force in a car or the thrust from a jetpack.

Another complication is the dynamic nature of some forces. The force of gravity
is easy because it is always constant. We can calculate it once and leave it set for the
rest of the game. Most other forces are constantly changing. Some change as a result
of the position or velocity of an object: drag is stronger at higher speeds, and a spring’s
force is greater the more it is compressed. Others change because of external factors:
an explosion dissipates, and the player’s jetpack burst will come to a sudden end when
they release the thrust button.

We need to be able to deal with a range of different forces with very different
mechanics for their calculation. Some might be constant, others might apply some
function to the current properties of the object (such as position and velocity), some
might require user input, and others might be time-based.

If we simply programmed all these types of forces into the physics engine, and set
parameters to mix and match them for each object, the code would rapidly become
unmanageable. Ideally we would like to be able to abstract away the details of how a
force is calculated and allow the physics engine to simply work with forces in general.
This would allow us to apply any number of forces to an object, without the object
knowing the details of how those forces are calculated.

I will do this through a structure called a “force generator.” There can be as many
different types of force generators as there are types or sources of force, but each object
doesn’t need to know how a generator works. The object uses a consistent interface
to find the force associated with each generator; these forces can then be accumulated
and applied in the integration step. This allows us to apply any number of forces, of
any type we choose, to any object. It also allows us to create new types of forces for
new games or levels, as we need to, without having to rewrite any code in the physics
engine.

Not every physics engine has the concept of force generators: many require
handwritten code to add forces, or else limit the possible forces to just a handful of

5.2 Force Generators 81

common options. Having a general solution is more flexible, and allows us to exper-
iment more quickly.

To implement this we will use an object-oriented design pattern called an inter-
face. Some languages (such as Actionscript) have this built in as part of the language,
while in others it can be approximated with a regular class. Before we look at the
force generator code, I will briefly review the concept of an interface, and its relative,
polymorphism.

5.2.1 Interfaces and Polymorphism

In programming, an interface is a specification of how one software component
interacts with others. In an object-oriented language, it normally refers to a class: an
interface is a specification of the methods, constants, data types, and exceptions (i.e.,
errors) that a class will expose. The interface itself is not a class, but rather a specifi-
cation that any number of classes can fulfill. When a class fulfills the specification, we
say that it implements the interface (in fact, Actionscript uses the explicit implements
keyword to denote a class that implements an interface).

Interfaces show their power when used in polymorphism. Polymorphism is the
ability of a language to use some software component on the basis that it fulfills a
predefined specification, without having to know the exact component it is talking
to. As long as the specification is met, we can easily change and add different imple-
mentations without altering the code that uses them.

This replaceability is key for our needs: we will create an interface for a force gener-
ator, and any number of implementations representing specific forces. Through poly-
morphism, our physics engine will not need to know what kind of force generators
are running, as long as they implement the interface.

In C++, there is no dedicated interface structure in the language. Instead we use a
base class, with a selection of pure virtual functions. This ensures that we can’t create
an instance of the base class. Each class that derives from the base class then has to
implement all its methods before it can be instantiated.

5.2.2 Implementation

The interface for the force generator only needs to provide a current force. This can
then be accumulated and applied to the object.

The interface we will use looks like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator can be asked to add a force to one or more
* particles.
*/

class ParticleForceGenerator

82 Chapter 5 Adding General Forces

{
public:

/**
* Overload this in implementations of the interface to calculate
* and update the force applied to the given particle.
*/
virtual void updateForce(Particle *particle, real duration) = 0;

};

The updateForce method is passed the duration of the frame for which the force
is needed and a pointer to the particle that is requesting the force. The duration of the
frame is needed for some force generators (we will encounter a spring-force generator
in Chapter 6 that depends critically on this value).

We pass the pointer of the particle into the function so that a force generator
does not need to keep track of the object itself. This also allows us to create force
generators that can be attached to several objects at the same time. As long as the
generator instance does not contain any data that is specific to a particular object,
it can simply use the object passed in to calculate the force. Both the example force
generators below have this property.

The force generator does not return any value. We could have it return a force to
add to the force accumulator, but then force generators would have to return some
force (even if it were zero), and that would remove flexibility we’ll use later in the book
when we support rotation. Instead, if a force generator wants to apply a force, it can
call the addForce method to the object it is passed.

As well as the interface for force generators we need to be able to register which
force generators affect which particles. We could add this into each particle with a
data structure such as a linked list or a growable array of generators. This would be
a valid approach, but it has performance implications: either each particle needs to
have lots of wasted storage (using a growable array), or new registrations will cause
lots of memory operations (creating elements in linked lists). For performance and
modularity, I think it is better to decouple the design and have a central registry of
particles and force generators. The one I have provided looks like this:

Excerpt from file include/cyclone/pfgen.h

/**
* Holds all the force generators and the particles that they apply to.
*/

class ParticleForceRegistry
{
protected:

/**

5.2 Force Generators 83

* Keeps track of one force generator and the particle it
* applies to.
*/

struct ParticleForceRegistration
{

Particle *particle;
ParticleForceGenerator *fg;

};

/**
* Holds the list of registrations.
*/

typedef std::vector<ParticleForceRegistration> Registry;
Registry registrations;

public:
/**
* Registers the given force generator to apply to the
* given particle.
*/

void add(Particle* particle, ParticleForceGenerator *fg);

/**
* Removes the given registered pair from the registry.
* If the pair is not registered, this method will have
* no effect.
*/

void remove(Particle* particle, ParticleForceGenerator *fg);

/**
* Clears all registrations from the registry. This will
* not delete the particles or the force generators
* themselves, just the records of their connection.
*/

void clear();

/**
* Calls all the force generators to update the forces of
* their corresponding particles.
*/

void updateForces(real duration);
};

84 Chapter 5 Adding General Forces

I have used the C++ standard template library’s growable array, stl::vector. The
implementation of the first three methods are simple wrappers around corresponding
methods in the stl::vectordata structure.

At each frame, before the update is performed, the force generators are all called.
They will hopefully be adding forces to each particle’s accumulator. Later these accu-
mulated forces are used to calculate each particle’s acceleration:

Excerpt from file src/pfgen.cpp

#include <cyclone/pfgen.h>

using namespace cyclone;

void ParticleForceRegistry::updateForces(real duration)
{

Registry::iterator i = registrations.begin();
for (; i != registrations.end(); i++)
{

i->fg->updateForce(i->particle, duration);
}

}

5.2.3 A Gravity Force Generator

We can replace our previous implementation of gravity by a force generator. Rather
than special-case code to apply a constant acceleration at each frame, gravity is rep-
resented as a regular force generator attached to each particle.

The implementation looks like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a gravitational force. One instance
* can be used for multiple particles.
*/

class ParticleGravity : public ParticleForceGenerator
{

/** Holds the acceleration due to gravity. */
Vector3 gravity;

public:

/** Creates the generator with the given acceleration. */
ParticleGravity(const Vector3 &gravity);

5.2 Force Generators 85

/** Applies the gravitational force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from file src/pfgen.cpp

void ParticleGravity::updateForce(Particle* particle, real duration)
{

// Check that we do not have infinite mass.
if (!particle->hasFiniteMass()) return;

// Apply the mass-scaled force to the particle.
particle->addForce(gravity * particle->getMass());

}

Note that the force is calculated based on the mass of the object passed into the
updateForcemethod. The only piece of data stored by the class is the acceleration due
to gravity. One instance of this class could be shared among any number of objects.

5.2.4 A Drag Force Generator

We could also implement a force generator for drag. Drag is a force that acts on a body
and depends on its velocity. A full model of drag involves more complex mathemat-
ics than we can easily perform in real time. Typically, in game applications we use a
simplified model of drag where the drag acting on a body depends on the speed of the
object and the square of its speed,

fdrag = −̂ṗ(k1 |̂ṗ| + k2 |̂ṗ|2) [5.1]

where k1 and k2 are two constants that characterize how strong the drag force is—they
are usually called the “drag coefficients” and they depend on both the object and the
type of drag being simulated.

The formula looks complex, but is simple in practice: it says that the force acts in
the opposite direction to the velocity of the object (this is the −̂ṗ part of the equation;̂̇p is the normalized velocity of the particle), with a strength that depends on both the
speed of the object and the square of the speed.

Drag that has a k2 value will grow faster at higher speeds. This is the case with the
aerodynamic drag that keeps a car from accelerating indefinitely. At slow speeds, the
car feels almost no drag from the air, but for every doubling of the speed, the drag
almost quadruples.

86 Chapter 5 Adding General Forces

The implementation for the drag generator looks like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a drag force. One instance
* can be used for multiple particles.
*/

class ParticleDrag : public ParticleForceGenerator
{

/** Holds the velocity drag coefficient. */
real k1;

/** Holds the velocity squared drag coefficient. */
real k2;

public:

/** Creates the generator with the given coefficients. */
ParticleDrag(real k1, real k2);

/** Applies the drag force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from file src/pfgen.cpp

void ParticleDrag::updateForce(Particle* particle, real duration)
{

Vector3 force;
particle->getVelocity(&force);

// Calculate the total drag coefficient.
real dragCoeff = force.magnitude();
dragCoeff = k1 * dragCoeff + k2 * dragCoeff * dragCoeff;

// Calculate the final force and apply it.
force.normalize();
force *= -dragCoeff;
particle->addForce(force);

}

Once again the force is calculated based only on the properties of the object it is
passed. The only pieces of data stored by the class are the values for the two constants.

5.4 Summary 87

As before, one instance of this class could be shared among any number of objects
that have the same drag coefficients.

This drag model is considerably more complex than the simple damping we
used in Chapter 3. It can be used to model the kind of drag that a golf ball experi-
ences in flight, for example. For the aerodynamics needed in a flight simulator, how-
ever, it will still not be sufficient: we will return to flight simulator aerodynamics in
Chapter 11.

5.3 Built-In Gravity and Damping

Using the generators above we can replace both the damping and the acceleration
due to gravity with force generators. This is a valid approach and one used by many
different engines. It allows us to remove the special code that processes damping, and
it means that we don’t need to store an acceleration due to gravity with the object. It
can be calculated among all the other forces during transient force accumulation.

Although it has some advantages in simplicity, this is not the approach I will use.
Directly applying the damping and acceleration due to gravity, in the way we did in
Chapter 3, is fast. If we have to calculate forces for them each time, we waste extra
time performing calculations for which we already know the answer.

To avoid this, I keep damping and acceleration unchanged. If we need more com-
plex drag, we can set a damping value nearer to 1, and add a drag force generator.
Similarly if we needed some exotic form of gravity (for an orbiting space ship, for
example), we could create a gravity force generator that provides the correct behavior
and set the acceleration due to gravity to be zero.

5.4 Summary

Forces are easily combined by adding their vectors together, and the resulting force
acts as if it were the only force applied to an object. This is a result of D’Alembert’s
principle, and it allows us to support any number of general forces without having to
know anything about how the forces are generated.

Throughout this book we’ll see force generators of various kinds that simulate
some kind of physical property by calculating a force to apply to an object. The code
we’ve created in this chapter allows us to manage those forces, combining them and
applying them before integrating.

Drag and gravity are important force generators, but they only replicate function-
ality we had in our particle physics engine. To move toward a mass aggregate physics
engine, we need to start linking particles together. Chapter 6 introduces springs and
other spring-like connections, using the force generator structure we’ve built in this
chapter.

88 Chapter 5 Adding General Forces

5.5 Exercises

Exercise 5.1
Implement an uplift force generator. The force generator should have an origin rep-
resenting the center of the uplift. When the force generator is asked to apply its force,
it should test the X-Z coordinate of the object against the origin. If this coordinate
is within a given distance of the origin, then the uplift should be applied. Otherwise
there is no force. We use only the X-Z coordinates to represent a chimney of rising
uplift above a particular point, so the Y coordinate is irrelevant.

Exercise 5.2
Implement an airbrake force generator. This should contain a Boolean value. When
the value is false (the airbrake is off), the generator should provide no force. When
the value is true, the generator should provide a large drag force. Be careful not to
make the drag too high, however, because the object being dragged might reverse
direction.

Exercise 5.3
Implement a variant of the gravity force generator that pulls objects toward a fixed
point (the attraction point), rather than using the down direction. You will have to
calculate the direction to apply the force from the object to the attraction point, and
make sure that it is scaled accordingly.

Exercise 5.4
Extend the gravity force generator from the previous exercise so that it scales the forces
it applies based on the square of the distance from the attraction point. This provides
a simple model of planetary gravity because it conforms to Equation 3.3.

6
Springs and

Spring-Like

Things

ne of the most useful forces we can create for our engine is a spring force.
OAlthough springs have an obvious use in driving games (for simulating the
suspension of a car), they come into their own in representing soft, deformable, or
non-solid objects of many kinds. Springs and particles alone can produce a whole
range of impressive effects, such as ropes, flags, cloth garments, and water ripples.
Along with the hard constraints we’ll cover in the next chapter, they can represent
almost any kind of object.

To extend our engine to support springs, this chapter will first cover the theory of
springs, and then look at how they can be created for our engine. Finally, we’ll look
at a major problem in the simulation of springs.

6.1 Hook’s Law

Hook’s law gives us the mathematics of springs. Hook discovered that the force exerted
by a spring depends only on the distance the spring is extended or compressed.
A spring extended twice as far from this rest position will exert twice the force. The
formula is therefore:

f = −k�l

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00006-1 89

90 Chapter 6 Springs and Spring-Like Things

where �l is the distance that the spring is extended or compressed, and k is called the
“spring constant,” a value that gives the stiffness of the spring. The force given in this
equation is felt at both ends of the spring. In other words, if two objects are connected
by a spring, then they will each be attracted together by the same force given by the
equation above.

Note that we have used �l in the equation. This is because, at rest, with no forces
acting to extend or compress the spring, the spring will have some natural length.
This is also called the “rest length,” and has the symbol l0. If the spring is currently at
length l , then the force generated by the spring is

f = −k(l − l0)

So far we have considered Hook’s law only in terms of a one-dimensional spring.
When it comes to three dimensions, we need to generate a force vector rather than a
scalar. The corresponding formula for the force is

f = −k(|d| − l0)̂d [6.1]

where d is the vector from one end of the spring to the other. The direction of this
vector points towards the object we’re generating a force for. It is given by

d = xA − xB [6.2]

where xA is the position of the end of the spring attached to the object under consid-
eration, and xB is the position of the other end of the spring.

Equation 6.1 states that if the spring is extended, the force should pull toward the
other end of the spring (the −d̂ component), with a magnitude given by the spring
coefficient multiplied by the amount of extension of the spring (the k(|d| − l0) part).
|d| is the magnitude of the vector between the ends of the spring, which is just the
length of the spring, making (|d| − l0) just a different way of writing (l − l0).

Because Equation 6.1 is defined in terms of one end of the spring only (the end
attached to the object we are currently considering), we can use it unmodified for the
other end of the spring, when we come to process the object attached there. Alterna-
tively, because the two ends of the spring always pull toward each other with the same
magnitude of force, we know that if the force on one end is f, then the force on the
other will be −f.

In our force generator below, we will calculate the force separately for each object,
and not make use of this fact. A more optimized approach might use the same force
generator for both objects involved, and cache the force calculation.

Spring Compression

In the discussion above I have only considered what happens when a spring is
extended. A regular metal wire spring can also be compressed, in which case the force
it generates will try to push its ends apart.

6.1 Hook’s Law 91

Equation 6.1 holds for compression as well as extension. When a spring is com-
pressed below its rest length, the (|d| − l0) term will be negative. This negative will
cancel with the −d̂ term, leaving the force in the direction of d̂. This will act to push
the object away from the other end of the spring. So, we don’t need to do anything
special to support spring compression.

Spring-like behavior is very common in physical simulation. Some simulated ele-
ments will have both compression and extension (like a wire spring), others will
just have compression (like a trampoline), and others just extension (like an elastic
bungee).

The Limit of Elasticity

Real springs only follow Hook’s law within a range of lengths, called their limit of elas-
ticity. If you continue to extend a metal spring, eventually you will exceed its elasticity
and it will deform. Similarly, if you compress a spring too much its coils will touch
and further compression is impossible. The behavior outside the limit of elasticity is
often very complex, and there is no single formula that can help us simulate it.

Assuming we could work out the behavior we wanted outside the limit of elasticity,
we could encode the limits into our force generator to produce a realistic model of a
spring. For extension, however, we are unlikely to need this sophistication. Using the
simple Hook’s model will mean that when the player sees a spring doing its most
spring-like thing, they are unlikely to notice whether it behaves correctly beyond its
limit of elasticity.

The only case I’ve seen of a real-time physics engine modeling springs extended
beyond their limits of elasticity was a commercial driving simulator, where a more
complex suspension model was needed. I’ve never seen it used in a game.

For compression, it is common to model a minimum compression length. This is a
very common requirement for car suspensions when they hit their “stop.” After being
compressed to this point, they no longer act like springs but rather like a collision
between two objects. We will cover this kind of hard constraint in the next chapter: it
can’t be easily modeled using a spring.

Spring-Like Things

Hook’s law applies to a huge range of natural phenomena, beyond a coiled metal
spring. Anything that resists being deformed will have some limit of elasticity in which
Hook’s law applies.

The applications are limitless. We can implement elastic bungees as springs. We
could simulate the buoyancy of water in the same way, connecting the submerged
object to the nearest point on the surface with an inivisible spring. Some developers
even use springs to control the camera as it follows a game character by applying a
spring from the camera to a point just behind the character (see Figure 6.1).

92 Chapter 6 Springs and Spring-Like Things

Spring

Camera
at fixed
height

FIGURE 6.1 The game’s camera attached to a spring.

6.2 Spring-Like Force Generators

We will implement four force generators that are based on spring forces. Although
each has a slightly different way of calculating the current length of the spring, they
all use Hook’s law to calculate the resulting force.

This section illustrates a feature of many physics systems. The core processing
engine remains generic, but it is surrounded by helper classes and functions (in this
case the different types of spring force generators) that are often quite similar to one
another. In the remainder of the book, I will avoid going through similar variations in
detail; you can find several suites of similar classes in the source code. This first time,
however, it is worth looking at some variations in detail.

6.2.1 A Basic Spring Force Generator

The basic spring generator simply calculates the length of the spring using
Equation 6.2, and then uses Hook’s law to calculate the force. It can be implemented
like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a spring force.
*/

class ParticleSpring : public ParticleForceGenerator
{

/** The particle at the other end of the spring. */
Particle *other;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restLength;

6.2 Spring-Like Force Generators 93

public:

/** Creates a new spring with the given parameters. */
ParticleSpring(Particle *other,

real springConstant, real restLength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from file include/cyclone/precision.h

/** Defines the precision of the absolute magnitude operator. */
#define real_abs fabsf

Excerpt from file src/pfgen.cpp

void ParticleSpring::updateForce(Particle* particle, real duration)
{

// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);
force -= other->getPosition();

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = real_abs(magnitude - restLength);
magnitude *= springConstant;

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
particle->addForce(force);

}

The generator is created with three parameters: (1) a pointer to the object at the
other end of the spring, (2) the spring constant, and (3) the rest length of the spring.
We can create and add the generator using this code:

Particle a, b;
ParticleForceRegistry registry;

94 Chapter 6 Springs and Spring-Like Things

ParticleSpring ps(&b, 1.0f, 2.0f);
registry.add(&a, ps);

Because it contains data that depends on the spring, one instance cannot be used
for multiple objects in the way that the force generators from Chapter 5 were. Instead
we need to create a new generator for each object.1

Note also that the force generator (like the others we have met) creates a force for
only one object. If we want to link two objects with a spring, then we’ll need to create
and register a generator for each:

Particle a, b;
ParticleForceRegistry registry;

ParticleSpring psA(&b, 1.0f, 2.0f);
registry.add(&a, psA);

ParticleSpring psB(&a, 1.0f, 2.0f);
registry.add(&b, psB);

6.2.2 An Anchored Spring Generator

In many cases we don’t want to link two objects together with a spring, but rather one
end of the spring at a fixed point in space. This might be the case for the supporting
cables on a springy rope bridge, for example. One end of the spring is attached to the
bridge; the other is fixed in space. See Figure 6.2 for an example.

In this case, the form of the spring generator we created previously will not work.
We can modify it so that the generator expects a fixed location rather than an object
to link to. The force generator code is also modified to use the location directly rather
than looking it up in an object. The anchored force generator implementation looks
like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a spring force, where
* one end is attached to a fixed point in space.
*/

class ParticleAnchoredSpring : public ParticleForceGenerator
{

1. Strictly speaking, we can reuse the force generator. If we have a set of springs all connected to the same
object, and having the same values for rest length and spring constant, we could use one generator for all
of them. Rather than try to anticipate these obscure situations in practice, it is simpler to just assume that
instances cannot be reused.

6.2 Spring-Like Force Generators 95

Fixed points

FIGURE 6.2 A rope bridge held up by springs.

protected:
/** The location of the anchored end of the spring. */
Vector3 *anchor;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restLength;

public:
/** Creates a new spring with the given parameters. */
ParticleAnchoredSpring(Vector3 *anchor,

real springConstant,
real restLength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from file src/pfgen.cpp

void ParticleAnchoredSpring::updateForce(Particle* particle, real
duration)

{
// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);
force -= *anchor;

96 Chapter 6 Springs and Spring-Like Things

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = (restLength - magnitude) * springConstant;

// Calculate the final force and apply it.
force.normalize();
force *= magnitude;
particle->addForce(force);

}

If we wanted to connect the game’s camera to the player’s character, this is an
approach we would use. Instead of an anchor point that never moves, however, we
would recalculate and reset the anchor point for each frame based on the position
of the character. The previous implementation needs no modification (other than a
setAnchor method to give the new value); we would just need to perform the update
of the anchor point somewhere in the game loop.

Alternatively, if our player character is represented as a particle in the engine, then
we could use the original spring generator. We’d want the spring to be connected only
in one direction, however, so the camera is dragged around by the player and not the
other way around.

6.2.3 An Elastic Bungee Generator

An elastic bungee only produces pulling forces: you can scrunch it into a tight ball and
it will not push back out, but it behaves like any other spring when extended. This is
useful for keeping a pair of objects together—they will be pulled together if they stray
too far, but they can get as close as they like without being separated.

The generator can be implemented like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a spring force only
* when extended.
*/

class ParticleBungee : public ParticleForceGenerator
{

/** The particle at the other end of the spring. */
Particle *other;

/** Holds the spring constant. */
real springConstant;

6.2 Spring-Like Force Generators 97

/**
* Holds the length of the bungee at the point it begins to
* generate a force.
*/

real restLength;

public:

/** Creates a new bungee with the given parameters. */
ParticleBungee(Particle *other,

real springConstant, real restLength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from file src/pfgen.cpp

void ParticleBungee::updateForce(Particle* particle, real duration)
{

// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);
force -= other->getPosition();

// Check if the bungee is compressed.
real magnitude = force.magnitude();
if (magnitude <= restLength) return;

// Calculate the magnitude of the force.
magnitude = springConstant * (restLength - magnitude);

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
particle->addForce(force);

}

I have added a factory function to this class as well to allow us to easily connect
two objects with a bungee.

This implementation assumes that the elastic connects to two objects. We could
create a version of the code that connects an object to a fixed anchor point in space,
exactly as before. The modifications we would need are exactly the same as we saw
above: implementing this generator is one of the exercises for this chapter.

98 Chapter 6 Springs and Spring-Like Things

6.2.4 A Buoyancy Force Generator

A buoyancy force is what keeps an object afloat. The Greek mathematician
Archimedes first worked out that the buoyancy force is equal to the weight of water
that an object displaces.

The first part of Figure 6.3 shows a block submerged in the water. The block has a
mass of 0.5 kg. Pure water has a density of 1000 kgm−3; in other words, a cubic meter
of water has a mass of about 1 MT. The block in the figure has a volume of 0.001 m3,
so it is displacing the same amount of water. The mass of this water would therefore
be 1 kg.

Weight isn’t the same as mass in physics. Mass is the property of an object that
makes it resist acceleration. The mass of an object will always be the same. Weight is
the force that gravity exerts on an object. As we have already seen, force is given by
the equation

f = mg

where f is the weight, m is the mass, and g is the acceleration due to gravity. This
means that on different planets, the same object will have different weights (but the
same mass) because g changes.

On Earth, we assume g = 10 m s−2, so an object with a weight of 1 kg will have a
weight of 1 × 10 = 10 kN. The kN unit is a unit of weight: kilograms, kg, is not a unit
of weight, despite what your bathroom scales might say! This causes space scientists
various problems: because g is different, they can no longer convert English units such
as pounds to kilograms using the conversion factors found in science reference books;
pounds is a measure of weight and kilograms is a measure of mass.

So, back to buoyancy: our block in the first part of Figure 6.3 has a buoyancy force
of 10 kN. In the second part of the figure only half is submerged, so using the same
calculations, it has a buoyancy force of 5 kN.

Although we don’t need to use it for our force generator, it is instructive to look
at the weight of the object too. In both cases, the weight of the block is the same: 5 kN
(a mass of 0.5 kg, multiplied by the same value of g = 10 m s−2). So in the first part

5 kN

m � 0.5 kg

10 kN 5 kN

5 kN

FIGURE 6.3 A buoyant block submerged and partially submerged.

6.2 Spring-Like Force Generators 99

of the figure, the buoyancy force will push the block upward. In the second part of
the figure, the weight is exactly the same as the buoyancy, so the object will stay at the
same position, floating.

Calculating the exact buoyancy force for an object involves knowing exactly how
it is shaped, because the shape affects the volume of water displaced, which is used
to calculate the force. Unless you are designing a physics engine specifically to model
the behavior of different shapes of boat hulls, you are unlikely to need this level of
detail.

Instead we can use a spring-like calculation as an approximation. When the object
is near the surface, we use a spring force to give it buoyancy. The force is proportional
to the depth of the object, just as the spring force is proportional to the extension or
compression of the spring. As we saw in Figure 6.3, this will be accurate for a rectan-
gular block that is not completely submerged. For any other object it will be slightly
inaccurate, but hopefully not enough to be noticeable.

When the block is completely submerged, it behaves slightly differently. Pushing
it deeper in the water will not displace any more water; so as long as we assume water
has the same density, the force when submerged will be constant. The point masses
we are dealing with in this part of the book have no size, so we can’t tell how big they
are to determine whether they are fully submerged. We can simply use a fixed depth
instead: when we create the buoyancy force we give a depth at which the object is
considered to be fully submerged. At this point, the buoyancy force will not increase
for deeper submersion.

By contrast, when the object is lifted out of the water, it will still have some part
of itself submerged until it reaches its maximum submersion depth above the surface.
At this point we consider the last part of the object to have left the water. In this case,
there will be no buoyancy force at all, no matter how high we lift the object: it simply
is displacing no more water.

So, the formula for the force calculation is:

f =

⎧⎪⎨⎪⎩
0 when d � 0

vρ when d � 1

dvρ otherwise

where ρ is the density of the liquid, v is the volume of the object, and d is the amount
of the object submerged, given as a proportion of its maximum submersion depth
(i.e., when it is fully submerged d = 1, and when it is fully out of the water d = 0). d
is given by

d = yo − yw − s

2s

where s is the submersion depth (the depth at which the object is completely sub-
merged), yo is the y coordinate of the object, and yw is the y coordinate of the liquid
plane (assuming it is parallel to the XZ plane).

100 Chapter 6 Springs and Spring-Like Things

This can be implemented as follows:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a buoyancy force for a plane of
* liquid parallel to XZ plane.
*/

class ParticleBuoyancy : public ParticleForceGenerator
{

/**
* The maximum submersion depth of the object before
* it generates its maximum buoyancy force.
*/
real maxDepth;

/**
* The volume of the object.
*/
real volume;

/**
* The height of the water plane above y = 0. The plane will be
* parallel to the XZ plane.
*/
real waterHeight;

/**
* The density of the liquid. Pure water has a density of
* 1000 kg per cubic meter.
*/
real liquidDensity;

public:

/** Creates a new buoyancy force with the given parameters. */
ParticleBuoyancy(real maxDepth, real volume, real waterHeight,

real liquidDensity = 1000.0f);

/** Applies the buoyancy force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

6.3 Stiff Springs 101

Excerpt from file src/pfgen.cpp

void ParticleBuoyancy::updateForce(Particle* particle, real duration)
{

// Calculate the submersion depth.
real depth = particle->getPosition().y;

// Check if we’re out of the water.
if (depth >= waterHeight + maxDepth) return;
Vector3 force(0,0,0);

// Check if we’re at maximum depth.
if (depth <= waterHeight - maxDepth)
{

force.y = liquidDensity * volume;
particle->addForce(force);
return;

}

// Otherwise we are partly submerged.
force.y = liquidDensity * volume *

(depth - maxDepth - waterHeight) / 2 * maxDepth;
particle->addForce(force);

}

I have assumed in this code that the buoyancy is acting in the up direction. I have
therefore used only the y component of the object’s position to calculate the length of
the spring for Hook’s law, making it simpler than calculating the force using vector
operations.

The generator takes four parameters: the submersion depth parameter, as dis-
cussed above; the volume of the object; the height of the suface of the water; and the
density of the liquid in which it is floating. If no density parameter is given, then
water, with a density of 1000 kg m3 is assumed (ocean water has a density of 1020 to
1030 kg m3 up to 1250 kg m3 for the Dead Sea).

This generator applies to only one object, because it contains the data for the
object’s size and volume. One instance could be given to multiple objects with the
same size and volume, floating in the same liquid, but it is probably best to create a
new instance per object to avoid confusion.

6.3 Stiff Springs

In real life almost everything acts as a spring. If a rock falls onto the ground, then
the ground gives a little, like a very stiff spring. Collisions between objects could be

102 Chapter 6 Springs and Spring-Like Things

modeled in a similar way to the buoyancy force: the objects would be allowed to pass
into one another (called “interpenetration”) and a spring force would push them back
out again.

With the correct spring parameters for each object, this method would give us
perfect collisions. It is called the “penalty” method and has been used in many physics
simulators, including several used in games.

If life were so simple, this book would be two hundred pages shorter. If you tried
this approach (see the exercises for a suggestion on how), you’d find that every-
thing in the game looks really spongy as it bounces around on soggy springs. We
would have to increase the spring constant to a really high level. If you try to do that
and run the engine, you will see everything go haywire: objects will almost instantly
disappear off to infinity, and your program may even crash with numerical errors.
This is the problem with stiff springs, and it makes penalty methods very difficult
to use.

6.3.1 The Stiff Springs Problem

To understand why stiff springs cause problems, we need to break down the behavior
of a spring into short time steps. Figure 6.4 shows a spring’s behavior over several time
steps. In the first step, the spring is extended and we calculate the force at that point.

The force is applied to the end of the spring using the update function from
Chapter 3:

ṗ′ = ṗ + p̈t

In other words, the force is converted into an acceleration: the acceleration of the end
of the spring at that instant of time. This acceleration is then applied to the object for
the entire time interval. This would be accurate if the object didn’t move, that is, if the
spring were held at a constant extension over the entire time period.

In the real world, as soon as the spring has moved a bit, a tiny fraction of the time
interval later, the force will have decreased slightly. So applying the same force for
the whole time interval means we have applied too much force. In the figure, we see

No velocity

No velocity

Natural length

No force

FIGURE 6.4 A non-stiff spring over time.

6.3 Stiff Springs 103

that this doesn’t matter very much; even though the force is too high, the end doesn’t
move far before the next time frame, and then a lower force is applied for the next
time frame, and so on. The overall effect is that the spring behaves normally, but is
slightly stiffer than the spring constant we specified.

Figure 6.5 shows the same problem, but with a much stiffer spring. Now the force
in the first frame is enough to carry the end of the spring past the rest length and to
compress the spring. In reality, the movement of the spring wouldn’t do this: it would
begin to move inward having had a huge instantaneous force applied, but this force
would drop rapidly as the ends came closer together.

The figure shows that the spring has compressed more than it was extended orig-
inally. In the next time frame, it receives a force that tries to push its ends apart, and
so it moves in the opposite direction. But it has an even greater force applied, so that
it overshoots and is extended even farther. In each time frame the spring will oscillate
with ever-growing forces until the end of the spring ends up at infinity. Clearly this is
not accurate.

The longer the time frame we use, the more likely this is to happen. If your game
uses springs and variable frame rates, you need to take a lot of care that your spring
constants aren’t too large when used on a very slow machine. If a player switches all
the graphics options on, and slows their machine down to 10 frames per second (or
slower), you don’t want all your physics to explode!

We can address this problem by forcing small time periods for the update, or we
can use several smaller updates for each frame we render. Either approach doesn’t buy
us much, however. The kinds of spring stiffness needed to simulate realistic collisions
just aren’t possible in the framework we have built so far.

Instead, we will have to use alternative methods to simulate collisions and other
hard constraints.

FIGURE 6.5 A stiff spring over time.

104 Chapter 6 Springs and Spring-Like Things

6.3.2 Faking Stiff Springs

This section will implement a more advanced spring force generator that uses a dif-
ferent method of calculating spring forces to help with stiff springs. It provides a
hack for making stiff springs work in certain cases. In the remaining chapters of the
book we will look at more robust techniques for simulating constraints, collisions,
and contacts.

You can safely skip this section: the mathematics are not explored in detail; there
are restrictions on where we can use faked stiff springs, and the formulation is not
always guaranteed to work. In particular, while they fake the effect reasonably on their
own, when more than one is combined, or when a series of objects is connected to
them, the physical innacuracies in the calculation can interact nastily and cause seri-
ous problems. In the right situation, they can be a useful addition to your library of
force generators, however.

Our approach to the problem is to try and predict how the force will change over
the time interval. If we can predict the way the force changes, we can avoid applying
the maximum force (from the start of the time period) to the whole time interval.
Instead we can work out what the average force would be over the time period and
use that.

This is sometimes called an implicit spring, and a physics engine that can deal with
varying forces in this way is called “implicit,” or “semi-implicit.” For reasons we’ll see
at the end of the chapter, our engine can’t do anything more than guess the correct
force to generate. So I have called this approach “fake implicit force generation.”

In order to work out the force equation, we need to understand how a spring will
act if left to its own devices.

Harmonic Motion

A spring that has no friction or drag will oscillate forever. If we stretch such a spring
to a particular extension, then release it, its ends will accelerate together. It will pass
its natural length and begin to compress. When its ends are compressed to exactly
the same degree as they were extended initially, it will begin to accelerate apart. This
would continue forever. This kind of motion is well known to physicists as simple
harmonic motion. The position of each end of the spring obeys the equation

p̈ = −χ2p [6.3]

where k is the spring constant, m is the mass of the object, and χ is defined, for con-
venience in the following equations, to be

χ =
√

k

m

This kind of equation is called a “differential equation,” as it links the different
differentials together, sometimes with the original quantity, in this case the second
differential p̈ and the original p. Differential equations can sometimes be solved to

6.3 Stiff Springs 105

give an expression just in terms of the original quantity. In our case, the equation can
be solved to give us an expression that links the position and initial velocity with the
current time.2 The expression is solved to give

pt = p0 cos(χt) + ṗ0

χ
sin(χt) [6.4]

where p0 is the position of the end of the spring relative to the natural length at the
start of the prediction, and ṗ0 is the velocity at the same time.

We can substitute the time interval we are interested in (i.e., the duration of the
current frame) into Equation 6.4, and work out where the spring would end up if
were left to do its own thing. We can then create a force that is just big enough to get
it to the correct location over the duration of the frame. If the final location needs to
be pt , then the force to get it there would be

f = mp̈

and the acceleration p̈ is given by

p̈ = (pt − p0)
1

t 2
− ṗ0 [6.5]

Note that although this gets the particle to the correct place, it doesn’t necessarily
get it there with the correct speed. We’ll return to the problems caused by this failing
at the end of the section.

Damped Harmonic Motion

A real spring experiences drag as well as spring forces. The spring will not continue
to oscillate forever to the same point. Its maximum extension will become less with
each oscillation, until eventually it settles at the rest length. This gradual decrease is
caused by the drag that the spring experiences.

When we run our physics engine normally, the drag will be incorporated in the
damping parameter. When we predict the behavior of the spring using the formula
above, this does not happen.

We can include the damping in the equations to give a damped harmonic oscilla-
tor. The differential Equation 6.3 becomes

p̈ = −kp − d ṗ

where k is the spring constant (no need for χ in this case) and d is a drag coefficient (it
matches the k1 coefficient from Equation 5.1 in the previous chapter). This equation
doesn’t allow for drag that is proportional to the velocity squared, the k2 value from

2. Not all differential equations have a simple solution, although most simple equations of the kind above
do. Solving differential equations can involve applying a whole range of techniques and is beyond the scope
of this book. When neccessary, I will provide the answers needed for the physics simulator. If you want to
understand more about how I get these answers, you can consult any undergraduate-level calculus textbook
for more details.

106 Chapter 6 Springs and Spring-Like Things

Equation 5.1. If we added this, the mathematics would become considerably more
complex, for little visible improvement (remember, we’re faking this in any case). So
we stick with the simplest kind of drag.

Solving the differential equation gives an expression for the position at any time
in the future:

pt = [p0 cos(γt) + c sin(γt)] e− 1
2 dt

where γ is a constant given by

γ = 1

2

√
4k − d 2

and c is a constant given by

c = d

2γ
p0 + 1

γ
ṗ0

Substituting the time interval for t in the equations above as before, we can get a
value for pt , and calculate the acceleration required using Equation 6.5 as we did for
regular harmonic motion.

Implementation

The code to implement a faked implicit spring force generator looks like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that fakes a stiff spring force, and where
* one end is attached to a fixed point in space.
*/

class ParticleFakeSpring : public ParticleForceGenerator
{

/** The location of the anchored end of the spring. */
Vector3 *anchor;

/** Holds the spring constant. */
real springConstant;

/** Holds the damping on the oscillation of the spring. */
real damping;

public:

/** Creates a new spring with the given parameters. */
ParticleFakeSpring(Vector3 *anchor, real springConstant,

real damping);

6.3 Stiff Springs 107

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from file include/cyclone/precision.h

/** Defines the precision of the sine operator. */
#define real_sin sinf

/** Defines the precision of the cosine operator. */
#define real_cos cosf

/** Defines the precision of the exponent operator. */
#define real_exp expf

Excerpt from file src/pfgen.cpp

void ParticleFakeSpring::updateForce(Particle* particle, real duration)
{

// Check that we do not have infinite mass.
if (!particle->hasFiniteMass()) return;

// Calculate the relative position of the particle to the anchor.
Vector3 position;
particle->getPosition(&position);
position -= *anchor;

// Calculate the constants and check that they are in bounds.
real gamma = 0.5f * real_sqrt(4 * springConstant - damping*damping);
if (gamma == 0.0f) return;
Vector3 c = position * (damping / (2.0f * gamma)) +

particle->getVelocity() * (1.0f / gamma);

// Calculate the target position.
Vector3 target = position * real_cos(gamma * duration) +

c * real_sin(gamma * duration);
target *= real_exp(-0.5f * duration * damping);

// Calculate the resulting acceleration, and therefore the force.
Vector3 accel = (target - position) * (1.0f / duration*duration) -

particle->getVelocity() * duration;
particle->addForce(accel * particle->getMass());

}

108 Chapter 6 Springs and Spring-Like Things

The force generator looks like the anchored regular spring generator we created
earlier in the chapter, with one critical difference: it no longer has a natural spring
length. This, and the fact that we have used an anchored generator rather than a spring
capable of attaching two objects, is a result of some of the mathematics used above.
The consequence is that we must always have a rest length of zero.

Zero Rest Lengths

If a spring has a zero rest length, then any displacement of one end of the spring results
in extension of the spring. If we fix one end of the spring, then there will always be a
force in the direction of the anchored end.

For a spring where both ends of the spring are allowed to move, the direction of
the force is much harder to determine. The previous formulas assume that the force
can be expressed in terms of the location of the object only. If we didn’t anchor the
spring, then we would have to include the motion of the other end of the spring in
the equation, which would make it insoluble.

A similar problem occurs if we anchor one end, but use a non-zero rest length. In
one dimension, a non-zero rest length is equivalent to moving the equilibrium point
along a bit, as shown in Figure 6.6. The same is true in 3D, but because the spring
is allowed to swivel freely, this equilibrium point is now in motion with the same
problems as for a nonanchored spring.

So the previous equations only work well for keeping an object at a pre-
determined fixed location. Just as for the previous anchored springs, we can move
this location manually from frame to frame, as long as we don’t expect the force gen-
erator to cope with the motion in its prediction.

Velocity Mismatches

So far we have only talked about position. Equation 6.5 calculates the force needed
to get the object to its predicted position. Unfortunately, it will not get there with an

Equilibrium position
Rest length

FIGURE 6.6 The rest length and the equilibrium position.

6.3 Stiff Springs 109

accurate velocity (although it will often be close). Could this equation end up increas-
ing the velocity of the object each time, getting faster and faster and still exploding out
to infinity?

For damped harmonic motion, when the anchor point is not in motion, the veloc-
ity resulting from performing this kind of prediction will never mount up to achieve
this. The mathematics involved in demonstrating this is complex, so I’ll leave it as an
exercise for the talented skeptic.

Even though we won’t get exploding velocities, the mismatch between the result-
ing velocity and the correct velocity causes the spring to behave with an inconsistent
spring constant. Sometimes it will be stiffer than we specified, and sometimes it will
be looser. In most cases it is not noticeable, but it is an inescapable consequence of
faking the force in the way we have done.

Interacting with Other Forces

Another major limitation of the faked spring generator is the way that it interacts with
other forces.

The equations above assume that the object is moving freely, not under the influ-
ence of any other forces. The spring force will decrease over the course of the time
interval, because the spring is moving toward its rest length. If we have another force
that is keeping the spring extended or compressed at a constant length, then the force
will be constant, and the original force generator would give a perfect result, no matter
what the spring constant is.

We could theoretically incorporate all the other forces into the prediction for the
spring generator, and then it would return exactly the correct force. Unfortunately, to
correctly work out the force, we’d need to know the behavior of all the objects being
simulated. Simulating the behavior of all the objects is, of course, the whole purpose
of the physics engine. So the only way we could get this to work is to put a full physics
engine in the force calculations. This is not practical (in fact, strictly speaking, it is
impossible, because in that engine we’d need another one, and so on ad infinitum).

For springs that are intended to be kept extended (such as the springs holding
up the rope bridge earlier in the chapter), faked spring forces will be too small, often
considerably too small. In practice, it is best to try to find a blend of techniques to get
the effect you want, that is, using different spring force generators for different objects
in the game.

I have used this faked force generator successfully to model the spring in a char-
acter’s hair (and other wobbly body parts). The rest position is given by the original
position of a hair vertex in the 3D model, and the spring force attracts the actual
drawn vertex to this rest position. As the character moves, the hair bobs naturally.
This method is ideally suited to the problem because the vertices don’t have any other
forces on them (a natural sag caused by gravity is incorporated by the artist in the
model design), and they need to have very high spring coefficients to avoid looking
too bouncy.

110 Chapter 6 Springs and Spring-Like Things

6.4 Summary

A surprising number of physical effects can be modeled using Hook’s law. Even effects
that aren’t elastic, such as buoyancy, have such similar properties to a spring that they
can be implemented using similar code.

We’ve built a set of force generators that can be used in the remainder of the book
to model anything that should appear elastic or bouncy. But we’ve also seen the start
of a problem that motivates much of the rest of the book: springs with high spring
constants (i.e., those that have a fast and strong bounce) are difficult to simulate on a
frame-by-frame basis. When the action of the spring is faster than the time between
simulated frames, then the spring can get unruly and out of control.

If it weren’t for this problem, we could simulate almost anything using spring-like
forces. All collisions, for example, would be easily handled. Even though we were able
to fake stiff springs in some cases, the solution wasn’t robust enough to cope with stiff
springs in the general case, and so we need to find alternative approaches (involv-
ing significantly more complex code) to handle the very fast bounce of a collision.
Chapter 7 looks at this, building a set of special case codes for handling collisions and
hard constraints such as rods and inelastic cables.

6.5 Exercises

Exercise 6.1
Implement a spring generator that simulates extending a spring beyond its limit of
elasticity. Store the limit of elasticity as a maximum distance. If the spring is extended
beyond this, use a fraction of the spring’s normal spring constant. This simulates the
spring being stretched and deforming. This approach can also be used as a safeguard
against springs exploding.

Exercise 6.2
Implement a lighter-than-air force generator. It is like a buoyancy force generator, but
the amount of force diminishes. Any object with this force generator will therefore
find its natural altitude, simulating the point where the density of the object matches
the density of the surrounding air. Take care to implement the force generator so that
it does not have an infinite force at ground level.

Exercise 6.3
Implement an overcrowding force generator. It should track a whole list of particles.
When it calculates its force, it should check if any of these particles is within some
distance. Any particles within this distance should generate a spring force that will
act to separate them. This force generator allows particles to move independently, but
prevents them from getting too close to one another.

6.5 Exercises 111

Exercise 6.4
Implement a homing-bullet force generator. It is based on a spring force generator:
given a target object it should generate a force toward that target; the farther away
the target is, the greater the force should be. Unlike a spring, however, the generator
should not use the current position of the object and its target. Instead, integrate the
position of both particles using their velocity and some small time step (a second,
for example). Use these new positions to calculate the force. This approach takes into
account the current motion of the objects involved, provides a basic intelligence, and
is the basis of some AI homing behaviors.

Exercise 6.5
Implement a simulation with a particle on a spring, and no gravity. The particle
should be attached to a fixed point and start 10 units from that point. Use constant
update intervals (of 1

50 s, for example). For a range of damping values, what is the
maximum spring constant that you can use before the spring explodes?

Exercise 6.6
(a) Construct an equation that links a maximum spring constant and damping. You

can do this either mathematically or by implementing the previous exercise and
deriving the equation from the experimental data.

(b) Extend your equation to include the update interval.

This page intentionally left blank

7
Hard Constraints

n the last chapter, we looked at springs both as a force generator, and as one way of
Ihaving multiple objects affect one another. This is the first time we’ve had objects
that move based on the motion of other objects.

While springs can be used to represent many situations, there are limits. When we
want objects to be tightly coupled together, the spring constant we’d need is practically
impossible to simulate. For sitations where objects are linked by stiff rods, or kept
apart by hard collisions, springs are not a viable option.

In this chapter, I’ll talk about hard constraints. Initially, we’ll look at the most
common hard constraints, which include collisions and contact between objects. The
same mathematics can be used for other kinds of hard constraints that can be used to
connect objects together, such as rods or unstretchable cables.

To cope with hard constraints in our physics engine, we’ll need to leave the com-
fortable world of force generators. All the engines we’re building in this book treat
hard constraints differently from force generators. In Chapter 20, we’ll look briefly at
alternative approaches that unify them again.

7.1 Simple Collision Resolution

To cope with hard constraints, we’ll add a collision resolution system to our engine.
For the sake of this part of the book, a collision refers to any situation in which two
objects are touching. In normal English, we think about collisions being violent pro-
cesses where two objects meet with some significant closing velocity.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00007-3 113

114 Chapter 7 Hard Constraints

For the purposes of this book, we can also think of two objects that just happen
to be touching as being in a collision with no closing velocity. The same process we
use to resolve high-speed collisions will be used to resolve resting contacts. This is a
significant assumption that needs justifying, and I’ll return to it later in the chapter
and at various points later in the book. To avoid changing terminology later, I’ll use
the terms “collision” and “contact” interchangably during this chapter.

When two objects collide, their movement after the collision can be calculated
from their movement before the collision: this process is called collision resolution.
We resolve the collision by making sure the two objects have the correct motion that
would result from the collision. Because collision happens in such a small instant of
time (for most objects we can’t see the process of collision happening, and it appears
to be instant), we go in and directly manipulate the motion of each object, setting its
velocity and possibly its position.

7.1.1 The Closing Velocity

The laws governing the motion of colliding bodies depend on their closing velocity.
The closing velocity is the total speed at which two objects are moving together.

Note also that this is a closing velocity, rather than a speed, even though it is a
scalar quantity. Speeds have no direction; they are only ever positive (or zero) values.
Velocities have direction. For vectors, the direction is given by the direction of the
vector. For scalars, the direction is given by the sign of the value. So two objects that
are moving apart from one another will have a closing velocity that is less than zero.

We calculate the closing velocity of two objects by finding the component of their
velocity in the direction from one object to another:

vc = ṗa · (p̂b − pa) + ṗb · (p̂a − pb)

where vc is the closing velocity (a scalar quantity), pa and pb are the positions of
objects a and b, the dot (·) is the scalar product, and p̂ is the unit length vector in the
same direction as p. This can be simplified to give

vc = −(ṗa − ṗb) · (p̂a − pb) [7.1]

Although it is just a convention, it is more common to change the sign of this
quantity. Rather than a closing velocity, we are effectively working with a separating
velocity.

Two objects that are closing in on one another will have a negative relative velocity,
and objects that are separating will have a positive velocity. Mathematically, this is
simply a matter of changing the sign of Equation 7.1 to give

vs = (ṗa − ṗb) · (p̂a − pb) [7.2]

where vs is the separating velocity, which is the format we’ll use in the rest of this book.
You can stick with closing velocities if you like: it is simply a matter of preference,
although you’ll have to flip the sign of various quantities in the engine to compensate.

7.1 Simple Collision Resolution 115

7.1.2 The Coefficient of Restitution

As we saw in the last chapter, when two objects collide, they compress together, and
the spring-like deformation of their surfaces causes forces to build up that separate
the objects. All of this happens in a very short space of time (too fast for us to simu-
late frame by frame, although long enough to be captured on very high-speed film).
Eventually the two objects will no longer have any closing velocity.

Although this behavior is spring-like, in reality there is more going on. All kinds of
things can be happening during the compression, and the peculiarities of the materials
involved can cause very complicated interactions to take place. In reality we can’t hope
to capture the subtleties of the real process.

In particular, the spring model assumes that momentum (the product of mass
and velocity) is conserved during the collision, as in

ma ṗa + mb ṗb = ma ṗ′
a + mb ṗ′

b [7.3]

where ma is the mass of object a; ṗa is the velocity of object a before the collision, and
ṗ′

a is the velocity after the collision. Collisions that correspond to this equation (and
are therefore spring-like) are called “perfectly elastic.”

Fortunately, most collisions don’t stray too far from this idea. We can’t hope to
be accurate, but we can produce believable behavior by assuming the conservation of
momentum, and we will use Equation 7.3 to model our collisions.

Equation 7.3 tells us about the total velocity before and after the collision, but it
doesn’t tell us about the individual velocities of each object. The individual velocities
are linked together using the closing velocity, according to the equation,

v′
s = −cvs

where v′
s is the separating velocity after the collision, vs is the separating velocity

before the collision, and c is a constant called the coefficient of restitution .
The coefficient of restitution controls the speed at which the objects will separate

after colliding. It depends on the materials that are in collision. Different pairs of
material will have different coefficients. Some objects bounce apart such as billiard
balls or a tennis ball on a racquet. Other objects stick together when they collide, such
as a snowball and a person’s face.

If the coefficient is 1, then the objects will bounce apart with the same speed as
they were closing. If the coefficient is zero, then the objects will coalesce and travel
together (i.e., their separating velocity will be zero). Regardless of the coefficient of
restitution, Equation 7.3 will still hold—the total momentum will be the same.

So we have two equations in two unknowns. We can therefore calculate values for
ṗ′

a and ṗ′
b .

7.1.3 The Collision Direction and the Contact Normal

So far we’ve talked in terms of collisions between two objects. Often we also want to
be able to support collisions between an object and something we’re not physically

116 Chapter 7 Hard Constraints

simulating. This might be the ground, the walls of a level, or any other immovable
object. We could represent these as objects of infinite mass, but it would be a waste of
time, since by definition they never move.

If we have a collision between one object and some piece of immovable scenery,
then we can’t calculate the separating velocity in terms of the vector between the
locations of each object; we only have one object. In other words, we can’t use the
(p̂a − pb) term in Equation 7.2, and so we need to replace it.

The (p̂a − pb) term gives us the direction in which the separating velocity is occur-
ring. The separating velocity is calculated by the dot product of the relative velocity of
the two objects and this term. If we don’t have two objects, we can ask that the direc-
tion is given to us explicitly. It is the direction in which the two objects are colliding
and is usually called the collision normal or contact normal. Because it is a direction,
the vector should always have a magnitude of 1.

In cases where we have two particles colliding, then the contact normal will always
be given by

n̂ = (p̂a − pb)

By convention, we always give the contact normal from object a’s perspective. In
this case, from a’s perspective the contact is incoming from b, so we use pa − pb . To
give the direction of collision from b’s point of view, we could simply multiply by −1.
In practice we don’t do this explicitly, but factor this inversion into the code used to
calculate the separating velocity for b. You’ll see this in the code we implement later
in the chapter, as a minus sign appears in b’s calculations.

When a particle is colliding with the ground, we only have an object a (the par-
ticle), and no object b. In this case from object a’s perspective, the contact normal
will be

n̂ =
⎡⎢⎣0

1

0

⎤⎥⎦
assuming that the ground is level at the point of collision.

When we leave particles and begin to work with full rigid bodies, having an explicit
contact normal becomes crucial even for interobject collisions. Without preempting
later chapters, Figure 7.1 gives a taste of the situation we might come across. Here
the two objects colliding, by virtue of their shapes, have a contact normal in almost
exactly the opposite direction than we’d expect if we simply considered their loca-
tions. The objects arch over one another and the contact acts to prevent them mov-
ing apart, rather than keeping them together. At the end of this chapter, we’ll look
at similar situations for particles, which can be used to represent rods and other stiff
connections.

With the correct contact normal, Equation 7.2 becomes

vs = (ṗa − ṗb) · n̂ [7.4]

7.1 Simple Collision Resolution 117

Direction of
object centers

Contact
normal

FIGURE 7.1 Contact normal is different from the vector between objects in contact.

7.1.4 Impulses

The change we need to make to resolve a collision is a change in velocity only. So
far in the physics engine, we’ve only ever made changes to velocity using acceleration.
Acceleration changes velocity by an amount that depends on time: if the acceleration is
applied for a longer time, there will be a larger change in velocity. Here the changes are
instant: the velocities immediately take on new values, and we don’t want the duration
of the frame to affect the result.

Recall that applying a force changes the acceleration of an object. If we instantly
change the force, the acceleration instantly changes too. We can think of acting on
an object to change its velocity in a similar way. Rather than a force, this is called an
impulse, an instantaneous change in velocity. In the same way as we have

f = mp̈ [7.5]

for forces, we have

g = mṗ [7.6]

for impulses. Impulses are often written with the letter p. Instead, I will use g to avoid
confusion with the position of the object p.

There is a major difference between force and impulse, however. An object has no
acceleration unless it is being acted on by a force: we can work out the total accelera-
tion by combining all the forces using D’Alembert’s principle. On the other hand, an
object will continue to have a velocity even if no impulses (or forces) are acting on it.
The impulse therefore can only change the velocity; it is not completely responsible
for the velocity. We can combine impulses using D’Alembert’s principle, but the result

118 Chapter 7 Hard Constraints

will be the total change in velocity, not the total velocity:

ṗ′ = ṗ + 1

m

∑
n

gi

where g1, . . . , gn is the set of all impulses acting on the object. In practice we won’t
accumulate impulses in the way we did for forces. We will apply impulses as they arise
during the collision resolution process. Each will be applied one at a time using the
equation

ṗ′ = ṗ + 1

m
g

The result of our collision resolution will be an impulse to apply to each object.
The impulse will be immediately applied and will instantly change the velocity of the
object.

There is one more important result to note about impulses before we move on to
using them in collision resolution, and it is best seen using a technique called “dimen-
sional analysis.” If we fill in the units for Equation 7.5, we might put the mass m
in kilograms (kg), and the velocity in meters per second per second (m s−2). So the
force is measured in kg m s−2. This unit is called a Newton (N)1. Doing the same with
Equation 7.6 gives a unit of kg m s−1. We can write this in terms of Newtons in this
way:

kg m s−1 = kg m s−2 × s = Ns

So, impulses are measured in units of force multiplied by time. Or put another
way, 1 Ns of impulse is equivalent to 1 N of force applied for 1 s. We can use this result
to convert between forces and impulses: an impulse can always be represented as a
force applied for some specific length of time, as in

g = ft

We will make use of this important result when we come to look at resting contact in
the following section.

7.2 Collision Processing

To handle collisions, we will create a new piece of code, the ContactResolver. It has
the job of taking an entire set of collisions and applying the relevant impulses to the
objects involved. Each collision is provided in a Contact data structure that looks like
this:

1. I am using the standard SI units here, as in the rest of the book. This makes conversions much simpler.
If I were to use pounds for the weight and feet per second per second as the acceleration, I would need a
conversion factor to convert the resulting force into a sensible unit.

7.2 Collision Processing 119

Excerpt from file include/cyclone/pcontacts.h

/**
* A contact represents two objects in contact (in this case
* ParticleContact representing two particles). Resolving a
* contact removes their interpenetration, and applies sufficient
* impulse to keep them apart. Colliding bodies may also rebound.
*
* The contact has no callable functions, it just holds the
* contact details. To resolve a set of contacts, use the particle
* contact resolver class.
*/

class ParticleContact
{
public:

/**
* Holds the particles that are involved in the contact. The
* second of these can be NULL for contacts with the scenery.
*/

Particle* particle[2];

/**
* Holds the normal restitution coefficient at the contact.
*/

real restitution;

/**
* Holds the direction of the contact in world coordinates.
*/

Vector3 contactNormal;
};

The structure holds a pointer to each object involved in the collision, including
a vector representing the contact normal (from the first object’s perspective) and a
data member for the coefficient of restitution for the contact. If we are dealing with
a collision between an object and the scenery (i.e., there is only one object involved),
then the pointer for the second object will be NULL.

To resolve one contact, we implement the collision equations from earlier in the
section as follows:

Excerpt from file include/cyclone/pcontacts.h

class ParticleContact
{

// ... Other ParticleContact code as before ...

120 Chapter 7 Hard Constraints

protected:
/**
* Resolves this contact for both velocity and interpenetration.
*/
void resolve(real duration);

/**
* Calculates the separating velocity at this contact.
*/
real calculateSeparatingVelocity() const;

private:
/**
* Handles the impulse calculations for this collision.
*/
void resolveVelocity(real duration);

};

Excerpt from file src/pcontacts.cpp

void ParticleContact::resolve(real duration)
{

resolveVelocity(duration);
resolveInterpenetration(duration);

}

real ParticleContact::calculateSeparatingVelocity() const
{

Vector3 relativeVelocity = particle[0]->getVelocity();
if (particle[1]) relativeVelocity -= particle[1]->getVelocity();
return relativeVelocity * contactNormal;

}

void ParticleContact::resolveVelocity(real duration)
{

// Find the velocity in the direction of the contact.
real separatingVelocity = calculateSeparatingVelocity();

// Check if it needs to be resolved.
if (separatingVelocity > 0)
{

// The contact is either separating, or stationary;
// no impulse is required.
return;

}

7.2 Collision Processing 121

// Calculate the new separating velocity.
real newSepVelocity = -separatingVelocity * restitution;

real deltaVelocity = newSepVelocity - separatingVelocity;

// We apply the change in velocity to each object in proportion to
// their inverse mass (i.e., those with lower inverse mass [higher
// actual mass] get less change in velocity).
real totalInverseMass = particle[0]->getInverseMass();
if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then impulses have no effect.
if (totalInverseMass <= 0) return;

// Calculate the impulse to apply.
real impulse = deltaVelocity / totalInverseMass;

// Find the amount of impulse per unit of inverse mass.
Vector3 impulsePerIMass = contactNormal * impulse;

// Apply impulses: they are applied in the direction of the contact,
// and are proportional to the inverse mass.
particle[0]->setVelocity(particle[0]->getVelocity() +

impulsePerIMass * particle[0]->getInverseMass()
);

if (particle[1])
{

// Particle 1 goes in the opposite direction
particle[1]->setVelocity(particle[1]->getVelocity() +

impulsePerIMass * -particle[1]->getInverseMass()
);

}
}

This directly changes the velocities of each object to reflect the collision.

7.2.1 Collision Detection

Collision points will normally be found using a collision detector. A collision detector
is a chunk of code responsible for finding pairs of objects that are colliding, or single
objects that are colliding with some piece of immovable scenery.

In our engine, the end result of the collision detection algorithm is a set of Contact
data structures filled with the appropriate information. Collision detection obviously

122 Chapter 7 Hard Constraints

needs to take account of the geometries of the objects, that is, their shape and size. So
far in the physics engine, we’ve assumed that we are dealing with particles, which lets
us avoid taking any geometry into account.

This is a distinction we’ll keep even with more complicated 3D objects: the physics
simulation system (that part of the engine that handles laws of motion, collision res-
olution, and forces) will not need to know the details of the shape of the objects it is
dealing with. The collision detection system is responsible for calculating any prop-
erties that are geometric, such as when and where two objects are touching, and the
contact normal between them.

There are a whole range of algorithms used for working out contact points, and
we’ll implement a range of useful collision detection routines for full 3D objects in
Chapter 12. For now, we’ll assume that this is a magic process hidden inside a black box.

As one exception, I’ll cover the simplest possible collision detection for parti-
cles represented as small spheres in the next chapter. This will allow us to build
some useful physics systems with only the mass aggregate engine we are con-
structing. I’ll leave all other details until after we’ve looked at full rotating rigid bodies
in Chapter 10.

Some collision detection algorithms can take into account the way objects are
moving and try to predict likely collisions in the future. Others simply look through
the set of objects and check if any pairs of objects are interpenetrating.

Two objects are interpenetrating if they are partially embedded in one another, as
shown in Figure 7.2. When we’re processing a collision between partially embedded
objects, it is not enough to only change their velocity. If the objects are colliding with
a small coefficient of restitution, their separation velocity might be almost zero. In
this case, they will never move apart and the player will see the objects stuck together
in an impossible way.

As part of resolving collisions, we need to resolve interpenetration.

Region of
interpenetration

FIGURE 7.2 Interpenetrating objects.

7.2 Collision Processing 123

7.2.2 Resolving Interpenetration

When two objects are interpenetrating, we will move them apart just enough to sep-
arate them. We will expect the collision detector to tell us how far the objects have
interpenetrated, as part of the Contact data structure that it creates. The calculation
of the interpenetration depth depends on the geometries of the objects colliding. As
seen previously, this is the domain of the collision detection system, rather than the
physics simulator, and we’ll treat it as a magic process until Chapter 12.

We add a data member to the contact data structure to hold this information:

Excerpt from file include/cyclone/pcontacts.h

class ParticleContact
{

// ... Other ParticleContact code as before ...

/**
* Holds the depth of penetration at the contact.
*/

real penetration;
};

Note that, just like the closing velocity, the penetration depth has both size and
sign. A negative depth represents two objects that have no interpenetration. A depth
of zero represents two objects that are merely touching.

To resolve the interpenetration, we check the interpenetration depth. If it is
already zero or less, then we need to take no action; otherwise, we can move the two
objects apart just far enough so that the penetration depth becomes zero. The pene-
tration depth that is provided should be the depth of penetration in the direction of
the contact normal. So if we move the objects in the direction of the contact normal
by a distance equal to the penetration depth, the objects will no longer be in contact.
The same occurs when we have just one object involved in the contact (i.e., it is inter-
penetrating with the scenery of the game): the penetration depth is in the direction
of the contact normal.

So we know the total distance that needs to be moved (i.e., the depth) and the
direction in which the objects will be moving. We need to work out how much each
individual object should be moved.

If we have only one object involved in the contact, then this is simple: the object
needs to move the entire distance. If we have two objects, then we have a whole range
of choices. We could simply move each object by the same amount, by half of the
interpenetration depth. This would work in some situations, but causes believability
problems. Imagine that we are simulating a small box resting on a planet’s surface. If
the box is found slightly interpenetrating the surface, should we move the box and
the planet out of the way by the same amount?

124 Chapter 7 Hard Constraints

Box moves a lot
Planet barely moves

BA

FIGURE 7.3 Interpenetration and reality.

We have to take into account how the interpenetration came to be in the first place,
and what would have happened in the same situation in reality. Figure 7.3 shows the
box and planet in penetration, and if real physics were in operation. We’d like to get
as near to the situation in part B of the figure as possible.

To do this we move two objects apart in inverse proportion to their mass. An
object with a large mass gets almost no change, and an object with a tiny mass gets
to move a lot. If one of the objects has infinite mass, then it will not move; the other
object gets moved the whole way.

The total motion of each object is equal to the depth of interpenetration:

�pa + �pb = d

where �pa is the scalar distance that object a will be moved (we’ll return to the direc-
tion in the following). The two distances are related to each other according to the
ratio of their masses:

ma�pa = mb�pb

which, combined, gives us

�pa = mb

ma + mb
d

and

�pb = ma

ma + mb
d

Combining these with the direction from the contact normal, we get a total change
in the vector position of

�pa = mb

ma + mb
dn

and

�pb = − ma

ma + mb
dn

where n is the contact normal. (Note the minus sign in the second equation; this is
because the contact normal is given from object a’s perspective.)

7.2 Collision Processing 125

We can implement the interpenetration resolution equations with the following
function:

Excerpt from file include/cyclone/pcontacts.h

class ParticleContact
{

// ... Other ParticleContact code as before ...

private:
/**
* Handles the interpenetration resolution for this contact.
*/

void resolveInterpenetration(real duration);
};

Excerpt from file src/pcontacts.cpp

void ParticleContact::resolveInterpenetration(real duration)
{

// If we don’t have any penetration, skip this step.
if (penetration <= 0) return;

// The movement of each object is based on their inverse mass,
// so total that.
real totalInverseMass = particle[0]->getInverseMass();
if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then we do nothing.
if (totalInverseMass <= 0) return;

// Find the amount of penetration resolution per unit
// of inverse mass.
Vector3 movePerIMass =

contactNormal * (penetration / totalInverseMass);

// Calculate the movement amounts.
particleMovement[0] = movePerIMass * particle[0]->getInverseMass();
if (particle[1]) {

particleMovement[1] =
movePerIMass * -particle[1]->getInverseMass();

} else {
particleMovement[1].clear();

}

126 Chapter 7 Hard Constraints

// Apply the penetration resolution.
particle[0]->setPosition(

particle[0]->getPosition() + particleMovement[0]
);

if (particle[1]) {
particle[1]->setPosition(

particle[1]->getPosition() + particleMovement[1]
);

}
}

We now have code to apply the change in velocity at a collision, and to resolve
objects that are interpenetrating. If you implement and run the contact resolution
system, it will work well for medium-speed collisions, but objects resting (a particle
resting on a table, for example) may appear to vibrate and may even leap into the air
occasionally.2

To have a complete and stable contact resolution system we need to reconsider
what happens when two objects are touching, but have a very small or zero closing
velocity.

7.2.3 Resting Contacts

Consider the situation shown in Figure 7.4. We have a particle resting on the ground.
It is experiencing only one force, gravity. In the first frame, the particle accelerates
downward. Its velocity increases, but its position stays constant (it has no velocity at
the start of the frame). In the second frame, the position is updated, and the velocity
increases again. Now it is moving downward and has begun to interpenetrate with
the ground. The collision detector picks up on the interpenetration and generates a
collision.

The contact resolver looks at the particle, and sees that it has a penetrating veloc-
ity of

ṗ = 2p̈t

Applying the collision response, the particle is given a velocity of

ṗ′ = c ṗ = c2p̈t

2. I said medium speed here, because very high-speed collisions are notoriously difficult to cope with. The
physics simulation we’ve provided will usually cope (except for insanely high speeds where lack of floating-
point accuracy starts to cause problems), but collision detectors can start to provide strange results. For
instance, it is possible for two objects to pass right through one another before the collision detector realizes
they have even touched. If it does detect a collision, they may be at least halfway through one another and be
separating again, in which case they have a positive separating velocity and no impulse is generated. We’ll
return to these issues when we create our collision detection system later in the book, although we will not
be able to resolve them fully; they are an endemic problem with very high-speed collision detection.

7.2 Collision Processing 127

No collision Collision generated

Acceleration
by gravity

FIGURE 7.4 Vibration on resting contact.

and is moved out of interpenetration. In frame three, therefore, it has an upward
velocity, which will carry it off the ground and into the air. The upward velocity will
only be small, but it may be enough to be noticed. In particular, if frame one or two is
abnormally long, the velocity will have a chance to significantly build up and send the
particle skyward. If you implement this algorithm for a game with a variable frame
rate, then slow down the frame rate (by dragging a window around, for example, or
having email arrive in the background), any resting objects will suddenly jump.

To solve this problem we can do two things.
First, we need to detect the contact earlier. In the example, two frames have passed

before we find out that there is a problem. If we set our collision detector so that it
returns contacts that are nearly but not quite interpenetrating, then we get a contact
to work with after frame one.

Second, we need to recognize when an object has velocity that could only have
arisen from its forces acting for one frame. After frame one, the velocity of the particle
is caused solely by the force of gravity acting on it for one frame. We can work out
what the velocity would be if only the force had acted upon it, by simply multiplying
the force by the frame duration. If the actual velocity of the object is less than or equal
to this value (or even slightly above it, if we acknowledge that rounding errors can
creep in), we know that the particle was stationary at the previous frame. In this case,
the contact is likely to be a resting contact, rather than a colliding contact. Rather
than performing the impulse calculation for a collision, we can apply the impulse
that would result in zero separating velocity.

This is what would happen for a resting contact: no closing velocity would have
time to build up, so there would be no separating velocity after the contact. In our
case we are recognizing that the velocity we do have is likely to be only a by-product
of the way we split time into frames, and we can therefore treat the object as if it had
a zero velocity before the contact. The particle is given a zero velocity. This happens
at every frame: in effect the particle always remains at frame one in Figure 7.4.

You could also look at this as a collision with a zero coefficient of restitution. So, as
the closing velocity drops, the coefficient of restitution changes suddenly from being
a bounce to a resting contact. Needless to say, if you only ever used zero coefficients
of restitution, this distinction would be moot.

This series of microcollisions keep the objects apart. For this reason, an engine
that handles resting contact in this way is sometimes called a microcollision engine.

128 Chapter 7 Hard Constraints

Velocity and the Contact Normal

When we have two objects in resting contact, we are interested in their relative velocity
rather than the absolute velocity of either. The two objects might be in resting contact
with one another in one diretcion, but moving across each other in another direction.
A box might be resting on the ground, even though it is skidding across the surface at
the same time. We want the vibrating contacts code to cope with pairs of objects that
are sliding across one another. This means we can’t use the absolute velocity of either
object.

To cope with this situation, the velocity and acceleration calculations are all per-
formed in the direction of the contact normal only. We first find the velocity in this
direction, and test to see whether it could have been solely caused by the component
of the acceleration in the same direction. If so, then the velocity is changed so there is
no separating or closing velocity in this direction. There still may be relative velocity
in any other direction: but it is ignored.

We can add this special case code to the collision processing function in the fol-
lowing way:

Excerpt from file src/pcontacts.cpp

void ParticleContact::resolveVelocity(real duration)
{

// Find the velocity in the direction of the contact.
real separatingVelocity = calculateSeparatingVelocity();

// Check if it needs to be resolved.
if (separatingVelocity > 0)
{

// The contact is either separating, or stationary; there’s
// no impulse required.
return;

}

// Calculate the new separating velocity.
real newSepVelocity = -separatingVelocity * restitution;

// Check the velocity buildup due to acceleration only.
Vector3 accCausedVelocity = particle[0]->getAcceleration();
if (particle[1]) accCausedVelocity -= particle[1]->getAcceleration();
real accCausedSepVelocity = accCausedVelocity * contactNormal
* duration;

// If we’ve got a closing velocity due to aceleration buildup,
// remove it from the new separating velocity.
if (accCausedSepVelocity < 0)

7.2 Collision Processing 129

{
newSepVelocity += restitution * accCausedSepVelocity;

// Make sure we haven’t removed more than was
// there to remove.
if (newSepVelocity < 0) newSepVelocity = 0;

}

real deltaVelocity = newSepVelocity - separatingVelocity;

// We apply the change in velocity to each object in proportion to
// their inverse mass (i.e., those with lower inverse mass [higher
// actual mass] get less change in velocity).
real totalInverseMass = particle[0]->getInverseMass();
if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then impulses have no effect.
if (totalInverseMass <= 0) return;

// Calculate the impulse to apply.
real impulse = deltaVelocity / totalInverseMass;

// Find the amount of impulse per unit of inverse mass.
Vector3 impulsePerIMass = contactNormal * impulse;

// Apply impulses: they are applied in the direction of the contact,
// and are proportional to the inverse mass.
particle[0]->setVelocity(particle[0]->getVelocity() +

impulsePerIMass * particle[0]->getInverseMass()
);

if (particle[1])
{

// Particle 1 goes in the opposite direction.
particle[1]->setVelocity(particle[1]->getVelocity() +

impulsePerIMass * -particle[1]->getInverseMass()
);

}
}

To keep two objects in resting contact, we are applying a small change in velocity
at each frame. The change is just big enough to correct the increase in velocity that
would arise from them settling into one another over the course of one frame.

130 Chapter 7 Hard Constraints

Other Approaches to Resting Contact

The microcollision approach I’ve given here is only one of many possibilities. Resting
contact is one of two key challenges to get right in a physics engine (the other being
friction; in fact, the two often go together). There are many routes of attack, as well
as countless variations and tweaks.

My solution is somewhat ad hoc; effectively we second-guess the mistakes of a
rough implementation, and then try to correct it after the event. This has the flavor of
a hack, and despite being easy to implement and suitable for adding in friction (which
we’ll do in Chapter 15), it is frowned upon by engineering purists.

A more physically realistic approach would be to recognize that a force would be
applied on the particle from the ground. This reaction force pushes the object back so
that its total acceleration in the vertical direction becomes zero. No matter how hard
the particle pushes down, the ground will push up with the same force. We can create
a force generator that works in this way, making sure that there can be no acceleration
into the ground.

This works okay for particles that can have only one contact with the ground.
For more complex rigid bodies the situation becomes considerably more complex.
We may have several points of contact between an object and the ground (or worse,
we might have a whole series of contacts between an object and immovable resting
points). It isn’t immediately clear how to calculate the reaction forces at each contact
so that the overall motion of the object is correct. We’ll return to reaction forces in
some depth in Chapter 15, and to more complex resolution methods in Chapter 20
at the end of the book.

7.3 The Contact Resolver Algorithm

The collision resolver receives a list of contacts from the collision detection system,
and needs to update the objects being simulated to take account of the contacts.

We have three bits of code for performing this update:

1. The collision resolution function that applies impulses to objects to simulate
them bouncing apart.

2. The interpenetration resolution function that moves objects apart so that they
aren’t partially embedded in one another.

3. The resting contact code that sits inside the collision resolution function and
keeps an eye out for contacts that might be resting rather than colliding.

Which of these functions needs calling for a contact depends on its separating
velocity and interpenetration depth. Interpenetration resolution only needs to occur
if the contact has a penetration depth greater than zero. Similarly, we might need to
perform interpenetration resolution only, with no collision resolution, if the objects
are interpenetrated but separating.

7.3 The Contact Resolver Algorithm 131

Regardless of the combination of functions needed, each contact is resolved one at
a time. This is a simplification of the real world. In reality, each contact would occur at
a slightly different instant in time or be spaced out over a range of time. Some contacts
would apply their effects in series, and others would combine and act simultaneously
on the objects that they affect. Some physics engines will try to accurately replicate this
by treating sequential contacts in their correct order and resolving resting contacts all
at the same time. In Section 7.3.2, we’ll look at an alternative resolution scheme that
honors sequential series. In Chapter 20, we’ll look at systems to perform simultaneous
resolution of multiple contacts.

For our engine, we’d like keep things simple and do neither. We’d like to resolve all
the contacts one at a time at the end of a frame. We can still get very believable results
with this scheme, with a considerably less complex implementation. To get the best
results, however, we need to make sure that the contacts are resolved in a particular
order.

7.3.1 Resolution Order

If an object has two simultaneous contacts, as shown in Figure 7.5, then changing its
velocity to resolve one contact may change its separating velocity at the other contact.
In the figure, if we resolve the first contact, then the second contact stops being a
collision at all, as it is now separating. If we resolve the second contact only, however,
the first contact still needs to be resolved because the change in velocity isn’t enough
to save it.

To avoid doing unneccesary work in situations like this, we resolve the most severe
contact first, that is, the contact with the lowest separating velocity (i.e., the most
negative). In addition to the most convenient, this is also the most physically realistic
thing we can do. In the figure, if we compared the behavior of the full three-object

Contact 1 Contact 2

FIGURE 7.5 Resolving one contact may resolve another automatically.

132 Chapter 7 Hard Constraints

situation with the behavior after having removed one of the two lower blocks, we
would find that the final result is similar to the case where we have block A but not
block B. In other words, the most severe collisions tend to dominate the behavior of
the simulation. If we have to prioritize which collisions to handle, it should be those
that give the most realism.

The figure illustrates a complication in our contact resolution algorithm. If we
handle one collision, then we might change the separating velocity for other contacts.
We can’t just sort the contacts by their separating velocity, and then handle them in
order. Once we have handled the first collision, the next contact may have a positive
separating velocity and not need any processing.

There is also another, more subtle, problem that doesn’t tend to arise in many par-
ticle situations. We could have a situation where we resolve one contact, then another,
but resolving the second puts the first contact back into collision, so we need to re-
resolve it. Fortunately, it can be shown that for certain types of simulation (particu-
larly those with no friction, but some friction situations can also work), this looping
will eventually settle into a correct answer. We’ll not need to loop round forever, and
we’ll not end up with a situation where the corrections get bigger and bigger until
the whole simuation explodes. Unfortunately, this equilibrium could still take a long
time to reach, and there is no accurate way to estimate how long it will take. To avoid
getting stuck, we place a limit on the number of resolutions that can be performed
each frame.

The contact resolver we will use follows this algorithm:

1. Calculate the separating velocity of each contact, keeping track of the contact
with the lowest (i.e., most negative) value.

2. If the lowest separating velocity is greater than or equal to zero, then we’re done:
exit the algorithm.

3. Process the collision response algorithm for the contact with the lowest separat-
ing velocity.

4. If we have more iterations, then return to Step 1.

The algorithm will automatically re-examine contacts that it has previous resol-
ved, and it will ignore contacts that are separating. It resolves the most severe collision
at each iteration.

The number of iterations allowed should be at least the number of contacts (to
give them all a chance of getting seen at least once), and can be greater. For simple
particle simulations having the same number of iterations as there are contacts can
often work fine. I tend to use double as a rule of thumb, but more is needed for com-
plex interconnected sets of contacts. You could also give the algorithm no iteration
limit and see how it performs. This is a good approach for debugging when difficult
situations arise.

You may have noticed that I’ve ignored interpenetration so far. We could combine
interpenetration resolution with collision resolution and embed it in the algorithm

7.3 The Contact Resolver Algorithm 133

above. A better solution, in practice, is to separate the two into distinct phases. First,
we resolve the collisions in order, using the algorithm above. Second, we resolve all
interpenetrations.

Separating the two resolution steps allows us to use a different order to resolve
interpenetration than for velocity. Once again we want to get the most realistic results.
We can do this by resolving the contacts in order of severity, as before. If we com-
bine the two stages, we’d be tied to a suboptimal order for one or another kind of
resolution.

The interpenetration resolution follows the same algorithm as for collision reso-
lution. As before, we need to recalculate all the interpenetration depths between each
iteration. Recall that interpenetration depths are provided by the collision detector.
We don’t want to perform collision detection again after each iteration, as it is far too
time consuming. To update the interpenetration depth, we keep track of how much
we moved the two objects at the previous iteration. The objects in each contact are
then examined. If either object was moved in the last frame, then its interpenetration
depth is updated by finding the component of the move in the direction of the contact
normal.

Putting all this together, we get the following contact resolver function:

Excerpt from file include/cyclone/pcontacts.h

/**
* The contact resolution routine for particle contacts. One
* resolver instance can be shared for the entire simulation.
*/

class ParticleContactResolver
{
protected:

/**
* Holds the number of iterations allowed.
*/

unsigned iterations;

/**
* This is a performance tracking value; we keep a record
* of the actual number of iterations used.
*/

unsigned iterationsUsed;

public:
/**
* Creates a new contact resolver.
*/

ParticleContactResolver(unsigned iterations);

134 Chapter 7 Hard Constraints

/**
* Sets the number of iterations that can be used.
*/
void setIterations(unsigned iterations);

/**
* Resolves a set of particle contacts for both penetration
* and velocity.
*/
void resolveContacts(ParticleContact *contactArray,

unsigned numContacts,
real duration);

};

Excerpt from file src/pcontacts.cpp

void ParticleContactResolver::resolveContacts(ParticleContact
*contactArray, unsigned
numContacts, real duration)

{
unsigned i;

iterationsUsed = 0;
while(iterationsUsed < iterations)
{

// Find the contact with the largest closing velocity.
real max = REAL_MAX;
unsigned maxIndex = numContacts;
for (i = 0; i < numContacts; i++)
{

real sepVel = contactArray[i].calculateSeparatingVelocity();
if (sepVel < max &&

(sepVel < 0 || contactArray[i].penetration > 0))
{

max = sepVel;
maxIndex = i;

}
}

// Do we have anything worth resolving?
if (maxIndex == numContacts) break;

// Resolve this contact.
contactArray[maxIndex].resolve(duration);

7.3 The Contact Resolver Algorithm 135

iterationsUsed++;
}

}

The number of iterations we use to resolve interpenetrations might not be the
same as the number used in resolving collisions. We could implement the function to
use a different limit in each case. In practice, there is rarely any need to have different
values, as we can pass the same for both. As a simulation gets more complex with
interacting objects, the number of collision iterations needed will increase at roughly
the same rate as the number of interpenetration iterations. In the function above, I’ve
used one iteration limit for both parts.

The recalculation of the closing velocity and interpenetration depth at each iter-
ation is the most time-consuming part of this algorithm. For very large numbers of
contacts, this can dominate the execution speed of the physics engine. In practice,
most of the updates will have no effect: one contact may have no possible effect on
another contact. In Chapter 16, we’ll return to this issue and optimize the way colli-
sions are resolved.

7.3.2 Time-Division Engines

There is another approach to creating a physics engine that avoids having to resolve
interpenetration or generate a sensible resolution order for the contacts. Rather than
have one update of the physics engine per frame, we could have many updates punc-
tuated by collisions.

The theory goes like this:

� When there are no collisions, objects are moving around freely, using just the
laws of motion and force generators we saw in Chapter 6.

� When a collision occurs, it is at the exact point that two objects touch. At this
stage there is no interpenetration.

� If we can detect exactly when a collision occurs, we can use the normal laws
of motion up to this point, stop, perform the impulse calculations, and then
start up with the normal laws of motion again.

� If there are numerous collisions, we process them in order, and between each
collision, we update the world using the normal laws of motion.

In practice, this kind of engine has the following algorithm:

1. Let the start time be the current simulation time, and the end time be the end
of the current update request.

2. Perform a complete update for the entire time interval.

3. Run the collision detector and collect a list of collisions.

4. If there are no collisions, we are done: exit the algorithm.

136 Chapter 7 Hard Constraints

5. For each collision, work out the exact time of the first collision.

6. Choose the first collision to have occurred.

7. If the first collision occurs after the end time, then we’re done: exit the algorithm.

8. Remove the effects of the Step 2 update, and perform a new update from the
start time to the first collision time.

9. Process the collision, applying the appropriate impulses (no interpenetration
resolution is needed, because at the instant of collision the objects are only just
touching).

10. Set the start time to be the first collision time, keep the end time unchanged,
and return to Step 1.

This gives an accurate result, and avoids the problems with interpenetration res-
olution. It is a commonly used algorithm in engineering physics applications where
accuracy is critical. Unfortunately, it is very time consuming. For each collision, we
run the collision detector again and rerun the regular physics update every time. We
still need to have special case code to cope with resting contacts; otherwise, the resting
contacts will be returned as the first collision at every iteration. Even without resting
contacts, numerical errors in the collision detection calculations can cause a never-
ending cycle, that is, a constant stream of collisions occurring at the same time that
causes the algorithm to loop endlessly.

For almost all game projects, this approach isn’t practical. A once-per-frame
update is a better solution, where all the contacts are resolved for velocity and inter-
penetration.

The “almost” I am thinking of is pool, snooker, or billiards games. In these cases,
the sequence of collisions and the position of balls when they collide is critical.
A pool game using once-per-frame physics might be believable when two balls collide,
but strange effects can appear when the cue ball hits a tightly packed (but not quite
touching) bunch of balls. For a serious simulation, it is almost essential to follow the
algorithm above, with the advantage that if you are writing from scratch it is easier
to implement without the interpenetration code (not to mention the simplifications
you can get because all the balls have the same mass).

You can see this in pool simulation games running on older PCs. When you break
off, there is a fraction of a second pause when the cue ball hits the pack, as the thou-
sands of internal collisions are detected and handled sequentially.

For a simple arcade pool game, if you already have a once-per-frame physics
engine available, it is worth a try: it may be good enough to do the job.

7.4 Collision-Like Things

Just as for springs, we will look at several types of connections that can be modeled
using the techniques in this chapter.

7.4 Collision-Like Things 137

You can think of a collision as acting to maintain two objects at least some min-
imum distance apart. A contact is generated between two objects if they ever get too
close. In the same way, we can use contacts to keep objects together.

7.4.1 Cables

A cable is a constraint that forces two objects to be no more than a specific distance
apart. If we have two objects connected by a light cable, they will feel no effects as
long as they are close together. When the cable is pulled taut, the objects cannot sepa-
rate further. Depending on the characteristics of the cable, the objects may appear to
bounce off this limit in the same way that objects colliding might bounce apart. Just
like any other collision, the cable has a characteristic coefficient of restitution that
controls this bounce effect.

We can model cables by generating contacts whenever the ends of the cable sep-
arate too far. The contact is very much like those used for collisions, except that its
contact normal is reversed: it pulls the objects together rather than bouncing them
apart. Similarly, the interpenetration depth of the contact corresponds to how far the
cable has been stretched beyond its limit.

We can implement a contact generator for a cable in the following way:

Excerpt from file include/cyclone/plinks.h

/**
* Links connect two particles together, generating a contact if
* they violate the constraints of their link. It is used as a
* base class for cables and rods, and could be used as a base
* class for springs with a limit to their extension.
*/

class ParticleLink : public ParticleContactGenerator
{
public:

/**
* Holds the pair of particles that are connected by this link.
*/

Particle* particle[2];

protected:
/**
* Returns the current length of the link.
*/

real currentLength() const;

public:
/**

138 Chapter 7 Hard Constraints

* Generates the contacts to keep this link from being
* violated. This class can only ever generate a single
* contact, so the pointer can be a pointer to a single
* element, the limit parameter is assumed to be at least 1
* (0 isn’t valid), and the return value is 0 if the
* cable wasn’t overextended, or 1 if a contact was needed.
*
* NB: This method is declared in the same way (as pure
* virtual) in the parent class, but is replicated here for
* documentation purposes.
*/
virtual unsigned addContact(ParticleContact *contact,

unsigned limit) const = 0;
};

/**
* Cables link a pair of particles, generating a contact if they
* stray too far apart.
*/

class ParticleCable : public ParticleLink
{
public:

/**
* Holds the maximum length of the cable.
*/
real maxLength;

/**
* Holds the restitution (bounciness) of the cable.
*/
real restitution;

public:
/**
* Fills the given contact structure with the contact needed
* to keep the cable from overextending.
*/
virtual unsigned addContact(ParticleContact *contact,

unsigned limit) const;
};

7.4 Collision-Like Things 139

Excerpt from file src/plinks.cpp

real ParticleLink::currentLength() const
{

Vector3 relativePos = particle[0]->getPosition() -
particle[1]->getPosition();

return relativePos.magnitude();
}

unsigned ParticleCable::addContact(ParticleContact *contact,
unsigned limit) const

{
// Find the length of the cable.
real length = currentLength();

// Check if we’re overextended.
if (length < maxLength)
{

return 0;
}

// Otherwise, return the contact.
contact->particle[0] = particle[0];
contact->particle[1] = particle[1];

// Calculate the normal.
Vector3 normal =

particle[1]->getPosition() - particle[0]->getPosition();
normal.normalize();
contact->contactNormal = normal;

contact->penetration = length-maxLength;
contact->restitution = restitution;

return 1;
}

This code acts as a collision detector: it examines the current state of the cable
and can return a contact if the cable has reached its limit. This contact should then
be added to all the others generated by the collision detector, and processed in the
normal contact resolver algorithm.

140 Chapter 7 Hard Constraints

7.4.2 Rods

Rods combine the behaviors of cables and collisions. Two objects linked by a rod can-
not separate nor get closer together. They are kept at a fixed distance apart.

We can implement this in the same way as the cable contact generator. At each
frame, we look at the current state of the rod, and generate either a contact to bring
the ends inward or a contact to keep them apart.

We need to make two modifications to what we’ve seen so far, however. First, we
should always use a coefficient of restitution of zero. It doesn’t make sense for the two
ends to either bounce together or apart. They should be kept at a constant distance
from one another, so that the relative velocity along the line between them should
be zero.

Second, if we apply just one of the two contacts (to separate or to close) each
frame, we will end up with a vibrating rod. On successive frames the rod is likely to
be too short and then too long, and each contact will drag it backward and forward.
To avoid this, we generate both contacts in every frame. If either of the contacts is not
needed (i.e., the separating velocity is greater than zero, or there is no interpenetra-
tion), then it will be ignored. Having the extra contact there helps the contact resolver
algorithm not to overcompensate, and the rod will be more stable. The downside of
this approach is that for complex assemblies of rods, the number of iterations needed
to reach a really stable solution can rise dramatically. If you have a low iteration limit,
the vibration can return.

We can implement our contact generator in the following way:

Excerpt from file include/cyclone/plinks.h

/**
* Rods link a pair of particles, generating a contact if they
* stray too far apart or too close.
*/

class ParticleRod : public ParticleLink
{
public:

/**
* Holds the length of the rod.
*/
real length;

public:
/**
* Fills the given contact structure with the contact needed
* to keep the rod from extending or compressing.
*/

7.4 Collision-Like Things 141

virtual unsigned addContact(ParticleContact *contact,
unsigned limit) const;

};

Excerpt from file src/plinks.cpp

unsigned ParticleRod::addContact(ParticleContact *contact,
unsigned limit) const

{
// Find the length of the rod.
real currentLen = currentLength();

// Check if we’re overextended.
if (currentLen == length)
{

return 0;
}

// Otherwise, return the contact.
contact->particle[0] = particle[0];
contact->particle[1] = particle[1];

// Calculate the normal.
Vector3 normal =

particle[1]->getPosition() - particle[0]->getPosition();
normal.normalize();

// The contact normal depends on whether we’re extending or
compressing.

if (currentLen > length) {
contact->contactNormal = normal;
contact->penetration = currentLen - length;

} else {
contact->contactNormal = normal * -1;
contact->penetration = length - currentLen;

}

// Always use zero restitution (no bounciness).
contact->restitution = 0;

return 1;
}

142 Chapter 7 Hard Constraints

The code always generates two contacts, which should be added to the list returned
by the collision detector and passed to the contact resolver.

7.5 Summary

We’ve now built a set of physics code that can connect particles using both hard con-
straints such as rods and cables and elastic constraints such as springs and bungees.

Rods and cables behave similarly to collisions between separate objects. Cables
can cause particles joined together to bounce toward one another, in the same way
that particles bounce off one another when they collide. In the same way, rods cause
connected particles to stay togther, moving with a fixed separation distance. This is
equivalent to collisions with no bounce, when the particles stick together and their
closing velocity is reduced to zero.

Supporting both hard and elastic connections between particles allows us to com-
bine particles into interesting larger structures and simulate them in our game.

This forms our second complete physics engine, the mass aggregate engine. Unlike
the particle engine we built first, the mass aggregate engine is rare in published games.
Its major exposure has been in a few 2D platform and casual games.

While it has largely been superceded by the more complex engines later in the
book, it is still useful in some games in its own right. Chapter 8 looks at its strengths
and selected applications.

7.6 Exercises

Exercise 7.1
Collect a selection of objects made from different (nonbreakable) materials and find
a hard floor. Using a tape measure, drop each object from a known height (e.g., 1 m),
and measure how high they bounce. The object should be dropped in such a way that
it does not spin when falling or after bouncing; balls are best for this experiment. From
the bounce height, hbounce, and initial height, hinitial, you can calculate the coefficient
of restitution, c , as follows:

c =
√

hbounce

hinitial

Use the data you collect to create a table of coefficients of restitution between the floor
and the materials you used.

Exercise 7.2
(a) Use the equation of motion,

p = ṗt + 1

2
p̈t 2

7.6 Exercises 143

from Chapter 1 to work out how long it would take for an object with a particular
mass to hit the ground when dropped from some specific height.

(b) Use the equation

ṗ = p̈t

to work out the speed that the object would be traveling when it hits the ground.

(c) Combining both results, derive the equation shown in the previous exercise,
that is,

c =
√

hbounce

hinitial

Exercise 7.3
Two balls placed almost on top of one another are dropped from a height of 1 m. The
bottom ball hits the ground and bounces with a coefficient of restitution of 0.5. An
instant later (i.e., after having lost none of its new upward velocity), it hits the second
ball, which is still traveling down. The collision between the balls has a coefficient
of restitution of 0.75. The mass of the bottom ball is nine times that of the top ball.
What is the upward speed of the top ball after its collision? Assume in this question
that the balls have zero radius (i.e., each one drops the full meter before its contact),
and gravity is 10 m s−2.

Exercise 7.4
A force of k is applied to an object for a small fraction of a second, tk , less than the
duration of one frame, tf . Our simulation doesn’t support applying forces for less than
an entire frame, so if we wanted to simulate the effect of force k over a duration of tk ,
how much force should we apply over our frame duration, tf ?

Exercise 7.5
(a) Implement a collision detector that can detect whether a particle has passed

through the ground plane (Y = 0) and generate a collision.

(b) Extend this code so that the objects can be spheres of some given size.

Exercise 7.6
Create another constraint that generates contacts if two objects get closer than a min-
imum distance apart, or if they get farther than some (possibly different) maximum
distance. This constraint is similar to the rod, described above, but allows some mar-
gin in which no force is generated.

This page intentionally left blank

8
The Mass

Aggregate

Physics Engine

e’ve now built a mass aggregate physics engine capable of both particle sim-
W ulation and constructions made of many objects connected by rods, cables,
and springs. It’s time to test the engine on some example scenarios.

The engine still has limits; in particular, it can’t describe the way that objects
rotate. We’ll look at ways around this, faking the rotation of objects in terms of mass
aggregates. It is a useful technique for some applications, and can eliminate the need
for more advanced physics.

8.1 Overview of the Engine

The mass aggregate physics engine has three components:

1. The particles themselves keep track of their position and movement and their
mass. To set up a simulation, we need to work out what particles are needed
and set their initial position velocity. We also need to set their inverse mass. The
acceleration of an object due to gravity is also held in the rigid body (this could
be removed and replaced by a force, if you so desire).

2. The force generators are used to keep track of forces that apply over several frames
of the game.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00008-5 145

146 Chapter 8 The Mass Aggregate Physics Engine

3. The collision system accumulates a set of contact objects and passes them to the
contact resolver. Any bit of code can generate new contacts. We have considered
two: a collision detector and rod or cable constraints.

At each frame we take each particle, calculate its internal data, call its force gener-
ators, and call its integrator to update position and velocity. We then accumulate the
contacts on the particle and pass all the contacts for all the particles into the collision
resolver.

To make this process easier, we will construct a simple structure to hold any num-
ber of rigid bodies. We hold the rigid bodies in a stl::vector, exactly as we did for
force generators (again you could use a linked list if you preferred not to use the
STL). This is contained in a World class, representing the whole physically simulated
world:

Excerpt from file include/cyclone/pworld.h

/**
* Keeps track of a set of particles, and provides the means to
* update them all.
*/

class ParticleWorld
{
public:

typedef std::vector<Particle*> Particles;

protected:
/**
* Holds the particles.
*/
Particles particles;

public:
/**
* Creates a new particle simulator that can handle up to the
* given number of contacts per frame. You can also optionally
* give a number of contact-resolution iterations to use. If you
* don’t give a number of iterations, then twice the number of
* contacts will be used.
*/
ParticleWorld(unsigned maxContacts, unsigned iterations=0);

};

At each frame, the startFrame method is first called, which sets up each object
ready for the force accumulation:

8.1 Overview of the Engine 147

Excerpt from file include/cyclone/pworld.h

class ParticleWorld
{

// ... Other ParticleWorld code as before ...

/**
* Initializes the world for a simulation frame. This clears
* the force accumulators for particles in the world. After
* calling this, the particles can have their forces for this
* frame added.
*/

void startFrame();
};

Additional forces can be applied after calling this method.
We will also create another system to register contacts. Just like we saw for force

generators, we create a polymorphic interface for contact detectors.

Excerpt from file include/cyclone/pcontacts.h

/**
* This is the basic polymorphic interface for contact generators
* applying to particles.
*/

class ParticleContactGenerator
{
public:

/**
* Fills the given contact structure with the generated
* contact. The contact pointer should point to the first
* available contact in a contact array, where limit is the
* maximum number of contacts in the array that can be written
* to. The method returns the number of contacts that have
* been written.
*/

virtual unsigned addContact(ParticleContact *contact,
unsigned limit) const = 0;

};

Each contact generator gets called in turn from the world, and can contribute any
contacts it finds back to the world by calling its addContactmethod.

148 Chapter 8 The Mass Aggregate Physics Engine

To execute the physics, the runPhysics method is called. This calls all the force
generators to apply their forces, and then performs the integration of all objects, runs
the contact detectors, and resolves the resulting contact list:

Excerpt from file include/cyclone/pworld.h

class ParticleWorld
{

// ... Other ParticleWorld code as before ...

typedef std::vector<ParticleContactGenerator*> ContactGenerators;
/**
* Holds the force generators for the particles in this world.
*/
ParticleForceRegistry registry;

/**
* Holds the resolver for contacts.
*/
ParticleContactResolver resolver;

/**
* Contact generators.
*/
ContactGenerators contactGenerators;

/**
* Holds the list of contacts.
*/
ParticleContact *contacts;

/**
* Holds the maximum number of contacts allowed (i.e., the
* size of the contacts array).
*/
unsigned maxContacts;

/**
* Calls each of the registered contact generators to report
* their contacts. Returns the number of generated contacts.
*/
unsigned generateContacts();

/**
* Integrates all the particles in this world forward in time

8.1 Overview of the Engine 149

* by the given duration.
*/

void integrate(real duration);

/**
* Processes all the physics for the particle world.
*/

void runPhysics(real duration);

};

Excerpt from file src/pworld.cpp

unsigned ParticleWorld::generateContacts()
{

unsigned limit = maxContacts;
ParticleContact *nextContact = contacts;

for (ContactGenerators::iterator g = contactGenerators.begin();
g != contactGenerators.end();
g++)

{
unsigned used =(*g)->addContact(nextContact, limit);
limit -= used;
nextContact += used;

// We’ve run out of contacts to fill. This means we’re missing
// contacts.
if (limit <= 0) break;

}

// Return the number of contacts used.
return maxContacts - limit;

}

void ParticleWorld::integrate(real duration)
{

for (Particles::iterator p = particles.begin();
p != particles.end();
p++)

{
// Integrate the particle by the given duration.
p->integrate(duration);

}

150 Chapter 8 The Mass Aggregate Physics Engine

}

void ParticleWorld::runPhysics(real duration)
{

// First, apply the force generators.
registry.updateForces(duration);

// Then integrate the objects.
integrate(duration);

// Generate contacts.
unsigned usedContacts = generateContacts();

// And process them.
if (usedContacts)
{

if (calculateIterations) resolver.setIterations(usedContacts * 2);
resolver.resolveContacts(contacts, usedContacts, duration);

}
}

We add a call to startFrame at the start of each frame of the game, and a call to
runPhysics wherever we want the physics to occur. A typical game loop might look
like this:

void loop()
{
while (true) {

// Prepare the objects for this frame.
world.startFrame();

// Calls to other parts of the game code.
runGraphicsUpdate();
updateCharacters();

// Update the physics.
world.runPhysics();

if (gameOver) break;
}

}

8.2 Using the Physics Engine 151

8.2 Using the Physics Engine

We will look at a useful application of the mass aggregate engine—creating structures
out of particle masses and hard constraints. Using this technique, we can create and
simulate many larger objects. The possibilities are endless, such as crates, mechanical
devices, even chains, vehicles, or (with the addition of springs) soft deformable blobs.

8.2.1 Rope Bridges and Cables

Sagging bridges, cables, and tilting platforms are all stalwarts of the platform game
genre, as well as having applications in other genres.

We can set up a bridge using pairs of particles suspended by cables. Figure 8.1
shows an arrangement that has this effect. Each pair of particles along the bridge is
linked with a rod constraint to keep them connected with their neighbors. Pairs of
particles are likewise linked together to give the bridge some strength. The cables are
cable constraints descending from a fixed point in space.

In the source code accompanying this book, the bridge demo shows this setup in
operation. You can move an object (representing a character) over the bridge. The col-
lision detector applies contacts to the nearest particles to the objects. Note that the
bridge stretches and conforms to the presence of the heavy object. In the demo, the
constraints are shown as lines in the simulation.

The collision detector needs some explanation. Because we have only particles in
our simulation, but we want to give the impression of a bridge, it is not the collision
between particles that interests us, but the collision between the character and the
planks of the bridge. We will return later in the book to a more robust way of doing
this. For the purposes of this chapter, I have created a custom collision detector. The
detector treats the character as a sphere, and checks whether it intersects with any of

FIGURE 8.1 Screenshot of the bridge demo.

152 Chapter 8 The Mass Aggregate Physics Engine

FIGURE 8.2 Screenshot of the platform demo.

the planks. A plank is a line segment between one pair of particles. If the object does
intersect, then a contact is generated between the character object and the nearest of
the plank particles. The contact normal is set based on the position of the object and
the line of the plank.

Tilting platforms can use the same idea. Figure 8.2 shows a suitable structure. The
accompanying platform demo shows this in operation: the platform will naturally
tilt in one direction. A weight can be added to the opposite end, causing it to tilt back.
The particles that make up the pivot of the platform have been set with infinite mass,
to prevent them from moving. If the platform was intended to be mobile, they could
be set with a mass similar to the other particles.

The simulation setup is similar to the bridge demo. You can download the full
source code for both on the website.

8.2.2 Friction

One key limitation of this approach is the lack of friction in our contact model. It
was a deliberate choice to leave out friction at this stage: we’ll implement it as part of
the engine in Part V. If you create mass aggregates, they will appear to slide over the
ground as if skating on ice. Try replacing the infinite masses of the platform demo
and see the platform slide about.

If you are intending to only implement a mass aggregate physics system, then it is
worth skipping forward to Chapter 15. The discussion of friction there can be easily
adapted for particle contacts. In fact, the mathematics is a little simpler: we can ignore
all the rotational components of the contact.

For anything but the simplest assemblies of particle masses, it may be worth
implementing the full physics engine in any case. You can create any object with a
mass aggregate system, but as the number of constraints increases, so does the burden
on the collision response system and the tendency for stiff constraints to flex slightly
as groups of hard constraints compete to be resolved. A full rigid-body solution is the

8.3 Summary 153

most practical for general physics simulation. It is time to bite the bullet and move
from particles to complete, rotating, extended objects.

8.2.3 Blob Games

Over the last 5 years, mass aggregates have seen some use in games with “blobs” as cen-
tral characters. The independent Gish, and the hit PSP game Loco Roco use 2D char-
acters made up of a set of particles that move in ways we can replicate using our mass
aggregate engine. I strongly suspect (but don’t know) that a more complete physics
engine is used in both games. But the characters themselves only require the features
we have built so far.

Each character is made up of a series of particles. Only a handful are needed,
though in Loco Roco, the number changes throughout the game. The particles are
connected using soft springs, so they can move a reasonable distance apart. To avoid
moving too far apart, the springs have a limit of elasticity, beyond which they act like
cables. It is possible to also detect this situation and break the connection, allowing
part of the character to fall away for future recapturing.

The difficult part of this setup is to render the characters nicely. The simplest
approach is to draw a circle or sphere at each particle, making sure that they don’t
separate far enough to leave a gap. This gives the right general impression, but isn’t
entirely convincing. A more complete approach would have to generate new geome-
try for the character based on where its particles are lying. This could be a meta-ball
type of algorithm (as seen in many 3D design packages) or more likely a custom piece
of geometry-generating code.

The blob demo in the accompanying source code provides a simple implementa-
tion of this kind of character, using only the mass aggregate engine.

8.3 Summary

While slightly cumbersome, a mass aggregate physics engine is capable of simulat-
ing some interesting and complex effects. Sets of relatively simple objects joined by a
mixture of hard and elastic constraints are particularly suited to this approach.

The first examples we saw, rope bridges, have been simulated with a mass aggre-
gate approach for many years. The second example showed how to build large objects
out of a set of particles. While this can work successfully, it is prone to many problems.
Objects made up of lots of particles and lots of hard constraints can be slightly unsta-
ble; they can appear to flex and bend when simulated, and in the worst case there can
be noticeable vibration in the particles as their constraints pull them in different ways.

There is a better way to simulate a single large object. Rather than build it out of
particles, we can treat it as a whole. To do this, we’ll need to change our physics engine
dramatically. As well as simulating the position, velocity, and acceleration of an object,
we’ll need to take into account how it rotates as it moves. This will introduce a large

154 Chapter 8 The Mass Aggregate Physics Engine

amount of complexity into our physics engine, and will take us the rest of the book
to implement properly. Chapter 9 takes the first step, introducing the mathematics of
rotation.

8.4 Projects

Mini-Project 8.1
Remove the infinite masses from the anchor points in the platform demo and see
how the platform responds.

Mini-Project 8.2
Create a cube mass aggregate shape (using either of the demos in this chapter). How
many rods do you need for it to keep a reasonably square shape?

Mini-Project 8.3
(a) Create a mass aggregate wheel, where the center of the wheel is fixed with infi-

nite mass. The center should radiate spokes (made of rods) to masses on the
circumference of the wheel. These masses should be joined by further rods to
make the outer edge of the wheel.

(b) Add a force generator to the masses at the circumference of the wheel to make
the wheel turn.

(c) Add the force generator to just a few of the masses on the circumference. Does
this set of unbalanced forces cause the wheel to deform as it turns?

Project 8.1
Create a game in which the player controls a bouncing ball. The player can make
the ball bounce left, right, or higher (add these movements using a custom force
generator that responds to the player’s key presses). Create a very simple level using
mass aggregate objects such as a rope bridge or tilting platform. See the bridge and
platform demos for examples of how to detect collisions between a spherical ball and
these objects.

Project 8.2
Create a trebuchet game, with the structure of the trebuchet implemented as a mass
aggregate system. There should be a base with infinite mass and a swinging arm, one
end of which has a heavy counterweight. A particle is attached to the other end of
the arm, and is released when it reaches a particular point of the swing. By chang-
ing the length of the arm, the weights of both the counterweight and the projectile,
and the angle at which the projectile is released, the player can alter the projectile’s
trajectory.

Part III

Rigid-Body Physics

This page intentionally left blank

9
The Mathematics

of Rotations

hus far we have covered a lot of ground on our way to building the first two
Tphysics engines. We have built a sophisticated system capable of simulating par-
ticles, either individually or connected into aggregates. To arrive at our goal of build-
ing a complete physics engine, we are missing two things:

� A robust, general-purpose collision detection system (currently we’re using
quite an ad hoc system of hard constraints and special case code).

� The ability of objects to rotate as well as move around linearly.

Collision detection is often a self-contained problem solved by a piece of code
more or less independent of the physics engine. It will be the subject of Part IV of the
book.

The second impacts the code we’ve already written: it is the difference between
a complete rigid-body physics system and the mass aggregate systems we’ve seen so
far. To add rotations, we’ll need to go backward in the capability of our engine. We’ll
need to remove a good deal of functionality and rebuild it based on full rotating rigid
bodies. Such treatments comprise this part of the book and Part V, most of the rest
of the book.

This chapter focuses on the properties of rotating bodies, and considers the math-
ematical structures needed to represent and manipulate them. As in Chapter 2, we’ll
focus on understanding and implementing the mathematics here before building it
into our physics engine in Chapter 10.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00009-7 157

158 Chapter 9 The Mathematics of Rotations

9.1 Rotating Objects in 2D

Before we look at rotations in three dimensions, it is worth understanding them in
two. I will not implement any code from this section, but thinking about the 2D case
is a good first step toward understanding three dimensions.

In two dimensions, we can represent any object’s configuration in space by its 2D
position and an angle that shows how it is oriented. Just as the position is specified
relative to some fixed origin point, the angle is also given relative to a predetermined
direction. Figure 9.1 illustrates this.

If the object is rotating, its orientation will change over time. Just as velocity is the
first derivative of position (see Chapter 2), angular velocity is the first derivative of
orientation with respect to time.

I will use the word “orientation” throughout this book to refer to the direction
in which an object is facing. The word “rotation” is sometimes used for the same
thing, but it can also mean the process of rotating, or the amount of rotation that has
occurred.

To be specific, I’ll try to only use “rotation” to mean a change in orientation. If
something is rotated, it is natural to mean that its orientation has changed. So to
rephrase the previous section, we could say that each orientation can be seen as a
rotation from some predetermined reference orientation.

If an object is spinning, I’ll continue to use the term “angular velocity” to mean
the rate of change of orientation.

9.1.1 The Mathematics of Angles

If we do any mathematics with orientations, we need to be careful, as many different
orientation values can represent the same orientation. If we measure orientation in
radians (there are 2π radians in the 360◦ of a circle), then the orientation of 2π is the
same as 0. Developers normally set a fixed range of orientation values, say (−π,π]
(the square bracket indicates that π is included in the range, and the round bracket
that −π is not). If an orientation falls outside this range, it is brought back into the
range. The mathematical routines that deal with this kind of orientation scalar can
look messy, with lots of adjustments and checks.

Orientation � 0 Orientation � 100 Orientation � �100

FIGURE 9.1 Angle that an object is facing.

9.1 Rotating Objects in 2D 159

An alternative approach is to use vectors to represent orientation. We take a two-
element vector representing the direction in which the object is pointing. The vector
is related to the scalar value according to the equation

θ =
[

cos θ

sinθ

]
[9.1]

where θ is the angular representation of orientation, and θ is the vector represen-
tation. I have assumed that zero orientation would see the object facing along the
positive X axis, and that orientation increases in the counterclockwise direction. This
is simply a matter of convention.

The vector form of orientation makes many (but not all) mathematical operations
easier to perform, with less special case code and bounds checking. But in moving to
a 2D representation, we have doubled the number of values representing our orien-
tation. We have only one degree of freedom when deciding which direction an object
should face, but the representation of a vector has two degrees of freedom. A degree of
freedom is some quantity that we could change independent of others. A 3D position
has three degrees of freedom, for example, because we can move it in any of three
directions without altering its position in the other two. Calculating the number of
degrees of freedom will be an important tool for understanding rotations in 3D.

Having this extra degree of freedom means that we could end up with a vector that
doesn’t represent an orientation. In fact, most vectors will not match Equation 9.1.
In order to guarantee that our vector represents an orientation, we need to remove
some of its freedom. We do this by forcing the vector to have a magnitude of 1. Any
vector with a magnitude of 1 will match Equation 9.1, and we’ll be able to find its
corresponding angle.

There’s a geometric way of looking at this constraint. If we draw a point at the end
of all possible vectors with a magnitude of 1, we get a circle, as shown in Figure 9.2. We
could say that a vector orientation correctly represents an orientation if it lies on this
circle. If we find a vector that is supposed to represent an orientation but is slightly
off (because of numerical errors in a calculation), we can fix it by bringing it onto the
circle. Mathematically we do this by forcing its magnitude to be 1 by normalizing the
vector.

If we build a 2D physics engine using vectors to represent orientations, we’d need
to occasionally make sure that the orientations still lie on the circle by normalizing
them.

Let’s summarize these steps (not surprisingly we’ll see them again later): we
started with problems of bounds checking, which led us to use a representation with
one more degree of freedom, which needed an extra constraint, which in turn led us
to add in an extra step to enforce the constraint.

9.1.2 Angular Speed

When we look at the angular speed of an object (sometimes called its rotation), we
don’t have any of the problems we saw for orientation. An angular speed of 4π radians

160 Chapter 9 The Mathematics of Rotations

Circle of
radius 1

FIGURE 9.2 The circle of orientation vectors.

per second is different from 2π radians per second. Every angular speed, expressed
as a single scalar value, is unique. So, the mathematics for angular speed is sim-
ple; we don’t need bound checking and special case code, which in turn means that
we don’t need to use a vector representation. Instead, we can stick with our scalar
value.

9.1.3 The Origin and the Center of Mass

Before we leave two dimensions, it is worth considering what our position and orien-
tation represent. When we were dealing with particles, the position represented the
location of the particle. Particles by definition exist only at a single point in space,
even though in this book we’ve stretched the definition slightly and treated them like
small spheres.

The Origin of an Object

If we have a larger object, what does the position represent? The object is at many
locations at the same time, as it covers an extended area.

The position that we store must represent some pre-agreed location for the object.
This position is sometimes called the origin of the object. In a game we might choose
the root of the spine of a character, or the center of the chassis of a car. The position
doesn’t need to be inside the object at all. Many developers represent the position of
a character as a location between their heels resting on the ground.

9.1 Rotating Objects in 2D 161

Center of car

Center of headlight at
1.5

�0.75

FIGURE 9.3 The relative position of a car component.

As long as the location doesn’t move around relative to the object, we can always
determine where every bit of the object will be from just its position and orientation.
Locations on the object are given relative to the origin of the object. If the origin of a
car is in the center of its chassis, as shown in Figure 9.3, then its right headlight might
be at a position of [

1.5

−0.75

]
relative to the origin. If the car is moved so that its origin is at[

4

3.85

]
then its headlight will be at [

1.5

−0.75

]
+

[
4

3.85

]
=

[
5.5

3.1

]
This movement is called translation—we are translating the car from one position to
another.

Rotations

The same thing occurs if the object is facing in a different direction. In Figure 9.4, the
car’s position and orientation have been altered.

162 Chapter 9 The Mathematics of Rotations

Origin

Center of car

Center of headlight

FIGURE 9.4 The car is rotated.

So how do we calculate the location of the headlight now? First, we need to turn
the headlight around to represent the direction the car is facing.

We do this by using a third version of our orientation value. This time the ori-
entation is expressed in matrix form. If you are unsure about matrices, I’ll return to
their mathematics when we come to implementing matrix classes for 3D below. You
can skip the mathematics here if you do not need a refresher.

The matrix form of orientation looks like this:

� =
[

cos θ −sin θ

sin θ cos θ

]
where θ is the orientation angle, as before. This matrix is usually called the rotation
matrix : it can be used to rotate a vector by some angle. We can work out the new
position of the headlight by multiplying the relative position of the headlight by the
rotation matrix

q′ =
[

cos θ −sin θ

sinθ cos θ

]
qb

where qb is the relative location of the headlight. In our case, where θ = 3π/8, we
obtain the following:

q′ =
[

0.38 −0.92

0.92 0.38

][
1.5

−0.75

]
=

[
0.57 + 0.69

1.39 − 0.29

]
=

[
1.27

1.10

]
where all values are given to two decimal places.

9.1 Rotating Objects in 2D 163

After applying the orientation in this way, we can then apply the change in
position as before. The total process looks like this:

q = �qb + p [9.2]

where p is the position of the object. This equation works in both 2D and 3D, although
the definition of � is different, as we’ll see later in the chapter.

For our car example, we get:

q =
[

0.38 −0.92

0.92 0.38

][
1.5

−0.75

]
+

[
4

3.85

]
=

[
1.27

1.10

]
+

[
4

3.85

]
=

[
5.27

4.95

]
This calculation is called a transformation. We’re calculating the location of part of
an object based on the position and orientation of the origin of the object it belongs
to and the relative position of the component. Transformations can be thought of
as converting between different sets of coordinates. In this case, we’re transforming
from object space (the relative position of the component, also called local space or
sometimes body space) to world space (the final coordinate of the component). I’ll
return to describing what I mean by world space and object space in more detail in
Section 9.4.5.

The Composition of Rotations and Translations

One vital result to note is that any sequence of translations and rotations can be rep-
resented with a single position and orientation. In other words, no matter how many
times I move and turn the car, we can always give a single set of values for its current
position and orientation.

This is equivalent to saying that any combination of rotations and translations is
equivalent to some single rotation followed by some single translation.

Rigid Bodies

The fact that all components of an object are fixed relative to its origin is the reason
why we talk about rigid bodies when it comes to physics engines. If our car is an
infant’s toy made of squashable rubber, then knowing the position and orientation
isn’t enough to tell us where the headlight is: the headlight might have been stretched
into a very different position.

Some physics engines can deal with simple soft bodies, but usually they work by
assuming that the body is rigid, and then applying some after-effects to make it look
soft. Or else they use a series of rigid bodies or particles joined by springs. In our
engine, as well as the majority of game physics engines, we will only support rigid
bodies.

Theoretically, we could choose any point on the object to be its origin. For objects
that aren’t being physically simulated, this is often the approach developers take, that
is, to choose a point that is convenient for the artist or AI programmer to work

164 Chapter 9 The Mathematics of Rotations

with. It is possible to create physics code that works with an arbitrary origin, but
the code rapidly becomes very complicated. There is one position on every object
where the origin can be set that dramatically simplifies the mathematics: the center of
mass.

Center of Mass

The center of mass (often called the “center of gravity”) is the balance point of an
object. If you divide the object in two by cutting any straight line through this point,
you will end up with two objects that have exactly the same weight. If the object is a
two-dimensional shape, you can balance it on your finger by placing your finger at
the center of mass.1

If you think of an object as being made up of millions of tiny particles (atoms, for
example), you can think of the center of mass as being the average position of all these
little particles, where each particle contributes to the average depending on its mass.
In fact, this is how we can calculate the center of mass. We split the object into tiny
particles and take the average position of all of them, as in

pcofm = 1

m

∑
n

mi pi

where pcofm is the position of the center of mass, m is the total mass of the object, and
mi is the mass and pi of particle i.

The center of mass of a sphere of uniform density will be located at the center
point of the sphere. Similarly, with a cuboid, the center of mass will be at its geometric
center. The center of mass isn’t always contained within the object. A donut has its
center of mass in the hole, for example. Appendix A gives a breakdown of a range of
different geometries and where their center of mass is located.

The center of mass is important because it behaves in a very useful way. If we watch
the center of mass of a rigid body, it will always behave like a particle. In other words,
we can use exactly the same formulas we have used so far in this book to perform
the force calculations and update the position and velocity for the center of mass. By
selecting the center of mass as our origin position, we can completely separate the
calculations for the linear motion of the object (which is the same as for particles)
and its angular motion (for which we’ll need extra mathematics).

Any physical behavior of the object can be decomposed into the linear motion of
the center of mass, and angular motion around the same point. This is a profound
and crucial result, but one that takes some time to prove: if you want the background,
any good undergraduate textbook on mechanics will give details.

If we choose any other point as the origin, we can no longer separate the two kinds
of motion; we’d need to take into account how the object was rotating in order to work

1. This isn’t always possible. As we’ll see, an object’s center of mass may lie outside the bounds of the
object. It is always the case that cutting an object through its center of mass gives you two halves of equal
mass, however.

9.2 Orientation in 3D 165

out where the origin is. Obviously this would make all our calculations considerably
more complicated.

Some authors and instructors work through code either way (although typically
only for a few results; when the mathematics gets really hard they give up). Personally,
I think it is a very bad idea to even consider having your origin anywhere else but at
the center of gravity. I’ll assume this will always be the case for the rest of the book; if
you want your origin somewhere else, you’re on your own!

9.2 Orientation in 3D

In 2D we started out with a single angle for orientation. Problems with keeping this
value in bounds led us to look at alternative representations. In many 2D games, a
vector representation is useful, but the mathematics for angles alone isn’t so difficult
that you couldn’t stick with the angle and adjust the surrounding code to cope.

Not surprisingly, there are similar problems in 3D. In 3D, however, the obvious
representation is so fundamentally flawed that it is almost impossible to imagine pro-
viding the right workarounds to get it running. We will be forced to use an alternative
representation. The representation we choose will, unfortunately, be a rather uncom-
mon bit of mathematics, not something you were taught in high school.

I don’t want to get bogged down in representations that don’t work, but it is worth
taking a brief look at the problems before we look at a range of solutions.

9.2.1 Euler Angles

In 3D an object has three degrees of freedom for rotation. By analogy, with the move-
ment of aircraft we can call these yaw, pitch, and roll. Any rotation of the aircraft can
be made up of a combination of these three maneuvers as illustrated in Figure 9.5.

For an aircraft, these rotations pivot about the three axes: pitch is a rotation about
the X axis, yaw is about the Y axis, and roll is about the Z axis (assuming the reference
orientation of an aircraft is looking down the Z axis, with the Y axis up).

Recall that a position is represented as a vector, where each component repre-
sents the distance from the origin in one direction. We could use a vector to represent
rotation, where each component represents the amount of rotation about the corre-
sponding axis. We have a similar situation to our 2D rotation, but here rather than a
single angle, we need three, or one for each axis. These three angles are called Euler
angles.

This is the most obvious representation of orientation. It has been used in many
graphics applications. Several of the leading graphics modeling packages use Euler
angles internally, and those that don’t still represent orientations to the user as Euler
angles.

Unfortunately, Euler angles are almost useless for our needs. We can see this by
looking at some of the implications of working with them. You can follow this through

166 Chapter 9 The Mathematics of Rotations

RollYaw

Pitch

FIGURE 9.5 Aircraft rotation axes.

by making a set of axes with your hand (as described in Section 2.1.1), remembering
that your imaginary object is facing in the same direction as your palm (along the Z
axis) and your index pointer should be pointing up (i.e., the Y axis is vertical).

Imagine we first perform a pitch, by 30 degrees or so, keeping your thumb pointed
in the same direction. The object now has its nose up in the air. Now perform a yaw
by about the same amount, keeping your first finger pointed in the same direction.
Note that the yaw axis (your first finger) is no longer pointing up: when we pitched
the object the yaw axis also moved.

Remember where the object is pointing. Now start again, but perform the yaw first
and then the pitch. Note now that the object will be in a slightly different position (if
it doesn’t seem to be different, then try it again with bigger rotations, until you can
see the difference—the bigger the rotation, the bigger the difference). What does this
mean? If we have a rotation vector like ⎡⎢⎣0.3

0.4

0.1

⎤⎥⎦
in which order do we perform the rotations? The result may be different for each
order. What is more, because the order is crucial, we can’t simply use regular vector
mathematics to combine rotations. In particular,

r1 · r2 = r2 · r1

where r1 and r2 are two vectors, but the rotations themselves shouldn’t behave like
this (as we saw with the hand example). For rotations r1 and r2,

r1 · r2 �= r2 · r1

In case you think that the problem is caused by moving the rotation axes around
(i.e., keeping them welded to the object rather than fixed in the world), try it the other

9.2 Orientation in 3D 167

way. Not only does the same problem still occur, but now we have another issue—
gimbal lock.

Gimbal lock occurs when we rotate an object so that what started off as one axis
now aligns with another. For example, assume we’re applying the rotations in the
order X, Y, and then Z. If we yaw around by 90 degrees (i.e., no X rotation, 90-degree
Y rotation), the front of the object is now pointing in the negative X direction. Say we
wanted to have the object roll slightly now (roll from its own point of view), but we
can’t do that. The axis we need (the local Z axis) is now pointing in the X direction,
and we’ve already passed the point of applying X rotations.

So maybe we should have applied a little bit of X rotation first before rotating in
the Y direction. Try it: you can’t do it. For this particular problem, we could perform
the rotations in a different order, such as ZYX. This would solve the problem for the
example above, but there would be new orientations that this ordering couldn’t repre-
sent. Once rotations of around 90 degrees come into play, we can’t achieve all desired
orientations with a combination of Euler angles. This is called gimbal lock.

There are ways to mitigate the problem by using combinations of axes, some of
which move with the object and some of which are fixed in world space. Alterna-
tively, we can repeat rotations around some axes. There are many different schemes,
and some of them are more useful than others. All of them are characterized by
very arbitrary mathematics, horrendous boundary conditions, and a tendency to find
difficult situations that cause the system to crash long after you think it has been
debugged.

Gimbal lock is a significant problem in real-world engineering as well. In order to
calculate the orientation of an object (a spacecraft, for example), nested gyroscopes
are used to keep track of the total amount of rotation the craft has experienced. These
gyros suffer the same kind of ordering problems we’ve seen above, including gimbal
lock. In NASA’s Apollo moon program, to avoid the craft reaching gimbal lock and
finding it impossible to represent the orientation of the spacecraft, restrictions were
placed on the way that astronauts could control it. If the craft got too near gimbal
lock, a warning would sound. There was no physical reason why the craft couldn’t
orient in that way; it was purely a feature of the ability to measure and do calculations
with the orientation of the craft.

Fortunately, there are much better ways of dealing with orientation. They may
not be so intuitive to visualize, and they may be impossible to build a gyroscope to
measure, but their mathematics is a lot more reliable.

9.2.2 Axis-Angle

Any rotation or combination of rotations can be represented as a single rotation about
an axis. In other words, no matter what combination of rotations takes place, we can
always specify the orientation of an object as an axis and an angle.

This was obvious in the 2D case, but probably isn’t so obvious now that we’re in
3D. You can easily verify it for yourself with a small ball. Regardless of how you orient

168 Chapter 9 The Mathematics of Rotations

the ball, you can get it into any other orientation by one rotation about a suitably
chosen axis.

We could use this as a representation for orientation (it is called, not surpris-
ingly, axis-angle representation). It is roughly equivalent to the angle representation
we used for 2D, and suffers some of the same problems. In particular, we would need
to perform bounds checking to make sure that the angle is always in the correct range
(−π,π].

Having a vector (for the axis) and an angle gives us four degrees of freedom. The
rotation is only three degrees of freedom. The extra degree of freedom is removed
by requiring that the vector representing the axis is normalized. It represents only a
direction.

Another possible representation using axis and angle is the scaled axis represen-
tation. If the axis is normalized, then we can combine the axis and angle into a single
vector. The direction of the vector gives the axis, and the magnitude of the vector
gives the angle. The angle is therefore in the range (0, π]. We don’t need to repre-
sent negative angles, because they are equivalent to a positive rotation in the opposite
direction.

The scaled axis representation is the most compact representation we have. It
has three values for three degrees of freedom, and it can represent any orientation.
Although it will be useful to us later in the chapter when we come to look at angular
velocity, it is almost never used to represent orientations.

This is for the same reasons we avoided a single-angle representation for 2D rota-
tions. The mathematics involved in manipulating a scaled axis representation of ori-
entation isn’t simple. Unlike for the 2D case, we have more than just the bounds to
worry about: it isn’t clear how to combine rotations easily, because the axis as well as
the angle needs to change.

So far, we’ve drawn a blank on compact representations that are practical to use.
Up until a few years ago, the most common way to represent orientations went to the
opposite extreme. Rather than use three values, a three-by-three matrix was used.

9.2.3 Rotation Matrices

If we are interested in the mathematics of combining rotations, then we could bor-
row from 3D graphics and represent orientations with a rotation matrix. In games,
we regularly use matrices to represent rotations. In fact, chances are that whatever
representation we use, we’ll have to turn it into a rotation matrix and send it to the
rendering engine in order to draw the object. Why not save the effort and use the
rotation matrix from the start?

Using rotation matrices is a good solution, as we can represent any rotation with a
rotation matrix, and the mathematics of combining these rotations is relatively simple
and clean to implement.

9.2 Orientation in 3D 169

The elements of the matrix follow:

� =
⎡⎢⎣ tx2 + c txy + sz txz − sy

txy − sz ty2 + c tyz + sx

txz + sy tyz − sx tz2 + x

⎤⎥⎦ [9.3]

where ⎡⎢⎣x

y

z

⎤⎥⎦
is the axis of rotation, c = cos θ , s = sinθ , t = 1 − cos θ , and θ is the angle.

Because the elements are related to the sine and cosine of the angle, rather than
the angles themselves, we don’t have to do any bounds checking. This is exactly as we
saw in the 2D case. Combining two rotations is simply a matter of multiplying the
two matrices together.

The downside with using rotation matrices is their numerous degrees of freedom.
We are representing a three-degrees-of-freedom system with nine numbers. Floating-
point arithmetic in the computer isn’t totally accurate. So, we need to make sure that
the matrix represents a rotation (as opposed to some other kind of transformation
such as a skew or even mirror image), even after we’ve manipulated it in some way.
As for the 2D case, we need to adjust its values periodically. With so many degrees of
freedom, this adjustment process needs to take place more often than we’d like, and
it isn’t a trivial process like normalizing a vector is.

It is at this point that the rotation matrix becomes less practical than we’d like. It
is workable (unlike the previous possible representations), but it isn’t optimal.

Ideally, we’d like a representation that has the advantages of matrices: straightfor-
ward combination of rotations and no bounds checking, with fewer degrees of free-
dom. The solution, now almost ubiquitous, is to use a mathematical structure called
a quaternion.

9.2.4 Quaternions

The best and most widely used representation for orientations is the quaternion.
A quaternion represents an orientation with four values related to the axis and angle
in the following way: ⎡⎢⎢⎢⎣

cos θ
2

x sin θ
2

y sin θ
2

z sin θ
2

⎤⎥⎥⎥⎦ [9.4]

170 Chapter 9 The Mathematics of Rotations

where ⎡⎢⎣x

y

z

⎤⎥⎦
is the axis, and θ is the angle, as before.

Quaternions are not merely a four-element vector, however; their mathematics are
more exotic. If you are allergic to mathematics, then feel free to skip this explanation
and head for the implementation in the next section.

You may remember in high school mathematics learning about the square root of
−1, the so-called imaginary number (in contrast to the real numbers), often written
as i or j. So, i2 = −1. A complex number is then made up of both a real number
and some multiple of i, in the form a + bi. If your mathematical memory is very
good, you might recall drawing complex numbers as coordinates in 2D (the Argand
diagram), and deriving lots of their properties geometrically. Complex numbers have
a very strong connection with geometry, and in particular rotations in 2D.

A quaternion is a number of the form w + xi + yj + zk , where i, j, and k are all
different imaginary numbers. Each one squares to −1:

i2 = j2 = k2 = −1

and when all are multiplied together, we also get −1:

ijk = −1

Together, these two equations provide the fundamental formula of quaternion alge-
bra.2 The second part of this result means that any two of the three imaginary num-
bers, when multiplied together, give us the third:

ijk = k2 =⇒ ij = k

But beware, quaternion mathematics isn’t commutative (in other words ab �= ba for
at least some values of a,b), and in particular,

ij = −ji = k

jk = −kj = i

ki = −ik = j

by definition.

2. The formula is reputed to have been scratched in the stone of the Brougham Bridge near Dublin by the
discoverer of quaternions, William Rowan Hamilton (the site is now marked by a plaque and the original
carving, if it existed, cannot be seen).

9.2 Orientation in 3D 171

With these laws we can combine quaternions by multiplication:

(w1 + x1i + y1j + z1k) × (w2 + x2i + y2j + z2k) =
(w1w2 − x1x2 − y1y2 − z1z2) +
(w1x2 + x1w2 + y1z2 − z1y2)i +
(w1y2 − x1z2 + y1w2 + z1x2)j +
(w1z2 + x1y2 − y1x2 + z1w2)k

If the original two quaternions represent rotations according to Equation 9.4, then the
resulting quaternion is equivalent to the two rotations combined. I will write quater-
nions using the notation θˆ . Rather than writing them out with their three imaginary

and one real terms, I will write them as a four-element vector format to show their
four components:

θˆ = w + xi + yj + zk =

⎡⎢⎢⎢⎣
w

x

y

z

⎤⎥⎥⎥⎦
Quaternions have four degrees of freedom to represent the three degrees of free-

dom of rotation. Clearly we have an extra degree of freedom that we need to constrain
away.

In fact, for all rotations, Equation 9.4 implies that the magnitude of the quaternion
is exactly 1. We calculate the magnitude of the quaternion in exactly the same way as
we did for a three-element vector, by using a four-component version of Pythagoras’s
theorem: √

w2 + x2 + y2 + z2

To ensure that a quaternion always represents a rotation, we therefore need to make
sure it has unit length, or √

w2 + x2 + y2 + z2 = 1

We do this using a procedure identical to normalizing a vector, but operating on
all four components of the quaternion. Just like for 2D rotation, we have fixed the
problem of messy bound checking by adding an extra value to our representation,
and then adding a constraint to remove the extra degree of freedom and to ensure
that we only get rotations.

In the same way that normalizing our 2D vector representation gave us a point
on a circle, normalizing a quaternion can be thought of as giving a point on the sur-
face of a four-dimensional sphere. In fact, lots of the mathematics of quaternions can
be derived based on the surface geometry of a four-dimensional sphere. While some
developers like to think in these terms (or at least claim they do), personally I find
four-dimensional geometry even more difficult to visualize than 3D rotations, so I
tend to stick with the algebraic formulation I’ve given above.

172 Chapter 9 The Mathematics of Rotations

9.3 Angular Velocity and Acceleration

Representing the current orientation of rigid bodies is only one part of the problem.
We also need to be able to keep track of how fast and in what direction the bodies are
rotating.

Recall that in 2D we could use a single value for the angular velocity without the
need to perform bound checking. The same thing is true of angular velocity in 3D. We
abandoned the scaled axis representation for orientations because of boundary prob-
lems. Once again, when we are concerned with the speed that an object is rotating,
we have no bounds: the object can be rotating as fast as it likes.

Our solution is to stick with the scaled axis representation for angular velocity.
It has exactly the right number of degrees of freedom, and without the problems of
keeping its angle in bounds, the mathematics is simple enough for efficient imple-
mentation.

The angular velocity is a three-element vector that can be decomposed into an
axis and rate of angular change,

θ̇ = r â

where â is the axis around which the object is turning, and r is the rate at which it is
spinning, which (by convention) is measured in radians per second.

The mathematics of vectors matches well with the mathematics of angular veloc-
ity. In particular, if we have an object spinning at a certain rate θ̇ , and we add to its
rotation a spin at some rate in a new direction ω, then the new total angular velocity
will be given by

θ̇
′ = θ̇ + ω

In other words, we can add two angular velocities together using vector arithmetic
and get a new, and correct, angular velocity.

Combining angular velocities is all very well, but we’ll also need to update the
orientation by angular velocity. For linear updates, we use the following formula:

p′ = p + p̈t

We need some way to do the same for orientation and angular velocity, that is, to
update a quaternion by a vector and a time. The equivalent formula is not much more
complex:

θˆ
′ = θˆ + �t

2
ωˆ θˆ [9.5]

where

ωˆ =

⎡⎢⎢⎢⎣
0

θ̇x

θ̇y

θ̇z

⎤⎥⎥⎥⎦
which is a quaternion constructed from the angular velocity.

9.4 Implementing the Mathematics 173

The angular velocity quaternion, ωˆ , has a zero w component, and the remaining

components taken directly from the three components of the angular velocity vector.
It doesn’t represent an orientation, so it shouldn’t be normalized.

Note in Equation 9.5 that the multiplication (between ωˆ and θˆ) is a quaternion

multiplication, not a vector multiplication.

9.3.1 Velocity of a Point

In Section 9.1.3, we calculated the position of part of an object even when it had been
moved and rotated. To process collisions between objects in Chapter 14 we’ll also need
to be able to calculate the velocity of any point of an object.

The velocity of a point on an object depends on both its linear and angular
velocity:

q̇ = θ̇ × (q − p) + ṗ [9.6]

where q̇ is the velocity of the point, q is the position of the point in world coordinates,
p is the position of the origin of the object, and θ̇ is the angular velocity of the object.

If we want to calculate the velocity of a known point on the object (the mirror on
the side of a car, for example), we can calculate q from Equation 9.2.

9.3.2 Angular Acceleration

Because angular acceleration is simply the first derivative of angular velocity, we can
use the same vector representation in both acceleration and velocity. What is more, the
relationships between them remain the same as for linear velocity and acceleration.
In particular, we can update the angular velocity using the following equation:

θ̇
′ = θ̇ + θ̈ t

where θ̈ is the angular acceleration and θ̇ is the angular velocity, as before.

9.4 Implementing the Mathematics

We’ve covered the theory. Now it’s time to implement functions and data structures
that are capable of performing the right mathematics. In Chapter 2, we created a
Vector3 class that encapsulated vector mathematics; we’ll now do the same thing for
matrices and for quaternions. As part of this process, I’ll introduce the mathematics
of many operations for each type.

If you are working with an existing rendering library, you may already have matrix,
vector, and quaternion classes implemented. There is nothing physics-specific in the
implementations I give here. You should be able to use your own implementations

174 Chapter 9 The Mathematics of Rotations

without alteration. I’ve personally worked with the DirectX utility library implemen-
tations on many projects without having to make any changes to the rest of the physics
code.

9.4.1 The Matrix Classes

A matrix is a rectangular array of scalar values. They don’t have the same obvious
geometric interpretation as vectors did. We will use them in several different contexts,
but in each case they will be used to change (transform) vectors.

Although matrices can be any size with any number of rows and columns, we will
be primarily interested in two kinds: 3 × 3 matrices and 3 × 4 matrices. To implement
matrices we could create a general matrix data structure, capable of supporting any
number of rows and columns. We could implement matrix mathematics in the most
general way, and use the same code for both of our matrix types (and other types
of matrices we might need later). While this would be an acceptable strategy, having
the extra flexibility is difficult to optimize. It would be better to create specific data
structures for the types of matrices we need. This will be our approach.

We will create a data structure called Matrix3 for 3 × 3 matrices, and Matrix4 for
3 × 4 matrices.

The basic data structure for Matrix3 looks like this:

Excerpt from file include/cyclone/core.h

/**
* Holds a 3 x 3 row major matrix representing a transformation in
* 3D space that does not include a translational component. This
* matrix is not padded to produce an aligned structure.
*/

class Matrix3
{
public:

/**
* Holds the tensor matrix data in array form.
*/
real data[9];

};

The Matrix4 data structure looks like this:

Excerpt from file include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements, and it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.

9.4 Implementing the Mathematics 175

*/
class Matrix4
{
public:

/**
* Holds the transform matrix data in array form.
*/

real data[12];
};

If you are used to other engines or math libraries, you may find it odd that I’ve defined
a 3×4 rather than a 4×4 matrix. It is true that most libraries (including most render-
ing libraries) use 4 × 4 matrices. We could use a 4 × 4 matrix in our physics engine,
but we’d need to change our position vectors to four-element vectors and the bot-
tom row of our 4 × 4 matrices would always contain the same values. The reason for
this isn’t obvious, and I’ll return to it in more detail when I describe homogeneous
coordinates in Section 9.4.2.

I hope you’ll agree there is nothing taxing in the implementations so far; we have
only two arrays of numbers.

Just as we did for the Vector3 class in Chapter 2, we can add methods to these
classes to implement their mathematics.

9.4.2 Matrix Multiplication

Since I’ve said that matrices exist mainly to transform vectors, let’s look at this first.
We transform a vector by multiplying it by the matrix

v′ = Mv

which is often called post-multiplication, because the vector occurs after the matrix
in the multiplication.

Matrix multiplication works in the same way whether we are multiplying two
matrices or a matrix and a vector. In fact, we can think of a vector as simply a matrix
with a single column, that is, a 3 × 1 matrix.

It is important to realize that matrix multiplication of all kinds is not commu-
tative; in general, ab �= ba. In particular, to multiply two matrices, the number of
columns in the first matrix needs to be the same as the number of rows in the second.
So if we wanted to do

vM

where M is a 3 × 3 matrix and v is a three-element vector, we would have a mismatch.
The vector has one column, and the matrix has three rows. We cannot perform this
multiplication, as it is undefined. Some game engines do use a pre-multiplication

176 Chapter 9 The Mathematics of Rotations

scheme, but they do so by treating vectors as having one row and three columns, as in[
x y z

]
rather than the column form we have used. With a row vector we can perform
pre-multiplication, but not post-multiplication. Confusingly, I have also seen pre-
multiplication mathematics written with the vector after the matrix (i.e., a matrix
and then a row vector), so it’s worth taking care if you are liaising with existing code.
I will use post-multiplication and column vectors exclusively in this book. If you are
working with an engine that uses pre-multiplication, you will have to adapt the order
in your code accordingly.

The result of matrix multiplication is a new matrix with the same number of rows
as the first matrix in the multiplication, and the same number of columns as the sec-
ond. So if we multiply a 3 × 3 matrix by a 3 × 1 vector, we get a matrix with 3 rows
and 1 column (i.e., another 3 × 1 vector). If we multiply a 3 × 3 matrix by another
3 × 3 matrix, we end up with a 3 × 3 matrix.

If we multiply matrices A and B to give matrix C , each element in C is found by
the formula:

C(i,j) =
∑

k

A(i,k)B(k,j)

where C(i,j) is the entry in matrix C at the i-th row and j-th column, and where k
ranges up to the number of columns in the first matrix (i.e., the number of rows in
the second—this is why they need to be the same).

For a 3 × 3 matrix multiplied by a vector, we get:⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦ =
⎡⎢⎣ax + by + cz

dx + ey + fz

gx + hy + iz

⎤⎥⎦
With this result, we can implement multiplication of a vector by a matrix. I have over-
loaded the * operator for the matrix class to perform the operation.

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

/**
* Transform the given vector by this matrix.
*/
Vector3 operator*(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] + vector.y * data[1] + vector.z * data[2],
vector.x * data[3] + vector.y * data[4] + vector.z * data[5],

9.4 Implementing the Mathematics 177

vector.x * data[6] + vector.y * data[7] + vector.z * data[8]
);

}

/**
* Transform the given vector by this matrix.
*/

Vector3 transform(const Vector3 &vector) const
{

return (*this) * vector;
}

};

Matrices as Transformations

Earlier in the chapter, I talked about using matrices to represent orientations. In fact,
matrices can represent all kinds of transformations: rotations, scaling, sheering, and
any combination of these.

The elements of the matrix control the transformation being performed, and it is
worth getting to know how they do it.

We can think of the matrix ⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
as being made up of three vectors:⎡⎢⎣a

d

g

⎤⎥⎦ ,

⎡⎢⎣b

e

h

⎤⎥⎦ , and

⎡⎢⎣c

f

i

⎤⎥⎦
These three vectors represent where each of the three main axes X, Y, and Z will end
up pointing after the transformation. For example, if we have a vector pointing along
the positive X axis ⎡⎢⎣1

0

0

⎤⎥⎦
it will be transformed into the vector ⎡⎢⎣a

d

g

⎤⎥⎦

178 Chapter 9 The Mathematics of Rotations

which we can verify with the matrix multiplication,⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
⎡⎢⎣1

0

0

⎤⎥⎦ =
⎡⎢⎣a × 1 + b × 0 + c × 0

d × 1 + e × 0 + f × 0

g × 1 + h × 0 + i × 0

⎤⎥⎦ =
⎡⎢⎣a

d

g

⎤⎥⎦
and so on for the other two axes. When I introduced vectors, I mentioned that their
three components could be thought of as a position along three axes. The x compo-
nent is the distance along the X axis and so on. We could write the vector as

v =
⎡⎢⎣x

y

z

⎤⎥⎦ = x

⎡⎢⎣1

0

0

⎤⎥⎦ + y

⎡⎢⎣0

1

0

⎤⎥⎦ + z

⎡⎢⎣0

0

1

⎤⎥⎦
In other words, a vector is made up of some proportion of each basic axis.

If the three axes move under a transformation, then the new location of the vector
will be determined in the same way as before. The axes will have moved but the new
vector will still combine them in the same proportions:

v′ = x

⎡⎢⎣a

d

g

⎤⎥⎦ + y

⎡⎢⎣b

e

h

⎤⎥⎦ + z

⎡⎢⎣c

f

i

⎤⎥⎦ =
⎡⎢⎣ax + by + cz

dx + ey + fz

gx + hy + iz

⎤⎥⎦
Thinking about matrix transformations as a change of axis is an important visualiza-
tion tool.

The set of axes is called a basis: we looked at orthonormal bases in Chapter 2,
where the axes all have a length of 1 and are at right angles to one another. A 3 × 3
matrix will transform a vector from one basis to another. This is sometimes, not sur-
prisingly, called a “change of basis.”

Thinking back to the rotation matrices in Section 9.1.3, we saw how the position
of a headlight on a car could be converted into a position in the game level. This is
a change of basis. We start with the local coordinates of the headlight relative to the
origin of the car, and end up with the world coordinates of the headlight in the game.
We’ve moved from a basis where the Z axis is along the car and the X axis is across its
width, to a basis where the X, Y, and Z axes are defined globally.

In the headlight example, we had two stages: first, we rotated the object (using
a matrix multiplication, a change of basis), and then we translated it (by adding an
offset vector). If we extend our matrices a little, we can perform both steps in one go.
This is the purpose of the 3 × 4 matrix.

Three-by-Four Matrices

If you are thinking ahead you may have noticed that according to the matrix multi-
plication rules, we can’t multiply a 3 × 4 matrix by a 3 × 1 vector. In fact, we want to
end up doing just this, but to understand how, we need to look more closely at what
the 3 × 4 matrix will be used for.

9.4 Implementing the Mathematics 179

In the previous section, we looked at transformation matrices. The transforma-
tions that can be represented as a 3 × 3 matrix all keep the origin at the same place.
To handle general combinations of movement and rotation in our game, we need to
be able to move the origin around: there is no use modeling a car if it is stuck with its
origin at the origin of the game level. We could do this as a two-stage process com-
prising a rotation matrix multiplication and then adding an offset vector. A better
alternative is to extend our matrices and do it in one step.

First, we extend our vector by one element, so we have four elements, where the
last element is always 1: ⎡⎢⎢⎢⎣

x

y

z

1

⎤⎥⎥⎥⎦
The four values in the vector are called “homogeneous” coordinates, and they are
used explicitly in a few graphics packages, but are behind the scenes in almost all 3D
graphics systems. You can think of them as a four-dimensional coordinate if you like,
although thinking in four dimensions probably may not help you visualize what we’re
doing with them much (it sure doesn’t help me).

If we now take a 3 × 4 matrix, ⎡⎢⎣a b c d

e f g h

i j k l

⎤⎥⎦
and multiply it in the normal way by our four-element vector,⎡⎢⎣a b c d

e f g h

i j k l

⎤⎥⎦
⎡⎢⎢⎢⎣

x

y

z

1

⎤⎥⎥⎥⎦ =
⎡⎢⎣ax + by + cz + d

ex + fy + gz + h

ix + jy + kz + l

⎤⎥⎦ [9.7]

we get a combination of two effects. It is as if we had first multiplied by the 3 × 3
matrix, ⎡⎢⎣a b c

e f g

i j k

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦ =
⎡⎢⎣ax + by + cz

ex + fy + gz

ix + jy + kz

⎤⎥⎦
and then added the vector,⎡⎢⎣ax + by + cz

ex + fy + gz

ix + jy + kz

⎤⎥⎦ +
⎡⎢⎣d

h

i

⎤⎥⎦ =
⎡⎢⎣ax + by + cz + d

ex + fy + gz + h

ix + jy + kz + l

⎤⎥⎦

180 Chapter 9 The Mathematics of Rotations

which is exactly the transform-then-move process we had before, but all in one step.
If the first three columns give the directions of the three axes in the new basis, the
fourth column gives us the new position of the origin.

We could also view this as multiplying a 4 × 4 matrix by the 1 × 4 vector:⎡⎢⎢⎢⎣
a b c d

e f g h

i j k l

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x

y

z

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ax + by + cz + d

ex + fy + gz + h

ix + jy + kz + l

1

⎤⎥⎥⎥⎦
In other words, we start and end with a homogeneous coordinate. Because we are not
interested in four-dimensional coordinates, the bottom row of the matrix is always
[0 0 0 1] and the last value in the vector is always 1. We can therefore use just the
version given in Equation 9.7, and make the fourth value in the multiplied vector
(the 1) magically appear as needed. We don’t need to store it in the Vector3 class.

The matrix–vector multiplication gets implemented in the Matrix4 class as
follows:

Excerpt from file include/cyclone/core.h

class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Transform the given vector by this matrix.
*/
Vector3 operator*(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] +
vector.y * data[1] +
vector.z * data[2] + data[3],

vector.x * data[4] +
vector.y * data[5] +
vector.z * data[6] + data[7],

vector.x * data[8] +
vector.y * data[9] +
vector.z * data[10] + data[11]

);
}

/**

9.4 Implementing the Mathematics 181

* Transform the given vector by this matrix.
*/

Vector3 transform(const Vector3 &vector) const
{

return (*this) * vector;
}

};

Multiplying Two Matrices

We can use exactly the same process to multiply two matrices. If we multiply two 3×3
matrices, we get another 3×3 matrix. This can be easily done with the following code:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

/**
* Returns a matrix, which is this one multiplied by the other given
* matrix.
*/

Matrix3 operator*(const Matrix3 &o) const
{

return Matrix3(
data[0]*o.data[0] + data[1]*o.data[3] + data[2]*o.data[6],
data[0]*o.data[1] + data[1]*o.data[4] + data[2]*o.data[7],
data[0]*o.data[2] + data[1]*o.data[5] + data[2]*o.data[8],

data[3]*o.data[0] + data[4]*o.data[3] + data[5]*o.data[6],
data[3]*o.data[1] + data[4]*o.data[4] + data[5]*o.data[7],
data[3]*o.data[2] + data[4]*o.data[5] + data[5]*o.data[8],

data[6]*o.data[0] + data[7]*o.data[3] + data[8]*o.data[6],
data[6]*o.data[1] + data[7]*o.data[4] + data[8]*o.data[7],
data[6]*o.data[2] + data[7]*o.data[5] + data[8]*o.data[8]
);

}

/**
* Multiplies this matrix in place by the other given matrix.
*/

void operator*=(const Matrix3 &o)

182 Chapter 9 The Mathematics of Rotations

{
real t1;
real t2;
real t3;

t1 = data[0]*o.data[0] + data[1]*o.data[3] + data[2]*o.data[6];
t2 = data[0]*o.data[1] + data[1]*o.data[4] + data[2]*o.data[7];
t3 = data[0]*o.data[2] + data[1]*o.data[5] + data[2]*o.data[8];
data[0] = t1;
data[1] = t2;
data[2] = t3;

t1 = data[3]*o.data[0] + data[4]*o.data[3] + data[5]*o.data[6];
t2 = data[3]*o.data[1] + data[4]*o.data[4] + data[5]*o.data[7];
t3 = data[3]*o.data[2] + data[4]*o.data[5] + data[5]*o.data[8];
data[3] = t1;
data[4] = t2;
data[5] = t3;

t1 = data[6]*o.data[0] + data[7]*o.data[3] + data[8]*o.data[6];
t2 = data[6]*o.data[1] + data[7]*o.data[4] + data[8]*o.data[7];
t3 = data[6]*o.data[2] + data[7]*o.data[5] + data[8]*o.data[8];
data[6] = t1;
data[7] = t2;
data[8] = t3;

}
};

Multiplying two matrices together in this way combines their effects. If matrices
A and B are both transformations, then the matrix AB will represent the combined
transformation. Order is crucial for both transformation and matrix multiplication:
the matrix AB is a transformation that would result from first doing B, then doing A.
In other words, the order of the transformations is the opposite of the order of the
matrices in the multiplication. This is a gotcha that catches out even experienced
developers from time to time.

So much for 3 × 3 matrices. How about for 3 × 4 matrices? From the rules of
matrix multiplication, we can’t multiply two 3 × 4 matrices together: the columns
of the first matrix don’t match the rows of the second. To make progress, we need to
return to the full form of our 4×4 matrix. Remember that the matrix we are storing as⎡⎢⎣a b c d

e f g h

i j k l

⎤⎥⎦

9.4 Implementing the Mathematics 183

is shorthand for ⎡⎢⎢⎢⎣
a b c d

e f g h

i j k l

0 0 0 1

⎤⎥⎥⎥⎦
We can certainly multiply two 4 × 4 matrices together. If we multiply two 4 × 4

matrices with [0 0 0 1] as their bottom line, we end up with another matrix whose
bottom line is [0 0 0 1].

So in our code, when we come to multiply together two 3×4 matrices (to combine
their transformations), we magically make the extra values appear, without storing
them, exactly as we did for transforming vectors. The code looks like this:

Excerpt from file include/cyclone/core.h

class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Returns a matrix, which is this one multiplied by the other given
* matrix.
*/

Matrix4 operator*(const Matrix4 &o) const
{

Matrix4 result;
result.data[0] = o.data[0]*data[0] + o.data[4]*data[1] +

o.data[8]*data[2];
result.data[4] = o.data[0]*data[4] + o.data[4]*data[5] +

o.data[8]*data[6];
result.data[8] = o.data[0]*data[8] + o.data[4]*data[9] +

o.data[8]*data[10];

result.data[1] = o.data[1]*data[0] + o.data[5]*data[1] +
o.data[9]*data[2];

result.data[5] = o.data[1]*data[4] + o.data[5]*data[5] +
o.data[9]*data[6];

result.data[9] = o.data[1]*data[8] + o.data[5]*data[9] +
o.data[9]*data[10];

result.data[2] = o.data[2]*data[0] + o.data[6]*data[1] +
o.data[10]*data[2];

result.data[6] = o.data[2]*data[4] + o.data[6]*data[5] +
o.data[10]*data[6];

184 Chapter 9 The Mathematics of Rotations

result.data[10] = o.data[2]*data[8] + o.data[6]*data[9] +
o.data[10]*data[10];

result.data[3] = o.data[3]*data[0] + o.data[7]*data[1] +
o.data[11]*data[2] + data[3];

result.data[7] = o.data[3]*data[4] + o.data[7]*data[5] +
o.data[11]*data[6] + data[7];

result.data[11] = o.data[3]*data[8] + o.data[7]*data[9] +
o.data[11]*data[10] + data[11];

return result;
}

};

Some graphics libraries use a full 16-element matrix for transforms; most of those
(but not all) will also use four-element vectors for position. They allow the program-
mer to work in four dimensions: there are some interesting graphical effects that are
made possible this way, including the perspective transformations needed to model
a camera. If you are relying on the mathematics libraries that these APIs provide,
you will not need to worry about the number of entries in the matrix: chances are
you’ll only be using the first 12 for your physics development, but the other four
won’t harm you. If you are implementing the mathematics classes as I have been,
then you have the choice of whether to use the full 4 × 4 or the optimized 3 × 4
matrix.

We added an extra padding element to our vector class, so that it sits nicely on
machines with 128-bit math processors and 16-byte alignment. We don’t need to do
the same for matrices; since each row of the matrix is 16 bytes long (assuming we’re
using 32-bit, floating-point numbers; running this at double precision will be much
slower in any case), the entire matrix will also be word aligned.

The code will take less memory if you use 3 × 4 matrices, and rely on the last
unstored line of every matrix being [0 0 0 1]. But check whether the machine you
are developing has built-in hardware-level support for matrix transformation; imple-
menting your own routines and ignoring these will give worse performance (and take
more effort) in the long run.

9.4.3 Matrix Inverse and Transpose

A matrix represents a transformation, and we often need to find out how to reverse the
transformation. If we have a matrix that transforms from an object’s local coordinates
to world coordinates, it will be useful to be able to create a matrix that gets us back
again, that is, transforming world coordinates to local coordinates.

9.4 Implementing the Mathematics 185

For example, if we determine that our car has collided with a barrier, our collision
detector might tell us the position of the collision in world coordinates. We’d like to
be able to turn this position into local coordinates to see which bit of the car got hit.

If a matrix transforms vectors from one basis to another, then the inverse of the
matrix can convert them back. If we combine a matrix with its inverse, we get the
identity matrix, a matrix representing a transformation that has no effect. In other
words, if we transform a vector by a matrix, then by its inverse, we get back to where
we started:

M−1M = I

For a 3 × 3 matrix, the identity matrix is

I =
⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦
Inverting large matrices is a challenging computer science problem (in fact, it is

the fundamental problem that the most complex game physics engines try to solve,
as we’ll see in Chapter 20). Techniques involve walking through the matrix and re-
arranging its elements using a range of mathematical manipulations. Fortunately, for
3 × 3 and 4 × 4 matrices, we can write the solutions directly. For a 3 × 3 matrix,

M =
⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
the inverse is

M−1 = 1

det M

⎡⎢⎣ ei − fh ch − bi bf − ce

fg − di ai − cg cd − af

dh − eg bg − ah ae − bd

⎤⎥⎦ [9.8]

where det M is the determinant of the matrix, which for a 3 × 3 matrix is

det M = aei + dhc + gbf − ahf − gec − dbi

Because we take 1 over the determinant in Equation 9.8, the inverse only exists if the
determinant is non-zero.

The reason the inverse has the form it does and the meaning of the determi-
nant are beyond the scope of this book.3 To understand why the equations above

3. A good rule of thumb that I use (which may offend mathematical purists) is to think of the determinant
as the “size” of the matrix, or alternatively, the amount of scaling present in the transformation. In fact,
for 2 × 2 dimensional matrices, the determinant is the area of the parallelogram formed from its column
vectors, and for a 3 × 3 matrix it is the area of the parallelepiped formed from its three columns.

The inverse formula of Equation 9.8 can then be thought of as adjusting the elements, and dividing by
the size of the matrix (deflating back to the original size). Thinking this way can cause problems with more
advanced matrix math, so remember that it’s only a mnemonic.

186 Chapter 9 The Mathematics of Rotations

work, we’d need to cover various bits of matrix mathematics that we otherwise
wouldn’t need. If you are interested in the features and mathematics of matri-
ces, any undergraduate textbook on matrix analysis will have these details. For an
even more exhaustive (if considerably tougher) reference, I recommend [Horn and
Charles, 1990] and [Horn and Charles, 1994], two highly respected references on the
topic.

We can implement our 3 × 3 matrix inverse as follows:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

/**
* Sets the matrix to be the inverse of the given matrix.
*/
void setInverse(const Matrix3 &m)
{

real t1 = m.data[0]*m.data[4];
real t2 = m.data[0]*m.data[5];
real t3 = m.data[1]*m.data[3];
real t4 = m.data[2]*m.data[3];
real t5 = m.data[1]*m.data[6];
real t6 = m.data[2]*m.data[6];

// Calculate the determinant.
real det = (t1*m.data[8] - t2*m.data[7] - t3*m.data[8]+

t4*m.data[7] + t5*m.data[5] - t6*m.data[4]);

// Make sure the determinant is non-zero.
if (det == (real)0.0f) return;
real invd = (real)1.0f/det;

data[0] = (m.data[4]*m.data[8]-m.data[5]*m.data[7])*invd;
data[1] = -(m.data[1]*m.data[8]-m.data[2]*m.data[7])*invd;
data[2] = (m.data[1]*m.data[5]-m.data[2]*m.data[4])*invd;
data[3] = -(m.data[3]*m.data[8]-m.data[5]*m.data[6])*invd;
data[4] = (m.data[0]*m.data[8]-t6)*invd;
data[5] = -(t2-t4)*invd;
data[6] = (m.data[3]*m.data[7]-m.data[4]*m.data[6])*invd;
data[7] = -(m.data[0]*m.data[7]-t5)*invd;
data[8] = (t1-t3)*invd;

}

9.4 Implementing the Mathematics 187

/** Returns a new matrix containing the inverse of this matrix. */
Matrix3 inverse() const
{

Matrix3 result;
result.setInverse(*this);
return result;

}

/**
* Inverts the matrix.
*/

void invert()
{

setInverse(*this);
}

};

Only square matrices have an inverse. For a 3×4 matrix, we need to again remem-
ber that our matrix is shorthand for a 4 × 4 matrix. The 4 × 4 matrix has an inverse
that can be written in much the same way as the 3 × 3 matrix. And the resulting
matrix will have a bottom row of [0 0 0 1], so we can represent the inverse as a 3 × 4
matrix.

Unfortunately, the algebra is much more complex than the 3×3 case, and it would
run to about a page of equations. Assuming your aim is to implement the code, I’ll
skip the algebra and give the implementation:

Excerpt from file include/cyclone/core.h

class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Returns the determinant of the matrix.
*/

real getDeterminant() const;

/**
* Sets the matrix to be the inverse of the given matrix.
*/

void setInverse(const Matrix4 &m);

/** Returns a new matrix containing the inverse of this matrix. */

188 Chapter 9 The Mathematics of Rotations

Matrix4 inverse() const
{

Matrix4 result;
result.setInverse(*this);
return result;

}

/**
* Inverts the matrix.
*/
void invert()
{

setInverse(*this);
}

};

Excerpt from file src/core.cpp

real Matrix4::getDeterminant() const
{

return data[8]*data[5]*data[2]+
data[4]*data[9]*data[2]+
data[8]*data[1]*data[6]-
data[0]*data[9]*data[6]-
data[4]*data[1]*data[10]+
data[0]*data[5]*data[10];

}

void Matrix4::setInverse(const Matrix4 &m)
{

// Make sure the determinant is non-zero.
real det = getDeterminant();
if (det == 0) return;
det = ((real)1.0f)/det;

data[0] = (-m.data[9]*m.data[6]+m.data[5]*m.data[10])*det;
data[4] = (m.data[8]*m.data[6]-m.data[4]*m.data[10])*det;
data[8] = (-m.data[8]*m.data[5]+m.data[4]*m.data[9]*m.data[15])*det;

data[1] = (m.data[9]*m.data[2]-m.data[1]*m.data[10])*det;
data[5] = (-m.data[8]*m.data[2]+m.data[0]*m.data[10])*det;
data[9] = (m.data[8]*m.data[1]-m.data[0]*m.data[9]*m.data[15])*det;

data[2] = (-m.data[5]*m.data[2]+m.data[1]*m.data[6]*m.data[15])*det;

9.4 Implementing the Mathematics 189

data[6] = (+m.data[4]*m.data[2]-m.data[0]*m.data[6]*m.data[15])*det;
data[10] = (-m.data[4]*m.data[1]+m.data[0]*m.data[5]*m.data[15])*det;

data[3] = (m.data[9]*m.data[6]*m.data[3]
-m.data[5]*m.data[10]*m.data[3]
-m.data[9]*m.data[2]*m.data[7]
+m.data[1]*m.data[10]*m.data[7]
+m.data[5]*m.data[2]*m.data[11]
-m.data[1]*m.data[6]*m.data[11])*det;

data[7] = (-m.data[8]*m.data[6]*m.data[3]
+m.data[4]*m.data[10]*m.data[3]
+m.data[8]*m.data[2]*m.data[7]
-m.data[0]*m.data[10]*m.data[7]
-m.data[4]*m.data[2]*m.data[11]
+m.data[0]*m.data[6]*m.data[11])*det;

data[11] =(m.data[8]*m.data[5]*m.data[3]
-m.data[4]*m.data[9]*m.data[3]
-m.data[8]*m.data[1]*m.data[7]
+m.data[0]*m.data[9]*m.data[7]
+m.data[4]*m.data[1]*m.data[11]
-m.data[0]*m.data[5]*m.data[11])*det;

}

You’ll note from this code that the inverse again exists only when the determinant
of the matrix is non-zero.

The Matrix Transpose

Whenever the determinant is non-zero, we can always use the previous equations to
find the inverse of a matrix. It is not the simplest process, however, and in some cases
we can do much better.

If we have a matrix that represents a rotation only, we can make use of the fact
that the inverse of the transformation is another rotation, about the same axis but the
opposite angle. This is equivalent to inverting the axis, and using the same angle. We
can create a matrix that rotates the same degree in the opposite direction by transpos-
ing the original matrix.

The transpose of a matrix,

M =
⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦

190 Chapter 9 The Mathematics of Rotations

is made by swapping its rows and columns:

M� =
⎡⎢⎣a d g

b e h

c f i

⎤⎥⎦
If M is a rotation matrix, then

M� = M−1

We can implement this for our 3 × 3 matrix in the following way:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

/**
* Sets the matrix to be the transpose of the given matrix.
*/
void setTranspose(const Matrix3 &m)
{

data[0] = m.data[0];
data[1] = m.data[3];
data[2] = m.data[6];
data[3] = m.data[1];
data[4] = m.data[4];
data[5] = m.data[7];
data[6] = m.data[2];
data[7] = m.data[5];
data[8] = m.data[8];

}

/** Returns a new matrix containing the transpose of this matrix. */
Matrix3 transpose() const
{

Matrix3 result;
result.setTranspose(*this);
return result;

}
};

It will be useful at several points in the engine to transpose rather than request a full
inverse when we know the matrix is a rotation matrix only.

9.4 Implementing the Mathematics 191

There is no point implementing a transpose function for the 3 × 4 matrix. It
doesn’t have a geometric correlate, as transposing a homogeneous matrix doesn’t
make sense geometrically. If there is any non-zero element in the fourth column, then
it will be transposed into the fourth row, which we don’t have in our matrix.

This makes sense: we will only use transposition to do cheap inverses on rotation
matrices; if the 3 × 4 matrix were a pure rotation matrix with no translation, then it
would have zeros in its fourth column. If this were the case, we could represent it as a
3 × 3 matrix.

There are other reasons to transpose a matrix, outside of our needs. If you are
working with an existing matrix library with a full 4 × 4 matrix implementation, it is
likely to have a transpose function.

9.4.4 Converting a Quaternion to a Matrix

In addition to the matrix manipulation above, we’ll need an operation to convert
a quaternion into a matrix. Your graphics engine is likely to need transformations
expressed as a matrix, so in order to draw an object, we’ll need to convert from its
position vector and orientation quaternion into a transform matrix for rendering.

Sometimes we’ll want just the rotation matrix in its 3 × 3 matrix form, and other
times we’ll want the full 3 × 4 transformation matrix.

In each case, the conversion from a quaternion to a matrix uses the results we
saw in Sections 9.2.3 and 9.2.4, where both the quaternion and rotation matrix were
expressed in terms of an axis and angle. We could reconstruct the axis and angle from
the quaternion, and then feed it into Equation 9.3. If we do this, we find that the
resulting expression simplifies into a matrix purely in terms of the coefficients of the
quaternion,

� =
⎡⎢⎣1 − (2y2 + 2z2) 2xy + 2zw 2xz − 2yw

2xy − 2zw 1 − (2x2 + 2z2) 2yz + 2xw

2xz + 2yw 2yz − 2xw 1 − (2x2 + 2y2)

⎤⎥⎦
where w, x , y , and z are the components of the quaternion

θˆ =

⎡⎢⎢⎢⎣
w

x

y

z

⎤⎥⎥⎥⎦
When implemented, the 3 × 3 version including rotation only requires this step.

The code looks like this:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

192 Chapter 9 The Mathematics of Rotations

/**
* Sets this matrix to be the rotation matrix corresponding to
* the given quaternion.
*/
void setOrientation(const Quaternion &q)
{

data[0] = 1 - (2*q.j*q.j + 2*q.k*q.k);
data[1] = 2*q.i*q.j + 2*q.k*q.r;
data[2] = 2*q.i*q.k - 2*q.j*q.r;
data[3] = 2*q.i*q.j - 2*q.k*q.r;
data[4] = 1 - (2*q.i*q.i + 2*q.k*q.k);
data[5] = 2*q.j*q.k + 2*q.i*q.r;
data[6] = 2*q.i*q.k + 2*q.j*q.r;
data[7] = 2*q.j*q.k - 2*q.i*q.r;
data[8] = 1 - (2*q.i*q.i + 2*q.j*q.j);

}
};

The 3 × 4 version, adding position to the rotation, looks like this:

Excerpt from file include/cyclone/core.h

class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Sets this matrix to be the rotation matrix corresponding to
* the given quaternion.
*/
void setOrientationAndPos(const Quaternion &q, const Vector3 &pos)
{

data[0] = 1 - (2*q.j*q.j + 2*q.k*q.k);
data[1] = 2*q.i*q.j + 2*q.k*q.r;
data[2] = 2*q.i*q.k - 2*q.j*q.r;
data[3] = pos.x;

data[4] = 2*q.i*q.j - 2*q.k*q.r;
data[5] = 1 - (2*q.i*q.i + 2*q.k*q.k);
data[6] = 2*q.j*q.k + 2*q.i*q.r;
data[7] = pos.y;

data[8] = 2*q.i*q.k + 2*q.j*q.r;

9.4 Implementing the Mathematics 193

data[9] = 2*q.j*q.k - 2*q.i*q.r;
data[10] = 1 - (2*q.i*q.i + 2*q.j*q.j);
data[11] = pos.z;

}
};

9.4.5 Transforming Vectors

In Section 9.1.3, we looked at finding the position of part of an object, even when the
object had been moved and rotated. This is a conversion between object coordinates
(i.e., the position of the part relative to the origin of the object and its axes) and world
coordinates (its position relative to the global origin and axes directions).

This conversion can be performed by multiplying the local coordinates by the
object’s transform matrix. The transform matrix, in turn, can be generated from the
quaternion and position as we saw above. We end up with a 3 × 4 transform matrix.
Working out the world coordinates given local coordinates and a transform matrix is
a matter of simply multiplying the vector by the matrix:

Vector3 localToWorld(const Vector3 &local, const Matrix4 &transform)
{

return transform.transform(local);
}

The opposite transform, from world coordinates to local coordinates, involves
the same process, but using the inverse of the transform matrix. The inverse does the
opposite of the original matrix, as it converts world coordinates into local coordinates.

Vector3 worldToLocal(const Vector3 &world, const Matrix4 &transform)
{

Matrix4 inverseTransform;
inverseTransform.setInverse(transform);

return inverseTransform.transform(world);
}

We can simplify this code to perform the inverse and transform in a single step. If
the transform matrix is made up of only a rotation and a translation (as it should be
for our needs), the resulting code is simple and efficient.

First, we split the 3 × 4 matrix into two components—the translation vector (i.e.,
the fourth column of the matrix) and the 3 × 3 rotation matrix. Next, we perform

194 Chapter 9 The Mathematics of Rotations

the inverse translation by simply subtracting the translation vector. Finally, we make
use of the fact that the inverse of a 3 × 3 rotation matrix is simply its transpose, and
multiply by the transpose. This can be done in a method that looks like this:

Excerpt from file include/cyclone/core.h

class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Transform the given vector by the transformational inverse
* of this matrix.
*/
Vector3 transformInverse(const Vector3 &vector) const
{

Vector3 tmp = vector;
tmp.x -= data[3];
tmp.y -= data[7];
tmp.z -= data[11];
return Vector3(

tmp.x * data[0] +
tmp.y * data[4] +
tmp.z * data[8],

tmp.x * data[1] +
tmp.y * data[5] +
tmp.z * data[9],

tmp.x * data[2] +
tmp.y * data[6] +
tmp.z * data[10]

);
}

};

which is called as follows:

Vector3 worldToLocal(const Vector3 &world, const Matrix4 &transform)
{

return transform.transformInverse(world);
}

9.4 Implementing the Mathematics 195

In Chapter 2, we saw that vectors can represent both positions and directions.
This is a significant distinction when it comes to transforming vectors. So far we have
looked at vectors representing positions. In this case, converting between local and
object coordinates is a matter of multiplying by the transform matrix, as we have
seen.

For direction vectors, however, the same is not true. If we start with a direction
vector in object space, for example, the Z-axis direction vector⎡⎢⎣0

0

1

⎤⎥⎦
and we multiply it by a transformation matrix, for example, the translation only⎡⎢⎣1 0 0 1

0 1 0 0

0 0 1 0

⎤⎥⎦
we end up with a direction vector of ⎡⎢⎣1

0

1

⎤⎥⎦
Clearly, converting the local Z-axis direction vector into world coordinates for an
object that has no rotation should give us the Z-axis direction vector. Directions
should not change magnitude in any case. And if there is no rotation then the direc-
tions should not change in any way.

In other words, direction vectors should be immune to any translational com-
ponent of the transformation matrix. We can do this by only ever multiplying the
vector by a 3 × 3 matrix, which ensures that there is no translational component.
Unfortunately, this will be inconvenient at several points, because we will have gone
to the trouble of building a 3 × 4 transform matrix, and it would be a waste to create
another matrix just for transforming directions. To solve this, we can add two spe-
cialized methods to the Matrix4 class to deal specifically with transforming vectors.
One performs the normal transformation (from local to world coordinates), and the
other performs the inverse (from world to local coordinates):

Excerpt from file include/cyclone/core.h

class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Transform the given direction vector by this matrix.

196 Chapter 9 The Mathematics of Rotations

*
*/
Vector3 transformDirection(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] +
vector.y * data[1] +
vector.z * data[2],

vector.x * data[4] +
vector.y * data[5] +
vector.z * data[6],

vector.x * data[8] +
vector.y * data[9] +
vector.z * data[10]

);
}

/**
* Transform the given direction vector by the
* transformational inverse of this matrix.
*/
Vector3 transformInverseDirection(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] +
vector.y * data[4] +
vector.z * data[8],

vector.x * data[1] +
vector.y * data[5] +
vector.z * data[9],

vector.x * data[2] +
vector.y * data[6] +
vector.z * data[10]

);
}

};

9.4 Implementing the Mathematics 197

which can be called in the same way as before, as in

Vector3 localToWorldDirn(const Vector3 &local, const Matrix4 &transform)
{

return transform.transformDirection(local);
}

and

Vector3 worldToLocalDirn(const Vector3 &world, const Matrix4 &transform)
{

return transform.transformInverseDirection(world);
}

9.4.6 Changing the Basis of a Matrix

There is one final thing we’ll need to do with matrices that hasn’t been covered yet.
Recall that we can think of a transformation matrix as converting between one basis
and another, that is, between one set of axes and another. If the transformation is
a 3 × 4 matrix, then the change can also involve a shift in the origin. We used this
transformation to convert a vector from one basis to another.

We will also meet a situation in which we need to transform an entire matrix from
one basis to another. This can be a little more difficult to visualize.

Let’s say that we have a matrix Mt that performs some transformation, as shown
in the first part of Figure 9.6 (the figure is in 2D for ease of illustration; the same
principles apply in 3D). It performs a small rotation around the origin; part A of the
figure shows an object being rotated.

Now let’s say we have a different basis, but we want exactly the same transfor-
mation. In our new basis, we’d like to find a transformation that has the same effect
(i.e., leaves the object at the same final position), but works with the new coordinate
system. This is shown in part B of the figure: now the origin has moved (we’re in a
different basis), but we’d like the effect of the transformation to be the same. Clearly,
if we applied Mt in the new basis, it would give a different end result.

Let’s assume we have a transformation Mb between our original basis B1 and our
new basis B2. Is there some way we can create a new transformation from Mt and Mb

that would replicate the behavior that Mt gave us in B1, but in the new B2?

198 Chapter 9 The Mathematics of Rotations

Object

Object

Object

Object

Rotation

Origin

Origin

Origin

Origin

A B

FIGURE 9.6 A matrix basis is changed.

The solution is to use Mb and M−1
b in a three-stage process:

1. We perform the transformation M−1
b , which takes us from B2 back into B1.

2. We then perform the original transform Mt , since we are now in the basis B1,
where it was originally correct.

3. We then need to get back into basis B2, so we apply transformation Mb .

So we end up with

M ′
t = Mb Mt M−1

b

bearing in mind that multiplied matrices are equivalent to transformations carried
out in right-to-left order.

We will need to use this function whenever we have a matrix expressed in one
basis and we need it in another. We can do this using the multiplication and inverse
functions we have already implemented: there is no need for a specialized function.

In particular, the technique will be indispensable in the next chapter when we
come to work with the inertia tensor of a rigid body. At that stage, I will provide a
dedicated implementation that takes advantage of some other properties of the inertia
tensor to simplify the mathematics.

9.4.7 The Quaternion Class

We’ve covered the basic mathematical operations for matrices, and have a solid matrix
and vector class implemented. Before we can move on, we also need to create a data
structure to manipulate quaternions.

9.4 Implementing the Mathematics 199

In this section, we will build a Quaternion class. The basic data structure looks like
this:

Excerpt from file include/cyclone/core.h

/**
* Holds a three-degrees-of-freedom orientation.
*/

class Quaternion
{
public:

union {
struct {

/**
* Holds the real component of the quaternion.
*/

real r;

/**
* Holds the first complex component of the
* quaternion.
*/

real i;

/**
* Holds the second complex component of the
* quaternion.
*/

real j;

/**
* Holds the third complex component of the
* quaternion.
*/

real k;
};

/**
* Holds the quaternion data in array form.
*/
real data[4];

};
};

200 Chapter 9 The Mathematics of Rotations

9.4.8 Normalizing Quaternions

As we saw in the earlier discussion, quaternions only represent a rotation if they have a
magnitude of 1. All the operations we will be performing keep the magnitude at 1, but
numerical inaccuracies and rounding errors can cause this constraint to be violated
over time. From time to time, it is a good idea to renormalize the quaternion. We can
perform this with the following method:

Excerpt from file include/cyclone/core.h

class Quaternion
{

// ... Other quaternion code as before ...

/**
* Normalizes the quaternion to unit length, making it a valid
* orientation quaternion.
*/
void normalize()
{

real d = r*r+i*i+j*j+k*k;

// Check for zero-length quaternion, and use the no-rotation
// quaternion in that case.
if (d == 0) {

r = 1;
return;

}

d = ((real)1.0)/real_sqrt(d);
r *= d;
i *= d;
j *= d;
k *= d;

}
};

9.4.9 Combining Quaternions

We combine two quaternions by multiplying them together. This is exactly the same
as for rotation (or any other transformation) matrices. The result of q

ˆ
p
ˆ

is a rotation

that is equivalent to performing rotation p
ˆ

first and then q
ˆ
.

9.4 Implementing the Mathematics 201

As we saw in Section 9.2.4, the multiplication of two quaternions has the following
form: ⎡⎢⎢⎢⎣

w1

x1

y1

z1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w2

x2

y2

z2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w1w2 − x1x2 − y1y2 − z1z2

w1x2 + x1w2 + y1z2 − z1y2

w1y2 − x1z2 + y1w2 + z1x2

w1z2 + x1y2 − y1x2 + z1w2

⎤⎥⎥⎥⎦
which is implemented as follows:

Excerpt from file include/cyclone/core.h

class Quaternion
{

// ... Other quaternion code as before ...

/**
* Multiplies the quaternion by the given quaternion.
*/

void operator *=(const Quaternion &multiplier)
{

Quaternion q = *this;
r = q.r*multiplier.r - q.i*multiplier.i -

q.j*multiplier.j - q.k*multiplier.k;
i = q.r*multiplier.i + q.i*multiplier.r +

q.j*multiplier.k - q.k*multiplier.j;
j = q.r*multiplier.j + q.j*multiplier.r +

q.k*multiplier.i - q.i*multiplier.k;
k = q.r*multiplier.k + q.k*multiplier.r +

q.i*multiplier.j - q.j*multiplier.i;
}

};

9.4.10 Rotating

We occasionally need to rotate a quaternion by some given amount. If a quaternion
represents the orientation of an object, and we need to alter that orientation by rotat-
ing it, we could convert the orientation and the desired rotation into matrices and
multiply them. But there is a more direct way to do this.

The amount of rotation is most simply represented as a scaled vector (since the
rotation amount isn’t bounded), just as we saw for angular velocity.

We can then alter the quaternion using the equation

θˆ
′ = θˆ + 1

2
�θˆθˆ [9.9]

202 Chapter 9 The Mathematics of Rotations

which is similar to the equation we saw in Section 9.3, but replaces velocity × time
with a single absolute angular change (θ).

Here, as in the case of angular velocity, the rotation is provided as a vector, con-
verted into a non-normalized quaternion:[

�θx�θy �θz

]
→

[
0�θx�θy �θz

]
This can be implemented as:

Excerpt from file include/cyclone/core.h

class Quaternion
{

// ... Other quaternion code as before ...

void rotateByVector(const Vector3& vector)
{

Quaternion q(0, vector.x, vector.y, vector.z);
(*this) *= q;

}
};

9.4.11 Updating by the Angular Velocity

The final operation we will need is to update the orientation quaternion by the angular
velocity and a time. In Section 9.3, we saw that this is handled by the equation

θˆ
′ = θˆ + δt

2
ωˆ θˆ

where ωˆ is the quaternion form of the angular velocity, and t is the duration to update

by. This can be implemented as:

Excerpt from file include/cyclone/core.h

class Quaternion
{

// ... Other quaternion code as before ...

/**
* Adds the given vector to this one, scaled by the given amount.
* This is used to update the orientation quaternion by a rotation
* and time.
*
* @param vector The vector to add.
*
* @param scale The amount of the vector to add.

9.6 Exercises 203

*/
void addScaledVector(const Vector3& vector, real scale)
{

Quaternion q(0,
vector.x * scale,
vector.y * scale,
vector.z * scale);

q *= *this;
r += q.r * ((real)0.5);
i += q.i * ((real)0.5);
j += q.j * ((real)0.5);
k += q.k * ((real)0.5);

}
};

We now have a quaternion class that contains all the functionality we need for the
rest of the engine. As with vectors and matrices, there are a lot of other operations we
could add: more conversions, other mathematical operators, and utility functions.
If you are using an existing quaternion library, it might have many other functions
defined, but those presented here are sufficient for our needs.

9.5 Summary

We have come a long way in this chapter, and if you weren’t familiar with matrices
and quaternions before, then it’s been a big step. We’ve now met all the mathematics
we need to see us to our final physics engine at the end of the book.

In this chapter, I’ve hinted at the way some of this mathematics is used in the
engine. Chapter 10 starts to rebuild our engine to support full 3D rigid bodies, with
angular as well as linear motion.

9.6 Exercises

Exercise 9.1
A rotation about the X axis by 90 degrees, followed by a rotation about the Y axis by
90 degrees is equivalent to a rotation about the Z axis, followed by another about the
X axis. About what angles?

Exercise 9.2
Buy yourself a cheap tennis ball or other ball of the same size. Draw six points on
the ball: one each for the positive and negative X, Y, and Z axes, arranged in a right-
handed basis. Orient the ball along some fixed reference direction (Y pointing up,

204 Chapter 9 The Mathematics of Rotations

Z pointing in the direction you’re looking, for example). Now rotate the ball in any
way you choose, so that it is in a random orientation. Now rotate the ball about a single
axis by placing your fingertips on opposite sides of the ball. You should be able to find
one (and only one) such axis that allows you to rotate the ball back to its reference
orientation. Pay attention to where the features of the ball began and ended. Can you
work out a method for quickly finding the rotation axis needed to return the ball to
its original orientation?

Exercise 9.3
(a) Perform the following quaternion multiplication:⎡⎢⎢⎢⎣

r1

c1

0

0

⎤⎥⎥⎥⎦ ×

⎡⎢⎢⎢⎣
r2

c2

0

0

⎤⎥⎥⎥⎦
(b) The complex numbers from high school mathematics are of the form r +c i. What

does the structure of your answer to (a) tell you about the relationship between
complex numbers and quaternions?

Exercise 9.4
(a) A rigid body has the orientation quaternion,⎡⎢⎢⎢⎣

1
2
1
2
1
2
1
2

⎤⎥⎥⎥⎦
and is rotating with angular velocity, ⎡⎢⎣0

π

0

⎤⎥⎦
Using your understanding of rotation, what will the orientation of the rigid body
be after 2 seconds?

(b) Derive the above result from Equation 9.5.

Exercise 9.5
A non-skewing affine transformation, represented by the 3 × 4 matrix,⎡⎢⎣a b c d

e f g h

i j k l

⎤⎥⎦p

9.6 Exercises 205

can be written as a combination of a 3 × 3 matrix for rotation and a vector addition
for translation as follows:

�p + t

Give the coefficents of � and t in terms of the coefficients of the original matrix (i.e.,
values a through l).

Exercise 9.6
Calculate the inverse of the affine transform matrix from the previous exercise:⎡⎢⎣a b c d

e f g h

i j k l

⎤⎥⎦ p

Beware, as there’s an easy (but perhaps not obvious) way and a difficult way to attempt
this; the hard way will not give the correct result.

Exercise 9.7
Create a box with an unusual mass distribution by taking an empty cardboard box and
securely taping small stones to various points on the inside surface. Now determine
the center of mass of the box. For each axis of the box (length, width, and depth), find
the point where the box balances on a thin pivot, such as a pencil. Mark that point
by drawing a band completely around the box in the axis of the pivot. When you’ve
repeated this for all three sides, you should have two lines crossing on each face of
the box. The box should balance on a point pivot (such as a pen cap) at these points.
Where is the center of mass of the box?

This page intentionally left blank

10
Laws of Motion

for Rigid Bodies

n this chapter we’re going to repeat the work we did in Chapters 2, 3, and 5, this
Itime working with rigid bodies rather than particles. We will do this by creating a
new class, the RigidBody.

In Section 9.1.3, I mentioned that if an object’s origin is placed at its center of
mass, then its linear motion will be just like that of a particle. We’ll make use of that
fact in this chapter. Almost all the code for the linear motion of our rigid body is lifted
directly from our particle class. To this foundation we will add two things:

1. The laws of motion for rotating bodies, equivalent to the way we implemented
Newton’s second law of motion.

2. The mathematics of forces that have both a linear and a rotational effect. In other
words, for a given force applied, how much the object will rotate is determined.

With the rigid body in place, and these two extensions implemented, we will have
a rigid body physics engine equivalent to the particle engine from Part I. Adding col-
lisions and hard constraints will then occupy us for the remainder of this book.

10.1 The Rigid Body

We can start by creating a RigidBody class, containing the same information we had in
the Particle class, and adding the extra data structures for the rotation that we met

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00010-3 207

208 Chapter 10 Laws of Motion for Rigid Bodies

in the previous chapter. The code looks like this:

Excerpt from file include/cyclone/body.h

/**
* A rigid body is the basic simulation object in the physics
* core.
*/

class RigidBody
{
protected:

/**
* Holds the inverse of the mass of the rigid body. It
* is more useful to hold the inverse mass because
* integration is simpler, and because in real-time
* simulation it is more useful to have bodies with
* infinite mass (immovable) than zero mass
* (completely unstable in numerical simulation).
*/
real inverseMass;

/**
* Holds the amount of damping applied to linear
* motion. Damping is required to remove energy added
* through numerical instability in the integrator.
*/
real linearDamping;

/**
* Holds the linear position of the rigid body in
* world space.
*/
Vector3 position;

/**
* Holds the angular orientation of the rigid body in
* world space.
*/
Quaternion orientation;

/**
* Holds the linear velocity of the rigid body in
* world space.
*/
Vector3 velocity;

10.1 The Rigid Body 209

/**
* Holds the angular velocity, or rotation, or the
* rigid body in world space.
*/

Vector3 rotation;

/**
* Holds a transform matrix for converting body space into
* world space and vice versa. This can be achieved by calling
* the getPointIn*Space functions.
*/

Matrix4 transformMatrix;

};

I have added a matrix to the class to hold the current transform matrix for the
rigid body. This matrix is useful for rendering the object, and will be useful at various
points in the physics too—so much so that it is worth the storage space to keep a copy
with the rigid body.

The matrix should be derived from the orientation and position of the body once
per frame, to make sure that it is correct. We will not update the matrix within the
physics, or use it in any way where it might get out of sync with the orientation and
position. We’re not trying to store the same information twice. The position and ori-
entation are in charge; the transform matrix member just acts as a cache to avoid
repeatedly recalculating this important quantity.

I call this derived data and it is the first of a handful we’ll add to the rigid body. If
you are working on a highly memory-starved machine, you may want to remove this
data, as it is only a copy of the existing information in a more convenient form. You
can simply calculate it as it is needed. The same is true for all the derived data I will
add to the rigid body.

Let’s add a function to the class to calculate the transform matrix, and a function
to calculate all derived data. Initially, calculateDerivedData will only calculate the
transform matrix:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Calculates internal data from state data. This should be called
* after the body’s state is altered directly (it is called

210 Chapter 10 Laws of Motion for Rigid Bodies

* automatically during integration). If you change the body’s state
* and then intend to integrate before querying any data (such as
* the transform matrix), then you can omit this step.
*/
void calculateDerivedData();

};

Excerpt from file src/body.cpp

/**
* Inline function that creates a transform matrix from a
* position and orientation.
*/

static inline void _calculateTransformMatrix(Matrix4 &transformMatrix,
const Vector3 &position, const
Quaternion &orientation)

{
transformMatrix.data[0] = 1-2*orientation.j*orientation.j -

2*orientation.k*orientation.k;
transformMatrix.data[1] = 2*orientation.i*orientation.j -

2*orientation.r*orientation.k;
transformMatrix.data[2] = 2*orientation.i*orientation.k +

2*orientation.r*orientation.j;
transformMatrix.data[3] = position.x;

transformMatrix.data[4] = 2*orientation.i*orientation.j +
2*orientation.r*orientation.k;

transformMatrix.data[5] = 1-2*orientation.i*orientation.i -
2*orientation.k*orientation.k;

transformMatrix.data[6] = 2*orientation.j*orientation.k -
2*orientation.r*orientation.i;

transformMatrix.data[7] = position.y;

transformMatrix.data[8] = 2*orientation.i*orientation.k -
2*orientation.r*orientation.j;

transformMatrix.data[9] = 2*orientation.j*orientation.k +
2*orientation.r*orientation.i;

transformMatrix.data[10] = 1-2*orientation.i*orientation.i -
2*orientation.j*orientation.j;

transformMatrix.data[11] = position.z;
}

void RigidBody::calculateDerivedData()
{

10.2 Newton-2 for Rotation 211

orientation.normalize();

// Calculate the transform matrix for the body.
_calculateTransformMatrix(transformMatrix, position, orientation);

}

Later we will add calls to further calculations for this method.

10.2 Newton-2 for Rotation

In Newton’s second law of motion, we saw that the change in velocity depended on a
force acting on the object and the object’s mass:

p̈ = m−1f

For rotation, we have a very similar law. The change in angular velocity depends on
two things: we have torque τ rather than force, and the moment of inertia I rather
than mass.

θ̈ = I −1τ

Let’s look at these two in more depth.

10.2.1 Torque

Torque (also sometimes called “moments”) can be thought of as a twisting force. You
may be familiar with a car having a lot of torque when it can apply a great deal of
turning force to the wheels. An engine that can generate a lot of torque will be better
at accelerating the spin of the wheels. If the car has poor tires, this will leave a big
black mark on the road and a lot of smoke in the air; with appropriate grip, the rota-
tion will be converted into forward acceleration. In either case, the torque is spinning
the wheels—the forward motion is a secondary effect caused by the tires gripping
the road.

Forces and torques and closely related. We can turn a force into a torque, turning a
straight push or pull into a turning motion. Imagine turning a stiff nut with a wrench.
You turn the nut by pushing or pulling on the handle of the wrench. When you turn up
the volume knob on a stereo, you grip it by both sides and push up with your thumb
and down with your finger (if you’re right-handed). In either case you are applying a
force and getting angular motion as a result.

The angular acceleration depends on the size of the force you exert, and how far
from the turning point you apply it. Take the wrench and nut example: you can undo
the nut if you exert more force onto the wrench, or if you push further along the

212 Chapter 10 Laws of Motion for Rigid Bodies

handle (or use a longer-handled wrench). When turning a force into a torque, the
size of the force is important, as is the distance from the axis of rotation.

The equation that links force and torque is:

τ = pf × f [10.1]

where f is the force being applied, and pf is the point at which the force is being

applied, relative to the origin of the object (i.e., its center of mass, for our purposes).
Every force that applies to an object will generate a corresponding torque. When-

ever we apply a force to a rigid body, we’ll need to use it in the way we have so far, that
is, to perform a linear acceleration. We will additionally need to use it to generate a
torque.

If you look at Equation 10.1, you may notice that any force applied so that f and
pf are in the same direction will have zero torque. Geometrically this is equivalent to

saying that if the extended line of the force passes through the center of mass, then no
torque is generated. Figure 10.1 illustrates this.

We’ll return to this property in Section 10.3 when we combine all the forces and
torques.

In 3D it is important to note that a torque needs to have an axis. We can apply
a turning force about any axis we choose. So far we’ve considered cases such as the
volume knob or nut where the axis is fixed. For a freely rotating object, however, the
torque can act to turn the object about any axis. We give torques in a scaled axis rep-
resentation, as in

τ = ad̂

where a is the magnitude of the torque, and d̂ is a unit-length vector in the axis around
which the torque applies. We always consider that torques act clockwise when looking
in the direction of their axis. To get a counterclockwise torque, we simply flip the sign
of the axis.

Equation 10.1 provides our torque in the correct format: the torque is the vector
product of the force (which includes its direction and magnitude) and the position of
its application.

FIGURE 10.1 A force generating no torque.

10.2 Newton-2 for Rotation 213

10.2.2 The Moment of Inertia

Torque is the rotational equivalent of force. Now we come to the moment of inertia,
which is roughly the rotational equivalent of mass.

The moment of inertia of an object is a measure of how difficult it is to change
the rotation speed of an object. Unlike mass, however, it depends on how you spin the
object.

Take a long stick like a broom handle and twirl it. You have to put a fair amount
of effort into getting it twirling. Once it is twirling, you likewise have to exert yourself
a bit to stop it again. Now stand it on the ground on end; you can get it spinning
lengthwise quite easily, with two fingers. And you can very easily stop its motion.

For any axis you care to spin an object about, it may have a different moment of
inertia. The moment of inertia depends on the mass of the object and the distance of
that mass from the axis of rotation. If you imagine the stick being made up of lots of
particles, twirling the stick like a majorette involves accelerating particles that lie a long
way from the axis of rotation. In comparison to when twirling the stick lengthwise,
the particles of the stick are a long way from the axis. The inertia will therefore be
greater, and the stick will be more difficult to rotate and stop.

We can calculate the moment of inertia about an axis in terms of a set of particles
in the object as follows:

Ia =
n∑

i=1

mi d
2
pi→a [10.2]

where n is the number of particles, dpi→a is the distance of particle i from the axis
of rotation a, and Ia is the moment of inertia about that axis. You may also see this
equation in terms of an infinite number of particles, using an integral. For almost
all applications, however, you can get away with splitting into a discrete set of par-
ticles and using the sum. This is particularly useful when trying to calculate the
moment of inertia of an unusually shaped object. We’ll return to the moments of iner-
tia of different objects later in the section, and Appendix A, Section A.4 has a more
complete list.

Clearly we can’t use a single value for the moment of inertia like we did for mass. It
depends completely on the axis we choose. About any particular axis, we have only one
moment of inertia, but there are any number of axes we could choose. Fortunately,
the physics of rigid bodies means that we don’t need to have an unlimited number
of different values either. We can compactly represent all of the different values in a
matrix, called the inertia tensor.

Before I describe the inertia tensor in more detail, it is worth getting some ter-
minology clear. The moments of inertia for an object are normally represented as an
inertia tensor. However, the two terms are somewhat synonymous in physics engine
development. The “tensor” bit also causes confusion. A tensor is simply a general-
ized version of a matrix. Whereas vectors can be thought of as a 1D array of values,
and matrices are a 2D array, tensors can have any number of dimensions. So, both
a vector and a matrix are tensors. Although the inertia tensor is called a tensor, for

214 Chapter 10 Laws of Motion for Rigid Bodies

our purposes it is always 2D. In other words, it is always just a matrix. It is sometimes
called the “mass matrix,” and we could call it the “inertia matrix,” I suppose, but it’s
not a term that I’ve heard used. For most of this book, I’ll just talk about the inertia
tensor, meaning the matrix representing all the moments of inertia of a rigid body;
such usage follows the normal idiom of game development.

The inertia tensor in 3D is a 3 × 3 matrix characteristic of a rigid body (in other
words, we keep an inertia tensor for each body, just as each body had its own mass).
Along the leading diagonals, the tensor has the moment of inertia about each of its
three principal axes, X, Y, and Z: ⎡⎢⎣Ix

Iy

Iz

⎤⎥⎦
where Ix is the moment of inertia of the object about its X axis, through its center of
mass. The same is true for Iy and Iz .

The remaining entries don’t hold moments of inertia. They are called products of
inertia, and are defined in this way:

Iab =
n∑

i=1

mi api bpi

where api is the distance of particle i from the center of mass of the object, in the
direction of a.

We use this to calculate Ixy , Ixz , and Iyz . In the case of Ixy , we get

Ixy =
n∑

i=1

mi xpi ypi

where xpi is the distance of the particle from the center of mass in the X-axis direction,
which is the same for ypi in the Y-axis direction. Using the scalar products of vectors
we get

Ixy =
n∑

i=1

mi(pi · x)(pi · y) [10.3]

Note that unlike the moments of inertia on the leading diagonal, each particle can
contribute a negative value to this sum. In the moment of inertia calculation, the
distance was squared, so its contribution is always positive. It is entirely possible to
have a non-positive total product of inertia. Zero values are particularly common for
many awkwardly shaped objects.

It is difficult to visualize what the product of inertia means in geometrical or math-
ematical terms. It represents the tendency of an object to rotate in a different direction
to the direction that the torque is being applied. You may have seen this in the behav-
ior of a child’s top. You start by spinning it in one direction, but it jumps upside down
and spins on its head almost immediately. For a freely rotating object, if you apply

10.2 Newton-2 for Rotation 215

a torque, you will not always get rotation about the same axis where you applied the
torque. This is the effect that gyroscopes are based on: they resist the temptation to fall
over because they transfer any gravity-induced falling rotation back into the opposite
direction to stand up straight once more. The products of inertia control this process,
that is, the transfer of rotation from one axis to another.

We place the products of inertia into our inertia tensor to give the final structure,

I =
⎡⎢⎣ Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤⎥⎦ [10.4]

The mathematician Euler gave the rotational version of Newton’s second law of
motion in terms of this structure as follows:

τ = I θ̈

which gives us the angular acceleration in terms of the torque applied,

θ̈ = I −1τ [10.5]

where I −1 is the inverse of the inertia tensor, performed using a regular matrix
inversion.

Note that because of the presence of the products of inertia, the direction of the
torque vector τ is not neccesarily the same as the angular acceleration vector θ̈ that
results. In some cases it will be. In particular, if the products of inertia are all zero,

I =
⎡⎢⎣Ix 0 0

0 Iy 0

0 0 Iz

⎤⎥⎦
and the torque vector is in one of the principal axis directions (X, Y, or Z), then the
acceleration will be in the direction of the torque.

Many shapes have easy formulas for calculating their inertia tensor. A rectangular
block, for example, of mass m and dimensions dx , dy , and dz , aligned along the X, Y,
and Z axes, respectively, has an inertia tensor of

I =
⎡⎢⎣

1
12 m(d2

y + d2
z) 0 0

0 1
12 m(d2

x + d2
z) 0

0 0 1
12 m(d2

x + d2
y)

⎤⎥⎦
Note that the products of inertia are all zero in this case. This is often true; if we
can suitably orient many regular solids, the products of inertia become zero. A list of
inertia tensors for common shapes is provided in Appendix A.

216 Chapter 10 Laws of Motion for Rigid Bodies

The Inverse Inertia Tensor

For exactly the same reasons as we saw for mass, we will store the inverse inertia tensor
rather than the raw inertia tensor. The rigid body has an additional member added, a
Matrix3 instance:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Holds the inverse of the body’s inertia tensor. The
* intertia tensor provided must not be degenerate
* (that would mean the body had zero inertia for
* spinning along one axis). As long as the tensor is
* finite, it will be invertible. The inverse tensor
* is used for similar reasons to the use of inverse
* mass.
*
* The inertia tensor, unlike the other variables that
* define a rigid body, is given in body space.
*/
Matrix3 inverseInertiaTensor;

};

Having the inverse available allows us to calculate the angular acceleration directly
from Equation 10.5 without performing the inverse operation each time. When set-
ting up a rigid body, we can start with a regular inertia tensor, and then call the inverse
function of the matrix and set the rigid body’s inverse inertia tensor to the result:

Excerpt from file scr/body.cpp

void RigidBody::setInertiaTensor(const Matrix3 &inertiaTensor)
{

inverseInertiaTensor.setInverse(inertiaTensor);
}

10.2.3 Inertia Tensor in World Coordinates

There is still one subtle complication to address before we can leave the inertia tensor.
Throughout the discussion of moments of inertia, I have deliberately not distin-
guished between the object’s local coordinates and the game’s world coordinates.

10.2 Newton-2 for Rotation 217

Local axesLocal axes

World axes

x
z y

x

z

yx
z y

FIGURE 10.2 The moment of inertia is local to an object.

Consider the example in Figure 10.2. In the first example the object’s local axes are
in the same direction as the world’s axes. If we apply a torque about the X axis, then
we will get the same moment of inertia whether we work in local or world coordinates.

In the second part of the example, the object has rotated. Now which X axis do
we need to use? In our engine we’ll express the torque in world coordinates. So the
rotation will depend on the moment of inertia of the object about the world’s X axis.
The inertia tensor is defined in terms of the object’s axis, however. It is constant: we
don’t change the inertia tensor each time the object moves.

In the acceleration equation,

θ̈ = I −1τ

the torque τ and the resulting angular acceleration θ̈ are both given relative to the
world axes. So the inertia tensor we need should also be given in world coordinates.

We don’t want to have to recalculate the inertia tensor by summing masses at each
frame, so we need a simpler way to get the inertia tensor into world coordinates. We
can achieve this by creating a new derived quantity: the inverse inertia tensor in world
coordinates. At each frame, we can apply a change of basis transformation to convert
the constant inertia tensor in object coordinates into the corresponding matrix in
world coordinates.

As with the transform matrix, we add an update to recalculate the derived quantity
in each frame. It gets put together in this way:

Excerpt from file src/body.cpp

/**
* Internal function to do an intertia tensor transform by a quaternion.
* Note that the implementation of this function was created by an
* automated code generator and optimizer.
*/

218 Chapter 10 Laws of Motion for Rigid Bodies

static inline void _transformInertiaTensor(Matrix3 &iitWorld,
const Quaternion &q,
const Matrix3 &iitBody,
const Matrix4 &rotmat)

{
real t4 = rotmat.data[0]*iitBody.data[0]+

rotmat.data[1]*iitBody.data[3]+
rotmat.data[2]*iitBody.data[6];

real t9 = rotmat.data[0]*iitBody.data[1]+
rotmat.data[1]*iitBody.data[4]+
rotmat.data[2]*iitBody.data[7];

real t14 = rotmat.data[0]*iitBody.data[2]+
rotmat.data[1]*iitBody.data[5]+
rotmat.data[2]*iitBody.data[8];

real t28 = rotmat.data[4]*iitBody.data[0]+
rotmat.data[5]*iitBody.data[3]+
rotmat.data[6]*iitBody.data[6];

real t33 = rotmat.data[4]*iitBody.data[1]+
rotmat.data[5]*iitBody.data[4]+
rotmat.data[6]*iitBody.data[7];

real t38 = rotmat.data[4]*iitBody.data[2]+
rotmat.data[5]*iitBody.data[5]+
rotmat.data[6]*iitBody.data[8];

real t52 = rotmat.data[8]*iitBody.data[0]+
rotmat.data[9]*iitBody.data[3]+
rotmat.data[10]*iitBody.data[6];

real t57 = rotmat.data[8]*iitBody.data[1]+
rotmat.data[9]*iitBody.data[4]+
rotmat.data[10]*iitBody.data[7];

real t62 = rotmat.data[8]*iitBody.data[2]+
rotmat.data[9]*iitBody.data[5]+
rotmat.data[10]*iitBody.data[8];

iitWorld.data[0] = t4*rotmat.data[0]+
t9*rotmat.data[1]+
t14*rotmat.data[2];

iitWorld.data[1] = t4*rotmat.data[4]+
t9*rotmat.data[5]+
t14*rotmat.data[6];

iitWorld.data[2] = t4*rotmat.data[8]+
t9*rotmat.data[9]+
t14*rotmat.data[10];

iitWorld.data[3] = t28*rotmat.data[0]+
t33*rotmat.data[1]+

10.2 Newton-2 for Rotation 219

t38*rotmat.data[2];
iitWorld.data[4] = t28*rotmat.data[4]+

t33*rotmat.data[5]+
t38*rotmat.data[6];

iitWorld.data[5] = t28*rotmat.data[8]+
t33*rotmat.data[9]+
t38*rotmat.data[10];

iitWorld.data[6] = t52*rotmat.data[0]+
t57*rotmat.data[1]+
t62*rotmat.data[2];

iitWorld.data[7] = t52*rotmat.data[4]+
t57*rotmat.data[5]+
t62*rotmat.data[6];

iitWorld.data[8] = t52*rotmat.data[8]+
t57*rotmat.data[9]+
t62*rotmat.data[10];

}

void RigidBody::calculateDerivedData()
{

orientation.normalize();

// Calculate the transform matrix for the body.
_calculateTransformMatrix(transformMatrix, position, orientation);

// Calculate the inertiaTensor in world space.
_transformInertiaTensor(inverseInertiaTensorWorld,

orientation,
inverseInertiaTensor,
transformMatrix);

}

That’s a lot of code, but what is happening is pretty simple: I’m applying the
change of basis transform from Section 9.4.6 in a single operation.

When we transform the inertia tensor we are only interested in the rotational com-
ponent of the object’s transform. It doesn’t matter where the object is in space, only
the direction in which it is oriented. The code therefore treats the 4 × 3 transform
matrix as if it were a 3 × 3 matrix (i.e., a rotation matrix only). Together these two
optimizations make for considerably faster and shorter code.

So, for each frame we calculate the transform matrix, transform the inverse inertia
tensor into world coordinates, and then perform the rigid-body integration with this
transformed version. Before we look at the code to perform the final integration, we
need to look at how a body reacts to an entire series of torques and forces (with their
corresponding torque components).

220 Chapter 10 Laws of Motion for Rigid Bodies

10.3 D’Alembert for Rotation

Just as we have an equivalent of Newton’s second law of motion, we can also use
the implications of D’Alembert’s principle to help us combine torques. Recall that
D’Alembert’s principle allows us to accumulate a whole series of forces into a single
force, and then apply just this one force. The effect of the single accumulated force is
identical to the effect of all its component forces. We take advantage of this by sim-
ply adding together all the forces applied to an object, and then only calculating its
acceleration once, based on the resulting total.

The same principle applies to torques: the effect of a whole series of torques is
equal to the effect of a single torque that combines them all. We have

τ =
∑

i

τi

where τi is the i-th torque.
There is a complication, however. We saw earlier in the chapter that an off-center

force can be converted into torques. To get the correct set of forces and torques, we
need to take into account this calculation.

Fortunately, another consequence of D’Alembert’s principle is that we can accu-
mulate the torques caused by forces in exactly the same way as we accumulate any
other torques. Note that we cannot merely accumulate the forces and then take the
torque equivalent of the resulting force. We could have two forces (like the finger and
thumb on a volume dial) that cancel each other out as linear forces, but combine to
generate a large torque.

So, we have two accumulators: one for forces and another for torques. For each
force applied, we add it to both the force and torque accumulator, where its torque is
calculated by

τ = pf × f

(i.e., Equation 10.1). For each torque applied, we accumulate just the torque (torques
have no corresponding force component).

Some forces, such as gravity, will always apply to the center of mass of an object.
In this case, there is no point trying to work out their torque component because they
can never induce rotation. We allow this in our engine by providing a third route:
adding a force with no position of application. In this case, we merely add the force
to the force accumulator and bypass torque accumulation. In code it looks like this:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Adds the given force to center of mass of the rigid body.

10.3 D’Alembert for Rotation 221

* The force is expressed in world coordinates.
*/

void addForce(const Vector3 &force);
};

Excerpt from file src/body.cpp

void RigidBody::addForce(const Vector3 &force)
{

forceAccum += force;
isAwake = true;

}

Finally, when we perform our per-frame setup of the body, we zero the torque, so
that it can be accumulated as forces applied to the body:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Clears the forces and torques in the accumulators. This will
* be called automatically after each intergration step.
*/

void clearAccumulators();
};

Excerpt from file src/body.cpp

void RigidBody::integrate(real duration)
{

// Clear accumulators.
clearAccumulators();

}
void RigidBody::clearAccumulators()
{

forceAccum.clear();
torqueAccum.clear();

}

An important feature of the previous code is that the location of a force applica-
tion is expressed in world coordinates. If you have a spring attached at a fixed point
on an object, you’ll need to recalculate the position of the attachment point in each

222 Chapter 10 Laws of Motion for Rigid Bodies

frame. You can do this simply by transforming the position of the object coordinates
by the transform matrix, to get a position in world coordinates. Because this is such
a useful thing to be able to do, I provide an additional force accumulation method to
support it:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Adds the given force to the given point on the rigid body.
* Both the force and the application point are given in world
* space. Because the force is not applied at the center of
* mass, it may be split into both a force and torque.
*/
void addForceAtPoint(const Vector3 &force,

const Vector3 &point);

/**
* Adds the given force to the given point on the rigid body.
* The direction of the force is given in world coordinates,
* but the application point is given in body space. This is
* useful for spring forces, or other forces fixed to the
* body.
*/
void addForceAtBodyPoint(const Vector3 &force,

const Vector3 &point);
};

Excerpt from file src/body.cpp

void RigidBody::addForceAtBodyPoint(const Vector3 &force,
const Vector3 &point)

{
// Convert to coordinates relative to center of mass.
Vector3 pt = getPointInWorldSpace(point);
addForceAtPoint(force, pt);

isAwake = true;
}

void RigidBody::addForceAtPoint(const Vector3 &force,
const Vector3 &point)

10.3 D’Alembert for Rotation 223

{
// Convert to coordinates relative to center of mass.
Vector3 pt = point;
pt -= position;

forceAccum += force;
torqueAccum += pt % force;

isAwake = true;
}

Be careful: the direction of the force is still expected in world coordinates, whereas
the application point is expected in object coordinates! This matches the most com-
mon way that these calculations are performed, but you could create yet another ver-
sion that transforms both the force and the position into world coordinates. If you
do that, be careful with the transformation of the force. It should be rotated only,
and not transformed by the full 4 × 3 matrix (which adds the offset position to the
vector).

10.3.1 Force Generators

We need to update the force generators we created for particles so that they work with
rigid bodies. In particular, they may need to be able to apply a force at a particular
point on the rigid body. If this isn’t at the center of mass, we’ll be generating both a
force and a torque for our rigid body, as we saw in the previous section.

This is the logic of not having a force generator return just a single force vector:
we won’t know where the force is applied, or even whether it wants to express that
location in world or object coordinates. Instead, we allow the force generator to apply
a force in whatever way it wants. We can create force generators that call the method
to apply a force at a point other than the body’s center of mass, or they may just apply
a force to the center of mass.

This means that the gravity force generator is almost the same. It is changed only
to accept the rigid body type rather than a particle:

Excerpt from file include/cyclone/fgen.h

/**
* A force generator can be asked to add a force to one or more
* bodies.
*/

class ForceGenerator
{
public:

224 Chapter 10 Laws of Motion for Rigid Bodies

/**
* Overload this in implementations of the interface to calculate
* and update the force applied to the given rigid body.
*/
virtual void updateForce(RigidBody *body, real duration) = 0;

};

/**
* A force generator that applies a gravitational force. One instance
* can be used for multiple rigid bodies.
*/

class Gravity : public ForceGenerator
{

/** Holds the acceleration due to gravity. */
Vector3 gravity;

public:

/** Creates the generator with the given acceleration. */
Gravity(const Vector3 &gravity);

/** Applies the gravitational force to the given rigid body. */
virtual void updateForce(RigidBody *body, real duration);

};

Excerpt from file src/fgen.cpp

void Gravity::updateForce(RigidBody* body, real duration)
{

// Check that we do not have infinite mass.
if (!body->hasFiniteMass()) return;

// Apply the mass-scaled force to the body.
body->addForce(gravity * body->getMass());

}

The spring force generator now needs to know where the spring is attached on
each object, and it should generate an appropriate force with its application point.

Excerpt from file include/cyclone/fgen.h

/**
* A force generator that applies a spring force.

10.3 D’Alembert for Rotation 225

*/
class Spring : public ForceGenerator
{

/**
* The point of connection of the spring in local
* coordinates.
*/

Vector3 connectionPoint;

/**
* The point of connection of the spring to the other object
* in that object’s local coordinates.
*/

Vector3 otherConnectionPoint;

/** The particle at the other end of the spring. */
RigidBody *other;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restLength;

public:

/** Creates a new spring with the given parameters. */
Spring(const Vector3 &localConnectionPt,

RigidBody *other,
const Vector3 &otherConnectionPt,
real springConstant,
real restLength);

/** Applies the spring force to the given rigid body. */
virtual void updateForce(RigidBody *body, real duration);

};

Excerpt from file src/fgen.cpp

void Spring::updateForce(RigidBody* body, real duration)
{

// Calculate the two ends in world space.
Vector3 lws = body->getPointInWorldSpace(connectionPoint);
Vector3 ows = other->getPointInWorldSpace(otherConnectionPoint);

226 Chapter 10 Laws of Motion for Rigid Bodies

// Calculate the vector of the spring.
Vector3 force = lws - ows;

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = real_abs(magnitude - restLength);
magnitude *= springConstant;

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
body->addForceAtPoint(force, lws);

}

Torque Generators

We could follow the lead of the force generators and create a set of torque generators.
They fit into the same force generator structure that we’ve used so far: calling the rigid
body’s addTorquemethod. You can use this to constantly drive a rotating object, such
as a set of fan blades or the wheels of a car.

We don’t need to create a new registry system or interface for torque genera-
tors. Because we allow force generators to apply forces in whatever way they choose,
our torque generators can just be regular implementations of the ForceGenerator
interface.

10.4 The Rigid-Body Integration

We’re finally in the position to write the integration routine that will update the posi-
tion and orientation of a rigid body based on its forces and torques.

It will have the same format as the integration function for a particle, with the
addition of the rotation components discussed in the previous chapter. To corre-
spond with the linear case, we add another data member to the rigid body to con-
trol angular velocity damping—the amount of angular velocity the body loses each
second:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

10.4 The Rigid-Body Integration 227

/**
* Holds the amount of damping applied to angular
* motion. Damping is required to remove energy added
* through numerical instability in the integrator.
*/

real angularDamping;

};

As with linear velocity, the angular velocity is updated with the equation

θ̇ ′ = θ̇ (da)
t + θ̈ t

where da is the angular damping coefficient.
The complete integration routine now looks like this:

Excerpt from file src/body.cpp

void RigidBody::integrate(real duration)
{

// Calculate linear acceleration from force inputs.
lastFrameAcceleration = acceleration;
lastFrameAcceleration.addScaledVector(forceAccum, inverseMass);

// Calculate angular acceleration from torque inputs.
Vector3 angularAcceleration =

inverseInertiaTensorWorld.transform(torqueAccum);

// Adjust velocities.
// Update linear velocity from both acceleration and impulse.
velocity.addScaledVector(lastFrameAcceleration, duration);

// Update angular velocity from both acceleration and impulse.
rotation.addScaledVector(angularAcceleration, duration);

// Impose drag.
velocity *= real_pow(linearDamping, duration);
rotation *= real_pow(angularDamping, duration);

// Adjust positions.
// Update linear position.
position.addScaledVector(velocity, duration);

228 Chapter 10 Laws of Motion for Rigid Bodies

// Update angular position.
orientation.addScaledVector(rotation, duration);

// Normalize the orientation, and update the matrices with the new
// position and orientation.
calculateDerivedData();

// Clear accumulators.
clearAccumulators();

}

10.5 Summary

The physics of angular motion is very similar to the physics of linear motion discussed
in Chapter 3. In the same way that force is related to acceleration via mass, we’ve seen
that torque is related to angular acceleration via the moment of inertia. The physics
is similar, but in each case the mathematics is more complex and the implementation
longer. The vector position corresponds to the quaternion for orientation, and the
scalar valued mass matches a 3 × 3 inertia tensor.

The last two chapters have therefore been considerably more difficult than previ-
ous chapters. If you have followed through to get a rigid-body physics engine, you can
be proud of yourself. There are significant limits to what we’ve built so far (notably
we haven’t brought collisions into the new engine), but there are also a lot of great
things that you can do with what we have. Chapter 11 introduces some applications
of the current engine.

10.6 Exercises

Exercise 10.1
A force of ⎡⎢⎣1

2

3

⎤⎥⎦
is applied to an object at a point ⎡⎢⎣ 1

−1

0

⎤⎥⎦
relative to its center of mass. What is the torque generated by this force?

10.6 Exercises 229

Exercise 10.2
You have an object made up of eight point masses, each of mass 1, arranged at the
corners of a cube of size 2. The positions of each mass are therefore⎡⎢⎣±1

±1

±1

⎤⎥⎦
Calculate the inertia tensor matrix of this object. You will need to use Equations 10.2
and 10.3.

Exercise 10.3
An object receives two forces. The first is⎡⎢⎣1

2

3

⎤⎥⎦
applied at ⎡⎢⎣ 0

−1

1

⎤⎥⎦
relative to its center of mass. The second is⎡⎢⎣0

1

0

⎤⎥⎦
applied at ⎡⎢⎣ 0

−1

0

⎤⎥⎦
relative to its center of mass. What is the total torque and force on the object from
these two forces?

Exercise 10.4
Implement a torque generator that tries to keep its object spinning at a particular
angular velocity. It should have a target angular velocity. If the current rotation is far
from that target, it should apply a large torque. As the object nears its target angular

230 Chapter 10 Laws of Motion for Rigid Bodies

velocity, the torque should drop. To calculate how near the angular velocity is to the
target, you will need to use the scalar product (but be careful about scaling).

Exercise 10.5
Implement a torque generator that tries to rotate its object into a particular orienta-
tion. This is the rotational equivalent of a spring: it has a rest orientation and uses
torques to return the object to that orientation.

11
The Rigid-Body

Physics Engine

ur physics engine is now capable of simulating rigid bodies in full 3D. The
O spring forces and other force generators will work with this approach, but the
hard constraints we discussed in Chapter 7 will not. We will look at collision detection
in Part IV and then return to full 3D constraints in Part V.

Even without hard constraints, there is still a lot we can do. This chapter will look
at two applications of physics that don’t rely on hard constraints for their effects: boats
and aircraft. We’ll build a flight simulator and a boat model. Adding the aerodynamics
from the flight simulator allows us to build a sailing simulation.

11.1 Overview of the Engine

The rigid-body physics engine has two components:

1. The rigid bodies themselves keep track of their position and movement, and their
mass characteristics. To set up a simulation, we need to work out what rigid bod-
ies are needed, and set their initial position, orientation, and velocities (both lin-
ear and angular). We also need to set their inverse mass and inverse inertia tensor.
The acceleration of an object due to gravity is also held in the rigid body (this
could be removed and replaced by a force, if you so desire).

2. The force generators are used to keep track of forces that apply over several frames
of the game.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00011-5 231

232 Chapter 11 The Rigid-Body Physics Engine

We have removed the contact resolution system from the mass aggregate system
(it will be reintroduced in Parts IV and V).

We can use the system we introduced in Chapter 8 to manage the objects to be
simulated. In this case, however, they are rigid bodies rather than particles.

The World structure is modified accordingly:

Excerpt from file include/cyclone/world.h

/**
* The world represents an independent simulation of physics. It
* keeps track of a set of rigid bodies, and provides the means to
* update them all.
*/

class World
{
public:

typedef std::vector<RigidBody*> RigidBodies;

protected:
/**
* Holds the rigid bodies being simulated.
*/
RigidBodies bodies;

};

As before, each frame of the startFramemethod is first called, which sets up each
object by zeroing its force and torque accumulators, and calculating its derived quan-
tities as follows:

Excerpt from file include/cyclone/world.h

class World
{

// ... other World data as before ...

/**
* Initializes the world for a simulation frame. This clears
* the force and torque accumulators for bodies in the
* world. After calling this, the bodies can have their forces
* and torques for this frame added.
*/
void startFrame();

};

11.1 Overview of the Engine 233

Excerpt from file src/world.cpp

void World::startFrame()
{

for (RigidBodies::iterator b = bodies.begin();
b != bodies.end();
b++)

{
b->clearAccumulators();
b->calculateDerivedData();

}
}

And again, additional forces can be applied after calling this method.
To execute the physics, the runPhysics method is called. This calls all the force

generators to apply their forces and performs the integration of all objects:

Excerpt from file include/cyclone/world.h

class World
{

// ... other World data as before ...

/**
* Processes all the physics for the world.
*/

void runPhysics(real duration);
};

Excerpt from file src/world.cpp

void ParticleWorld::integrate(real duration)
{

for (RigidBodies::iterator b = bodies.begin();
b != bodies.end();
b++)

{
// Integrate the body by the given duration.
b->integrate(duration);

}
}

void World::runPhysics(real duration)
{

// First, apply the force generators.

234 Chapter 11 The Rigid-Body Physics Engine

registry.updateForces(duration);

// Then integrate the objects.
integrate(duration);

}

It no longer calls the collision detection system. The calls to startFrame and
runPhysics can occur in the same place in the game loop.

Note that I’ve made an additional call to the updateTransform method of each
object. The object may have moved during the update (and in later sections during
collision resolution), so its transform matrix needs updating before it is rendered.
Each object is then rendered in turn using the rigid body’s transform.

11.2 Using the Physics Engine

Both our sample programs for this physics engine use aerodynamics. We will create
a new force generator that can fake some important features of flight aerodynamics,
or enough to produce a basic flight model suitable for use in a flight action game. We
will use the same generator to drive a sail model for a sailing simulator.

11.2.1 A Flight Simulator

There is no need for contact physics in a flight simulator, except with the ground, of
course. Many flight simulators assume that if you hit something in an airplane, then
it’s all over: a crash animation plays and the player starts again. This makes it a perfect
exercise for our current engine.

The dynamics of an aircraft are generated by the way air flows over its surfaces
(both the surfaces that don’t move relative to the center of mass, like the fuselage,
and control surfaces that can be made to move or change shape, like the wings and
rudder). The flow of air causes forces to be generated. Some forces, like drag, act in the
same direction as the aircraft is moving. The most important force, lift, acts at right
angles to the flow of air. As the aircraft’s surfaces move at different angles through
the air, the proportion of each kind of force can change dramatically. If the wing is
slicing through the air, it generates lift, but if it is moving vertically through the air,
then it generates no lift. We’d like to be able to capture this kind of behavior in a force
generator that can produce sensible aerodynamic forces.

The Aerodynamic Tensor

To model the aerodynamic forces properly is very complex. The behavior of a real
aircraft depends on the fluid dynamics of air movement. This is a horrendously com-
plex discipline involving mathematics well beyond the scope of this book. To create a
truely realistic flight simulator involves some specialized physics that I don’t want to
venture into.

11.2 Using the Physics Engine 235

To make our lives easier, I will use a simplification: the “aerodynamic tensor.” The
aerodynamic tensor is a way of calculating the total force that a surface of the airplane
is generating based only on the speed of the air that is moving over it.

The tensor is a 3×3 matrix, exactly as we used for the inertia tensor. We start with
a wind speed vector, and transform it using the tensor to give a force vector:

fa = Avw

where fa is the resulting force, A is the aerodynamic tensor, and vw is the velocity of
the air. Just like we saw for the inertia tensor, we have to be careful of coordinates here.
The velocity of the air and the resulting force are both expressed in world coordinates,
but the aerodynamic tensor is in object coordinates. Again we need to change the basis
of the tensor in each frame before applying this function.

To fly the plane we can implement control surfaces in one of two ways. The first,
and most accurate way, is to have two tensors representing the aerodynamic charac-
teristics when the surface is at its two extremes. At each frame, the current position of
the control surface is used to blend the two tensors to create a tensor for the current
surface position.

In practice, three tensors are sometimes needed to represent the two extremes plus
the normal position of the control surface (which often has a quite different, and not
intermediate, behavior). For example, a wing with its aileron (the control surface on
the back of each wing) in line with the wing produces lots of lift, and only a modest
amount of drag. With the aileron out of this position, either up or down, the drag
increases dramatically, but the lift can be boosted or cut (depending on whether it is
up or down).

The second approach is to actually tilt the entire surface slightly. We can do this by
storing an orientation for the aerodynamic surface, and allowing the player to directly
control some of this orientation. To simulate the aileron on the wing, the player might
be effectively tilting the entire wing. As the wing changes orientation, the air flow
over it will change, and its single aerodynamic tensor will generate correspondingly
different forces.

The Aerodynamic Surface

We can implement an aerodynamic force generator using this technique. The force
generator is created with an aerodynamic tensor, and it is attached to the rigid body
at a given point. This is the point at which all its force will be felt. We can attach as
many surfaces as we need to one rigid body. The force generator looks like this:

Excerpt from file include/cyclone/fgen.h

/**
* A force generator that applies an aerodynamic force.
*/

class Aero : public ForceGenerator
{

236 Chapter 11 The Rigid-Body Physics Engine

protected:
/**
* Holds the aerodynamic tensor for the surface in body
* space.
*/
Matrix3 tensor;

/**
* Holds the relative position of the aerodynamic surface in
* body coordinates.
*/
Vector3 position;

/**
* Holds a pointer to a vector containing the wind speed of the
* environment. This is easier than managing a separate
* wind speed vector per generator and having to update it
* manually as the wind changes.
*/
const Vector3* windspeed;

public:
/**
* Creates a new aerodynamic force generator with the
* given properties.
*/
Aero(const Matrix3 &tensor, const Vector3 &position,

const Vector3 *windspeed);

/**
* Applies the force to the given rigid body.
*/
virtual void updateForce(RigidBody *body, real duration);

protected:
/**
* Uses an explicit tensor matrix to update the force on
* the given rigid body. This is exactly the same as for updateForce,
* except that it takes an explicit tensor.
*/
void updateForceFromTensor(RigidBody *body, real duration,

const Matrix3 &tensor);
};

11.2 Using the Physics Engine 237

Excerpt from file src/fgen.cpp

void Aero::updateForce(RigidBody *body, real duration)
{

Aero::updateForceFromTensor(body, duration, tensor);
}

void Aero::updateForceFromTensor(RigidBody *body, real duration,
const Matrix3 &tensor)

{
// Calculate total velocity (wind speed and body’s velocity).
Vector3 velocity = body->getVelocity();
velocity += *windspeed;

// Calculate the velocity in body coordinates.
Vector3 bodyVel =
body->getTransform().transformInverseDirection(velocity);

// Calculate the force in body coordinates.
Vector3 bodyForce = tensor.transform(bodyVel);
Vector3 force = body->getTransform().transformDirection(bodyForce);

// Apply the force.
body->addForceAtBodyPoint(force, position);

}

The air velocity is calculated based on two values: the prevailing wind and the
velocity of the rigid body. The prevailing wind is a vector, containing both the direc-
tion and magnitude of the wind. If the rigid body were not moving, it would still feel
this wind. We could omit this value for a flight game that doesn’t need to complicate
the player’s task by adding wind. It will become very useful when we come to model
our sailing simulator in the next section, however.

This implementation uses a single tensor only. To implement control surfaces, we
need to extend this in one of the ways we looked at above. I will choose the more
accurate approach with three tensors to represent the characteristics of the surface at
the extremes of its operation:

Excerpt from file include/cyclone/fgen.h

/**
* A force generator with a control aerodynamic surface. This
* requires three inertia tensors, for the two extremes and
* ‘‘resting’’ position of the control surface. The latter tensor is
* the one inherited from the base class, while the two extremes are
* defined in this class.
*/

238 Chapter 11 The Rigid-Body Physics Engine

class AeroControl : public Aero
{
protected:

/**
* The aerodynamic tensor for the surface when the control is at
* its maximum value.
*/
Matrix3 maxTensor;

/**
* The aerodynamic tensor for the surface when the control is at
* its minimum value.
*/
Matrix3 minTensor;

/**
* The current position of the control for this surface. This
* should range between -1 (in which case the minTensor value
* is used), through 0 (where the base-class tensor value is
* used) to +1 (where the maxTensor value is used).
*/
real controlSetting;

private:
/**
* Calculates the final aerodynamic tensor for the current
* control setting.
*/
Matrix3 getTensor();

public:
/**
* Creates a new aerodynamic control surface with the given
* properties.
*/
AeroControl(const Matrix3 &base,

const Matrix3 &min, const Matrix3 &max,
const Vector3 &position, const Vector3 *windspeed);

/**
* Sets the control position of this control. This * should
range between -1 (in which case the minTensor value * is
used), through 0 (where the base-class tensor value is used) *
to +1 (where the maxTensor value is used). Values outside that

11.2 Using the Physics Engine 239

* range give undefined results.
*/
void setControl(real value);

/**
* Applies the force to the given rigid body.
*/

virtual void updateForce(RigidBody *body, real duration);
};

Excerpt from file src/fgen.cpp

Matrix3 AeroControl::getTensor()
{

if (controlSetting <= -1.0f) return minTensor;
else if (controlSetting >= 1.0f) return maxTensor;
else if (controlSetting < 0)
{

return Matrix3::linearInterpolate(minTensor,
tensor,
controlSetting+1.0f);

}
else if (controlSetting > 0)
{

return Matrix3::linearInterpolate(tensor,
maxTensor,
controlSetting);

}
else return tensor;

}

void AeroControl::updateForce(RigidBody *body, real duration)
{

Matrix3 tensor = getTensor();
Aero::updateForceFromTensor(body, duration, tensor);

}

The linearInterpolatemethod is defined on the Matrix3 class as follows:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

240 Chapter 11 The Rigid-Body Physics Engine

/**
* Interpolates a couple of matrices.
*/
static Matrix3 linearInterpolate(const Matrix3& a,

const Matrix3& b,
real prop);

};

Excerpt from file src/core.cpp

Matrix3 Matrix3::linearInterpolate(const Matrix3& a,
const Matrix3& b,
real prop)

{
Matrix3 result;
real omp = 1.0 - prop;
for (unsigned i = 0; i < 9; i++) {

result.data[i] = a.data[i] * omp + b.data[i] * prop;
}
return result;

}

Each control surface has an input wired to the player’s (or AI’s) control. It ranges
from −1 to +1, where 0 is considered the “normal” position. The three tensors match
these three positions. Two of the three tensors are blended together to form a current
aerodynamic tensor for the setting of the surface. This tensor is then converted into
world coordinates, and used as before.

Putting It Together

In the sample code, the flightsim demo shows this force generator in operation. You
control a model aircraft (seen from the ground, for a bit of added challenge). The only
forces applied to the aircraft are gravity (represented as an acceleration value) and the
aerodynamic forces from surface and control-surface force generators. Figure 11.1
shows the aircraft in action.

I have used four control surfaces: two wings, a tailplane, and a rudder. The
tailplane is a regular surface force generator, with no control inputs (in a real plane
the tailplane usually does have control surfaces, but we don’t need them). It has the
following aerodynamic tensor:

A =
⎡⎢⎣−0.1 0 0

1 −0.5 0

0 0 −0.1

⎤⎥⎦

11.2 Using the Physics Engine 241

FIGURE 11.1 Screenshot of the flightsim demo.

Each wing has an identical control surface force generator. I have used two so that their
control surfaces can be operated independently. They use the following aerodynamic
tensors for each extreme of the control input:

A−1 =
⎡⎢⎣−0.2 0 0

−0.2 −0.5 0

0 0 −0.1

⎤⎥⎦

A0 =
⎡⎢⎣−0.1 0 0

1 −0.5 0

0 0 −0.1

⎤⎥⎦

A1 =
⎡⎢⎣−0.2 0 0

1.4 −0.5 0

0 0 −0.1

⎤⎥⎦
When the player banks the aircraft, both wing controls work in the same direction.
When the player rolls, the controls work in opposition.

Finally, I have added a rudder, a vertical control surface to regulate the yaw of the
aircraft. It has the following tensors:

A−1 =
⎡⎢⎣−0.1 0 −0.4

0 −0.1 0

0 0 −0.5

⎤⎥⎦

242 Chapter 11 The Rigid-Body Physics Engine

A0 =
⎡⎢⎣−0.1 0 0

0 −0.1 0

0 0 −0.5

⎤⎥⎦

A1 =
⎡⎢⎣−0.1 0 0.4

0 −0.1 0

0 0 −0.5

⎤⎥⎦
The surfaces are added to the aircraft in a simple setup function and the game

loop is exactly as we’ve seen it before. The user input is passed to the game as it is
received by the software (this is a function of the OpenGL system we are using to run
the demos; in some engines you may have to call a function to explicitly ask for input).
The input directly controls the current values for each control surface.

The full code for the demo can be found in the accompanying source.

11.2.2 A Sailing Simulator

Boat racing is another genre that doesn’t require hard constraints, at least in its sim-
plest form: if we want close racing with bumping boats, then we may need to add
more complex collision support. For our purposes, we’ll implement a simple sailing
simulator for a single player.

The aerodynamics of the sail is very similar to the aerodynamics we used for flight
simulation. We’ll come back to the sail-specific setup in a moment, after we look at
the floating behavior of the boat.

Buoyancy

What needs revisiting at this point is our buoyancy model. In Section 6.2.4, we created
a buoyancy force generator to act on a particle. We need to extend this to cope with
rigid bodies.

Recall that a submerged shape has a buoyancy that depends on the mass of the
water it displaces. If that mass of water is greater than the mass of the object, then the
net force will be upward and the object will float. The buoyancy force depends only on
the volume of the object that is submerged. We approximated this by treating buoy-
ancy like a spring: as the object is gradually more submerged, the force increases until
it is considered to be completely underwater, whereupon the force is at its maximum.
It doesn’t increase with further depth. This is an approximation because it doesn’t
take into account the shape of the object being submerged.

In our original buoyancy generator, force directly acted on the particle. This is fine
for representing balls or other regular objects. On a real boat, however, the buoyancy
does two jobs: it keeps the boat afloat and upright. In other words, if the boat begins to
lean over (say a gust of wind catches it), more of one side of the boat will be submerged
and the added buoyancy on this side of the boat will act to right it.

11.2 Using the Physics Engine 243

This tendency to stay upright is caused by the torque component of the buoyancy
force. Its linear component keeps the boat afloat, and its torque keeps it vertical. It
does this because, unlike in our particle force generator, the buoyancy force doesn’t
act at the center of gravity.

A submerged part of the boat will have a center of buoyancy, as shown in
Figure 11.2. The center of buoyancy is the point at which the buoyancy force can be
thought to be acting. Like the buoyancy force itself, the center of buoyancy is related
to the displaced water. The center of mass of the displaced water is the same as the
center of buoyancy that it generates.

So just as the volume of water displaced depends on the shape of the submerged
object, so does the center of buoyancy. The further the center of buoyancy is from the
center of mass, the more torque will be generated and the better the boat will be at
righting itself. If the center of mass is above the center of buoyancy, then the torque
will apply in the opposite direction, and the buoyancy will act to topple the boat.

How do we simulate this in a game? We don’t want to get into the messy details
of the shape of the water being displaced, and finding its center of mass. Instead, we
can simply fix the center of buoyancy to the rigid body. In a real boat, the center
of buoyancy will move around as the boat pitches and rolls and a different volume
of water is displaced. Most boats are designed so that this variation is minimized,
however. Fixing the center of buoyancy doesn’t look odd for most games; it shows
itself mostly with big waves, but can be easily remedied, as we’ll see below.

Buoyancy

Buoyancy

Weight

Weight

Center of
buoyancy

Center of
buoyancy

Generated
torque

Center of mass

FIGURE 11.2 Different centers of buoyancy.

244 Chapter 11 The Rigid-Body Physics Engine

Our buoyancy force generator can be updated to take an attachment point;
otherwise, it is as before:

Excerpt from file include/cyclone/fgen.h

/**
* A force generator to apply a buoyant force to a rigid body.
*/

class Buoyancy : public ForceGenerator
{

/**
* The maximum submersion depth of the object before
* it generates its maximum buoyancy force.
*/
real maxDepth;

/**
* The volume of the object.
*/
real volume;

/**
* The height of the water plane above y=0. The plane will be
* parallel to the XZ plane.
*/
real waterHeight;

/**
* The density of the liquid. Pure water has a density of
* 1000 kg per cubic meter.
*/
real liquidDensity;

/**
* The center of buoyancy of the rigid body, in body coordinates.
*/
Vector3 centreOfBuoyancy;

public:

/** Creates a new buoyancy force with the given parameters. */
Buoyancy(const Vector3 &cOfB,

real maxDepth, real volume, real waterHeight,
real liquidDensity = 1000.0f);

11.2 Using the Physics Engine 245

/**
* Applies the force to the given rigid body.
*/

virtual void updateForce(RigidBody *body, real duration);
};

There is nothing to stop us from attaching multiple buoyancy force generators to
a boat to represent different parts of the hull. This allows us to simulate some of the
shift in the center of buoyancy. If we have two buoyancy force generators, one at the
front (fore) and one at the rear (aft) of a boat, then as it pitches forward and back
(through waves, for example) the fore and aft generators will be at different depths
in the water and will therefore generate different forces. The highly submerged front
of the boat will pitch up rapidly and believably. Without multiple attachments, this
wouldn’t be anywhere near as believable, and may be obviously inaccurate.

For our sailing simulator, we will use a catamaran with two hulls and four buoy-
ancy force generators, including one fore and one aft on each hull.

The Sail, Rudder, and Hydrofoils

We will use aerodynamics to provide both the sail and the rudder for our boat. The
rudder is like the rudder on the aircraft: it acts to keep the boat going straight (or
to turn under the command of the player). On many sailboats, there is both a rudder
and a dagger board. The dagger board is a large vertical fin that keeps the boat moving
in a straight line and keeps it from easily tipping over when the wind catches the sail.
The rudder is a smaller vertical fin that can be tilted for turning. For our needs we can
combine the two into one. In fact, in many high-performance sailing boats the two
are combined in a single structure.

The sail is the main driving force of the boat, as it converts wind into forward
motion. It acts very much like an aircraft wing, turning air flow into lift. In the case
of a sailing boat, the lift is used to propel the boat forward. There is a misconception
that the sail simply catches the air and the wind drags the boat forward. This can be
achieved, certainly, and downwind an extra sail (the spinnaker) is often deployed to
increase the aerodynamic drag of the boat, and cause it to be pulled along relative to
the water. In most cases, however, the sail acts more like a wing than a parachute.
In fact, the fastest boats can achieve incredible lift from their sails, and travel
considerably faster than the wind speed.

Both the rudder and the sail are control surfaces; they can be adjusted to get the
best performance. They are both rotated, rather than having pop-up control surfaces
to modify their behavior (although the sail can have its tension adjusted on some
boats). We will therefore implement a force generator for control surfaces using the
second possible adjustment approach from Section 11.2.1: rotating the control sur-
face. The force generator looks like this:

246 Chapter 11 The Rigid-Body Physics Engine

Excerpt from file include/cyclone/fgen.h

/**
* A force generator with an aerodynamic surface that can be
* reoriented relative to its rigid body.
*/

class AngledAero : public Aero {
/**
* Holds the orientation of the aerodynamic surface relative
* to the rigid body to which it is attached.
*/
Quaternion orientation;

public:
/**
* Creates a new aerodynamic surface with the given properties.
*/
AngledAero(const Matrix3 &tensor, const Vector3 &position,

const Vector3 *windspeed);

/**
* Sets the relative orientation of the aerodynamic surface
* relative to the rigid body that it is attached to. Note that
* this doesn’t affect the point of connection of the surface
* to the body.
*/
void setOrientation(const Quaternion &quat);

/**
* Applies the force to the given rigid body.
*/
virtual void updateForce(RigidBody *body, real duration);

};

Note that the force generator keeps an orientation for the surface, and uses this,
in combination with the orientation of the rigid body, to create a final transformation
for the aerodynamic surface. There is only one tensor, but the matrix by which it is
transformed is now the combination of the rigid body’s orientaton and the adjustable
orientation of the control surface.

Although I won’t add them in our example, we could also add wings to the boat,
that is, hydrofoils to lift it out of the water. These act just like wings on an aircraft,
producing vertical lift. Typically, on a hydrofoil boat, they are positioned lower than
any part of the hull. The lift raises the boat out of the water (whereupon there is no
buoyancy force, of course, but no drag from the hull either) and only the hydrofoils

11.3 Summary 247

FIGURE 11.3 Screenshot of the sailboat demo.

remain submerged. The hyrdofoils can be easily implemented as modified surface
force generators. The modification needs to make sure that the boat doesn’t start fly-
ing: it generates no lift once the foil has left the water. In practice, a hydrofoil is often
designed so that it produces less lift the higher the boat is out of the water, so the boat
rapidly reaches its optimum cruising height. This behavior also wouldn’t be difficult
to implement by scaling back the tensor-generated force based on how near the wing
is to the surface of the water. These modifications form part of one of the exercises for
this chapter.

The Sailing Example

The sailboat demo in the accompanying source code puts all these bits together. You
can control a catamaran on a calm ocean. The orientation of the sail and rudder are
the only adjustments you can make. The prevailing wind direction and strength are
indicated, as you can see from the screenshot in Figure 11.3.

The boat is set up with four buoyancy force generators, a sail, and a rudder. The
wind direction changes slowly but randomly over time. It is updated in each frame
with a simple recency weighted random function.

The update of the boat is exactly the same as for the aircraft demo, and user input
is also handled as before. See the accompanying source code for a complete listing.

11.3 Summary

In this chapter, we’ve met a set of real-game examples where our physics engine com-
bines with real-world physics knowledge to produce a believable simulation. In the
case of both sailing and flight, we use a simplification of fluid dynamics to quickly
and simply generate believable behavior.

248 Chapter 11 The Rigid-Body Physics Engine

The aerodynamic tensor isn’t sufficient for games that intend to simulate flight or
sailing accurately. We’d need to do a lot more work for that. But as they stand they are
perfectly sufficient for games that are not intended to be realistic.

The situations I chose for this chapter were selected carefully, however, not to
embarrass the physics engine. As it stands, our engine is less capable than the mass
aggregate engine we built in Part II of the book. To make it truly useful, we need to add
collisions back in. Unfortunately, with rotations in place this becomes a significantly
more complex process than we saw in Chapter 7. It is worth taking the time to get it
right. In that spirit, before we consider the physics of collisions again, we’ll build the
code to detect and report collisions in our game. Part IV of the book does that.

11.4 Projects

Mini-Project 11.1
(a) Add a new force generator to the flightsim demo to represent the propul-

sion force from the aircraft’s engines (this is currently hardcoded in the update
method).

(b) Allow the player to change the power going to the engines.

Mini-Project 11.2
Create a force generator, as in the previous project, to represent the propulsion of

the aircraft. Allow the player to control the power of the propulsion and allow it to
swivel between a forward force and a downward force. This will allow your aircraft to
perform vertical take-off maneuvers.

Mini-Project 11.3
Change the sailing demo to represent a speedboat rather than a sailing boat. Make
sure that the boat can’t get any propulsion power when it has bounced out of the
water.

Project 11.1
Create an airplane racing game. Using a simple aerodynamic model, allow the player
to control an aircraft, including the power sent to its engines. The game level should
consist of a series of hoops that need to be navigated in order in the minimum amount
of time. You need to write code to detect whether a plane has passed through a hoop,
but you shouldn’t need to detect collisions with the hoop itself. The game should
display the best lap time and the current lap time. You can extend the game with
different airplanes having different performance and aerodynamic features.

Project 11.2
Create a rigid-body remake of the classic game Thrust. The player controls a ship
that is under the influence of (very weak) gravity, but can be rotated and propelled.

11.4 Projects 249

If the ship hits a wall, it is destroyed (this neatly sidesteps our lack of contact physics).
Use torque generators controlled by the player for rotation, and a force generator for
propulsion.1 Start with a simple shape for the level, such as a plane. This allows you to
write the collision detect routine simply. This project can be extended with the ideas
in the next part of the book to implement more complex level geometry.

1. The original Thrust game, by Jeremy Smith, did not use physics to control the rotation of the ship. The
ship rotated at a constant velocity when the appropriate key was pressed.

This page intentionally left blank

Part IV

Collision Detection

This page intentionally left blank

12
Collision

Detection

n this chapter and the next we’ll take a break from building the physics simulation
Iand look at collision detection. In Chapter 7, we added contacts and collisions to
a particle engine, but we removed them to introduce rotating rigid bodies. We’re now
on the road to putting them back in the engine.

This chapter and Chapter 13 give an overview of where the contact and collision
information comes from, and how it is generated. The collision detection system we’ll
build is quite simple and relatively rudimentary. It is enough to get your physics sys-
tem working, but I have avoided going into too much detail. There are books longer
than this one on this subject alone, and there are many pitfalls and complications that
would require discussion.

In Chapter 7, I simply assume that contacts and collisions are generated some-
how and provided to the engine for resolution. Beyond very simple cases such as
rods and cables, we didn’t see how that collision detection is performed. If you are
working with an existing collision detection library, then you can take this same
approach and skip to Chapter 14, where we look at how contact data is processed.
There are a number of excellent collision detection libraries available, some open-
source. If your aim is to focus on building the physics, then that might be the best
option.

If you are working with an existing game engine, it is likely to have a collision
detection system that you can use. It is still worth reading through the following two
chapters, however. Some rendering engines provide collision detection routines that
are inefficient (many use the same geometry as will be drawn, which is a waste of

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00012-7 253

254 Chapter 12 Collision Detection

processing time) or don’t provide the kind of detailed contact data that the physics
system needs.

I will step through a particular approach to collision detection that is useful for
smaller games. It is also useful as a jumping-off point to a more complete system, and
to raise the kinds of issue that are common to all collision detectors.

If you need to build a complete and comprehensive collision detection system,
then I’d recommend Ericson [2005], in the same series as this book. It contains a
great deal of detail on tradeoffs, architecture, and optimization that are invaluable for
a robust end product.

12.1 The Collision Detection Pipeline

Collision detection can be a very time-consuming process. Each object in the game
may be colliding with any other object in the game, and each such pair needs to be
checked. If there are hundreds of objects in the game, there may be hundreds of thou-
sands of checks needed. And to make things worse, each check needs to understand
the geometry of the two objects involved, which might consist of thousands of poly-
gons. So to perform a complete collision detection, we may need huge numbers of
time-consuming checks. This is not possible in the fraction of a second that we have
between frames.

Fortunately, there is plenty of room for improvement. The two key problems—
having too many possible collisions and having time-consuming checks—have inde-
pendent solutions.

To reduce the number of checks needed, we can use a two-step process:

� First, we try to find sets of objects that are possibly in contact with one another,
but without being too concerned about whether they actually are. This is typ-
ically quite a fast process that can use rules of thumb and specialized data
structures to eliminate the vast majority of possible collision checks. It is called
coarse collision detection or broad-phase collision detection.

� Then a second chunk of code looks at the candidate collisions and does the
check to determine whether they actually are in contact. This is fine colli-
sion detection or narrow-phase collision detection. Objects that are in contact
are examined to determine the exact data for that contact (we saw this in
Chapter 7, where the Contact data structure has a number of pieces of data
that need to be provided). This is sometimes called contact generation. The
results of this step form the input to the physics engine.

The first element is covered in this chapter, and the second will be covered in
Chapter 13.

Figure 12.1 shows the collision detection pipeline diagrammatically. The broad-
phase detector takes as input all of the objects in the game world. It is responsible
for generating a series of object pairs that need further checking. The narrow-phase
detector takes these pairs and performs the geometry-based checking.

12.2 Broad-Phase Collision Detection 255

Broad phase
detects potential collisions

Narrow phase
checks each potential
collision for actual collision

FIGURE 12.1 The collision detection pipeline.

To reduce the time taken for each check, the geometry is typically simplified. A
special geometry just for collision detection is often created, making contact tests far
simpler. This is primarily an issue when we get to narrow-phase collision detection,
so it will be discussed in Section 13.1.

12.2 Broad-Phase Collision Detection

The first phase of collision detection is tasked with quickly filtering down all the possi-
ble collisions into a much smaller set. This smaller set is then sent to the narrow-phase
collision detector to analyze each object’s geometry and find collisions and contacts.

Although we can separate these two steps conceptually, we don’t always separate
them in code. It is usually more convenient to have the broad-phase collision detector
simply call the narrow-phase collision detector for each possible collision, as it finds
them. I have seen developers separate these pieces of code, however, when they know
they’ll be using a range of different approaches for broad-phase or narrow-phase
collision detection: having separate chunks of code allows them to be configured more
easily.

Another benefit of keeping these separate is the ability to add other helper classes
in the pipeline. An example is shown in Figure 12.2. Here an additional layer of code
can take the set of candidate collisions from the broad-phase collision detector and
further filter them. In this book we’ll assume a two-stage process, as this is by far the
most common.

256 Chapter 12 Collision Detection

Broad phase
detects potential collisions

Filtering phase
rejects some potential collisions

Narrow phase
checks each potential
collision for actual collision

FIGURE 12.2 A three-stage collision detection pipeline.

12.2.1 Requirements

Our broad-phase collision detector needs to have some key features:

� It should be conservative. In other words, all the collisions in the game should
be contained in the list of checks. It is allowed to generate checks that end up
not being collisions (called false positives), but it should not fail to generate
checks that would be collisions (called false negatives).

� It should generate as small a list as possible. In combination with the item
above, this means that the smallest list that it could return is the list of checks
that will actually lead to contacts. In that case, the coarse collision detection
would be performing a fully accurate collision detection, and there would be
no need for further checks. In practice, however, the set of checks it returns
will normally contain many false positives.

12.3 Bounding Volume Hierarchies 257

� It should be as fast as possible. It may be possible to generate close to the opti-
mum number of required checks, but it defeats the object of the coarse colli-
sion detector if it takes a long time to do so.

Most approaches to broad-phase collision detection rely on keeping additional
data about the objects in the scene, data that is not needed by the physics engine and
narrow-phase collision detector. Objects are held in a data structure that corresponds
to the structure of the scene. The collision detector can then query this data structure
and rapidly generate the candidate checks to pass on to the narrow-phase detector.

There are two major approaches to structuring this data: the first groups nearby
objects together, and then forms groups of groups, and so on; the second has a series
of slots for different areas of the scene, and places objects in their appropriate slot.
In this chapter, I have called the first approach bounding volume hierarchies and the
second spatial partitioning. Be aware that the latter term is somewhat fluid: it is most
commonly used in this way, but sometimes bounding volume hierarchies are also
described as spatial partitioning, because they too partition space in some way. We’ll
look at these two approaches in turn.

12.3 Bounding Volume Hierarchies

A bounding volume is an area of space that is known to contain all of an object. To
represent the volume for broad-phase collision detection, a simple shape is used, typ-
ically a sphere or a box. The shape is made large enough so that the entire object is
guaranteed to be inside of the shape. Figure 12.3 shows two objects with spherical
bounding volumes.

The shape can then be used to perform some simple intersection tests. If two
objects have bounding volumes that don’t touch, then there is no way in which the
objects within them can be in contact. We can perform rapid intersection tests on the

Complex object

Spherical
bounding
volume

FIGURE 12.3 A spherical bounding volume.

258 Chapter 12 Collision Detection

bounding volumes, and only if they overlap do we need to do further work to see if
the objects intersect. This matches our requirements from Section 12.2.1.

Ideally, bounding volumes should be as close fitting to their object as possible. If
two close-fitting bounding volumes touch, then their objects are likely to touch. If
most of the space inside the bounding volumes isn’t occupied, then touching bound-
ing volumes is unlikely to mean that the objects are in contact.

Spheres are convienient because they are easy to represent. Storing the center of
the sphere and its radius is enough:

struct BoundingSphere
{

Vector3 center;
real radius;

};

It is also very easy to check whether two spheres overlap (see Chapter 13 for more
detail and code). They overlap if the distance between their centers is less than the
sum of their radii. Spheres are a good choice of bounding volumes for most objects.

Rectangular boxes are also often used. They can be represented as a central point
and a set of dimensions, one for each direction. These dimensions are often called
“half-sizes” or “half-widths” because they represent the distance from the central
point to the edge of the box, which is half the overall size of the box in the corre-
sponding direction.

struct BoundingBox
{

Vector3 center;
Vector3 halfSize;

};

There are two common ways to use boxes as bounding volumes: either aligned
to the world coordinates (called axis-aligned bounding boxes, or AABBs), or aligned
to the object coordinates (called object-bounding boxes, or OBBs). It is common for
OBBs to be able to be oriented differently from the object they are enclosing. They
still rotate with the object and are expressed in object space, but they have a constant
offset orientation. This allows even tighter fitting in some cases, but adds an extra
orientation to their representation and some overhead when working with them. The
BoundingBoxdata structure defined above would work for either axis-aligned bound-
ing boxes or object-bounding boxes with the same orientation as the rigid body they
contained. For a general object-bounding box, we’d need to have a separate orien-
tation quaternion in the bounding box structure. Spheres have no such distinction
because they don’t change under rotation.

12.3 Bounding Volume Hierarchies 259

For tall and thin objects, a bounding box will fit much more tightly than a bound-
ing sphere. But detecting touching boxes is much more complex than detecting touch-
ing spheres, and so spheres are often a good place to start.

There are other bounding volume representations possible, with their own
strengths and weaknesses. None are very widespread, however, so I will ignore them
for the purposes of this chapter. They are more commonly used for narrow-phase
detection, and so are discussed in Ericson [2005].

In the rest of this chapter, I will use only bounding spheres. Anything that can
be done with bounding spheres can be done with bounding boxes. Typically, the box
version has exactly the same algorithm, but will have a more complex (and therefore
time-consuming) intersection test. To come to grips with the algorithms, bounding
spheres are simpler to work with.

As a tradeoff, however, it’s important to remember that we’re using these volumes
as a first check to see if objects are touching. If we had more accurate bounding vol-
umes, then the first check would be more accurate, so we’d have less follow-on work
to do. In many cases (particularly with lots of box-like things in the game, such as
crates), bounding spheres will generate lots more potential collisions than bounding
boxes. Then the time we save in doing the simpler sphere collision tests will be lost
by having lots of potential collisions to reject using the more complex narrow-phase
collision detection routines in Chapter 13.

12.3.1 Hierarchies

With each object enclosed in a bounding volume, we can do a cheap test to see if
objects are likely to be in contact. If the bounding volumes are touching, then the
check can be returned from the broad-phase collision detector for a more detailed
examination by the narrow-phase collision detector.

This speeds up collision detection dramatically, but it still involves checking every
pair of objects. We can avoid doing most of these checks by arranging bounding vol-
umes in hierarchies.

A bounding volume hierarchy (BVH) has each object in its bounding volume at
the leaves of a tree data structure. The lowest-level bounding volumes are connected
to parent nodes in the data structure, each of which has its own bounding volume. The
bounding volume for a parent node is big enough to enclose all the objects descended
from it.

We could calculate the bounding box at each level in the hierarchy so that it best
fits the object contained within it. This would give us the best possible set of hier-
archical volumes. Many times, however, we can take the simpler route of choosing a
bounding volume for a parent node that encompasses the bounding volumes of all
its descendants. This leads to larger bounding volumes near the root of the tree, but
recalculation of bounding volumes can be much faster. There is a tradeoff, therefore,
between query performance (determining potential collisions) and the speed of build-
ing the data structure.

Figure 12.4 illustrates a hierarchy containing four objects and three layers. Note
that there are no objects attached to parent nodes in the figure. This isn’t an absolute

260 Chapter 12 Collision Detection

Coverage

Hierarchy

A B C D

A

B

C

D

FIGURE 12.4 A spherical bounding volume hierarchy.

requirement: we could have objects higher in the tree, providing that their bounding
volume completely encompasses their descendants. In most implementations, how-
ever, objects are only found at the leaves. It is also common practice to have only
two children for each node in the tree (i.e., a binary tree data structure). There are
mathematical reasons for doing this (in terms of the speed of execution of collision
queries), but the best reason to use a binary tree is ease of implementation: it makes
the data structure compact, and simplifies several of the algorithms we discuss in the
following sections.

We can use the hierarchy to speed up collision detection: if the bounding volumes
of two parent nodes in the tree do not touch, then none of the objects that descend
from those nodes can possibly be in contact. By testing two bounding volumes high
in the hierarchy, we can exclude all their descendants immediately.

If the two high-level nodes do touch, then the children of each node need to be
considered. Only combinations of these children that touch can have descendants that
are in contact. The hierarchy is descended recursively; at each stage only those com-
binations of volumes that are touching are considered further. The algorithm finally
generates a list of potential contacts between objects. This list is exactly the same as
would have been produced by considering each possible pair of bounding volumes,
but it is typically found to be many times faster.1

Assuming that the hierarchy encompasses all the objects in the game, the code to
get a list of potential collisions looks like this:

Excerpt from file include/cyclone/collide_broad.h

/**
* Stores a potential contact to check later.
*/

1. I say typically because it is possible that a bounding hierarchy would be slower to query than checking
all possible combinations. If all the objects in the game are touching or nearly touching one another, then
almost every bounding volume check will come up positive. In this case, having the overhead of descending
the hierarchy adds time. Fortunately, this situation only occurs rarely, and usually only when there are very
few objects. With a larger number of objects, there are checks that will fail, and the hierarchy becomes
faster.

12.3 Bounding Volume Hierarchies 261

struct PotentialContact
{

/**
* Holds the bodies that might be in contact.
*/

RigidBody* body[2];
};

/**
* A template class for nodes in a bounding volume hierarchy. This
* class uses a binary tree to store the bounding volumes.
*/

template<class BoundingVolumeClass>
class BVHNode
{
public:

/**
* Holds the child nodes of this node.
*/

BVHNode * children[2];

/**
* Holds a single bounding volume encompassing all the
* descendants of this node.
*/

BoundingVolumeClass volume;

/**
* Holds the rigid body at this node of the hierarchy.
* Only leaf nodes can have a rigid body defined (see isLeaf).
* Note that it is possible to rewrite the algorithms in this
* class to handle objects at all levels of the hierarchy,
* but the code provided ignores this vector unless firstChild
* is NULL.
*/

RigidBody * body;

/**
* Checks whether this node is at the bottom of the hierarchy.
*/

bool isLeaf() const
{

return (body != NULL);
}

262 Chapter 12 Collision Detection

/**
* Checks the potential contacts from this node downward in
* the hierarchy, writing them to the given array (up to the
* given limit). Returns the number of potential contacts it
* found.
*/
unsigned getPotentialContacts(PotentialContact* contacts,

unsigned limit) const;
};

// Note that because we’re dealing with a template here, we
// need to have the implementations accessible to anything that
// imports this header.

template<class BoundingVolumeClass>
bool BVHNode<BoundingVolumeClass>::overlaps(

const BVHNode<BoundingVolumeClass> * other
) const

{
return volume->overlaps(other->volume);

}

template<class BoundingVolumeClass>
unsigned BVHNode<BoundingVolumeClass>::getPotentialContacts(

PotentialContact* contacts, unsigned limit
) const

{
// Early out if we don’t have the room for contacts, or
// if we’re a leaf node.
if (isLeaf() || limit == 0) return 0;

// Get the potential contacts of one of our children with
// the other.
return children[0]->getPotentialContactsWith(

children[1], contacts, limit
);

}

template<class BoundingVolumeClass>
unsigned BVHNode<BoundingVolumeClass>::getPotentialContactsWith(

const BVHNode<BoundingVolumeClass> *other,
PotentialContact* contacts,

12.3 Bounding Volume Hierarchies 263

unsigned limit
) const

{
// Early out if we don’t overlap or if we have no room
// to report contacts.
if (!overlaps(other) || limit == 0) return 0;

// If we’re both at leaf nodes, then we have a potential contact.
if (isLeaf() && other->isLeaf())
{

contacts->body[0] = body;
contacts->body[1] = other->body;
return 1;

}

// Determine which node to descend into. If either is
// a leaf, then we descend the other. If both are branches,
// then we use the one with the largest size.
if (other->isLeaf() ||

(!isLeaf() && volume->getSize() >= other->volume->getSize()))
{

// Recurse into self.
unsigned count = children[0]->getPotentialContactsWith(

other, contacts, limit
);

// Check that we have enough slots to do the other side too.
if (limit > count) {

return count + children[1]->getPotentialContactsWith(
other, contacts+count, limit-count
);

} else {
return count;

}
}
else
{

// Recurse into the other node.
unsigned count = getPotentialContactsWith(

other->children[0], contacts, limit
);

// Check that we have enough slots to do the other side too.
if (limit > count) {

264 Chapter 12 Collision Detection

return count + getPotentialContactsWith(
other->children[1], contacts+count, limit-count
);

} else {
return count;

}
}

}

This code can work with any kind of bounding volume hierarchy, as long as each
node implements the overlaps method to check whether two volumes overlap. The
bounding sphere hierarchy is implemented by instantiating this template with the
following BoundingSpherenode:

Excerpt from file include/cyclone/collide_broad.h

/**
* Represents a bounding sphere that can be tested for overlap.
*/

struct BoundingSphere
{

Vector3 center;
real radius;

public:
/**
* Creates a new bounding sphere at the given center and radius.
*/
BoundingSphere(const Vector3 ¢er, real radius);

/**
* Creates a bounding sphere to enclose the two given bounding
* spheres.
*/
BoundingSphere(const BoundingSphere &one, const BoundingSphere &two);

/**
* Checks whether the bounding sphere overlaps with the other given
* bounding sphere.
*/
bool overlaps(const BoundingSphere *other) const;

};

12.3 Bounding Volume Hierarchies 265

Excerpt from file src/collide_broad.cpp

BoundingSphere::BoundingSphere(const BoundingSphere &one,
const BoundingSphere &two)

{
Vector3 centerOffset = two.center - one.center;
real distance = centerOffset.squareMagnitude();
real radiusDiff = two.radius - one.radius;

// Check whether the larger sphere encloses the small one.
if (radiusDiff*radiusDiff >= distance)
{

if (one.radius > two.radius)
{

center = one.center;
radius = one.radius;

}
else
{

center = two.center;
radius = two.radius;

}
}

// Otherwise, we need to work with partially
// overlapping spheres.
else
{

distance = real_sqrt(distance);
radius = (distance + one.radius + two.radius) * ((real)0.5);

// The new center is based on one’s center, moved toward
// two’s center by an amount proportional to the spheres’
// radii.
center = one.center;
if (distance > 0)
{

center += centerOffset * ((radius - one.radius)/distance);
}

}

}

bool BoundingSphere::overlaps(const BoundingSphere *other) const

266 Chapter 12 Collision Detection

{
real distanceSquared = (center - other->center).squareMagnitude();
return distanceSquared < (radius+other->radius)*(radius+other

->radius);
}

In a full collision detection system, it is common to have a method to query the
hierarchy against a known object as well. This is simpler still, as the object’s bounding
volume is checked against the root of the hierarchy, and as long as it overlaps, each
descendant is checked recursively.

12.3.2 Building the Hierarchy

An important question to ask at this stage is how the hierarchy gets constructed. It
may be that your graphics engine has a bounding volume hierarchy already in place.
Bounding volume hierarchies are used extensively to reduce the number of objects
that need to be drawn. The root node of the hierarchy has its volume tested against
the current camera. If any part of the bounding volume can be seen by the camera,
then its child nodes are checked recursively. If a node can’t be seen by the camera,
then none of its descendants need to be checked. This is the same algorithm we used
for collision detection: in fact, it is effectively checking for collisions with the viewable
region (called the camera frustum) of the game level.

In some cases, a graphics engine may not have an existing bounding volume hier-
archy to determine what objects can be seen, or if you are creating a game from scratch
you’ll have to create your own. Ideally, the hierarchy should have some key properties:

� The volume of the bounding volumes should be as small as possible at each
level of the tree. This means that when constructing a parent node, we should
choose child nodes that are close together.

� Child bounding volumes of any parent should overlap as little as possible.
Often this clashes with the first requirement, and in general it is better to pre-
fer smaller volumes than minimal overlaps. In fact, if you choose a minimal
overlap at some low level of the tree, it is likely to cause greater overlaps higher
up the tree. Consequently, a tree with an overall low overlap is likely to fulfill
both requirements.

� The tree should be as balanced as possible. We want to avoid very deep
branches while others are very shallow. The worst-case scenario is a tree with
only one long branch. In this case, the advantage of having a hierarchy at all
is minimal. The biggest speed-up is gained when all branches are roughly the
same length.

There are various ways to construct a hierarchy, and each is a compromise between
speed and quality. For worlds where objects don’t move much, a hierarchy can be

12.3 Bounding Volume Hierarchies 267

created offline (i.e., not when the game is running, but rather while the level is loading,
or more likely as part of building the level before it ships). For very dynamic worlds
where objects are constantly in motion, the hierarchy needs to be rebuilt during the
game.

I will give an overview and flavor of how hierarchies can be constructed, but there
are many more variations and techniques than I can describe in detail here. You can
find more information in Ericson [2005].

There are three algorithm families for building a BVH:

Bottom Up: The bottom-up approach (illustrated in Figure 12.5) starts with a
list of unprocessed bounding volumes corresponding to individual objects. Pairs
of these volumes are chosen based on our goals for a good hierarchy. A new parent
node is added that encloses the pair. This parent node then replaces its two chil-
dren in the unprocessed list. The process continues until there is only one node
left in the list—this is the root of the hierarchy.

A

A

B

C

D

A

B

C

D

A

B

C

D

B C D

A B C D

A B C D

FIGURE 12.5 Bottom-up hierarchy building in action.

268 Chapter 12 Collision Detection

A
A

B

C

D

A

B

C

D

A

B

C

D

B

A B

C D

A B C D

C D

FIGURE 12.6 Top-down hierarchy building in action.

Top Down: The top-down approach (illustrated in Figure 12.6) starts with the
same unprocessed list as before. At each iteration of the algorithm, the objects in
the list are separated into two groups so that each group is clustered together. The
same algorithm then applies to each group, splitting it into two, until there is only
one object in each group. Each split represents a node in the tree.

Insertion: The insertion approach (illustrated in Figure 12.7) is the only one suit-
able for use during the game. It can adjust the hierarchy without having to rebuild
it completely. The algorithm begins with an existing tree (it can be an empty tree,
if we are starting from scratch). An object is added to the tree by descending the
tree recursively: at each node the child is selected that would best accommodate

12.3 Bounding Volume Hierarchies 269

A

A B

A B C

A B C D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

FIGURE 12.7 Insertion hierarchy building in action.

the new object. Eventually an existing leaf is reached, which is then replaced by a
new parent containing both the existing leaf and the new object.

Each algorithm has many variations. The exact criteria used to group nodes
together has a major effect on the quality of the tree. The bottom-up approach gener-
ally searches for nearby objects to group; the top-down approach can use any number
of clustering techniques to split the set; and the insertion approach needs to decide
which child would be best to recurse into at each level of the tree. The specifics of the
tradeoffs involved are complex, and to get optimum results they require a good deal
of fine-tuning and experimentation.

270 Chapter 12 Collision Detection

Fortunately, even a simple implementation will give us reasonable tree quality,
and a good speed-up for the broad-phase collision detector. For our implementation,
I have selected an insertion algorithm, for the flexibility of being usable during the
game. Given the sphere hierarchy we created previously, we can implement the inser-
tion algorithm as follows:

Excerpt from file include/cyclone/collide_broad.h

template<class BoundingVolumeClass>
class BVHNode
{

// ... Other BVHNode code as before ...

/**
* Inserts the given rigid body, with the given bounding volume,
* into the hierarchy. This may involve the creation of
* further bounding volume nodes.
*/
void insert(RigidBody* body, const BoundingVolumeClass &volume);

};

template<class BoundingVolumeClass>
void BVHNode<BoundingVolumeClass>::insert(

RigidBody* newBody, const BoundingVolumeClass &newVolume
)

{
// If we are a leaf, then the only option is to spawn two
// new children and place the new body in one.
if (isLeaf())
{

// Child one is a copy of us.
children[0] = new BVHNode<BoundingVolumeClass>(

this, volume, body
);

// Child two holds the new body.
children[1] = new BVHNode<BoundingVolumeClass>(

this, newVolume, newBody
);

// And we now lose the body (we’re no longer a leaf).
this->body = NULL;

// We need to recalculate our bounding volume.
recalculateBoundingVolume();

12.3 Bounding Volume Hierarchies 271

}

// Otherwise, we need to work out which child gets to keep
// the inserted body. We give it to whoever would grow the
// least to incorporate it.
else
{

if (children[0]->volume.getGrowth(newVolume) <
children[1]->volume.getGrowth(newVolume))

{
children[0]->insert(newBody, newVolume);

}
else
{

children[1]->insert(newBody, newVolume);
}

}
}

At each node in the tree, we choose the child whose bounding volume would be
least expanded by the addition of the new object. The new bounding volume is cal-
culated based on the current bounding volume and the new object. The line between
the centers of both spheres is found, as is the distance between the extremes of the
two spheres along that line. The center point is then placed on that line between the
two extremes, and the radius is half the calculated distance. Figure 12.8 illustrates this
process.

Note that the combined bounding sphere encompasses both child bounding
spheres—typically, the sphere that encloses the child objects is not the smallest one.
We suffer this extra wasted space for performance reasons. To calculate the bounding
sphere around two objects, we’d need to get down to the nitty-gritty of their geome-
tries. For very complex objects, this could make the process too slow for in-game use.

We can perform a similar algorithm to remove an object. In this case, it is useful
to be able to access the parent node of any node in the tree, so we need to extend
the data structure holding the hierarchy to have this parent link. It now looks like the
following:

Excerpt from file include/cyclone/collide_broad.h

template<class BoundingVolumeClass>
class BVHNode
{

// ... Other BVHNode code as before ...

/**

272 Chapter 12 Collision Detection

Center
of new
parent
sphereSphere 1

Sphere 2

FIGURE 12.8 Working out a parent bounding sphere.

* Holds the node immediately above us in the tree.
*/
BVHNode * parent;

};

Removing an object from the hierarchy involves replacing its parent node with its
sibling, and recalculating the bounding volumes further up the hierarchy. Figure 12.9
illustrates this process. It can be implemented as follows:

Excerpt from file include/cyclone/collide_broad.h

template<class BoundingVolumeClass>
class BVHNode
{

// ... Other BVHNode code as before ...

/**
* Deletes this node, removing it first from the hierarchy,

12.3 Bounding Volume Hierarchies 273

A

A

A CB

A CB

C

C

D DB B

C

A

B

C

A

B

C

D Removed

Recalculate
parents

FIGURE 12.9 Removing an object from a hierarchy.

* along with its associated rigid body and child nodes. This
* method deletes the node and all its children (but obviously
* not the rigid bodies). This also has the effect of deleting
* the sibling of this node, and changing the parent node so
* that it contains the data currently in the system. Finally,
* it forces the hierarchy above the current node to reconsider
* its bounding volume.
*/

~BVHNode();
};

274 Chapter 12 Collision Detection

template<class BoundingVolumeClass>
BVHNode<BoundingVolumeClass>::~BVHNode()
{

// If we don’t have a parent, then we ignore the sibling
// processing.
if (parent)
{

// Find our sibling.
BVHNode<BoundingVolumeClass> *sibling;
if (parent->children[0] == this) sibling = parent->children[1];
else sibling = parent->children[0];

// Write its data to our parent.
parent->volume = sibling->volume;
parent->body = sibling->body;
parent->children[0] = sibling->children[0];
parent->children[1] = sibling->children[1];

// Delete the sibling (we blank its parent and
// children to avoid processing/deleting them).
sibling->parent = NULL;
sibling->body = NULL;
sibling->children[0] = NULL;
sibling->children[1] = NULL;
delete sibling;

// Recalculate the parent’s bounding volume.
parent->recalculateBoundingVolume();

}

// Delete our children (again, we remove their
// parent data so we don’t try to process their siblings
// as they are deleted).
if (children[0]) {

children[0]->parent = NULL;
delete children[0];

}
if (children[1]) {

children[1]->parent = NULL;
delete children[0];

}
}

12.3 Bounding Volume Hierarchies 275

12.3.3 Subobject Hierarchies

Some objects you’ll need to simulate are large or have awkward shapes. It is difficult
to create any simple bounding volume that fits tightly around them. For any partic-
ular bounding volume shape, there will be additional objects that simply don’t suit
that format. In each case the bounding volume is too large, and the coarse collision
detector will return too many false positives.

To solve this problem, it is possible to use multiple bounding volumes for one
object, arranged in a hierarchy. In Figure 12.10, we have a long thin object with a pro-
trusion. Neither the bounding box nor sphere fit nicely around it. If we use a hierarchy
of bounding objects, we can provide a much closer fit. In this case, the bounding boxes
provide a better fit, although using a hierarchy of lots of bounding spheres would also
work.

The algorithm for detecting collisions is the same as for the single-object hierar-
chical bounding volume. Rather than stopping at the bounding volume for the whole
object, we can perform a finer-grained set of checks while still using the simple bound-
ing volume comparison. The only adjustment we’ll need is to never generate poten-
tial contacts between the different bounding volumes of one object. In the figure, for
example, the two boxes will always be in contact, and we won’t want the collision
resolution system to do anything about it.

We could also use the same approach to build hierarchy for the game level itself.
Clearly, most game levels are so large that their bounding volume is likely to encom-
pass all other objects (although outdoor levels represented as a box can exclude objects
at a high altitude). To get a better fit, we can decompose the level into a hierarchy of
bounding volumes. Because of the box-like structure of most game levels (rectan-
gular walls, flat floors, and so on), a bounding box hierarchy is typically better than
bounding spheres.

While this is acceptable, provides good performance, and has been used in some
games, a more popular approach is to use a spatial partitioning scheme to generate
collisions with the game level.

Box 1

Box 2

FIGURE 12.10 A subobject bounding volume hierarchy.

276 Chapter 12 Collision Detection

12.4 Spatial Partitioning

Several different approaches to coarse collision detection fall under the banner of
spatial partitioning. The distinction between the data structures used in spatial parti-
tioning algorithms (I’ll call these spatial data structures) and bounding volume hier-
archies is somewhat blurry.

A bounding volume hierarchy groups objects together based on their relative posi-
tions and sizes. If the objects move, then the hierarchy will move too. For different sets
of objects, the hierarchy will have a very different structure.

A spatial data structure is locked to the world. If an object is found at some loca-
tion in the world, it will be mapped to a particular position in the data structure.
A spatial data structure doesn’t change its structure depending on what objects are
placed within it. This makes it much easier to construct the data structure, because
we can normally place objects directly in the data structure based on their coordinates.

In reality the line between the two is blurred, and a combination of techniques is
sometimes used (hierarchies embedded in a spatial data structure, for example, or less
commonly a spatial data structure at one node in a hierarchy). It is also worth noting
that even when no bounding volume hierarchies are used, it is very common to use
bounding volumes around each object. In the remainder of this chapter, I will assume
that objects are wrapped in a bounding volume: it makes many of the algorithms far
simpler.

This section looks at three common spatial partitioning schemes, each with its
own spatial data structures: binary space partition (BSP) trees, quad- and oct-trees,
and grids. In most games, only one of these will be used.

12.4.1 Binary Space Partitioning

A BSP tree is queried in a similar way to a bounding volume hierarchy. It is a binary
tree data structure, and a recursive algorithm starts at the top of the tree and descends
into child nodes only if they are capable of taking part in a collision.

Rather than use bounding volumes, however, each node in the BSP defines a plane
that divides all space in two. It has two child nodes, one for each side of the plane.
Objects lying on the front side of the plane will be a descendant of one node, and
those on the back side will descend from the other. Objects that cross the plane are
handled differently: they can be directly attached to another child node;2 placed in the
child node that they are nearest to; or more commonly, placed in both child nodes.

The dividing planes at each node can have any position and orientation, allowing
all space to be divided up in arbitrary ways. Figure 12.11 shows a 2D version, but the
same structure works for 3D.

2. This is a common optimization, but strictly produces a ternary rather than a binary tree. It is still called
a BSP; however, I’ve never heard it called a ternary space partitioning tree.

12.4 Spatial Partitioning 277

Each plane in the BSP is represented as a vector position and a normalized vector
direction:

struct Plane
{

Vector3 position;
Vector3 direction;

};

This is a very common way to represent a plane: the position is any location on the
plane, and the direction points out at right angles to the plane. The same plane can be
generated if we reverse the direction: it would still be at right angles to the plane, but
facing in the opposite direction. The fact that the direction vector points out from one
side of the plane means that we can distinguish one side from the other. Any object is
either on the side where the direction is pointing (we’ll call this the “front” side), or
the other (“back”) side. This distinction allows us to select the appropriate child node
in the BSP.

To determine what side of the plane an object lies on, we make use of the geometric
interpretation of the scalar product, given in Chapter 2. Recall that the scalar product
allows us to find the component of one vector in the direction of another:

c = (po − pP) · dP

where po is the position of the object we are interested in (we normally use the position
of the center of its bounding volume), pP is the position of any point on the plane
(i.e., the point we are using to store the plane), and dP is the direction that the plane
is facing.

If c is positive, then the center of the object lies on the front side of the plane. If it
is negative, then the object lies on the back side. If c is zero, then it lies exactly on the
plane. The direction vector, dP , should be a normalized vector, in which case |c | gives
the distance of the object from the plane.

Assuming that the object has a spherical bounding volume, we can determine
whether it is completely on one side of the plane by checking if

|c | ≥ ro

where ro is the radius of the bounding volume for the object.
We can build a BSP tree from nodes that contain a plane and two child nodes:

struct BSPNode
{

Plane plane;
BSPNode front;

278 Chapter 12 Collision Detection

BSPNode back;
};

In practice, each child node (front and back) can hold either another node or a set of
objects. Unlike for bounding volume hierarchies, BSPs normally allow any number of
objects at a leaf of the tree.

This could be implemented in C++ as follows:

typedef vector<Object*> BSPObjectSet;

enum BSPChildType
{

NODE,
OBJECTS

};

struct BSPChild
{

BSPChildType type;

union {
BSPNode *node;
BSPObjectSet *objects;

};
};

struct BSPNode
{

Plane plane;
BSPChild front;
BSPChild back;

};

or using polymorphism, inheritance, and C++ runtime time inference (RTTI):

struct BSPElement
{
};

struct BSPObjectSet : public BSPElement
{

12.4 Spatial Partitioning 279

vector<Object*> objects;
};

struct BSPNode : public BSPElement
{

Plane plane;
BSPElement front;
BSPElement back;

};

The leaves of all spatial data structures will usually be capable of carrying any
number of objects. This is where bounding volume hierarchies can be useful—the
group of objects at the leaf of the BSP can be represented as a BVH:

enum BSPChildType
{

NODE,
OBJECTS

};

struct BSPChild
{

BSPChildType type;

union {
BSPNode *node;
BoundingSphereHierarchy *objects;

};
};

struct BSPNode
{

Plane plane;
BSPChild front;
BSPChild back;

};

Let’s assume that we have a BSP tree where objects that intersect a plane are placed
in both child nodes. In other words, one object can be at several locations in the tree.
This is the most common approach to intersecting plane-spanning objects, in my
experience.

280 Chapter 12 Collision Detection

The only collisions that can possibly occur are between objects that are at the same
leaf in the tree. We can simply consider each leaf of the tree in turn, if it has at least
two objects contained within it; then all pair combinations of those objects can be
sent to the fine collision detector for detailed checking.

If we place a bounding volume hierarchy at the leaves of the BSP tree, we can
then call the BVH algorithm for each hierarchy. In this case, we have two broad-phase
collision detection algorithms working in concert.

If there are many objects, some large objects, or lots of partition planes, then hav-
ing an object in multiple branches of the tree can lead to much larger data struc-
tures and poor performance. The algorithm above can be modified to detect collisions
when overlapping objects are only sent to one child node, or are held in a third child
with the parent node. One of the exercises in this chapter expands on this idea.

BSP trees are common in rendering engines, and just like for bounding volume
hierarchies, you may be able to use an existing implementation for your physics sys-
tem. They are also commonly used to detect collisions between the level geometry
and the game level. Figure 12.11 shows a small BSP for part of a game level. Here
the BSP doesn’t hold objects at its leaves, but a Boolean indication of whether the
object is colliding or not. An object is tested against each plane, recursively. If it inter-
sects the plane, both children are checked; otherwise, only one is checked, as before.
If the object reaches a leaf that is marked as a collision, then we know a collision has
occurred.

Because most collisions will occur between moving objects and the level geometry
(which typically cannot change or move in any way), the BSP approach is very useful.
Unfortunately, it requires a complex preprocessing stage to build an optimal BSP from
the level geometry.

C D

B

A

A
C

D
B

FIGURE 12.11 A BSP for level geometry.

12.4 Spatial Partitioning 281

12.4.2 Oct-Trees and Quad-Trees

Oct-trees and quad-trees are spatial tree data structures with many similarities to both
BSPs and BVHs. Quad-trees are used for two dimensions (or three dimensions where
most objects will be stuck on the ground), and oct-trees for three dimensions. In many
3D games, a quad-tree is as useful as an oct-tree and requires less memory, so I’ll focus
on that first.

A quad-tree is made up of a set of nodes, each with four descendants. Each node
splits space into four areas that intersect at a single point. A node can be represented
as a vector position and four children:

enum QuadTreeSector
{

BOTTOM_LEFT, BOTTOM_RIGHT, TOP_LEFT, TOP_RIGHT
};

class QuadTreeNode
{

Vector3 position;
QuadTreeNode child[4];

};

Testing which of the four areas an object lies in is a simple matter of comparing
the corresponding components of their position vector. For an object at (1,4,5) and
a QuadTreeNode at (2,0,0), we know that it must be in the top-left area as shown in
Figure 12.12, because the x coordinate of the object is less than the node’s coordinate,
and the z coordinate is greater. We can calculate which child in the array to use with
the following simple algorithm:

class QuadTreeNode
{

// ... Other code as before ...

unsigned int getChildIndex(const Vector3 &objectCentre)
{

unsigned int index = 0;
if (objectCentre.x > position.x) index += 1;
if (objectCentre.z > position.z) index += 2;
return index;

}
}

282 Chapter 12 Collision Detection

Object at
(1,4,5)

Quad-tree
node position
(2,0,0)

FIGURE 12.12 Identifying an object’s location in a quad-tree.

where the indices for each area match those in the QuadTreeSector enumerated type
defined above.

An oct-tree works in exactly the same way, but has eight child nodes, and performs
a comparison on each of the three vector components to determine where an object
is located:

enum QuadTreeSector
{

LOWER_BOTTOM_LEFT, LOWER_BOTTOM_RIGHT,
HIGHER_BOTTOM_LEFT, HIGHER_BOTTOM_RIGHT,
LOWER_TOP_LEFT, LOWER_TOP_RIGHT,
HIGHER_TOP_LEFT, HIGHER_TOP_RIGHT

};

class OctTreeNode
{

Vector3 position;
OctTreeNode child[8];

unsigned int getChildIndex(const Vector3 &objectCentre)
{

unsigned int index;
if (objectCentre.x > position.x) index += 1;

12.4 Spatial Partitioning 283

if (objectCentre.y > position.y) index += 2;
if (objectCentre.z > position.z) index += 4;
return index;

}
}

Although in theory the position vector for each node can be set anywhere, it is
common to see quad- and oct-trees with each node dividing the remaining space
in half. Starting with an axis-aligned bounding box that covers all the objects in the
game, the top-level node is positioned at the center point of this box. This effectively
creates four boxes of the same size (for a quad-tree; eight are created for an oct-tree).

Each of these boxes is represented by a node, whose subdivision position is at the
center point of that box, creating four (or eight) more boxes of the same size, and
so on down the hierarchy. There are two advantages in using this halving. First, it is
possible to get rid of the position vector from the QuadTreeNodeor OctTreeNodedata
structure, and to calculate the point on the fly during recursion down the tree. This
saves memory.

Second, it means we don’t need to perform any calculations to find the best loca-
tion to place each node’s split point. This makes it much faster to build the initial
hierarchy.

Other than their method of recursion and the number of children at each node,
the quad- and oct-tree work in exactly the same way as the BSP tree. The algorithms
that work with a BSP tree for determining collisions are the same with a quad- or
oct-tree, but the test is simpler and there are more possible children to recurse into.

Like with the BSP tree, we also have to decide where to put objects that overlap
the dividing lines. In the code examples above, I have assumed the object goes into the
child that contains its center. We could instead place the object into all the children
that it touches, as we did for the BSP tree, and have the same simple broad-phase
collision detection—only objects that are in the same leaf can possibly be in collision.

Quad-trees are particularly useful for outdoor scenes, where objects are placed on
a landscape. They are less useful than BSP trees for indoor games, because they can’t
be used as easily for collision detection with the walls of the level. And, just like BSP
trees, they are often used for optimizing rendering and may be part of any existing
rendering engine you are using.

Because we query a quad- or oct-tree in the same way we query BSPs, I will skip
the listing here. See the accompanying code for a complete implementation.

12.4.3 Grids

Our penultimate spatial partitioning scheme takes the idea of a recursive quad-tree
and regularizes it. If we draw the split pattern of a halving quad-tree that is several
layers deep, we see that it forms a grid (Figure 12.13).

284 Chapter 12 Collision Detection

FIGURE 12.13 A quad-tree forms a grid.

Rather than use a tree structure to represent a regular grid, we could simply use
a regular grid. A grid is an array of locations in which there may be any number of
objects. It is not a tree data structure, because the location can be directly determined
from the position of the object. This makes it much faster to find where an object is
located than recursing down a tree.

The grid has the following structure:

class Grid
{

unsigned int xExtent;
unsigned int zExtent;
ObjectSet *locations; // An array of size (xExtent * zExtent).

Vector origin;
Vector inverseCellSize;

};

where xExtent and zExtent store the number of cells in each direction of the grid; the
x and z components of the inverseCellSize vector contain 1 divided by the size of
each cell (we use 1 over the value rather than the actual size, to speed up the algorithm

12.4 Spatial Partitioning 285

below); the y component is normally set to 1; and origin is the origin of the grid. The
grid should be large enough so that any object in the game is contained within it.

To determine which location contains the center of an object, we use a simple
algorithm:

class Grid
{

// ... Previous code as before ...

def getLocationIndex(const Vector& objectCentre)
{

Vector square = objectCentre.componentProduct(inverseCellSize);
return (unsigned int)(square.x) + xExtent*(unsigned int)
(square.z);

}
};

In this code snippet, we first find which square the object is in by dividing each
component by the size of the squares (we do the division by multiplying by 1 over
the value). This gives us a floating-point value for each component in the vector
called square. These floating-point values need to be converted into unsigned inte-
gers. The integer values are then used to find the index in the grid array, which is
returned.

Just as in the BSP and quad-tree, we need to decide what to do with objects that
overlap the edge of a square. It is most common to simply place them into one cell
or the other, although it would be possible to place them into all cells they overlap.
As before, the latter makes it faster to determine the set of possible collisions, but can
take up considerably more memory. I’ll look at this simpler approach first, before
returning to the more complex case.

In a grid where each cell contains all the objects that overlap it, the set of collisions
can be generated very simply. Two objects can only be in collision if they occupy the
same location in the grid. We can simply look at each location containing more than
one object, and check each pair for possible collisions.

Unlike with tree-based representations, the only way we can tell if a location con-
tains two or more objects is to check it. Whereas for a tree we stored the number of
objects at each node, and could completely leave out branches that couldn’t generate
collisions, there is no such speed-up here.

To avoid searching thousands of locations for possible collisions (which for a small
number of objects may take longer than if we’d not performed broad-phase collision
detection at all), we can create a set of locations in the grid data structure contain-
ing more than one object. When we add an object to a cell, if the cell now contains

286 Chapter 12 Collision Detection

two objects, it should be added to the occupied list. Likewise, when we remove an
object from a cell, if the cell now contains just one object, it should be removed from
the list:

class Grid
{

// ... Previous code as before ...

std::vector<ObjectSet*> activeSets;

def add(Object* object)
{

unsigned location = getLocationIndex(object->center);
ObjectSet *set = locations + location;
if (set.size() == 1) activeSets.insert(set);
set.add(object);

}

def remove(Object* object)
{

unsigned location = getLocationIndex(object->center);
ObjectSet *set = locations + location;
if (set.size() == 2) activeSets.erase(set);
set.remove(object);

}
};

I’ve assumed that all the data associated with one object (its bounding volume, rigid
body data, etc.) is held in an Object class instance. I’ve also assumed that the collection
of objects in the ObjectSet data structure has methods to add and remove objects.
I’ve used the C++ standard template library’s set container type here to hold the set
of locations containing more than one object (insert, erase, and size are methods
defined by std::set).

With these methods, determining a complete set of collisions is just a matter of
walking through each active set and passing all pair-wise combinations to the fine-
grained collision detector.

If objects are larger than the size of a cell, they will need to occupy many cells in
the grid. This can lead to very large memory requirements with lots of wasted space.
For a reasonable-size game level running on a PC, this might not be an issue, but for
large levels or memory-constrained platforms, it can be unacceptable.

If we place an object in just one grid cell (the cell in which its center is located,
normally), then the broad-phase collision detection routine needs to check for colli-

12.4 Spatial Partitioning 287

FIGURE 12.14 An object may occupy up to four same-sized grid cells.

sions with objects in neighboring cells. For an object that is the same size as the cell,
it needs to check a maximum of three neighbors, from a possible set of eight (see
Figure 12.14). This rapidly increases, however, as the object gets bigger. For an object
four times the size of the cell, 15 from a possible 24 neighbors need to be considered.
It is possible to write code to check the correct neighbors, but for very large objects it
involves lots of wasted effort.

A hybrid data structure can be useful in this situation, using multiple grids of
different sizes. It is called a multiresolution map.

12.4.4 Multiresolution Maps

A multiresolution map is a set of grids with increasing cell sizes. Objects are added
into one of the grids only, in the same way as for a single grid. The grid is selected
based on the size of the object. Cells in the smallest grid are bigger than the object.

Often the grids are selected so that each one has cells four times the size of the
previous one (i.e., twice the width and twice the length for each cell). This allows the
multiresolution map to directly calculate which grid to add an object to.

During broad-phase collision detection, the map uses a modified version of the
single-grid algorithm. For each grid, it creates a potential collision between each

288 Chapter 12 Collision Detection

object and objects in the same or neighboring cells (there are a maximum of three
neighbors to check now because objects can’t be in a grid cell that is smaller than they
are). In addition, the object is checked against all objects in all cells in larger-celled
grids that overlap.

We don’t need to check against objects in smaller-celled grids, because the small
objects are responsible for checking against larger objects.

For each grid in the map, we can use the grid data structure with the same set
of occupied cells. However, we need to add a cell to the active list if it contains any
objects at all (they may be in contact with neighbors).

12.5 Summary

Collision detection is a complex and time-consuming process. To do it exhaustively
takes too long for real-time physics, so some optimization is needed.

We can split collision detection into two phases: a broad phase that finds possible
contacts (some may turn out not to be real contacts, but it should never miss a colli-
sion); and a narrow phase that checks potential collisions in detail and works out the
contact properties.

Broad-phase collision detection works by wrapping objects in a simple bounding
volume, such as a sphere or box, and performing checks on the collision volume.
The collision volumes can be arranged in a hierarchy that allows entire branches to
be excluded, or in a spatial data structure that allows nearby objects to be accessed
together.

There are tradeoffs between the methods used in this chapter, and there is poten-
tial to blend several approaches together. One important factor to consider is how
the rendering engine manages objects when deciding if they should be drawn. If your
renderer has a system in place, it would be advisable to try and use or adapt it to save
memory and implementation time.

The result of the broad phase is a set of possible contacts that need to be checked
in more detail. We will look at the algorithms needed to perform these checks in
Chapter 13.

12.6 Exercises

Exercise 12.1
Suppose that we have a BSP tree. An object in the tree has moved by a small amount.
Implement an algorithm to make sure that the object is in the correct locations in the
tree, without having to rebuild the entire tree.

Exercise 12.2
Implement a two-stage broad-phase collision detection system that uses both a BSP
tree and, at each leaf of the tree, an optional bounding volume hierarchy.

12.6 Exercises 289

Exercise 12.3
Implement a method for the bounding volume hierarchy that generates the overlap-
ping objects for a given object (i.e., one that isn’t in the hierarchy). The broad algo-
rithm is given in Section 12.3.1, but the code does not appear there.

Exercise 12.4
In a BSP, rather than placing an object into both children of a plane that the object
intersects, we could place it into a new list that belongs to the plane itself.

(a) How would this affect the algorithm for calculating the overlapping objects?

(b) Implement the new algorithm.

Exercise 12.5
Use the quad- or oct-tree implementation as the basis of a multiresolution map. Once
more the approach is described in the text, but the implementation is not given. You
will need to extend the object definition to include its size: assume that you are using
spherical bounding boxes.

Exercise 12.6
(a) Create a system that generates a series of random points in 3D space (we’ll use

these points to represent an object with complex geometry). Use this set of points
to create a bounding sphere and a bounding box. Calculate the volume of each
shape. On average, which bounding shape is smaller, and by how much?

(b) If you have access to libraries for other distributions of random numbers (such
as Gaussian), how does switching to one of these affect the result?

This page intentionally left blank

13
Generating

Contacts

road-phase collision detection is the first stage of generating contacts and
Bdetermining collisions. The algorithms in the previous chapter produce a list
of object pairs that then need to be checked in more detail to see whether they do in
fact collide, and to determine more detail about the contact if they do.

Many collision detection systems perform this check for each pair and return a
single point of maximum interpenetration if the objects are in contact. That is not
what we need. We need to generate all contacts between the pair of objects. There
may be any number of such contacts, depending on the shape of the objects touching.
Representing the collision with just a single contact works fine for some combinations
of objects (like a sphere and the ground plane, for example), but not for others (such
as a car and the ground—which wheel do we choose?).

Contact generation is more complex than single-intersection collision detection,
and takes more processor time to complete. Often we will have a two-stage process of
contact generation: a narrow-phase collision detection step to determine if there are
contacts to generate, and then a contact generation step to work out all the contacts
that are present.

Just because we have performed a broad-phase filtering step, it doesn’t mean we
can take as much time as we like to perform fine collision detection and contact gen-
eration. Performance is, if anything, more critical at this point. We can dramatically
improve the performance by executing collision detection against a simplified geom-
etry rather than the full-resolution used for rendering.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00013-9 291

292 Chapter 13 Generating Contacts

The bulk of this chapter looks at generating the contacts between geometric
primitives that are useful as stand-in collision geometry. We will consider a range
of such primitives, from the simple spheres we’ve been using up to now, to arbitrary
3D volumes. For each pair of primitives, we can create a contact generation algorithm
to determine whether they intersect, and their contact data if they do.

There are lots of possible primitives, and so there are many combinations. Fortu-
nately, the techniques tend to group into a few approaches. This chapter looks at these
major approaches by considering a representative selection of intersection types.

Covering all options exhaustively is beyond the scope of this book. There are
other books, including van den Bergen [2003], Ericson [2005], and Eberly [2010],
that explicitly cover more material than I can cover here.

13.1 Collision Geometry

The complex visual geometry in many games is too detailed for speedy contact gener-
ation. Instead it is simplified into a chunky geometry created just for the physics. If this
chunky geometry consists of certain geometric primitives (i.e., spheres, boxes, cylin-
ders, etc.), then the collision detection algorithms can be simpler than for general-
purpose meshes.

In many physics engines, these special primitive shapes are impractical: without
human intervention it can be difficult to work out what primitives to use for each
object. Building the collision geometry is a step that many developers want to auto-
mate, and so the easiest approach is to use polyhedral meshes throughout. Even here,
however, we can improve performance. If an object can be built up out of one or more
convex meshes, then the collision detection is still simpler than for arbitrary meshes.

The collision geometry isn’t the same as the bounding volumes used in broad-
phase collision detection. So typically objects in the game will have one or more
bounding volumes, some collision geometry, and then any number of different sets
of rendering geometry for different levels of detail.

The simplest geometry to use for collision detection and contact generation is the
sphere, hence its use in the broad-phase algorithms of the previous chapter. Despite
being fast, spheres aren’t always terribly useful. Boxes are also relatively quick to pro-
cess, and can be used in more situations. Other primitives, such as capsules, disks,
cylinders, and trimmed primitives, can also be useful. Finally, our chunky polyhedral
meshes mop up any remaining use cases.

One situation we’ll frequently need to consider is the collision of objects with the
background level geometry. Most commonly this means collisions with the ground or
some other plane (walls can typically be represented as planes too). To support these,
we’ll also add planes to our list of primitives, even though we don’t normally use them
to represent moving objects in the scene.

It is important to remember that the primitives your game needs will depend to
some extent on the game. We’ll look in detail at planes, spheres, boxes, and convex

13.1 Collision Geometry 293

FIGURE 13.1 An object approximated by an assembly of primitives.

meshes in this chapter. The principles are the same for any other kind of primitive,
however.

13.1.1 Primitive Assemblies

The vast majority of objects can’t easily be approximated by a single primitive shape.
Some concave objects can’t be approximated even by a convex mesh. Rather than
use arbitrary meshes (with their associated high performance penalties), we can use
assemblies of primitives as collision geometry.

Figure 13.1 shows an object approximated by an assembly of boxes and spheres. To
collide two assemblies we need to find all collisions between all pairs of primitives in
each object. In this way the assembly acts something like the hierarchy of bounding
volumes that we saw in the previous chapter. As before, we never need to perform
collision detection between the components of one object.

We can represent assemblies as a list of primitives, with a transform matrix that
offsets each primitive from the origin of the object:

struct PrimitiveInSet
{

Primitive *primitive;
Matrix4 offset;

};

294 Chapter 13 Generating Contacts

struct PrimitiveSet : extends Primitive
{

std::vector<PrimitiveInSet> primitives;
};

13.2 Contact Generation

As seen at the start of this chapter, there is an important distinction to make between
collision detection and contact generation:

Collision Detection: Determines if a pair of objects are interpenetrating. Often
the algorithms used allow the collision detector to return a penetration depth
and a point of collision. Typically, they will only detect one such point for a pair
of primitives.

Contact Generation: Determines if a pair of objects are interpenetrating and
returns a set of contact data if they are. The contact data contains all the infor-
mation needed to resolve the contacts. This includes the point of contact (or the
area for broader contacts) on each object, and the direction and extent of deepest
interpenetration at that contact.

I stress this distinction, because it affects the algorithms that we can easily apply to
contact generation for a physics engine.

One of the most elegant general-purpose collision detection algorithms, for exam-
ple, is the Gilbert Johnson Keerthi distance algorithm (normally called just GJK). It
cannot return all the data we need for a contact. To use it, we would need to write
a further algorithm that, when an interpenetration is detected, performs additional
processing to determine where and in what direction. GJK is widely used as a collision
detection routine for game physics, but if you want to experiment with it, you need
to be aware that it won’t work for you without modification.

Even algorithms that can give us the data we need without modification, such
as the separating axis theorem (SAT; see Section 13.4), often produce at most one
contact per pair of objects. We can see the problem with having only one contact in
Figure 13.2. Here one box is lying across another. In the first part of the figure, the
result of a typical collision detection system is shown; the box is slightly (microscop-
ically) twisted, so one edge generates the contact. In the second part of the figure, we
have the desired set of contacts from a physics-friendly contact generator.

In Section 13.5, we’ll look at how to use a technique called contact coherence to
extend algorithms that only generate one contact. This lets us avoid the worst behav-
ior associated with generating only one contact. But even then it isn’t perfect, and it
involves writing a good deal of bookkeeping code.

Most books on collision detection will not tell you how to build a complete system
that can be used in a physics engine. They will miss out the calculation of important

13.2 Contact Generation 295

Single
contact

Pair of
contacts

Collision detection Contact generation

FIGURE 13.2 Collision detection and contact generation.

contact information, or provide algorithms where that information is difficult to
access. In fact, most commercial or open-source collision detection systems aren’t
immediately suitable for physics applications. If you are using a third-party collision
detector, it is worth making sure that it does what you need it to before starting to
integrate.

13.2.1 Contact Types

When two objects are in contact or interpenetrating, the contact patch can be of
any 3D shape. When we resolve contacts, this makes things very difficult. In Part II,
we dealt with contacts and hard constraints where the contact or interpenetra-
tion was treated as a single point. These “point contacts” were fairly easy to deal
with.

Now that we’re dealing with full 3D shapes, we’d like to be able to deal with con-
tacts that are as simple as possible. Fortunately, we can get believable behavior using
point contacts with full rigid bodies, but we will have to think more carefully about
how we generate them.

Figure 13.3 shows the six ways in which two 3D objects can be in contact, that
is, every combination of face, edge, and vertex. Each of these cases generates only
one contact point. For each case, that would be the only contact point we’d need to
generate.

In many situations, however, we have more than one of these contact cases present
at the same time. Consider Figure 13.3 again. We have two kinds of contact here. There
is an edge–edge contact, and two edge–vertex contacts. In these cases we can believably
simulate the contact using only the edge–vertex contacts, as shown in Figure 13.3. The
edge–vertex contacts take priority over the edge–edge contact.

When deciding which contacts to prioritize in this way, we use a heuristic that
determines which are most likely to give the best behavior. We can order the contact
cases as follows:

296 Chapter 13 Generating Contacts

Point–face
contact

Face–face
contact

Point–edge
contact

Point–point
contact

Edge–face
contact

Edge–edge
contact

FIGURE 13.3 3D cases of contact.

1. Vertex–face and edge–edge (nonparallel edges)

2. Edge–face and face–face

3. Vertex–edge, vertex–vertex, and edge–edge (parallel edges)

Cases earlier in the list should be generated first. If we have a face–face contact, for
example, we will have one of two situations. Either one of the faces will be curved, so
that the face–face contact is at a single point, or else at least three contacts from the
first item in the list (vertex–face or edge–edge) will be present. In the latter case, we
don’t need to worry about the face–face contact at all, because the three other contacts
will produce believable behavior. If we have several contacts of different types at the

13.2 Contact Generation 297

same level in this list (both vertex–face and edge–edge contacts, for example), we have
to return all of them; none can take priority.

We have one further optimization to make to this scheme. Some of the contact
cases only occur if the objects in the scene are set to just the right position. A vertex–
vertex contact, for example, is highly unlikely to occur in practice, unless the objects
were explicitly arranged to generate it. If we fail to detect or correct for a vertex–vertex
contact, the objects will interpenetrate slightly on the next frame, whereupon one of
the higher priority contacts will be found. Figure 13.4 shows this in a two-dimensional
cross-section. On the second frame the interpenetration could be interpreted as either
a vertex–vertex contact, or as a face–vertex contact. Because of the priority order of
contact generation, we’ll be interpreting it as a face–vertex contact.

Because of this, we usually don’t even bother to try and detect certain types of
contact. Vertex–vertex contacts are particularly difficult to generate good contact data
for, and because they are so rare, it is most common to ignore this case entirely. If we
happen to get a vertex–vertex contact in our simulation, then the collision detector
will ignore it, and in the following frame it will have turned into a different kind of
collision that can be handled. This inaccuracy is not noticeable. In the priority orders
given above, it is normal to ignore the contacts of the lowest priority group: vertex–
vertex, and vertex–edge and parallel edge–edge contacts.

Frame 1

Direction of
movement

Vertex–face
contact

Missed vertex–vertex contact

Frame 2

FIGURE 13.4 Ignoring a vertex–vertex contact.

298 Chapter 13 Generating Contacts

For the primitives we’ll be considering (plane, box, sphere, and convex polyhedral
mesh), these contact cases, orderings, and exceptions mean that we can write contact
generation algorithms that check the valid contact cases in the correct order, and be
confident that we can exit when we find a match.

In the collision between a box and a plane, for example, the only possible con-
tacts are vertex–face contacts—between a vertex of the box and the face of the plane.
There can be no edge–face or face–face contacts without at least two vertex–face
contacts.

In collisions between two convex polyheadral meshes (which by definition have
no curved surfaces), we only check for vertex–face and edge–edge contacts. There
can be no face–face or face–edge contacts without at least two vertex–face or edge–
edge contacts. Again, we ignore the vertex–edge and vertex–vertex cases. We can work
through the other primitive combinations in the same way.

13.2.2 Contact Data

In Chapter 14, we will use several pieces of data to resolve each contact. This data will
need to be calculated and initialized by the contact generator:

Collision point: This is the point of contact between the objects. In practice,
objects will be somewhat interpenetrating and there may be many possible points.
In practice, the selection of a point from the many options is largely arbitrary and
doesn’t drastically affect the physics. Different collision detection algorithms nat-
urally generate different contact points and we can largely use them as is.

Collision normal: This is the direction in which an impact impulse will be
felt between the two objects. When we implemented collisions for non-rotating
objects in Chapter 7, this was the direction in which interpenetrating objects
should be moved apart. By convention, the two objects in the collision are always
kept in the same order, and the contact normal points from the first object toward
the second. We will assume this convention throughout the contact resolution
code in this book.

Penetration depth: This is the amount that the two objects are interpenetrating.
It is measured along the direction of the collision normal passing through the
collision point, as shown in Figure 13.5.

Collision restitution: This determines how much bounce is in the collision. We
don’t calculate this in the same way as the data above, because for our purposes,
we’ll assume it depends only on the bodies involved in the collision, not on their
geometric configuration. In the following code I will assume this value is given
to us.

Friction: This controls whether the two objects can slide along the contact. As
for restitution, this is a value we’ll assume is given to us.

13.2 Contact Generation 299

Contact
normal

Contact
point

Penetration depth

FIGURE 13.5 The relationship among the collision point, collision normal, and penetration depth.

The previous elements are stored in a contact data structure as follows:

Excerpt from file include/cyclone/contacts.h

/**
* A contact represents two bodies in contact. Resolving a
* contact removes their interpenetration, and applies sufficient
* impulse to keep them apart. Colliding bodies may also rebound.
* Contacts can be used to represent positional joints, by making
* the contact constraint keep the bodies in their correct
* orientation.
*/

class Contact
{

/**
* Holds the position of the contact in world coordinates.
*/

Vector3 contactPoint;

/**
* Holds the direction of the contact in world coordinates.
*/

Vector3 contactNormal;

300 Chapter 13 Generating Contacts

/**
* Holds the depth of penetration at the contact point. If both
* bodies are specified, then the contact point should be midway
* between the interpenetrating points.
*/
real penetration;

};

Before looking at the particulars of the collision algorithms for different pairs of
primitives, it is worth looking at each contact case in turn and how its parameters are
determined.

13.2.3 Vertex–Face Contacts

This is one of the two most common and important types of contact. Whether the
face is flat or curved, the contact properties are generated in the same way, as seen in
Figure 13.6.

The contact normal is given by the normal of the surface at the point of contact.
The contact normal is therefore only dependent on the object whose face is in colli-
sion. The object on the vertex side of the contact can be in any orientation.

On a curved surface, it may not be clear which point of the face to use when gen-
erating the normal. If the vertex (i.e., the point that is in contact with the face) is
penetrated into the face, then it is projected back onto the face in some way before the
normal is calculated. The exact details of this projection usually don’t matter much.

Contact
normal

Contact
point

Penetration depth

FIGURE 13.6 The vertex–face contact data.

13.2 Contact Generation 301

In our case, this will only be an issue with collisions involving spheres, where it is easy
to project the vertex back to the nearest point on the sphere’s surface.

The contact point can be any point involved in the contact. The vertex itself is
such a point, and since it is available to us without modification, we use it directly.

The penetration depth is calculated as the distance between the vertex and the
face, in the direction of the contact normal.

13.2.4 Edge–Edge Contacts

This is the second important type of contact, and is critical for objects with flat sides,
such as boxes or polyhedral meshes. The contact data is shown in Figure 13.7.

The contact normal is at right angles to the tangents of both edges. The vector
product is used to calculate this.

The contact point is typically the closest point on one edge to the other edge.
Some developers use it a point midway between the two edges, which takes longer to
calculate but which can be marginally more accurate. Personally, I haven’t found a
problem with the nearest-point approach.

The penetration depth is the distance between the two edges.

13.2.5 Edge–Face Contacts

Edge–face contacts are only used with curved surfaces (the edge of a capsule, for exam-
ple, or the surface of a sphere). The contact data is generated in a very similar way to
point–face contacts, as shown in Figure 13.8.

The contact normal is given by the normal of the face, as before. The edge direction
is ignored in this calculation.

Contact
normal

Contact
point

Penetration
depth

FIGURE 13.7 The edge–edge contact data.

302 Chapter 13 Generating Contacts

Contact
normal

Contact
point

Penetration
depth

FIGURE 13.8 The edge–face contact data.

The contact point can be tricky to calculate. We’d like it to be the point of deepest
penetration. In the general case, with an arbitrary 3D shape, we’d have to do a lot of
work to calculate this. Fortunately, for most simple primitives (including those we’ll
be working with in this chapter), there is an easy way to find this point.

Because of the way that the contact point is calculated, we normally have direct
access to the penetration depth. If not, then it needs to be calculated the long way
by working out the distance between the edge and the face along the direction of the
normal passing through the contact point.

13.2.6 Face–Face Contacts

Face–face contacts occur when a curved surface comes in contact with another face
whether curved or flat, such as a sphere on a plane. Figure 13.9 shows the properties
of this contact.

The contact normal is given by the normal of one of the faces. In theory the
faces should have opposite contact normals: two faces can’t touch except where their
normals are in the opposite directions. In practice, however, this isn’t perfect and
the fact that objects may interpenetrate means that the actual normals may be mis-
aligned. It is easier to use just one consistently and ignore any misalignment. The
choice of which to use might be suggested by the algorithm (we’ll see that sometimes
it is convenient to choose a particular object), but doesn’t affect the quality of the
simulation.

13.2 Contact Generation 303

Contact
normal

Contact
point

Penetration
depth

FIGURE 13.9 The face–face contact data.

The contact point is again difficult to calculate in the general case. And once again,
using the primitives in this chapter we can often get directly at the point of greatest
penetration. If not, then we need to select some point (pretty arbitrarily in the code
I’ve seen that does this) from inside the interpenetrating volume.

The contact point calculation will normally give us direct access to the penetration
depth. In the general case, we’ll have to write code to work out the distance between
the faces along the direction of the normal passing through the contact point.

13.2.7 Testing Before Generating Contacts

Some of the contact generation algorithms can be quite time consuming. The coarse
collision detection will generate candidate pairs of objects that may later be found
not to be in contact. We can make collision detection much more efficient by creating
algorithms that exit early if no contact is found.

There are numerous opporunities to do this as part of the contact generation algo-
rithms we will look at in subsequent sections, and the code takes advantage of as many
of these as possible.

Some of the primitive collisions have completely different algorithms that can
determine if there is a contact without generating the contacts themselves. If such
an algorithm exists and it is fast enough, it can be useful to call it as a first stage:

304 Chapter 13 Generating Contacts

if (inContact())
{

findContacts();
}

We call this an early out—it allows the algorithm to exit early without doing
unnecessary work. These testing algorithms are often found as collision detection
routes in books on game graphics and can be used in your code for that purpose.

In many cases, however, the work that the quick check would need to do is the
same as we need to do during contact generation, or the speed-up of doing both would
be minimal for the number of times our fast test would fail. In these cases, the contact
generation algorithm should be used on its own. Finding the appropriate tradeoff
between these algorithms is usually a matter of profiling your code.

13.3 Simple Collision Algorithms

Each of the collision algorithms in this chapter takes two primitives and tests whether
they are in contact. If they are in contact, it returns one or more contact data structures
representing the contact.

Most algorithms only return zero or one contact, but some return more. Even
those that return at most one contact can be extended, incorporating coherence (Sec-
tion 13.5) to generate more. To cope with these algorithms, we’ll need the flexibility
to generate any number of contacts.

The simplest way to do this is to start with an array or list of possible contacts.
This array is then passed into each contact generation routine. If the routine finds
contacts, it can write them into the array.

In the accompanying source code I have encapsulated this process into a class:

Excerpt from file include/cyclone/collide_narrow.h

/**
* A helper structure that contains information for the detector to use
* in building its contact data.
*/

struct CollisionData
{

/** Holds the contact array to write into. */
Contact *contacts;

/** Holds the maximum number of contacts the array can take. */
int contactsLeft;

};

13.3 Simple Collision Algorithms 305

Each contact generation routine has the same form:

void generateContacts(const Primitive &firstPrimitive,
const Primitive &secondPrimitive,
CollisionData *data);

The Primitive class holds all the data that any contact generator will need to know
about one object in the contact. This includes the rigid-body data (providing position
and orientation), and the offset of the primitive from the coordinate origin of the rigid
body:

class Primitive
{
public:

RigidBody *body;
Matrix4 offset;

};

Throughout this chapter I will assume that the offset matrix represents a transla-
tion and rotation only—it has no scaling or skewing effect. We could make this much
simpler and assume that the primitive is aligned perfectly with the center of the rigid
body with no rotation (as would be the case if we had a cylinder primitive repre-
senting a barrel, for example). Unfortunately, this would not work for assemblies of
objects, nor rigid bodies with centers of mass that aren’t at their geometric center. For
flexibility it is best to allow primitives to be offset from their rigid bodies.

Each implemented contact generation function will use a subtype of Primitive
with some additional data (such as Sphere and Plane). I’ll introduce these types as we
go along.

13.3.1 Colliding Two Spheres

The first primitive we’ll work with is the sphere. Colliding two spheres is as simple as
it gets. Two spheres are in contact if the distance between their centers is less than the
sum of their radii.

If they are in contact, then there will be precisely one contact point: each sphere
consists of one surface, so it will be a face–face contact. This is shown in Figure 13.9.

The point of deepest contact is located along the line between the sphere cen-
ters. This is exactly the same algorithm as we saw in Chapter 7 looking at particle
collisions.

306 Chapter 13 Generating Contacts

To implement this we need a data structure for a sphere. Spheres are completely
defined by their center point and radius:

class Sphere
{
public:

Vector3 position;
real radius;

};

The center point of the sphere is given by the offset from the origin of the rigid
body, the data for which is contained in the offset data member of the Primitive
class. So the sphere implementation we’ll use will extend Primitive and look like this:

class Sphere : public Primitive
{
public:

real radius;
};

The contact generation algorithm takes two spheres and may add a contact to the
contact data. Because the algorithm to determine if the two spheres collide is part
of determining the contact data, we don’t have a separate algorithm to provide an
early out:

Excerpt from file src/collide_narrow.cpp

unsigned CollisionDetector::sphereAndSphere(
const CollisionSphere &one,
const CollisionSphere &two,
CollisionData *data
)

{
// Make sure we have contacts.
if (data->contactsLeft <= 0) return 0;

// Cache the sphere positions.
Vector3 positionOne = one.getAxis(3);
Vector3 positionTwo = two.getAxis(3);

// Find the vector between the objects.

13.3 Simple Collision Algorithms 307

Vector3 midline = positionOne - positionTwo;
real size = midline.magnitude();

// See if it is large enough.
if (size <= 0.0f || size >= one.radius+two.radius)
{

return 0;
}

// We manually create the normal, because we have the
// size to hand.
Vector3 normal = midline * (((real)1.0)/size);

Contact* contact = data->contacts;
contact->contactNormal = normal;
contact->contactPoint = positionOne + midline * (real)0.5;
contact->penetration = (one.radius+two.radius - size);
contact->setBodyData(one.body, two.body,

data->friction, data->restitution);

data->addContacts(1);
return 1;

}

Note at the end of this code that the values for restitution and friction are copied from
the CollisionData structure provided in the collision that is generated. I’m assum-
ing that these values are set somehow before my contact generator routine is called.
We’ll return to these values in the next part of the book when we consider contact
resolution.

13.3.2 Colliding a Sphere and a Plane

Colliding a sphere with a plane is just as simple as colliding a sphere with another.
The sphere collides with the plane if the distance of the center of the sphere is farther
from the plane than the sphere’s radius.

The distance of a point from a plane is given by:

d = p · l − l

where l is the normal vector of the plane and l is the offset of the plane. This is a
standard way to represent a plane in 3D geometry.

308 Chapter 13 Generating Contacts

We can represent the plane in code as:

class Plane : public Primitive
{
public:

Vector3 normal;
real offset;

};

Planes are almost always associated with immovable geometry rather than a rigid
body, so the rigid-body pointer in the Primitive class will typically be NULL.

The algorithm takes a sphere and a plane, and may add a contact to the contact
data. Again the algorithm is simple enough not to benefit from a separate early-out
algorithm:

Excerpt from file src/collide_narrow.cpp

unsigned CollisionDetector::sphereAndHalfSpace(
const CollisionSphere &sphere,
const CollisionPlane &plane,
CollisionData *data
)

{
// Make sure we have contacts.
if (data->contactsLeft <= 0) return 0;

// Cache the sphere position.
Vector3 position = sphere.getAxis(3);

// Find the distance from the plane.
real ballDistance =

plane.direction * position -
sphere.radius - plane.offset;

if (ballDistance >= 0) return 0;

// Create the contact; it has a normal in the plane direction.
Contact* contact = data->contacts;
contact->contactNormal = plane.direction;
contact->penetration = -ballDistance;
contact->contactPoint =

position - plane.direction * (ballDistance + sphere.radius);
contact->setBodyData(sphere.body, NULL,

13.3 Simple Collision Algorithms 309

data->friction, data->restitution);

data->addContacts(1);
return 1;

}

Strictly, this isn’t a sphere–plane collison but a sphere–half-space collision.
Figure 13.10 shows the difference. The half-space is treated as if the whole region on
the back of the plane is solid. So, an object interpenetrating will always have its contact
normal pointing in the direction of the plane normal. Even if the object is completely
behind the plane, the contact will be generated. True planes are infinitely thin. An
object on the back side of the plane will have its contact normal in the opposite direc-
tion to the plane normal. True planes are rarely needed in a game, but half-spaces
are common. They are normally used to represent the ground and, within a BSP-tree
(which effectively puts bounds on their size), they can be used to represent walls. In
these cases, a half-space collision is needed.

To modify the algorithm to perform true plane–sphere collisions, we need to check
if the distance is either greater than the radius of the sphere or less than the negative
of that radius:

Excerpt from file src/collide_narrow.cpp

unsigned CollisionDetector::sphereAndTruePlane(
const CollisionSphere &sphere,
const CollisionPlane &plane,
CollisionData *data
)

{
// Make sure we have contacts.

Contact
normal with
half-space

Balls
moving
down

Contact
normal
with plane

FIGURE 13.10 The difference in contact normal for a plane and a half-space.

310 Chapter 13 Generating Contacts

if (data->contactsLeft <= 0) return 0;

// Cache the sphere position.
Vector3 position = sphere.getAxis(3);

// Find the distance from the plane.
real centerDistance = plane.direction * position - plane.offset;

// Check if we’re within radius.
if (centerDistance*centerDistance > sphere.radius*sphere.radius)
{

return 0;
}

// Check which side of the plane we’re on.
Vector3 normal = plane.direction;
real penetration = -centerDistance;
if (centerDistance < 0)
{

normal *= -1;
penetration = -penetration;

}
penetration += sphere.radius;

// Create the contact; it has a normal in the plane direction.
Contact* contact = data->contacts;
contact->contactNormal = normal;
contact->penetration = penetration;
contact->contactPoint = position - plane.direction * centerDistance;
contact->setBodyData(sphere.body, NULL,

data->friction, data->restitution);

data->addContacts(1);
return 1;

}

Both are implemented in the accompanying source code, but only the half-space
is used in any of the demos.

13.3.3 Colliding a Box and a Plane

We’ve introduced the sphere primitive now, so it is time to move on to the box, our
second primitive. First, we’ll consider the contact generation algorithm for collisions

13.3 Simple Collision Algorithms 311

FIGURE 13.11 Contacts between a box and a plane.

between a box and a plane (strictly a half-space). This is the first algorithm we’ve met
that can return more than one contact.

Remember that we are trying to approximate complicated contact or interpene-
tration shapes with one or more contacts at single points. As part of that, we have a
priority ordering for the kinds of contact cases we want to consider, and we want to
return contacts that are as high in that order as possible.

As described in Section 13.2, a box–plane collision can always be represented as
a series of vertex–face contacts, which are in our highest priority group. If the box is
resting flat on the plane, then we return a contact for each corner vertex of the box’s
contact face. Similarly, if an edge is colliding with the plane, we return contacts for
the vertices at either end of that edge.

So there can be up to four contacts, and each is a point–face contact. Figure 13.11
illustrates this.

We can find the set of contacts by simply checking each vertex of the box one by
one and generating a contact if it lies below the plane.1 The check for each vertex looks
just like the check we made with the sphere–plane detector:

d = p · l − l

1. Generating contacts for a true plane, rather than a half-space, is somewhat more difficult, because we
need to find the set of contacts on each side of the plane, and determine which side the box is on and
generate contacts for the opposite set. For a half-space, we simply test whether vertices are through the
plane.

312 Chapter 13 Generating Contacts

Because the vertices are only points, and have no radius, we simply need to check
if the sign of d is positive or negative. A collision therefore occurs if:

p · l < l

For one vertex at p the code to generate a contact looks like this:

Excerpt from file src/collide_narrow.cpp

// Calculate the distance from the plane.
real vertexDistance = vertexPos * plane.direction;

// Compare this to the plane’s distance.
if (vertexDistance <= plane.offset)
{

// Create the contact data.

// The contact point is halfway between the vertex and the
// plane. We multiply the direction by half the separation
// distance and add the vertex location.
contact->contactPoint = plane.direction;
contact->contactPoint *= (vertexDistance-plane.offset);
contact->contactPoint = vertexPos;
contact->contactNormal = plane.direction;
contact->penetration = plane.offset - vertexDistance;

// Write the appropriate data.
contact->setBodyData(box.body, NULL,

data->friction, data->restitution);

// Move on to the next contact.
contact++;
contactsUsed++;
if (contactsUsed == data->contactsLeft) return contactsUsed;

}

The full algorithm runs this code for each vertex of the box. We can generate the
set of vertices from a box data structure that looks like this:

class Box : public Primitive
{
public:

Vector3 halfSize;
};

13.3 Simple Collision Algorithms 313

FIGURE 13.12 The half-sizes of a box.

where halfSize gives the extent of the box along each axis. The total size of the box
along each axis is twice this value, as shown in Figure 13.12.

The vertices of the box are then given by:

Vector3 vertices[8] =
{

Vector3(-halfSize.x -halfSize.y -halfSize.z),
Vector3(-halfSize.x -halfSize.y +halfSize.z),
Vector3(-halfSize.x +halfSize.y -halfSize.z),
Vector3(-halfSize.x +halfSize.y +halfSize.z),
Vector3(+halfSize.x -halfSize.y -halfSize.z),
Vector3(+halfSize.x -halfSize.y +halfSize.z),
Vector3(+halfSize.x +halfSize.y -halfSize.z),
Vector3(+halfSize.x +halfSize.y +halfSize.z)

};

for (unsigned i = 0; i < 8; i++)
{

vertices[i] = offset * vertices[i];
}

where offset is the rotation and translation matrix from the Primitive class.
The complete algorithm simply generates each vertex in turn and uses the

implementation of the test at the start of this section to check it against the plane:

Excerpt from file src/collide_narrow.cpp

unsigned CollisionDetector::boxAndHalfSpace(
const CollisionBox &box,
const CollisionPlane &plane,
CollisionData *data

314 Chapter 13 Generating Contacts

)
{

// Make sure we have contacts.
if (data->contactsLeft <= 0) return 0;

// Check for intersection.
if (!IntersectionTests::boxAndHalfSpace(box, plane))
{

return 0;
}

// We have an intersection, so find the intersection points. We can
make

// do with only checking vertices. If the box is resting on a plane
// or on an edge, it will be reported as four or two contact points.

// Go through each combination of + and - for each half-size.
static real mults[8][3] = {{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1},

{1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}};

Contact* contact = data->contacts;
unsigned contactsUsed = 0;
for (unsigned i = 0; i < 8; i++) {

// Calculate the position of each vertex.
Vector3 vertexPos(mults[i][0], mults[i][1], mults[i][2]);
vertexPos.componentProductUpdate(box.halfSize);
vertexPos = box.transform.transform(vertexPos);

// Calculate the distance from the plane.
real vertexDistance = vertexPos * plane.direction;

// Compare this to the plane’s distance.
if (vertexDistance <= plane.offset)
{

// Create the contact data.

// The contact point is halfway between the vertex and the
// plane. We multiply the direction by half the separation
// distance and add the vertex location.
contact->contactPoint = plane.direction;
contact->contactPoint *= (vertexDistance-plane.offset);
contact->contactPoint = vertexPos;
contact->contactNormal = plane.direction;

13.3 Simple Collision Algorithms 315

contact->penetration = plane.offset - vertexDistance;

// Write the appropriate data.
contact->setBodyData(box.body, NULL,

data->friction, data->restitution);

// Move on to the next contact.
contact++;
contactsUsed++;
if (contactsUsed == data->contactsLeft) return contactsUsed;

}
}

data->addContacts(contactsUsed);
return contactsUsed;

}

Note that there are variations of this algorithm that avoid generating and testing
all vertices. By comparing the direction of each box axis against the plane normal, we
can trim down the number of vertices that need to be checked.

Despite the marginal theoretical advantage of such an algorithm, I have found
them to have no efficiency gain in practice. Generating and testing a vertex is so fast
that additional checking has a marginal effect. If you are familiar with optimizing
for SIMD hardware, you will also notice that this algorithm lends itself very easily to
parallel implementation, which makes the alternatives even less attractive.

13.3.4 Colliding a Box and a Sphere

Let’s combine the two primitives we’ve discussed so far and look at how a box collides
with a sphere. When a sphere collides with a box, we will always have a single contact.
But it may be a contact of any of three types:

1. A vertex–face contact (in our top-priority group) will be generated if a vertex of
the box is touching the surface of the sphere.

2. An edge–face contact (in our second group) is generated if the edge of the box is
touching the surface of the sphere.

3. A face–face contact (again in our second group) is generated if the sphere is
touching one side of the box.

In each case the sphere (which has no edges or vertices) contributes a face to the con-
tact, and the box contributes the vertex, edge, or face. Figure 13.13 illustrates this.

Fortunately, the calculation in each of the three cases is similar and we will find
that we don’t have to worry which case we’re dealing with in the code. In each case,

316 Chapter 13 Generating Contacts

Face–edge

Face–face Point–face

FIGURE 13.13 Contacts between a box and a sphere.

we find the point in the box that is closest to the center of the sphere. If the distance
between the center and this point is less than the radius, then we know we have a
collision. If we do, then we use this point as the contact point; we use the line from
the point to the center of the sphere as the contact normal; and we use the calculation
we did to test overlap to find the interpenetration depth.

If our contact represents a vertex–face or edge–face contact, then these calcula-
tions are exactly as we specified in Section 13.2. If we have a face–face contact, then
the way we are generating the contact normal needs explanation. In Section 13.2.6,
I said that when two objects have exactly touching faces, the face normals should be
exactly opposite one another. But in reality, we might have interpenetration, which
could allow them to differ. I suggest we pick one. The algorithm I am suggesting for
sphere–box collisions effectively always picks the sphere. We’re using the sphere’s face
normal for the vertex–face and edge–face cases, so we just use it for the face–face
case too.

The only thing in this algorithm we haven’t done in previous sections is to find
the closest point in the box to the center of the sphere. To do this we need a two-step
process:

� Convert the center point into the box’s coordinate space. The box can be ori-
ented in any direction, so the following calculations will be simpler if we can
remove that orientation at the very beginning by doing calculations in the
box’s coordinate space.

� Clamp the coordinates of the transformed point by the half-sizes of the box,
making sure that the clamped coordinates are in the same direction as the
original coordinates.

The code to convert into the box’s local coordinate space follows:

Excerpt from file src/collide_narrow.cpp

// Transform the center of the sphere into box coordinates.
Vector3 center = sphere.getAxis(3);
Vector3 relCenter = box.transform.transformInverse(center);

13.3 Simple Collision Algorithms 317

Note the inverse transform here, because we’re converting something in world coor-
dinates into local coordinates.

With this new point, we can then work out the distance from the center of the
sphere to the target point, and exit if it is larger than the radius of the sphere. The
code for this is simple:

Excerpt from file src/collide_narrow.cpp

Vector3 closestPt(0,0,0);
real dist;

// Clamp each coordinate to the box.
dist = relCenter.x;
if (dist > box.halfSize.x) dist = box.halfSize.x;
if (dist < -box.halfSize.x) dist = -box.halfSize.x;
closestPt.x = dist;

dist = relCenter.y;
if (dist > box.halfSize.y) dist = box.halfSize.y;
if (dist < -box.halfSize.y) dist = -box.halfSize.y;
closestPt.y = dist;

dist = relCenter.z;
if (dist > box.halfSize.z) dist = box.halfSize.z;
if (dist < -box.halfSize.z) dist = -box.halfSize.z;
closestPt.z = dist;

// Check to see if we’re in contact.
dist = (closestPt - relCenter).squareMagnitude();
if (dist > sphere.radius * sphere.radius) return 0;

The contact properties need to be given in world coordinates, so before we calcu-
late the contact normal, we’ll need to find the closest point in world coordinates. This
just means transforming the point we generated previously by the box’s transform
matrix:

Excerpt from file src/collide_narrow.cpp

Vector3 closestPtWorld = box.transform.transform(closestPt);

We can then calculate the contact properties as before in the chapter. The final
code puts all this together to look like the following:

Excerpt from file src/collide_narrow.cpp

unsigned CollisionDetector::boxAndSphere(
const CollisionBox &box,

318 Chapter 13 Generating Contacts

const CollisionSphere &sphere,
CollisionData *data
)

{
// Transform the center of the sphere into box coordinates.
Vector3 center = sphere.getAxis(3);
Vector3 relCenter = box.transform.transformInverse(center);

// Early out check to see if we can exclude the contact.
if (real_abs(relCenter.x) - sphere.radius > box.halfSize.x ||

real_abs(relCenter.y) - sphere.radius > box.halfSize.y ||
real_abs(relCenter.z) - sphere.radius > box.halfSize.z)

{
return 0;

}

Vector3 closestPt(0,0,0);
real dist;

// Clamp each coordinate to the box.
dist = relCenter.x;
if (dist > box.halfSize.x) dist = box.halfSize.x;
if (dist < -box.halfSize.x) dist = -box.halfSize.x;
closestPt.x = dist;

dist = relCenter.y;
if (dist > box.halfSize.y) dist = box.halfSize.y;
if (dist < -box.halfSize.y) dist = -box.halfSize.y;
closestPt.y = dist;

dist = relCenter.z;
if (dist > box.halfSize.z) dist = box.halfSize.z;
if (dist < -box.halfSize.z) dist = -box.halfSize.z;
closestPt.z = dist;

// Check to see if we’re in contact.
dist = (closestPt - relCenter).squareMagnitude();
if (dist > sphere.radius * sphere.radius) return 0;

// Compile the contact.
Vector3 closestPtWorld = box.transform.transform(closestPt);

Contact* contact = data->contacts;
contact->contactNormal = (closestPtWorld - center);

13.4 Separating Axis Tests 319

contact->contactNormal.normalize();
contact->contactPoint = closestPtWorld;
contact->penetration = sphere.radius - real_sqrt(dist);
contact->setBodyData(box.body, sphere.body,

data->friction, data->restitution);

data->addContacts(1);
return 1;

}

13.4 Separating Axis Tests

The separating axis test (SAT) is one of the most useful concepts in collision detec-
tion, and will be the workhorse algorithm for the remaining contact generators in this
section. The SAT says that if there is any axis along which two objects are separated,
then you know those objects cannot be in contact. To perform this test we project the
3D objects we’re interested in onto the 1D axis. Each object is simply mapped to a
minimum and a maximum position along that axis. If those ranges overlap, then the
axis cannot separate the objects. This is shown in Figure 13.14.

Note that an SAT can tell you there is definitely no contact between two objects.
But if the test fails and finds an overlap, it does not tell you that there definitely is a
contact. In order to find out whether two objects touch, you have to perform multiple
SATs: if any passes then you know the objects don’t touch; if they all fail, then you
might be able to deduce a contact, if you have chosen your axes properly.

A B

Projection of B
Axis

Nonoverlapping
so boxes don’t touch

Projection of A

Overlapping so boxes may touch
(in this case they don’t)

Projection of B
Axis

BA

FIGURE 13.14 A separating axis test.

320 Chapter 13 Generating Contacts

So how can we choose our axes? There are an infinite number of possible
directions to choose from, and on first glance any one of them could be a separat-
ing axis.

Fortunately, for certain primitive shapes it can be shown that a particular set of
axes is sufficient for performing SATs. One such primitive is the convex polyhedron.
General convex polyhedra are our last primitive type, but it should be noted that boxes
are also a more regular form of the same shape. In fact, we’ll use the same theory for
generating the SAT axes for both primitive types.

The set of axes needed are as follows:

� All faces on both objects give rise to an SAT axis equal to their face normal.
� All pairs of edges on different objects give rise to an SAT axis that is at right

angles to both edges.
� Remove any duplicate axes or axes in the opposite direction.

For two boxes, therefore, we need to test 15 axes: 6 axes for the faces of the boxes
(there are 12 faces, but boxes have pairs of parallel faces, so there will be at most 6
distinct axes), and 9 pairs of edge directions (again, there are 12 edges on each box,
making 12 × 12 = 144 pairs of edges, but the edges fall parallel in groups of 4, making
just 3 × 3 = 9 pairs to check).

The proof that these axes are necessary and sufficient is well beyond the scope
of this book. But you should be able to convince yourself informally by considering
how two convex polyhedra might touch. Any contact between them will either be
edge–edge, or will involve a face.2 For each of these cases, imagine moving the objects
apart a microscopic amount. For contacts involving a face, only by choosing that face
normal will you see the tiny gap; any other angle will miss it. Similarly for edges, only
the direction at right angles to both edges will show the gap.

To perform the full collision detection, we loop over each of these required axes,
performing the SAT. After the first SAT passes, we can exit with no contacts; if all of
them fail, we know the objects are touching or overlapping.

13.4.1 Generating Contact Data with SATs

If you read many books on collision detection, this is where you will end up. But we
need to go further. We not only need to determine whether the objects overlap, but
also where and by how much.

Fortunately, the SAT can help. The SAT can be generalized to say that if there is an
axis on which two objects overlap by some amount, then the maximum interpenetra-
tion of those objects cannot be greater than that amount. In other words, if we find
an axis on which two boxes appear to be overlapping by one unit, then we know that

2. Remember that we are ignoring the vertex–vertex and vertex–edge contacts. In fact, it can be shown
that including these types of contacts wouldn’t increase the number of axes needed. Faces and pairs of edges
would be enough to detect all collisions.

13.4 Separating Axis Tests 321

the boxes interpenetrate by no more than one unit. One unit is the deepest interpen-
etration possible. Of course, as we’ve seen, we could go on to find another axis where
the test passes, and then we know they don’t touch at all. But this is just equivalent to
saying that if an axis shows the objects separated by one unit, then we know they are
no less than one unit apart. This is shown in Figure 13.15 for the 2D case. Note that
in 2D, only face axes are required, and so only these four axes are shown.

We can use this result to find the contact data we need. For each SAT we do, we
keep track of the axes on which the smallest overlap was found. We can still exit imme-
diately if the overlap is found to be negative (i.e., the objects are separate on that axis).
But if all our SATs fail, and we know that the objects overlap, then the stored axes tell
us where the deepest interpenetration was found.

We get the remaining data for the contact in a different way, depending on what
kind of axis our minimum fell on:

� If the minimum fell on an edge–edge axis, then the contact will be an edge–
edge contact, and we already know the two edges involved.

� If the minimum fell on a face axis, then we know our contact will be a face–
vertex contact (because we can’t have face–face or edge–face contacts on con-
vex polyhedra—there will always be vertex–face or edge–edge contacts that
override them in the priority order). We have to find the vertex on the other
object that has most interpenetrated that face.

The last thing to say about this approach is to point out that it generates at most
only one contact. As we’ve seen, this isn’t enough to properly simulate the contact

Object A

Object B

Interpenetration on axis B-X;
this is the actual interpenetration

Interpenetration
on axis A-X

Interpenetration
on axis A-Y Interpenetration

on axis B-Y

FIGURE 13.15 A separating axis test showing maximum interpenetration.

322 Chapter 13 Generating Contacts

between two objects. In practice, returning only one contact per frame can lead to
vibrations in the simulation and other problems. We need a way to access all the con-
tacts. Fortunately, we can do this successfully without altering the algorithm above.
Section 13.5 focuses on how this can be achieved.

13.4.2 Colliding Two Boxes

Now that we have seen the theory of SATs, we can use it to implement the remaining
collision generation routines for our primitives. We use the 15 SATs described in the
previous section to work out if and where our two boxes are touching.

Each SAT is implemented by projecting the half-size of each box onto the sepa-
rating axis in this way:

static inline real penetrationOnAxis(
const CollisionBox &one,
const CollisionBox &two,
const Vector3 &axis,
const Vector3 &toCenter
)

{
real oneProject = transformToAxis(one, axis);
real twoProject = transformToAxis(two, axis);

real distance = real_abs(toCenter * axis);

// Return the overlap (i.e., positive indicates
// overlap, negative indicates separation).
return oneProject + twoProject - distance;

}

Here toCenter is the vector from the center of the first box to the center of the sec-
ond. The first two lines calculate the half-length of each box along the axis, and the
third line calculates the distance between them along that axis. If the distance is less
than the sum of the two half-lengths, then there is interpenetration. The amount of
interpenetration is returned.

We call each axis from code that keeps track of the smallest interpenetration so
far, and can exit completely if a negative interpenetration is found (i.e., if the objects
are found to be separated along that axis).

float bestOverlap = FLOAT_MAX;
unsigned bestCase;

13.4 Separating Axis Tests 323

for (unsigned index = 0; index < 15; index++) {
Vector3 *axis = axes[index];

// Check for axes that were generated by (almost) parallel edges.
if (axis.squareMagnitude() < 0.001) continue;
axis.normalize();

real overlap = penetrationOnAxis(one, two, axis, toCenter);
if (overlap < 0) return;
if (overlap < bestOverlap) {

bestOverlap = overlap;
bestCase = index;

}
}

The set of axes to be tested follows:

Vector3 axis[15];

// Face axes for object one.
axis[0] = one.getAxis(0);
axis[1] = one.getAxis(1);
axis[2] = one.getAxis(2);

// Face axes for object two.
axis[3] = two.getAxis(0);
axis[4] = two.getAxis(1);
axis[5] = two.getAxis(2);

// Edge-edge axes.
axis[6] = one.getAxis(0) % two.getAxis(0);
axis[7] = one.getAxis(0) % two.getAxis(1);
axis[8] = one.getAxis(0) % two.getAxis(2);
axis[9] = one.getAxis(1) % two.getAxis(0);
axis[10] = one.getAxis(1) % two.getAxis(1);
axis[11] = one.getAxis(1) % two.getAxis(2);
axis[12] = one.getAxis(2) % two.getAxis(0);
axis[13] = one.getAxis(2) % two.getAxis(1);
axis[14] = one.getAxis(2) % two.getAxis(2);

If you look at the accompanying source code, you’ll notice a slightly different app-
roach to this code. Rather than compile all the axes up front, and then loop through

324 Chapter 13 Generating Contacts

them, I created them on the fly before each test. This means that if I find a test that
passes and I exit the routine, I won’t have wasted time calculating the remaining axes
I never tested. This interleaving of concerns makes the code harder to read, however,
so I have used a simplified version here. See the full code for the alternative approach.

The final stage is to calculate and fill the contact data. As described in the previous
section, the approach at this point depends on whether our best contact fell on a face–
axis test, or an edge–axis test.

Contact Based on Face Axis

In the face–axis test we know we’ll have a vertex–face contact. We know that the face
involved in the contact will be one of two. It will be the face pointing in the direction
of the separating axes or in the opposite direction. Only one of these faces will be
pointing in the direction of the other box, so we can determine which one we want
very easily.

Once we know the face that is involved, we need to find out which of the other
box’s vertices is in contact. The following code performs both of these steps. It deter-
mines which face is involved, and then looks at the orientation of the second box to
see which vertex would lie closest to the first box. This is the vertex it uses to generate
the contact point:

// Which face is in contact?
if (axis * toCenter > 0)
{

axis *= -1.0f;
}

// Which vertex is in contact (in two’s coordinates)?
Vector3 vertex = two.halfSize;
if (two.getAxis(0) * normal < 0) vertex.x = -vertex.x;
if (two.getAxis(1) * normal < 0) vertex.y = -vertex.y;
if (two.getAxis(2) * normal < 0) vertex.z = -vertex.z;

// Convert to work coordinates.
vertex = otherBox.getTransform() * vertex;

// Create the contact data.
contact->contactNormal = axis;
contact->penetration = bestOverlap;
contact->contactPoint = vertex;

13.4 Separating Axis Tests 325

Contact Based on Edge–Edge

In the edge–edge case, again we need to work out which edges we’re using. This time
there are four possible edges for each of the axes involved. We identify the edge by
finding any point along that edge. The point we choose will be midway along the edge.
So, in object coordinates, it will have two coordinates equal to the corresponding half-
size values (positive or negative), and the third coordinate equal to zero. The code
steps through each coordinate and sets it to zero, plus half-size, or minus half-size,
depending on the direction of the SAT axis:

Vector3 ptOnEdgeOne = one.halfSize;
Vector3 ptOnEdgeTwo = two.halfSize;
for (unsigned i = 0; i < 3; i++)
{

if (i == oneAxisIndex) ptOnEdgeOne[i] = 0;
else if (one.getAxis(i) * axis > 0) ptOnEdgeOne[i] = -ptOnEdgeOne[i];

if (i == twoAxisIndex) ptOnEdgeTwo[i] = 0;
else if (two.getAxis(i) * axis < 0) ptOnEdgeTwo[i] = -ptOnEdgeTwo[i];

}

// Move them into world coordinates (they are already oriented
// correctly, since they have been derived from the axes).
ptOnEdgeOne = one.transform * ptOnEdgeOne;
ptOnEdgeTwo = two.transform * ptOnEdgeTwo;

oneAxisIndex and twoAxisIndexare the indexes of the axis that was used to construct
the SAT axis. So, for an SAT based on object one’s Z-axis and object two’s Y-axis, we’d
have oneAxisIndex=2 and twoAxisIndex=1.

With a point on each edge, and the edge directions, we can calculate the contact
point (the point of deepest interpenetration). We use the point midway between the
point of closest approach on each edge. This is given by:

Vector3 getContactPoint(
const Vector3 &axisOne, const Vector3 &axisTwo,
const Vector3 &ptOnEdgeOne, const Vector3 &ptOnEdgeTwo,
)

{
// The vector between the test points on each edge.
Vector3 toSt = ptOnEdgeOne - ptOnEdgeTwo;

326 Chapter 13 Generating Contacts

// How much of those vectors are in the direction of each edge?
real dpStaOne = axisOne * toSt;
real dpStaTwo = axisTwo * toSt;

// Work out how far along each edge is the closest point.
real smOne = axisOne.squareMagnitude();
real smTwo = axisTwo.squareMagnitude();
real dotProductEdges = axisTwo * axisOne;
real denom = smOne * smTwo - dotProductEdges * dotProductEdges;
real a = (dotProductEdges * dpStaTwo - smTwo * dpStaOne) / denom;
real b = (smOne * dpStaTwo - dotProductEdges * dpStaOne) / denom;

// Use a point midway between the two nearest points.
Vector3 nearestPtOnOne = ptOnEdgeOne + axisOne * a;
Vector3 nearestPtOnTwo = ptOnEdgeTwo + axisTwo * b;
return nearestPtOnOne * 0.5 + nearestPtOnTwo * 0.5;

}

And we can use this method to fill the contact data:

contact->penetration = bestOverlap;
contact->contactNormal = axis;
contact->contactPoint = getContactPoint(

axisOne, axisTwo, ptOnEdgeOne, ptOnEdgeTwo
);

Again, I’ve shown a slightly rearranged and simplified version of the code to make the
steps clearer.

13.4.3 Colliding Convex Polyhedra

Implementing box collisions has been significantly more complicated than the code
for spheres. But we’ve actually done more work than it seems. Previously I mentioned
that boxes are a kind of convex polyhedra. And in fact, the approaches we’ve taken to
collision detection for boxes are generalizable for all kinds of convex polyhedra.

Collisions with a Half-Space: We know the only kinds of contacts that can occur
are vertex–face contacts, where the half-space forms the face side of the contact.
This means we can simply test the vertices of the object against the half-space and
generate contacts for each vertex that has interpenetrated.

13.4 Separating Axis Tests 327

Collisions with a Sphere: There may be at most one contact, which may be
vertex–face, edge–face, or face–face. In each case, the sphere contributes a face
to the contact (it has no vertices or edges, after all). We only need to find the
closest point on the object to the sphere’s center. If that point is no farther away
than the radius of the sphere, we know there is contact. The contact data can be
generated simply from this point and the center of the sphere.

Collision with Another Convex Polyhedra: We can use a series of SATs to cal-
culate the deepest interpenetration. The axes we test are those for each face, and
the axes orthogonal to each pair of edges in different objects. There can be at
most one resulting contact, which may be either vertex–face or edge–edge. Cal-
culating data for the vertex–face case involves finding the vertex with the greatest
interpenetration. In the edge–edge case, we find the points of closest approach
of the two edges. As with the code for boxes, we’ll often have multiple fea-
tures that share the same separating axes, and we don’t bother to test the dupli-
cates. Before we can calculate the contact data, therefore, we need to do some
extra work to figure out which of that axis’s edges or faces contribute to the
contact.

The most important difference between a regular box and a general convex poly-
hedra is one of scale. If our polyhedra has E edges, F faces, and V vertices, then
the collision with a half-space described so far will be an O(V) process, the col-
lision with a sphere will be O(E + F), and the collision with another polyhedra
will be

O(F1 + F2 + E1E2)

where F1 and F2, and E1 and E2 are the number of faces and edges, respectively, in the
two polyhedra colliding.

This quadratic expression means that the processing requirements for SAT col-
lision detection can quickly grow very large. Even for two cuboids, if there were no
parallel sides or edges, we would have to test 6 + 6 + 12 × 12 = 156 axes. Most col-
lision geometry is a good deal more complex than this—complex enough to make
collision detection impractical.

There are a few ways that we can make progress. One way is to use techniques
similar to those we’ve seen already: grouping parts of the objects together and doing
tests on entire groups before doing tests on individual elements.

We can group parts of the collision geometry into a bounding volume hierarchy
(though it is much more common to use bounding boxes than spheres at this point).
This allows us to rapidly work out what parts of the two objects are colliding, allowing
us to make fewer SATs to find the contact data.

This approach also has the advantage of allowing us to support non-convex poly-
hedra as long as each separate component we use is convex. It also provides support
for some kinds of multicontact collisions that are hard to handle with the regular SAT
approach we’ve seen thus far.

328 Chapter 13 Generating Contacts

13.5 Coherence

The most efficient algorithms we’ve seen for calculating the collision between convex
polyhedra all generate at most a single collision. As we saw at the start of this chapter,
this isn’t ideal for physical simulation. To get good results from our collision detector,
we’ll need to extend it.

Several developers I know have built their own custom versions of the SAT, GJK, or
V-Clip algorithms that can generate more than one contact. But there isn’t a standard
way of doing it. In the SAT algorithm, for example, we can take multiple separating
axes and use them as the basis of multiple contacts. But we have to be careful—other
than the axis with the least interpenetration, we can’t guarantee that other axes repre-
sent a contact, so we need to do extra work to check them after they are found. These
problems can be solved, but I’m not aware of a standard solution.

There is another approach to generating multiple contacts, regardless of the
underlying algorithm. In each frame we generate a single contact, using any of the
algorithms we’ve met so far. This is resolved in the normal way. Because we only have
one contact resolved, the collision resolution will not be perfect, and it is likely that
the objects will interpenetrate again in the next frame. For collisions that should really
have a number of contact points, the next frame’s interpenetration will normally be
different from the previous: a different pair of edges will be found, or a different ver-
tex or face. This new interpenetration is detected as a contact in exactly the same way
as before.

Our new code tracks these contacts on successive frames, retains them, and rein-
troduces them on successive frames. So in our case, in the second frame both contacts
are added. The first contact might have a zero or negative interpenetration. This is
okay, as we’ll see; the contact resolver will cope. In fact, it can still be useful.

This process relies on the fact that objects don’t move too far from frame to frame.
This is called “coherence.” It means that a contact in one frame is likely to be almost
a contact in the following frame. Figure 13.16 shows this in action for two contacts
in 2D.

The chances that an existing contact is useful in the next frame are high when the
boxes are stable, but when they are moving, the contact may be completely wrong at
the following frame. There are three things to note about this approach.

First, if we kept track of the contact data and reintroduced it in the next frame,
we’d notice inaccurate collision response. It is true that a contact is often coherent,
but its contact data usually isn’t. What we store, therefore, is the pair of features on
the two objects that generate the collision. From that pair of features, we calculate the
contact data afresh.

For example, if we had an edge–edge contact, we’d store the two edges involved.
On the following frame, we’d derive the contact normal from the two edges, recalcu-
late their closest approach and use that to determine a collision point. This data would
be correct for the current frame, even though the features in use would be carried over
from the previous frame.

13.5 Coherence 329

First
contact

First
contact

Second
contact

FIGURE 13.16 Sequence of contacts over two frames.

Second, therefore, we have to be careful not to use the same features again in the
following frame. If we detect a collision between edge 1 and edge 2 on one frame, then
again on the other, we only want to introduce the contact once. Having two duplicate
contacts can confuse the collision resolution system.

Both of these considerations mean that we may need to alter our basic collision
detection algorithm so it returns not only the contact data we’ve seen so far, but also
unique identifiers for the features involved in that contact.

The third feature we need is the ability to forget about contacts that have hap-
pened. There are normally three criteria for this:

1. If the contact is more than a certain number of frames old, remove it from the
cache. The exact number of frames requires some fine-tuning, but in systems I’ve
implemented, a handful of frames is sufficient.

2. If the penetration depth is less than some limit, the contact has separated far
enough to ignore it. At first glance, zero seems a good value for this, but the col-
lision response system we’ll build in the next part of the book can work with
contacts that have a less-than-zero interpenetration (i.e., that are actually sep-
arated by some amount). When the contacts are resolved, such contacts can be
brought into penetration, so it helps the contact resolution system to know about
them in advance.

3. If the contact’s separation velocity is greater than some limit, then the contact is
considered to have bounced and is separating. Coherence isn’t a good assumption
in this case (since it assumes that not much has changed from frame to frame).

330 Chapter 13 Generating Contacts

In code, the coherence system has this structure:

struct FeatureRecord {
FeatureID feature1;
FeatureID feature2;

};

class Contact {
// ... Other data as before ...
FeatureRecord features;

};

class CoherenceContactGenerator {
std::set<FeaturePair> cache;
ContactGenerator generator;

int generateContacts(ContactData &data) {
int numContacts = generator.generateContacts(data);

// Check if we have a contact to cache.
if (numContacts) {

Contact *lastContact = data.contacts - 1;
cache.insert(lastContact.features);

}

// Go through each contact and check if we need to remove it.
for (std::set<FeaturePair>::iterator i = cache.begin();

i != cache.end(); ++i) {

if (removeFeature(*i)) {
cache.remove(i);

} else {
// Add this contact to the list of contacts.
Contact *contact = createContactData(*i);
data.add(contact);

}
}

}
};

This is again a simplification of the full system, where I’ve removed the code to cal-
culate collision data, which is the same as we’ve seen previously.

13.7 Exercises 331

13.6 Summary

The collision detection algorithms in this chapter only give a flavor of the depth and
complexity of building a robust collision detection system. Collision detection is a
large field in its own right and there are many more approaches, caveats, and oppor-
tunities than I’ve had space to cover in this chapter.

You can use the collision detection system we’ve built in the last two chapters in its
own right, and extend it as needed. Or you can elect to bring in a third-party collision
detection system.

There are good open-source collision detection and contact generation algorithms
available (such as SOLID and RAPID). You can use these alongside the physics you’re
developing in this book, or take their algorithms as inspiration for creating your own
code.

Be warned though: there are so many cases and so many optimizations possible
that it will end up as big a job to write a comprehensive collision detection system as
it will be to create your physics engine to process the contacts.

With a collision detection system running correctly, it’s time to return to our
physics engine and process the collisions that we’ve found. In Chapter 14, we return
to the issue of impact collision and build code to support collisions for full rotating
rigid bodies.

13.7 Exercises

Exercise 13.1

(a) In Section 13.2.1, we saw the various types of contacts that can occur between
two objects in 3D. List the equivalent types of contacts for objects in 2D.

(b) What generation order should be used?

Exercise 13.2
What is the maximum number of contacts we’d need to represent the collision
between a cube and a cylinder?

Exercise 13.3
A cylinder is touching a cube, so the edge of the cylinder is in contact with one edge of
the cube. At the point of contact, the edges are not parallel. How should the contact
normal be calculated?

Exercise 13.4
The curved surface of a cylinder and a sphere are in contact. How should we calculate
the contact normal?

Exercise 13.5
What set of axes would you need to test in order to perform an SAT between a box
and a sphere?

This page intentionally left blank

Part V

Contact Physics

This page intentionally left blank

14
Collision

Resolution

t’s time to look at the final, and most complex, stage of our physics system. We have
Ia set of contact data from the collision detector (from Chapter 13), and we have
the rigid-body equations of motion including torques and forces (from Chapter 10).
We are now ready to combine the two and have rotating objects respond to contacts.

Just as in Chapter 7, we will first look in detail at the physics of collisions. We
are building a microcollision physics engine, that is, one in which resting contacts are
handled with lots of minicollisions (plus a bit of special-purpose code). Before we can
get the microcollisions of resting contacts working, we need to look in detail at basic
collision handling.

This chapter builds the first stage of our contact resolution system to handle colli-
sions. Chapter 15 goes on to incorporate the collision response into more general and
robust contact handling.

Because all contact handling in the engine is based on collisions, this chapter takes
up the largest part of finishing our engine in terms of book pages, mathematical com-
plexity, and implementation difficulty. If you find this chapter hard going, then try to
persevere: it’s mostly downhill from here on.

14.1 Impulse and Impulsive Torque

Recall that when a collision occurs between two objects in the real world, the material
from which they are made compresses slightly. Whether it is a rubber ball or a stone,

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00014-0 335

336 Chapter 14 Collision Resolution

the molecules near the point of collision are pushed together fractionally. As they
compress, they exert a force to try to return to their original shape.

Different objects have a different resistance to being deformed and a different ten-
dency to return to their original shape. Combined together, the two tendencies give an
object its characteristic bounce. A rubber ball can be easily deformed, but has a high
tendency to return to its original shape, and so it bounces well. A stone has a high ten-
dency to return to its original shape, but has a very high resistance to being deformed;
it will bounce, but not very much. A lump of clay will have a low resistance to being
deformed, and no tendency to return to its original shape; it will not bounce at all.

The force that resists the deformation causes the objects to stop colliding: their
velocities are reduced until they are no longer moving together. At this point the
objects are at their most compressed. If there is a tendency to return to their orig-
inal shape, then the force begins to accelerate them apart until they are no longer
deformed. At this point the objects are typically moving apart.

All this happens in the smallest fraction of a second, and for reasonably stiff objects
(such as two pool balls), the compression distances are tiny fractions of a millimeter.
In almost all cases, the deformation cannot be seen with the naked eye, as it is too small
and over too quickly. From our perspective, we simply see the two objects collide and
instantly bounce apart.

I have stressed what is happening at the minute level because it helps to understand
the mathematics we will use. It would be impractical for us to simulate the bounce
in detail, however. The spring-like compression is far too stiff and, as we’ve seen, the
results we get with very stiff springs can be disastrous.

In Chapter 7 we saw that two point objects will bounce apart at a velocity that is
a fixed multiple of their closing velocity immediately before the impact. To simulate
this, we instantly changed the velocity of each object in the collision. This change in
velocity is called an impulse.

14.1.1 Impulsive Torque

Now we are dealing with rotating rigid bodies, so things are not quite as simple. If you
bounce an object while it is rotating, you will notice that the object not only rebounds
linearly, but its angular velocity will change too.

It is not enough to apply the collision equations from Chapter 7, because they only
take into account linear motion. We need to understand how the collision affects both
linear and angular velocities.

Figure 14.1 shows a long rod being spun into the ground (we’ll come back to col-
lisions between two moving objects in a moment). Let’s look closely at what would
happen in the real world at the moment of collision. The second part of the figure
shows the deformation of the object at the point of collision. This causes a compres-
sion force to push in the direction shown.

Looking at D’Alembert’s principle in Chapter 10, we saw that any force acting
on an object generates both linear and angular acceleration. The linear component is

14.1 Impulse and Impulsive Torque 337

Force due
to compression

FIGURE 14.1 The rotational and linear components of a collision.

given by

p̈ = 1

m
f

and the angular component by the torque,

τ = pf × f

where the torque generates angular acceleration by

θ̈ = I −1τ

which is Equation 10.5.
So, in the case of the collision, it stands to reason that the collision will generate a

linear change in velocity (the impulse) and an angular change in velocity. An instan-
taneous angular change in velocity is called an impulsive torque (also rarely called
moment of impulse or impulsive moment, which sounds more like an impromptu wed-
ding in Vegas to me).1

In the same way as we have

τ = I θ̈

for torques, we have

u = I θ̇

where u is the impulsive torque, I is the inertia tensor, and θ̇ is the angular velocity,
as before. This is the direct equivalent of Equation 7.6 that dealt with linear impulses.

1. Strictly speaking, what we’ve called impulse is “impulsive force,” or we could call it linear and angular
impulse. But I’ll continue to use just “impulse” to refer to the linear version.

338 Chapter 14 Collision Resolution

And correspondingly, the change in angular velocity, �θ̇ , is

�θ̇ = I −1u [14.1]

In all these equations, I should be in world coordinates, as discussed in Section 10.2.3.
Impulses behave just like forces (remember, we’re using them to represent the

effect of forces over tiny distances and fractions of a second). In particular, for a given
impulse, there will be both a linear component and an angular component. Just as the
amount of torque is given by

τ = pf × f

the impulsive torque generated by an impulse is given by

u = pf × g [14.2]

In our case, for collisions, the point of application (pf) is given by the contact
point and the origin of the object:

pf = q − p

where q is the position of the contact in world coordinates, and p is the position of
the origin of the object in world coordinates.

14.1.2 Rotating Collisions

The effect of the impulse at the collision is to have the two objects move apart. In
particular, the exact point on each object that is involved in the collision will sepa-
rate. And those points will follow the same equations that we met in Chapter 7. So
if we tracked the two collision points (one from each object) around the time of the
collision, we’d see that their separating velocity is given by

v′
s = −cvs

where vs is the relative velocity of the objects immediately before the collision, v′
s is

the relative velocity after the collision, and c is the coefficient of restitution. In other
words, the separation velocity is always in the opposite direction to the closing veloc-
ity, and is a constant proportion of its magnitude. The constant c depends on the
materials of both objects involved.

Depending on the characteristics of the objects involved, and the direction of the
contact normal, this separation velocity will be made up of both linear and rotational
motion. Figure 14.2 shows different objects engaged in the same collision (again illus-
trated with a fixed ground plane for clarity). In each part of the figure, the closing
velocity and the coefficient of restitution at the point of contact are the same, so the
separating velocity is the same too.

The first object is lightweight, and is colliding almost head on. For any force gen-
erated during the collision, the corresponding torque will be small, because f is almost
parallel to pf. Its bounce will be mostly linear, with only a small rotational component.

The second object is heavier, but has a very small moment of inertia about the
Z-axis. It is colliding off center. Here the torque generated will be large, and because

14.1 Impulse and Impulsive Torque 339

FIGURE 14.2 Three objects with different bounce characteristics.

the moment of inertia is very small, there will be a big rotational response. The rota-
tional response is so large, in fact, that the linear component isn’t large enough to
bounce the object upward. Although the point of contact bounces back up (at the
same velocity that the point of contact did in every other case), it is the rotation of the
object that is doing most of the separating, so the linear motion continues downward,
but at a slightly slower rate. You can observe this if you drop a ruler on the ground in
the configuration shown. The ruler will start spinning away from the point of contact
rapidly, but the ruler as a whole will not leap back into the air. The rotation is taking
the bulk of the responsibility for separating the points of contact.

The third object collides in the same way as the second. In this case, however,
although the mass is the same, its moment of inertia is much greater. It represents
an object with more mass in its extreme parts. Here the linear impulse is greater,
and the impulsive torque is smaller. The object bounces linearly and the compres-
sion force reverses the direction of rotation, but the resulting angular velocity is
small.

14.1.3 Handling Rotating Collisions

Just as for particle collisions, we need two parts to our collision response. First, we
need to resolve the relative motion of the two objects by applying impulse and impul-
sive torque. When we process a collision for velocity, we need to calculate four val-
ues: the impulse and impulsive torque for both objects in the collision. Calculating
the balance of the linear and angular impulse to apply is our major mathematical
challenge.

Because we only check for collisions at the end of each frame, objects may have
already passed into one another. So we need to resolve any interpenetration that has
occurred. The interpenetration can be handled in a very similar way to interpenetra-
tion for particles. But the impulse calculations we need to perform in the first part
of our response allow us to do a more physically realistic interpenetration resolution.
We’ll return to this process in Section 14.3.

340 Chapter 14 Collision Resolution

14.2 Collision Impulses

To resolve the relative motion of the two objects, we need to calculate four impulses,
including the linear and angular impulses for each object. If there is only one object
involved in the collision (if an object is colliding with an immovable object, such as
the ground), then we only need two values—the impulse and impulsive torque for
the moving object.

To calculate the impulse and impulsive force on each object, we go through the
following series of steps:

1. We work in a set of coordinates that are relative to the contact: this makes lots of
the math much simpler. So first we create a transform matrix to convert into and
out of this new set of coordinates.

2. We work out the change in velocity of the contact point on each object per unit
of impulse. Because the impulse will cause linear and angular motion, this value
needs to take account of both components.

3. We invert the result of the last stage to find the impulse needed to generate any
given velocity change.

4. We work out what the separating velocity at the contact point should be, what
the closing velocity currently is, and the difference between the two. This is the
desired change in velocity.

5. From the desired change in velocity, we can calculate the impulse that must be
generated.

6. We split the impulse into its linear and angular components and apply them to
each object.

Let’s look at each of these stages in turn.

14.2.1 Change to Contact Coordinates

Our goal is to work out what impulse we need to apply as a result of the collision. The
impulse will generate a change in velocity. We can calculate the change in velocity we
want to see, so we need to find the impulse that generates that change.

We are not interested in the linear and angular velocity of the entire object at this
stage. For the purpose of the collision, we are only interested in the separating velocity
of the contact points. As we saw in the previous section, we have an equation that tells
us what the final separating velocity needs to be, so we’d like to be able to apply it
simply.

The velocity of a point on an object is related to both its linear and angular velocity,
according to Equation 9.6:

q̇ = θ̇ × (q − p) + ṗ

Because we are only interested in the movement of the colliding points at this
stage, we can simplify the mathematics by doing calculations relative to the point of

14.2 Collision Impulses 341

Contact
Normal
(x axis)

Contact Axes

Local Axes

Local Axes

World Axes

y

y

y

z

z

z

x

y

z
x

x

FIGURE 14.3 The three sets of coordinates: world, local, and contact.

collision. Recall from Chapter 13 that each contact has an associated contact point and
contact normal. If we use this point as the origin, and the contact normal as one axis,
we can form an orthonormal basis around it. Just as we have a set of world coordinates
and sets of local coordinates for each object, we will have a set of contact coordinates
for each contact.

Figure 14.3 shows the contact coordinates for one contact. Note that we are ignor-
ing interpenetration at this stage. As part of the contact generation, we calculated a
single representative point for each contact.

The Contact Coordinate Axes

The first stage of converting to contact coordinates is to work out the direction of
each axis. We do this using the algorithm to calculate an orthonormal basis, seen in
Section 2.1.9. The X-axis we know already—it is the contact normal generated by the
collision detector. The Y-axis and Z-axis need to be calculated.2

Unfortunately, there can be any number of different Y- and Z-axes generated from
one X-axis. We’ll need to select just one. If we are working with anisotropic friction
(friction that is different in different directions), then there will be one set of basis
vectors that is most suitable. For the isotropic friction in this book, and friction less
simulations, any set is just as valid. Since we are ignoring friction for now, we create

2. This is just a convention adopted in this book. There is no reason why the X-axis has to be the contact
normal. Some people prefer to think of the Y-axis as the contact normal. If you are one of them, the rest of
this section can be adjusted accordingly.

342 Chapter 14 Collision Resolution

an arbitrary set of axes by starting with the Y-axis pointing down the world Y-axis
(recall that the algorithm required the base axis, in our case the X-axis, plus an initial
guess at a second axis, which may end up being altered). In Section 2.1.9, we saw an
algorithm to make an orthonormal basis given two initial axes:

void makeOrthonormalBasis(Vector3 *x, Vector3 *y, Vector3 *z)
{

x->normalize();
(*z) = (*x) % (*y);
if (z.squareMagnitude() == 0.0) return; // Or generate an error.
z->normalize();
(*y) = (*z) % (*x);

}

We can use this same algorithm, but we have to add in a Y-axis value too. Because we
don’t care about the directions of the Y- and Z-axes, we can choose any Y-axis. The
world Y-axis, for example:

Vector y(0, 1.0, 0), z;
makeOrthonormalBasis(contactNormal, &y, &z);

We can improve the efficiency of this longhand form by manually performing
the vector products (rather than calling the vector product operator in the Vector3
class). Note that if the initial Y-axis is pointing along the Y-axis, then any value for
the resulting Z-axis must be at right angles to the Y-axis. This can only happen if the
resulting Z-axis has a zero Y component. This allows us to directly set the Y coordinate
of the Z-axis to zero without calculation. The shorthand code looks like this:

// The output axes.
Vector y, z;

// Scaling factor to ensure the results are normalized.
const real s = 1.0/real_sqrt(x.z*x.z + x.x*x.x);

// The new Z-axis is at right angles to the world Y-axis.
z.x = x.z*s;
z.y = 0;
z.z = -x.x*s;

14.2 Collision Impulses 343

// The new Y-axis is at right angles to the new X- and Z-axes.
y.x = x.y*z.x;
y.y = x.z*z.x - x.x*z.z;
y.z = -x.y*z.x;

There is one further problem to address. If the contact normal passed in (as the
X-axis) is already pointing in the direction of the world space Y-axis, then we will end
up with zero for all three components of the Z-axis. In this case, using the world-
space Y-axis is not a good guess; we need to use another. We can test for this case and
use either the world-space X-axis or Z-axis instead (remember, we don’t care what
direction these axes point in, as long as they are orthonormal to one another). The
code I’ve implemented uses the world-space X-axis.

To make the algorithm as stable as possible, we perform this switch between using
the world-space Y-axis and the X-axis, depending on which is closest to the contact
normal. We could just switch when the contact normal is exactly in the direction of
the Y-axis, but if it were very close to being in that direction, we may end up with
numerical problems and an inaccurate result. It is better to maximize the size of the
cross-product.

if (real_abs(x.x) > real_abs(x.y))
{

// We’re nearer the x-axis, so use the y-axis as before.
// ...

}
else
{

// We’re nearer the y-axis, so use the x-axis as a guess.
// ...

}

The Basis Matrix

Before we look at the complete code for calculating the basis, we need to look again at
what it needs to output. So far I’ve assumed we’ll end up with three vectors that make
up an orthonormal basis.

It is often more convenient to work with a matrix rather than a set of three vectors.
Recall in Section 9.4.2 that a matrix can be thought of as a transformation from one
set of axes to another.

At several points in this section, we will need to convert between the contact axes
(called contact coordinates, or contact space) and world space. To do this we need a
matrix that performs the conversion.

344 Chapter 14 Collision Resolution

As seen in Section 9.4.2, a transform matrix from local space into world space can
be constructed by placing the three local-space axes as columns in the matrix. So if
we have an orthonormal basis consisting of the three vectors,

x̂local =
⎡⎢⎣a

b

c

⎤⎥⎦ , ŷlocal =
⎡⎢⎣d

e

f

⎤⎥⎦ , and ẑlocal =
⎡⎢⎣g

h

i

⎤⎥⎦
we can combine them into a transform matrix,

Mbasis =
⎡⎢⎣a d g

b e h

c f i

⎤⎥⎦
If we have a set of coordinates expressed in local space and we want the coordinates

of the same point in world space, we can simply multiply the transform matrix by the
coordinate vector,

Mplocal = pworld

In other words, the basis matrix converts local coordinates to world coordinates.
We can put this together into code. This function operates on the contact normal

to create a set of orthonormal axes and then generates a basis matrix representing
the contact coordinates. The matrix can act as a transformation to convert contact
coordinates into world coordinates:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

/**
* Calculates an orthonormal basis for the contact point, based on
* the primary friction direction (for anisotropic friction) or
* a random orientation (for isotropic friction).
*/
void calculateContactBasis();

};

Excerpt from file src/contacts.cpp

/*
* Constructs an arbitrary orthonormal basis for the contact. This is
* stored as a 3 x 3 matrix, where each vector is a column (in other
* words, the matrix transforms contact space into world space). The x
* direction is generated from the contact normal, and the y and z

14.2 Collision Impulses 345

* directions are set so that they are at right angles to it.
*/

void Contact::calculateContactBasis()
{

Vector3 contactTangent[2];

// Check whether the Z-axis is nearer to the X- or Y-axis
if (real_abs(contactNormal.x) > real_abs(contactNormal.y))
{

// Scaling factor to ensure the results are normalized.
const real s = (real)1.0f/

real_sqrt(contactNormal.z*contactNormal.z +
contactNormal.x*contactNormal.x);

// The new X-axis is at right angles to the world Y-axis.
contactTangent[0].x = contactNormal.z*s;
contactTangent[0].y = 0;
contactTangent[0].z = -contactNormal.x*s;

// The new Y-axis is at right angles to the new X- and Z-axes.
contactTangent[1].x = contactNormal.y*contactTangent[0].x;
contactTangent[1].y = contactNormal.z*contactTangent[0].x -

contactNormal.x*contactTangent[0].z;
contactTangent[1].z = -contactNormal.y*contactTangent[0].x;

}
else
{

// Scaling factor to ensure the results are normalized.
const real s = (real)1.0/

real_sqrt(contactNormal.z*contactNormal.z +
contactNormal.y*contactNormal.y);

// The new X-axis is at right angles to the world X-axis.
contactTangent[0].x = 0;
contactTangent[0].y = -contactNormal.z*s;
contactTangent[0].z = contactNormal.y*s;

// The new Y-axis is at right angles to the new X- and Z-axes.
contactTangent[1].x = contactNormal.y*contactTangent[0].z -

contactNormal.z*contactTangent[0].y;
contactTangent[1].y = -contactNormal.x*contactTangent[0].z;
contactTangent[1].z = contactNormal.x*contactTangent[0].y;

}

346 Chapter 14 Collision Resolution

// Make a matrix from the three vectors.
contactToWorld.setComponents(

contactNormal,
contactTangent[0],
contactTangent[1]);

}

The setComponents method of the Matrix3 class sets the columns in the matrix. It is
implemented as:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

/**
* Sets the matrix values from the given three vector components.
* These are arranged as the three columns of the vector.
*/
void setComponents(const Vector3 &compOne, const Vector3 &compTwo,

const Vector3 &compThree)
{

data[0] = compOne.x;
data[1] = compTwo.x;
data[2] = compThree.x;
data[3] = compOne.y;
data[4] = compTwo.y;
data[5] = compThree.y;
data[6] = compOne.z;
data[7] = compTwo.z;
data[8] = compThree.z;

}
};

Inverse Transformation

It is worth recapping the result seen in Section 9.4.3 here, namely that the inverse of
a rotation matrix is the same as its transpose. Why are we interested in the inverse?
Because, as well as converting from contact coordinates to world coordinates, we may
have to go the other way.

To convert world coordinates into contact coordinates, we use the inverse of the
basis matrix created in the code above. Inverting a matrix in general, as we have seen,

14.2 Collision Impulses 347

is complex. Fortunately, the basis matrix as we’ve defined it here represents a rotation
only: it is a 3×3 matrix, so it can’t have a translational component;3 and because both
the contact axes and the world axes are orthonormal, it cannot have any skewing or
scaling involved.

This means that we can perform the transformation from world coordinates into
contact coordinates by using the transpose of the basis matrix:

M�
basis =

⎡⎢⎣a d g

b e h

c f i

⎤⎥⎦
�

=
⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
This allows us to convert at will between contact coordinates and world coordinates.
Whenever some calculation is easier in one than another, we can simply convert
between them. We’ll use this important result in the next section, and a great deal
more in Chapter 15.

14.2.2 Velocity Change by Impulse

Remember that the change in motion of both objects in a collision is caused by the
forces generated at the collision point by compression and resistance to deformation.
Because we are representing the entire collision event as a single moment in time, we
use impulses rather than forces. Impulses cause a change in velocity (both angular
and linear, according to D’Alembert’s principle, just like forces).

So if our goal is to calculate the impulse at the collision, we need to understand
what effect an impulse will have on each object. We want to end up with a mathemat-
ical structure that tells us what the change in velocity of each object will be, for any
given impulse.

For the frictionless contacts we’re considering in this chapter, the only impulses
generated at the contact are applied along the contact normal. We’d like to end up
with a simple number, then, that tells us the change in velocity at the contact, in the
direction of the contact normal, for each unit of impulse applied in the same direction.

As we have seen, the velocity change per unit impulse has two components: a
linear component and an angular component. We can deal with these separately and
combine them at the end.

It is also worth noting that the value depends on both bodies. We’ll need to find
the linear and angular velocity change for each object involved in the collision.

3. You may object here. Strictly speaking, we could have a translational component. After all, it makes
sense for the contact point to be the origin of the contact coordinates. If we followed this approach, we’d
need a larger matrix, and the inverse wouldn’t be as simple. In the code we’ll need, however, we never have
to use this offset value—if we want the contact point, we have access to it directly from the contact data
structure. Because of this we can simply ignore the translational component, treat the matrix as a rotation
matrix, and take advantage of the cheap inverse.

348 Chapter 14 Collision Resolution

The Linear Component

The linear component is very simple. The linear change in velocity for a unit impulse
will be in the direction of the impulse, with a magnitude given by the inverse mass,

�ṗd = m−1

For collisions involving two objects, the linear component is simply the sum of
the two inverse masses:

�ṗd = m−1
a + m−1

b

Remember that this equation only holds for the linear component of velocity. It
doesn’t give the complete picture yet!

The Angular Component

The angular component is more complex. We’ll need to bring together three equations
we have encountered at various points in the book. For convenience, we’ll use qrel for
the position of the contact relative to the origin of an object:

qrel = q − p

First, Equation 14.2 tells us the amount of impulsive torque generated from a unit
of impulse:

u = qrel × d̂

where d is the direction of the impulse (in our case, the contact normal).
Second, Equation 14.1 tells us the change in angular velocity for a unit of impulsive

torque:

�θ̇ = I −1u

And finally, Equation 9.6 tells us the total velocity of a point. If we remove the
linear component, we get the equation for the linear velocity of a point due only to
its rotation:

q̇ = θ̇ × qrel

The rotation-induced velocity of a point (q̇) depends on that point’s position relative
the origin of the object (q − p), and on the object’s angular velocity (θ̇).

So we now have a set of equations that can get us from a unit of impulse, via
the impulsive torque it generates, and the angular velocity that the torque causes,
through to the linear velocity that results. Converting these three equations into code,
we get:

Vector3 torquePerUnitImpulse =
relativeContactPosition % contactNormal;

14.2 Collision Impulses 349

Vector3 rotationPerUnitImpulse =
inverseInertiaTensor.transform(torquePerUnitImpulse);

Vector3 velocityPerUnitImpulse =
rotationPerUnitImpulse % relativeContactPosition;

The result will be the velocity caused by rotation per unit impulse. As it stands, the
result is a vector—a velocity in world space. But we are only interested in the velocity
along the contact normal.

We need to transform this vector into contact coordinates using the transpose
basis matrix as seen previously. This would give us a vector of velocities that a unit
impulse would cause. We are only interested at this stage in the velocity in the direction
of the contact normal. In contact coordinates, this is the X-axis, so our value is the
X component of the resulting vector:

Vector3 velocityPerUnitImpulseContact =
contactToWorld.transformTranspose(velocityPerUnitImpulse);

real angularComponent = velocityPerUnitImpulseContact.x;

Here the transformTranspose method is a convenience method that combines the
effect of transforming a vector by the transpose of a matrix.4

Although we could implement it in this way, there is a faster way of doing it. If we
have a matrix multiplication, ⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦
then the X component of the result is xa + yb + zc . The former is equivalent to the
scalar product, ⎡⎢⎣a

b

c

⎤⎥⎦ ·
⎡⎢⎣x

y

z

⎤⎥⎦
In the case of contact coordinates, the vector⎡⎢⎣a

b

c

⎤⎥⎦
4. It works by performing a regular matrix transformation, but selecting the components of the matrix in
row rather than column order. See the accompanying source code for its implementation.

350 Chapter 14 Collision Resolution

is the contact normal, as we saw when creating the basis matrix. So we can replace the
full matrix transformation above with code of the form:

real angularComponent = velocityPerUnitImpulse * contactNormal;

There is another way to think of this final step. The velocityPerUnitImpulse is
given in world coordinates. Performing the scalar product is equivalent to finding the
component of this value in the direction of the contact normal, where the contact
normal as a vector is also given in world coordinates.

It is better, in my opinion, to think in terms of the change of coordinates, because
as we introduce friction in Chapter 15, the simple scalar product trick can no longer
be used. It is important to realize that we are going through the same process in
the nonfriction case, that is, finishing with a conversion from world to contact
coordinates.

Putting It Together

For each object in the collision, we can now find the change in velocity of the contact
point, per unit impulse.

For contacts with two objects involved, we have four values: the velocity caused
by linear motion and by angular motion for each object. For contacts involving only
one rigid body (i.e., contacts with immovable fixtures like the ground), we have just
two values.

In both cases, we add the resulting values to get an overall change in velocity per
unit impulse value. The entire process can be implemented as follows:

Excerpt from file src/contacts.cpp

// Build a vector that shows the change in velocity in
// world space for a unit impulse in the direction of the contact
// normal.
Vector3 deltaVelWorld = relativeContactPosition[0] % contactNormal;
deltaVelWorld = inverseInertiaTensor[0].transform(deltaVelWorld);
deltaVelWorld = deltaVelWorld % relativeContactPosition[0];

// Work out the change in velocity in contact coordinates.
real deltaVelocity = deltaVelWorld * contactNormal;

// Add the linear component of velocity change.
deltaVelocity += body[0]->getInverseMass();

// Check as necessary the second body’s data.
if (body[1])

14.2 Collision Impulses 351

{
// Go through the same transformation sequence again.
Vector3 deltaVelWorld = relativeContactPosition[1] % contactNormal;
deltaVelWorld = inverseInertiaTensor[1].transform(deltaVelWorld);
deltaVelWorld = deltaVelWorld % relativeContactPosition[1];

// Add the change in velocity due to rotation.
deltaVelocity += deltaVelWorld * contactNormal;

// Add the change in velocity due to linear motion.
deltaVelocity += body[1]->getInverseMass();

}

In this code the first body is considered. Its rotational component of velocity change
is calculated and placed in the deltaVelocity component, followed by its linear com-
ponent. If a second body is present in the contact, then the same process is repeated,
and the deltaVelocity is incremented with the two components for body two. At
the end of the process, deltaVelocity contains the total velocity change per unit
impulse.

14.2.3 Impulse Change by Velocity

For frictionless collisions, this step is incredibly simple. If we have a single value for
the velocity change per unit impulse (call it d), then the impulse needed to achieve a
given velocity change is

g = v

d
[14.3]

where v is the desired change in velocity and g is the impulse required.

14.2.4 Calculating the Desired Velocity Change

This stage of the algorithm has two parts. First, we need to calculate the current closing
velocity at the contact point. Second, we need to calculate the exact change in velocity
that we are looking for.

Calculating the Closing Velocity

Before we can calculate the velocity change we need, we have to know what the current
velocity at the contact is. As seen above, velocity has both a linear and an angular
component. To calculate the total velocity of one object at the contact point, we need
both. We calculate its linear velocity and the linear velocity of the contact point due
to rotation alone.

352 Chapter 14 Collision Resolution

We can retrieve the linear velocity from an object directly, as it is stored in the
rigid body. To retrieve the velocity due to rotation we need to use Equation 9.6 again.
The total velocity of the contact point for one object is given by:

Vector3 velocity = body->getRotation() % relativeContactPosition;
velocity += body->getVelocity();

If there are two bodies involved in the collision, then the second body’s values can be
added to the velocity vector.

This gives us a total closing velocity in world coordinates. We need the value in
contact coordinates, because we need to understand how much of this velocity is in the
direction of the contact normal and how much is at a tangent to this. The components
of the velocity that are not in the direction of the contact normal represent how fast
the objects are sliding past one another; they will become important when we consider
friction.

The conversion uses the basis matrix in the now familiar way:

contactVelocity = contactToWorld.transformTranspose(velocity);

For frictionless collisions we will only use the component of this vector that lies
in the direction of the contact normal. Because the vector is in contact coordinates,
this value is simply the X component of the vector.

Calculating the Desired Velocity Change

As I mentioned at the start of the chapter, the velocity change we are looking for is
given by the same equation we used for particles:

v′
s = −cvs ⇒ �vs = −vs − cvs = −(1 + c)vs

In other words, we need to remove all of the existing closing velocity at the contact,
and keep going so that the final velocity is c times its original value, but in the opposite
direction. In code this is simply

real deltaVelocity = -contactVelocity.x * (1 + restitution);

If the coefficient of restitution, c , is zero, then the change in velocity will be
sufficient to remove all existing closing velocity, but no more. In other words, the
objects will end up not separating. If the coefficient is near 1, the objects will separate
at almost the same speed they were closing at.

14.2 Collision Impulses 353

The value of the coefficient depends on the materials that are involved in the
collision. Values around 0.4 look visibly very bouncy, like a rubber ball on a hard
floor. Values above this can start to look unrealistic.

14.2.5 Calculating the Impulse

With the desired velocity change in hand, the impulse is given by Equation 14.3.
Because we are not concerned with friction, we are only concerned with the impulse
in the direction of the contact normal. In contact coordinates, the contact normal is
the X-axis, so the final impulse vector is

gcontact =
⎡⎢⎣g

0

0

⎤⎥⎦
where g is the impulse, as above. This is implemented as follows:

Excerpt from file src/contacts.cpp

// Calculate the required size of the impulse.
Vector3 impulseContact;
impulseContact.x = desiredDeltaVelocity / deltaVelocity;
impulseContact.y = 0;
impulseContact.z = 0;

At this stage it is convenient to convert out of contact coordinates into world coor-
dinates. This makes applying the impulse in the final stage simpler. We can do this
using our basis matrix to change coordinates, as in

gworld = Mgcontact

which is implemented as follows:

Excerpt from file src/contacts.cpp

Vector3 impulse = contactToWorld.transform(impulseContact);

With the impulse calculated in world coordinates, we can go ahead and apply it
to the objects in the collision.

14.2.6 Applying the Impulse

To apply the impulse, we use Equations 7.6 and 14.1. The first tells us that linear
impulses change the linear velocity of the object according to the formula

ṗ = g

m

354 Chapter 14 Collision Resolution

The velocity change for the first object in the collision then will be:

Vector3 velocityChange = impulse * body[0]->getInverseMass();

The rotation change is given by Equation 14.1 as

�θ̇ = I −1u

We first need to calculate the impulsive torque, u, using Equation 14.2 again:

u = qrel × g

In code this looks like:

Vector3 impulsiveTorque = impulse % relativeContactPosition;
Vector3 rotationChange =

inverseInertiaTensor.transform(impulsiveTorque);

These calculations work for the first object in the collision, but not for the second, if
there is one.

To apply the impulse to the second object, we first need to make an observa-
tion. We have calculated a single value for the impulse, but there may be two objects
involved in the collision.

Just as in Chapter 7, both objects involved in a collision will receive the same sized
impulse, but in opposite directions. And as we saw in Chapter 2, changing the direc-
tion of a vector to its opposite is equivalent to changing the sign of all its components.

We have worked so far using the contact normal as it was generated by the collision
detector. By convention, the collision detector generates a contact normal from the
first body’s point of view. So the calculated impulse will be correct for the first body.
The second body should receive the impulse in the opposite direction.

We can use the same code as above for the second body, but first we need to change
the sign of the impulse:

// Calculate velocity and rotation change for object one.
// ...

impulse *= -1;

// Calculate velocity and rotation change for object two.
// ...

14.3 Resolving Interpenetration 355

Finally, the velocity and rotation changes calculated for each object can be directly
applied to the velocity and angular velocity of the rigid body, such as:

body->velocity += velocityChange;
body->rotation += rotationChange;

14.3 Resolving Interpenetration

We have covered the procedure for representing the change in velocity when a collision
happens. If the objects in our simulation were truly solid, this would be all that is
needed.

Unfortunately, the objects can pass into one another before we detect that a colli-
sion has occurred. The simulation proceeds in time steps, during which no checking
takes place. By the end of a time step when collision detection occurs, two objects can
have touched and passed into one another. We need to resolve this interpenetration
in some way; otherwise, objects in the game will not appear solid.

This is the same set of requirements seen in the aggregated mass engine. In that
case, when two objects were interpenetrating, it was quite easy to move them apart.
We moved each object back along the line of the contact normal to the first point
where they no longer intersected.

14.3.1 Choosing a Resolution Method

For rotating rigid bodies, the situation is a little more complex. There are several
strategies we could employ to resolve interpenetration, which are summarized
here.

Linear Projection

We could use the same algorithm as before, that is, changing the position of each
object so that it is moved apart in the direction of the contact normal. The amount
of movement should be the smallest possible so the objects no longer touch. For
collisions involving two objects, the amount each moves is proportional to its
inverse mass; so, a light object has to take on more of the movement than a heavy
object.

This approach works and is very simple to implement (in fact, it uses the same
code as for the mass aggregate engine). Unfortunately, it isn’t very realistic. Figure 14.4
shows a block that has been knocked into the ground by another collision. If we use the
linear projection interpenetration resolution method, the situation after the collision

356 Chapter 14 Collision Resolution

Penetration Linear
projection

Realistic
(rotation and

linear movement)

FIGURE 14.4 Linear projection causes realism problems.

is resolved will be as shown. This is in contrast to the third part of the figure that shows
how a real box would behave.

Using linear projection makes objects appear to twitch strangely. If you will only
be dealing with spherical objects, it is useful and very fast. For any other object, we
need something more sophisticated.

Velocity-Based Resolution

Another strategy that is used in some physics engines is to take into account the linear
and angular velocity of the objects in the collision. At some point in their motion the
two objects will have just touched. Afterward they will continue to the end of the time
step interpenetrating. To resolve the interpenetration, we could move them back to
the point of first collision.

In practice, calculating this point of first collision is difficult and not worth wor-
rying about. We can approximate it by considering only the contact point on each
object as generated by the collision detector. We can move these two points back along
the paths they followed until they no longer overlap in the direction of the contact
normal.5

To move the objects back we need to keep track of the velocity and rotation of each
object before any collision resolution began. We can then use these values to work out
an equation for the path that each contact point takes, and work out when they first
crossed over (i.e., when interpenetration began).

While this is a sensible strategy and can give good results, it has the effect of intro-
ducing additional friction into the simulation. Figure 14.5 shows an example of this.
The object penetrates the ground while moving sideways at high speed. The velocity-
based resolution method would move it back along its path as shown. It would appear
to the user that the object hits the ground and sticks, even if there was no friction set
for the collision.

5. This isn’t the same as finding the first collision point because it is often not the points of deepest inter-
penetration (which is what the collision detector finds) that were the first to touch: in fact, it could be a
completely different part of the objects that touched first.

14.3 Resolving Interpenetration 357

Interpenetrating object

Realistic
resolution

Velocity-based
resolution

Path
of object

FIGURE 14.5 Velocity-based resolution introduces apparent friction.

Nonlinear Projection

A third option, and the one I will employ in this chapter, is based on the linear projec-
tion method. Rather than just moving the objects back linearly, we use a combination
of linear and angular movement to resolve the penetration.

The theory is the same: we move both objects in the direction of the contact nor-
mal until they are no longer interpenetrating. The movement, rather than being exclu-
sively linear, can also have an angular component.

For each object in the collision we need to calculate the amount of linear motion
and the amount of angular motion so that the total effect is exactly enough to resolve
the interpenetration. Just as for linear projection, the amount of motion each object
makes will depend on the inverse mass of each object. Unlike linear projection, the
balance between linear and angular velocity will depend on the inverse inertia tensor
of each object.

An object with a high moment of inertia tensor at the contact point will be less
likely to rotate, and so will take more of its motion as linear motion. If the object
rotates easily, however, then angular motion will take more of the burden.

Figure 14.6 shows this applying the same situation we saw earlier. The result is still
not exactly as it would be in reality, but the result is much nearer, and usually doesn’t
look odd. Figure 14.7 shows the shallow impact situation: the nonlinear projection
method doesn’t introduce any additional friction. In fact, it slightly diminishes the
friction by allowing the object to slide further than it otherwise would. In practice,
this appears to be far less noticeable than extra friction.

I will return to the details of implementing this algorithm later in the section.

Relaxation

Relaxation isn’t, strictly speaking, a new resolution method. Relaxation resolves only
a proportion of the interpenetration at one go, and can be used in combination with
any other method. It is most commonly used with nonlinear projection, however.

358 Chapter 14 Collision Resolution

Interpenetrating Nonlinear projection
(may not be perfect,

but is more believable)

Physically
accurate

FIGURE 14.6 Nonlinear projection is more believable.

Interpenetrating object

Nonlinear projection
Path of object

FIGURE 14.7 Nonlinear projection does not add friction.

Relaxation is useful when there are lots of contacts on one object. As each contact
is considered and resolved, it may move the object in such a way that other objects are
now interpenetrated. For a brick in a wall, any movement in any direction will cause
it to intepenetrate with another brick.

This can cause problems with the order in which interpenetration resolution
is carried out, and can leave the simulation with contacts that still have noticeable
penetration.

By performing more interpenetration resolution steps, but having each one only
resolve a proportion of the interpenetration, a set of contacts can have a more equi-
table say over where an object ends up. Each gets to resolve a little, and then the others
take their turn. This typically is repeated several times. In situations where previ-
ously there would be one or two contacts with obvious interpenetration, this method
shares the interpenetration among all the conflicting contacts, which may be less
noticeable.

Unfortunately, relaxation also makes it more likely that interpenetration is notice-
able at the end of an update when there are few collisions. It is beneficial to have all
contacts share a small degree of interpenetration when the alternative is having one
very bad contact, but in most cases it is undesirable and a full-strength resolution step
is more visually pleasing.

14.3 Resolving Interpenetration 359

It is relatively simple to add relaxation to your engine (you simply multiply the
penetration to resolve by a fixed proportion before performing the normal resolution
algorithm). I’d advise you to build the basic system without relaxation, and then add
it only if you find that you need to.

14.3.2 Implementing Nonlinear Projection

Let’s look in more detail at the nonlinear projection method and get it working in our
code.

We start knowing the penetration depth of the contact: this is the total amount of
movement we’ll need to resolve the interpenetration. Our goal is to find the propor-
tion of this movement that will be contributed by linear and angular motion for each
object.

We first make an assumption: imagine that the objects we are simulating were
pushed together so that they deformed. Rather than the amount of interpenetration,
we treat the penetration depth of the contact as if it were the amount of deformation.
As seen in the section on resolving velocities, this deformation causes a force that
pushes the objects apart. This force, according to D’Alembert’s principle, has both
linear and angular effects. The amount of each depends on the inverse mass and the
inverse inertia tensor of each object.

Treating interpenetration in this way allows us to use the same mathematics seen
in the previous section. We are effectively modeling how the two objects would be
pushed apart by the deformation forces, using a physically realistic approximation to
find the linear and angular components we need.

Calculating the Components

For velocity we were interested in the amount of velocity change caused by the rotation
change from a single unit of impulse. This quantity is a measure of how resistant the
object is to being rotated when an impulse or force is applied at the contact point.

To resolve penetration we use exactly the same sequence of equations. We find the
resistance of the object to being moved in both a linear and angular way.

Recall that the resistance of an object to being moved is called its inertia. So, we are
interested in finding the inertia of each object in the direction of the contact normal.
This inertia will have a linear component and an angular component.

The linear component of inertia is, as before, simply the inverse mass. The angular
component is calculated using the same sequence of operations we used previously.
Together the code looks like this:

Excerpt from file src/contacts.cpp

// We need to work out the inertia of each object in the direction
// of the contact normal due to angular inertia only.
for (unsigned i = 0; i < 2; i++) if (body[i])

360 Chapter 14 Collision Resolution

{
Matrix3 inverseInertiaTensor;
body[i]->getInverseInertiaTensorWorld(&inverseInertiaTensor);

// Use the same procedure as for calculating frictionless
// velocity change to work out the angular inertia.
Vector3 angularInertiaWorld =

relativeContactPosition[i] % contactNormal;
angularInertiaWorld =

inverseInertiaTensor.transform(angularInertiaWorld);
angularInertiaWorld =

angularInertiaWorld % relativeContactPosition[i];
angularInertia[i] =

angularInertiaWorld * contactNormal;

// The linear component is simply the inverse mass.
linearInertia[i] = body[i]->getInverseMass();

// Keep track of the total inertia from all components.
totalInertia += linearInertia[i] + angularInertia[i];

}

At the end of this loop we have the four values (two if our collision involves only
a single body) that tell us the proportion of the penetration to be resolved by each
component of each rigid body. The actual amount that each object needs to move is
found by:

real inverseInertia = 1 / totalInertia;
linearMove[0] = penetration * linearInertia[0] * inverseInertia;
linearMove[1] = -penetration * linearInertia[1] * inverseInertia;
angularMove[0] = penetration * angularInertia[0] * inverseInertia;
angularMove[1] = -penetration * angularInertia[1] * inverseInertia;

The penetration value is negative for the second object in the collision for the same
reason we changed the sign of the impulse for velocity resolution: the movement is
given from the first object’s point of view.

Applying the Movement

Applying the linear motion is simple. The linear move value gives the amount of
motion required, and the contact normal tells us the direction in which the movement
should take place:

14.3 Resolving Interpenetration 361

body[i]->position += contactNormal * linearMove[i];

The angular motion is a little more difficult. We know the amount of linear move-
ment we are looking for; we need to calculate the change in the orientation quaternion
that will give us this amount. We do this in three stages. First, we calculate the rota-
tion needed to move the contact point by one unit. Second, we multiply this by the
number of units needed (i.e., the angularMove value). Finally, we apply the rotation
to the orientation quaternion.

We can calculate the direction that the object needs to rotate using the same
assumption as before: the rotation is caused by some kind of impulse (even though
velocity does not change, but position and orientation do). If an impulse were exerted
at the contact point, the change in rotation would be

�θ̇ = I −1u = I −1(qrel × g)

where qrel is the relative position of the contact point, u is the impulsive torque gen-
erated by the impulse, and g is the impulse in the direction of the contact normal, as
before. The code follows:

Vector3 inverseInertiaTensor;
body->getInverseInertiaTensorWorld(&inverseInertiaTensor);

Vector3 impulsiveTorque = relativeContactPosition % contactNormal;
Vector3 impulsePerMove =

inverseInertiaTensor.transform(impulsiveTorque);

This tells us the impulsive torque needed to get one unit of motion. We are not really
interested in impulses, because we already know the total distance that needs to be
moved, and we can directly change the object. We don’t need to worry about how
forces get translated into motion.

To find the rotation needed to get one unit of movement, we simply multiply
through by the inertia:

Vector3 rotationPerMove = impulsePerMove * 1/angularInertia;

The rotationPerMovevector now tells us the rotation we need to get one unit of move-
ment. And we know that the total movement we want is angularMove, and so we know
the total rotation to apply is

Vector3 rotation = rotationPerMove * angularMove;

362 Chapter 14 Collision Resolution

To apply this rotation we use Equation 9.9, via the quaternion function
updateByVector that we defined earlier.

14.3.3 Avoiding Overrotation

There are two issues to address with the algorithm presented so far. The first is an
assumption that slipped in without being commented on, and the second is a poten-
tial problem that can cause instability and odd-looking behavior. Both are related to
objects being rotated too much as they are moved out of penetration.

Figure 14.8 shows an object that has severely interpenetrated. If the moment of
inertia of the object is small but its mass is large, then most of the extraction will
be down to angular movement. Clearly, no matter how much angular movement is
imposed, the contact point will never get out of the object. The example is extreme,
of course, but the problem is very real.

The instant an object begins rotating from an impulsive torque, the contact point
will also begin to move. We have assumed that we can take the instantaneous change
in position of the contact point (i.e., its velocity) and use that to work out how much
rotation is needed. Making this assumption means that there will always be a solution
for the rotation to apply, even in cases such as Figure 14.8, where no solution really
exists.

In effect we have assumed that the contact point would continue to move in its
initial direction forever at the same rate. Clearly, this is a wrong assumption, as the
contact point would change its direction of motion as it rotates around the center
of mass. For small rotations, the assumption is quite good. And we hope that most
interpenetrations are not very large.

For large rotations, we have another problem, however. We have the possibility
that we might rotate the object so far that the contact point will start to get closer
again, or that another part of the object will come into penetration. Figure 14.9 shows
this case. Even a modest rotation of the object can cause another penetration to occur.

For both issues, we need to limit the amount of rotation that can be part of
our penetration resolution. Keeping this value small means that our small-rotation

FIGURE 14.8 Angular motion cannot resolve the interpenetration.

14.3 Resolving Interpenetration 363

Rotating will cause
the other corner
to interpenetrate
before the contact
is resolved

FIGURE 14.9 Angular resolution causes other problems.

assumption is valid, and that we minimize the chance of causing other interpenetra-
tions while resolving a particular one.

The amount of linear and angular motion we want is calculated and stored in four
variables (two for single body collisions):

linearMove[0]
linearMove[1]
angularMove[0]
angularMove[1]

We can simply check that the values of angularMove are not too large. If they are,
we can transfer some of the burden from them onto the corresponding linearMove
component.

But what is “too large”? This is where we descend into the black art of tuning the
physics engine. I haven’t come across a sensible logical argument for choosing any
particular strategy.

Some developers use a fixed amount, such as not allowing the angular move value
to be greater than 0.5. This works well as long as the objects in the simulation are all
roughly the same size. If some objects are very large, then a suitable limit for them
may be unsuitable for smaller objects and vice versa.

It is also possible to express the limit in terms of a fraction of a revolution that
the object can make. We could limit the rotation so that the object never turns
through more than 45 degrees, for example. This accounts for differences in size, but
it is more complex to work out the equivalent angular move for a specific angle of
rotation.

A simple alternative is to scale the angular move by the size of the object (where the
size of the object can be approximated by the magnitude of the relative contact posi-
tion vector). So larger objects can have more angular movement. This is the approach
I have used in the source code.

364 Chapter 14 Collision Resolution

real limit = angularLimitConstant *
relativeContactPosition.magnitude();

// Check that the angular move is within limits.
if (real_abs(angularMove) > limit)
{

real totalMove = linearMove + angularMove;

// Set the new angular move, with the same sign as before.
if (angularMove >= 0) {

angularMove = limit;
} else {

angularMove = -limit;
}

// Make the linear move take the extra slack.
linearMove = totalMove - angularMove;

}

The value for angularLimitConstantneeds to be determined by playing with your
particular simulation. I have found that values around 0.2 give good results, although
lower values are better when very bouncy collisions are used.

14.4 The Collision Resolution Process

So far we have looked at resolving particular collisions for both velocity and interpen-
etration. Handling one collision on its own isn’t very useful.

The collision detector generates any number of contacts, and all of these need to
be processed. We need to build a framework in which any number of collisions can
be processed at once. This final section of the chapter ties the previous algorithms
together to that end. We will end up with a complete collision resolution system that
can be used for simulations that don’t need friction. In the next two chapters, we will
extend the engine to handle friction, improve speed, and increase stability for objects
resting on one another.

I mentioned in the introduction to the book that the choice of how to resolve a
series of collisions is at the heart of how a physics system is engineered. Most of the
commercial physics middleware packages process all of the collisions at the same time
(or at least batch them into groups to be processed simultaneously). This allows them
to ensure that the adjustments made to one contact don’t disturb others.

We will steer a slightly different course. Our resolution system will look at each
collision in turn, and correct it. It will process collisions in order of severity (fast
collisions are handled first). It may be that resolving one collision in this way will

14.4 The Collision Resolution Process 365

Force/Torque
generators

Rigid-body
update

(Integrator)

Create contacts

Contact data

Write
postcollision

position
and velocity

Write integrated
position
and velocity

Apply forces
and torques

Rigid-body
data

Contact
resolution

Contact generator
(Possibly with

pluggable
constraints)

1

2

3

4

FIGURE 14.10 Data flow through the physics engine.

exacerbate others. We will have to structure the code so that it can take account of
this problem.

In Chapter 20, I will look at simultaneous resolution approaches. There is a good
chance that your physics needs will not require their sophistication, however. While
they are more stable and accurate than the methods in this part of the book, they are
very much more complex and can be considerably slower.

14.4.1 The Collision Resolution Pipeline

Figure 14.10 shows a schematic of the collision resolution process. Collisions are
generated by the collision detector, based on the collision geometry of the objects
involved. These collisions are passed into a collision resolution routine, along with
the rigid-body data for the objects involved.

The collision resolution routine has two components: a velocity resolution system
and a penetration resolution system. These correspond to the two algorithms that
have made up the majority of this chapter.

These two steps are independent of one another. Changing the velocity of the
objects doesn’t affect how deeply they are interpenetrating, and vice versa.6 Physics

6. Actually, this is not strictly true: changing the position of objects can change the relative position of
their contacts, which can affect the velocity calculations we’ve used in our algorithm. The effect is usually
tiny, however, and for practical purposes we can ignore the interdependence.

366 Chapter 14 Collision Resolution

engines that do very sophisticated velocity resolution, with all collisions handled at
the same time, often still have a separate simpler penetration resolver that uses the
algorithms we implemented above.

The collision resolver we will implement in this chapter is set in a class:
CollisionResolver. It has a method resolveContacts that takes the entire set of col-
lisions and the duration of the frame, and it performs the resolution in three steps:
it calculates internal data for each contact, passes the contacts to the the penetration
resolver, and then passes the contacts to the velocity resolver:

Excerpt from file include/cyclone/contacts.h

/**
* The contact resolution routine. One resolver instance
* can be shared for the entire simulation, as long as you need
* roughly the same parameters each time (which is normal).
*/

class ContactResolver
{

/**
* Resolves a set of contacts for both penetration and
* velocity. Contacts that cannot interact with each other
* should be passed to separate calls to resolveContacts, as
* the resolution algorithm takes much longer for lots of
* contacts than it does for the same number of contacts in
* small sets.
*/
void resolveContacts(Contact *contactArray,

unsigned numContacts,
real duration);

};

Excerpt from file src/contacts.cpp

void ContactResolver::resolveContacts(Contact *contacts,
unsigned numContacts,
real duration)

{
// Make sure we have something to do.
if (numContacts == 0) return;

// Prepare the contacts for processing.
prepareContacts(contacts, numContacts, duration);

// Resolve the interpenetration problems with the contacts.
adjustPositions(contacts, numContacts, duration);

14.4 The Collision Resolution Process 367

// Resolve the velocity problems with the contacts.
adjustVelocities(contacts, numContacts, duration);

}

We also add a friendly declaration to the contact data structure to allow the
resolver to have direct access to its internals:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

/**
* The contact resolver object needs access into the contacts to
* set and affect the contacts.
*/

friend ContactResolver;
};

14.4.2 Preparing Contact Data

Because we may be performing both a penetration resolution step and a velocity res-
olution step for each contact, it is useful to calculate information that both need in a
central location. In addition, extra information needed to work out the correct order
of resolution needs to be calculated.

In the first category are two bits of data:

� The basis matrix for the contact point, calculated in the
calculateContactBasismethod, and called contactToWorld.

� The position of the contact relative to each object. I called this
relativeContactPosition in the previous code.

In the second category is the relative velocity at the contact point. We need this
to resolve velocity, so we could just calculate it in the appropriate method. If we’re
going to resolve collisions in order of severity (the fastest first), we’ll need this value
to determine which collision to consider first. So it benefits from being calculated
once and reused when needed. We can store these data in the Contact data structure:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

368 Chapter 14 Collision Resolution

protected:
/**
* A transform matrix that converts coordinates in the contact’s
* frame of reference to world coordinates. The columns of this
* matrix form an orthonormal set of vectors.
*/
Matrix3 contactToWorld;

/**
* Holds the closing velocity at the point of contact. This is set
* when the calculateInternals function is run.
*/
Vector3 contactVelocity;

/**
* Holds the required change in velocity for this contact to be
* resolved.
*/
real desiredDeltaVelocity;

/**
* Holds the world-space position of the contact point relative to
* The center of each body. This is set when the calculateInternals
* function is run.
*/
Vector3 relativeContactPosition[2];

};

The preparation routine only needs to call each contact in turn and ask it to cal-
culate the appropriate data:

Excerpt from file include/cyclone/contacts.h

class ContactResolver
{

// ... Other ContactResolver code as before ...

/**
* Sets up contacts ready for processing. This ensures that their
* internal data is configured correctly and the correct set of
* bodies is made alive.
*/
void prepareContacts(Contact *contactArray,

14.4 The Collision Resolution Process 369

unsigned numContacts,
real duration);

};

Excerpt from file src/contacts.cpp

void ContactResolver::prepareContacts(Contact* contacts,
unsigned numContacts,
real duration)

{
// Generate contact velocity and axis information.
Contact* lastContact = contacts + numContacts;
for (Contact* contact=contacts; contact < lastContact; contact++)
{

// Calculate the internal contact data (inertia, basis, etc.).
contact->calculateInternals(duration);

}
}

In the calculateInternals method of the contact, we need to calculate each of
the three bits of data: contact basis, relative position, and relative velocity:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

protected:
/**
* Calculates internal data from state data. This is called before
* the resolution algorithm tries to do any resolution. It should
* never need to be called manually.
*/

void calculateInternals(real duration);
};

Excerpt from file src/contacts.cpp

void Contact::calculateInternals(real duration)
{

// Check if the first object is NULL, and swap if it is.
if (!body[0]) swapBodies();
assert(body[0]);

370 Chapter 14 Collision Resolution

// Calculate a set of axes at the contact point.
calculateContactBasis();

// Store the relative position of the contact relative to each body.
relativeContactPosition[0] = contactPoint - body[0]->getPosition();
if (body[1]) {

relativeContactPosition[1] =
contactPoint - body[1]->getPosition();

}

// Find the relative velocity of the bodies at the contact point.
contactVelocity = calculateLocalVelocity(0, duration);
if (body[1]) {

contactVelocity -= calculateLocalVelocity(1, duration);
}

// Calculate the desired change in velocity for resolution.
calculateDesiredDeltaVelocity(duration);

}

The contact basis method was described earlier in the chapter. The relative posi-
tion calculation should be straightforward. The remaining two components, swap-
ping bodies and calculating relative velocity, deserve some comment.

Swapping Bodies

The first two lines make sure that if there is only one object in the collision, then it
is in the zero position of the array. So far we have assumed that this is true. If your
collision detector is guaranteed to only return single-object collisions in this way, then
you can ignore this code.

To swap the bodies, we need to move the two body references and also reverse
the direction of the contact normal. The contact normal is always given from the first
object’s point of view. If the bodies are swapped, then this needs to be flipped:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

/**
* Reverses the contact. This involves swapping the two rigid
* bodies and reversing the contact normal. The internal
* values should then be recalculated using calculateInternals

14.4 The Collision Resolution Process 371

* (this is not done automatically, as this method may be
* called from calculateInernals).
*/

void swapBodies();
};

Excerpt from file src/contacts.cpp

void Contact::swapBodies()
{

contactNormal *= -1;

RigidBody *temp = body[0];
body[0] = body[1];
body[1] = temp;

}

Calculating Relative Velocity

The relative velocity we are interested in is the total closing velocity of both objects
at the contact point. This will be used to work out the desired final velocity after the
objects bounce.

The velocity needs to be given in contact coordinates. Its X value will give
the velocity in the direction of the contact normal, and its Y and Z values will give the
amount of sliding that is taking place at the contact. We’ll use these two values in the
next chapter when we meet friction.

Velocity at a point, as we have seen, is made up of both linear and angular
components:

q̇rel = θ̇ × qrel + ṗ

where qrel is the position of the point we are interested in, relative to the object’s center
of mass; p is the position of the object’s center of mass (i.e., ṗ is the linear velocity of
the entire object); and θ̇ is the object’s angular velocity.

To calculate the velocity in contact coordinates, we use this equation, and then
transform the result by the transpose of the contact basis matrix:

Excerpt from file include/cyclone/contacts.h

/**
* Calculates and returns the velocity of the contact
* point on the given body.
*/

Vector3 calculateLocalVelocity(unsigned bodyIndex, real duration);

372 Chapter 14 Collision Resolution

Excerpt from file src/contacts.cpp

Vector3 Contact::calculateLocalVelocity(unsigned bodyIndex, real duration)
{

RigidBody *thisBody = body[bodyIndex];

// Work out the velocity of the contact point.
Vector3 velocity =

thisBody->getRotation() % relativeContactPosition[bodyIndex];
velocity += thisBody->getVelocity();

// Turn the velocity into contact coordinates.
Vector3 contactVelocity = contactToWorld.transformTranspose(velocity);

// Calculate the amount of velocity that is due to forces without
// reactions.
Vector3 accVelocity = thisBody->getLastFrameAcceleration() * duration;

// And return it.
return contactVelocity;

}

The calculateInternals method finds the overall closing velocity at the contact
point by subtracting the second body’s closing velocity from the first:

// Find the relative velocity of the bodies at the contact point.
contactVelocity = calculateLocalVelocity(0, duration);
if (body[1]) {

contactVelocity -= calculateLocalVelocity(1, duration);
}

Because this algorithm uses both the contact basis matrix and the relative contact
positions, it needs to be done last.

14.4.3 Resolving Penetration

We have visited each contact and calculated the data we’ll need for both resolution
steps. Now we turn our attention to resolving the interpenetration for all contacts.

This is done by taking each contact in turn and calling a method (applyPosition-
Change) that contains the algorithm in Section 14.3 for resolving a single contact. We
could do this simply in the same way as for prepareContacts before:

14.4 The Collision Resolution Process 373

Contact* lastContact = contacts + numContacts;
for(Contact* contact=contacts; contact < lastContact; contact++)
{

contact->applyPositionChange();
}

This would work, but isn’t optimal. Figure 14.11 shows three interpenetrating con-
tacts in a row. The second part of the figure shows what happens when the contacts
are resolved in order. It ends up with a large interpenetration remaining. The third
part of the figure shows the same set of contacts after resolving in reverse order. There
is still interpenetration visible, but it is drastically reduced.

Rather than go through the contacts in order, resolving their interpenetration, we
can resolve the collisions in penetration order. At each iteration we search through
to find the collision with the deepest penetration value. This is handled through its
applyPositionChange method in the normal way. The process is then repeated up to
some maximum number of iterations (or until there are no more interpenetrations
to resolve, whichever comes first).

This algorithm can revisit the same contacts several times. Figure 14.12 shows a
box resting on a flat plane. Each corner is penetrating the surface; moving the first
corner up will cause the second to descend further. Moving the second will cause

Contacts resolved right to left

Contacts resolved left to right

FIGURE 14.11 Resolution order is significant.

374 Chapter 14 Collision Resolution

Resolve
left

Resolve
right

Resolve
left

Resolve
right

FIGURE 14.12 Repeating the same pair of resolutions.

the first to penetrate again, and so on. Given enough iterations, this situation will be
resolved so that neither corner is penetrating. It is more likely that the iteration limit
will be reached, however. If you check the number of iterations actually used, you will
find that this situation is common and will consume all available iterations.

The same issue can also mean that a contact with a small penetration never gets
resolved, as the resolution algorithm runs out of iterations before considering the con-
tact. To prevent this situation, and to guarantee that all contacts get considered, we can
run a single pass through all the contacts, and then move on to the best-first iterative
algorithm. In practice, however, this is rarely necessary, and a best-first resolution
system works well on its own. For fast-moving, tightly packed objects, simulations
with longer time steps, or very small limits on the number of iterations, you may see
problems.

Typically, objects gradually sinking into surfaces, and then suddenly jumping out
a short way is a symptom of penetration resolution not getting to shallow contacts
(i.e., the contacts are ignored until they get too deep, whereupon they are suddenly
resolved). If this happens, you can add a pass through all contacts before the iterative
algorithm.

Iterative Algorithm Implemented

To find the contact with the greatest penetration, we can simply look through each
contact in the list. The contact found can then be resolved:

Contact* lastContact = contacts + numContacts;
for (unsigned i = 0; i < positionIterations; i++)

14.4 The Collision Resolution Process 375

{
Contact* worstContact = NULL;
real worstPenetration = 0;
for(Contact* contact = contacts; contact < lastContact; contact++)
{

if (contact->penetration > worstPenetration)
{

worstContact = contact;
worstPenetration = contact->penetration;

}
}
if (worstContact) worstContact->applyPositionChange();
else break;

}

This method looks through the entire list of contacts at each iteration. If this were
all we needed, then we could do better by sorting the list of contacts first, and then
simply working through them in turn.

Unfortunately, the algorithm above doesn’t take into account that an adjustment
may change the penetration of other contacts. The penetration data member of the
contact is set during collision detection. Movement of the objects during resolution
can change the penetration depth of other contacts, as we saw in Figures 14.12 and
14.13.

To take this into account we need to add an update to the end of the algorithm:

for (unsigned i = 0; i < positionIterations; i++)
{

// Find worstContact (as before) ...

if (!worstContact) break;

worstContact->applyPositionChange();

updatePenetrations();
}

Here updatePenetrations recalculates the penetrations for each contact. To imple-
ment this method accurately, we’d need to go back to the collision detector and work
out all the contacts again. Moving an object out of penetration may cause another
contact to disappear altogether, or bring new contacts that weren’t expected before.
Figure 14.13 shows this in action.

Unfortunately, collision detection is far too complex to be run for each iteration
of the resolution algorithm. We need a faster way.

376 Chapter 14 Collision Resolution

Missed contact

Resolved only
contact

FIGURE 14.13 Resolving penetration can cause unexpected contact changes.

Updating Penetration Depths

Fortunately there is an approximation we can use that gives good results. When the
penetration for a collision is resolved, only one or two objects can be moved—the one
or two objects involved in the collision. At the point where we move these objects (in
the applyPositionChangemethod), we know how much they are moving both linearly
and angularly.

After resolving the penetration, we keep track of the linear and angular motion
we applied to each object. Then we check through all contacts and find those that also
apply to either object. Only these contacts are updated, based on the stored linear and
angular movement.

The update for one contact involves the assumption we’ve used several times in
this chapter, that is, the only point involved in the contact is the point designated
as the contact point. To calculate the new penetration value, we calculate the new
position of the relative contact point for each object, based on the linear and angular
movement we applied. The penetration value is adjusted based on the new position
of these two points: if they have moved apart (along the line of the contact normal),
then the penetration will be less; if they have overlapped, then the penetration will be
increased.

If the first object in a contact has changed, then the update of the position will be:

cp = rotationChange[0].vectorProduct(
c[i].relativeContactPosition[0]
);

cp += velocityChange[0];

c[i].penetration -= rotationAmount[0]*cp.scalarProduct(
c[i].contactNormal
);

14.4 The Collision Resolution Process 377

If the second object has changed, the code is similar, but the value is added at the end:

cp = rotationChange[1].vectorProduct(
c[i].relativeContactPosition[1]
);

cp += velocityChange[1];

c[i].penetration += rotationAmount[1]*cp.scalarProduct(
c[i].contactNormal
);

Finally, we need some mechanism for storing the adjustments made in the
applyPositionChange method for use in this update. The easiest method is to add
data members to the ContactResolver class.

The complete code puts these stages together: finding the worst penetration,
resolving it, and then updating the remaining contacts. The full code looks like this:

Excerpt from file include/cyclone/contacts.h

class ContactResolver
{

// ... Other ContactResolver code as before ...

/**
* Resolves the positional issues with the given array of constraints,
* using the given number of iterations.
*/

void adjustPositions(Contact *contacts,
unsigned numContacts,
real duration);

};

Excerpt from file src/contacts.cpp

void ContactResolver::adjustPositions(Contact *c,
unsigned numContacts,
real duration)

{
unsigned i,index;
Vector3 linearChange[2], angularChange[2];
real max;
Vector3 deltaPosition;

378 Chapter 14 Collision Resolution

// Iteratively resolve interpenetrations in order of severity.
positionIterationsUsed = 0;
while (positionIterationsUsed < positionIterations)
{

// Find biggest penetration.
max = positionEpsilon;
index = numContacts;
for (i=0; i<numContacts; i++)
{

if (c[i].penetration > max)
{

max = c[i].penetration;
index = i;

}
}
if (index == numContacts) break;

// Match the awake state at the contact.
c[index].matchAwakeState();

// Resolve the penetration.
c[index].applyPositionChange(

linearChange,
angularChange,
max);

// Again this action may have changed the penetration of other
// bodies, so we update contacts.
for (i = 0; i < numContacts; i++)
{

// Check each body in the contact.
for (unsigned b = 0; b < 2; b++) if (c[i].body[b])
{

// Check for a match with each body in the newly
// resolved contact.
for (unsigned d = 0; d < 2; d++)
{

if (c[i].body[b] == c[index].body[d])
{

deltaPosition = linearChange[d] +
angularChange[d].vectorProduct(

c[i].relativeContactPosition[b]);

// The sign of the change is positive if we’re

14.4 The Collision Resolution Process 379

// dealing with the second body in a contact,
// and negative otherwise (because we’re
// subtracting the resolution).
c[i].penetration +=

deltaPosition.scalarProduct
(c[i].contactNormal)

* (b?1:-1);
}

}
}

}
positionIterationsUsed++;

}
}

14.4.4 Resolving Velocity

With penetration resolved we can turn our attention to velocity. This is the point
at which different physics engines vary the most, with several different but excellent
strategies for resolving velocity. We’ll return to some of them in Chapter 20.

For this chapter, I have aimed for the simplest end of the spectrum: a velocity
resolution system that works and is stable and is as fast as possible, but that avoids the
complexity of simultaneously resolving multiple collisions. The algorithm is almost
identical to the one for penetration resolution.

The algorithm runs in iterations. At each iteration, it finds the collision with the
greatest closing velocity. If there is no collision with a closing velocity, then the algo-
rithm can terminate. If there is a collision, then it is resolved in isolation, using the
method we saw at the start of the chapter. Other contacts are then updated based on
the changes that were made. If there are more velocity iterations available, then the
algorithm repeats.

Updating Velocities

The major change from the penetration version of this algorithm is the equations for
updating velocities. As before, we search through to find only those contacts with an
object that has just been altered.

If the first object in the contact has changed, the update of the velocity looks like
this:

cp = rotationChange[0].vectorProduct(
c[i].relativeContactPosition[0]
);

380 Chapter 14 Collision Resolution

cp += velocityChange[0];

c[i].contactVelocity += c[i].contactToWorld.transformTranspose(cp);
c[i].calculateDesiredDeltaVelocity(duration);

The corresponding code for the second object looks like the following:

cp = rotationChange[0].vectorProduct(
c[i].relativeContactPosition[1]
);

cp += velocityChange[0];

c[i].contactVelocity -= c[i].contactToWorld.transformTranspose(cp);
c[i].calculateDesiredDeltaVelocity(duration);

The calculateDesiredDeltaVelocity function is implemented as follows:

void calculateDesiredDeltaVelocity(real duration)
{

// If the velocity is very slow, limit the restitution.
real thisRestitution = restitution;
if (real_abs(contactVelocity.x) < velocityLimit)
{

thisRestitution = (real)0.0f;
}

// Combine the bounce velocity with the removed
// acceleration velocity.
desiredDeltaVelocity =

-contactVelocity.x - thisRestitution * contactVelocity.x;
}

The version of this function defined in the accompanying source code is slightly dif-
ferent, because it includes code for handling microcollisions that are discussed in
Chapter 15.

Once again, both cases need to be able to take their adjustment from either the
first or second object of the contact that has been adjusted. The complete code listing
is very similar to that shown for penetration, so I won’t include it here. You can find
it in the src/contacts.cpp file in the accompanying source code.

14.4 The Collision Resolution Process 381

14.4.5 Alternative Update Algorithms

I must confess that I have a natural distaste for algorithms that repeatedly loop over
arrays finding maxima or that search through an array finding matching objects to
adjust. After years of programming, I’ve learned to suspect that there is probably a
much better way. Both these red flags crop up in the penetration and velocity resolu-
tion algorithms.

I spent a good deal of time preparing this book implementing alternatives and
variations that would improve the theoretical speed of the algorithm. One such alter-
native that provides good performance is to keep a sorted list of the contacts. By way
of illustration, I’ll describe it here.

The list of contacts is built as a doubly linked list by adding two pointers in the
contact data structure: pointing to the next and previous contacts in the list. Tak-
ing the penetration resolution algorithm as an example (although exactly the same
thing happens for velocity resolution), we initially sort all the contacts into the dou-
bly linked list in order of decreasing penetration.

At each iteration of the algorithm, the first contact in the list is chosen and resolved
(it will have the greatest penetration). Now we need to update the penetrations of
contacts that might have been affected. To do this I used another pair of linked lists
in the contact data structure. These linked lists contain all the contacts that involve
one particular object. There needs to be two such lists, because each contact has
up to two objects involved. To hold the start of these lists, I added a pointer in the
rigid-body class.

This means that if we know which rigid bodies were adjusted, we can simply walk
through their list of contacts to perform the update. In (highly abbreviated) code, it
looks something like the following:

class Contact
{

// Holds the doubly linked list pointers for the ordered list.
Contact * nextInOrder;
Contact * previousInOrder;

// Holds pointers to the next contact that involves each rigid body.
Contact * nextObject[2];

// ... Other data as before ...
}

class RigidBody
{

// Holds the list of contacts that involve this body.
Contact * contacts;

382 Chapter 14 Collision Resolution

// ... Other data as before ...
}

At this point we have a set of contacts whose penetration values have changed.
One contact has changed because it has been resolved, and possibly a whole set of
other contacts have been changed because of the consequences of that resolution. All
of these may now be in the wrong position in the ordered list. The final stage of this
algorithm is to adjust their positions.

The easiest way to do this is to extract them from the main ordered list. Sort them
as a new sublist, and then walk through the main list, inserting them in order at the
correct point. In abbreviated code, this looks like:

Contact *adjustedList;
Contact *orderedList;

orderedList = sort(contacts);

for (unsigned i = 0; i < positionIterations; i++)
{

// Make sure that the worst contact is bad.
if (orderedList->penetration < 0) break;

// Adjust its position.
orderedList->applyPositionChange();

// Move it to the adjusted list.
moveToAdjusted(orderedList);

// Loop through the contacts for the first body.
Contact *bodyContact = orderedList->body[0].contacts;
while (bodyContact)
{

// Update the contact.
bodyContact->updatePenetration(positionChange, orientationChange);

// Schedule it for adjustment.
moveToAdjusted(bodyContact);

// Find out which linked list to move along on, and then follow
// it to get the next contact for this body.
unsigned index = 0;

14.4 The Collision Resolution Process 383

if (bodyContact->body[0] != orderedList->body[0]) index = 1;
bodyContact = bodyContact->nextObject[index];

}

if (orderedList->body[1])
{

// Do the same thing for the second body.
// (Omitted for brevity.)

}

// Now sort the adjusted set.
sortInPlace(adjustedList);

// Insert them at the correct place.
Contact *orderedListEntry = orderedList;
while (orderedListEntry)
{

if (adjustedList->penetration > orderedListEntry->penetration)
{

Contact *contactToInsert = adjustedList;
adjustedList = adjustedList->nextInOrder;
insertIntoList(contactToInsert, orderedListEntry);

}
}

}

I’ve assumed that standard sorting and list manipulation routines are available,
along with some extra methods I’ve used to hide the actual updates for the sake of
brevity (we saw the code for these earlier).

Performance

There are tens of variations for this kind of ordering system, and lots of different ways
to sort, keep lists, and perform updates. I implemented six different methods when
experimenting for this book, including priority queues.

The best performance gain was obtained using the sorted list method above.
Unfortunately, it was very minor. For frames with few contacts, and using some
of the more general optimization techniques described in Chapter 16, the perfor-
mance of the linked list version is considerably worse than the naive approach. With
many tens of contacts between tightly packed objects,7 it became more efficient.

7. If objects are not tightly packed, then it is possible to consider contacts in smaller batches, which is
much more efficient. We’ll look at this approach in detail in Chapter 16.

384 Chapter 14 Collision Resolution

For several hundred contacts between tightly packed objects, it became significantly
faster.

For the simulations I come across in the games I’m involved with, it simply isn’t
worth the extra development effort—I’d rather save having the extra pointers hang-
ing around in the contact and rigid-body data structures. You may come across sit-
uations where the scale of the physics you are working with makes it essential. For
anything in game development, it is essential to profile your code before trying to
optimize it.

14.5 Summary

Collision resolution involves some of the most complex mathematics we’ve dis-
cussed so far. For a single contact, we do it in two steps: resolving the inter-
penetration between objects and turning their closing velocity into rebounding
velocity.

The velocity resolution algorithm involves working out the effect of applying an
impulse to the contact point. This can then be used to work out the impulse that will
generate the desired effect. The result is a single impulse value that modifies both the
linear and angular velocity of each object involved.

Unlike the velocity resolution algorithm, penetration resolution does not cor-
respond to a physical process (since rigid objects cannot interpenetrate in reality).
Because of this, there is no perfectly accurate approach we can use, and we are left
with a choice from lots of different approaches to get visibly believable behavior. In
this chapter, we implemented an approach derived from the same compression and
impulse mathematics used for velocity resolution.

Resolving one contact alone isn’t very useful. To resolve the complete set of con-
tacts, we used two similar algorithms: one to resolve all penetrations, and the second
to resolve all velocities. Each algorithm considered collisions in order of their severity
(i.e., penetration depth or closing velocity). The worst collision was resolved in isola-
tion, and then other collisions that would be affected were updated. Each algorithm
continued up to a fixed maximum number of iterations.

The resulting physics system is quite usable, and if you are following along, writing
your own code, I’d recommend that you have a go at creating a demonstration
program and see the results. The simulation has no friction, so objects slide across
one another. For simple sets of objects, it is likely to work fine. For more complex
scenarios, you may notice problems with objects vibrating or slow performance.

These three limitations are addressed in the next two chapters. Chapter 15
will look at the difference between the collisions we have been dealing with so
far and resting contacts (this is part of the vibration problem), and will introduce
friction.

14.6 Exercises 385

14.6 Exercises

Exercise 14.1
An object has an inertia tensor of ⎡⎢⎣a 0 0

0 b 0

0 0 c

⎤⎥⎦
What is its inverse inertia tensor? If you know how to invert a matrix algebraically,
you can do that to solve this problem. Alternatively, you can either work through the
matrix inversion code by hand, or experiment with its results until you see the pattern
(it shouldn’t be difficult to spot).

Exercise 14.2
If we have a basis matrix for contact coordinates C , and a basis matrix for an object’s
local coordinates M , write an expression for transforming a vector in the object’s local
coordinates into contact coordinates.

Exercise 14.3
If we have a basis matrix for contact coordinates C , and a basis matrix for an object’s
local coordinates M , write an expression for transforming the object’s inertia tensor
I into contact coordinates.

Exercise 14.4
Imagine identical collisions between the ground and two straight metal bars. The col-
lisions are configured so that only one end of the bar hits the ground. The first bar
has all its mass concentrated at its ends, and the second has its mass concentrated in
the center.

(a) After the collision, the point of contact will be separating. For which bar will
the separation speed be greater (assuming both have the same coefficient of
restitution)?

(b) After the collision, both centers of mass continue to move downward. Which
center of mass will be moving faster?

Exercise 14.5
A flat box is lying on the ground. It has been microscopically rotated so that one cor-
ner is penetrating slightly. When interpenetration is resolved, what is the maximum
angle we can rotate the box before introducing new interpenetration? What does this
result tell us about applying a limit to the amount of rotation that we use to resolve
interpenetration?

This page intentionally left blank

15
Resting Contacts

and Friction

o far I’ve used the terms contacts and collisions interchangeably. The collision
Sdetector finds pairs of objects that are touching (i.e., in contact) or interpen-
etrating. The collision resolution algorithm manipulates these objects in physically
believable ways.

From this point on, I will make a distinction between the two terms: a contact is
any location in which objects are touching or interpenetrating, whereas a collision is a
type of contact in which the objects are moving together at speed (this is also called an
impact in some physics systems). This chapter will introduce another type, the resting
contact. This is a contact where the objects involved are neither moving apart nor are
they together.

For the sake of completeness, there is a third type of contact—the separating con-
tact, where the objects involved are already moving apart. There is no need to perform
any kind of velocity resolution on a separating contact, so it is often ignored.

The collisions we’ve seen up to this point are relatively easy to handle: the two
objects collide briefly and then go on their own way again. At the point of contact, we
calculate an impulse that causes the contact to turn from a collision into a separating
contact (if the coefficient of restitution is greater than zero) or a resting contact (if it
is exactly zero).

When two objects are in contact for a longer period of time (i.e., longer than a
single physics update), they are said to have resting contact. In this case, they need to
be kept apart, while making sure that each object behaves correctly.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00015-2 387

388 Chapter 15 Resting Contacts and Friction

15.1 Resting Forces

When an object is resting on another, Newton’s third and final law of motion comes
into play. Newton’s third law of motion (Newton-3) follows:

3. For every action there is an equal and opposite reaction.

We already used this law in the last chapter. For collisions involving two objects,
when we calculated the impulse on one object, we applied the same impulse in the
opposite direction to the second object. Collisions between objects and the immov-
able environment used the assumption that any movement of the environment would
be so small that it could be safely ignored. In reality, when an object bounces on the
ground, the entire Earth is also bouncing, that is, the same impulse is being applied to
the Earth. Of course, the Earth is so massive that if we tried to work out the amount
of motion that the Earth undergoes, it would be vanishingly small, so we ignore it.

When we come to resting contacts, a similar process happens. If an object is resting
on the ground, then the force of gravity is trying to pull it through the ground. We
feel this force as weight: the force that gravity is applying on a heavy object is great.
What isn’t as obvious is that there is an equal and opposite force keeping the object
on the ground. This is called the reaction force, and Newton-3 tells us that it is exactly
the same as its weight. If this reaction force were not there, then the object would
accelerate down through the ground. Figure 15.1 shows the reaction force.

Whenever two objects are in resting contact and not accelerating, there will be a
balance of forces at the point of contact. Any force that one object applies to the other
will be met with an equal reaction force. If this balance of forces isn’t present, then
both objects will be accelerating. We can work out the acceleration using Newton’s
second law of motion, after working out the total force (including reaction forces) on
each object.

There is something of a circluar process here, and it gives a taste of some issues to
come. If reaction forces can be as large as neccesary (we’re assuming rigid bodies will

Weight pulling block
through surface

Reaction force keeping
it stationary

FIGURE 15.1 A reaction force at a resting contact.

15.1 Resting Forces 389

never crumble or compress), and acceleration depends on the total forces applied,
how do we calculate how big the reaction forces actually are at any time? For simple
situations such as in Figure 15.1, this isn’t a problem, and in most high school and
undergraduate mathematics, the problem is never mentioned. For complex scenarios
with lots of interacting objects and especially friction, it is significant, as we will see.

Note that the reaction force between the ground and an object is a real force. It
isn’t an impulse, as there is no change in velocity. So far in our collision resolution
system, we’ve only applied impulses. This reaction force can’t be represented in the
same way. We need to consider it more fully.

15.1.1 Force Calculations

The most obvious approach to resting contacts is to calculate the reaction forces. That
way we can add the forces into the equations of motion of our rigid bodies (using
D’Alembert’s principle, as in Section 10.3). With the reaction forces working along-
side the regular forces we apply, the body will behave correctly.

Many physics systems do exactly this. Given a set of contacts, they try to generate a
set of reaction forces that will keep the objects from accelerating together. For colliding
contacts, they use one of two methods: they either use the same impulse method seen
in the last chapter, or they use the fact that an impulse is simply a force applied over a
small moment of time. If we know the time (i.e., the duration of the physics update),
then the impulse can be turned into a one-off force and resolved in the same way as
other forces.

This approach is okay if you can accurately calculate the reaction forces every time.
For simple situations, such as an object resting on the ground, this is very easy. But it
rapidly gets more complex. Figure 15.2 shows a stack of objects. There are many inter-
nal reaction forces in this stack. The reaction forces at the bottom of the stack depend
on the reaction forces at the top of the stack. The forces that need to be applied at a
contact may depend on contacts at a completely different location in the simulation,
with no common objects between them.

To calculate reaction forces, we cannot use an iterative algorithm like those in the
last chapter. We have to take a more global view, representing all the force interac-
tions in a single mathematical structure, and creating a one-for-all solution. In most
cases this can be done, and it is the mathematical core of most commercial physics
middleware packages. We’ll look at the techniques in Chapter 20.

In some cases, especially when there is friction at resting contacts, there is no solu-
tion. The combination of reaction forces cannot be solved; the simulation can get into
a state that could not occur in physical reality. The computer is trying to solve a prob-
lem that is literally impossible.

This problem occurs for many reasons, such as numerical calculation errors,
because we miss the exact moment of contact by stepping through time, because we
are assuming perfectly rigid bodies, where in reality all objects can be compressed to
some degree, and finally, when what appears to be a resting contact would in reality

390 Chapter 15 Resting Contacts and Friction

Reaction
force

Reaction
force

Reaction
force

Weight

WeightWeight

Reaction
force

Reaction
force

FIGURE 15.2 The long-distance dependence of reaction forces.

be a collision. You can see the latter case in the real world: if you slide an object along
a rough surface, you may be able to get it to suddenly leap into the air a little. This
occurs because a contact that appears to be a resting contact with the ground may in
reality be a collision against a patch of high friction.

Each of these situations leads to problems solving the mathematics to get a set of
reaction forces. Special-case code or tailored solving algorithms are needed to detect
impossibilities and react differently to them (typically by introducing an impulse of
some kind).

If this is sounding complex, it’s because it is. Fortunately, there is a much simpler
(though less accurate) solution. Rather than resolving all contacts using forces (i.e.,
converting collision impulses into forces), we can do the opposite and treat resting
contacts as if they were collisions.

15.2 Microcollisions

Microcollisions replace reaction forces by a series of impulses—one per update. In the
same way that an impulse can be thought of as a force applied in a single moment of
time, a force can be thought of as an entire series of impulses. Applying a force of 10 N
to an object over 10 updates is equivalent to applying impulses of 1 N at each update.

15.2 Microcollisions 391

Velocity � 0

Microcollision
imparts 1 m/s

of velocity

Velocity � 0Velocity � �1 m/s

FIGURE 15.3 Microcollisions replace reaction forces.

Rather than calculate a set of reaction forces at each time step, we allow our
impulse resolution system to apply impulses. Figure 15.2 shows this in practice. The
block should be resting on the ground. At each frame (ignoring interpenetration for
a while), the block accelerates so that it has a velocity into the ground. The velocity
resolution system calculates the impulse needed to remove that velocity.

These little impulses are sometimes called microcollisions. It is a well-known tech-
nique for generating reaction forces, but suffers from an undeserved reputation for
producing unstable simulations.

If you run the physics engine from Chapter 14, you will see that objects don’t
sink into one another, even though there is no reaction force at work. Microcolli-
sions are already at work: at each update objects are building up velocity, only to
have the velocity resolution algorithm treat contacts as collisions and remove the
velocity.

There are two significant problems with treating resting contacts as collisions. The
first has to do with the way collisions bounce. Recall that the separation speed at a con-
tact point is calculated as a fixed ratio of the closing speed, in the opposite direction.
This ratio is the coefficient of restitution.

If we have a contact such as that shown in Figure 15.3, after the rigid-body update,
the velocity into the ground will have built up. During the velocity resolution process,
this velocity will be removed. The desired final velocity will be

v′
s = −cvs

where vs is the velocity before the collision is processed, v′
s is the same velocity after

processing, and c is the coefficient of restitution.
So whatever velocity built up over the course of the interval between updates will

cause a little bounce to occur. If our sphere on the ground had a high c value, the
downward velocity would generate an upward velocity.

But in reality, the downward velocity never gets a chance to build up. The sphere
can’t really accelerate into the ground. The velocity that it accumulates is physically
impossible.

This has the effect of making resting contacts appear to vibrate. The objects accel-
erate together, building up velocity that then causes the collision algorithm to give
them a separating velocity. The sphere on the ground bounces up until gravity brings

392 Chapter 15 Resting Contacts and Friction

it back down, whereupon it bounces again. It will never settle to rest, but will appear
to vibrate.

Setting a lower coefficient of restitution will help, but limits the kinds of situations
that can be modeled. A more useful solution involves making two changes:

1. We remove any velocity that has been built up from acceleration in the previous
rigid-body update.

2. We artificially decrease the coefficient of restitution for collisions involving very
low speeds.

Independently, both of these can solve the vibration problem for some simu-
lations, but still show problems in others. Together they are about as good as we
can get.

15.2.1 Removing Accelerated Velocity

To remove the velocity due to the previous frame’s acceleration, we need to keep track
of the acceleration at each rigid-body update. We can do this with a new data member
for the rigid-body, accelerationAtUpdate, which stores the calculated linear accelera-
tion. The rigid-body update routine is then modified to keep a record in this variable
of the acceleration generated by all forces and gravity:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Holds the linear acceleration of the rigid body, for the
* previous frame.
*/
Vector3 lastFrameAcceleration;

};

Excerpt from file src/body.cpp

// Calculate linear acceleration from force inputs.
lastFrameAcceleration = acceleration;
lastFrameAcceleration.addScaledVector(forceAccum, inverseMass);

We could extend this to keep a record of both linear and angular acceleration. This
would make it more accurate, but since most reaction forces are generated by gravity
(which never has an angular component), the extra calculations don’t normally give

15.2 Microcollisions 393

any visible benefit. In fact, some developers choose to ignore any force except gravity
when calculating the velocity added in the last frame. This makes the calculation sim-
pler still, as we can read the acceleration due to gravity from the acceleration data
member directly.

When we calculate the desired change in velocity for a contact, we subtract the
acceleration-induced velocity in the direction of the contact normal:

�v = −vacc − (1 + c)(vs − vacc)

The desired change in velocity is modified from

deltaVelocity = -(1+restitution) * contactVelocity;

to

real velocityFromAcc = body[0]->accelerationAtUpdate *
contactNormal;

if (body[1])
{

velocityFromAcc -= body[1]->accelerationAtUpdate *
contactNormal;

}

real deltaVelocity = - contactVelocity.x - restitution *
(contactVelocity.x - velocityFromAcc);

Making this simple adjustment reduces the amount of visual vibration for objects
resting on the ground. When objects are in tight groups, such as stacks, the vibra-
tion can return. To solve that problem we’ll perform the second step: reducing the
coefficient of restitution.

We’ll return to the velocity caused by acceleration later in the chapter. We will need
another calculation of this kind to solve a problem with friction at resting contacts.

15.2.2 Lowering the Restitution

The change we made in the last section effectively reduces the restitution at contacts.
Before reducing the velocity, we have collisions with greater separating velocity than
closing velocity, as the objects are pushed apart even when they begin resting. This
occurs when there is a coefficient of restitution above 1. The smaller the coefficient,
the less bounce there will be.

394 Chapter 15 Resting Contacts and Friction

When the acceleration compensation alone doesn’t work, we can manually lower
the coefficient of restitution to discourage vibration. This can be done in a very simple
way:

real appliedRestitution = restitution;
if (contactVelocity.magnitude() < velocityLimit)
{

appliedRestitution = (real)0.0f;
}

We could use a more sophisticated method where the restitution is scaled so that
it is smaller for smaller velocities, but the version above works quite well in practice.
If you see visible transitions between bouncing and sticking as objects slow down, try
reducing the velocity limit (I use a value of around 0.1 in my engine). If this introduces
vibration, then the scaling approach may be useful to you:

real appliedRestitution = restitution;
real speed = contactVelocity.magnitude();
if (speed < velocityLimit)
{

appliedRestitution = restitution * (speed / velocityLimit);
}

15.2.3 The New Velocity Calculation

Combining both techniques for resting contacts, we end up with the following code
in our adjustVelocities method:

void calculateDesiredDeltaVelocity(real duration)
{

const static real velocityLimit = (real)0.25f;

// Calculate the acceleration-induced velocity accumulated in
this frame.

Vector3 scaledContact = duration * contactNormal;

real velocityFromAcc =
body[0]->getLastFrameAcceleration() * scaledContact;

if (body[1])

15.3 Types of Friction 395

{
velocityFromAcc -=

body[1]->getLastFrameAcceleration() * scaledContact;
}

// If the velocity is very slow, limit the restitution.
real thisRestitution = restitution;
if (real_abs(contactVelocity.x) < velocityLimit)
{

thisRestitution = (real)0.0f;
}

// Combine the bounce velocity with the removed
// acceleration velocity.
desiredDeltaVelocity =

-contactVelocity.x
-thisRestitution * (contactVelocity.x - velocityFromAcc);

}

I have placed this series of operations in its own method:
calculateDesiredDeltaVelocity that is called as part of the calculateInternals

method, rather than have the calculations performed every time that the velocity
resolver tries to find the most severe collision.

This approach removed almost all the visible vibrations in the cyclone physics
engine. One of the optimization techniques discussed in Chapter 16 removes the rest.

15.3 Types of Friction

I’ve mentioned friction several times throughout the book, and now it’s time to tackle
it head-on. Friction is the force generated when one object moves or tries to move in
contact with another. No matter how smooth two objects look, microscopically they
are rough, and these small protrusions catch one another, causing a retardation of
their motion or a resistance to motion beginning.

Friction is also responsible for a small part of drag, when air molecules try to move
across the surface of an object (the rest of drag has a number of different factors, such
as turbulence, induced pressure, and collisions between the object and air molecules).

The two forms of friction, static and dynamic, behave slightly differently.

15.3.1 Static and Dynamic Friction

Static friction is a force that stops an object moving when it is stationary. Consider a
block that is resting on the ground. If the block is given some force, friction between

396 Chapter 15 Resting Contacts and Friction

the block and the ground will resist this force. This is a kind of reaction force: the
more you push, the more friction pushes back. At some point, however, the pushing
force is too much for the friction and the object begins moving.

Because static friction keeps objects from moving, it is sometimes called stiction.
The static friction depends on the materials at the point of contact and the reaction
force:

|fstatic|� μstatic|r|
where r is the reaction force in the direction of the contact normal, fstatic is the friction
force generated, and μstatic is the coefficient of static friction.

The coefficient of friction encapsulates all the material properties at the contact
in a single number. The value depends on both objects: it cannot be generated by
simply adding a coefficient for one object to one for another. In fact, it is an empirical
quantity. It is discovered by experiment and cannot be reliably calculated.

In physics reference books, you will often find tables of friction coefficients for
various pairs of materials. In game development, setting the coefficient for a particular
contact is more often the result of guesswork or trial and error. I have included a table
of friction coefficients that I find useful in Appendix B.

Note that the formula above is an inequality—it uses the � symbol. This means
that the magnitude of the friction force can be anything up to and including μ|r|. In
fact, up to this limit, it will be exactly the same as the force exerted on the object. So
the overall expression for the static friction force is

fstatic =
{

−fplanar

f̂planar − μstatic |r|, whichever is smaller in magnitude,

where fplanar is the total force on the object in the plane of the contact only. The force is
only in this plane, because any resulting force in the direction of the contact normal is
generating the reaction force. The reaction force and the planar force can be calculated
from the total force applied:

r = −f · d̂

where d̂ is the contact normal and f is the total force exerted, and

fplanar = f + r

In other words, the resulting planar force is the total force with the component in the
direction of the contact normal removed. In the equation, this component is removed
by adding the reaction force, which is equal and opposite to the force in the direction
of the contact, and therefore cancels it out.

The dependence of static friction on the normal reaction force is an important
result. It allows rock climbers to walk up a vertical chimney by pushing against a wall
at their back, forcing their boots into the wall ahead. This means the wall pushes back
with an equal reaction force, and that increase in reaction force means increased fric-
tion. Push hard enough, and there will be enough friction to overcome your weight
and keep you from falling.

15.3 Types of Friction 397

Another important feature of the equations above is that friction doesn’t depend
on the area that is in contact with the ground. A rock climber with bigger feet doesn’t
stick better.

Despite being slightly counterintuitive (for me at least), this is fortunate, because
nowhere in our engine have we considered the size of the contact area. Contact area
does become important in some cases where the objects can deform at the point of
contact (tire models in accurate engineering simulations, for example), but they are
very complex and well beyond the scope of this book, so we’ll stick with the basic
formula.

Returning to our block on the ground, as we exert more force, friction pushes
back until we reach μstatic|r|, the limit of static friction. If we increase the force input a
fraction, the friction force drops suddenly and we enter the world of dynamic friction.

Dynamic Friction

Dynamic friction, also called kinetic friction, behaves in a similar way to static friction,
but has a different coefficient.

When objects at the contact are moving relative to one another, they are typically
leaving contact at the microscopic level. Figure 15.4 shows static and dynamic friction
magnified many times. Once the object is in motion, the roughness on each object
isn’t meshing as closely, so dynamic friction provides less resistance.

Object in motion
Dynamic
friction

Static
friction

FIGURE 15.4 A microscopic view of dynamic and static friction.

398 Chapter 15 Resting Contacts and Friction

Dynamic friction obeys the equation

fdynamic = −̂vplanar μdynamic |r|
where μdynamic is the coefficient of dynamic friction. Note that the direction of friction
has changed. Rather than acting in the opposite direction to the planar force (as it did
for static friction), it now acts in the opposite direction to the velocity of the object.
This is significant: if you stop exerting a force on a stationary object, then the friction
force will instantly stop as well. If you stop exerting a force on a moving object, fric-
tion will not stop—the object will be slowed to a halt by dynamic friction. Like static
friction, dynamic friction coefficients can be found in some physics reference books
for various combinations of materials.

It is rare in game physics engines to distinguish between static and dynamic fric-
tion in an implementation. They tend to be rolled together into a generic friction
value. When the object is stationary, the friction acts as static friction, acting against
any force exerted. When the object is moving, the friction acts as dynamic friction,
acting against the direction of motion. In practice, this single value provides behavior
that is believable for a game.

The friction model we’ll develop in this chapter will follow this model, and com-
bine both types of friction into a single value. I will point out below where we are
using static friction and where it is dynamic, so you can replace the single value with
two values if you need to. Using two values is left as an exercise for this chapter.

Rolling Friction

There is another type of friction that is important in dynamic simulation. Rolling
friction occurs when one object is rolling along another. It is most commonly used for
high-quality tire models for racing simulation (meaning the simulations performed
by motor-racing teams, rather than those found in racing games).

I have not come across physics engines for games with a comprehensive tire model
that includes rolling friction. Because we are focusing on game applications, I will
ignore rolling friction for the rest of the book.

15.3.2 Isotropic and Anisotropic Friction

There is one further distinction between types of friction that we need to be aware of:
friction can be either isotropic or anisotropic. Isotropic friction has the same coefficient
in all directions. Anisotropic friction can have different coefficients in different direc-
tions.

Figure 15.5 shows our block on the ground from above. If it is pushed in the first
direction, then the friction force will have a coefficient of μa ; if it is pushed in the
second direction, then the friction force will have a coefficient of μb . If μa = μb , then
the friction is isotropic; otherwise, it is anisotropic.

15.4 Implementing Friction 399

a

b

FIGURE 15.5 Anisotropic friction.

The vast majority of game simulations only need to cope with isotropic friction. In
fact, most engines I’ve used are either purely isotropic, or make the programmer jump
through extra hoops to get anisotropic friction. Even then, the anisotropic friction
model is highly simplified. We’ll stick with isotropic friction in this book.

15.4 Implementing Friction

Introducing friction into a physics simulation depends on how the existing physics is
implemented. In our case, we have an impulse-based engine with microcollisions for
resting contacts. This means we have no calculated normal reaction forces at resting
contacts. In addition, we introduce impulses and not forces at contacts to generate
believable behavior.

This makes it difficult to directly carry across the friction equations we have seen
so far: we have no calculation of the reaction force, and we have no easy way of apply-
ing forces at the contact point (remember that in our engine the forces for the current
physics update are applied before collision detection begins).

If you are working with a force-based engine, especially one that calculates the
reaction forces for all contacts, then friction can become another force in the calcu-
lation and the equations we have seen can be applied directly. Although this sounds
simpler, there are knock-on effects that make it even more difficult to calculate the
required forces. I’ll return to friction-specific force calculation in Chapter 20. At this
stage, it is simply worth being aware that despite the modifications we’ll have to make

400 Chapter 15 Resting Contacts and Friction

to convert friction into impulses, if we had gone through the force-only route initially,
it wouldn’t have made friction any easier.

15.4.1 Friction as Impulses

The first stage in handling friction in our simulation is to understand what friction
is doing in terms of impulses and velocity. Static friction stops a body from moving,
when a force is applied to it. It acts to keep the velocity of the object at zero in the
contact plane.

In our simulation we allow velocity to build up and remove it with a mirco-
collision; we can simulate static friction by removing sliding velocity along with colli-
sion velocity. We already adjust the velocity of the object in the direction of the contact
normal. We could do something similar in the other two contact directions (i.e., the
directions that are in the plane of the contact). If we went through the same process
for each direction as we did for the normal, we could ensure that the velocity in these
directions is zero. This would give the effect of static friction.

Rather than having a single value for the change in velocity, we now have a vector,
expressed in contact coordinates:

real deltaVelocity; // ... Calculate this as before ..

Vector3 deltaVelocityVector(deltaVelocity,
-contactVelocity.y,
-contactVelocity.z);

I’ll return to the changes needed in the resolution algorithm to cope with this later.
This approach would remove all sliding. But static friction has a limit: it can only

prevent objects from sliding up to a maximum force. When dealing with the collision,
we don’t have any forces, only velocities. How do we decide the maximum amount of
velocity that can be removed?

Recall that velocity is related to impulse:

�ṗ = m−1g

where g is impulse, m is mass, and ṗ is velocity. So, if we know the amount of velocity
that we need to remove, we can calculate the impulse required to remove it.

In the same way, impulse is a force exerted over a short period of time:

g = ft

where f is force and t is time. Given the impulse required to remove the velocity and
the duration of the update, we can calculate the force required to remove the velocity.

The equation still requires a normal reaction force. This can be calculated in
the same way, by looking at the contact normal. The normal reaction force can be

15.4 Implementing Friction 401

approximately calculated from the amount of velocity removed in the direction of
the contact normal.

If the desired change in velocity at the contact normal is v, then the reaction force
can be approximated as:

f = �vmt

The velocity resolution algorithm we already have involves calculating the impulse
needed to achieve the desired change in velocity. This impulse is initially found in
contact coordinates. Since we will be working in impulses, we can combine the equa-
tions above with the friction equations to end up with the result

gmax = �gnormal μ

where �gnormal is the impulse in the direction of the contact normal (i.e., the impulse
we are currently calculating in our velocity resultion algorithm). Note that these
impulse values are scalar: this tells us the total impulse we can apply with static fric-
tion. In code this looks like the following:

Vector3 impulseContact;

// ... Find the impulse required to remove all three components of
// velocity (we’ll return to this algorithm later) ...

real planarImpulse = real_sqrt(impulseContact.y*impulseContact.y +
impulseContact.z*impulseContact.z);

// Check that we’re within the limit of static friction.
if (planarImpulse > impulseContact.x * friction)
{

// Handle as dynamic friction.
}

Dynamic friction can be handled by scaling the Y and Z component of the impulse
so that their combined size is exactly μ times the size of the X impulse:

impulseContact.y /= planarImpulse;
impulseContact.z /= planarImpulse;

impulseContact.y *= friction * impulseContact.x;
impulseContact.z *= friction * impulseContact.x;

402 Chapter 15 Resting Contacts and Friction

Dividing by planarImpulse scales the Y and Z components so they have a unit size—
this is done to preserve their direction while removing their size. Their size is given
by the friction equation, friction * impulseContact.x. Multiplying the direction
by the size gives the new values for each component.

15.4.2 Modifying the Velocity Resolution Algorithm

In the previous section, I glossed over how we might calculate the impulses needed
to remove velocity in the plane of the contact. We already have code that does
this for the contact normal, and we could simply duplicate this for the other
directions.

Unfortunately, as well as being very long-winded, this wouldn’t work very well.
An impulse in one direction can cause an object to spin, and its contact point can
begin moving in a completely different direction. As long as we were only interested
in velocity in the direction of the the contact normal, this didn’t matter. Now we need
to handle all three directions at the same time, and we need to take into account that
an impulse in one direction can increase the velocity of the contact in a different direc-
tion. To resolve the three velocities, we need to simultaneously work through the res-
olution algorithm for each.

The resolution algorithm has the following steps, as before:

1. We work in a set of coordinates that are relative to the contact, which makes lots
of the math much simpler. We create a transform matrix to convert into and out
of this new set of coordinates.

2. We work out the change in velocity of the contact point on each object per unit
impulse. Because the impulse will cause linear and angular motion, this value
needs to take account of both components.

3. We will know the velocity change we want to see (in the next step), so we invert
the result of the last stage to find the impulse needed to generate any given velocity
change.

4. We work out what the separating velocity at the contact point should be, what
the closing velocity currently is, and the difference between the two. This is the
desired change in velocity.

5. From the change in velocity, we can calculate the impulse that must be
generated.

6. We split the impulse into its linear and angular components and apply them to
each object.

We have inserted a new step between Steps 5 and 6, to check whether the impulse
respects the static friction equation and use dynamic friction if it doesn’t.

Step 2 requires modification. Currently, it works out the change in velocity given a
unit impulse in the direction of the contact normal. We are now dealing with all three
contact directions. We need to calculate the change in velocity given any combination

15.4 Implementing Friction 403

of impulses in the three contact directions. The impulse can be expressed as a vector
in contact coordinates:

Vector3 contactImpulse;

The X component represents the impulse in the direction of the contact normal, and
the Y and Z components represent the impulse in the plane of the contact.

The result of Step 2 will be a matrix: it will transform a vector (the impulse) into
another vector (the resulting velocity). With this matrix, the rest of the algorithm is
simple. In Step 3, we will find the inverse of the matrix (i.e., the matrix that transforms
desired change in velocity into required impulse), and in Step 5 we will transform the
desired velocity vector to get the contactImpulse vector.

So how do we calculate the matrix? We follow through with the same steps seen
in Section 14.2.2. We calculate the velocity change as a result of angular motion, and
the velocity change as a result of linear motion.

Velocity from Angular Motion

In Section 14.2.2, we saw the algorithm for calculating rotation-derived velocity from
a unit impulse:

Vector3 torquePerUnitImpulse =
relativeContactPosition % contactNormal;

Vector3 rotationPerUnitImpulse =
inverseInertiaTensor.transform(torquePerUnitImpulse);

Vector3 velocityPerUnitImpulse =
rotationPerUnitImpulse % relativeContactPosition;

Vector3 velocityPerUnitImpulseContact =
contactToWorld.transformTranspose(velocityPerUnitImpulse);

The first stage calculates the amount of torque for a unit impulse in the direction
of the contact normal. The second stage converts this torque into a velocity using
the inertia tensor. The third stage calculates the linear velocity of the contact point
from the resulting rotation. And the final stage converts the velocity back into contact
coordinates.

Rather than use the contact normal in the first stage, we need to use all three
directions of the contact: the basis matrix. But if the contact normal is replaced by a
matrix, how do we perform the cross-product?

404 Chapter 15 Resting Contacts and Friction

The answer lies in an alternative formation of the cross-product. Remember that
transforming a vector by a matrix gives a vector. The cross-product of a vector also
gives a vector. It turns out that we can create a matrix form of the vector product.

For a vector,

v =
⎡⎢⎣a

b

c

⎤⎥⎦
the vector product

v × x

is equivalent to the matrix-by-vector multiplication,⎡⎢⎣ 0 −c b

c 0 −a

−b a 0

⎤⎥⎦x

This matrix is called skew-symmetric. Its relationship to the cross-product is important—
any cross-product is equivalent to multiplication by the corresponding skew-symmetric
matrix.

Because, as we have seen, v × x = −x × v, if we already have the skew-symmetric
version of v, we can calculate x×v without building the matrix form of x; it is simply:

x × v = −
⎡⎢⎣ 0 −c b

c 0 −a

−b a 0

⎤⎥⎦x

In fact, we can think of the cross-product in the first stage of our algorithm as turning
an impulse into a torque. We know from Equation 10.1 that a force vector can be
turned into a torque vector by taking its cross-product with the point of contact,

τ = pf × f

which is just Equation 10.1 again. The skew-symmetric matrix can be thought of as
this transformation, turning force into torque.

It is useful to have the ability to set a matrix’s components from a vector, so we
add a convenience function to the Matrix3 class:

Excerpt from file include/cyclone/core.h

class Matrix3
{

// ... Other Matrix3 code as before ...

/**
* Sets the matrix to be a skew-symmetric matrix based on
* the given vector. The skew-symmetric matrix is the equivalent
* of the vector product. So if a,b are vectors, a x b = A_s b

15.4 Implementing Friction 405

* where A_s is the skew-symmetric form of a.
*/
void setSkewSymmetric(const Vector3 vector)
{

data[0] = data[4] = data[8] = 0;
data[1] = -vector.z;
data[2] = vector.y;
data[3] = vector.z;
data[5] = -vector.x;
data[6] = -vector.y;
data[7] = vector.x;

}
};

Now we can work the entire basis matrix through the same series of steps:

// Create the skew symmetric form of the cross-product.
Matrix3 impulseToTorque;
impulseToTorque.setSkewSymmetric(relativeContactPosition);

// This was a cross-product.
Matrix3 torquePerUnitImpulse = impulseToTorque * contactToWorld;

// This was a vector transformed by the tensor matrix; now it’s
// just plain matrix multiplication.
Matrix3 rotationPerUnitImpulse =

inverseInertiaTensor * torquePerUnitImpulse;

// This was the reverse cross-product, so we’ll need to multiply the
// result by -1.
Matrix3 velocityPerUnitImpulse = rotationPerUnitImpulse * impulseToTorque;
velocityPerUnitImpulse *= -1;

// Finally, convert the result into contact coordinates.
Matrix3 velocityPerUnitImpulseContact =

contactToWorld.transpose() * velocityPerUnitImpulse;

The resulting matrix, velocityPerUnitImpulseContact can be used to transform
an impulse in contact coordinates into a velocity in contact coordinates. This is exactly
what we need for this stage of the algorithm.

In practice, there may be two objects involved in the contact. We can follow the
same process through each time and combine the results. The most efficient way to do

406 Chapter 15 Resting Contacts and Friction

this is to note that only the impulseToTorqueand inverseInertiaTensormatrices will
change for each body. The contactToWorld matrices are the same in each case. We
can therefore separate them out and multiply them after the two objects have been
processed independently. The code looks like this:

Excerpt from file src/contacts.cpp

// The equivalent of a cross-product in matrices is multiplication
// by a skew-symmetric matrix. We build the matrix for converting
// between linear and angular quantities.
Matrix3 impulseToTorque;
impulseToTorque.setSkewSymmetric(relativeContactPosition[0]);

// Build the matrix to convert contact impulse to change in velocity
// in world coordinates.
Matrix3 deltaVelWorld = impulseToTorque;
deltaVelWorld *= inverseInertiaTensor[0];
deltaVelWorld *= impulseToTorque;
deltaVelWorld *= -1;

// Check to see if we need to add body two’s data.
if (body[1])
{

// Set the cross-product matrix.
impulseToTorque.setSkewSymmetric(relativeContactPosition[1]);

// Calculate the velocity change matrix.
Matrix3 deltaVelWorld2 = impulseToTorque;
deltaVelWorld2 *= inverseInertiaTensor[1];
deltaVelWorld2 *= impulseToTorque;
deltaVelWorld2 *= -1;

// Add to the total delta velocity.
deltaVelWorld += deltaVelWorld2;

// Add to the inverse mass.
inverseMass += body[1]->getInverseMass();

}

// Perform a change of basis to convert into contact coordinates.
Matrix3 deltaVelocity = contactToWorld.transpose();
deltaVelocity *= deltaVelWorld;
deltaVelocity *= contactToWorld;

15.4 Implementing Friction 407

The same matrix is reused for intermediate stages of the calculation, as in Chapter 14.
What we are effectively doing here is performing all the calculations in world coor-

dinates (i.e., we end up with a matrix that transforms impulse into velocity, both in
world coordinates) for each body. Adding the two results together and then changing
the basis of this matrix transforms impulse into velocity in contact coordinates. Recall
from Section 9.4.6 that we change the basis of a matrix by

BMB−1

where B is the basis matrix and M is the matrix being transformed. This is equivalent
to BMB� when B is a rotation matrix only (as it is for the contactToWorld matrix),
hence the last three lines of the code snippet.

Velocity from Linear Motion

So far we only have the change in velocity caused by rotation. We also need to include
the change in linear velocity from the impulse. As before, this is simply given by the
inverse mass:

�ṗ = m−1g

This again is a transformation from a vector (impulse) into another vector (veloc-
ity). Because we are trying to end up with one matrix combining linear and angular
components of velocity, it would be useful to express inverse mass as a matrix, so that
it can be added to the angular matrix we already have.

This can be done simply. Multiplying a vector by a scalar quantity k is equivalent
to transforming it by the following matrix:⎡⎢⎣k 0 0

0 k 0

0 0 k

⎤⎥⎦
You can perform a manual check by trying a vector multiplication.

So to combine the linear motion with the angular motion we already have, we
need only add the inverse mass to the diagonal entries of the matrix:

deltaVelocity.data[0] += inverseMass;
deltaVelocity.data[4] += inverseMass;
deltaVelocity.data[8] += inverseMass;

15.4.3 Putting It All Together

We are now ready to put together all the modifications we need to support isotropic
friction. These modifications are only made to the applyVelocityChange method of

408 Chapter 15 Resting Contacts and Friction

the contact: they are all handled as a microcollision. The final code looks like the
following:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

/**
* Calculates the impulse needed to resolve this contact,
* given that the contact has a non-zero coefficient of
* friction. A pair of inertia tensors-one for each contact
* object-is specified to save calculation time. The calling
* function has access to these anyway.
*/
Vector3 calculateFrictionImpulse(Matrix3 *inverseInertiaTensor);

};

Excerpt from file src/contacts.cpp

Vector3 Contact::calculateFrictionImpulse(Matrix3 * inverseInertiaTensor)
{

real inverseMass = body[0]->getInverseMass();

// The equivalent of a cross-product in matrices is multiplication
// by a skew-symmetric matrix. We build the matrix for converting
// between linear and angular quantities.
Matrix3 impulseToTorque;
impulseToTorque.setSkewSymmetric(relativeContactPosition[0]);

// Build the matrix to convert contact impulse to change in velocity
// in world coordinates.
Matrix3 deltaVelWorld = impulseToTorque;
deltaVelWorld *= inverseInertiaTensor[0];
deltaVelWorld *= impulseToTorque;
deltaVelWorld *= -1;

// Check to see if we need to add body two’s data.
if (body[1])
{

// Set the cross-product matrix.
impulseToTorque.setSkewSymmetric(relativeContactPosition[1]);

// Calculate the velocity change matrix.

15.4 Implementing Friction 409

Matrix3 deltaVelWorld2 = impulseToTorque;
deltaVelWorld2 *= inverseInertiaTensor[1];
deltaVelWorld2 *= impulseToTorque;
deltaVelWorld2 *= -1;

// Add to the total delta velocity.
deltaVelWorld += deltaVelWorld2;

// Add to the inverse mass.
inverseMass += body[1]->getInverseMass();

}

// Perform a change of basis to convert into contact coordinates.
Matrix3 deltaVelocity = contactToWorld.transpose();
deltaVelocity *= deltaVelWorld;
deltaVelocity *= contactToWorld;

// Add in the linear velocity change.
deltaVelocity.data[0] += inverseMass;
deltaVelocity.data[4] += inverseMass;
deltaVelocity.data[8] += inverseMass;

// Invert to get the impulse needed per unit velocity.
Matrix3 impulseMatrix = deltaVelocity.inverse();

// Find the target velocities to kill.
Vector3 velKill(desiredDeltaVelocity,

-contactVelocity.y,
-contactVelocity.z);

// Find the impulse to kill target velocities.
Vector3 impulseContact = impulseMatrix.transform(velKill);

// Check for exceeding friction.
real planarImpulse = real_sqrt(

impulseContact.y*impulseContact.y +
impulseContact.z*impulseContact.z
);

if (planarImpulse > impulseContact.x * friction)
{

// We need to use dynamic friction.
impulseContact.y /= planarImpulse;
impulseContact.z /= planarImpulse;

410 Chapter 15 Resting Contacts and Friction

impulseContact.x = deltaVelocity.data[0] +
deltaVelocity.data[1]*friction*impulseContact.y +
deltaVelocity.data[2]*friction*impulseContact.z;

impulseContact.x = desiredDeltaVelocity / impulseContact.x;
impulseContact.y *= friction * impulseContact.x;
impulseContact.z *= friction * impulseContact.x;

}
return impulseContact;

}

The impulse is then applied in exactly the same way as for the nonfriction case.

15.5 Friction and Sequential Contact

Resolution

With the modifications in this chapter, our physics engine has taken a huge leap
forward. It is now capable of modeling rigid bodies with all kinds of contacts and
isotropic friction.

There are still some lingering stability issues that we can look at, along with a huge
expected increase in performance. Both will be discussed in Chapter 16.

At this stage we can also see the main unavoidable limitation of the microcolli-
sion approach to physics. And no amount of tweaking will completely make this go
away. Figure 15.6 shows a typical situation in which two boxes are in contact with
one another. Neither of the boxes are moving and all contacts have very high friction
(let’s say it is infinite, i.e., the static friction can never be overcome). The boxes are
interpenetrating slightly.

The second part of Figure 15.6 shows what happens after the penetration is
resolved. Note that the boxes have moved apart a little. The third part of the figure
shows the situation after the rigid bodies have been updated. There is a little inter-
penetration again. And the final figure shows the situation after the second round of
collision resolution.

Over time it is clear that the boxes are moving apart. They are appearing to slide,
even though they have an infinite friction.

This is caused by the sequential contact resolution scheme. While the resolution
algorithm is considering contact A, it cannot be considering contact B. But when we
have friction, the coefficient of friction at B has an effect on how contact A should be
resolved. No amount of minor adjustment will solve this problem: to get around it we
would need to process contacts simultaneously or create a good deal of special-case
code to perform contact-sensitive penetration resolution.

In practice, this isn’t a major problem unless you are building stacks of blocks.
Even in this case, the sleeping system that we will build in the next chapter ensures

15.6 Summary 411

FIGURE 15.6 The problem with sequential contact resolution.

that the sliding will only occur after the player disturbs the stack. If you need to build
large stacks of objects that are stable to slight knocks, you can either use one of the
simultaneous resolution approaches in Chapter 20 or use fracture physics, found in
Chapter 17.

15.6 Summary

Resting contacts can be dealt with as if they were tiny little bouncing contacts: the
contact interpenetration is resolved, and the closing velocity is killed by applying a
small impulse.

By reducing the resting forces over the entire duration of a simulation frame into
just an instant of impulse, we were able to simply add friction to the engine. The
effects of friction modify the impulse before it is applied to the objects in contact.
This is a simple and powerful approach to friction, but it isn’t without its problems.
It is much harder to show the difference between static and dynamic friction using
microcollisions (in fact, we’ve avoided the problem by combining the coefficients into
a single value).

Another problem with contacts simulated using microcollisions is that they can
appear to vibrate slightly. This is one of a set of stability problems that our current
engine implementation faces. In Chapter 16, we’ll look at stability as a whole, and

412 Chapter 15 Resting Contacts and Friction

improve our engine’s realism. Then we’ll discuss how to improve its performance by
optimizing the code to do less unnecessary work.

15.7 Exercises

Exercise 15.1
Two blocks of mass 1 kg sit on top of one another. The bottom block is resting on the
ground.

(a) Calculate the reaction force that is keeping the bottom block from sinking into
the ground.

(b) Calculate the reaction force keeping the top block from sinking into the bottom
block. For this question, assume gravity is 10 ms−2.

Exercise 15.2
Modify the code given in this chapter to support separate coefficients for static and
dynamic friction.

Exercise 15.3
For this practical exercise you will need a selection of objects, some large and relatively
heavy, some small to act as weights, a piece of string, and some scales (kitchen scales
are fine, and better if they are digital). Weigh the objects. Take each large object in turn
and place it on a table. Tie a piece of string around it, as near as possible to the point
of contact with the table. Pass the other end of the string over the edge of the table.
Tie and suspend the dangling edge to the lightest of your small objects. If the large
object does not move, replace the small object with the next lightest, and so on, until
the object is heavy enough to break the static friction.

(a) Record the weight that was needed to break the static friction for each large
object.

(b) Assuming that gravity is 10 ms−2, you should be able to calculate both the nor-
mal reaction force (from the mass of the large object) and the pulling force
(from the mass of the small object). Use these values to calculate the coefficient
of friction for each large object.

16
Stability and

Optimization

he physics engine we’ve built so far is perfectly usable. As it stands, however,
T there are two criticisms that can be leveled:

� Occasionally, strange effects are visible, such as objects appearing to be
squashed or skewed, or objects sliding down hills despite gravity, and fast-
moving objects may not behave believably.

� For very large numbers of objects, the simulation can be slow.

We can address these problems to arrive at our final physics engine implementa-
tion that will be powerful and robust enough to be used in a wide range of games.
The remaining chapters in the book will focus on ways of applying or extending the
engine, but in this chapter we’ll aim to polish our implementation into a stable and
efficient whole.

16.1 Stability

Stability problems in our engine, as in all game software, arise from several directions:

� Unpleasant interaction between different bits of the software that individually
behave reasonably.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00016-4 413

414 Chapter 16 Stability and Optimization

� Inaccuracies of the equations used or the effects of assumptions that we’ve
made.

� The inherent inaccuracy of the mathematics performed by the computer.

These stability problems can become evident through visually odd behavior, algo-
rithms occasionally not working, or even sudden crashes.

For physics engines in particular, there are a couple of common bugbears that you
are almost guaranteed to see during development: sudden, unexpected motion, such
as when an object leaps off the ground, and an object’s disappearance. The accompa-
nying source code shouldn’t display either of these critical problems, but chances are
that you’ll see both of them before long if you make changes and tweaks.

The stability problems we are left with should be even more minor, but their causes
fall in all three categories. By carefully testing the engine, I identified five problems
that have relatively easy stability fixes:

� Transform matrices for objects performing skews in addition to rotations and
translations.

� Fast-moving objects can sometimes respond oddly to collisions (this is inde-
pendent of whether the collisions are actually detected; a fast-moving object
can pass right through an object without a collision being detected).

� Objects resting on an inclined plane (or resting on another object with a slop-
ing surface) tend to slowly slide down.

� Objects experiencing a pair of high-speed collisions in rapid succession can
suddenly interpenetrate the ground.

� The simulation can look unrealistic when large and small quantities are mixed:
large and small masses, large and small velocities, large and small rotations,
and so on.

Together these stability fixes solved the odd behavior I could generate. Of course, no
test is ever going to be exhaustive. I have used physics systems for years before noticing
some new issue or error.

As with all software maintenance, you never know when some change will need to
be made. By the same token, it is a good idea to keep a copy of the test scenarios you
run on your engine, so that you can go back and check that your new enhancement
hasn’t broken anything else.

16.1.1 Quaternion Drift

Transform matrices are generated from the position vector and orientation quater-
nion of rigid bodies. Both position and orientation (in fact, all values that take part
in mathematical manipulation) suffer numerical errors while being processed.

Errors in the position vector put an object in the wrong place. This is usually
such a small error that it isn’t noticeable over any short period of time. If the position
changes slowly enough, the viewer will not notice any errors occurring.

16.1 Stability 415

The same is true of the orientation vector to some extent. But there is an extra
problem: we have an additional degree of freedom in the quaternion. If the four
quaternion components get out of sync (i.e., if the quaternion is no longer normal-
ized), then it may not correspond to any valid orientation. None of the code in our
engine is particularly sensitive to this, but left for long enough it can cause objects
to visibly become squashed. The solution, as seen in Chapter 9, is to renormalize
the quaternion. We don’t want to do this when it’s not necessary (such as after every
quaternion operation) because that’s just a waste of time.

I have added a quaternion normalization step in the rigid-body update routine
just after the quaternion is updated by the velocity and before the transform matrix
is created. This ensures that the transform matrix has a valid rotation component.

I admit that this “stability fix” is a bit contrived. It seemed obvious to me when I
first wrote the integration routine that it was a good spot for the quaternion normal-
ization, and so I added it.

I have included it here more by way of illustration. The normal size of the quater-
nion is an assumption we made early on in the development of the engine; it is easily
forgotten and has returned to cause strange effects only after we have a completed
engine running for long periods of time. Problems may show up only during quality
assurance (QA) and they can be very subtle. Checking and enforcing your assump-
tions in a way that doesn’t massacre performance is key to stabilizing and optimizing
the engine.

16.1.2 Interpenetration on Slopes

The next issue is more significant. Figure 16.1 shows a block resting on a slope. The
slope could be an angled plane or the surface of another object. Gravity is acting
down.

After one update of the rigid bodies, and before collision resolution is performed,
the object drops into the plane slightly. This is shown in the second part of the figure.
Because the plane contact is in a different direction to the movement of the object,
the interpenetration resolution moves the block out to the position shown in the third
part of the figure. Over time and despite high friction, the block will slowly drift down
the slope.

This is a similar problem to the one we saw at the end of the previous chapter. In
that case, the drifting was caused by the interaction between different contacts. In this
case, there is no interaction—the same thing would occur for objects with only one
contact. It is therefore much easier to find a solution.

The solution lies in the calculation of the relative velocity of the contact. We’d like
to remove any velocity that has built up due to forces in the contact plane. This would
allow the object to move into the slope in the direction of the contact normal, but not
along it.

To accomplish this we add a calculation of the velocity due to acceleration to the
calculateLocalVelocitymethod:

416 Chapter 16 Stability and Optimization

t � 0 t � 1

t � 2 t � 4

t � 5 t � 6

FIGURE 16.1 Objects drift down angled planes.

Excerpt from file src/contacts.cpp

Vector3 Contact::calculateLocalVelocity(unsigned bodyIndex, real duration)
{

RigidBody *thisBody = body[bodyIndex];

// Work out the velocity of the contact point.
Vector3 velocity =

thisBody->getRotation() % relativeContactPosition[bodyIndex];
velocity += thisBody->getVelocity();

// Turn the velocity into contact coordinates.
Vector3 contactVelocity = contactToWorld.transformTranspose(velocity);

// Calculate the amount of velocity that is due to forces without
// reactions.
Vector3 accVelocity = thisBody->getLastFrameAcceleration() * duration;

// Calculate the velocity in contact coordinates.
accVelocity = contactToWorld.transformTranspose(accVelocity);

// We ignore any component of acceleration in the contact normal
// direction; we are only interested in planar acceleration.
accVelocity.x = 0;

16.1 Stability 417

// Add the planar velocities. If there’s enough friction they will
// be removed during velocity resolution.
contactVelocity += accVelocity;

// And return it.
return contactVelocity;

}

The code finds the acceleration, and multiplies it by the duration to find the
velocity introduced at the rigid-body integration step. It converts this into contact
coordinates, and removes the component in the direction of the contact normal. The
resulting velocity is added to the contact velocity, to be removed in the velocity resolu-
tion step, as long as there is sufficient friction to do so. If there isn’t sufficient friction,
then the object will slide down the slope, exactly as it should.

16.1.3 Integration Stability

This enhancement needs some background explanation, so we’ll return to the inte-
gration algorithm from Chapters 3 and 10.

For both particles and rigid bodies, I have used a similar integration algorithm:
it calculates the linear and angular acceleration and applies these to the velocity and
rotation, which are in turn applied to the position and orientation. This integration
algorithm is called Newton-Euler. Newton refers to the linear component (which is
based on Newton’s laws of motion) and Euler refers the angular component (Euler
was a mathematician who was instrumental in our understanding of rotation).

Our integrator uses the equations

ṗ′ = ṗ + p̈t

and

p′ = p + ṗt

along with their rotational equivalents. Each of them only depends on the first differ-
ential. They are therefore termed first order. The overall method is more fully called
first-order Newton-Euler or Newton-Euler 1.

Newton-Euler 2

As seen in Chapter 3, Newton-Euler 1 is an approximation. In high school physics,
the equation:

p′ = p + ṗt + 1

2
p̈t 2

418 Chapter 16 Stability and Optimization

is taught. This depends on the second differential. With the equivalent equation for
angular updates, we would have a second-order Newton-Euler integrator (Newton-
Euler 2).

Newton-Euler 2 is more accurate than Newton-Euler 1. It takes into account accel-
eration when determining the updated position. As seen in Chapter 3, however, the
t 2 term is so small for high frame rates that we may as well ignore the accelera-
tion term altogether. This is not the case when acceleration is very large, however.
In this case, the term may be significant, and moving to Newton-Euler 2 could be
beneficial.

Runga-Kutta 4

Both Newton-Euler integrators assume that acceleration will remain constant
throughout the update duration. As seen in Chapter 6 when we discussed springs,
the way acceleration changes over the course of an update can be very significant. In
fact, by assuming acceleration does not change, we can run into dramatic instabilities
and the complete breakdown of the simulation.

Springs aren’t the only thing that can change acceleration quickly. Some patterns
of resting contacts (particularly when a simultaneous velocity resolution algorithm
is used) can have similar effects, leading to vibration or dramatic explosion of object
stacks.

For both problems a partial solution lies in working out the accelerations needed
at mid-step. The fourth-order Runga-Kutta algorithm1 (RK4) does just this.

If you study physics engines, you’ll see a lot of mention of Runga-Kutta inte-
gration. I know that some developers have used it quite successfully. Personally, I
have never had the need. It is much slower than Newton-Euler, and the benefits
are marginal. It is most useful when dealing with very stiff springs, but as seen in
Chapter 6, there are simpler ways to fake the same behavior.

The biggest problem with RK4, however, is that it requires a full set of forces mid-
way through the step. When combined with a collision resolution system, this can get
very messy. In our case, we do not directly determine the forces due to contacts, and
we do not want to run a full collision detection routine mid-step, so RK4 is of limited
use. Even for force-based engines, the extra overhead of calculating mid-update forces
gives a huge performance hit.

I have seen developers use RK4 for the rigid-body update, and then a separate
collision resolution step at the end. This could be easily implemented in our engine by
replacing the integrate function of the rigid body. Unfortunately, with the collision
resolution not taking part, RK4 loses most of its power, and I feel that the result is
only useful if you have stubborn spring problems.

1. Unlike Newton-Euler, it is fourth order because it takes four samples, not because it uses a fourth-order
differential.

16.1 Stability 419

16.1.4 The Benefit of Pessimistic Collision Detection

Our algorithm for collision resolution sometimes misses collisions altogether.
Figure 16.2 shows a situation with one collision. The object shown has a low moment
of inertia, so the resolution of this collision will leave the object as shown. Since there
was only one collision detected, this new interpenetration can’t be resolved at this
time step. The player will see the object interpenetrated until the following frame
when it can be resolved. Single-frame interpenetration isn’t normally visible, but if
two or more contacts end up in a cycle, then the object can appear to be vibrating
into the surface.

The only way to deal with this situation is to make collision detection more pes-
simistic. In other words, collision detection should return contacts that are close,
but not actually touching. This can be achieved by expanding the collision geome-
try around an object, and then using an offset for the penetration value. If the colli-
sion geometry is one unit larger than the visual representation of the object, then 1 is
subtracted from the penetration value of detected collisions.

In practice, it is rare to see any effects of this. The times when I have needed this
kind of modification (which crops up in all physics systems, regardless of the method
of collision resolution), it has been most noticeable in collisions between long light
objects (such as poles) and the ground. It is a trivial change to move the ground
slightly higher for collision detection, and subtract a small amount from generated
ground collisions.

Only detected collision

Resolved collision Missed collision

FIGURE 16.2 Collisions can be missed if they are not initially in contact.

420 Chapter 16 Stability and Optimization

16.1.5 Changing Mathematical Accuracy

All the mathematics in our engine is being performed with limited mathematical pre-
cision. Floating-point numbers are stored in two parts: a series of significant digits
(called the mantissa), and an indication of where the decimal point goes (called the
exponent). This means that numbers with very different scales have very different
accuracies.

For 32-bit, floating-point numbers on a 32-bit machine (i.e., a float data type),
adding 0.00001 to 1 will probably give you the correct answer; but adding 0.0001 to
10,000,000,000 will not. When you have calculations that involve numbers of very
different scales, the results can be very poor. For example, if you move an object a
small distance and it is close to the origin (i.e., its coordinates are close to zero), the
object will be moved correctly; if you move the same object the same distance, but it is
far from the origin, then you may end up with no movement, or too large a movement,
depending on the order of your mathematical operations.

When you are using the physics engine with a broad range of masses, velocities, or
positions, this can be a problem. Visually, it can range from objects sinking into the
ground and collisions having no effect, to suddenly disappearing bodies and collisions
occurring in completely the wrong direction. It is a common problem in collision
detection algorithms, too, where objects can be reported as touching when they are
separate or vice versa.

There is no definitive solution to this problem, but you can increase the accuracy
of the mathematics being performed. In C or C++, you can switch from floats to
doubles as your numeric data type. As the name suggestions, doubles take up twice
the amount of memory in a 32-bit system (in most 64-bit systems a double will still
take 64 bits, and will therefore be identical to a float). On 32-bit system, a double
takes a little less than twice the amount of time to process, but has millions of times
the accuracy.

In the source code, I have centralized all the code that deals with the accuracy of
the engine into the include/cyclone/precision.h file. This defines the real type alias
(a C typedef), which is used for all floating-point numbers. The real data type can
be defined as a float or as a double. As well as the data type, I have given aliases for
various mathematical functions provided by the standard C library and used in the
source code. These need to be set so that the code can call the correct precision version
without being edited.

The single precision code has been quoted so far. When compiling in double pre-
cision mode, these definitions become the following:

Excerpt from include/cyclone/precision.h

#define DOUBLE_PRECISION
typedef double real;
#define REAL_MAX DBL_MAX
#define real_sqrt sqrt
#define real_abs fabs

16.2 Optimizations 421

#define real_sin sin
#define real_cos cos
#define real_exp exp
#define real_pow pow
#define real_fmod fmod
#define R_PI 3.14159265358979

You can see this code in the precision header, along with an ifdef to select the
definitions you need.

I tend to compile with double precision by default; on a PC the performance hit
is relatively minor. On some consoles that are very strongly 32-bit, the 64-bit mathe-
matics is very slow (they perform the mathematics in software, rather than hardware,
and so are much more than twice as slow in most cases), so single precision is crucial.
For objects with similar masses, low velocities, and positions near the origin, single
precision is perfectly fine. On 64-bit machines, both versions are likely to be the same,
so there will be no performance difference.

16.2 Optimizations

Having stabilized the major problems out of our engine, we can turn our attention to
optimization. There is a wise programming adage: always avoid premature optimiza-
tion. Nowhere is this more important than in games.

As game developers, we have a pressing need for fast and efficient code, and this
can spur you into optimizing code as you write. This is important to some extent, but
I’ve seen many cases where it consumes vast quantities of programming time, and
ends up making negligible difference to code performance. With all code optimiza-
tion, it is crucial to have a profiler and check what is slow and why. Then you can focus
in on issues that will improve performance, rather than burning time.

The engine that I’ve presented in this book contains many opportunities for opti-
mization. There are quantities that are calculated several times, data storage that is
wasteful, and extraneous calculations that can be abbreviated and optimized. I built
the version of the engine for this book to be as clear and concise as possible, rather
than for optimum performance.

At the end of this section, I will focus briefly on some of the areas that could be
improved for speed or memory layout. I will not work through the more complex
of them in detail, but leave them as an exercise if your profiler is telling you that it
would help.

There is one key optimization we can make first that has such a dramatic effect
on the overall performance that it is worth looking at in detail. This isn’t a code opti-
mization (in the sense that it doesn’t do the same thing in a more efficient way), but
rather a global optimization that reduces the physics engine’s workload.

422 Chapter 16 Stability and Optimization

16.2.1 Sleep

There is a saying in graphics engine programming that the fastest polygons are those
you don’t draw. Quickly determining which objects the user can see and only spending
time rendering them is a key part of rendering technology. There are tens of common
techniques used to this end (including some we’ve seen in this book, such as BSP-trees
and quad-trees).

We can’t do exactly the same thing in physics: otherwise, if the player looked away
and then looked back, objects would be exactly as they were when last seen, even if
that was mid-fall. The equivalent optimization for physics engines is to not simu-
late objects that are stable and not moving. In fact, this encompasses the majority of
objects in a typical simulation. Objects will tend to settle into a stable configuration—
resting on the ground or with their springs at an equilibrium point. Because of drag,
only systems that have a consistent input of force will fail to settle down (the force
may be gravity; however, a ball rolling down an infinitely long slope will never stop,
for example).

Stopping the simulation of objects at rest is called putting them to “sleep.” A pow-
erful sleep system can improve the performance of a physics simulation by many
orders of magnitude for an average game level.

There are two components to the sleep system: one algorithm to put objects to
sleep, and another to wake them up again. We will look at both, after putting in place
some basic structure to support them.

Adding Sleep State

To support sleep, we need to add three data members to the RigidBody class:

� isAwake is a Boolean variable that tells us whether the body is currently asleep,
and therefore whether it needs processing.

� canSleep is a Boolean variable that tells us whether the object is capable of
being put to sleep. Objects that are under the constant control of the user (i.e.,
the user can add forces to them at any time) should probably be prevented
from sleeping, for visual rather than performance reasons.

� motion will keep track of the current movement speed (both linear and angu-
lar) of the object. This will be crucial to deciding whether the object should
be put to sleep.

In the RigidBody class, this is implemented as follows:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

16.2 Optimizations 423

/**
* Holds the amount of motion of the body. This is a recency
* weighted mean that can be used to put a body to sleep.
*/

real motion;

/**
* A body can be put to sleep to avoid it being updated
* by the integration functions or affected by collisions
* with the world.
*/

bool isAwake;

/**
* Some bodies may never be allowed to fall asleep.
* User-controlled bodies, for example, should be
* always awake.
*/

bool canSleep;
};

When we perform the rigid-body update, we check the body and return without
processing if it is asleep:

void RigidBody::integrate(real duration)
{

if (!isAwake) return;

// ... Remainder of the integration as before ...
}

The collision detector should still return contacts between objects that are asleep.
As we’ll see later in this section, these dormant collisions are important when one
object in a stack receives a knock from an awake body.

Despite collisions being generated, when two objects are asleep they have no
velocity or rotation, so their contact velocity will be zero and they will be omitted
from the velocity resolution algorithm. The same thing happens with interpenetra-
tion. This provides the speed-up in the collision response system.

424 Chapter 16 Stability and Optimization

We need to add a method to the RigidBody class that can change the current state
of an object’s isAwake member. The method looks like this:

Excerpt from file include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Sets the awake state of the body. If the body is set to be
* not awake, then its velocities are also canceled, since
* a moving body that is not awake can cause problems in the
* simulation.
*/
void setAwake(const bool awake=true);

};

Excerpt from file src/body.cpp

void RigidBody::setAwake(const bool awake)
{

if (awake) {
isAwake= true;

// Add a bit of motion to avoid it falling asleep immediately.
motion = sleepEpsilon*2.0f;

} else {
isAwake = false;
velocity.clear();
rotation.clear();

}
}

This code toggles the current value of isAwake. If the body is being put to sleep, it
makes sure that it has no motion by setting both linear and angular velocity to zero.
This ensures that collisions (as we saw above) have no closing velocity, which improves
performance for sleeping bodies in contact.

If the body is being awakened, then the motion variable is given a value. As we’ll
see in the next section, an object is put to sleep when the value of this drops below a
certain threshold. If the value of this variable is below the threshold, and the object is
awakened, it will fall asleep again immediately. Giving it a value of twice the threshold
prevents this and ensures that it is awake long enough to do something interesting
(presumably, the setAwake method is being called so the object can be awakened to
do something interesting, not to fall right back asleep).

16.2 Optimizations 425

Finally, we add functions to check whether an object is asleep, and to set and check
the value of canSleep. These are implemented in the source code, and none of them
are interesting enough to need analysis here.

Putting Objects to Sleep

The algorithm for putting objects to sleep is simple: in each frame we monitor their
motion. When their motion stabilizes over several frames, and their velocity is near
zero, we put them to sleep.

The “near zero” is controlled by a parameter called sleepEpsilon.2 When the value
of the motion data member drops below this threshold, the body is put to sleep:

if (motion < sleepEpsilon)
{

setAwake(false);
}

In the source code, the sleep epsilon value is shared by the entire simulation.
It is a global variable accessed through a pair of functions—setSleepEpsilon and
getSleepEpsilon. You can fine-tune the value by using body-specific thresholds if
you like.

Setting sleep epsilon is a trial-and-error process. The collision handling system
introduces motion into objects at each frame. If you set sleep epsilon too low, objects
may never fall asleep. Even if you use a resolution system that doesn’t have these prob-
lems, too low a value may take a long time to reach, meaning that your engine is still
doing more processing than you need. If you set the value too high, then objects that
are obviously in motion can be sent to sleep, and that can look odd. I set my sleep
threshold as high as possible before strange mid-motion freezes become apparent.

This algorithm is simple, but it relies on calculating the value of motion. The
motion value needs to encapsulate the linear and angular velocity of the object in
a single scalar. To do this, we use the total kinetic energy of the object. In Chapter 3
we saw that the kinetic energy of a particle is given by

Ek = 1

2
m|ṗ|2

where m is the body’s mass and ṗ is its linear velocity. A similar expression holds for
the kinetic energy of a rotating rigid body:

Ek = 1

2
(m|ṗ|2 + im|θ̇ |2)

where im is the moment of inertia about the axis of rotation of the body (i.e., it is a
scalar quantity) and θ̇ is its angular velocity.

We could use the kinetic energy as the value for motion, but that would leave
us with a problem with different masses: two identical objects would fall asleep at

2. The Greek letter epsilon (ε) is used in engineering to mean a very small quantity of any kind.

426 Chapter 16 Stability and Optimization

different times, depending on their mass. To avoid this, we remove the masses from
the expression to get the following:

motion = |ṗ|2 + |θ̇ |2

In code, this looks like:

currentMotion = velocity.squareMagnitude() + rotation.squareMagnitude();

Some developers use variations on this: they either add the two components
together without squaring them, or they calculate the full kinetic energy and then
divide by the mass. In either case, this gives us a value for the motion of the object.
The final stage is to check whether this value is stable. We do this by keeping a record
of the current motion over several frames and seeing how much it changes. This can
be neatly tracked by a recency weighted average (RWA), a simple numerical tool that I
find very useful in many situations.

An RWA is updated as follows:

rwa = bias*rwa + (1-bias)*newValue;

It keeps an average of the last few values, with more recent values being more
significant. The bias parameter controls how much significance is given to previous
values. A bias of zero makes the RWA equal to the new value each time it is updated
(i.e., there is no averaging at all). A bias of 1 ignores the new value altogether.

The RWA is an excellent device for smoothing input, or for checking that an input
has stabilized. In our case, we have:

motion = bias*motion + (1-bias)*currentMotion;

If currentMotiondrops below the sleep epsilon value, but in the previous few frames
the object has been moving a great deal, then the overall motion value will still be high.
Only when an object has spent time not moving will the recency weighted average
drop below the epsilon value.

Because objects can move at very high speeds (and because we are working with
the square of these speeds), a brief burst of speed can send the RWA sky-high, and
it will take a long time to get back down to reasonable levels. To prevent this, and to
allow objects to fall asleep faster, I have added code to limit the value of the RWA:

if (motion > 10*sleepEpsilon) motion = 10*sleepEpsilon;

16.2 Optimizations 427

The bias of the RWA should be dependent on the duration of the frame. Longer
frames should allow the current value to affect the RWA more than short frames.
Otherwise, objects will fall asleep faster at faster frame rates.

We can accomplish this in the same way as for damping:

real bias = real_pow(baseBias, duration);

where baseBias is the bias we’d expect for 1-s frames. I’ve typically used values around
0.5 to 0.8 here, but again some experimentation is needed.

Waking Objects Up

We have already seen that objects can be awakened manually. We also need to wake
objects up when they need to respond to new collisions. Collisions between sleep-
ing objects, as we have seen, are generated and automatically ignored by the collision
resolution system.

When a new object comes along (the player, for example, or a projectile) and col-
lides with a sleeping object, we want all objects that could be affected by the collision
to wake up. For any particular collision, this means that if one body involved is asleep
and the other is awake, then the asleep body needs to be awakened. We add a method
to the Contact class to accomplish this:

Excerpt from file include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

/**
* Updates the awake state of rigid bodies that are taking
* place in the given contact. A body will be made awake if it
* is in contact with a body that is awake.
*/

void matchAwakeState();
};

Excerpt from file src/contacts.cpp

void Contact::matchAwakeState()
{

// Collisions with the world never cause a body to wake up.
if (!body[1]) return;

bool body0awake = body[0]->getAwake();

428 Chapter 16 Stability and Optimization

bool body1awake = body[1]->getAwake();

// Wake up only the sleeping one.
if (body0awake ˆ body1awake) {

if (body0awake) body[1]->setAwake();
else body[0]->setAwake();

}
}

This method is called whenever we are about to resolve a collision. Collisions
between a sleeping object and an awake object, but which are not considered (because
they don’t have any velocity or penetration to resolve), don’t need to have the sleeping
object awakened. If the contact isn’t severe enough to need resolving, we can assume
that it isn’t severe enough to wake the sleeping object.

If we have a series of collisions in a chain, as shown in Figure 16.3, the first colli-
sion will be handled waking up object B, and then the velocity update algorithm will
determine that the second contact needs resolving, waking up object C, and so on.
Eventually, all the objects that needed a velocity or position change will be awakened,
as required.

The adjustPositionsand adjustVelocitiesmethods of the contact resolver have
the call added just before they perform the resolution on a single contact. Here is the
abbreviated code for penetration resolution:

for (unsigned i = 0; i < positionIterations; i++)
{

// Find worstContact (as before) ...

if (!worstContact) break;

worstContact->matchAwakeState();
worstContact->applyPositionChange();

updatePenetrations();
}

There is a second situation in which we need to wake up a rigid body. That is when
a force is applied to it (excluding forces that are always present, like gravity). This can
be done manually, adding a setAwake call each time a force is applied. This is difficult
to remember, however, so I have elected to wake the object automatically whenever
a force or torque is applied. Each of the addForce, addForceAtPoint, and addTorque
functions in the RigidBody class automatically calls setAwake.

16.2 Optimizations 429

Blocks are initially asleep

Contacts between sleeping
objects can be ignored

Now this contact
needs processing

Ball is awake
B

D

C
A

Resolving this
wakes B

B

D

C
A

Resolving this
wakes C

Resolving this
wakes D

Now this contact
needs processing

B

D

C
A

B

D

C
A

FIGURE 16.3 A chain of collisions is awakened.

We now have a fully functional sleep system, capable of dramatically improving
the performance of the engine.

Typically, when the game level is loaded, all rigid bodies are placed so that they
are in their rest position. They can then all be set to sleep when the game begins. This
makes the physics simulation code very fast indeed; objects will only require physical
simulation once they have been collided with. Even then, hopefully, they will reach
another equilibrium position and be sent back to sleep quickly.

430 Chapter 16 Stability and Optimization

16.2.2 Margins of Error for Penetration and Velocity

Another optimization that is worth making speeds up the penetration and velocity
resolution algorithms dramatically. Figure 16.4 shows our now familiar block in a
plane situation. If we run this simulation, and look at the resolutions being performed,
we see that the two contacts (four in a 3D simulation) are repeatedly considered. Tak-
ing just penetration, if we look at the penetration depths at each iteration, we see (as
shown in the figure) that the first penetration resolutions get us almost there, and then
subsequent resolutions make such tiny adjustments that they could never be seen by
a player. This kind of subvisual adjustment is a pure waste of time.

To avoid this situation, we can add a tolerance limit to both velocity and pen-
etration collisions. Only collisions that are more severe than this limit will be con-
sidered. That way the first time a contact is resolved it should be brought within the
limit, and then never reconsidered unless the resolution of another contact disturbs it
greatly.

This limit can be simply implemented when we search for the most severe con-
tact to consider. Rather than starting with a worstPenetrationvalue of zero, as in the
following (which is the code from Chapter 14):

Still penetrating, but imperceptably

After 2 iterations

After 1 iteration

Still penetrating, but only fractionally

FIGURE 16.4 Iterative resolution makes microscopic changes.

16.2 Optimizations 431

Contact* lastContact = contacts + numContacts;
for (unsigned i = 0; i < positionIterations; i++)
{

Contact* worstContact = NULL;
real worstPenetration = 0;
for(Contact* contact = contacts; contact < lastContact; contact++)
{

if (contact->penetration > worstPenetration)
{

worstContact = contact;
worstPenetration = contact->penetration;

}
}
if (worstContact) worstContact->applyPositionChange();
else break;

}

we start with a value equal to the tolerance we are allowing:

Contact* lastContact = contacts + numContacts;
for (unsigned i = 0; i < positionIterations; i++)
{

Contact* worstContact = NULL;
real worstPenetration = penetrationEpsilon;
for(Contact* contact = contacts; contact < lastContact; contact++)
{

if (contact->penetration > worstPenetration)
{

worstContact = contact;
worstPenetration = contact->penetration;

}
}
if (worstContact) worstContact->applyPositionChange();
else break;

}

with a similar situation for the velocity. Now no contact will be selected that has a
penetration below this epsilon value. This value should be small enough so that it is
not easily noticeably by the player. The first time that the contact is resolved, the res-
olution should bring the contact’s penetration below this limit, so it will not be con-
sidered again. Tuning is, again, a necessity. For the demos, I have used values around

432 Chapter 16 Stability and Optimization

0.01 for each. If your objects are larger or faster, then higher values should be used. If
they are smaller or slower, then use lower values.

Both the velocityEpsilon and the penetrationEpsilon values are properties of
the collision resolver class. In the code, I have included methods to set and get their
current value.

When I added this simple change to the engine, I found that there was a five
times speed-up immediately. For complex stacks of objects, the improvement was
even more significant.

Between the sleep system and this pair of tolerances, we have a physics simulation
that is fast enough for real production work. Further optimization can be achieved in
the physics core by code manipulation, and trading off memory against speed. I’ll say
a few things briefly about that at the end of this section.

A significant performance problem with the way contacts and collisions are
detected and handled, however, remains.

16.2.3 Contact Grouping

In Chapter 14, I mentioned that performance could be improved by batching together
groups of contacts. For our engine, this provides a useful speed-up. For engines that
do simultaneous resolution, the speed-up can be critical.

Figure 16.5 shows a simple scene. There are several contacts in the scene generated
by the collision detector. In the collision resolution system, contacts A, B, and C can
all affect one another: resolving contact A can cause problems with contact B, and

B

A C F

D

E

FIGURE 16.5 Sets of independent contacts.

16.2 Optimizations 433

resolving B can affect both A and C. Contacts D and E are likewise related. But note
that A, B, and C cannot affect D, E, or F; D and E cannot affect A, B, C, or F; and F
cannot affect any of the others.

In fact, two contacts can only affect one another if they are connected through a
series of rigid bodies and other contacts. So contacts A and C can affect one another
because they are connected through bodies 2 and 3 and contact B.

Our resolution algorithm checks all possible contacts to see if they have been
affected by a previous resolution. It also checks through all contacts to find the cur-
rent most severe contact to resolve. Both of these operations take longer for longer
lists of contacts.

A better solution would be to resolve the contacts in groups. Contacts A, B, and
C can be sent to the resolver first; then D and E and then F. Used in this way, the
contact resolver would have no way of altering contacts D and E based on the results
of resolving A, B, and C. But this is okay, since we know those contacts can’t possibly
interact.

This batching is typically done in one of two places. It can be the job of the collision
detector to return groups of contacts. Or the entire set of contacts can be separated
by the collision resolution system and processed in batches.

The first approach is the best, if it can be implemented. Typically the collision
detector can determine if objects are a long way from one another, and batch them.
If it is using a coarse collision detection system, for example, it can produce contact
batches for each distinct area of the game level. For sets of nearby objects that aren’t
touching, however, the collision detector will typically return batches that are too large
(i.e., batches that contain contacts that can’t affect one another). If the game level has
many such situations, it can improve performance further to add a batching processor
to the resolver as well as the collision detection batching.

A batching processor separates the entire list of contacts into batches. It does this
by starting at one contact and following the combination of contacts and rigid bodies
to find all contacts in a single batch. This is then sent for processing. It then finds
another contact that has not yet been placed in a batch, and follows the contacts to
build another batch. This repeats for as long as there are contacts that have not been
processed.

Implementing a batching processor involves being able to quickly find the rigid
bodies involved in each contact (we have that already, since the contact data structure
stores the rigid bodies involved) and being able to find the contacts on each rigid
body. This is difficult with the current state of the engine, since rigid bodies don’t
keep track of the contacts that affect them. Searching through all possible contacts to
find those belonging to a rigid body would take too long and defeat the objective of
the optimization.3

In Chapter 14, we looked at a set of modifications to contact processing that
allowed a sorted list of contacts to be retained, so that they didn’t need to be sorted

3. In fact, while this is true of our engine, it is not necessarily true of engines with much more complex
resolution algorithms. In either case, however, there is a better way.

434 Chapter 16 Stability and Optimization

each time. In the update part of this algorithm, the effect of one resolution step is
propagated through the contacts. This uses the same data structure that we would
need to efficiently implement batching: a linked list of contacts belonging to each
rigid body.

16.2.4 Code Optimizations

The final optimization phase I want to consider is code optimization. Code opti-
mizations are tweaks that don’t change the algorithm, but make processing it more
efficient. There are many code optimizations that can be applied to the accompany-
ing source code. I have deliberately avoided making the code more complex by trying
to wring additional performance from it.

This section is intended to provide some general pointers. The advice is based
on the commercial engine that I developed and on which Cyclone is based. Before
embarking on any optimization effort, I would strongly advise you to get a good
profiler (I use Intel’s VTune for PC work) and only optimize areas of the software
that you can prove are causing performance problems.

Caching Contact Data

A relatively simple optimization is to retain the calculations performed during contact
resolution as data in the contact class. When resolving one contact several times, we
currently recalculate its deltaVelocity and other values. These can instead be stored
in the contact data structure and only calculated when first needed.

This is a tradeoff of memory against speed. If you have a large number of contacts
that are only likely to be considered once, then it may be better to leave the algo-
rithm as is.

Vectorizing Mathematics

The next optimization takes advantage of the mathematical hardware on PCs and
most consoles. This hardware is capable of processing more than one floating-point
number at the same time. Rather than performing all our vector and matrix manipu-
lation as a series of floating-point operations, we can have it process an entire vector
at a time.

For single-precision builds of the engine (things get considerably more complex
for double precision, so we’ll ignore that) on a 32-bit PC, we can fit a whole vector
into one of the SSE registers. Using SSE mathematics, we can perform a matrix trans-
form of a vector in only four operations. Vector cross-products, additions, and other
manipulations are equally accelerated. Most consoles (older hand held consoles being
the exception) provide the same facilities.

I’m not going to dive into detail about vectorized mathematics. There is reason-
able documentation available with Visual Studio for the Windows PC, and many
excellent introductions to the subject online. For serious PC development, I would

16.2 Optimizations 435

recommend the Intel Optimization Cookbook (whether or not you are targeting
Intel-branded processors).

Twizzling Rigid-Body Data

The vector mathematics hardware on PCs is optimized to run the same program on
multiple bits of data at the same time. Rather than go through one algorithm per rigid
body, it would be better to run the same algorithm for a group of bodies at the same
time.

The rigid-body integration algorithm is a particular candidate for this. We can
speed things up by having it process four objects at the same time. To do this, however,
we would need to rearrange how data is held for each rigid body.

For the sake of an object-oriented programming style, we’ve used a class contain-
ing all the data for one rigid body. To take advantage of simultaneous processing we
would need to “twizzle” the data, so that it is grouped together—the position for each
object in an array, followed by all the velocities, and so on. This could be achieved by
using a new data structure that holds four rigid bodies at a time.

Personally, I have never implemented this in a physics engine that I have built.
Some of the AI engine development I’ve been involved with, however, has used this
structure, with four characters being updated at once. It provides a modest improve-
ment in speed, but has disadvantages when you want to do various things with dif-
ferent rigid bodies (during collision resolution, for example).

Grouping Data for Areas of the Level

Memory management is a crucial part of optimizing game technologies. There is
plenty of memory available on most game machines for physics, but its organization
can cause slowdowns.

Processors don’t have equal access to all parts of the memory. They load data in
chunks from the main memory and keep it in high-speed caches. Accessing data from
the cache is fast. If the data needed isn’t in the cache, then it needs to be fetched from
main memory, which can be very time consuming. Different machines have different
sizes of cache and some have several levels of cache.

To avoid constantly fetching new data into the cache, data should be grouped
together. For small game levels, all the physics data can be easily kept together. For
medium-size game levels, care needs to be taken that the physics data isn’t simply
added into another data structure, as in the following:

class MyObject
{

AIData ai;
Geometry geometry;

436 Chapter 16 Stability and Optimization

Material material;
Texture textures[4];
RigidBody physics;
CollisionGeometry collisionGeom;

};

MyObject objects[256];

This can easily make the rigid-body data for consecutive objects a long distance apart
in memory. When resolving collisions between many objects, data could quite easily
need fetching to the cache on most resolution steps, causing disastrous performance
problems.

A better solution is to keep all the sets of data together in separate arrays:

AIData ai[256];
Geometry geometry[256];
Material material[256];
Texture textures[4][256];
RigidBody physics[256];
CollisionGeometry collisionGeom[256];

For large game levels this still won’t be enough. In this case, it is worth ordering the
set of rigid bodies so that objects in different areas of the game level are kept together.
That way when contacts are processed, the bodies involved are likely to appear in the
cache together. Contacts will not be generated between objects across the level from
one another, so they can be separated in the array.

Cache misses are notoriously difficult to diagnose, and they tend to change dra-
matically when you add debugging code or make seemingly unrelated adjustments.
A good profiler is essential.

16.3 Summary

With just sleeping objects and tolerance for near-collisions, you will have a reasonably
efficient physics engine. It’s time to look at how it can be used in some real game
applications. If you are following through this book creating your own engine, it’s
time to put it through its paces.

If your profiler detects performance problems, you can return to this chapter and
try some of the other optimizations.

Chapter 17 reviews what we have, and looks at how the key physics effects seen in
many recent games are achieved.

17
Putting It All

Together

e have now built a complete physics engine that can simulate any kind of
W rigid body, detect collisions between objects, and realistically resolve those
collisions. It is capable of running the physics for a huge range of games, and it is time
to put it through its paces.

Before we work through the demonstration applications, it is worth taking stock
of where we are and looking at the physics engine as a whole.

17.1 Overview of the Engine

The physics engine we have built has four distinct parts:

� The force generators (and torque generators) examine the current state of the
game and calculate what forces need to be applied to which objects.

� The rigid-body simulator processes the movement of rigid bodies in response
to those forces.

� The collision detector rapidly identifies collisions and other contacts both
between objects and between an object and the immovable parts of the level.
The collision detector creates a set of contacts to be used by the collision
resolver.

� The collision resolver processes a set of contacts and adjusts the motion of rigid
bodies to accurately depict their effects.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00017-6 437

438 Chapter 17 Putting It All Together

Each of these components has its own internal details and complexities, but we
can broadly treat them as separate units. Note that there are two kinds of internal data
used in the above stages:

� Forces and torques generated are never represented in an explicit data struc-
ture; they are applied directly to the appropriate rigid body as soon as they are
calculated.

� Contacts are generated by the collision detector and stored together, before
being sent as a group to the collision resolver.

To represent objects in the game, we need three kinds of data:

� Rendering geometry and materials are used to display the object on screen.
These are normally not used at all by the physics engine, although they can
take the place of the collision geometry for very simple objects.

� Collision geometry is a simplified set of shapes that represents an object. It
is used to speed up collision detection. In some engines, the collision geom-
etry is made up of a polygonal mesh, just like the rendering geometry. In
other engines, objects are made up of sets of primitive shapes such as spheres
and boxes. In both cases a comprehensive collision detection system will typ-
ically need more than one level of collision geometry; the lowest level will be
enclosed in one or more bounding volumes.

� Rigid-body data contains information about the physical characteristics of the
object. It includes things like mass, the inertia tensor, position, and velocity.
In our engine, most of this is encapsulated in the RigidBody class. In addition,
we need to have access to contact data such as the friction between pairs of
surfaces and their restitution.

These three kinds of data, along with the four parts of the engine and the two
internal lines of communication, work together to provide the physics simulation.
Figure 17.1 shows how the data passes through the system.

This is the basic design of most physics engines, although there are some varia-
tions possible. In particular, it is possible to add components to the pipeline, such as
a grouping algorithm to divide the set of contacts into unconnected batches. Some
engines also have another stage of rigid-body update at the end of the pipeline, espe-
cially if the result of the collision resolution system is a set of forces to apply.

The whole physics pipeline is typically contained within a single call in the game
loop. We could easily create a black-box physics system that keeps track of everything
needed to run the physics simulation. In this book, as well as in real game develop-
ment, I avoid doing this. In real game development, physics isn’t happening for its
own sake, it is just part of the whole game, and the data that the physics system needs
overlaps with data needed elsewhere. Having a black box can easily duplicate work
and cause a nightmare trying to make sure that all copies of an object’s position (for
example) are synchronized.

17.2 Using the Physics Engine 439

Force/Torque
generators

Rigid-body
update

(Integrator)

Create contacts

Contact data

Write
postcollision

position
and velocity

Write integrated
position
and velocity

Apply forces
and torques

Rigid-body
data

Contact
resolution

Contact generator
(possibly with

pluggable
constraints)

1

2

3

4

FIGURE 17.1 Data flow through the physics engine.

In a real game, different objects will also need different additional data. Some
objects may be active and require data for the AI. Other objects may be player con-
trolled and require network data for synchronization. Any objects can require game-
specific data such as hit points or score value. This can cause difficulty ensuring that
the physics data is correctly initialized.

Setting up new objects with the correct physics can be a challenge. In my expe-
rience, it is invaluable to have a simple environment setup as part of the level design
process where the physics of objects can be tested interactively. That way you can be
sure as you develop that the object feels right in its environment, and that no crucial
data is being left uninitialized. If you have the resources, allowing your physics engine
to run live in your level editor is ideal.

17.2 Using the Physics Engine

We can now do almost anything we want with our physics engine. In this chapter, I’ll
give you a taste of some of the most popular applications for physics: ragdolls, break-
able objects, and movie-style explosions. On the way, we’ll look at some additional
techniques, force generators, and ways to configure the engine.

440 Chapter 17 Putting It All Together

There is one important caveat to these applications, however. I am going to focus
on using our generic engine to power these effects. If all you need is a single-purpose
physics system, there may be things we have put in our code that aren’t needed. For
example, for high-spec racing cars that don’t normally leave the ground, you can
ignore all the rigid-body physics and build special-case spring code to model how
its suspension flexes and how it handles. You might want to keep the physics engine
in this book just for when you need a beautiful crash animation when the car leaves
the road.

Our approach is to build a physical approximation of the object and simulate it.
Sometimes a better approach is to work out the desired behavior and program that
in explicitly. Having said that, the general-purpose/special-case dilemma is becom-
ing increasingly moot. Modern games typically need several effects at once: a driving
game will model cones and fences, allowing them to break and be scattered realisti-
cally, for example. As seen in the opening chapter, in situations where different kinds
of physical behavior need to interact, there is little substitute for a complete physics
engine.

17.2.1 Ragdolls

Ragdolls have become a staple of 3D game development over the last 5 years: they are
characters that can be thrown around and generate their own realistic animation using
physics. They are part of a wider move toward procedural animation: animation that
is generated automatically and without an artist specifying key frames. In practice,
the best effects blend both procedural animation and artist-authored animation. The
simple ragdolls of 5 years ago are gradually giving way to ragdolls that are partially
physics and partially hand-animation. Such hybrids can push their hands out to stop
their fall, for example.

A ragdoll is made up of a series of linked rigid bodies. These rigid bodies are called
bones (they roughly correspond to the bones used in skeletal animation, although
there can be a different number of ragdoll bones and rendering bones). At their most
complex, ragdolls can contain tens of bones, essential for getting a flexible spine or tail.

The bones are connected together with joints—constraints very much like those
seen in Chapter 7. Finally, in some games, force generators are added to joints to sim-
ulate the way a person would move in flight: shielding their faces and trying to brace
their hands against the fall.

The accompanying source code contains the ragdoll demo (see Figure 17.2).
This demo excludes the force generators,1 but includes the joints to keep the bones
together.

The constraints are implemented as contacts. In addition to the regular con-
tact generator, a list of joints is considered and contacts are generated to keep them
together. Figure 17.3 shows a detail of one such joint. Note that the contact is keeping

1. I excluded these because there are some important complications in their implementation. These com-
plications arise from the way people move, which is a problem of AI rather than of physics.

17.2 Using the Physics Engine 441

FIGURE 17.2 Screenshot of the ragdoll demo.

Permanent contact point
(keeps bones apart if closing
or together if separating)

FIGURE 17.3 Closeup of a ragdoll joint.

two points together. The contact will always be between these two points, making sure
that they align.

To avoid the contact slipping farther out of alignment, the friction at the joint
should be effectively infinite. To avoid the joint bouncing out of alignment, the resti-
tution should be zero.

442 Chapter 17 Putting It All Together

The structure that holds information on one joint is featured in the following
code:

Excerpt from file include/cyclone/joints.h

/**
* Joints link together two rigid bodies and ensure that they do not
* separate. In a general physics engine there may be many
* different types of joints that reduce the number of relative
* degrees of freedom between two objects. This joint is a common
* position joint--each object has a location (given in
* body coordinates) that will be kept at the same point in the
* simulation.
*/

class Joint : public ContactGenerator
{
public:

/**
* Holds the two rigid bodies that are connected by this joint.
*/
RigidBody* body[2];

/**
* Holds the relative location of the connection for each
* body, given in local coordinates.
*/
Vector3 position[2];

/**
* Holds the maximum displacement at the joint before the
* joint is considered to be violated. This is normally a
* small epsilon value. It can be larger, however, in which
* case the joint will behave as if an inelastic cable joined
* the bodies at their joint locations.
*/
real error;

/**
* Configures the joint in one go.
*/
void set(

RigidBody *a, const Vector3& a_pos,
RigidBody *b, const Vector3& b_pos,
real error
);

17.2 Using the Physics Engine 443

/**
* Generates the contacts required to restore the joint if it
* has been violated.
*/

unsigned addContact(Contact *contact, unsigned limit) const;
};

Within this class there is a checkJoint method that generates contacts based
on the current configuration of the joint. In this way, it acts very much like a
collision detector, looking at the state of rigid bodies and generating contacts
accordingly.

In the demo, the joints are considered in order during the physics update:

Excerpt from file src/demos/ragdoll/ragdoll.cpp

void RagdollDemo::generateContacts()
{

// Create the ground plane data.
cyclone::CollisionPlane plane;
plane.direction = cyclone::Vector3(0,1,0);
plane.offset = 0;

// Set up the collision data structure.
cData.reset(maxContacts);
cData.friction = (cyclone::real)0.9;
cData.restitution = (cyclone::real)0.6;
cData.tolerance = (cyclone::real)0.1;

// Perform exhaustive collision detection on the ground plane.
cyclone::Matrix4 transform, otherTransform;
cyclone::Vector3 position, otherPosition;
for (Bone *bone = bones; bone < bones+NUM_BONES; bone++)
{

// Check for collisions with the ground plane.
if (!cData.hasMoreContacts()) return;
cyclone::CollisionDetector::boxAndHalfSpace(*bone, plane, &cData);

// Check for collisions with each other bone.
cyclone::CollisionSphere boneSphere = bone->getCollisionSphere();
for (Bone *other = bone+1; other < bones+NUM_BONES; other++)
{

if (!cData.hasMoreContacts()) return;
cyclone::CollisionSphere otherSphere =

other->getCollisionSphere();

444 Chapter 17 Putting It All Together

cyclone::CollisionDetector::sphereAndSphere(
boneSphere,
otherSphere,
&cData
);

}
}

// Check for joint violation.
for (cyclone::Joint *joint = joints; joint < joints+NUM_JOINTS;

joint++)
{

if (!cData.hasMoreContacts()) return;
unsigned added = joint->addContact(cData.contacts,

cData.contactsLeft);
cData.addContacts(added);

}
}

This is a fast and effective ragdoll model. It isn’t the most stable method, however. For
very large ragdolls, a lot of interpenetration resolution iterations are needed to keep
the extremities from wandering too far from their correct place.

More Complex Joints

The approach of the ragdoll demo is about as simple as possible to get useful joints.
Joints are a common feature of physics engines and they can be considerably more
complex. Joints are used to remove the freedom of one object to move relative to
another.

The joints we have used (called ball-joints) take away the freedom of one object
to move linearly with respect to another. There are also joints that restrict move-
ment even more: hinges that restrict the ability of one object to rotate with respect
to another, and piston joints that allow relative movement in one direction only.

Implementing these more flexible joints in the engine we have built is, quite
frankly, inconvenient. We could do what I have done above and try to represent joints
in terms of contacts. This works for ball-joints but becomes very difficult for other
kinds of joints.

When I have created joints for this kind of engine, it is by following approximately
the same algorithm as for contacts (which are effectively just joints that limit the
motion of two objects from overlapping), but using different sets of tests to deter-
mine the adjustment needed. A hinge joint, for example, needs to check how twisted
the two objects are and do an interpenetration-like resolution to bring them back into
alignment.

17.2 Using the Physics Engine 445

Force-based engines with simultaneous resolution of contacts often rely on an
intermediate mathematical structure that makes it very easy to create a huge range of
joints with minimal additional implementation effort. In the next chapter, we’ll look
at the algorithms that support this. If you are going to make lots of use of joints and
need something more comprehensive than the simple contact-based joints in this sec-
tion, it may be worth biting the bullet and upgrading your contact resolution scheme.
For the sake of efficiency, ease of implementation, and programmer sanity, it is worth
giving the simple approach a try.

17.2.2 Fracture Physics

The trend toward ragdoll physics was closely followed by fracture physics. Particu-
larly in shooters, players want to see objects destroyed in a realistic way: wood should
splinter, glass should shatter, and falling crates should crack to reveal their contents.

Fracture physics can be as simple or as complex as you’d like it to be. Early imple-
mentations used two sets of rigid bodies—one for the whole object, and another for its
components. The whole rigid body has a breaking strain value, that is, the maximum
impulse it can suffer before being destroyed. During the velocity phase of the reso-
lution algorithm, the impulse applied to the object is compared against its breaking
strain. If the impulse is too great, the whole rigid body is replaced by its component
objects.

This is a very quick, efficient, and easy way to implement fracture physics. Unfor-
tunately, two identical objects will always be destroyed in exactly the same way, and
the pattern of destruction will not bear any relationship to the location of the impulse.
Figure 17.4 illustrates this problem with a glass window.

Collision
point

Predetermined
fracture pattern

FIGURE 17.4 Precreated fractures can look very strange for large objects.

446 Chapter 17 Putting It All Together

This problem can be mitigated to some extent by using several possible decom-
positions for an object and determining which to use when the fracture is initiated.
Players are good at spotting patterns, however, and most developers want a more flex-
ible approach.

More complex fracture physics uses the same basic principle of breaking strains,
but adds two more algorithms. The first is a geometric algorithm to construct the
components of the fractured object on the fly. The decomposition method depends
on the type of material. Decomposing wood needs long splintered components, glass
cracks into panes, safety glass shatters into smalls nuts, and so on. Typically, this is
achieved either by decomposing the object into differently sized tetrahedrons, and
keeping groups of these together, or by using a set of fracture patterns, and 3D Boolean
operations to separate components. The specifics of this decomposition are highly
geometric and depend on geometric algorithms beyond the scope of this book.

The second part of fracture physics needs to assign correct physical characteris-
tics to the component objects. In particular, assigning a correct inertia tensor for a
general fractured shape is a nontrivial process. Appendix A provides equations and
algorithms for calculating the inertia tensor of various regular objects. For a general
shape, however, these are complex and can be inefficient. Most developers opt for a
simplification and approximate shattered pieces with geometry that has easy inertia
tensors: boxes are a firm favorite.

Figure 17.5 shows the fracture demo from the accompanying code. It contains
a single large block, made of a relatively dense brittle material, such as concrete. You
can move to aim and then fire a ball at the block. The block will shatter on impact,

FIGURE 17.5 Screenshot of the fracture demo.

17.2 Using the Physics Engine 447

Arbitrary fracture
plane (halfway)

Fracture plane
based on

contact point

Collision
point

Fracture plane
based on
contact point

FIGURE 17.6 The fractures of a concrete block.

depending on where the ball strikes. The decomposition scheme splits the block into
eight components by dividing it in each direction. The collision point is used as the
center of two collisions, and the other direction is split in half, as shown in Figure 17.6.
To make the results look more realistic, the splits are angled randomly.

The geometric division algorithm looks like this:

Excerpt from file src/demos/fracture/fracture.cpp

/**
* Performs the division of the given block into four, writing the
* eight new blocks into the given blocks array. The blocks array
* can be a pointer to the same location as the target pointer;
* since the original block is always deleted, this effectively
* reuses its storage. The algorithm is structured to allow this
* reuse.
*/

void divideBlock(const cyclone::Contact& contact,
Block* target,
Block* blocks)

{
// Find out if we’re at block one or two in the contact
// structure, and therefore what the contact normal is.
cyclone::Vector3 normal = contact.contactNormal;
cyclone::RigidBody *body = contact.body[0];
if (body != target->body)
{

448 Chapter 17 Putting It All Together

normal.invert();
body = contact.body[1];

}

// Work out where on the body (in body coordinates) the
// contact is and its direction.
cyclone::Vector3 point =

body->getPointInLocalSpace(contact.contactPoint);
normal = body->getDirectionInLocalSpace(normal);

// Work out the center of the split: these are the point
// coordinates for each of the axes perpendicular to the
// normal, and 0 for the axis along the normal.
point = point - normal * (point * normal);

// Take a copy of the half-size, so that we can create the new
// blocks.
cyclone::Vector3 size = target->halfSize;

// Take a copy also of the body’s other data.
cyclone::RigidBody tempBody;
tempBody.setPosition(body->getPosition());
tempBody.setOrientation(body->getOrientation());
tempBody.setVelocity(body->getVelocity());
tempBody.setRotation(body->getRotation());
tempBody.setLinearDamping(body->getLinearDamping());
tempBody.setAngularDamping(body->getAngularDamping());
tempBody.setInverseInertiaTensor(body->getInverseInertiaTensor());
tempBody.calculateDerivedData();

// Remove the old block.
target->exists = false;

// Work out the inverse density of the old block.
cyclone::real invDensity =

halfSize.magnitude()*8 * body->getInverseMass();

// Now split the block into eight.
for (unsigned i = 0; i < 8; i++)
{

// Find the minimum and maximum extents of the new block
// in old-block coordinates.
cyclone::Vector3 min, max;
if ((i & 1) == 0) {

17.2 Using the Physics Engine 449

min.x = -size.x;
max.x = point.x;

} else {
min.x = point.x;
max.x = size.x;

}
if ((i & 2) == 0) {

min.y = -size.y;
max.y = point.y;

} else {
min.y = point.y;
max.y = size.y;

}
if ((i & 4) == 0) {

min.z = -size.z;
max.z = point.z;

} else {
min.z = point.z;
max.z = size.z;

}

// Get the origin and half-size of the block, in old-body
// local coordinates.
cyclone::Vector3 halfSize = (max - min) * 0.5f;
cyclone::Vector3 newPos = halfSize + min;

// Convert the origin to world coordinates.
newPos = tempBody.getPointInWorldSpace(newPos);

// Work out the direction to the impact.
cyclone::Vector3 direction = newPos - contact.contactPoint;
direction.normalize();

// Set the body’s properties (we assume the block has a body
// already that we’re going to overwrite).
blocks[i].body->setPosition(newPos);
blocks[i].body->setVelocity(

// Add a separating velocity to burst the fracture open.
tempBody.getVelocity() + direction * 10.0f
);

blocks[i].body->setOrientation(tempBody.getOrientation());
blocks[i].body->setRotation(tempBody.getRotation());
blocks[i].body->setLinearDamping(tempBody.getLinearDamping());
blocks[i].body->setAngularDamping(tempBody.getAngularDamping());

450 Chapter 17 Putting It All Together

blocks[i].body->setAwake(true);
blocks[i].body->setAcceleration(cyclone::Vector3::GRAVITY);
blocks[i].body->clearAccumulators();
blocks[i].body->calculateDerivedData();
blocks[i].offset = cyclone::Matrix4();
blocks[i].exists = true;
blocks[i].halfSize = halfSize;

// Finally, calculate the mass and inertia tensor of the new
block.

blocks[i].calculateMassProperties(invDensity);
}

}

The previous code blocks assume that the collision will occur on the YZ plane
of the block (which it must in our demo). More complete code would have similar
algorithms for the other possible collision planes.

Because the resulting pieces are roughly rectangular, they are treated like rectan-
gular blocks for calculating their inertia tensors. This is done simply as follows:

Excerpt from file src/demos/fracture/fracture.cpp

/**
* Calculates and sets the mass and inertia tensor of this block,
* assuming it has the given constant density.
*/

void calculateMassProperties(cyclone::real invDensity)
{

// Check for infinite mass.
if (invDensity <= 0)
{

// Just set zeros for both mass and inertia tensor.
body->setInverseMass(0);
body->setInverseInertiaTensor(cyclone::Matrix3());

}
else
{

// Otherwise, we need to calculate the mass.
cyclone::real volume = halfSize.magnitude() * 2.0;
cyclone::real mass = volume / invDensity;

body->setMass(mass);

// And calculate the inertia tensor from the mass and size.

17.2 Using the Physics Engine 451

mass *= 0.333f;
cyclone::Matrix3 tensor;
tensor.setInertiaTensorCoeffs(

mass * halfSize.y*halfSize.y + halfSize.z*halfSize.z,
mass * halfSize.y*halfSize.x + halfSize.z*halfSize.z,
mass * halfSize.y*halfSize.x + halfSize.z*halfSize.y
);

body->setInertiaTensor(tensor);
}

}

Creating a general-purpose, fracture physics system involves more geometric pro-
cessing than physics knowledge. Some developers have gone this route, and there are
a couple of middleware vendors with similar technologies, but to trap all useful sce-
narios is a considerable task, and certainly as complex as the contact resolution or
rigid-body algorithms we have created.

17.2.3 Explosive Physics

Explosions have been around since the earliest days of gaming, and were the applica-
tion of the first physics engines, such as particle engines creating smoke and debris.
They are a whole lot more fun with proper physics—there’s something gratifying
about watching debris scattered around the level.

Explosions are easy to create with a custom force generator. We could just create
a force generator that imparts a force to objects near the blast point. This would send
objects cascading, but would be ultimately dull to look at. It has two problems: first,
the explosion effect is quite tedious, as objects just fly out; and second, applying forces
alone doesn’t cause objects to spin.

A movie-quality explosion effect has three components: an initial implosion, a
spherical explosion with expanding concussion wave, and a convection chimney. Each
of these components has slightly different behavior.

Implosion

When the explosion first occurs, the heat in the explosion consumes the oxygen in a
ball around the explosion point and can ionize the air (this is also responsible for the
flash). This causes a sudden dramatic drop in pressure and nearby air rushes into the
gap. This is the implosion stage, and it is the same process that occurs in a lightning
strike, causing the thunder clap.

There is a military technology called thermobaric weaponry that does its dam-
age in this way, using very high temperatures to cause a huge pressure change and a

452 Chapter 17 Putting It All Together

powerful compression wave (see the next section) that can destroy buildings and dev-
astate life.

In a real explosion of modest size, this effect is barely noticeable and can even
be completely lost in the concussion phase. For games and movies, however, it looks
good and gives the explosion an added sense of power. A longer implosion, partic-
ularly associated with a geometry-stretching graphical effect, can add tension to the
explosion.

The implosion stage of the force generator applies a force to all objects within a
given threshold radius in the direction of the point of explosion. We’ll put all three
stages of the explosion into a single force generator. So far it looks like the following:

Excerpt from file include/cyclone/fgen.h

/**
* A force generator showing a three-component explosion effect.
* This force generator is intended to represent a single
* explosion effect for multiple rigid bodies. The force generator
* can also act as a particle force generator.
*/

class Explosion : public ForceGenerator,
public ParticleForceGenerator

{
/**
* The location of the detonation of the weapon.
*/
Vector3 detonation;

/**
* The radius up to which objects implode in the first stage
* of the explosion.
*/
real implosionMaxRadius;

/**
* The radius within which objects don’t feel the implosion
* force. Objects near the detonation aren’t sucked in by
* the air implosion.
*/
real implosionMinRadius;

/**
* The length of time that objects spend imploding before the
* concussion phase kicks in.
*/
real implosionDuration;

17.2 Using the Physics Engine 453

/**
* The maximal force that the implosion can apply. This should
* be relatively small to avoid the implosion pulling objects
* through the detonation point and out the other side before
* the concussion wave kicks in.
*/

real implosionForce;
/**
* Calculates and applies the force that the explosion
* has on the given rigid body.
*/

virtual void updateForce(RigidBody * body, real duration);
};

The implosion can impose only a linear force; because it is so short, we don’t need to
set objects spinning.

Concussion Wave

The concussion wave (also called the shock wave) is triggered by the initial implosion;
air rushes into the vacuum, creating an expanding wavefront. This may be combined,
near the explosion site, with shrapnel and munition fuel expanding from the weapon.
For very high-temperature devices, the wavefront may be one of burning air, known
as a fireball (characteristic in atomic and nuclear devices).

The concussion wave throws objects outward from the explosion. In movies and
games, it is responsible for cars flying through the air and characters being knocked
off their feet.

The characteristic of a concussion wave is its propagation. It spreads out from the
point of explosion, getting weaker as it goes. Just like a surfer always on the outside
edge of a water wave, light objects can ride the outside edge of the concussion wave
and be accelerated to very high speeds. But like a surfer who doesn’t catch the wave,
most objects will receive an initial boost at the wave boundary, but will fall behind the
wave and behave normally when inside the wavefront.

We can implement this in our force generator by applying forces to objects within
an expanding interval from the blast point. The interval should be wide enough so
that no objects are missed. Its width depends on the frame rate and the speed of the
wavefront according to the formula

w� s

fps

where s is the speed of the wavefront, w is the width of the interval, and fps is the
number of frames per second. In other words, w is the distance the wave travels in

454 Chapter 17 Putting It All Together

one frame. In practice objects on either side of this peak should also get some force,
but to a lesser extent. The force equation,

fa =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fb(1 − (st − d)/kw) when st − kw� d < st

fb when st � d < st + w

fb(d − st − w)/kw when st + w� d < st + (k + 1)w

0 otherwise

has proved useful for me. In it st is the position of the back of the wavefront (i.e., the
speed times the time), k is the width of the tail-off on either side of the wave, d is
the distance of an object from the center of the blast, fa is the applied force, and fb is
the peak blast force, which we’ll calculate in a moment. The equation simply provides
a linear fall-off of force on either side of the wave. The force cross-section is shown
in Figure 17.7. Note that the force is always acting outward from the center of the
blast.

We need to calculate the peak force for this equation. The force applied to an
object depends on both its aerodynamic drag (since the compression wave is primarily
a moving-air effect) and its current velocity. We could do this by simply using the
aerodynamic effects from Chapter 11, but if you aren’t using that already, it is probably
overkill.

We can approximate the force effect by applying a force that depends on the dif-
ference between the object’s velocity and the wavefront. To get exploding objects to
spin as they are moved, we apply the force off center. This can be as simple as selecting
a random, off-center point for each object when the force generator is created. The
same point should be used from frame to frame to avoid objects looking like they are

Force (outward
from blast)

Compression
boundary

0 Position

FIGURE 17.7 The force cross-section across a compression wave.

17.2 Using the Physics Engine 455

jiggling in mid-air. It also means that once the point is pushed so that it is in line with
the force vector, the object stops rotating. Otherwise, objects could rotate faster and
faster under the influence of the explosion, and that looks odd.

With the concussion wave implemented, the explosion force generator looks
like this:

Excerpt from file include/cyclone/fgen.h

class Explosion : public ForceGenerator,
public ParticleForceGenerator

{
// ... Other Explosion code as before ...

/**
* The speed that the shock wave is traveling, which is related
* to the thickness below in the relationship:
*
* thickness >= speed * minimum frame duration
*/

real shockwaveSpeed;

/**
* The shock wave applies its force over a range of distances, which
* controls thickness. Faster waves require larger
* thicknesses.
*/

real shockwaveThickness;

/**
* This is the force that is applied at the very center of the
* concussion wave on an object that is stationary. Objects
* that are in front of or behind the wavefront, or that are
* already moving outward, get proportionally less
* force. Objects moving in toward the center get
* proportionally more force.
*/
real peakConcussionForce;

/**
* The length of time that the concussion wave is active.
* As the wave nears this, the forces it applies are reduced.
*/
real concussionDuration;

};

456 Chapter 17 Putting It All Together

Convection Chimney

The final part of the explosion is another Hollywood exaggeration of a real explosion.
As well as the pressure effects from the initial explosion, the heat generated will set
up a convection current above the blast point. In most conventional weapons this
is a minor effect, and isn’t very noticeable. It is significant and iconic in atomic and
nuclear weapons, and the mushroom cloud has become a potent indicator of explosive
violence.

While it should be used sparingly (big mushroom clouds after a grenade goes off
look odd), it can be a great way to indicate a superior weapon.

Convection chimneys provide a very small amount of upward force for a long time
after the explosion. It is not enough to lift all but the lightest objects off the ground.
Because light objects are unlikely to be around the blast point after the concussion
wave, developers typically introduce extra particles that only respond to the convec-
tion. These particles are light enough to be carried upwards.

The convection chimney has an equation similar to that of the concussion wave,
but it doesn’t move outward. The linear fall-off works fine:

fa =
{

fbdxz/w when dxz < w and dy < h

0 otherwise

where w is the width of the chimney, h is the maximum height of the chimney, dxz is
the distance of the object from the blast center in the XZ plane only (because we want
the chimney to be a cylinder shape), and dy is the height of the object above the blast
point.

The force again should be applied in a line from the blast center. If we apply the
force in just the up direction, then objects will rise up the chimney and bob at the
top with the force angled outward, and the characteristic mushroom cloud shape is
formed. The peak force is calculated in the same way as for the concussion wave, as it
is another moving-air phenomenon.

The code to produce this effect looks like this:

Excerpt from file include/cyclone/fgen.h

class Explosion : public ForceGenerator,
public ParticleForceGenerator

{
// ... Other Explosion code as before ...

/**
* This is the peak force for stationary objects in
* the center of the convection chimney. Force calculations
* for this value are the same as for peakConcussionForce.
*/

real peakConvectionForce;

17.2 Using the Physics Engine 457

/**
* The radius of the chimney cylinder in the xz plane.
*/
real chimneyRadius;

/**
* The maximum height of the chimney.
*/
real chimneyHeight;

/**
* The length of time the convection chimney is active. Typically
* this is the longest effect to be in operation, as the heat
* from the explosion outlives the shock wave and implosion
* itself.
*/
real convectionDuration;

};

Altogether the explosion looks quite good. The explosion demo shows the three
components in action (see Figure 17.8). There are no lighting or fire particle effects,
which would normally be used in a real game explosion (neither of which are typically
driven by the explosion force generator but, as particle effects, will be driven by the

FIGURE 17.8 Screenshot of the explosion demo.

458 Chapter 17 Putting It All Together

physics engine). For a huge explosion, a neat effect is to set fire to objects as they first
come into the range of the concussion wave (i.e., add fire particles to the surface of
the object). This gives the effect of a consuming fireball.

17.3 Limitations of the Engine

So we have built a usable physics engine and had some fun putting it through its paces
in various game situations. This is about as far as we’ll be going in detailed code. The
rest of the book addresses in a more general way other issues and approaches.

As I’ve said from the beginning, the approach we’ve taken is a sound one, with a
good blend of implementation ease and simulation power. Ultimately, however, any
approach has limitations. While I have tried to be clear about the limitations as we
have gone along, before looking at the benefits of other approaches, it is worth recap-
ping what our engine finds difficult.

17.3.1 Stacks

Stacks of objects may not be too stable in our engine. Of course, we can set the stack
up and put it to sleep, and have it fall when knocked, but a slight touch is likely to set
it jiggling. At its worst it can cause blocks at the top of the stack to move visibly and
vibrate their way off the edge.

This is caused by the iterative penetration resolution algorithm. The algorithm
doesn’t perfectly position objects after resolving the resolution. For one object (or
even a small number of stacked objects) this isn’t a problem. For large stacks, the
errors can mount until at the top they are very noticeable.

Judicious use of putting objects to sleep means that stacks can be made to appear
stable. If you need a brick wall to be blown apart, this is a good strategy, and won’t
show the engine’s limits.

17.3.2 Reaction Force Friction

As we saw in the last chapter, reaction force friction is accommodated when a contact
is being resolved, but not when a the contact is moved as a side effect of another
resolution. This makes it difficult for one movable object leaning against another to
stay in place. The objects will appear to slide off one another, regardless of the frictions
imposed. The best that can be hoped for is that the sleep system kicks in to stop them
from sliding apart.

This is another side effect of the interpenetration resolution algorithm: it doesn’t
accommodate the friction of one contact when considering the penetration resolution
of another.

17.5 Projects 459

17.3.3 Joint Assemblies

The same cumulative errors that cause stacks to become unstable can also lead to
noticeable artifacts when long strings of rigid bodies are connected by joints. In addi-
tion to making a full range of joints a burden to program, our engine considers each
joint in series. Joints at one end of a chain can be dramatically affected by adjustments
at the other.

This can be as mild as a slight stretching of some of the joints, through slow-down
in the processing (where all the available iterations are used up) to vibration, and at
the most extreme, catastrophic failure.

Iterative resolution isn’t the best option for highly constrained assemblies of rigid
bodies (although it can cope with modest groupings like our ragdoll). If this is your
primary application, then it is best to go for a simultaneous solver.

17.3.4 Stiff Springs

And finally the bugbear from Part II of the book: stiff springs are as much a problem
for our full rigid-body engine as they were for the particle engine, and for exactly the
same reason. While it is possible to use fake force generators, as we did in Chapter 6,
the problem can’t be properly solved.

17.4 Summary

Almost anything that can be done with a game physics engine can be done with the
physics engine we’ve built in this book. As we seen in this chapter, it can be used to
provide the sophisticated state-of-the-art effects associated with game physics.

But no physics engine is perfect. We’ve built a system that is very fast indeed,
but we’ve sacrificed some accuracy, particularly when it comes to how contacts are
resolved.

In the final chapter of this book, we’ll look at other ways to approach building
a physics engine. You can use these either as inspiration for building your second
physics engine, or to extend the engine we’ve built with some extra features.

17.5 Projects

Mini-Project 17.1
Extend the fracture demo, so that impacts on any side of the cube also cause a believ-
able fracture.

Mini-Project 17.2
Extend the explosion demo to include the kind of particle effects we saw in the fire-
works demo. When the explosion occurs, have the fireworks particle system generate
a cascade of sparkes.

460 Chapter 17 Putting It All Together

Mini-Project 17.3
Implement the contact grouping algorithm described in Chapter 16. The approach is
described in Section 16.2.3, but the implementation is not given there.

Project 17.1
This project assumes that you have access to a game engine or animation system that
supports skeletal animation. Using the animation system as a basis, integrate a ragdoll
so that any bones in the animation can be controlled by physics, rather than follow-
ing the preset animation. Build the basis of a hybrid animation system for a zombie
shooter. Find a walk-cycle animation that is vaguely undead. Allow the player to aim
and fire at the animated character. When a limb is hit, that limb, and all limbs below
it in the skeletal hierarchy, will be handed over to the physics system for animation.

Project 17.2
Create a 10-pin bowling game. The pins can be cuboid (you’ll need to use a more
advanced collision detection approach to model the concave curved forms of real
pins). Players should be able to set the initial trajectory and spin of their ball, and
the physics engine should model the results. To count the number of pins knocked
down, you will have to examine the quaternions of each pin after the simulation has
settled down (i.e., after all objects have been put to sleep).

Part VI

Further Topics in Physics

This page intentionally left blank

18
Physics in Two

Dimensions

he physics engine we’ve built over the course of this book was designed to be as
Tgeneral as possible. It can be used for all kinds of game genres, but is focused on
the kinds of physics seen in state-of-the-art games.

Over the 5 years since I started working on the first edition of this book, how-
ever, the landscape of game development has changed significantly. Motivated by
a new generation of Internet-connected consoles, players have been able to select
from lower-budget, independently created games that hark back to the best game-play
experiences of previous decades. This has meant a sudden renaissance in commercial
2D games, years after it looked like 3D would be ubiquitous.

These games are not simple retro-remakes, however, as they use state-of-the-art
technologies, including, inevitably, physics. Physics-based game play has, if anything,
been better developed in 2D than 3D and so a question I have often been asked about
the first edition of this book is, how do I build a 2D physics engine, rather than the 3D
engine the book focuses on? If a 2D game is where you’re heading, then this chapter
is for you too.

18.1 2D or 3D?

But before we get into the discussion, it would be worth thinking about whether you
really need a 3D engine in your game. There are some things to realize about 3D
physics for a 2D game.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00018-8 463

464 Chapter 18 Physics in Two Dimensions

1. It is possible to do everything you want with a 3D physics engine. 3D is a super
set of the functionality in a 2D engine, so you’ll lose nothing keeping a 3D
engine. To use a 3D engine, you need to constrain objects so they only move
and spin in a 2D plane. This can be done using the kinds of constraints we saw in
Chapter 15.

2. You may, at some point, want 3D movement in your game. One very powerful
effect used in several games that are essentially 2D, is to allow some objects to
move in 3D. While the player’s actions are limited to 2D, you may want to create
an illusion of depth, so allowing objects to fall into and out of the player’s 2D
plane is a good strategy. This has been used successfully in the Trials series of
games for the PC and XBox Live, for example. In these games, your motorbike
is fixed in a 2D plane (at least until you crash—crash animations use ragdolls in
full 3D), but crates and pipes and other game objects can move into and out of
the game plane.

3. Even if you’re not expecting game-play elements to move in 3D, you may need 3D
to simulate particles believably. It is pretty common to have a 3D particle engine
on top of 2D physics. This hybrid engine can be very powerful, but it might be
simpler to just stay in 3D.

4. The reason you build a physics engine in the first place is reuse. If you just need
a single physical effect here or there, you may be better off coding it directly (we
discussed this tradeoff in Chapter 1). If you’re going to spend the time building,
optimizing, and learning to use a physics engine, then it is better to build a 3D
engine, because that will give you the most flexibility for the kinds of games you
can create later on.

5. Which direction is gravity in your game? 3D engines don’t really care, as grav-
ity can be acting along any direction. (In our engine you simply set each object’s
acceleration vector in any direction you choose.) But 2D games are representa-
tions of a 3D world, and so they typically come in two groups: those where grav-
ity acts in the 2D plane, and those where it acts perpendicular to the game plane.
You can think of these as side-view and top-down games. 2D physics engines are
designed primarily for side-view games. If you’re developing a top-down game,
then the majority of the forces in your physics system (because gravity is almost
always the dominant force in game physics) won’t be simulated. And this can
look odd; or worse, it can make your physics pretty much redundant. If you’re
going to put all that hard work in, it should be noticeable!

Having said all that, if you build an engine for 2D use, it will have some important
advantages.

1. It will be faster, and often considerably faster. There’s no need to perform a huge
number of calculations that you won’t be needing. Using a 3D engine involves
adding new constraints to remove the extra degrees of freedom. Better to not
introduce them.

18.2 Vector Mathematics 465

2. Collision detection is much simpler. 3D collision detection is an order of
magnitude more difficult (and therefore slower) than in 2D. An interesting con-
sequence of this is that 2D physics engines often implement more complex colli-
sion detection schemes, including support for convex objects.

3. The simplicity allows you to experiment more with alternative algorithms, to add
new constraints, and to build more options for force and torque generators. This
in turn can provide a more interesting and varied physics experience for your
players.

4. Typically, 2D engines are more accurate at representing 2D physics. This is
because when we remove extra degrees of freedom from a 3D engine, we are
removing some of its accuracy. Consider the work we did on resolving interpen-
etration or other constraints. When we move objects back into place so they don’t
violate their constraints, we have to use rules of thumb (such as having a portion
of the movement angular and a portion linear, although not too much angular).
Those rules of thumb left us in situations that weren’t physically accurate. The
same thing happens when we process the 2D constraint in a 3D engine—we have
to approximate, using rules of thumb, and that means slightly less accurate and
slightly less believable physics.

The remainder of this chapter will go back through the engines we’ve built, chapter
by chapter in this book, and discuss the changes that would be needed to implement
a pure 2D engine. I will not describe the process of building the engine from scratch,
so this chapter isn’t designed to be read on its own if you just need a 2D engine. It
builds on the content in the rest of the book, and should be read afterward.

18.2 Vector Mathematics

The changes needed to cope with mathematics in 2D are relatively minor. Recall that
a vector in 3D consists of three independent quantities:

a =
⎡⎢⎣x

y

z

⎤⎥⎦
In a 2D engine, we’d simply lose one of these quantities:

a =
[

x

y

]

We would want to implement a Vector2D class with just these two degrees of
freedom. If you followed my implementation in Chapter 2, you noted that I slipped in

466 Chapter 18 Physics in Two Dimensions

an extra member to make sure that the size of the vector sat nicely in the computer’s
memory. You’d want to do something similar again. You could have:

class Vector2D
{

real x;
real y;

};

and have it sit in memory with two vector objects per 16-byte range. This would per-
form far better than if we had three real variables in the structure, because for three
we’d inevitably get some vectors that straddle the 16-byte boundary. But it would still
perform better as:

class Vector2D
{

real x;
real y;
real _pad[2];

};

It is worth profiling the memory use and cache performance of both approaches,
to see if the tradeoff for reduced memory usage is worth it.

Of the methods we implemented for our vector class, most require pretty obvious
modifications. Scalar product looks like this, for example:

class Vector2D
{

// ... Other Vector2D code as before ...

real scalarProduct(const Vector2D &vector) const
{

return x*vector.x + y*vector.y;
}

}

The only method we will not have is the vector product. Vector products are
not defined for 2D vectors, as there is simply no way to calculate them. One useful

18.4 The Mathematics of Rotation 467

application of the vector product in 3D, however, is the construction of vectors at
right angles to one another. Recall that for two vectors, a and b, the vector a × b will
be at right angles to both.

In 2D it is useful to be able to do the same thing—to generate a vector at right
angles to another. In 2D, things are simpler. For any given vector, there will be only
one other direction that is perpendicular. There are an infinite number of vectors in
that direction, however, so we need to choose one. The following code chooses the
vector made by turning the original vector through 90 degrees counterclockwise:

Vector2D perpendicular() const
{

return Vector2D(-y, x);
}

18.3 Particle and Mass Aggregate Physics

The remainder of the particle and mass aggregate engines require only trivial
modifications to our previous code. We simply replace Vector3D calls with Vector2D
calls. The force accumulators, collision response, our constraints, the integration step,
and the particle data structure need no other modifications.

After making these simplifications, you should be able to run equivalent 2D ver-
sions of the demos in Chapters 4 and 8.

18.4 The Mathematics of Rotation

Handling rotation is the first stage at which our 2D engine will significantly diverge
from the 3D system.

18.4.1 Representing Rotation

Recall that in Chapter 9 we looked at a number of different ways to represent rotation.
All of them had their weaknesses, but we settled on quaternions, because the were easy
to implement in code.

A similar discussion could be had for 2D rotations. The situation isn’t as tricky,
however, because a rotation in 2D only has one degree of freedom.

We could get away with using just a single scalar value for our orientation, as
long as we took steps to make sure that it was always in the correct range. So if our
orientation became 540 degrees, for example, we might want to correct it back to

468 Chapter 18 Physics in Two Dimensions

180 degrees. We could also use a 2 × 2 matrix, although (as in the 3D case) this would
have a lot of extra degrees of freedom we don’t need.

A better approach would follow the 3D logic and use complex numbers to repre-
sent orientations. This is sometimes called the spinor representation of rotation.1 The
complex number encoding represents a rotation angle, θ , as the complex number,

z = cos θ + sinθ i

Note that, unlike the quaternion representation, this is given in terms of cos and sin
of θ , rather than of θ

2 . We can also write the same expression as

θ = cos θ + sinθ i = eiθ [18.1]

which will be important to us shortly.
Just like quaternions, these complex numbers are of length 1, and to make sure

our rotation is still a rotation (as opposed to some other kind of transformation),
we’ll need to keep it unit length by occasionally normalizing it.

As before, I will write complex numbers representing rotations as a vector:[
cos θ

sin θ

]

To combine two rotations, we use complex multiplication:[
a

b

]
·
[

c

d

]
=

[
ac − bd

ad + cb

]

The only remaining operation to take on 2D rotations is the calculation to add a
scaled version of a rotation value. We use this calculation to integrate the orientation
by the angular velocity. In 2D, because we only have one degree of freedom, angular
velocity will be a scalar quantity, θ̇ . The math for this update follows:

θ ′ = θ + t θ̇

In terms of complex numbers, it is:

θ ′ = ei(θ+t θ̇)

= eiθ · ei θ̇

= θ ·
[

cos θ̇

sin θ̇

]
1. Strictly speaking, this is a general term; quaternions are also the spinor representation for rotations in
3D. The mathematics can be generalized further, and becomes the geometric algebra (GA). See Dorst et al.
[2007] for more details on GA.

18.5 Rigid-Body Dynamics 469

which involves the calculation of sin and cos of the angular velocity for each update.
This is a worse situation than our equivalent quaternion update, because trigonomet-
ric calculations are less efficient than addition, subtraction, or multiplication.

18.4.2 Matrices

To support our 2D vectors, we’ll need two kinds of matrices. The first, not surprisingly,
will be a 2 × 2 matrix. This can represent rotations, but not translations. The second
is the equivalent of the 2 × 3 matrix from Chapter 9, and, as there, it uses the extra
column to allow it to represent translation.

The 2×3 matrix transforms a vector by assuming that the vector has a third entry,
which is always 1: [

a b c

e f g

]⎡⎢⎣x

y

1

⎤⎥⎦ =
[

ax + by + c

ex + fy + g

]
[18.2]

This is the same as the 3D case.
If you are modifying your existing physics engine to work in 2D, you could simply

reuse your existing Matrix3 class. You will need to add a new method to transform
Vector2 objects, however, by assuming that they have a third entry equal to 1.

Other matrix operations are exactly the same, but the loss of one row and column
makes many of them far simpler.

18.5 Rigid-Body Dynamics

When we considered torque in 3D, we made use of the vector product to calculate the
torque from a force and position of application. We no longer have a vector product,
so we need an explicit method for calculating torque from corresponding force. If we
have a force,

f =
[

fx

fy

]
which applies to a rigid body at a position

p =
[

px

py

]
relative to its center of mass, then the torque associated with that force will be

τ = px fy − py fx

470 Chapter 18 Physics in Two Dimensions

There are a couple of ways to derive this result. The simplest, given what we have
already covered in this book, is to think of the 2D case as something that is happening
in 3D, where everything occurs in the z = 0 plane. So we could then calculate the
vector product,

τ = p × f =
⎡⎢⎣px

py

0

⎤⎥⎦ ×
⎡⎢⎣fx

fy

0

⎤⎥⎦ =
⎡⎢⎣ 0

0

px fy − py fx

⎤⎥⎦
which gives our result as the z component, the others being zero. So this represents a
torque that is only about the z axis, as we’d expect.

2D rigid bodies have another dramatic simplification: they do not require tensors
to represent their rotational inertia. Instead, the angular inertia of a 2D rigid body
about its center of mass is a scalar value. It is usually simply called the moment of
inertia, I . The equation for angular motion is simply

θ̈ = 1

I
τ

where all the terms are now scalars.
We’re now at the point where we can perform a rigid-body integration. The inte-

gration is simple compared to the 3D case. It can be implemented as follows:

void RigidBody2D::integrate(real duration)
{

// Calculate linear acceleration from forces and gravity.
lastFrameAcceleration = acceleration;
lastFrameAcceleration.addScaledVector(forceAccum, inverseMass);

// Calculate angular acceleration (a scalar).
real angularAcceleration = torqueAccum * inverseMomentOfIntertia;

// Update the linear and angular velocities.
velocity.addScaledVector(lastFrameAcceleration, duration);
rotation += angularAcceleration * duration;

// Apply damping to both components.
velocity *= real_pow(linearDamping, duration);
rotation *= real_pow(angularDamping, duration);

// Update the linear and angular positions.
position.addScaledVector(velocity, duration);
orientation.addRotation(rotation, duration);

// Perform end-of-update bookkeeping.

18.6 Collision Detection 471

orientation.normalize();
clearAccumulators();

}

calculateDerivedData now only needs to normalize the orientation and calculate a
transform matrix. It doesn’t need to update the inertia tensor matrix, because we have
replaced that.

18.6 Collision Detection

Collision detection, specifically narrow-phase collision detection, is a second area
where the code is dramatically simplified in 2D. Broad-phase collision detection is left
almost entirely unchanged. We have bounding circles rather than spheres, and bound-
ing rectangles rather than boxes, but the math is largely the same. Of the broad-phase
techniques we covered in Chapter 12, we can use all of them except oct-trees, which
assume a third dimension. The 2D equivalent is the quad-tree, which is also covered
in that chapter.

For narrow-phase collision detection, the methods are largely the same, but the
cases we have to consider are simpler. In 2D, there are three types of contact, as shown
in Figure 18.1.

Vertex–edge contact Edge–edge contact Vertex–vertex contact

FIGURE 18.1 The three types of contact in 2D.

472 Chapter 18 Physics in Two Dimensions

1. Vertex–edge

2. Edge–edge

3. Vertex–vertex

As in Section 13.2.1, I have ordered these according to their importance. As before,
if we find contacts higher up this list, we don’t need to generate the contacts lower
down. And, as before, we will not look for the contact at the bottom of the list at all:
vertex–vertex contacts can be safely ignored.

The properties of contact are unchanged. Our methods for generating the contacts
are discussed in the next section.

18.6.1 Vertex–Edge Contacts

This is the most important type of contact in 2D. The edge may be straight or curved.
This is the equivalent of the vertex–face contact in 3D.

The contact normal is given by the tangent of the edge at the point of contact. For
straight edges (which are common) this is the direction of the edge. We can use our
perpendicularmethod from the start of this chapter to generate the contact normal.
For collisions involving curved surfaces, this normal might be available directly.

The contact point is normally given as the vertex involved in the contact.

18.6.2 Edge–Edge Contacts

This is the equivalent to the face–face contact in 3D, and like that contact there is
some ambiguity about the contact normal to use. We typically use the edge normal
(calculated in the same way as we saw for vertex–edge contacts) of either object. Often
we just pick the first object. In reality, edges can only meet when they have a common
normal, but inaccuracies in our simulation mean this is not always the case. Choosing
one or the other (as long as we’re consistent) is usually not noticeable.

18.6.3 Contact Generation

In 2D, our key primitives are the circle, a line (actually a half-space again, as in
3D), and a rectangle. The detection code for circle–circle and circle–half-space prim-
itives is as for 3D. Depending on how you’ve implemented your 2D vector class,
you might be able to use it unchanged, as the operator and method implementa-
tions hide the differences in the arithmetic. Both these pairs can only generate an
edge–edge contact. It is normal to generate the contact normal based on the line, in the
circle–half-space case.

The rectangle–circle case is also very similar to the 3D case, only we have one fewer
dimension to check, so the code becomes a little simpler.

18.8 Summary 473

The SAT works as well for 2D as 3D. In the 2D case, however, the only axes we need
to check are those that are normal to each edge in the model. This is an important
result. In the 3D case, we had to check each face normal and the direction given by
the cross-product of each pair of edges. So the work we needed to do grew with the
square of the number of edges. This made the SAT slow for complex geometry.

In the 3D case, the number of axes to test depends only on the number of edges
in each model; there is no squared term. This makes SAT tractable for much more
complex geometries. To collide two rectangles, we need to check just four axes (again
assuming opposite edges in a box are parallel, so there are only two distinct axes to
check per box). This is nearly a fourfold reduction to the 3D case.

The actual performance of an SAT for a given axis is the same as the 3D case, and
the method used to generate the contact information is also analogous.

18.7 Collision Response

Collision response is similar to the 3D case. It benefits from the demise of the iner-
tia tensor, however. At several points in the collision response algorithm we need to
work with the inertia tensor in various coordinate schemes (local, where it is con-
stant; world, where it changes each frame; and contact, which is calculated per con-
tact). This is a lot of conversion and bookkeeping work. In 2D the moment of inertia
doesn’t depend on the rotation axis, since there is only ever one rotation axis. There-
fore, we don’t have to perform the conversions. Anytime the inverse inertia tensor (in
any coordinates) is needed, we can simply use the inverse moment of inertia, 1/I . This
goes for all aspects of the contact resolver: collisions, microcollisions for resting con-
tacts, interpenetration resolution, and friction. In 2D, there is no distinction between
isotropic and anisotropic friction.

In fact, the only reason we constructed the contact coordinates in the first place
was so we could manipulate the inverse inertia tensor in those coordinates. We can
therefore do away with contact coordinates entirely and work in world coordinates
throughout.

The iterative algorithms for collision and interpenetration resolution were inde-
pendent of the number of dimensions in the simulation, and will therefore be
unchanged.

18.8 Summary

In this chapter, we have seen that the vast majority of the code in a 3D physics engine
is shared with a 2D engine. When there are differences, they are caused by having only
one degree of rotational freedom in 2D, rather than the three in 3D. This makes any
calculations involving rotation simpler, but particularly makes calculations involving
the moment of inertia almost trivial. Add to this the speed improvements that 2D

474 Chapter 18 Physics in Two Dimensions

makes to our collision detection, and we get performance improvements that are at
least an order of magnitude in size. This seems to be a slam-dunk argument for 2D
physics. But we saw that the lower flexibility in a 2D engine isn’t ideal in many games.
A large number of 2D games still use a 3D physics engine.

18.9 Projects

Mini-Project 18.1
Modify the fireworks demo from Chapter 4 so that it operates in 2D. You will need to
change the underlying physics engine to make this work, so it would be wise to make
a separate copy or branch of the source code.

Mini-Project 18.2
Modify theplatformdemo from Chapter 8 so that it operates in 2D. As in the previous
exercise, you will need to make modifications to the Cyclone engine to do this. You
should make a copy of the source.

Mini-Project 18.3
Create a 2D version of the aerodynamic tensor from Chapter 11, and use it to imple-
ment a simple 2D gliding model. For a given launch altitude and velocity, the game
should see how far the player can fly before touching the ground plane.

Project 18.1
Create a simple two-player dog-fighting game with a simple aerodynamic model for
the aircraft. Each player should be able to rotate her or his aircraft using the aero-
dynamics only (i.e., don’t apply torques directly) and should be able to shoot in the
direction she or he is facing. The game will be quite tricky: it will be as much of a
challenge to keep the plane in the air as to avoid being shot down.

Project 18.2
Create a game where the player controls a pogo stick. The player’s stick is a rigid body
to which she can apply a small amount of torque. The center of mass should be almost
at one end of the stick, and it should have a relatively high moment of inertia (this isn’t
physically realistic, if the center of mass is concentrated at one end, but it improves
playability). Add a selection of half-spaces or fixed rectangles to form a level. If the
heavy end of the stick hits a surface, the player loses. If the other end of the stick hits
the ground use a spring force generator to push it back out again. The player will have
to move down the level to keep bouncing (because of damping), but bouncing too far
will cause the stick to spin and the top will hit.

Implementing this game will involve having to think hard about how to mix the
spring force generator with regular collision detection. There are at least two good
and valid approaches to this.

19
Other

Programming

Languages

he source code for the Cyclone engine is written in C++. Although C++ is still
T the most common language for game development, the recent surge in interest
in other game platforms, particularly mobile and browser-based games, has meant
that more developers are using alternative languages.

This chapter looks at some of those languages, and gives general advice for imple-
mentation strategies. I won’t give complete implementations here, however, because
the overwhelming majority of the implementation task is the same, no matter what
language you use. Different languages make it more or less complex to achieve the
same thing, however, so it is worth understanding the pitfalls before you start.

In the first edition of this book, this chapter was placed in an appendix. I dealt
with porting to C, Java, .NET platforms, and Lua. In the 5 years since I wrote that
appendix, Flash has become a more significant tool for serious game development
than I imagined. I get requests from users about Flash implementation more often
than any other.

19.1 ActionScript 3

With the release of Flash version 9, and a free SDK, Adobe opened up Flash develop-
ment to more serious game developers. Prior to that point Flash was clearly aimed

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00019-X 475

476 Chapter 19 Other Programming Languages

at graphic artists and designers who wanted to add interactivity to their designs.
Amazing things had been done by developers even so, but the tools weren’t optimized
for software engineering. ActionScript 3 was a significant step forward in the language
and tool support. In the wake of its release, a series of physics technologies began to
gain prominence, including full 2D physics engines. These are now increasingly being
used in browser-based Flash games. Visit any of the major Flash game portals and a
significant proportion of the titles will have some form of physics engine.

ActionScript 3 is also important in another way. It is a dialect of ECMAScript, the
international standard for scripting languages. As such it shares significant similarities
with JavaScript, the browser scripting language, and JScript, Microsoft’s implemen-
tation for Internet Explorer. JavaScript, through open-source implementations such
as SpiderMonkey and V8, and through the .NET system and its open-source version,
Mono, has seen an increasing amount of use as a general-purpose scripting language
in games. Mono runs the scripting virtual machine for the Unity 3D game develop-
ment platform, for example. I haven’t seen a physics engine developed in JavaScript,
yet, and it is still better to develop your engine in C++, even if you have a Mono or
JavaScript virtual machine running. But clearly ECMAScript languages are here to
stay, and as their implementations become more efficient there will be an increasing
opportunity for using them to code physics. As the HTML 5 specification for direct
drawing on a web page from JavaScript matures, I expect to see a new raft of games
developed directly in client-side JavaScript. But these hypothetical games of the future
will have many similarities with the Flash games of the present.

Implementing physics in ActionScript is tricky because, compared to some other
development tools, Flash is slow. Unlike other comparable languages (such as Java, as
we’ll see below), Flash does not provide language bindings to allow you to implement
performance-critical code in C or C++. Everything has to be built in ActionScript.

The ActionScript 3 interpreter in Flash 9 and 10 is much faster than previous ver-
sions, and a lot of work has been done on the compiler to produce better byte code.
But still, every operation you code has to go through a series of error checking, secu-
rity sandbox, and interpretation phases before it can be executed. It is therefore more
important to keep your code optimized, and to profile it regularly (the professional
version of Flex Builder, Adobe’s ActionScript IDE, has a full profiling system; the free
SDK and regular Flex Builder does not).

A key performance bottleneck to be aware of is objects. In C++, objects are rel-
atively lightweight entities. They take very little additional memory (over and above
their data, that is), and they are intrinsically quick to create and destroy. In Action-
Script, however, there is a fair bit of management data associated with each object.
This is quite common in systems that manage memory and provide automated
garbage collection. In developing you can unwind data types into their parents. You
could, for example, expand the Vector3 instances in a Particle into their class as
follows:

19.1 ActionScript 3 477

public class Particle {
public var x:Number;
public var y:Number;
public var z:Number;

public var dx:Number;
public var dy:Number;
public var dz:Number;

public var ddx:Number;
public var ddy:Number;
public var ddz:Number;

public var gravity:Number;

public var inverseMass:Number;

public function update(duration:Number):void {
dx += ddx * duration;
dy += ddy * duration;
dz += ddz * duration;

x += dx * duration;
y += dy * duration;
z += dz * duration;

// Zero the accumulator.
ddx = 0;
ddy = -gravity;
ddz = 0;

}

public function addForce(fx:Number, fy:Number, fz:Number):void {
ddx += fx * inverseMass;
ddy += fy * inverseMass;
ddz += fz * inverseMass;

}
}

478 Chapter 19 Other Programming Languages

This will perform better than our previous implementation that separates the
Particle and Vector3 classes.

This is efficient and relatively straightforward for particles, but implementing the
rigid body or contact objects in this way rapidly becomes an exercise in long-winded
algorithms and copy-and-paste code. There is a tradeoff to make.

When you implement mathematical data types as classes, you will face a minor
stylistic problem caused by ECMAScript’s historical links to Java: it does not support
operator overloading. So, whereas you could do

class Vector3 {
Vector3 operator*(float k) const
{
return Vector3(x*k, y*k, z*k);

}
void operator+=(const Vector3& other)
{

x += other.x;
y += other.y;
z += other.z;

}
};

in C++, and then

accumulatedAcc += force * inverseMass;

you would have to write

public class Vector3 {
public function multiply(by:Number):Vector3 {

return Vector3(x*by, y*by, z*by);
}
public function add(other:Vector3):void {

x += other.x;
y += other.y;
z += other.z;

}

in ActionScript and then

19.2 C 479

accumulatedAcc.add(force.multiply(inverseMass));

which tends to make code much more verbose and less clear (particularly in some
of the very complex collision response algorithms where we saw many operators in a
single line).

On the other hand, in ActionScript, once you’ve decided to make a method call,
there is no additional penalty for having virtual methods. That means structures such
as the polymorphic ContactGenerator and ForceGenerator could be replicated in
various kinds of RigidBody, Particle, or even Contact—classes for which I did not
use virtual methods in C++. This makes some kinds of programming much clearer.
The fireworks demo, for example, is more cleanly expressed using subclasses for each
firework type and overloaded methods for their behavior (such as their spawning pat-
tern when they reach maximum age).

Since most people wanting to develop physics engines in ActionScript are intend-
ing to use them for 2D games, it is worth referring to Chapter 18 for a guide on the
other modifications you’ll need to make to the engine.

19.2 C

Among some parts of the game development community, C is still the gold standard
for implementing performance-critical code. It has the added advantage of begin eas-
ily compilable, with excellent optimizing compilers. When you’re writing code once
to run on multiple platforms, this translates into increased confidence that you won’t
find good C++ code turned into terrible-performance machine code because of a
poor C++ compiler. With the advent of the iPhone as a gaming powerhouse, parti-
cularly in the independent development community, C has also seen a renaissance. It
is a common sublanguage behind both C++ and Apple’s Objective-C languages, and
so can easily cross-compile into iPhone libraries and code for other consoles.

Most of the source code in this book can be translated into C fairly easily. Classes
are replaced with structures, and all methods in classes are replaced by functions.

Operator overloading isn’t supported in plain C (although some dialects do back-
port it from C++). The places we’ve used overloaded operators to represent vector and
matrix operations are replaced by plain functions. This has the same verbosity issue
as with ActionScript, discussed previously.

C doesn’t support virtual functions and the kinds of polymorphism that I used to
implement contact generators and force generators in this book. You can do a similar
thing in C, however, by using a fixed-function signature of the form,

(void)(*forceGenerator)(void* inData,
RigidBody* inOutBody);

where RigidBody is a typedef of a structure.

480 Chapter 19 Other Programming Languages

The additional data parameter is used to pass data to the force generator function
(in C++ this isn’t needed because the implicit this pointer contains the generator’s
data). You can then define any number of such functions, and even hold them as
function pointers in other data structures.

I have used the C++ standard template library at a number of points in the
source code to represent a variable-length array. Most other languages have native
equivalents, but C does not. To implement these structures (the list of force gener-
ators and the list of rigid bodies, for example), you can use singly or doubly linked
lists:

typedef struct rigidbody_t {
// ... Other RigidBody data as for C++ ...

struct rigidbody_t *previous;
struct rigidbody_t *next;

} RigidBody;

In each of the cases where I’ve used an STL vector, it has been to make the algo-
rithm clearer. I don’t rely on its performance characteristics, and I only ever traverse
it in a forward direction. If you are adding and removing objects from the list at
runtime, however, there will be a larger difference in performance.

19.3 Java

Lots of the caveats around implementing in Java are the same as we’ve seen for Action-
Script. Although Java has dramatically improved in terms of its just-in-time compi-
lation efficiency, it is still usually better to implement highly localized, time-critical
parts of the code in C++. Unlike ActionScript, Java has a native language binding that
allows us to write in C++ and compile down as a native library.

Java still holds significant pull for developing games on mobile handsets (although
this seems to be waning), which often cannot run native code. Of the remaining Java-
developed games, the majority are distributed as the clients for web-based games, so
they should be capable of being run through Java WebStart. This makes it much more
inconvenient to distribute native libraries, and so all coding for Java-based games is
normally done in Java.

If you decide to implement the engine in Java, then it is worth reading through
the previous discussion related to ActionScript, since many of the issues will be the
same. One key thing to be aware of is the overhead of objects in Java. This is signif-
icantly higher than it is for other VM-based, byte-code languages, and so you could
find yourself having memory issues sooner if you split all your data structures into
smaller components.

19.4 C# 481

If you have each vector in your simulation as a separate instance, for example,
then on some Java platforms this can cause a huge bloat in the amount of memory
required.

Java, like ActionScript, has interfaces as a characteristic component of its syn-
tax. In the case of force and torque generators, for example, we can replace the
pure-virtual classes of our C++ implementation with interfaces. Classes such as
GravityForceGenerator can then implement these interfaces. This also allows a single
class to be both a force generator and a contact generator, if required (this would be
useful when implementing a spring with hard limits, for example).

19.4 C#

C# has gained popularity among game developers as a Java-like managed language for
targeting Microsoft’s gaming properties, Windows PCs and XBox 360 consoles, par-
ticularly as part of their XNA strategy to engage hobbyist and independent developers.

Once again, implementing in C# involves the same concerns and strategies as
ActionScript and Java. Like those languages, it is compiled down to an intermedi-
ate byte code that has security and error-checking facilities built in. And once more it
uses a good deal of extra per-object data to help it manage memory in your game.

Unlike Java and ActionScript, C# supports operator overloading, so you can create
math classes that are intuitive to use and produce readable code.

Because C# programs run on a specific set of hardware, it is far more feasible to
implement your physics engine in another language, and one that compiles down
more efficiently to native code. Microsoft’s common language runtime (the byte code
that C# compiles to) allows elements written in different languages to communicate
efficiently. This is simplest when the components are all “managed” (broadly this
means they have their life cycles, and therefore their memory, managed), but unman-
aged C or C++ is faster than managed code, and can also be integrated with C# com-
ponents.

The .NET common language runtime supports a number of other languages
as well as C#. Microsoft’s stalwart Visual Basic language is also a common choice,
although there are cross-compilers for a wide range of languages, including Ruby
(IronRuby), Python (IronPython), and JavaScript. Be careful using these languages,
however. Because the change in language doesn’t change the underlying assumptions
of the virtual machine, some facilities of the language may not be supported, and
some semantics of the language may be different.

The common language runtime has an open-source implementation: Mono. This
is seeing considerable traction as an in-game scripting platform. Because of the
language-independent work that has gone into it, the VM runs byte code very effi-
ciently. Because it has bindings for several languages, it allows mixed teams to work
together, each developing subsystems in a language that they are most comfortable
with. I am aware of some readers of the first edition of this book implementing their
physics in C# so that it can be run on the Mono platform.

482 Chapter 19 Other Programming Languages

19.5 Other Scripting Languages

Lua makes an excellent language for implementing game logic and anything beyond
the low-level routines used to run the game. At the risk of sounding like a stuck record,
the physics can be one of these low-level routines implemented in C++ and called
when needed from Lua.

Another option I’ve used, however, is to mix Lua into the physics engine. It is
relatively easy to expose Lua code as a force or torque generator into the physics engine
(this is particularly useful in my experience to create controllers for player characters).

To set this up, create a LuaForceGenerator in C++ that can call Lua code. The
RigidBody class will need its addForce and addTorque methods exposed via a table
to Lua so that the code can then affect the rigid body when it has completed its
calculation.

Lua is remarkably quick for an embedded scripting language. It has been designed
to interface with native code with as little overhead as possible. This makes it easily
fast enough to be called a few times for each frame in this way.

I have also seen implementations where routines written in Scheme (via the Gnu
Guile project) have been created as scripts in a level editor that is called by the physics
engine to generate custom effects. Python rounds out the catalog of languages I’m
aware of that are being used commercially (or that readers have told me they are
using). Once more, Python is not suitable for coding the main physics engine, but is
very powerful as an embedded language for extending the capabilities of your game,
including implementing force generators.

20
Other Types of

Physics

e’ve developed our physics engine as far as we will. There are things you can
W add to it, such as more force generators, more joints, and so on. You can use
it in a wide variety of game genres as long as you understand its limitations and are
willing to work around them.

I’ve referred to this chapter more than any other in this book. As we’ve built the
engine, I’ve made decisions about approximations, assumptions, and implementation
options that I would use. In each case, there were other alternatives. The engine I’ve
built is good and useful, but there are a couple of other approaches that would have
been equally good, and would have had a different set of limitations.

This chapter looks at the main differences between our physics engine and those
other approaches. It will not give a step-by-step guide to building those engines, nor
any detailed implementation advice. Building an engine involves a whole series of
interdependent decisions, so this chapter would be twice the length of the book if we
worked through each approach. Instead, I hope it will give you enough information
to understand the alternatives and to get you started if you want to go that way too.

20.1 Simultaneous Contact Resolution

In our engine, we resolve contacts one at a time. This is fast, but as we’ve seen, it
has limitations. In particular, we have no way of knowing whether the action we take

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00020-6 483

484 Chapter 20 Other Types of Physics

to resolve one contact might cause other contacts to move in an unrealistic way. In
our engine, this is seen when a set of connected contacts with friction appear to slide
against one another or when stacks of objects vibrate.

The alternative is to resolve a set of contacts at the same time. Rather than calcu-
lating the impulse of each in turn, we need to find the impulses of all simultaneously.

Most physics engines that perform this simultaneous calculation are based on
force calculations rather than impulse. In other words, two objects in resting con-
tact are kept apart by a constant force, not by a series of single-frame impulses as we
have done. So the resolution calculation tries to find the forces and impulses to apply
at each contact, taking the interaction of all contacts into account.

The most common approach to doing this is called the linear-complementarity
problem. It involves building a mathematical structure called a Jacobian, which
encodes the interactions between different contacts. This can then (usually) be turned
into a single set of forces to apply.

Because this is such a common and important approach, we’ll look at it from a
high level in this chapter. I won’t go into the finer points of implementation, however,
because getting the algorithms to work in a stable way involves numerous special-case
problems and unusual complications.

20.1.1 The Jacobian

The Jacobian is a mathematical construct that says how one contact affects another. It
is used to determine the right balance of adjustments to make with the full knowledge
of the side effects of any tweak. The Jacobian is a matrix, and may be of any size.

All the forces and torques for all objects are combined into a single very long vec-
tor. There will be three force entries and three torque entries for each rigid body, so
the vector will have 6n entries, where n is the number of rigid bodies. In the same way,
all the accelerations (linear and angular) for all objects are treated as one long vector
(again having 6n entries).

The entries in the Jacobian matrix relate the two together. The value of row a,
column b in the matrix tells us the amount of acceleration that would be experienced
by component a given a unit of force or torque in direction b. Some of the entries in
the matrix are very simple—they are the equations we’ve used throughout the book
to determine the movement of objects. For example, a force in the X direction causes
an acceleration of magnitude m−1 (from F = ma); so in the Jacobian, the value that
relates X-direction force to X-direction acceleration will be m−1.

While many of the values in the Jacobian are based on the simple laws of motion,
some are due to interaction of objects at contact points. Each value in the matrix
gives the change that will occur in the row’s component given a unit change in the
column’s component. Calculating the entries in the Jacobian involves working out the
forces at each contact given a unit force at each other contact. The process is similar
to the one we used in our engine to calculate the effects of one contact resolution on
others.

20.1 Simultaneous Contact Resolution 485

Entries in the Jacobian don’t only exist because one contact affects another. It is
also possible for one axis of one contact to affect another. For a contact with friction,
the friction force generated will depend on the normal reaction force. As the reac-
tion force increases in one direction, the friction force will also increase. There will
therefore be an entry in the Jacobian to represent this connection.

The flexibility of the Jacobian to represent interactions between objects, as well
as the basic motion of the object itself, allows it to be used to create a much wider
range of joints. In our engine, joints are explicitly specified and handled with their
own special-case code. The Jacobian provides a mechanism to link the movement of
any two objects in the simulation. In fact, it can link various elements of the same
object; for example, the motion of one object along one axis can be fixed (i.e., any
force that tries to break this joint is resisted by an equal and opposite reaction force).
In addition, motors can be implemented by adding elements to the Jacobian that gene-
rate forces regardless of anything else going on. If you look at a physics engine such
as the Open Dynamics Engine (ODE), an open-source physics engine, and several
commercial middleware packages, they allow very flexible joints and motors to be
created by adding entries directly into the Jacobian.

Most force components will not directly interact with one another at all, so the
Jacobian will have zeros at the corresponding locations. In fact, most of the matrix
will be filled with zeros. The Jacobian is therefore a sparse matrix for this reason. The
mathematics of sparse matrices can be dramatically simpler than for regular matrices,
but the algorithms are often more complex.

You may come across books or papers on game physics that talk about Lagrange
multipliers, the Lagrange method, or Featherstone’s algorithm. Each of these is related
to the method shown here. In fact, the Lagrange method works with more com-
plex equations than ours, where the Jacobian is decomposed into several parts,
one of which specifies the connections between objects, and another (the so-called
Lagrange multipliers) of which specifies the amount of interaction.1 Most game
physics engines use the raw Jacobian as shown, but it can be useful to read up on
the Lagrange method. Root mathematical physics textbooks and other resources were
not written with games in mind, so be careful when seeking to use the Lagrange
formulation.

20.1.2 The Linear-Complementarity Problem

Armed with the Jacobian, we can formulate the mathematical problem of resolving
all contacts at the same time. It has the basic form of

J f = p̈

1. Note that the Lagrange formulation isn’t just an expanded Jacobian with all the bits extracted; it can be
used in other ways and with variations on the equation I have introduced in this chapter. But all this is well
beyond the scope of this book, and it is stuff I’ve never needed and never invested the time to implement;
it is also not for the mathematically faint hearted.

486 Chapter 20 Other Types of Physics

where f is a vector of force and torque components for all rigid bodies, and p̈ is the
resulting accelerations. But f is made up of two components,

f = fcontacts + fknown

where fknown is the set of forces and torques that we know we are applying (forces due
to gravity or due to other force generators), and fcontacts is the set of forces that are
generated in the contacts, which is what we’re trying to find out.

Most often you see the equation written as follows:

J fcontacts + p̈known = p̈ [20.1]

(although it is often given with different symbols such as J f + b = a). In other words,
the Jacobian is multiplied by the known force vector to get a known acceleration.
This relies on a fact of matrix multiplication that I haven’t explicitly stated before,
namely, that it is distributive: for any valid matrix multiplication, A × (B + C) =
A × B + A × C .

Calculating p̈known is performed as a step before contact resolution, because this
value will not change as we try to work out the contact forces.

On its own, Equation 20.1 could be solved by working out the inverse of the Jaco-
bian (a time-consuming problem, and one often without a solution). But to make
things worse, we have an additional constraint:

0� fcontacts � r

where r is a vector of limits on how big the forces can be. Normal reaction forces can
be as large as they need to be, but friction forces are limited. A particular entry in the
force vector may represent a friction force and will therefore need to be limited.

The final calculation, finding f so that it fulfills both equations, is called the linear-
complementarity problem (or LCP for short). An alternative approach tries to find the
smallest possible values for the components in f contacts; this becomes an optimiza-
tion problem called quadratic programming (or QP). Some physics systems build and
solve the QP, but it is more common to work with the LCP.

A commonly used algorithm for solving the LCP is called the pivot algorithm. It
works by making guesses for components in f and checking the results. The errors
from one set of guesses can be used to modify components one at a time and con-
verge at a solution. Under some assumptions that are commonly met in rigid-body
simulations, the guesses will always converge toward the solution. The pivot algorithm
(based on an algorithm called the Lemke pivot) was popularized in rigid-body simu-
lation by David Baraff (see Baraff and Witkin [1997] for a step-by-step introduction
to the approach).

Complications arise because of numerical instability and the approximation of
fixed-length time steps. It is possible (and not uncommon) for a rigid-body simula-
tion to end up in a physically impossible situation where there is no solution to the
LCP. In this case, the pivot algorithm can loop endlessly. A robust implementation
needs to take account of these kinds of problems and provide alternatives. A common
alternative is to impose impulses when there is no valid force solution. But getting it

20.1 Simultaneous Contact Resolution 487

right while remaining efficient can be very difficult. In my experience (I have created
two LCP-based engines, one of some significant complexity), it is easy to get some-
thing working, but takes months to end up with a general and robust engine.

How It Is Used

The force-based LCP algorithm works in a different way from the engine we’ve been
building in this book. In our engine, forces are accumulated and applied, and then
collision detection and response occur.

The Jacobian includes the calculations for applying forces, so that everything is
done in one go: contact forces are calculated and applied along with the rest of the
forces. This procedure raises three problems, however: When do we do collision detec-
tion? How do we handle interpenetration? What about non-resting contacts?

The architecture of different physics engines handles these steps in different ways.
The second two are often applied in much the same way as in our engine (but remov-
ing microcollisions—if two objects are determined to be in resting contact, then they
are handled by the force system). The collision and interpenetration steps are solved
independently of the force calculations. In some engines, the collision response is per-
formed first, and its results are embedded in the known force vector and incorporated
into the force calculations above. This relies on the fact that if we know the length of
time for one update frame t , then we can convert an impulse g into a force f using
the formula

f = gt

which allows us to represent the calculated collision impulse as if it were just another
force applied to the rigid body.

The first problem is more sticky: when do we perform collision detection? If we
perform collision detection at the start of the frame before the force calculations, then
the result of applying the forces may cause new collisions that will still be visible when
the objects are next drawn.

If we perform collision detection after the force calculation, then we can remove all
interpenetration before the user sees the frame. But how do we determine the contacts
we need to fill the Jacobian at the start of the frame?

We could do both, but that would be very time consuming.
In effect, the second solution is what is normally used. Collision detection is per-

formed before interpenetration is resolved, and the user sees no interpenetrating bod-
ies. The same collision data is then stored until the next update, and it is used to fill
the Jacobian. This affords a good compromise between efficiency (extra data is stored
between frames) and removing visible interpenetration (which is typically very obvi-
ous to the viewer).

As I mentioned in Chapter 13, many systems improve efficiency further by using
frame coherence: keeping track of the last frame’s collisions to speed up collision
checks this frame. If the collision detector does this, then the data is already being
stored and can be made available to the physics engine.

488 Chapter 20 Other Types of Physics

20.2 Reduced Coordinate Approaches

Another technique sometimes mentioned in game development circles (although
very rarely implemented) is the reduced coordinate approach.

In our physics engine we’ve given each rigid body 12 degrees of freedom—three
each for position, orientation, velocity, and rotation. The orientation uses four values
but has only three degrees of freedom; the fourth value can always be determined from
the other three (because the size of the quaternion must be 1).

When objects are in contact, or have joints between them, they are constrained.
They can no longer have any value for each of the 12 degrees of freedom. For exam-
ple: if a nonliftable block is placed on the flat ground, it can only be pushed in two
directions, and can only be oriented along one axis. It has only six actual degrees of
freedom (two for position, one for orientation, two for velocity, and one for rotation).

The physics system we’ve built in this book allows all objects to move with 12
degrees of freedom; then it uses impulses and nonpenetration code to make sure they
behave properly. Effectively, this code is used to remove or correct certain degrees of
freedom after they have been updated.

An alternative is to work out exactly how many degrees of freedom the object
has, and allow only those to change. For the block on the ground, this is simple. An
example is fully worked through in Eberly [2010], the other physics book in this series.

The approach involves working out the equations of motion, using Newton’s laws
of motion, but only in terms of the degrees of freedom that are left. For anything
beyond a block on a plane, this can become quite involved. When the constraints rep-
resent joints, then degrees of freedom can be a combination of rotation and position.
Finding the equations of motion can be very difficult indeed. Once the equations of
motion are calculated, they can often be solved very rapidly. It is therefore a useful
approach when the degrees of freedom don’t change, and the equations can be hard-
coded beforehand and solved quickly (as is the case for the example in Eberly [2010]).

For some assemblies of bodies connected by joints (such as a ragdoll where there
is a branching tree of bones and joints with no loops), there are well-known methods
for calculating the degrees of freedom and the corresponding equations of motion.
There have been a couple of single-purpose ragdoll simulators that I’ve seen using
this approach, but only running as technical demos rather than in production games.
For general sets of joints, the procedure is tougher, and for all intents and purposes,
impractical, especially since in a game the constraints may appear and disappear at
different times (this is particularly the case with contact constraints).

It is also more difficult to introduce general force generators using this technique.
Having the ragdoll float on water or be buffeted by wind, for example, introduces
major complications into calculating the equations of motion for each degree of free-
dom.

For this reason, I’m not aware of any general-purpose game physics engines that
are based on reduced coordinate approaches. You may like to look at reduced coordi-
nate approaches to get specific effects, but they are unlikely to be a general solution.

20.3 Summary 489

20.3 Summary

The purpose of this whirlwind tour of other approaches is to give you a basic vocabu-
lary and understanding. When looking through the bewildering array of physics and
simulation resources available on the Internet, you can, I hope, understand how they
fit into the whole picture and how our engine relates to them.

There are a couple of open-source physics systems online that you can compare
with the one we’ve built. ODE, in particular, is widely used in hobby projects. It is
a solid implementation, using a Jacobian LCP approach. It therefore allows you to
create complex joints simply. In my experience, it can be difficult to determine how
the code works. The performance of the engine is also not optimal.

An open-source engine that has gained some traction in the hobbyist community,
and has been used in several production games, is Bullet. Bullet is the physics engine
that also drives physical simulation effects in several graphics- and level-editing
systems.

For a more comprehensive mathematical survey of various physics techniques that
are useful in games, I recommend Eberly [2010]. His work assumes more mathe-
matical knowledge than this book, but if you’ve followed this book through, you’re
probably ready to get started. Eberly’s book doesn’t cover how to build a complete
general-purpose engine, but looks at a massive range of techniques and tricks that
can be used on their own or incorporated into our engine. David Baraff has done
more for disseminating information on Jacobian-based approaches to physics. A good
introduction to his work is Baraff and Witkin [1997].

This page intentionally left blank

A p p e n d i x A
Useful Inertia

Tensors

his appendix provides formulas for calculating the inertia tensor for a range of
Tphysical primitives. They can be used to generate an inertia tensor for almost
any game object.

Inertia tensors are featured in Chapter 10. As discussed in that chapter, an inertia
tensor is a matrix whose diagonals represent the moment of inertia about each of the
three principal axes, and whose off-diagonal components represent the tendency of
an object to spin in an axis different from that of the torque.

For any given object, you can always select a set of principal axes, such that the off-
diagonal terms are zero.1 This is the simplest form of the inertia tensor. Most common
shapes, when they have uniform mass density, have these principal axes coinciding
with features of the shape. A rectangular box, for example, has principal axes coincid-
ing with its face directions, a cone has a principal axis coinciding with the direction
of its point, and so on.

In the first part of this appendix, I will revisit the formulas for general-purpose
inertia tensors, made up of any set of discrete or continuous masses. The bulk of the
appendix, however, is comprised of these kinds of common shapes. You will notice,
in these cases, that the off-diagonal elements are zero.

1. This result is proved by way of the spectral theorem, or spectral decomposition, for symmetric matrices.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00021-8 491

492 Appendix A Useful Inertia Tensors

A.1 Discrete Masses

The inertia tensor of any set of masses connected together to form a rigid body follows:

I =
⎡⎢⎣ Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤⎥⎦ [A.1]

where

Ia =
n∑

i=1

mi a
2
pi

and

Iab =
n∑

i=1

mi api bpi

In each case, api is the distance of particle i from the center of mass of the whole
structure, in the direction of axis a. mi is the mass of particle i, and there are n particles
in the set.

A.2 Continuous Masses

We can do the same for a general rigid body by splitting it into infinitesimal masses.
This requires an integral over the entire body, which is considerably more difficult
than the rest of the mathematics in this book. The formula is included here for pur-
poses of completeness:

I =
⎡⎢⎣ Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤⎥⎦ [A.2]

as before, where

Ia =
∫
m

a2
pi

dm

and

Ia =
∫
m

api bpi dm

The components of both are as before. The integrals are definite integrals over the
entire mass of the rigid body.

A.3 Common Shapes 493

A.3 Common Shapes

This section gives some inertia tensors of common objects. All of the inertia tensors
are given about the center of mass. You may find alternative formulations in other
references that differ from these; check whether other sources use the center of mass
as the reference point.

A.3.1 Cuboid

This includes any rectangular six-sided object, where the object has constant density:

I =
⎡⎢⎣

1
12 m(d2

y + d2
z) 0 0

0 1
12 m(d2

x + d2
z) 0

0 0 1
12 m(d2

x + d2
y)

⎤⎥⎦
where m is the mass and dx , dy , and dz are the extent of the cuboid along each axis.

A.3.2 Sphere

This inertia tensor corresponds to a sphere with constant density:

I =
⎡⎢⎣

2
5 mr 2 0 0

0 2
5 mr 2 0

0 0 2
5mr 2

⎤⎥⎦
where m is the mass and r is the radius of the sphere.

The same sphere that is just a shell (i.e., has all its mass around the surface of the
sphere) has an inertia tensor:

I =
⎡⎢⎣

2
3 mr 2 0 0

0 2
3 mr 2 0

0 0 2
3mr 2

⎤⎥⎦
An ellipsoid is the spherical equivalent of a general cuboid: it can have different radii
in each of its three principal axes. An ellipsoid has the inertia tensor

I =
⎡⎢⎣

1
5 m(r 2

y + r 2
z) 0 0

0 1
5 m(r 2

x + r 2
z) 0

0 0 1
5 m(r 2

x + r 2
y)

⎤⎥⎦
where rx , ry , and rz are the radii along respective axes. You can see by inspection that
this reduces to the sphere inertia tensor when the radii are all equal.

494 Appendix A Useful Inertia Tensors

A.3.3 Cylinder

A cylinder of uniform density, whose principal axis is along the y-axis, has an inertia
tensor of

I =
⎡⎢⎣

1
12 mh2 + 1

4 mr 2 0 0

0 1
2mr 2 0

0 0 1
12 mh2 + 1

4 mr 2

⎤⎥⎦
where m is the mass, r is the radius, and h is the height. If the cylinder is not solid,
but is instead a cylindrical tube (such as a length of pipe), its inertia tensor is:

I =
⎡⎢⎣

1
12 mh2 + 1

4 m(r 2
o + r 2

i) 0 0

0 1
2 m(r 2

o + r 2
i) 0

0 0 1
12 mh2 + 1

4 m(r 2
o + r 2

i)

⎤⎥⎦
where ro is the outer radius and ri is the inner radius.

A.3.4 Cone

A cone is a slightly more complex shape than those above, since it only has symmetries
along one axis. A cone has a center of mass one-quarter of the way from the center of its
base to its tip. If the cone is oriented so that its tip points along the positive y direction
(i.e., it is pointing “up” in normal game usage), then it will have the following inertia
tensor:

I =
⎡⎢⎣

3
80 mh2 + 3

20 mr 2 0 0

0 3
10mr 2 0

0 0 3
5 mh2 + 3

20 mr 2

⎤⎥⎦
where m is the mass and r is the radius of the base of the cone, and h is its height. The
center of the base of the cone will be at⎡⎢⎣ 0

− 1
4

0

⎤⎥⎦
You may also see the cone’s inertia tensor about either its apex or the center of its base,
and the coefficients will be different in each case.

A.4 Moments of Inertia in 2D 495

A.3.5 Hemisphere

A hemisphere is similar to a cone, in that it has symmetries along only one axis. Its
center of mass is three-eights of the way from the center of its base to its radius per-
pendicular to that base. Placed with its flat surface on an x-z plane, its inertia tensor
about its center of mass follows:

I =
⎡⎢⎣

83
320mr 2 0 0

0 2
5 mr 2 0

0 0 83
320mr 2

⎤⎥⎦

A.4 Moments of Inertia in 2D

In 2D, shapes have only a single value for their moment of inertia about their center
of mass. It can be calculated for a set of discrete masses as

I =
n∑

i=1

mi d
2
i

where di is the distance of mass i from the center of mass, and mi is its mass.
Continuous masses have a moment of inertia,

I =
∫
m

d2
i dm

where we are integrating over the masses, with di as the distance from the center of
mass, as before.

A.4.1 Common 2D Shapes

The moment of inertia of a disk is

I = 1

2
mr 2

where r is the radius of the disk. This can also be seen by inspection from the y compo-
nent of the inertia tensor of the cylinder above. Since that term had no h component,
it would not change for a flat (i.e., 2D) disk.

Similarly, a ring has the moment of inertia

I = 1

2
m(r 2

o + r 2
i)

where ro and ri are the outer and inner radii, respectively.

496 Appendix A Useful Inertia Tensors

A rectangle has the moment of inertia

I = 1

12
m(d2

x + d2
y)

where dx and dy are the dimensions of the box. Again, this can be seen by inspection
from the cuboid inertia tensor.

Finally, a shape that we have not seen in 3D form, a thin rod (i.e., a line segment
in 2D), spins about its center with a moment of inertia,

I = 1

12
ml2

where l is its length.

A p p e n d i x B
Useful Friction

Coefficients

his appendix provides a table of useful static and dynamic friction values for
Tmaterials used in games. Both static and dynamic values are given for complete-
ness; if you are using only one friction coefficient, then you can average these, or use
the dynamic value for both. Friction is discussed in Chapter 15.

Static Dynamic
Materials Friction Friction

Wooden crate on concrete 0.5 0.4

Wooden crate on ice 0.2 0.1

Glass on ice 0.1 0.03

Glass on glass 0.95 0.4

Metal on metal 0.6 0.4

Lubricated metal on metal 0.1 0.05

Rubber on concrete 1.0 0.8

Wet rubber on concrete 0.7 0.5

Performance race tire on concrete 1.5 1.0

Velcro on velcro 6 4.0

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00022-X 497

This page intentionally left blank

A p p e n d i x C
Mathematics

Summary

his appendix summarizes the mathematics used in the book. It serves as a quick
T look-up for the appropriate formulas and equations needed when implement-
ing physics.

C.1 Vectors

Vector a multiplied by a scalar k :

ka = k

⎡⎢⎣x

y

z

⎤⎥⎦ =
⎡⎢⎣kx

ky

kz

⎤⎥⎦
Vector addition:

a + b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ +
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ax + bx

ay + by

az + bz

⎤⎥⎦
Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00023-1 499

500 Appendix C Mathematics Summary

and subtraction:

a − b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ −
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ax − bx

ay − by

az − bz

⎤⎥⎦
Vectors can be multiplied in several ways. The component product has no

geometric correlate:

a ◦ b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ ◦
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣axbx

ay by

az bz

⎤⎥⎦
and the symbol shown is a personal convention.

The scalar product,

a · b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ ·
⎡⎢⎣bx

by

bz

⎤⎥⎦ = axbx + ay by + az bz

has the trigonometric form,

a · b = axbx + ay by + az bz = |a||b| cos θ

where θ is the angle between the two vectors.
The vector product,

a × b =
⎡⎢⎣ax

ay

az

⎤⎥⎦ ×
⎡⎢⎣bx

by

bz

⎤⎥⎦ =
⎡⎢⎣ay bz − az by

azbx − ax bz

axby − ay bx

⎤⎥⎦
has the trigonometric form,

|a × b| = |a||b| sinθ

and is noncommutative:

a × b = −b × a

C.2 Quaternions

A quaternion, ⎡⎢⎢⎢⎣
cos θ

2

x sin θ
2

y sin θ
2

z sin θ
2

⎤⎥⎥⎥⎦

C.3 Matrices 501

represents an orientation of θ about the axis:⎡⎢⎣x

y

z

⎤⎥⎦
Two quaternions can be multiplied together:⎡⎢⎢⎢⎣

w1

x1

y1

z1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w2

x2

y2

z2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w1w2 − x1x2 − y1y2 − z1z2

w1x2 + x1w2 − y1z2 − z1y2

w1y2 − x1z2 + y1w2 − z1x2

w1z2 + x1y2 − y1x2 + z1w2

⎤⎥⎥⎥⎦
A quaternion representing orientation can be adjusted by a vector representing

the amount of rotation according to

θˆ
′ = θˆ + 1

2
�θˆ θˆ

where the rotation is converted into a quaternion according to[
�θx �θy�θz

]
→

[
0�θx�θy �θz

]

C.3 Matrices

An n × m matrix has n rows and m columns.
Matrices can be post-multiplied (we don’t use pre-multiplication in this book) by

vectors with the same number of elements as the matrix has columns:⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦ =
⎡⎢⎣ax + by + cz

dx + ey + fz

gx + hy + iz

⎤⎥⎦
Matrices can be multiplied together, providing that the number of columns in the

first matrix is the same as the number of rows in the second:

C(i,j) =
∑

k

A(i,k)B(k,j)

where C(i,j) is the entry in matrix C at the i-th row and j-th column, and where k
ranges up to the number of columns in the first matrix.

502 Appendix C Mathematics Summary

A 3 × 3 matrix,

M =
⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦
has its inverse given by

M−1 = 1

det M

⎡⎢⎣ ei − fh ch − bi bf − ce

fg − di ai − cg cd − af

dh − eg bg − ah ae − bd

⎤⎥⎦
where det A is the determinant of the matrix,

det M = aei + dhc + gbf − ahf − gec − dbi

A quaternion,

θˆ =

⎡⎢⎢⎢⎣
w

x

y

z

⎤⎥⎥⎥⎦
represents the same rotation as the following matrix:

� =
⎡⎢⎣1 − (2y2 + 2z2) 2xy + 2zw 2xz − 2yw

2xy − 2zw 1 − (2x2 + 2z2) 2yz + 2xw

2xz + 2yw 2yz − 2xw 1 − (2x2 + 2y2)

⎤⎥⎦
A transformation matrix Mt can be changed into a new coordinate system, using

a transform Mb to the new coordinate system according to

M ′
t = Mb Mt M−1

b

C.4 Integration

To update an object’s position,

p′ = p + ṗt + 1

2
p̈ t 2

C.5 Physics 503

is normally replaced by the less accurate

p′ = p + ṗt

Velocity is updated with

ṗ′ = ṗ + p̈t

Orientation is updated with

θˆ
′ = θˆ + δt

2
ωˆ θˆ

where ωˆ is the quaternion form of the angular velocity, and t is the duration to

update by.
Angular velocity is updated exactly as linear velocity:

θ̇ ′ = θ̇ + θ̈ t

C.5 Physics

Newton’s second law of motion gives us

f = ma = mp̈

where m is the mass and p is the position of an object, or

p̈ = m−1f

in terms of position.
Euler’s equivalent for rotation is

θ̈ = I −1τ

where I is the inertia tensor and τ is the torque.
The force of gravity is

f = mg

where g is around 10 m s−2 on Earth, but is often replaced by 20 m s−2 for added
speed in games.

504 Appendix C Mathematics Summary

Forces through an object’s center of mass can be combined using D’Alembert’s
principle:

f =
∑

i

fi

Forces not through the center of mass also have a torque component:

τ = pf × f

where pf is the position of application of the force, relative to the center of mass.
D’Alembert’s principle also applies to rotations:

τ =
∑

i

τi

which includes the torques generated from off-center forces.
The separating velocity of two colliding objects, vs , is related to their velocity

immediately before the collision vc by

vs = −cvc

where c is the coefficient of restitution.

C.6 Other Formulas

Hook’s law related the force of a spring f to its length:

f = −k(|d| − l0)̂d

where d is the vector from one end of the spring to another.
Simple fluid flow can be modeled with an aerodynamic tensor:

fa = Avw

where fa is the resulting force, A is the aerodynamic tensor, and vw is the velocity of
the air.

Glossary

anisotropic friction Friction that differs according to direction. An ice skate on ice,
for example, slides more easily in one direction than another.

axis-aligned bounding box A box that encloses an object or collection of objects,
where the sides of the box are parallel to the axis.

bounding volume Any shape that is designed to enclose an object or a collection of
objects, to speed up collision detection.

bounding volume hierarchy A hierarchy of bounding volumes, such that each
node in the hierarchy is large enough to enclose all of its descendants.

broad-phase collision detection The process of quickly excluding as many non-
collisions as possible, before a more complex algorithm determines whether any are
actually touching.

center of mass The point in or around a rigid body that is the average point of all
its mass. The rigid body will balance on any axis through the center of mass.

coefficient of friction The proportion of normal reaction force at a contact that can
be withstood by friction. This can take on any value above zero.

coefficient of restitution The proportion of relative speed that is retained after a
collision. This can take any value between 0 and 1.

coherence The principle that the set of contacts in a simulation does not change
much from frame to frame.

collision A contact between two objects where there is a specific closing velocity
before the objects touch. Used in contrast to a resting contact.

contact generation The process of analyzing the geometry of a scene and determin-
ing the contacts between pairs of objects.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00024-3 505

506 Glossary

dynamic friction A force that acts to slow down objects that are sliding along one
another. Also called kinematic friction.

force An action that changes the linear acceleration of an object in proportion to its
mass.

force-based engine A physics simulation that calculates the forces between objects
in resting contact with one another.

half-size Half of the length, width, and depth dimensions of a box.

homogeneous coordinates A coordinate system using four values to represent
points in 3D space. The additional coordinate allows matrices to represent transla-
tions.

identity matrix Any square matrix whose values are all zero, except for 1’s on the
leading diagonal. It has the characteristic that multiplying by any matrix M for which
multiplication is defined leaves the value M unchanged.

impulse An action that changes the linear velocity of an object, in proportion to the
object’s mass. It is equivalent to a force applied for some specific duration.

impulse-based engine A physics simulation that models resting contacts by using
lots of small impulses, that is, one per frame.

inertia tensor A matrix that determines how a torque turns into an angular accel-
eration. It contains terms that show how resistant an object is to being rotated about
each principal axis, and terms that control how a torque applied in one axis could
generate a rotation in another.

isotropic friction Friction that is the same in all directions. In reality, friction is
anisotropic, but it in game simulations it is often modeled as isotropic.

iterative constraint solver A method of determining the forces or impulses to apply
to objects in a simulation, by repeatedly considering each constraint (such as contacts
or joints) individually.

Jacobian constraint solver A method for determining the forces to apply to objects
in a simulation by building a matrix that encapsulates the interrelations between
physics quantities, and solving an expression to give the forces required.

magnitude of a vector If a vector represents a change in position, then the magni-
tude is the length of that change. For this reason, it is often also called the “length” of
a vector.

mass The property of an object that resists acceleration when a force is applied.
Objects of infinite mass would be immovable.

Glossary 507

mass aggregate physics engine A physics engine that simulates 3D objects as a net-
work of point masses connected with rods or other constraints.

microcollision A collision that is intended to represent a resting contact.

moment of impulse An action that changes the angular velocity of an object, in
proportion to the object’s moment of inertia.

moment of inertia The property of an object that resists angular acceleration when
torque is applied. Unlike mass, the moment of inertia is only defined about a particu-
lar axis; different axes may have different moments of inertia, depending on the shape
of the object.

narrow-phase collision detection The process of examining pairs of objects in geo-
metric detail to determine whether they are touching.

normal A vector that is perpendicular to one or more objects or features of objects.
A normal to a surface, for example, is a vector pointing out of that surface.

normal reaction force The force that a surface applies to an object that is being
pushed against it, to prevent the object sinking into the surface. Up until the surface
or object gives way under the strain, the surface will push back with the same force
that is applied to it.

normalizing a vector The process of transforming a vector so that it has unit length.

object bounding box A box that encloses an object or collection of objects, where
the box can be oriented in whatever way best fits its contents.

orientation The direction in which an object is facing. This is often called rotation,
but in this book I use orientation consistently to avoid ambiguity.

penalty constraint solver A method of determining the forces or impulses to apply
to objects in a simulation, by treating each constraint as a spring, and generating
spring forces to push the simulation back to a state where the constraints are not
violated.

product of inertia The tendency of an object to accelerate about a particular axis
when a torque is applied to a different axis. This value depends on the axes chosen. It
forms the nondiagonal components of the inertia tensor.

recency weighted average A technique for smoothing a continually changing
stream of numbers by blending each new sample with a running total.

resting contact Where two objects are touching but they have no closing or sepa-
rating velocity at the point of contact.

508 Glossary

separating axis An axis along which two objects are projected into non-overlapping
ranges. Because the objects are separated along this axis, we can conclude that they
cannot be touching in reality.

spatial data structure A data structure that represents a particular space, where the
pattern of slots for data is analogous to the space. A grid data structure is an example.

spatial partitioning The process of dividing an entire space into a series of smaller
regions so that algorithms can run on small subsets of the entire simulation.

speed The magnitude of an object’s velocity. Speed is a scalar value that is always
positive and ignores direction.

spring constant The multiplying factor that determines how much force a spring
will generate for a certain amount of extension or compression.

static friction The proportion of the normal reaction force that can be applied lat-
erally at a point of contact before the objects begin to slide along each other.

unit vector A vector with a length of 1.

Bibliography

David Baraff and Andrew Witkin [1997]. Physically Based Modeling: Principles and
Practice. SIGGRAPH Proceedings ’97. ACM Press.

Leo Dorst, Daniel Fontijne, and Stephen Mann [2007]. Geometric Algebra for Com-
puter Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann.

David Eberly [2003]. Conversion of Left-Handed Coordinates to Right-Handed
Coordinates. Geometric Tools, LLC. Available at: www.geometrictools.com/
Documentation/Left Handed to Right Handed.pdf.

David H. Eberly [2010]. Game Physics, 2nd ed. Morgan Kaufmann.

Christer Ericson [2005]. Real-Time Collision Detection. Morgan Kaufmann.

Roger A. Horn and Charles R. Johnson [1990]. Matrix Analysis. Cambridge
University Press.

Roger A. Horn and Charles R. Johnson [1994]. Topics in Matrix Analysis. Cambridge
University Press.

Gino van den Bergen [2003]. Collision Detection in Interactive 3D Environments.
Morgan Kaufmann.

509

This page intentionally left blank

Index

A
AABBs. See Axis-aligned bounding boxes

Accelerated velocity removal, 392–393

Acceleration

angular, 173, 211

defined, 40

in differential calculus, 40–41

in laws of motion, 50

rotation mathematics and, 172–173

ActionScript 3, 475–479

Addition, vector, 27–29, 27f

Aerodynamic surface

in flight simulator, 235–240

orientation, 235

Aerodynamic tensor, 234–235

Aileron, 235

Air velocity, 237

Aircraft

flight simulator

aerodynamic surface, 235–240

aerodynamic tensor, 234–235

introduction to, 234

put together, 240–242, 241f

rotation axes, 165, 166f

rudder, 240–241

Algebraic notation, 8

Algorithms

alternative update, for collision
resolution, 381–384

coherence and, 294, 328–331, 329f

contact resolver

introduction to, 130–131

resolution order, 131–135, 131f

time-division engines and, 135–136

early out, 304

Featherstone’s, 485

geometric division, 447

GJK, 294

hierarchy
bottom-up, 267, 267f
insertion, 268–270, 269f
top-down, 268, 268f

iterative, 374–375, 376f
LCP, 487
modified velocity resolution algorithm,

402–407
Newton-Euler, 417–418
pivot, 486
rigid-body integration, 435
Runga-Kutta 4, 418
SAT

colliding convex polyhedra,
326–327

colliding two boxes, 322–326
contact data generated with,

320–322, 321f
interpenetration shown by, 321f
introduction to, 319–320, 319f
one contact produced by, 294

simple collision
colliding box and plane, 310–315,

311f, 313f
colliding box and sphere, 315–319,

316f
colliding sphere and plane,

307–310, 309f
colliding two spheres, 305–307
introduction to, 304–305

velocity resolution, 384, 402–407
Alternative update algorithms, for

collision resolution, 381–384
Anchored spring generators, 94–96, 95f
Angles

in axis-angle representation, 167–168
Euler, 165–167, 166f
mathematics of, 158–159, 158f, 160f
in velocity change by impulse, 348–350

Angular acceleration, 173, 211

Angular motion
interpenetration and, 362, 362f
physics of, 228
velocity from, 403–407

Angular resolution, interpenetration and,
363, 363f

Angular speed, 159–160
Angular velocity, 172–173, 202–203,

403–407
Anisotropic friction, 398–399, 399f
Archimedes, 98
Assemblies, primitive, 293–294, 293f
Axes

aircraft rotation, 165, 166f
contact coordinates, 341–343
face, contact based on, 324
left-handed, 22, 22f
right-handed, 22, 22f
in SAT

colliding convex polyhedra,
326–327

colliding two boxes, 322–326
contact data generated with,

320–322, 321f
interpenetration shown by, 321f
introduction to, 319–320, 319f
one contact produced by, 294
in 2D physics, 473

Axis-aligned bounding boxes (AABBs),
258

Axis-angle representation, 167–168

B
Background level geometry, 292
Ballistics, in particle physics engine

demo, 63–65, 63f, 65f
introduction to, 61–62
projectile properties, 62–63

Ball-joints, 444
Base classes, 81
Basic spring-like force generator, 92–94

511

512 Index

Basis matrix
changed, 178, 197–198, 198f
contact coordinates and, 343–346
contactToWorld, 367, 406

Batching processor, 433
Bigballistic demo, 65, 65f
Binary space partitioning (BSP), 276–280,

280f, 283
Black-box system, 438
Blob demo, 153
Blob games, 153
Boat racing, sailing simulator for

buoyancy, 242–245, 243f
control surfaces, 245
hydrofoils, 245–247
introduction to, 242
rudder, 245–247
sail, 245–247
sailboat demo, 247

Body space, 163
Bottom-up hierarchies, 267, 267f
Bounce characteristics, 336, 339f
Bounding volume hierarchies (BVHs)

boxes, 258–259
building hierarchies in, 266–274,

267f–269f, 272f–273f
child, 266, 271
defined, 257
overview, 259–266, 260f
parent, 272, 272f
spherical, 257–259, 257f, 260f, 272,

272f
subobject hierarchies, 275, 275f

Boxes
in bounding volume hierarchies,

258–259
colliding plane with, 310–315, 311f,

313f
colliding sphere with, 315–319, 316f
colliding two boxes, 322–326
convex polyhedra v., 327
half-sizes of, 313f

Bridge, rope
anchored spring generator for, 94, 95f
in mass aggregate engine, 151–152,

151f–152f
Bridge demo, 151–152, 151f
Broad-phase collision detection

contact generation and, 291
defined, 254
requirements, 256–257
three-stage pipeline and, 255, 256f

BSP. See Binary space partitioning
Built-in gravity, 87
Bullet, 489

Buoyancy
center of, 243, 243f
force, 98–101, 98f
force generator, 98–101, 98f, 242, 244
in sailing simulator, 242–245, 243f
torque and, 243

BVHs. See Bounding volume hierarchies

C
C programming language, 479–480
C# programming language, 481
C++ programming language

base classes in, 81
standard template library, 286
use of, 11, 475, 480

Cables
collision-like, 137–139
in mass aggregate engine, 151–152,

151f–152f
Cache misses, 436
Caching of contact data, 434
Calculus, in mathematics of particles

differential, 38–42, 39f
integral, 43–44
introduction to, 38

Camera, attached to spring, 91, 92f
Camera frustum, 266
Cartesian coordinate system, 18
Catamaran, 245
Center of buoyancy, 243, 243f
Center of mass, 164–165
Child bounding volumes, 266, 271
Classes

base, 81
CollisionResolver, 366
Contact, 427
Matrix, 174–175
Primitive, 305–306
Quaternion, 198–200
RigidBody, 207–211, 422, 424
Vector2D, 465
Vector3, 19–21
World, 146

Classical mechanics, 2
Closing velocity, 114, 351–352
Coarse collision detection, 254
Code

ActionScript 3, 477–479
C, 479–480
collision detection, 260–266, 270–274,

277–279, 281–286
collision resolution, 342–346, 349–355,

359–361, 363–364, 366–383
contact generation, 293–294, 299–300,

304–310, 312–319, 322–326, 330

Cyclone source code, 10–11
double precision, 420–421
explosive physics, 452–453, 455–457
fracture physics, 447–451
for general forces added to physics

engine, 78–79, 81–86
GLUT toolkit and, 11
hard constraints, 119–121, 123,

125–126, 128–129, 133–135,
137–141

laws of motion and, 48–50, 52, 57–58,
207–211, 216–228

mass aggregate engine, 146–150
normalization, 24–25
optimizations

caching contact data, 434
grouping data for areas of level,

435–436
twizzling rigid-body data, 435
vectorizing mathematics, 434–435

orthonomal basis and, 37
particle physics engine, 63–72
ragdoll, 442–444
resting contacts, 392–395, 400–401,

403–410
rigid-body physics engine, 232–240,

244–246
rotation mathematics, 174–177,

180–184, 186–197, 199–203
scalar and vector multiplication, 26,

30–32, 34
single precision, 420
for springs and spring-like things,

92–97, 100–101, 106–107
stability, 416–417, 420–428, 431,

435–436
2D physics, 466–467, 470
vector addition and subtraction in,

27–29
Vector3 class, 19–21

Coefficient of friction
defined, 396
useful, 497t

Coefficient of restitution, 115, 392, 394
Coherence, 294, 328–331, 329f
Collision(s). See also Microcollision

chain, 428, 429f
contacts v., 387
defined, 114
linear components, 337f
normal, 298, 299f
point, 298, 299f
processing

collision detection, 121–122, 122f
introduction to, 118–121

Index 513

resolving interpenetration,
123–126, 124f, 132–135

resting contacts, 126–130, 127f
resolver of, 437
response, 473
restitution, 298
rotating, 338–339, 339f
rotational components, 337f
simple algorithms

colliding box and plane, 310–315,
311f, 313f

colliding box and sphere, 315–319,
316f

colliding sphere and plane,
307–310, 309f

colliding two spheres, 305–307
introduction to, 304–305

Collision detection
bounding volume hierarchies

boxes, 258–259
building hierarchies, 266–274,

267f–269f, 272f–273f
child, 266, 271
defined, 257
overview, 259–266, 260f
parent, 272, 272f
spherical, 257–259, 257f, 260f, 272,

272f
subobject hierarchies, 275, 275f

broad-phase
contact generation and, 291
defined, 254
requirements, 256–257
three-stage pipeline and, 255, 256f

coarse, 254
code, 260–266, 270–274, 277–279,

281–286
in collision processing, 121–122, 122f
complexity of, 331
contact generation v., 294–295, 295f
detector for, 437
fine, 254
geometry for, 255, 280, 280f, 292–294,

293f, 438
introduction to, 253–254
libraries, 253
method tradeoffs, 288
narrow-phase, 254
pessimistic, 419, 419f
pipeline, 254–255, 255f–256f
spatial partitioning

binary, 276–280, 280f, 283
defined, 257, 276
grids, 283–287, 284f, 287f

multiresolution maps, 287–288
oct-trees, 281–283
quad-trees, 281–283, 282f

in 2D physics, 471–473, 471f
Collision resolution

code, 342–346, 349–355, 359–361,
363–364, 366–383

complexity of, 384
impulses and

applying impulse, 353–355
calculating desired velocity change,

351–353
calculating impulse, 353
change to contact coordinates,

340–347, 341f
defined, 7, 117, 336
impulse change by velocity, 351
impulsive torque and, 336–338,

337f
rotating collisions, 338–339, 339f
simple resolution, 117–118
steps, 340
velocity change by impulse,

347–350
interpenetration

nonlinear projection, 357, 358f,
359–364, 362f–363f

resolution methods, 355–359,
356f–358f

introduction to, 335
process

alternative update algorithms for,
381–384

contact data preparation, 367–372
introduction to, 364–365, 365f
penetration resolved in, 372–379,

373f–374f, 376f
pipeline in, 365–367, 365f
velocity resolved in, 379–380

simple
closing velocity, 114
coefficient of restitution, 115
collision direction, 115–116, 117f
contact normal, 115–116, 117f
impulses and, 117–118
introduction to, 113–114

CollisionData structure, 207
Collision-like things

cables, 137–139
introduction to, 136–137
rods, 140–142

CollisionResolver class, 366
Commercial packages, for physics

engines, 1
Commutativity, of vector product, 35

Component product, 30–31
Compression, spring, 90–91
Concrete block fractures, 447f
Concussion wave, 453–455, 454f
Cone inertia tensor, 494
Contact(s). See also Resting contacts

area, 397
class, 427
coherence, 294, 328–331, 329f
collisions v., 387
coordinates

axes, 341–343
basis matrix, 343–346
change to, 340–347, 341f
inverse transformation, 346–347

data
caching, 434
contact generation and, 298–300,

299f, 320–322, 321f
preparation, 367–372
SATs generating, 320–322, 321f

based on edge–edge axis, 325–326
based on face axis, 324
frictionless, 347
grouping, 432–434, 432f
independent, sets of, 432f
normal

defined, 115–116, 117f
generation of, 354
for plane v. half-sphere, 309, 309f
velocity and, 128–129

resolver algorithm
introduction to, 130–131
resolution order, 131–135, 131f
time-division engines and, 135–136

SAT producing, 294
separating, 387
sequential resolution, 410–411, 411f
3D, 295, 296f
types

edge–edge, 295–298, 296f, 301,
301f, 325–326, 471f, 472

edge–face, 296, 296f, 301–302, 302f,
315

face–face, 296, 296f, 302–303, 303f,
315

vertex–face, 296–298, 300–301,
300f, 315, 324

Contact generation
broad-phase collision detection and,

291
code, 293–294, 299–300, 304–310,

312–319, 322–326, 330
coherence and, 294, 328–331, 329f
collision detection v., 294–295, 295f

514 Index

Contact generation (continued)
collision geometry and

introduction to, 292–293
primitive assemblies, 293–294, 293f

contact data and, 298–300, 299f,
320–322, 321f

contact types and
edge–edge, 295–298, 296f, 301,

301f, 325–326, 471f, 472
edge–face, 296, 296f, 301–302, 302f,

315
face–face, 296, 296f, 302–303, 303f,

315
vertex–face, 296–298, 300–301,

300f, 315, 324
defined, 254
introduction to, 291–292
normal, 354
SAT for

colliding convex polyhedra,
326–327

colliding two boxes, 322–326
contact data generated with,

320–322, 321f
interpenetration shown by, 321f
introduction to, 319–320, 319f
one contact produced by, 294

simple collision algorithms for
colliding box and plane, 310–315,

311f, 313f
colliding box and sphere, 315–319,

316f
colliding sphere and plane,

307–310, 309f
colliding two spheres, 305–307
introduction to, 304–305

testing before, 303–304
in 2D physics, 472–473

Contact generator
cables, 137–139
rods, 140–142

Contact resolution
approach, 6
sequential, 410–411, 411f
simultaneous

Jacobian and, 484–485
linear-complementarity problem

and, 485–487
physics of, 483–487

ContactToWorld basis matrix, 367, 406
Continuous masses, 492
Control surfaces

in flightsim demo, 240–241
implementation of, 235

input, 240

in sailing simulator, 245
Convection chimney, 456–458, 457f

Convex polyhedra

boxes v., 327
colliding, 326–327

defined, 320

Coordinate geometry, 8–9, 9f

Coordinate system
Cartesian, 18

review, 9

Coordinates
contact

axes, 341–343

basis matrix, 343–346
change to, 340–347, 341f

inverse transformation, 346–347

homogenous, 179
local, 341f, 344

object, 223

reduced, 6, 488
3D, 18, 19f

world, 216–219, 217f, 221–223, 317,
341f, 344, 346–347, 352

Cuboid inertia tensor, 493

Cyclone

approach to, 7
introduction to, 10–11

limitations

joint assemblies, 459
reaction force friction, 458

stacks, 458

stiff springs, 459

source code, 10–11
use of

explosive physics in, 451–458, 454f,
457f

fracture physics in, 445–451,
445f–447f

overview, 439–440

ragdolls in, 440–445, 441f

Cylinder inertia tensor, 494

D
D’Alembert’s principle

adding general forces and, 77–80

for rotation
force generators, 223–226

introduction to, 220–223

rigid bodies, 220–226
torque generators, 226

Damped harmonic motion, 105–106

Damping
general forces and, 87
laws of motion and, 49–50, 56–57
RWA and, 427

Data
contact

caching, 434
contact generation and, 298–300,

299f, 320–322, 321f
preparation, 367–372
SATs generating, 320–322, 321f

derived, 209
fireworks, 66–67
flow, through physics engine, 365, 365f,

438, 439f
friction, 298
game-specific, 3–4
grouping for areas of level, 435–436
penetration depth, 298, 299f
rendering geometry and materials, 438
rigid-body

role of, 438
twizzling, 435

structures
spatial, 276
vector, 18

Deformation, resistance to, 336
Degree of freedom, 159
Demos

ballistics, 63–65, 63f, 65f
bigballistic, 65, 65f
blob, 153
bridge, 151–152, 151f
explosion, 457, 457f
fireworks, 66, 66f, 70, 72, 479
flightsim, 240–242, 241f
fracture, 446–447, 446f
platform, 152, 152f
ragdoll, 440, 441f, 444
sailboat, 247

Derived data, 209
Differential calculus

acceleration in, 40–41
direction in, 42
in mathematics of particles, 38–42, 39f
speed in, 42
vector, 41–42
velocity in, 38–40, 39f, 42

Differential equations, 104–105
Direction

collision, 115–116, 117f
in differential calculus, 42
vectors and, 23–25, 23f

DirectX, 22, 22f
Discrete masses, 492

Index 515

Disk, moment of inertia of, 495
Dot product, 31
Double precision code, 420–421
Doubles, 420
Drag

coefficients, 85
first law of motion and, 49
force generator, 85–87
friction and, 395

Dynamic friction, 397–398, 397f

E
Early out algorithms, 304
ECMAScript, 476, 478
Edge–edge contact, 295–298, 296f, 301,

301f, 325–326, 471f, 472
Edge–face contact, 296, 296f, 301–302,

302f, 315
Elastic bungee generator, 96–97
Elasticity, limit of, 91
Ellipsoid, 493
Euler angles, 165–167, 166f
Explosion demo, 457, 457f
Explosion force generator, 455
Explosive physics

code, 452–453, 455–457
concussion wave, 453–455, 454f
convection chimney, 456–458, 457f
in Cyclone, 451–458, 454f, 457f
implosion, 451–453

Exponent, 420

F
Face axis, contact based on, 324
Face–face contact, 296, 296f, 302–303,

303f, 315
Fake implicit force generation, 104
Faked spring generator

damped harmonic motion and,
105–106

forces interacting with, 109
implementation of, 106–108
introduction to, 104
velocity mismatches and, 108–109
zero rest lengths, 108, 108f

False negatives, 256
False positives, 256
Fast-moving object, 414
Featherstone’s algorithm, 485
Fine collision detection, 254
Fireworks, in particle physics engine

data, 66–67
demo, 66, 66f, 70, 72, 479

implementation, 69–73
rules, 67–69

First differential, 40
First law of motion, 49–50
First-order Newton-Euler, 417
Flash development, 475–476
Flex Builder, 476
Flight simulator, in rigid-body physics

engine
aerodynamic surface, 235–240
aerodynamic tensor, 234–235
introduction to, 234
put together, 240–242, 241f

Flightsim demo, 240–242, 241f
Float

double v., 420
real v., 21

Floating-point numbers, 420
Fluid flow, 504
Force(s)

accumulation, 78–79
buoyancy, 98–101, 98f
concussion wave and, 454, 454f
dynamic, 80
equations, 50–51
faked spring generator interacting

with, 109
general, added to physics engines

built-in gravity and, 87
code, 78–79, 81–86
D’Alembert’s principle and, 77–80
damping and, 87
force generators and, 80–87

gravity
built-in, 87
force generator, 84–85, 223–224
in laws of motion, 53–54

lift, 234, 246
in physics engines approaches, 6–7
reaction, 388–389, 388f, 396, 458
resting

calculations, 389–390, 390f
introduction to, 388–389, 388f

torque and, 211–212, 212f
Force generators

contact
cables, 137–139
rods, 140–142

D’Alembert’s principle for rotation
and, 223–226

drag, 85–87
explosion, 455
faked spring

damped harmonic motion and,
105–106

forces interacting with, 109

implementation of, 106–108

introduction to, 104

velocity mismatches and, 108–109

zero rest lengths, 108, 108f

general forces and, 80–87

gravity, 84–85, 223–224

implementation, 81–84

implosion stage of, 452

interfaces, polymorphism and, 81

in rigid-body physics engine, 232, 235

role of, 437

for spring-like things

anchored, 94–96, 95f

basic, 92–94

buoyancy, 98–101, 98f, 242, 244

elastic bungee, 96–97

introduction to, 92

Force-based engines, 445

Fracture(s)

concrete block, 447f

demo, 446–447, 446f

physics

code, 447–451

complex, 446

in Cyclone, 445–451, 445f–447f

precreated, 445, 445f

Friction

coefficient, 396, 497t

data, 298

drag and, 395

equation, 402

implementation, resting contacts and

friction as impulses, 400–402

introduction to, 399–400

modified velocity resolution
algorithm, 402–407

put together, 407–410

in mass aggregate engines, 152–153

nonlinear projection and, 357, 358f

reaction force, 458

sequential contact resolution and,
410–411, 411f

types

anisotropic, 398–399, 399f

dynamic, 397–398, 397f

isotropic, 398–399

rolling, 398

static, 395–397, 397f

in velocity-based resolution, 356, 357f

Frictionless contacts, 347

Frustum, 266

516 Index

G
Game(s)

blob, 153
camera, attached to spring, 91, 92f
Half-Life, 3–4
Loco Roco, 153
pool simulation, 136

Game-specific data, 3–4
General forces, added to physics engines

built-in gravity and, 87
code, 78–79, 81–86
D’Alembert’s principle and, 77–80
damping and, 87
force generators and, 80–87

General-purpose physics engine, 4
Geometric division algorithm, 447
Geometric primitives, 292
Geometry

background level, 292
for collision detection, 255, 280, 280f,

292–294, 293f, 438
coordinate, 8–9, 9f
primitive assemblies, 293–294, 293f
rendering, 438
of scalar product, 32–33, 33f
of vector product, 36–37, 36f

Gilbert Johnson Keerthi distance
algorithm (GJK), 294

Gimbal lock, 167
GJK. See Gilbert Johnson Keerthi distance

algorithm
GLUT toolkit, 11
Gravity

built-in, 87
force generator, 84–85, 223–224
in laws of motion, 53–54

Grids
objects in, 285–287, 287f
quad-tree forming, 283, 284f
spatial partitioning with, 283–287,

284f, 287f
Gyroscopes, 215

H
Half-Life game, 3–4
Half-sizes, 258, 313f
Half-space

contact normal for, 309, 309f
convex polyhedra collisions with, 326

Hard constraints
applications not relying on, 231
code, 119–121, 123, 125–126, 128–129,

133–135, 137–141
collision processing

collision detection, 121–122, 122f

introduction to, 118–121
resolving interpenetration,

123–126, 124f, 132–135
resting contacts, 126–130, 127f

collision-like things
cables, 137–139
introduction to, 136–137
rods, 140–142

contact resolver algorithm
introduction to, 130–131
resolution order, 131–135, 131f
time-division engines and, 135–136

simple collision resolution
closing velocity, 114
coefficient of restitution, 115
collision direction, 115–116, 117f
contact normal, 115–116, 117f
impulses, 117–118
introduction to, 113–114

springs v., 113
Harmonic motion

damped, 105–106
simple, 104–105

Hemisphere inertia tensor, 495
Hierarchies

algorithms for
bottom-up, 267, 267f
insertion, 268–270, 269f
top-down, 268, 268f

bounding volume
boxes, 258–259
building hierarchies, 266–274,

267f–269f, 272f–273f
child, 266, 271
defined, 257
overview, 259–266, 260f
parent, 272, 272f
spherical, 257–259, 257f, 260f, 272,

272f
subobject hierarchies, 275, 275f

object removed from, 272, 273f
subobject, 275, 275f

Homogenous coordinates, 179
Hook’s law

springs and
defined, 89–90
elasticity’s limit, 91
spring compression, 90–91
spring-like things, 91, 92f

summary, 504
Hydrofoils, 245–247

I
Identity matrix, 185
Imaginary number, 170

Impact, 387
Implicit spring, 104
Implosion, 451–453
Impulses

collision resolution and
applying impulse, 353–355
calculating desired velocity change,

351–353
calculating impulse, 353
change to contact coordinates,

340–347, 341f
defined, 7, 117, 336
impulse change by velocity, 351
impulsive torque and, 336–338,

337f
rotating collisions, 338–339, 339f
simple resolution, 117–118
steps, 340
velocity change by impulse,

347–350
friction as, 400–402
in physics engines approaches, 6–7
scalar values of, 401

Impulsive torque
collision resolution and, 336–338, 337f
in nonlinear projection, 360–362

Independent contacts, sets of, 432f
Inertia

defined, 359
linear component of, 359
moment of

inertia tensor and, 213–219,
495–496

second law of motion and, 213–216
in 2D, 495–496

products of, 214–215
Inertia tensors

common shapes, 493–495
cone, 494
continuous masses, 492
cuboid, 493
cylinder, 494
discrete masses, 492
hemisphere, 495
inverse, 213–216
moment of inertia and, 213–219,

495–496
overview, 491
second law of motion and, 213–219
sphere, 493
transformed, 219
in world coordinates, 216–219, 217f

Infinite masses, 51
Inner product. See Scalar product
Insertion hierarchies, 268–270, 269f

Index 517

Integral calculus
in mathematics of particles, 43–44
vector, 44

Integration
defined, 43
mathematics summary, 502–503
rigid-body

algorithm, 435
laws of motion and, 226–228

stability
changing mathematical accuracy

and, 420–421
Newton-Euler 2 for, 417–418
overview, 417
pessimistic collision detection and,

419, 419f
Runga-Kutta 4 for, 418

Integrator
defined, 43
laws of motion and

implementation of, 57–58
introduction to, 55
update equations and, 55–57

Intel Optimization Cookbook, 435
Interfaces, polymorphism and, 81
Interpenetration

angular motion and, 362, 362f
angular resolution and, 363, 363f
in collision resolution

nonlinear projection, 357, 358f,
359–364, 362f–363f

resolution methods, 355–359,
356f–358f

defined, 122, 122f
resolved, 123–126, 124f, 132–135
SAT showing, 321f
on slopes, 415–417, 416f–417f

Inverse inertia tensor, 213–216
Inverse mass, 52, 359
Inverse matrix, 184–191
Inverse transformation, 346–347
Isotropic friction, 398–399
Iterative algorithm, 374–375, 376f
Iterative approach, 6
Iterative resolution, 430f, 459

J
Jacobian, 484–485
Jacobian-based approach, 6
Java, 476, 480–481
Joints

assemblies of, 459
ball, 444

ragdoll
basic, 440–441, 441f
complex, 444–445

K
Kinetic energy, 425
Kinetic friction. See Dynamic friction

L
Lagrange method, 485
Languages. See Programming languages
Law of universal gravitation, 53
Laws of motion

acceleration in, 50
code and, 48–50, 52, 57–58, 207–211,

216–228
damping and, 49–50, 56–57
first, 49–50
force equations and, 50–51
gravity in, 53–54
integrator and

implementation of, 57–58
introduction to, 55
update equations and, 55–57

mass added to particles and, 51–52
momentum in, 52–53
in physics engine, 47–59
point masses in, 47
for rigid bodies

class, 207–211
code, 207–211, 216–228
D’Alembert’s principle, 220–226
foundation, 207
integration, 226–228
second law for rotation, 211–219,

212f, 217f
second

defined, 49–50
inertia tensors and, 213–219
moment of inertia and, 213–216
for rotation, 211–219, 212f, 217f
torque and, 211–212, 212f

third, 388
velocity in, 49, 52–53

LCP. See Linear-complementarity problem
Left-handed axes, 22, 22f
Libraries

C++ standard template, 286
collision detection, 253

Lift, 234, 246
Linear motion, velocity from, 407
Linear projection, 355–356, 356f
Linear-complementarity problem (LCP),

485–487
Local coordinates, 341f, 344

Local space, 163
Loco Roco, 153
Lua, 482

M
Mantissa, 420
Mass

added to particles, 51–52
center of, 164–165
continuous, 492
discrete, 492
infinite, 51
inverse, 52, 359
point, 47
weight v., 98

Mass aggregate engines
code, 146–150
components, 145–146
formation of, 142
overview, 145–150
rigid-body engines v., 5
use of

in blob games, 153
friction in, 152–153
rope bridges and cables in,

151–152, 151f–152f
Mass aggregate physics, 467
Mathematics. See also Particles,

mathematics of; Rotations,
mathematics of; Vector
mathematics

addition, 27–29, 27f
algebraic notation, 8
changing accuracy of, 420–421
differential equations, 104–105
geometry

background level, 292
for collision detection, 255, 280,

280f, 292–294, 293f, 438
coordinate, 8–9, 9f
rendering, 438
of scalar product, 32–33, 33f
of vector product, 36–37, 36f

inaccurate, 414
multiplication

matrix, 175–184
scalar and vector, 25–26, 26f, 29–36,

33f, 36f
of physics engines, 8–10
SSE, 434
subtraction, 27–29, 27f
summary

fluid flow, 504
Hook’s law, 504
integration, 502–503

518 Index

Mathematics (continued)
matrices, 501–502
physics, 503–504
quaternions, 170, 500–501
vectors, 499–500

trigonometry, 8–9, 9f, 32, 35
vectorized, 434–435

Matrices
basis

changed, 178, 197–198, 198f
contact coordinates and, 343–346
contactToWorld, 367, 406

classes of, 174–175
identity, 185
inertia tensor, 213–216
inverse, 184–191
manipulation, 10
mathematics summary, 501–502
multiplication, 175–184
quaternions converted to, 191–193
review, 9
rotation, 162, 168–169, 467–469
skew-symmetric, 404
square, 187
three-by-four, 178–181
transform, 177–178, 414–415
transpose, 184–191

Memory management, 435
Microcollision

engine, 127
limitation, 410
resting contacts and

accelerated velocity removal,
392–393

defined, 391
introduction to, 390–392, 391f
lowered restitution, 393–394
new velocity calculation, 394–395

Mismatches, velocity, 108–109
Modified velocity resolution algorithm,

402–407
Moment of impulse. See Impulsive torque
Moment of inertia

inertia tensor and, 213–219, 495–496
second law of motion and, 213–216
in 2D, 495–496

Moments. See Torque
Momentum, 52–53
Multiplication

matrix, 175–184
scalar and vector, 25–26, 26f, 29–36,

33f, 36f
Multiresolution maps, 287–288
Muzzle velocity, 62

N
Narrow-phase collision detection, 254
.NET common language runtime, 481
Newton, Isaac, 47, 53
Newton-1. See First law of motion
Newton-2. See Second law of motion
Newton-3. See Third law of motion
Newton-Euler 1, 417–418
Newton-Euler 2, 417–418
Nonlinear projection

components, 359–360
friction and, 357, 358f
impulsive torque in, 360–362
in interpenetration resolution, 357,

358f, 359–364, 362f–363f
movement applied in, 360–362
overrotation avoided in, 362–364,

362f–363f
penetration depth in, 359

Non-zero rest lengths, 108
Normalizing

code, 24–25
quaternions, 200, 415
vectors, 24

O
OBBs. See Object-bounding boxes
Object(s)

coordinates, 223
drifting down angled planes, 416f
fast-moving, 414
in grid, 285–287, 287f
origin, 160–161, 161f
primitives assembly approximating,

293
put to sleep, 425–427
in quad-tree, 282f
removed from hierarchy, 272, 273f
rotating in 2D

angular speed, 159–160
center of mass, 164–165
mathematics of angles, 158–159,

158f, 160f
origin, 160–165, 161f–162f
rigid bodies, 163–164
rotations, 161–163, 162f
translation composition, 163

space, 163
types, 5–6
waking up, 427–429, 429f

Object-bounding boxes (OBBs), 258
Oct-trees, 281–283
OpenGL, 22, 22f
Optics, 2

Optimizations
code

caching contact data, 434
grouping data for areas of level,

435–436
twizzling rigid-body data, 435
vectorizing mathematics, 434–435

contact grouping, 432–434, 432f
margins of error for penetration and

velocity, 430–432, 430f
overview, 421
premature, 421
sleep

adding sleep state, 422–425
components, 422
epsilon, 425
putting objects to, 425–427
waking objects up, 427–429, 429f

Orientation
for aerodynamic surface, 235
defined, 158
3D

axis-angle, 167–168
Euler angles, 165–167, 166f
quaternions, 169–171
rotation matrices, 168–169

vector, 159, 160f, 414
Origin, object, 160–161, 161f
Orthonomal basis, 37–38
Outdoor scenes, 283
Overrotation, 362–364, 362f–363f

P
Padding, 21
Parallel implementation, 315
Parent bounding volume, 272, 272f
Particle physics, 467
Particle physics engine

ballistics in
demo, 63–65, 63f, 65f
introduction to, 61–62
projectile properties, 62–63

code, 63–72
defined, 73
fireworks in

data, 66–67
demo, 66, 66f, 70, 72, 479
implementation, 69–73
rules, 67–69

Particles
implementation of, 48
mass added to, 51–52

Particles, mathematics of
calculus in

differential, 38–42, 39f

Index 519

integral, 43–44

introduction to, 38

vectors

addition and subtraction, 27–29,
27f

directions, 23–25, 23f

handedness of space, 21–22, 22f

importance of, 44

introduction to, 17–21, 19f

orthonomal basis, 37–38

scalar and vector multiplication,
25–26, 26f, 29–36, 33f, 36f

PC development, 434–435

Penetration

in collision resolution process,
372–379, 373f–374f, 376f

depth

data, 298, 299f

in nonlinear projection, 359

updated, 375–379

iterative algorithm for, 374–375, 376f

margins of error for, 430–432, 430f

resolution system, 365

Pessimistic collision detection, 419, 419f

Physics

of angular motion, 228

explosive

code, 452–453, 455–457

concussion wave, 453–455, 454f

convection chimney, 456–458, 457f

in Cyclone, 451–458, 454f, 457f

implosion, 451–453

fracture

code, 447–451

complex, 446

in Cyclone, 445–451, 445f–447f

mathematics summary, 503–504

reduced coordinate approaches, 6, 488

of simultaneous contact resolution,
483–487

in 2D

code, 466–467, 470

collision detection, 471–473, 471f

collision response, 473

contact generation, 472–473

mathematics of rotations, 467–469

overview, 463

particle and mass aggregate, 467

rigid-body dynamics, 469–471

SAT and, 473

vector mathematics, 465–467

types of, 483–489

Physics engines. See also Cyclone; Mass
aggregate engines; Particle
physics engine; Rigid-body
physics engine

advantages of, 3–4
approaches to

contact resolution, 6
impulses and forces, 6–7
object types, 5–6

Bullet, 489
commercial packages for, 1
data flow through, 365, 365f, 438, 439f
defined, 2–5
force-based, 445
general forces added to

built-in gravity and, 87
code for, 78–79, 81–86
D’Alembert’s principle and, 77–80
damping and, 87
force generators and, 80–87

general-purpose, 4
lack of information on, 1
laws of motion in, 47–59
mathematics of, 8–10
microcollision, 127
overview, 437–439, 439f
weaknesses, 4–5

Pipeline
collision detection, 254–255, 255f–256f
collision resolution, 365–367, 365f

Pitch, 165
Pivot algorithm, 486
Plane

angled, objects drifting down, 416f
colliding box with, 310–315, 311f, 313f
colliding sphere with, 307–310, 309f
contact normal, 309, 309f

Platform demo, 152, 152f
Point, velocity of, 173
Point masses, 47. See also Particles
Polymorphism, interfaces and, 81
Pool simulation games, 136
Position update, 55–56
Position vector, 414
Precreated fractures, 445, 445f
Prevailing wind, 237
Primitive assemblies, 293–294, 293f
Primitive class, 305–306
Products of inertia, 214–215
Programming languages

ActionScript 3, 475–479
C, 479–480
C#, 481
C++

base classes in, 81
standard template library, 286
use of, 11, 475, 480

ECMAScript, 476, 478
Java, 476, 480–481
Lua, 482
Python, 482
Scheme, 482

Projectile
defined, 61
properties, 62–63

Python, 482

Q
QA. See Quality assurance
Quad-trees

grid formed with, 283, 284f
spatial partitioning with, 281–283, 282f

Quality assurance (QA), 415
Quaternions

angular velocity and, 172–173, 202–203
class, 198–200
combined, 200–201
converted to matrices, 191–193
defined, 10
drift of, 414–415
mathematics of, 170, 500–501
normalizing, 200, 415
orientation in 3D, 169–171
rotating, 201–202
updating, 202–203

R
Ragdoll(s)

basic joints of, 440–441, 441f
code for, 442–444
complex joints of, 444–445
in Cyclone, 440–445, 441f
demo, 440, 441f, 444

Reaction force, 388–389, 388f, 396, 458
Real, float v., 21
Recency weighted average (RWA), 426–427
Rectangle, moment of inertia of, 496
Reduced coordinate approaches, 6, 488
Relative position, 161, 161f
Relative velocity, 371–372
Relaxation, 357–359
Rendering geometry and materials, 438
Rest lengths, spring, 108, 108f
Resting contacts

code, 392–395, 400–401, 403–410
in collision processing, 126–130, 127f
defined, 387
friction implementation

friction as impulses, 400–402

520 Index

Resting contacts (continued)
introduction to, 399–400
modified velocity resolution

algorithm, 402–407
put together, 407–410

friction types
anisotropic, 398–399, 399f
dynamic, 397–398, 397f
isotropic, 398–399
rolling, 398
static, 395–397, 397f

microcollisions and
accelerated velocity removal,

392–393
defined, 391
introduction to, 390–392, 391f
lowered restitution, 393–394
new velocity calculation, 394–395

resting forces and
calculations, 389–390, 390f
introduction to, 388–389, 388f

stability and, 411
Resting forces

calculations, 389–390, 390f
introduction to, 388–389, 388f

Restitution
coefficient of, 115, 392, 394
collision, 298
lowered, 393–394

Reusable technology, 3
Right-handed axes, 22, 22f
Rigid bodies

data
role of, 438
twizzling, 435

dynamics of, 469–471
integration algorithm, 435
laws of motion for

class, 207–211
code, 207–211, 216–228
D’Alembert’s principle, 220–226
foundation, 207
integration, 226–228
second law for rotation, 211–219,

212f, 217f
in rigid-body physics engine, 232
rotating in 2D, 163–164
simulator, role of, 437
update routine, 392
velocity of, 237

RigidBody class, 207–211, 422, 424
Rigid-body physics engine

capability, 248
code, 232–240, 244–246
contact resolution approach and, 6

flight simulator in
aerodynamic surface, 235–240
aerodynamic tensor, 234–235
introduction to, 234
put together, 240–242, 241f

force generators in, 232, 235
mass aggregate engines v., 5
overview, 231–234
rigid bodies in, 232
sailing simulator in

buoyancy, 242–245, 243f
control surfaces, 245
hydrofoils, 245–247
introduction to, 242
rudder, 245–247
sail, 245–247
sailboat demo, 247

Ring, moment of inertia of, 495
RK4. See Runga-Kutta 4
Rock climbing, 396–397
Rod, moment of inertia of, 496
Rods, 140–142
Roll, 165
Rolling friction, 398
Rope bridge

anchored spring generator for, 94, 95f
in mass aggregate engine, 151–152,

151f–152f
Rotating collisions, 338–339, 339f
Rotation(s)

aircraft rotation axes, 165, 166f
composition, 163
D’Alembert’s principle for

force generators, 223–226
introduction to, 220–223
rigid bodies, 220–226
torque generators, 226

defined, 161–163, 162f
matrices, 162, 168–169, 467–469
over-, 362–364, 362f–363f
represented, 467–469
second law of motion for, 211–219,

212f, 217f
Rotations, mathematics of

acceleration and, 172–173
angular velocity and, 172–173
code, 174–177, 180–184, 186–197,

199–203
implementation of

changed basis of matrices, 178,
197–198, 198f

combining quaternions, 200–201
introduction to, 173–174
Matrix classes, 174–175

matrix inverse and transpose,
184–191

matrix multiplication, 175–184
normalizing quaternions, 200, 415
Quaternion class, 198–200
quaternion converted to matrix,

191–193
rotating quaternions, 201–202
transforming vectors, 193–197
updating, 202–203

introduction to, 157
matrices, 162, 168–169, 467–469
orientation in 3D

axis-angle, 167–168
Euler angles, 165–167, 166f
quaternions, 169–171
rotation matrices, 168–169

representing rotation, 467–469
rotating objects in 2D

angular speed, 159–160
center of mass, 164–165
mathematics of angles, 158–159,

158f, 160f
origin, 160–165, 161f–162f
rigid bodies, 163–164
rotations, 161–163, 162f
translation composition, 163

in 2D physics, 467–469
Rudder

aircraft, 240–241
boat, 245–247

Runga-Kutta 4 (RK4), 418
RWA. See Recency weighted average

S
Sail, 245–247
Sailboat demo, 247
Sailing simulator

buoyancy, 242–245, 243f
control surfaces, 245
hydrofoils, 245–247
introduction to, 242
rudder, 245–247
sail, 245–247
sailboat demo, 247

SAT. See Separating axis test
Scalar and vector multiplication, 25–26,

26f, 29–36, 33f, 36f
Scalar product, 29, 31–33, 33f
Scalar values, 17, 401
Scaled axis representation, 168
Scheme, 482
Second differential, 40
Second law of motion

defined, 49–50

Index 521

inertia tensors and, 213–219
moment of inertia and, 213–216
for rotation, 211–219, 212f, 217f
torque and, 211–212, 212f

Separating axis test (SAT)
colliding convex polyhedra, 326–327
colliding two boxes, 322–326
contact data generated with, 320–322,

321f
interpenetration shown by, 321f
introduction to, 319–320, 319f
one contact produced by, 294
in 2D physics, 473

Separating contact, 387
Sequential contact resolution, 410–411,

411f
Shock wave, 453
SIMD hardware, 315
Simple collision algorithms

colliding box and plane, 310–315, 311f,
313f

colliding box and sphere, 315–319, 316f
colliding sphere and plane, 307–310,

309f
colliding two spheres, 305–307
introduction to, 304–305

Simple collision resolution
closing velocity, 114
coefficient of restitution, 115
collision direction, 115–116, 117f
contact normal, 115–116, 117f
impulses, 117–118
introduction to, 113–114

Simple harmonic motion, 104–105
Simultaneous contact resolution

Jacobian and, 484–485
linear-complementarity problem and,

485–487
physics of, 483–487

Single precision code, 420
64-bit system, 420–421
Skew-symmetric matrix, 404
Sleep

adding sleep state, 422–425
components, 422
epsilon, 425
putting objects to, 425–427
waking objects up, 427–429, 429f

Slopes, interpenetration on, 415–417,
416f–417f

Space, handedness of, 21–22, 22f
Spatial data structures, 276
Spatial partitioning

binary, 276–280, 280f, 283
defined, 257, 276

grids, 283–287, 284f, 287f
multiresolution maps, 287–288
oct-trees, 281–283
quad-trees, 281–283, 282f

Speed
angular, 159–160
in differential calculus, 42

Spheres
collision algorithms

colliding sphere and box, 315–319,
316f

colliding sphere and plane,
307–310, 309f

colliding two spheres, 305–307
convex polyhedra collisions with, 326
inertia tensor for, 493

Spherical bounding volume hierarchies
overview, 257–259, 257f, 260f
parent, 272, 272f

Spinnaker, 245
Spinor representation, 468
Spring(s)

code, 92–97, 100–101, 106–107
constant, 90
game’s camera attached to, 91, 92f
hard constraints v., 113
Hook’s law and

defined, 89–90
elasticity’s limit, 91
spring compression, 90–91
spring-like things, 91, 92f

implicit, 104
rest lengths, 108, 108f
stiff

in Cyclone, 459
faking, 104–109, 108f
introduction to, 101–102
problem, 101–103, 102f–103f, 110

Spring-like things
code, 92–97, 100–101, 106–107
force generators

anchored, 94–96, 95f
basic, 92–94
buoyancy, 98–101, 98f, 242, 244
elastic bungee, 96–97
introduction to, 92

Hook’s law and, 91, 92f
Square matrices, 187
SSE mathematics, 434
Stability

code, 416–417, 420–428, 431, 435–436
integration

changing mathematical accuracy
and, 420–421

Newton-Euler 2 for, 417–418

overview, 417
pessimistic collision detection and,

419, 419f
Runga-Kutta 4 for, 418

interpenetration on slopes and,
415–417, 416f–417f

problems, 413–414
quaternion drift and, 414–415
resting contacts and, 411

Stacks, 458
Static friction, 395–397, 397f
Stiff springs

in Cyclone, 459
faking, 104–109, 108f
introduction to, 101–102
problem, 101–103, 102f–103f, 110

Subobject hierarchies, 275, 275f
Subtraction, vector, 27–29, 27f
Swapping bodies, 370–371

T
Tailplane, 240
Tensors

aerodynamic, 234–235
inertia

common shapes, 493–495
cone, 494
continuous masses, 492
cuboid, 493
cylinder, 494
discrete masses, 492
hemisphere, 495
inverse, 213–216
moment of inertia and, 213–219,

495–496
overview, 491
second law of motion and, 213–219
sphere, 493
transformed, 219
in world coordinates, 216–219, 217f

Testing, before contact generation,
303–304

Thermobaric weaponry, 451–452
Third law of motion, 388
32-bit system, 420–421
Three-by-four matrices, 178–181
3D

contacts, 295, 296f
coordinates, 18, 19f
orientation in

axis-angle, 167–168
Euler angles, 165–167, 166f
quaternions, 169–171
rotation matrices, 168–169

2D v., 463–464, 473–474

522 Index

Three-stage collision detection pipeline,
255, 256f

Time-division engines, 135–136
Top-down hierarchies, 268, 268f
Torque

buoyancy and, 243
force and, 211–212, 212f
generators, 226
impulsive

collision resolution and, 336–338,
337f

in nonlinear projection, 360–362
second law of motion and, 211–212,

212f
Transform matrices

introduction to, 177–178
quaternion drift and, 414–415

Transformation
defined, 163
of inertia tensor, 219
inverse, 346–347
vector, 193–197

Translation
composition, 163
defined, 161

Transverse, matrix, 184–191
Trees

balanced, 266
BSP, 276–278, 283
oct-, 281–283
quad-, 281–283, 282f, 284f

Trigonometry, 8–9, 9f, 32, 35
2D

moments of inertia in, 495–496
physics in

code, 466–467, 470
collision detection, 471–473, 471f
collision response, 473
contact generation, 472–473
mathematics of rotations, 467–469
overview, 463
particle and mass aggregate, 467
rigid-body dynamics, 469–471
SAT and, 473
vector mathematics, 465–467

rotating objects in
angular speed, 159–160
center of mass, 164–165

mathematics of angles, 158–159,
158f, 160f

origin, 160–165, 161f–162f
rigid bodies, 163–164
rotations, 161–163, 162f
translation composition, 163

3D v., 463–464, 473–474

U
Update equations, 55–57

V
Vector(s)

data structure, 18
normalizing, 24
orientation, 159, 160f, 414
position, 414
product, 29, 33–37, 36f, 466–467
space, 18
transforming, 193–197

Vector mathematics
differential calculus, 41–42
integral calculus, 44
of particles

addition and subtraction, 27–29,
27f

directions, 23–25, 23f
handedness of space, 21–22, 22f
importance of, 44
introduction to, 17–21, 19f
orthonomal basis, 37–38
scalar and vector multiplication,

25–26, 26f, 29–36, 33f, 36f
summary, 499–500
2D, 465–467

Vector2D class, 465
Vector3 class, 19–21, 26
Vectorized mathematics, 434–435
Velocity

air, 237
algorithms, 384, 402–407
angular, 172–173, 202–203, 403–407
change in, 347–353, 407–408
closing, 114, 351–352
in collision resolution process, 379–380
contact normal and, 128–129
defined, 38

in differential calculus, 38–40, 39f, 42
in laws of motion, 49, 52–53
from linear motion, 407
margins of error for, 430–432, 430f
microcollisions and

accelerated velocity, removal of,
392–393

new calculation, 394–395
mismatches, 108–109
muzzle, 62
of points, 173
relative, 371–372
resolution, 351–353, 356, 357f, 365,

379–380, 384, 402–407
rigid body, 237
update, 56–57, 379–380

Vertex–edge contact, 295–298, 296f, 471f,
472

Vertex–face contact, 296–298, 300–301,
300f, 315, 324

Vertex–vertexcontact, 296–298, 297f,
471f, 472

Vibration, visual, 393–395
Visual Studio, 434
Visual vibration, 393–395
VTune, 434

W
Wave, concussion, 453–455, 454f
Wavefront, 453
Weight, mass v., 98
Wind, prevailing, 237
Wing

with aileron, 235
control surface, 240–241

World class, 146
World coordinates, 216–219, 217f,

221–223, 317, 341f, 344,
346–347, 352

World space, 163

Y
Yaw, 165

Z
Zero rest lengths, 108, 108f

