GAME PHYSICS
ENGINE DEVELOPMENT

HOW TO BUILD A ROBUST COMMERCIAL-GRADE
PHYSICS ENGINE FOR YOUR GAME

SECOND EDITION

lan Millington

GAME PHYSICS
ENGINE
DEVELOPMENT

This page intentionally left blank

GAME PHYSICS
ENGINE
DEVELOPMENT

How TO BUILD A ROBUST
COMMERCIAL-GRADE PHYSICS ENGINE
FOR YOUR GAME

Second Edition

IAN MILLINGTON

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

Copyright © 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Millington, Ian.

Game physics engine development : how to build a robust commercial-grade physics engine for your
game / Jan Millington. — 2nd ed.

p. cm.

Includes index.

ISBN 978-0-12-381976-5 (pbk. : alk. paper)
1. Computer games—Programming. 2. Physics—Data processing. I. Title.

QA76.76.C672M55 2010

794.8'1526-dc22

2010014533

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-381976-5

For information on all Morgan Kaufmann publications
visit our Website at www.mkp.com or www.elsevierdirect.com

Typeset by: diacriTech, India

Printed in the United States of America
10 11 12 13 54321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o hre Foundation

For Richard

This page intentionally left blank

CHAPTER

1

CONTENTS

LisT OF FIGURES

PREFACE TO THE SECOND EDITION

PREFACE TO THE FIRST EDITION

ACKNOWLEDGMENTS

ABOUT THE AUTHOR

INTRODUCTION

1.1
1.2

1.3

1.4

1.5
1.6

WHAT Is GAME PHYSICS?

WHAT Is A PHYSICS ENGINE?
1.2.1 Advantages of a Physics Engine
1.2.2 Weaknesses of a Physics Engine

APPROACHES TO PHYSICS ENGINES
1.3.1 Types of Objects

1.3.2 Contact Resolution

1.3.3 Impulses and Forces

1.3.4 What We're Building

THE MATHEMATICS OF PHYSICS ENGINES
1.4.1 The Math You Need to Know

1.4.2 The Math We’ll Review

1.4.3 The Math I'll Introduce

THE SOURCE CODE IN THE BOOK

How THE BOOK IS STRUCTURED
1.6.1 Exercises and Projects

xxiii

xxvii

O 0 0O NI NN U1 U1 R W N

—_ =
o O

—_
N =

vii

viii Contents

CHAPTER

CHAPTER

CHAPTER

PART I PARTICLE PHYsICS 15
2 THE MATHEMATICS OF PARTICLES 17
2.1 VECTORS 17
2.1.1 The Handedness of Space 21

2.1.2 Vectors and Directions 23

2.1.3 Scalar and Vector Multiplication 25

2.1.4 Vector Addition and Subtraction 27

2.1.5 Multiplying Vectors 29

2.1.6 The Component Product 30

2.1.7 The Scalar Product 31

2.1.8 The Vector Product 33

2.1.9 The Orthonormal Basis 37

2.2 CALCULUS 38
2.2.1 Differential Calculus 38

2.2.2 Integral Calculus 43

2.3 SUMMARY 44
24 EXERCISES 45
3 THE LAwsS OF MOTION 47
3.1 THE PARTICLE 48
3.2 THE FIRST TWO LAWS 49
3.2.1 The Force Equations 50

3.2.2 Adding Mass to Particles 51

3.2.3 Momentum and Velocity 52

3.2.4 The Force of Gravity 53

33 THE INTEGRATOR 55
3.3.1 The Update Equations 55

3.3.2 The Complete Integrator 57

34 SUMMARY 58
3.5 EXERCISES 59
4 THE PARTICLE PHYSICS ENGINE 61
4.1 BALLISTICS 61
4.1.1 Setting Projectile Properties 62

4.1.2 Implementation 63

CHAPTER

5

CHAPTER

6

Contents iX

42 FIREWORKS 66
4.2.1 The Fireworks Data 66
4.2.2 Firework Rules 67
4.2.3 The Implementation 69

43 SUMMARY 73
44 PROJECTS 73
PART Il MAss AGGREGATE PHYSICS 75
ADDING GENERAL FORCES 77
51 D’ALEMBERT’S PRINCIPLE 77
5.2 FORCE GENERATORS 80
5.2.1 Interfaces and Polymorphism 81
5.2.2 Implementation 81
5.2.3 A Gravity Force Generator 84
5.2.4 A Drag Force Generator 85

5.3 BUILT-IN GRAVITY AND DAMPING 87
54 SUMMARY 87
5.5 EXERCISES 88
SPRINGS AND SPRING-LIKE THINGS 89
6.1 HOOK’s LAw 89
6.2 SPRING-LIKE FORCE GENERATORS 92
6.2.1 A Basic Spring Force Generator 92
6.2.2 An Anchored Spring Generator 94
6.2.3 An Elastic Bungee Generator 96
6.2.4 A Buoyancy Force Generator 98

6.3 STIFF SPRINGS 101
6.3.1 The Stiff Springs Problem 102
6.3.2 Faking Stiff Springs 104

6.4 SUMMARY 110
6.5 EXERCISES 110

X Contents

CHAPTER

7 HARD CONSTRAINTS 113

7.1 SIMPLE COLLISION RESOLUTION 113

7.1.1 The Closing Velocity 114

7.1.2 The Coefficient of Restitution 115

7.1.3 The Collision Direction and the Contact Normal 115

7.1.4 Impulses 117

7.2 COLLISION PROCESSING 118

7.2.1 Collision Detection 121

7.2.2 Resolving Interpenetration 123

7.2.3 Resting Contacts 126

7.3 THE CONTACT RESOLVER ALGORITHM 130

7.3.1 Resolution Order 131

7.3.2 Time-Division Engines 135

7.4 COLLISION-LIKE THINGS 136

7.4.1 Cables 137

7.4.2 Rods 140

7.5 SUMMARY 142

7.6 EXERCISES 142
CHAPTER

8 THE MAsSssS AGGREGATE PHYsSICS ENGINE 145

8.1 OVERVIEW OF THE ENGINE 145

8.2 USING THE PHYsICS ENGINE 151

8.2.1 Rope Bridges and Cables 151

8.2.2 Friction 152

8.2.3 Blob Games 153

8.3 SUMMARY 153

8.4 PROJECTS 154

PART IIl RiIGID-BODY PHYSICS 155
CHAPTER

9 THE MATHEMATICS OF ROTATIONS 157

9.1 ROTATING OBJECTS IN 2D 158

9.1.1 The Mathematics of Angles 158

CHAPTER

10

Contents

9.1.2 Angular Speed
9.1.3 The Origin and the Center of Mass

9.2 ORIENTATION IN 3D
9.2.1 Euler Angles
9.2.2 Axis-Angle
9.2.3 Rotation Matrices
9.2.4 Quaternions

9.3 ANGULAR VELOCITY AND ACCELERATION
9.3.1 Velocity of a Point
9.3.2 Angular Acceleration
9.4 IMPLEMENTING THE MATHEMATICS
9.4.1 The Matrix Classes
9.4.2 Matrix Multiplication
9.4.3 Matrix Inverse and Transpose
9.4.4 Converting a Quaternion to a Matrix
9.4.5 Transforming Vectors
9.4.6 Changing the Basis of a Matrix
9.4.7 The Quaternion Class
9.4.8 Normalizing Quaternions
9.4.9 Combining Quaternions
9.4.10 Rotating
9.4.11 Updating by the Angular Velocity
9.5 SUMMARY

9.6 EXERCISES

LAwWS OF MOTION FOR RIGID BODIES
10.1 THE RIGID BoDY

10.2 NEWTON-2 FOR ROTATION
10.2.1 Torque
10.2.2 The Moment of Inertia
10.2.3 Inertia Tensor in World Coordinates

10.3 D’ALEMBERT FOR ROTATION
10.3.1 Force Generators

104 THE RIGID-BODY INTEGRATION
10.5 SUMMARY

10.6 EXERCISES

xi

159
160

165
165
167
168
169

172
173
173

173
174
175
184
191
193
197
198
200
200
201
202

203
203

207
207

211
211
213
216

220
223

226
228
228

xii Contents

CHAPTER

CHAPTER

CHAPTER

1 1 THE RIGID-BoODY PHYSICS ENGINE 231
11.1 OVERVIEW OF THE ENGINE 231

11.2 USING THE PHYSICS ENGINE 234

11.2.1 A Flight Simulator 234

11.2.2 A Sailing Simulator 242

11.3 SUMMARY 247

114 PROJECTS 248
PART IV COLLISION DETECTION 251

12 COLLISION DETECTION 253
12.1 THE COLLISION DETECTION PIPELINE 254

12.2 BROAD-PHASE COLLISION DETECTION 255

12.2.1 Requirements 256

12.3 BOUNDING VOLUME HIERARCHIES 257

12.3.1 Hierarchies 259

12.3.2 Building the Hierarchy 266

12.3.3 Subobject Hierarchies 275

12.4 SPATIAL PARTITIONING 276

12.4.1 Binary Space Partitioning 276

12.4.2 Oct-Trees and Quad-Trees 281

12.4.3 Grids 283

12.4.4 Multiresolution Maps 287

12.5 SUMMARY 288

12.6 EXERCISES 288

13 GENERATING CONTACTS 291
13.1 COLLISION GEOMETRY 292

13.1.1 Primitive Assemblies 293

13.2 CONTACT GENERATION 294

13.2.1 Contact Types 295

13.2.2 Contact Data 298

13.2.3 Vertex—Face Contacts

300

Contents Xxiii

13.2.4 Edge-Edge Contacts 301
13.2.5 Edge-Face Contacts 301
13.2.6 Face—Face Contacts 302
13.2.7 Testing Before Generating Contacts 303

13.3 SIMPLE COLLISION ALGORITHMS 304
13.3.1 Colliding Two Spheres 305
13.3.2 Colliding a Sphere and a Plane 307
13.3.3 Colliding a Box and a Plane 310
13.3.4 Colliding a Box and a Sphere 315

13.4 SEPARATING AXIS TESTS 319
13.4.1 Generating Contact Data with SATs 320
13.4.2 Colliding Two Boxes 322
13.4.3 Colliding Convex Polyhedra 326

13.5 COHERENCE 328
13.6 SUMMARY 331
13.7 EXERCISES 331
PART V CONTACT PHYSICS 333

CHAPTER

14 COLLISION RESOLUTION 335
14.1 IMPULSE AND IMPULSIVE TORQUE 335
14.1.1 Impulsive Torque 336
14.1.2 Rotating Collisions 338
14.1.3 Handling Rotating Collisions 339

14.2 COLLISION IMPULSES 340
14.2.1 Change to Contact Coordinates 340
14.2.2 Velocity Change by Impulse 347
14.2.3 Impulse Change by Velocity 351
14.2.4 Calculating the Desired Velocity Change 351
14.2.5 Calculating the Impulse 353
14.2.6 Applying the Impulse 353

143 RESOLVING INTERPENETRATION 355
14.3.1 Choosing a Resolution Method 355
14.3.2 Implementing Nonlinear Projection 359
14.3.3 Avoiding Overrotation 362

144 THE COLLISION RESOLUTION PROCESS 364
14.4.1 The Collision Resolution Pipeline 365
14.4.2 Preparing Contact Data 367

xiv Contents

14.5
14.6

CHAPTER

14.4.3 Resolving Penetration
14.4.4 Resolving Velocity
14.4.5 Alternative Update Algorithms

SUMMARY
EXERCISES

15 RESTING CONTACTS AND FRICTION

15.1

15.2

15.3

15.4

15.5
15.6
15.7

CHAPTER

RESTING FORCES

15.1.1 Force Calculations

MICROCOLLISIONS

15.2.1 Removing Accelerated Velocity

15.2.2 Lowering the Restitution

15.2.3 The New Velocity Calculation

TYPES OF FRICTION

15.3.1 Static and Dynamic Friction

15.3.2 Isotropic and Anisotropic Friction
IMPLEMENTING FRICTION

15.4.1 Friction as Impulses

15.4.2 Modifying the Velocity Resolution Algorithm
15.4.3 Putting It All Together

FRICTION AND SEQUENTIAL CONTACT RESOLUTION
SUMMARY

EXERCISES

1 6 STABILITY AND OPTIMIZATION

16.1

16.2

16.3

STABILITY

16.1.1 Quaternion Drift

16.1.2 Interpenetration on Slopes

16.1.3 Integration Stability

16.1.4 The Benefit of Pessimistic Collision Detection
16.1.5 Changing Mathematical Accuracy
OPTIMIZATIONS

16.2.1 Sleep

16.2.2 Margins of Error for Penetration and Velocity
16.2.3 Contact Grouping

16.2.4 Code Optimizations

SUMMARY

372
379
381

384
385

387

388
389

390
392
393
394

395
395
398

399
400
402
407

410
411
412

413

413
414
415
417
419
420

421
422
430
432
434

436

Contents XV

CHAPTER

17 PUTTING IT ALL TOGETHER 437
17.1 OVERVIEW OF THE ENGINE 437

17.2 USING THE PHYSICS ENGINE 439

17.2.1 Ragdolls 440

17.2.2 Fracture Physics 445

17.2.3 Explosive Physics 451

17.3 LIMITATIONS OF THE ENGINE 458

17.3.1 Stacks 458

17.3.2 Reaction Force Friction 458

17.3.3 Joint Assemblies 459

17.3.4 Stiff Springs 459

174 SUMMARY 459

17.5 PROJECTS 459
PART VI FURTHER ToOPICS IN PHYsICS 461

CHAPTER

18 PHYsICS IN TwWO DIMENSIONS 463
18.1 2D OR 3D? 463

18.2 VECTOR MATHEMATICS 465

18.3 PARTICLE AND MASS AGGREGATE PHYSICS 467

184 THE MATHEMATICS OF ROTATION 467

18.4.1 Representing Rotation 467

18.4.2 Matrices 469

18.5 RIGID-BODY DYNAMICS 469

18.6 COLLISION DETECTION 471

18.6.1 Vertex—Edge Contacts 472

18.6.2 Edge—Edge Contacts 472

18.6.3 Contact Generation 472

18.7 COLLISION RESPONSE 473

18.8 SUMMARY 473

189 PROJECTS 474

xvi Contents

CHAPTER

19 OTHER PROGRAMMING LANGUAGES

19.1
19.2
19.3
19.4
19.5

CHAPTER

ACTIONSCRIPT 3
C
JAVA

Cc#

OTHER SCRIPTING LANGUAGES

20 OTHER TYPES OF PHYSICS

20.1

20.2
20.3

APPENDIX

SIMULTANEOUS CONTACT RESOLUTION
20.1.1 The Jacobian
20.1.2 The Linear-Complementarity Problem

REDUCED COORDINATE APPROACHES
SUMMARY

A USEFUL INERTIA TENSORS

Al
A2
A3

A4

APPENDIX

DISCRETE MASSES
CONTINUOUS MASSES

COMMON SHAPES
A.3.1 Cuboid

A.3.2 Sphere

A.3.3 Cylinder

A3.4 Cone

A.3.5 Hemisphere

MOMENTS OF INERTIA IN 2D
A.4.1 Common 2D Shapes

B USEFUL FRICTION COEFFICIENTS

APPENDIX

C MATHEMATICS SUMMARY

C1

VECTORS

475
475
479
480
481
482

483

483
484
485

488
489

491
492
492

493
493
493
494
494
495

495
495

497

499
499

C.2
C3
C.4
C.5
C.6

QUATERNIONS
MATRICES
INTEGRATION
PHYSICS

OTHER FORUMLAS

GLOSSARY

BIBLIOGRAPHY

INDEX

Contents Xvii

500
501
502
503
504

505
509

511

This page intentionally left blank

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5

8.1
8.2

9.1
9.2

LIST OF FIGURES

Trigonometry and coordinate geometry

3D coordinates

Left- and right-handed axes

A vector as a movement in space

The geometry of scalar-vector multiplication

The geometry of vector addition

Geometric interpretation of the scalar product
Geometric interpretation of the vector product

Same average velocity, different instantaneous velocity

Screenshot of the ballistic demo
Screenshot of the bigballistic demo
Screenshot of the fireworks demo

The game’s camera attached to a spring

A rope bridge held up by springs

A buoyant block submerged and partially submerged
A non-stiff spring over time

A stiff spring over time

The rest length and the equilibrium position

Contact normal is different from the vector between objects in contact
Interpenetrating objects

Interpenetration and reality

Vibration on resting contact

Resolving one contact may resolve another automatically

Screenshot of the bridge demo
Screenshot of the platform demo

Angle that an object is facing
The circle of orientation vectors

19
22
23
26
27
33
36
39

63
65
66

92
95
98
102
103
108

117
122
124
127
131

151
152

158
160

Xix

xx List of Figures

9.3
9.4
9.5
9.6

10.1
10.2

11.1
11.2
11.3

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14

13.1
13.2
13.3
13.4
13.5

13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
13.16

The relative position of a car component
The car is rotated

Aircraft rotation axes

A matrix basis is changed

A force generating no torque
The moment of inertia is local to an object

Screenshot of the flightsim demo
Different centers of buoyancy
Screenshot of the sailboat demo

The collision detection pipeline

A three-stage collision detection pipeline

A spherical bounding volume

A spherical bounding volume hierarchy
Bottom-up hierarchy building in action
Top-down hierarchy building in action
Insertion hierarchy building in action
Working out a parent bounding sphere
Removing an object from a hierarchy

A subobject bounding volume hierarchy

A BSP for level geometry

Identifying an object’s location in a quad-tree
A quad-tree forms a grid

An object may occupy up to four same-sized grid cells

An object approximated by an assembly of primitives
Collision detection and contact generation

3D cases of contact

Ignoring a vertex—vertex contact

The relationship among the collision point, collision normal, and

penetration depth

The vertex—face contact data

The edge—edge contact data

The edge—face contact data

The face—face contact data

The difference in contact normal for a plane and a half-space
Contacts between a box and a plane

The half-sizes of a box

Contacts between a box and a sphere

A separating axis test

A separating axis test showing maximum interpenetration
Sequence of contacts over two frames

161
162
166
198

212
217

241
243
247

255
256
257
260
267
268
269
272
273
275
280
282
284
287

293
295
296
297

299
300
301
302
303
309
311
313
316
319
321
329

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13

15.1
15.2
15.3
15.4
15.5
15.6

16.1
16.2
16.3
16.4
16.5

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

18.1

List of Figures

The rotational and linear components of a collision
Three objects with different bounce characteristics
The three sets of coordinates: world, local, and contact
Linear projection causes realism problems
Velocity-based resolution introduces apparent friction
Nonlinear projection is more believable

Nonlinear projection does not add friction

Angular motion cannot resolve the interpenetration
Angular resolution causes other problems

Data flow through the physics engine

Resolution order is significant

Repeating the same pair of resolutions

Resolving penetration can cause unexpected contact changes

A reaction force at a resting contact

The long-distance dependence of reaction forces
Microcollisions replace reaction forces

A microscopic view of dynamic and static friction
Anisotropic friction

The problem with sequential contact resolution

Objects drift down angled planes

Collisions can be missed if they are not initially in contact
A chain of collisions is awakened

Iterative resolution makes microscopic changes

Sets of independent contacts

Data flow through the physics engine

Screenshot of the ragdoll demo

Closeup of a ragdoll joint

Precreated fractures can look very strange for large objects
Screenshot of the fracture demo

The fractures of a concrete block

The force cross-section across a compression wave
Screenshot of the explosion demo

The three types of contact in 2D

xxi

337
339
341
356
357
358
358
362
363
365
373
374
376

388
390
391
397
399
411

416
419
429
430
432

439
441
441
445
446
447
454
457

471

This page intentionally left blank

PREFACE TO THE
SECOND EDITION

This second edition of the text is designed to extend and improve upon the first
edition. There is a broad selection of minor changes and corrections that have been
made throughout the book. A lot of these are due to the dilliegent attention of scores
of readers who sent suggestions and corrections. Thank you for your comments and
ideas.

There are three new features of this edition that were consistently requested by
readers of the first edition:

1. The chapter on fine-grained or narrow-phase collision detection from the first
edition was designed to make it as easy as possible to get some kind of collision
detection running. Collision detection is at least as complex as physical simula-
tion, and there are other books that analyze it in considerable detail. The feedback
has been that it would be worth looking at an algorithm that is generally useful
in detail, rather than skirting several options. In this edition, therefore, I have
rewritten the collision detection chapter to focus on the general-purpose separat-
ing axis test algorithm. This is used as the collision detection system in a number
of commercial middleware products, and many more in-house technologies.

2. Many readers gave me feedback that they wanted to use their physics engines to
build 2D as well as 3D games. This is particularly important as the 2D games
scene has undergone a renaissance with the rapid growth of casual and mobile
games. | have added a chapter that details the steps needed to build a 2D physics
engine on the basis of the 3D code that comprises the majority of this book. I have
decided to present the content this way because the feedback I get indicates that
the majority of the readers are interested in coding for 3D games, and although
2D physics is simpler, having the grounding in 3D is still important to make sen-
sible decisions as you code. If you are only interested in 2D physics, I would still
encourage you to follow through the 3D code, referring forward to Chapter 18
where you implement a chunk of the algorithm.

3. Because the book was designed to lead novice physics programmers through to
a complete engine, it has been picked up and adopted for use in many games

xxiii

Xxiv Preface to the Second Edition

development courses at universities around the world. The feedback I have
received from instructors encouraged me to provide more resources for struc-
tured learning alongside the main text. This edition is therefore packaged in a
cheaper, softcover format, so that it is more affordable as a text in a college course.
It includes a glossary of terms, making it useful as a reference during lectures or
to decode other resources. The chapters that introduce new content have a set of
exercises at the end. These exercises can be used by anyone to sharpen their under-
standing, but they are also designed to be assigned by instructors. Answers can
be obtained directly from the author. Unlike some resources on physics, the exer-
cises are designed not to be purely mathematical: some are experimental, while
some require small implementations. Finally, each part of this book ends with a
series of graded projects that can be used by students as short-term assignments
or larger thesis projects. The thesis projects all involve implementing a physics-
based game using the techniques in this book.

I hope you'll find this edition of the book useful, and will enjoy building your
physics engine with its help. 'm always keen to get feedback on the book, includ-
ing both corrections and suggestions for future editions. Feel free to email me at
idmi1lington@googlemail.comwith your opinions or observations.

PREFACE TO THE
FIRST EDITION

When I started writing games, in the 8-bit bedroom coding boom of the 1980s, the
low budgets and short turnaround times of writing games encouraged innovation and
experimentation. This in turn led to some great games (and, it has to be said, a whole
heap of unplayable rubbish—Iet no one tell you games were better back then!).

There were two games I remember being particularly inspired by, and both used
realistic physics as a core of their game play. The first was Thrust, written by Jeremy
Smith and originally published for the UK’s BBC Micro range of home computers.

Based on the arcade game Gravitar, an ivy-leaf—shaped ship navigates through
underground caverns under the influence of a 2D physical simulation. The aim is to
steal a heavy fuel pod, which is then connected to the ship via a cable. The relatively
simple inertial model of the spaceship then becomes a wonderfully complex inter-
action of two heavy objects. The game play was certainly challenging, but had that
one-more-time feel that marks a classic game.

The second game was Exile, written by Peter Irvin and Jeremy Smith! (again).
This is perhaps the most innovative and impressive game that I have ever seen, fea-
turing techniques beyond physics such as emergent game play, open world levels, and
procedural content creation that were a decade or more ahead of their time.

Exile’s physics extends to every object in the game. Ammunition follows ballistic
trajectories, you can throw grenades, which explode sending nearby objects flying,
you can carry a heavy object to weigh you down in a strong up-draft, and you float
pleasingly in water. Exile must qualify for the first complete physics engine in a game.

With Exile released in 1988, I feel that I am a relative newcomer to the physics
coding party. I started writing game physics in 1999, creating an engine for modeling
cars in a driving game. What I thought was a month’s project turned into something
of an albatross.

I ran headlong into every physics problem imaginable, from stiff-suspension
springs that sent my car spiraling off to infinity, to wheels that wobbled at high speed,
from friction that moved objects around of its own accord, to hard surfaces that

1. Sadly, Jeremy died in an accident in 1992, but Peter is currently developing an iPhone version of Exile.

XXV

XxXVvi

Preface to the First Edition

looked like they were made of soft rubber. I tried a whole gamut of approaches, from
impulses to Jacobians, from reduced coordinates to faked physics. It was a learning
curve unlike anything before or since in my game coding career.

While I was merrily missing my deadlines (driving physics gave way to third per-
son shooters) and my company examined every middleware physics system we could
find, I learned a lot about the pitfalls and benefits of various approaches. The code I
wrote, and often abandoned, proved to be useful over the intervening years as it got
dusted off and repurposed. I have built several physics engines based on that experi-
ence, and customized them for many applications, and I think I have a good sense of
how to get the best effects from the simplest approach.

We have entered a phase where physics simulation is a commodity in game devel-
opment. Almost every game needs physics simulation, and every major development
company will have an in-house library, or license one of the major middleware solu-
tions. Physics, despite being more common than ever before, is still somewhat of a
black box. The physics developers do their stuff, and the rest of the team relies on the
results.

Most of the information and literature on game physics assumes a level of mathe-
matical and physical sophistication that is uncommon. Other references might give
you all the physical information, but no architecture for how to apply it. And still oth-
ers contain misinformation and advice that will sting you. Physics engines are compli-
cated beasts, and there is a universe of optimizations and refinements out there, most
still waiting to be explored. But before you can wrangle with implementing varia-
tions on LCP solvers or pivot algorithms, you need to understand the basics, and have
a working body of code to experiment with.

This book is grounded in the first few years of painful experimentation I went
through. I wanted this book to be a starting point, to be the book I needed 12 years
ago. I want it to take you from zero to a working physics engine in one logical and
understandable story. It is just the first step on a much longer road, but it is a sure and
dependable step, and a step in the right direction.

ACKNOWLEDGMENTS

My quest to create robust game physics, although difficult, would have been impos-
sible without the contributions of a handful of skilled code writers and mathemati-
cians who published papers and articles, and who gave SIGGRAPH presentations and
released source code. Although there are many more, I am thinking particularly of
Chris Hecker, Andrew Watkin, and David Barraf. Their early contributions were the
lifeline that those of us who followed needed.

I would like to thank the hard work and dilligence of the technical review team on
this book, both the first edition team—Dave Eberly, Philip J. Schneider, Dr. Jonathan
Purdy, and Eitan Grinspun—and Matt Smith, who reviewed the second edition mate-
rial with great patience and attention to detail: Thank you for your valuable contri-
butions that helped improve the book’s quality, readability, and usefulness. As always,
the quality of the book owes a great deal to these people, but any remaining short-
comings are my own.

Unlike my first book, which was written during “gardening leave” after selling my
previous business, this text and its second edition were written while working full-
time building the R&D consultancy partnership I still work with. I therefore want to
thank my wife, Mel, who has now suffered my late nights over two editions of this
book.

I first played a copy of Thrust loaned to me by my school friend Richard, who went
on to become my best friend and the best man at my wedding. Each day at school we
would compare our achievements, scores, and the level we had reached. I have such
fond memories of those days. In the last week of writing this second edition, Richard
died suddenly. He leaves a huge lacuna in my life. This second edition is dedicated to
his memory.

Xxvii

This page intentionally left blank

ABOUT THE AUTHOR

Ian Millington consults on game technologies and research and development, includ-
ing artificial intelligence, real-time simulation, and physics, through his company, the
R‘n’D Guy. Previously he founded Mindlatthe Ltd., the largest specialist AT middle-
ware company in computer games, working on a huge range of game genres and
technologies. He has an extensive background in Al, including doctoral research in
complexity theory and natural computing. He has published academic and profes-
sional papers and articles on topics ranging from paleontology to hypertext.

XXix

This page intentionally left blank

INTRODUCTION

hysics is a hot topic in computer games. No self-respecting action game can get

by without a good physics engine, and the trend has recently spread through
other genres, including strategy games and puzzles. This growth has been largely
fueled by middleware companies offering high-powered physics simulation. Most
high-profile games now feature commercial physics engines.

But commercial packages come at a high price, and for a huge range of developers
building a custom physics solution can be better, as it can be cheaper, provide more
control, and be more flexible. Unfortunately, physics is a topic shrouded in mystery,
mathematics, and horror stories.

When I came to build a general physics engine in 2000, I found that there was
almost no good information available, almost no code to work from, and lots of con-
tradictory advice. I struggled through and built a commercial engine, and learned a
huge amount in the process. Over the last 10 years I’ve applied my own engine and
other commercial physics systems to a range of real games. Almost a decade of effort
and experience is contained in this book.

There are other books, websites, and articles on game physics, much of it quite
excellent. But there is still almost no reliable information on building a physics engine
from scratch—a complete simulation technology that can be used in game after game.
This book aims to step you through the creation of a physics engine. It goes through
a sample physics engine (provided on the CD), as well as giving you insight into the
design decisions that were made in its construction. You can use the engine as is, use
it as a base for further experimentation, or make various design decisions and create
your own system under the guidance that this book provides.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00001-2 1

2 Chapter 1 Introduction

1.1 WHAT Is GAME PHYSICS?

Physics is a huge discipline, and academic physics has hundreds of subfields. Each
describes some aspect of the physical world, from the way light works to the nuclear
reactions inside a star.

Lots of these areas of physics might be useful in games. We could use optics,
for example, to simulate the way light travels and bounces, and use to make great-
looking graphics. This is the way ray tracing works, and (although it is still very slow
compared to other approaches) it has been used in several game titles. Although these
areas are part of academic physics, they are not part of what we mean by game physics
and I won’t consider them in this book.

Other bits of physics have a more tenuous connection with games. I cannot think
of a use for nuclear physics simulation in a game, unless the nuclear reactions were
the whole point of the game play.

When we talk about physics in a game, we really mean classical mechanics, that is,
the laws that govern how large objects move under the influence of gravity and other
forces. In academic physics these laws have largely been superceded by relativity and
quantum mechanics. Almost all of the physics described in this book has long since
stopped being an active area of research; all the results we’ll be relying on were settled
before the turn of the twentieth century.

In games, classical mechanics is used to give game objects the feel of being solid
things, with mass, inertia, bounce, and buoyancy.

Game physics has been around almost since the first games were written. It was
first seen in the way particles move: the ballistics of bullets, sparks, fireworks, smoke,
and explosions. Physics simulation has also been used to create flight simulators for
nearly three decades. Next came automotive physics, with ever-increasing sophistica-
tion of tire, suspension, and engine models.

As processing power became available, we saw crates that could be moved around
or stacked, and walls that could be destroyed and crumble into their constituent
blocks. This is rigid-body physics, which rapidly expanded to include softer objects:
clothes, flags, and rope. Then came the rise of the ragdoll: a physical simulation
of the human skeleton that allows more realistic trips, falls, and death throes. And
recently we've seen a lot of effort focused on simulating fluid flow: water, fire, and
smoke.

In this book we’ll cover a representative sample of physics tasks. With a gradually
more comprehensive technology suite, our physics engine will support particle effects,
flight simulation, car physics, crates, destructible objects, cloth, and ragdolls, along
with many other effects.

12 WHAT Is A PHYSICS ENGINE?

Although physics in games is more than 30 years old, there has been a distinct change
in recent years in the way that physics is implemented. Originally, each effect was
programmed for its own sake, creating a game with only the physics needed for that

1.2 What Is a Physics Engine? 3

title. If a game needed arrows to follow trajectories, then the equation of the trajectory
could be programmed into the game. It would be useless for simulating anything but
the trajectory of arrows, but it would be perfect for that.

This is fine for simple simulations, where the amount of code is small and the
scope of the physics is quite limited. As we’ll see, a basic particle system can be pro-
grammed in only a hundred lines or so of code. But directly implementing phyical
behavior becomes a difficult task as the complexity increases.

In the original Half-Life game, for example, you can push crates around, but the
physics code isn’t quite right, and the way crates move looks odd. The difficulty of
getting physics to look good, combined with the need for almost the same effects in
game after game encouraged developers to look for general solutions that could be
reused.

Resuable technology needs to be quite general: a ballistics simulator that will only
deal with arrows can have the behavior of arrows hard coded into it. If the same code
needs to cope with bullets too, then the software needs to abstract away from partic-
ular projectiles and simulate the general physics that they all have in common. This
is what we call a physics engine: a common piece of code that knows about physics in
general, but isn’t programmed with the specifics of each game.

This leaves us with a gap. If we have special code for simulating an arrow, then we
need nothing else in order to simulate an arrow. If we have a general physics engine
for simulating any projectile, and we want to simulate an arrow, we also need to tell
the engine the characteristics of the thing we are simulating. We need the physical
properties of arrows, or bullets, or crates, and so on.

This is an important distinction. The physics engine is basically a big calculator: it
does the mathematics needed to simulate physics. But it doesn’t know what needs to
be simulated. In addition to the engine we also need game-specific data that represents
the objects in our level.

Although we’ll look at the kind of data we need throughout this book, I won’t
focus on how the data gets into the game. In a commercial game, there will likely
be some kind of level-editing tool that allows level designers to place crates, flags,
ragdolls, or aeroplanes to set their weight, the way they move through the air, their
buoyancy, and so on. For a physics engine driving a flight simulator, the data may have
to be acquired from real aircraft capabilities. For simpler games, it may be hardcoded
somewhere in the source code.

The physics engine we’ll be developing throughout this book needs gradually
more and more data to drive it. I'll cover in depth what kind of data this is, and reason-
able values it can take, but for our purposes we will assume this data can be provided
to the engine. It is beyond the scope of the book to consider the tool chain that you
will use to author these properties for the specific objects in your game.

1.2.1 ADVANTAGES OF A PHYSICS ENGINE

There are two compelling advantages for using a physics engine in your games. First,
there is the time savings. If you intend to use physics effects in more than one game

4 Chapter 1 Introduction

(and you'll probably be using them in most of your games from now on), then putting
the effort into creating a physics engine now pays off when you can simply import
it into each new project. A lightweight, general-purpose physics system, of the kind
we develop in this book, doesn’t have to be difficult to program either. A couple of
thousand lines of code will set you up for most of the game effects you need.

The second reason is quality. You will most likely be including more and more
physical effects in your game as time goes on. You could implement each of these
as you need it, such as building a cloth simulator for capes and flags, and a water
simulator for floating boxes, and a separate particle engine. Each might work perfectly,
but you would have a very hard time combining their effects. When the character with
a flowing cloak comes to stand in the water, how will her clothes behave? If they keep
blowing in the wind even when underwater, then the illusion is spoiled.

A physics engine provides you with the ability to have effects interact in believable
ways. Remember the moveable crates in Half-Life 12 They formed the basis of only one
or two puzzles in the game. When it came to Half-Life 2, crate physics was replaced
by a full physics engine. This opens up all kinds of new opportunities. The pieces of
a shattered crate float on water, objects can be stacked and used as moveable shields,
and so on.

It’s not easy to create a physics engine to cope with water, wind, and clothes, but
it’s much easier than trying to take three separate ad-hoc chunks of code and make
them look good together in all situations.

1.2.2 WEAKNESSES OF A PHYSICS ENGINE

This isn’t to say that a physics engine is a panacea. There are reasons that you might
not want to use a full physics engine in your game.

The most common reason is speed. A general-purpose physics engine is quite
processor-intensive. Because it has to be general, it can make no assumptions about
the kinds of objects it is simulating. When you are working with a very simple game
environment, this generality can mean wasted processing power. This isn’t an issue
on modern consoles or the PC, but on handheld devices such as phones and PDAs, it
can be significant. You could create a pool game using a full physics engine on a PC,
but the same game on a mobile phone would run faster with some specialized pool
physics.

The need to provide the engine with data can also be a serious issue. In a game
that I worked on we needed no physics other than flags waving in the wind. We could
have used a commercial physics engine (one was available to the developer), but the
developer would need to have calculated the properties of each flag, its mass, springi-
ness, and so on. This data would then need to be fed into the physics engine to get it
to simulate the flags.

There was no suitable level-design tool that could be easily extended to provide
this data, so instead we created a special bit of code just for flag simulation, the char-
acteristics of flags were hardcoded in the software, and the designer needed to do

1.3 Approaches to Physics Engines 5

nothing special to support it. We avoided using a physics engine because special-case
code was more convenient.

A final reason to avoid physics engines is scope. If you are a one-person hobbyist
working on your game in the evenings, then developing a complete physics solution
might take your time away from improving other aspects of your game, such as the
graphics or game play. Or worse, it might distract you from finishing, releasing, and
promoting your game. On the other hand, even amateur games need to compete with
commercial titles for attention, and top-quality physics is a must for a top-quality title
of any kind.

13 APPROACHES TO PHYSIcsS ENGINES

There are several different approaches to building a physics engine. From the very
simple (and wrong) to the cutting-edge physics engines of top middleware companies.
Creating a usable engine means balancing the complexity of the programming task
with the sophistication of the effects you need to simulate.

There are a few broad distinctions we can make to categorize different approaches.

1.3.1 TYPEsS OF OBJECTS

The first distinction is between engines that simulate full rigid bodies or so-called
“mass aggregate” engines. Rigid-body engines treat objects as a whole, and work out
the way they move and rotate. A crate is a single object, and can be simulated as a
whole. Mass aggregate engines treat objects as if they were made up of lots of little
masses. A box might be simulated as if it were made up of eight masses, one at each
corner, connected by rods.

Mass aggregate engines are easier to program because they don’t need to under-
stand rotations. A large amount of effort is needed to support rotations, and it forms a
sizable chunk of this book. Mass aggregate engines treat each mass as if it were located
at a single point, and the equations of motion can be expressed purely in terms of lin-
ear motion. The whole object rotates naturally as a result of the connections between
masses.

Because it is very difficult to make things truly rigid in a physics engine, it is
difficult to make really firm objects in a mass aggregate system. Our eight-mass crate
will have a certain degree of flex in it. To avoid this being visible to the player, extra
code is needed to reconstruct the rigid box from the slightly springy set of masses.
While the basic mass aggregate system is very simple to program, these extra checks
and corrections are more hit and miss, and very quickly the engine becomes a mess
of fixes and ugly code.

Fortunately, we can extend a mass aggregate engine into a full rigid-body system,
simply by adding rotations. In this book, we will develop a mass aggregate physics
engine on the way to a full rigid-body physics engine. Because we are heading for a

6 Chapter 1 Introduction

more robust engine, I won’t spend the time creating the correction code for springy
aggregates.

1.3.2 CONTACT RESOLUTION

1.3.3

The second distinction involves the way in which touching objects are processed. As
we'll see in this book, a lot of the difficulty in writing a rigid-body physics engine
is simulating contacts—locations where two objects touch or are connected. This
includes objects resting on the floor, objects connected together, and, to some extent,
collisions.

One approach is to handle these contacts one by one, making sure each works
well on its own. This is called the “iterative” approach and it has the advantage of
speed. Each contact is fast to resolve, and with only a few tens of contacts, the whole
set can be resolved quickly. It has the downside that one contact can affect another,
and sometimes these interactions can be significant. This is the easiest approach to
implement, and can form the basics of more complex methods. It is the technique we
will use in the engine in this book.

A more physically realistic way is to calculate the exact interaction between differ-
ent contacts and calculate an overall set of effects to apply to all objects at the same
time. This is called a “Jacobian-based” approach,! but it is very time consuming. The
mathematics needed to process the Jacobian is very complex, and solving the equa-
tions can involve millions of calculations. In some cases there is simply no valid answer
and the developer needs to add special code to fall back on when the equations can’t
be solved. Most physics middleware packages and several open-source physics engines
use this approach, and each has its own techniques for solving the equations and deal-
ing with inconsistencies.

A third option is to calculate a set of equations based on the contacts and con-
straints between objects. Rather than use Newton’s laws of motion, we can create our
own set of laws for the specific configuration of objects we are dealing with. These
equations will change from frame to frame, and most of the effort for the physics
engine goes into creating them (even though solving them is no picnic either). This
is called a “reduced coordinate” approach. Some physics systems have been created
with this approach, and it is the most common one used in engineering software to
achieve really accurate simulation. Unfortunately, it is very slow, and isn’t very useful
in games, where speed and believability are more important than accuracy.

We'll return to the Jacobian and reduced coordinate approaches in Chapter 20,
after we've looked at the physics involved in the first approach.

IMPULSES AND FORCES

The third distinction is in how the engine actually resolves contacts. This takes a little
explaining, so bear with me.

1. The “Jacobian” itself is a way of mathematically representing the effects of one contact on another.

1.3 Approaches to Physics Engines 7

When a book rests on a table, the table is pushing the book upwards with a force
equal to the gravity pulling it down. If there were no force from the table to the book,
then the book would sink into the table. This force is constantly pushing up on the
book as long as the book is there. The speed of the book doesn’t change.

Contrast this with the way a ball bounces on the ground. The ball collides with the
ground, and the ground pushes back on the ball, accelerating the ball upward until it
bounces back off the floor with an upward velocity. This change in velocity is caused
by a force, but the force acts for such a small fraction of a second that it is easier to
think of it as simply a change in velocity. This is called an impulse.

Some physics engines use forces for resting contacts and impulses for collisions.
This is relatively complex, because it involves treating forces and impulses differently.
More commonly physics engines treat everything as a force: impulses are simply forces
acting over a very small space of time. This is a “force-based” physics engine and it
works in the way the real world does. Unfortunately, the mathematics of forces are
more difficult than the mathematics of impulses. Engines that are force-based tend to
employ a Jacobian or reduced coordinate approach.

Other engines use impulses for everything: the book on the table is kept there
by lots of miniature collisions, rather than a constant force. This is, not surprisingly,
called an “impulse-based” physics engine. Each frame of the game, the book receives a
little collision that keeps it on the surface of the table until the next frame. If the frame
rate slows down dramatically, things lying on surfaces can appear to vibrate. Under
most circumstances, however, it is indistinguishable from a forced-based approach.
This is the approach we will use in this book, as it is easy to implement, and has the
advantage of being very flexible and adaptable. It has been used in several middleware
packages, in a large number of the in-house physics systems I have seen, and has been
proven in many commercial titles.

1.3.4 WHAT WE’RE BUILDING

In this book I will cover in depth the creation of a rigid-body, iterative, impulse-based
physics engine that I call Cyclone. The engine has been written specifically for this
book, although it is broadly based on a commercial physics engine I was involved
with writing a few years ago.

I am confident that the impulsed-based approach is best for developing a simple,
robust, and understandable engine for a wide range of game styles, and for using as a
basis for adding more complex and exotic features. It can be used as a foundation for
experimenting with other approaches: I've used the skeleton structure to implement
a Jacobian force-based engine, for example.

As we move through the book, I will give pointers for various approaches, and
Chapter 20 will provide some background to techniques for extending the engine to
take advantage of more complex simulation algorithms. While we won’t cover other
approaches in the same depth, the engine is an excellent starting point for any kind
of game physics. You will need to understand the content of this book to be able to
create a more exotic system.

8 Chapter 1 Introduction

14 THE MATHEMATICS OF PHYSICS ENGINES

Creating a physics engine involves a lot of mathematics. If you're the kind of person
who feels nervous working with math, then you may find some bits hard going. I've
tried throughout the book to step through the mathematical background slowly, but
unfortunately there’s no way to avoid the mathematics entirely.

If you have difficulty following the mathematics, don’t worry: you can still use
the accompanying source code for the corresponding section. While it is better to
understand all of the engine in case you need to tweak or modify it, you can still
implement and use it quite successfully without such understanding.

As a quick reference, the mathematical equations and formulas in the book are
brought together in Appendix C, for easy location when programming.

If you are an experienced game developer, then chances are you will know a fair
amount of 3D mathematics, including vectors, matrices, and linear algebra. If you are
relatively new to games, then these topics may be beyond your comfort zone.

In this book I will assume you know some mathematics, and I will cover the rest.
If I assume something that you aren’t comfortable with, then it would be worthwhile
to find a reference book, or look for a web tutorial before proceeding, so that you can
stay with the flow of the text.

141 THE MATH YOou NEED TO KNOW

I'm going to assume that every potential physics developer knows some mathematics.
The most important thing to be comfortable with is algebraic notation. I will
introduce new concepts directly in notation, and if you flick through this book you
will see many formulas written into the text.
I'll assume you are happy to read an expression such as:

4 .
X = —sin6
t

and are able to understand that x, ¢, and 8 are variables, and how to combine them
to get a result.

I will also assume you know some basic algebra. You should be able to understand
that, if the formula above is correct, then

4
t =—sinf
X
These kinds of algebraic manipulations will pop up throughout the book without
explanation.
Finally, I'll assume you are familiar with trigonometry and coordinate geometry:
sines, cosines, tangents, their relationship to the right-angled triangles, and to two-
dimensional geometry in general.

FIGURE 1.1

1.4 The Mathematics of Physics Engines 9

Trigonometry and coordinate geometry.

In particular, you should know that if we have the triangle shown in Figure 1.1,
then these formulas hold:

b=asin0
c=acosf
b= ctan6

Especially when a is of length 1, we will use these results tens of times in the book
without further discussion.

142 THE MATH WE’LL REVIEW

Because the experience of developers varies so much, I will not assume you are famil-
iar with three-dimensional mathematics to the same extent. This isn’t taught in high
schools and is often quite specialized to computer graphics. If you are a long-standing
game developer, then you will be able to skip through these reviews as they arise.

We will cover the way that vectors work in the next chapter, including the way
a three-dimensional coordinate system relates to the 2D mathematics of high school
geometry. I will review the way that vectors can be combined, including the scalar and
vector product, and their relationship to positions and directions in three dimensions.

We will also review matrices. Matrices are used both to transform vectors, rep-
resenting movement in space, or to change other matrices from one set of coor-
dinates into another. We will also see matrices called tensors at a couple of points,
which have different uses but the same structure. We will review the mathematics of
matrices, including matrix multiplication, the transformation of vectors, and matrix
inversion.

These topics are fundamental to any kind of 3D programming, and are used exten-
sively in graphics development, and in many Al algorithms too. I assume that most
readers will be at least a little familiar with them, and there are comprehensive books
available that cover them in great depth.

10 Chapter 1 Introduction

Each of these topics is reviewed lightly once in the book, but afterwards I'll assume
that you are happy to see the results used directly. They are the bread and butter topics
for physics development, so it would be inconvenient to step through them each time
they arise.

If you find later sections difficult, rereading the reviews is worthwhile, as well as
finding a more comprehensive reference to linear algebra or computer graphics, and
teaching yourself how they work.

143 THE MATH I'LL INTRODUCE

Finally, there is a good deal of mathematics that you may not have discovered unless
you have done some physics programming in the past. This is the content I'll try not
to assume you know, and cover in more depth.

At the most well-known end of the spectrum this includes quaternions, a vector-
like structure that represents the orientation of an object in 3D space. We will take
some time to understand why such a strange structure is needed, and how it can be
manipulated, converted into a matrix, combined with other quaternions, and affected
by rotations.

We will also need to cover vector calculus, or the way vectors change with time
and through space. Most of the book requires only simple calculus—numerical inte-
gration and first-order differentiation. The more complex physics approaches of
Chapter 20 get considerably more exotic, including both partial differentials and dif-
ferential operators. Fortunately, we will have completely built the physics engine by
this point, so the content is purely optional.

Finally, we will cover a few more advanced topics in matrix manipulation. In par-
ticular, resolving contacts in the engine development involves changing the coordi-
nates of existing transform matrices. This kind of manipulation is rarely needed in
graphics development, so it will be covered in some depth in the relevant section.

15 THE SOURCE CODE IN THE BoOOK

Throughout the book the source code from the Cyclone physics engine is given in the
text. The complete engine is available on the accompanying website, but repeating the
code in the text has allowed me to comment more fully on how it works.

The latest Cyclone source, including errata and new features, is available at its own
site, http://www.procyclone.com. It is also hosted on Google’s open-source code web-
site at: http://code.google.com/p/game-libraries/. Check the site from time to time for
the latest release of the package.

In each section of the book, we will cover the mathematics or concepts needed, and
then view them in practice in code. I'd encourage you to try to follow the equations
or algorithms in the code, and find how it has been implemented.

1.6 How the Book Is Structured 11

I have used an object-oriented design for the source code, and always tried to err
on the side of clarity. The code is contained within a cyc1one namespace, and its layout
is designed to make naming clashes unlikely.

I have used C++ throughout the code. This is still the most common program-
ming language used for game development worldwide. 'm aware, however, that over
the last few years, C++ has become less exclusive. With the advent of a wide range of
gaming platforms and coding environments, it is no longer C++ or nothing. I know
of readers of the first edition who implemented the engine in languages ranging from
Microsoft’s C# and Apple’s Objective-C, through Adobe’s Actionscript for Flash, to
high-level dynamic languages such as Javascript and Python. I have therefore revised
and extended Chapter 19 in this edition, which discusses implementation for a range
of languages.

There are many parts of the engine that can be optimized, or rewritten, to take
advantage of mathematics hardware on consoles, graphics cards, and some PC pro-
cessors. If you need to eke out every ounce of speed from the engine, you will find
that you need to optimize some of the code to make it less clear and more efficient.
Chances are, however, it will be perfectly usable as is. It has a strong similarity to code
I have used in real game development projects, that has proved to be easily fast enough
to cope with reasonably complex physics tasks.

There are a number of demonstration programs in the source code, and I will
use them as case studies in the course of the book. The demonstrations were cre-
ated to show off physics rather than graphics, so I've tried to use the simplest graph-
ics output possible. The source code is based on the GLUT toolkit, which wraps
OpenGL in a platform-independent way. The graphics tend to be as simple as pos-
sible, as in calling GLUT’s built-in commands for drawing cubes, spheres, and other
primitives. This selection doesn’t betray any bias on my part and you should be able
to transfer the physics so that it works with whatever rendering platform you are
using.

Thelicense for your use of the source codeis the MIT license. It is designed to allow
it to be used in your own projects, but it is not copyright-free. Please read through
the software license accompanying the source code for more details.

It is my hope that although the source code will provide a foundation, you’ll
implement your own physics system as we go. I make decisions throughout this book
about my implementation, and chances are that youw'll make different decisions at
least some of the time. My aim is to give you enough information to understand the
decision, and to go a different route if you want to.

1.6 How THE BOOK IS STRUCTURED

We will build our physics engine in stages, starting with the simplest engine that is
useful and adding new functionality until we have a system capable of running the
physics in your game.

12 Chapter 1 Introduction

The book is split into six sections:

® In Particle Physics, we look at building our initial physics engine, including
the basic vector mathematics and the laws of motion for particles.

®m The Mass Aggregate Physics section turns the particle physics engine into one
capable of simulating any kind of object by connecting masses together with
springs and rods.

® In Rigid-Body Physics, rotation and the added complexity of rotational forces
are introduced. Overall, the physics engine we end up with is less powerful
than the mass aggregate system we started with, but is useful in its own right
and as a basis for the final stage.

B The Collision Detection section takes a detour from building engines to look
at how the collisions and contacts are generated. A basic collision detection
system is built, allowing us to look at general techniques.

B The Contact Physics section is the final stage of our engine, adding collisions
and resting contacts to the engine and allowing us to apply the result to almost
any game.

B Finally, in Horizons we look beyond the engine we have built. In Chapter 20 we
examine means of extending the engine to take advantage of other approaches,
without providing the detailed step-by-step source code to do so.

As we begin each part, the content will be quite theoretical, and it can be some-
times difficult to immediately see the kinds of physical effects that the technology
supports. At the end of each part, there is a chapter with the payoff, showing ways in
which our new functionality may be used in a game. As we go through the book we
start with engines controlling fireworks and bullets, and end up with ragdolls and cars.

1.6.1 EXERCISES AND PROJECTS

At the end of most chapters, particularly those that introduce new technical content,
there is a set of exercises. These are designed to solidify the new concepts introduced
in that chapter and to allow you to think about other implications of what you've
learned. The chapter exercises are typically quite narrow and focused.

At the end of each part of the book, I've included some additional exercises and
project suggestions. These are designed to be broader and bring together the con-
tent of that part into something practical. I've split this content into further exercises,
mini-projects, and game projects.

The mini-projects are typically implementation challenges. They are suitable as an
exercise over a week or two, or as a homework assignment in a course on game physics.
I've tried to indicate the difficulty of these projects using a three-star system. One star
is a project that should be relatively simple and accessible for all. I've reserved one
star for projects that tweak the code in fairly predictable or minor ways, or that merely
apply it to a new scenario. Three stars indicates a problem that requires novel thinking,

1.6 How the Book Is Structured 13

or modifications to the core algorithms or mathematics beyond what is introduced
in the chapter. It should be suitable for readers who really want to stretch themselves.

The game projects give suggestions for how to use the physics engine developed
so far in a complete game, showing off the physics as much as possible. These projects
will take longer, and can be used as an end-of-semester project, or as inspiration for
a complete game.

For all the projects in this book there is no right or wrong answer: you decide
how much or how little you want to develop the physics. I hope they will provide a
framework for applying the content of the book. One of the challenges of learning a
whole new area, like game physics, is seeing how to apply it as you go, without having
to learn everything there is to know before you start.

This page intentionally left blank

PART |

Particle Physics

This page intentionally left blank

THE MATHEMATICS
OF PARTICLES

efore we look at simulating the physics of particles, this chapter reviews 3D

mathematics. In particular, it looks at vector mathematics and vector calculus,
the fundamental building blocks on which all our physics code will be built. I'll avoid
some of the harder topics that we’ll only need later. Matrices and quaternions, for
example, will not be needed until Chapter 9, so I'll postpone reviewing them until
that point.

2. 1 VECTORS

Most of the mathematics we are taught at school deals with single numbers, such as
a number to represent how many apples we have, or the time it takes for a train to
make a journey, or the numerical representation of a fraction. We can write algebraic
equations that tell us the value of one number in terms of others. If x = y* and y = 3,
then we know x = 9. This kind of single number on its own is called a scalar value. One
particular scalar value is a number chosen from the whole range of possible numbers.

Scalar values have properties that we are very familiar with: they can be added,
multiplied, raised to powers, and so on. The rules for carrying out those operations
are taught to us from the first day of school.

Vectors have similarities to scalar values. They are also chosen from a whole set
of possible vectors, we choose them to represent things, and we define operators that
manipulate them according to specific rules.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00002-4 17

18 Chapter 2 The Mathematics of Particles

Mathematically, a vector is an element in a set called a vector space, a structure
that displays certain mathematical properties for addition and multiplication. There
are many different kinds of vector spaces with wildly different properties, but for our
purposes the only vector spaces we're interested in are regular (called Euclidean) 2D
and 3D space. In this case the vectors we choose can represent features of that space,
such as position, speed and direction of movement, acceleration, and so on.

Because vectors have a range of operations (addition, multiplication, etc.), we can
write them in algebraic equations: x = 2y, for example, where x and y are vectors (and
the number 2 is just a scalar value). Over the course of this chapter, we’ll look at these
operations and how they work, building up our ability to do math with vectors.

Vectors can be thought of as abstract values, but we’re interested in coding them,
so we'll need a concrete representation. In this book we will represent a vector as an
ordered list of scalar values. This will allow us to define our operations on the vector
in terms of how its constituent scale values are manipulated. So if y is a vector (let’s
say it contains the numbers 2 and 3), and x = 2y, then x will also be a vector of two
numbers, in this case 4 and 6.

Vectors can undergo some of the same mathematical operations as scalars, includ-
ing multiplication, addition, and subtraction. Some of these work in a slightly differ-
ent way to scalar values, and some operations that make sense for scalars (such as
division) aren’t defined for vectors.

Note that when I talk about vectors in this book, I am referring only to this mathe-
matical structure. Many programming languages have a vector data structure that is
some kind of growable array. The name comes from the same source (a set of values,
rather than just one), but that’s where the similarities stop. On the few occasions in
this book where I need to refer to a growable array, I will call it that, to keep the
name “vector” reserved for the mathematical concept. Few languages have a built-in
vector class to represent the kind of vector we are interested in, so we’ll create one
as we go.

One convenient application of vectors is to represent locations in space. Figure 2.1
shows two locations in 3D space. The position can be represented by three coordi-
nate values, one for the distance from a fixed origin point along each of three axes at
right angles to one another. This is called a Cartesian coordinate system, named for
the mathematician and philosopher Rene Descartes who invented it. There are other
ways of specifying coordinates, but we will use Cartesian coordinates throughout
the book.

We group the three coordinates together into a vector, written as

S
Il
ST

where x, y, and z are the coordinate values along the X, Y, and Z axes. Note the a
notation. This indicates that a is a vector; we will use this notation throughout the
book to make it easy to discriminate between vector and scalar values.

FIGURE 2.1

2.1 Vectors 19

3D coordinates.

Every vector specifies a unique position in space, and every position in space has
only one corresponding vector. We will use only vectors to represent positions in
space.

We can begin to implement a class to represent vectors. I have called this class
Vector3 to clearly separate it from any other Vector class in your programming
language (seeing the name Vector on its own is particularly confusing for Java
programmers).

Excerpt from file include/cyclone/core.h

namespace cyclone {
/**
* Holds a vector in three dimensions. Four data members are
allocated
* to ensure alignment in an array.
class Vector3
{
public:
/** Holds the value along the x axis. */
real X;

/** Holds the value along the y axis. */
real y;

/** Holds the value along the z axis. */
real z;

20 Chapter 2 The Mathematics of Particles

private:
/** Padding to ensure four word alignment. */
real pad;

public:

/** The default constructor creates a zero vector. */
Vector3() : x(0), y(0), z(0) {}

/**
* The explicit constructor creates a vector with the given
* components.
*/
Vector3(const real x, const real y, const real z)
2 x(x), y(y), z(2) {}
/** Flips all the components of the vector. */
void invert()

{

X = -X;
y = -y
X = -z3

Excerpt from file include/cyclone/precision.h
namespace cyclone {
/**
* Defines a real number precision. Cyclone can be compiled in
* single- or double-precision versions. By default, single
* precision is provided.
*/

typedef float real;

There are a few things to note about this source code.

All the code is contained within the cyclone namespace, as promised in the
first chapter. This makes it easier to organize code written in C++, and in par-
ticular it makes sure that names from several libraries will not clash. Wrapping
all the code samples in the namespace declaration is a waste of time, how-
ever, so in the remaining exerpts in this book, I will not show the namespace
explicitly.

Also to avoid clashing names, I have placed the header files in the directory
include/cyclone/, with the intention of having the include/ directory on the

2.1 Vectors 21

include path for a compiler (see your compiler’s documentation for how to
achive this). This means that to include a header we will use an include of the
format:

#include <cyclone/core.h>

or

#include "cyclone/core.h"

I find this to be a useful way of ensuring that the compiler knows which header
to bring in, especially with large projects that are using multiple libraries, sev-
eral of which may have the same name for multiple header files (I have at least
four math.h headers that I use regularly in different libraries, which is part of
my motivation for putting our mathematics code in a header called core.h).

B] have used real rather than float to reserve the storage for my vector compo-
nents. The real data type is a typedef, contained in its own file (precision.h).
I've done this to allow the engine to be rapidly compiled in different preci-
sions. In most of the work I’ve done, float precision is fine, but it can be a
huge pain to dig through all the code if you find you need to change to double
precision later. You may have to do this if you end up with numerical rounding
problems that won’t go away (they are particularly painful if you have objects
with a wide range of different masses in the simulation). By consistently using
the real data type, we can easily change the precision of the entire engine by
changing the type definition once. We will add to this file additional defini-
tions for functions (such as sqrt) that come in both float and doubTe forms.

B Dve added an extra piece of data into the vector structure, called pad. This isn’t
part of the mathematics of vectors, and is purely there for performance. On
many machines, four floating-point values sit more cleanly in memory than
three (memory is optimized for sets of four words), so noticeable speed-ups
can be achieved by adding this padding.

Your physics engine shouldn’t rely on the existence of this extra value for any
of its functionality. If you are programming for a machine that you know is
highly memory limited, and doesn’t optimize in sets of four words, then you
can remove pad safely.

2.1.1 THE HANDEDNESS OF SPACE

If you are an experienced game developer you will have spied a contentious assump-
tion in Figure 2.1. The figure shows the three axes arranged in a right-handed coor-
dinate system.

22

Chapter 2 The Mathematics of Particles

FIGURE 2.2

Y Y
V4
X V4 X
Left-handed Right-handed
coordinates coordinates

Left- and right-handed axes.

There are two different ways that we can arrange three axes at right angles to one
another: in a left-handed way or a right-handed way,! as shown in Figure 2.2.

You can tell which is which using your hands: make a gun shape with your hand,
thumb and extended forefinger at right angles to one another. Then, keeping your ring
finger and pinky curled up, extend your middle finger so that it is at right angles to the
first two. If you label your fingers with the axes in order (thumb is X, forefinger Y, and
middle finger Z), then you have a complete set of axes, whether right- or left-handed.

Some people prefer to think of this in terms of the direction that a screw is turned,
but I find making axes with my hands much simpler.

Game engines, rendering toolkits, and modeling software use either left- or right-
handed axes. There is no dependable standard. DirectX favors a left-handed coordi-
nate system, while OpenGL favors a right-handed system. XBox 360, being DirectX
based, is left-handed, Wii, being rather OpenGL-like, is right-handed, and PlaySta-
tion’s sample code is right-handed, although most developers create their own ren-
dering code. On any platform you can actually use either one with a bit more effort
(this is how cross-platform game engines use a consistent system on every plat-
form). For a detailed explanation of various systems and converting between them,
see Eberly [2003].

There are relatively few places where it matters which system we use, as it cer-
tainly doesn’t change the physics code in any way. I have (fairly arbitrarily) chosen
right-handed coordinates throughout this book. Because the demonstration code is
designed to work with OpenGL, this makes things slightly easier.

If you are working on a DirectX-only project and are keen to stay with a left-
handed system, then you’ll need to make the occasional adjustment in the code. T'll
try to indicate places where this is the case.

1. Strictly speaking, this handedness is called “chirality,” and each alternative is a “enantiomorph,”
although those terms are rarely if ever used in game development.

2.1 Vectors 23

2.1.2 VECTORS AND DIRECTIONS

In the previous section, I said that vectors represent quantities in 2D or 3D space. The
most obvious quantity they represent is a position. Just as importantly, a vector can
represent the change in position. Figure 2.3 shows an object that has moved in space
from position a, to a;. We can write down the change in position as a vector where
each component of the vector is the change along each axis. So,

Ax
a=| Ay
Az
where Ax is the change in the position along the X axis from gy to a;, given by
Ax =x1 — X

where X, is the X coordinate of ay and x; is the X coordinate of a;, and similarly for
Ay and Az.

Position and change in position are really two sides of the same coin. We can think
of any position as a change of position from the origin (written as 0, where each com-
ponent of the vector is zero) to the target location.

If we think in terms of the geometry of a vector being a movement from the origin
to a point in space, then many of the mathematical operations we’ll meet in this chap-
ter have obvious and intuitive geometric interpretations. Vector addition, subtrac-
tion, multiplication by a scalar, and different vector products, can all be understood

FIGURE 2.3 A vector as a movement in space.

24 Chapter 2 The Mathematics of Particles

in terms of how these changes in position relate. When drawn as in Figure 2.3, the
visual representation of an operation is often much more intuitive than its list of coor-
dinates. We'll consider this for each operation we meet.

A change in position, given as a vector, can be split into two elements:

a=dn [2.1]

where d is the straight-line distance of the change (called the “magnitude” of the vec-
tor), and n is the direction of the change. The vector n represents a change, whose
straight-line distance is always 1, in the same direction as the vector a. The vector n
is often called the “unit vector,” since its magnitude is always 1.

We can find d using the 3D version of Pythagoras’s theorem, which has the
formula,

d=|u|=\/m

where x, y, and z are the three components of the vector and |a| is the magnitude of
a vector.
We can use Equation 2.1 to find n:

— 1
a=n=—a (2.2]

d

where @ is a common (but not universal) notation for the unit vector in the direction
of a. The equation is sometimes written as:

. a
= —
|al
The process of finding just the direction n from a vector is called “normalizing,”
and the result of decomposing a vector into its two components is sometimes called
the normal form of the vector (i.e., dn is the normal form of a in the above equations).
This decomposition will be a common requirement in our code.
We can add functions to find the magnitude of the vector and its direction, and
to perform a normalization:

Excerpt from file include/cyclone/core.h

class Vector3

{
// ... Other Vector3 code as before ...
/** Gets the magnitude of this vector. */
real magnitude() const
{

return real_sqrt(x*x+y*y+z*z);

/** Gets the squared magnitude of this vector. */
real squareMagnitude() const

{

2.1 Vectors 25

return x*x+y*y+z*z;
}
/** Turns a non-zero vector into a vector of unit Tength. */
void normalize()
{

real 1 = magnitude();

if (1>0)

{

(*this) *= ((real)l)/1;

}s

Note that I've also added a function to calculate the square of the magnitude of a
vector. This is a faster process, because it avoids the call to sqrt which can be slow on
some machines. In some cases, we don’t need the exact magnitude; for example, we
may just need to compare two magnitudes to see which is greater. In these cases the
square of the magnitude will do and we can omit the square root. For this reason it is
common to see a squared magnitude function in a vector implementation.

2.1.3 ScALAR AND VECTOR MULTIPLICATION

In the normalization equations, I have assumed that we can multiply a scalar (1/d)
by a vector. This is our first vector operation, which is a simple process given by:

kx
ka=k|y|=]ky
z kz

In other words, we multiply a vector by a scalar by multiplying all the components
of the vector by the scalar.
To divide a vector by a scalar, we make use of the fact that

1
b= -
a axb
SO
a 1
—=—qa
k k

which is how we arrived at the normalization Equation 2.2 from Equation 2.1.
This formula also lets us define the additive inverse of a vector:

—X
—a=—-1lxa= |-y

—Z

26 Chapter 2 The Mathematics of Particles

FIGURE 2.4

We can overload the multiplication operator *= in C++ to support these opera-
tions, with the following code in the Vector3 class.

Excerpt from file include/cyclone/core.h

class Vector3
{
// ... Other Vector3 code as before ...
/** Multiplies this vector by the given scalar. */
void operator*=(const real value)
{
X *= value;
y *= value;
z *= value;

/** Returns a copy of this vector scaled the given value. */
Vector3 operator*(const real value) const

{

return Vector3(x*value, y*value, z*value);

Geometrically, multiplication of a vector by a scalar changes the length of the vec-
tor. This is shown in Figure 2.4.

The direction of the vector doesn’t change. If a vector has a length of k, we can
write it in normal form as

a=dn
Then multiplication by a scalar gives
ka = kdn

The resulting vector is in the same direction, but now has a length of kd.

The geometry of scalar-vector multiplication.

2.1 Vectors 27

FIGURE 2.5 The geometry of vector addition.

2.1.4 VECTOR ADDITION AND SUBTRACTION

Geometrically, adding two vectors together is equivalent to placing them end to end.
The result is the vector from the origin of the first to the end of the second, shown
in Figure 2.5. Similarly, subtracting one vector from another places the vectors end
to end, but the vector being subtracted is placed so that its tip touches the end of the
first. In other words, to subtract vector b from vector a, we first go forward along a,
then go backward along b.

In code it is very easy to add vectors or subtract them. For two vectors a and b,
their sum is given by

a by a, + by
at+b=|a, |+ |b|=]|0a+Db
a, b, a;+ b,

where a,, a,, and 4, are the x, y, and z components of the vector a. We will normally
use this notation for the components of a vector, rather than x, y, and z. This avoids
confusion when dealing with more than one vector.

Vector addition is achieved by adding the components of the two vectors together.
This can be implemented using the + operator in C++.

Excerpt from file include/cyclone/core.h

class Vector3
{
// ... Other Vector3 code as before ...
/** Adds the given vector to this. */
void operator+=(const Vector3& v)
{
X += V.X;
Y +=v.y;

28 Chapter 2 The Mathematics of Particles

zZ += Vv.z;

/** Returns the value of the given vector added to this. */
Vector3 operator+(const Vector3& v) const

{

return Vector3(x+v.x, y+v.y, z+v.z);

In the same way, vector subtraction is also performed by subtracting the compo-
nents of each vector:

Ay b, ay — by
a-b=\|a, |—|b|=]|a—b
az b, a; — b,

which is implemented in the same way as addition.

Excerpt from file include/cyclone/core.h
class Vector3

{
// ... Other Vector3 code as before ...
/** Subtracts the given vector from this. */
void operator-=(const Vector3& v)

{

X == V.X;
y == V.y;
Z -=V.z;
}
/**
* Returns the value of the given vector subtracted from this.
*/
Vector3 operator-(const Vector3& v) const
{

return Vector3(x-v.x, y-v.y, z-v.z);

A final version of addition, which is useful, combines both addition and scaling
of a vector. We simply merge the two processes into a single function, allowing us to

2.1 Vectors 29

add a scaled vector to another vector:

Ay b, ay + cby
atcb=|a, |+c|b,|=]|a,+cb
az b, a; + cb,

We could do this in two steps with the functions above, but having it in one place
is convenient.

Excerpt from file include/cyclone/core.h

class Vector3
{
// ... Other Vector3 code as before ...
/**
* Adds the given vector to this, scaled by the given amount.
*/
void addScaledVector(const Vector3& vector, real scale)
{
X += vector.x * scale;
y += vector.y * scale;
z += vector.z * scale;

2.1.5 MULTIPLYING VECTORS

Seeing how easy it is to add and subtract vectors may lull you into a false sense of
security. When we come to multiply two vectors, things get considerably more com-
plicated. There are several ways of multiplying two vectors together, and whenever we
produce a formula involving vector multiplication we will have to specify which type
of multiplication to use.

In algebra for scalar values, there is only one kind of multiplication. We write
this in various ways, either with no symbol at all (ab), with a dot (a - b), or with a
multiplication symbol (a x b).

With vectors these three notations have different meanings, and we have to be
more precise. Using no symbol usually denotes a type of multiplication that we will
not need to cover (the vector direct product; see a good mathematical encyclopedia
for information). I will not write ab in this book. The two other notations that we
will encounter are called the scalar product (a - b) and the vector product (a x b).
First, however, we’ll meet a fourth way of multiplying vectors that uses none of these
symbols.

30 Chapter 2 The Mathematics of Particles

2.1.6 THE COMPONENT PRODUCT

The most obvious product is the least useful: the component product, written in this
book as o (it does not have a universal standard symbol the way the other products
do). It is used in several places in the physics engine, but despite being quite obvi-
ous, it is rarely mentioned in books on vector mathematics. This is because it doesn’t
have a simple geometric interpretation—if the two vectors being multiplied together
represent positions, then it isn’t clear geometrically how their component product is
related to their locations. This isn’t true of the other types of product, as we’ll see.

The component product is formed in the same way as vector addition and sub-
traction, by multiplying each component of the vector together.

ax by acb,
aocb=|a,|o|b |=]|ab,
a; b, a;b,

Note that the end result of the component product is another vector. This is exactly
the same as for vector addition and subtraction, and for multiplication by a scalar: all
end up with a vector as a result.

Because it is not commonly used, we will implement the component product
as a method rather than an overloaded operator. We will reserve overloading the *
operator for the next type of product. The method implementation looks like the
following:

Excerpt from file include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/**

* Calculates and returns a component-wise product of this

* vector with the given vector.

*/

Vector3 componentProduct(const Vector3 &vector) const

{

return Vector3(x * vector.x, y * vector.y, z * vector.z);

/**

* Performs a component-wise product with the given vector and
* sets this vector to its result.

*/

void componentProductUpdate(const Vector3 &vector)

{

X *= vector.x;

2.1 Vectors 31

y *= vector.y;
z *= vector.z;

2.1.7 THE ScALAR PRODUCT

By far the most common product of two vectors is called the scalar product. It is dif-

ferent from any of our previous vector operations because its result is not a vector,

but rather a single scalar value (hence its name). It is written using a dot symbol, as in

a - b, and so is often called the dot product. For reasons beyond the scope of this book,

it is also more mathematically called the inner product, a term I will not use again.
The dot product is calculated with the following formula:

Ay b,
a-b=\|a, | |b, | =abi+ab,+ab, [2.3]
az b,

In my vector class, I have used the multiplication operator * to represent the dot
product (it looks quite like a dot, after all). We could overload the dot operator, but in
most C-based languages it controls access to data within an object, and so overloading
it is either illegal or a dangerous thing to do.

The scalar product methods have the following form:

Excerpt from file include/cyclone/core.h
class Vector3
{
// ... Other Vector3 code as before ...
/**
* Calculates and returns the scalar product of this vector
* with the given vector.
*/
real scalarProduct(const Vector3 &vector) const
{

return x*vector.x + y*vector.y + z*vector.z;

/**

* Calculates and returns the scalar product of this vector
* with the given vector.

*/

real operator *(const Vector3 &vector) const

32 Chapter 2 The Mathematics of Particles

return x*vector.x + y*vector.y + z*vector.z;

Note that there is no in-place version of the operator (i.e., no *= operator). This is
because the result is a scalar value, and in most languages an instance of a class can’t
change which class it belongs to—the vector can’t become a scalar.

I have also added a full method version, scalarProduct, in case you are more com-
fortable writing things longhand rather than remembering the slightly odd behavior
of the * operator.

The Trigonometry of the Scalar Product

There is an important result for scalar products that is not obvious from the for-
mula above. It relates the scalar product to the length of the two vectors and the angle
between them:

a-b=acb.+a,b,+a,b, =|a|lb|cosb [2.4]

where 6 is the angle between the two vectors.
So if we have two normalized vectors, @ and b, then the angle between them is
given by Equation 2.4 as:

0 =cos '(a-b)

These must be normalized vectors here. If a and b are just regular vectors, then
the angle would be given by:
fab
0 = cos —
|al|bl
You should be able to convince youreself that Equations 2.3 and 2.4 are equivalent
by using the Pythagoras theorem, and constructing a right-angled triangle where each
vector is the hypotenuse.

The Geometry of the Scalar Product

The scalar product arises time and again in physics programming. In most cases it is
used because it allows us to calculate the magnitude of one vector in the direction of
another.

Figure 2.6 shows vectors in two dimensions (for simplicity’s sake, there is no dif-
ference in three dimensions). Note that vector @ has unit length. Vector b is almost
at right angles to @, so most of its length points away and only a small component is
in the direction of @. Its component is shown, and despite the fact that b is long, its
component in the direction of @ is small.

FIGURE 2.6

2.1 Vectors 33

w

a'bzo'_/ |

a-c=-1.2 c

Geometric interpretation of the scalar product.

Vector ¢, however, is smaller in magnitude, but it is not pointing at right angles
to @. Note that it is pointing in almost the opposite direction to @. In this case its
component in the direction of @ is negative.

We can see this in the scalar products:

[a =1

|b| =2.0

lc| =1.5
a-b=03
a-b=-12

If one vector is not normalized, then the size of the scalar product is multiplied by
its length (from Equation 2.4). In most cases at least one vector, and often both, will
be normalized before performing a scalar product.

When you see scalar products in the physics engines in this book, it will most likely
be as part of a calculation that needs to find how much one vector lies in the direction
of another.

2.1.8 THE VECTOR PRODUCT

Where the scalar product multiplies two vectors together to give a scalar value, the
“vector product” multiplies them to get another vector. In this way it is similar to the
component product, but is considerably more common.

The vector product is indicated by a multiplication sign a x b and so is often called
the cross-product. In the same way that the dot product is mathematically called the
inner product, the vector product could be called the outer product; as before, I'll
avoid using that term.

34 Chapter 2 The Mathematics of Particles

The vector product is calculated with the formula:

Ay b, a,b, —a;b,
axb=|a, | x|b |=]|abc—ab,
az b, acb, —a,b,

This is implemented in our vector class in the following way:

Excerpt from file include/cyclone/core.h
class Vector3
{
// ... Other Vector3 code as before ...
/**
* Calculates and returns the vector product of this vector
* with the given vector.
*/
Vector3 vectorProduct(const Vector3 &vector) const
{
return Vector3(y*vector.z-z*vector.y,
z*vector.x-x*vector.z,
x*vector.y-y*vector.x);

/**

* Updates this vector to be the vector product of its current
* value and the given vector.

*/

void operator %=(const Vector3 &vector)

{

*this = vectorProduct(vector);

/**

* Calculates and returns the vector product of this vector

* with the given vector.

*/

Vector3 operator%(const Vector3 &vector) const

{

return Vector3(y*vector.z-z*vector.y,

z*vector.x-x*vector.z,
x*vector.y-y*vector.x);

[2.5]

2.1 Vectors 35

To implement this product, I have overloaded the % operator, simply because it
looks most like a cross. This operator is usually reserved for modulo division in most
languages, so purists may balk at reusing it for something else.

If you are easily offended, you can use the longhand vectorProduct methods
instead. Personally, I find the convenience of being able to use operators outweighs
any confusion, especially as vectors have no useful notion of division.

The Trigonometry of the Vector Product

Just like the scalar product, the vector product has a trigonometric correspondence.
Once again the magnitude of the product is related to the magnitude of its arguments
and the angle between them. This time the correspondence is

la x b| = |a||b| sinO [2.6]

where 6 is the angle between the vectors, as before.
This is the same as the scalar product, with the cosine in place of the sine. In fact,
we can write

la x bl =1al|blV'1 — (a- b)’
using the famous trigonometric relationship between cosine and sine,
cos?6 +sin’* 0 = 1

We could use Equation 2.6 to calculate the angle between two vectors, just as we
did using Equation 2.4 for the scalar product. This would be wasteful, however, since
it is much easier to calculate the scalar product than the vector product. So if we need
to find the angle (which we rarely do), then using the scalar product would be a faster
solution.

Commutativity of the Vector Product

You may have noted in the derivation of the vector product that it is not commutative.
In other words, a x b # b x a. This is different from each of the previous products
of two vectors, bothaob=boaanda-b=>b-a.

In fact, by comparing the components in Equation 2.5, we can see that

axb=—-bxa

This equivalence will make more sense once we look at the geometrical intepretation
of the vector product.

In practice, the noncommutative nature of the vector product means that we need
to take care to make sure that the orders of arguments are correct in equations. This
is a common error and can manifest itself in the game by objects being sucked into
each other, or by bobbing in and out of supposedly solid surfaces.

36 Chapter 2 The Mathematics of Particles

The Geometry of the Vector Product

Once again, using the scalar product as an example, we can interpret the magnitude
of the vector product of a vector and a normalized vector. For a pair of vectors @ and
b, the magnitude of the vector product represents the component of b that is not in
the direction of @. Again, having a vector a that is not normalized simply gives us a
magnitude that is scaled by the length of a. This can be used in some circumstances,
but in practice it is a relatively minor result.

Because it is easier to calculate the scalar product than the vector product, if we
need to know the component of a vector not in the direction of another vector, we are
better performing the scalar product and then using the Pythagoras theorem to give
the result,

c=+v1-—5s2

where ¢ is the component of b not in the direction of @, and s is the scalar product
a-b.

In fact, the vector product is very important geometrically not for its magnitude,
but for its direction.

In three dimensions, the vector product will point in a direction that is at right
angles (i.e., 90°, also called orthogonal) to both of its operands. This is illustrated
in Figure 2.7. There are several occasions in this book where it will be convenient to
generate a unit vector that is at right angles to other vectors. We can accomplish this
easily using the vector product,

—

r=axb

This interpretation shows us an important feature of the vector product: it is only
defined in three dimensions. In two dimensions, there is no possible vector at right
angles to two nonparallel vectors. In higher dimensions (which I admit are not very

FIGURE 2.7 Geometric interpretation of the vector product.

2.1 Vectors 37

useful for a game programmer), there are an infinite number of right-angled vec-
tors available. If you are developing a physics engine for a 2D game, you will not
have a vector product implementation. The scalar product works for any number of
dimensions.

2.1.9 THE ORTHONORMAL BAsSIs

In some cases we want to construct a triple of mutually orthogonal vectors, where each
vector is at right angles to the other two. Typically we want each of the three vectors
to be normalized. This kind of triple vector that is both orthogonal and normalized
is called an orthonormal basis.

There are a few ways of doing this. The simplest is to use the cross-product to
generate the orthogonal vectors.

The process starts with two nonparallel vectors. The first of these two will not
have its direction changed at all: call this a. We cannot change its direction during the
process, but if it is not normalized, we will change its magnitude. The other vector,
b, may not already be at right angles to a, so it may need to have its direction as well
as magnitude changed. One constraint on vector b, however, is that it must not be
parallel to vector a. If it is parallel, then we cannot find a unique third vector that is at
right angles to both a and b—there are an infinite number of such vectors. The third
vector, ¢, is not given at all, as it is determined entirely from the first two.

The algorithm proceeds as follows:

Normalize the starting vector a.
Find vector ¢ by performing the cross-product c =a x b.
Ifvector ¢ has a zero magnitude, then give up: this means that a and b are parallel.

Normalize vector c.

A

Now we need to ensure that @ and b are at right angles to one another. We can do
this by recalculating b based on a and ¢ using the cross-product, b = ¢ x a (note
the order). The resulting vector b must already be unit length, because both cand
a were and we know these are orthogonal.

In code, this algorithm might look like the following:

void makeOrthonormalBasis(Vector3 *a, Vector3 *b, Vector3 *c)
{
a->normalize();
(*c) = (*a) % (*b);
if (c.squareMagnitude() == 0.0) return; // Or generate an error.
c->normalize();
(*b) = (*c) % (*a);

38 Chapter 2 The Mathematics of Particles

This algorithm is a simple way of generating an orthonormal basis from two given
axes. When we talk about contact detection and contact resolution later in the book,
we will need to create an orthonormal basis, but we’ll only have one fixed axis. We'll
need to extend this algorithm accordingly.

Note that the construction of an orthonormal basis is a situation where it matters a
great deal whether you are working in a left- or right-handed coordinate system. The
previous algorithm is designed for right-handed systems. If you need a left-handed
coordinate system, then you can simply change the order of the operands for both the
cross-products. This will give you a left-handed orthonormal basis.

22 CALCULUS

Calculus is a complex field with tendrils that reach into all areas of mathematics.
Strictly speaking, “calculus” means any kind of formal mathematical system, but when
we talk about “the calculus” we normally mean analysis or the study of the behavior of
functions. Real analysis is the most common topic of high school and undergraduate
calculus classes, that is, the study of functions that operate on real numbers. We are
interested in vector analysis (usually widened to “matrix analysis,” of which vectors
are just one part). Even this subfield of a subfield is huge, and contains many branches
that have filled countless books on their own.

Fortunately for our immediate purpose, we are only interested in a very limited
part of the whole picture. We are interested in the way something changes over time
such as it might be the position of an object, or the force in a spring or its rotational
speed. The quantities we are tracking in this way are mostly vectors (we’ll return to
the non-vectors later in the book).

There are two ways of understanding changing quantities: we describe the change
itself, or we describe the results of the change. If an object is changing position with
time, we need to be able to understand how it is changing position (i.e., its speed, the
direction it is moving in, whether it is accelerating or slowing), and the effects of the
change (i.e., where it will be when we come to render it at the next frame of the game).

These two viewpoints are represented by the differential and integral calculus,
respectively. We can look at each in turn.

No code will be provided in this section, as it is intended as a review of the concepts
involved. The corresponding code makes up most of the rest of the book, very little
of which will make sense unless you grasp the general idea of this section.

2.2.1 DIFFERENTIAL CALCULUS

For our purposes, we can view the differential of a quantity as being the rate that it
is changing. In the majority of this book, we are interested in the rate it is changing
with respect to time. This is sometimes informally called its “speed,” but that term is
ambiguous. We will call it by the more specific term, “velocity.”

FIGURE 2.8

2.2 Calculus 39

Velocity

Think about the position of an object for a moment. If this represents a moving object,
then in the next instance of time, the position of the object will be slightly different.

We can work out the velocity at which the object is moving by looking at the two
positions. We could simply wait for a short time to pass, find the position of the object
again, and use the formula:

/

pP—p_Ap

At At
where v is the velocity of the object, p’ and p are its positions at the first and second
measurements (so Ap is the change in position), and At is the time that has passed
between the two. This would give us the average velocity over the time period.

It wouldn’t tell us the exact velocity of the object at any point in time, however.
Figure 2.8 shows the position of two objects at different times. Both objects start at the
same place, and end at the same place at the same time. Object A travels at a constant
velocity, whereas object B stays near its start location for a while, then zooms across
the gap very quickly. Clearly they aren’t traveling at the same velocity.

If we want to calculate the exact velocity of an object, we could reduce the gap
between the first and second measurement. As the gap gets smaller we get a more
accurate picture of the velocity of the object at one instant in time. If we could make
this gap infinitely small, then we would have the exact answer.

In mathematics, this is written using “limit” notation, as in

v= lim '
At—0 At
which simply means that the velocity would be accurately given by the distance trav-
eled divided by the time gap (Ap/At), if we could make the gap infinitely small
(lim;_o). Rather than use this limit notation, this is more commonly written with
a lowercase “d” in place of the A:

A
v= lim —p=@
At—0 At dt

t=0 t="% t=

" — @& — @

t=0 t="1% t=1

80O > O —» O

Same average velocity, different instantaneous velocity.

40 Chapter 2 The Mathematics of Particles

Because it is so common in mechanics to be talking about the change with respect to
time, this is often simplified even further:

. Ap dp .
v=lim —=—=

At—0 At dt

The dot over the p signifies that we’re interested in the velocity at which p is changing,
that is, its differential with respect to time.

Acceleration

If p is the position of an object and v is its velocity (where v = p), we can define its
acceleration too.

Acceleration is the rate that velocity is changing. If an object is accelerating hard,
it is rapidly increasing in velocity. In normal English, we use the word “slowing” to
mean the opposite of acceleration, or “braking” if we are talking about an automobile.
In physics, the term “acceleration” can mean any change in velocity, either increasing
or decreasing velocity. A positive value for acceleration represents speeding up, a zero
acceleration means no change in velocity at all, and negative acceleration represents
slowing down.

Because acceleration represents the rate that velocity is changing, we can follow
the same process to give:

Av dv

a=lim —=—
At—0 At dt
where v in this formula is velocity. And velocity is defined in terms of its own limit,
as seen in the previous section.

This is called the second differential: velocity is the first differential of position,
and if we differentiate again we get acceleration, so acceleration is the second differ-
ential. Mathematicians often write it in this way:

dv ddp d%

9a=—— == —

dt drdt de?
which can be confusing if you're not used to differential notation. Don’t worry about
how we end up with that particular pattern of squared elements—it isn’t important

for us; it simply indicates a second differential. Fortunately, we can completely ignore
this format altogether and use the dotted form again:

dp .
a=—=
=P
which is the format we’ll use in the remainder of the book.
We could write acceleration in terms of velocity as a = ¥ or
dv
dt

2.2 Calculus 41

if we wanted to, but this causes problems. As long as I use v for velocity, it’s fairly clear
what I mean. But if I write 71 or

dm

dt
it would not be obvious whether m is a velocity (and therefore, the whole expres-
sion is an acceleration) or a position (making the expression a velocity). To avoid
this confusion, it is typical to write acceleration in terms of position only, using the ¥
notation.

We've seen how to find the velocity and acceleration now. We could carry on, and
find the rate at which the acceleration is changing. This is called the jerk or sometimes
the jolt, and it can be important for some physical simulations.? We could go further
and find the rate of change of jerk, and so on.

A side effect of the laws of physics at work in our universe is that these quantities
are not connected in the same way as position, velocity, and acceleration. We therefore
do not need them in our physics engine. As we shall see in the next chapter, Newton
discovered that applying a force to an object changes its acceleration only: to make
believable physics involving forces, all we need to track are position, velocity, and
acceleration.

In summary, p, the velocity of p, is measured at one instant in time, not an average
velocity, and p is the acceleration of p, measured in exactly the same way, and it can
be negative to indicate slowing down.

Vector Differential Calculus

So far we’ve looked at differentiation purely in terms of a single scalar quantity. For
full 3D physics, we need to deal with vector positions rather than scalars.

Fortunately, the simple calculus we’ve looked at so far works easily in three dimen-
sions (although you must be careful—as a general rule, most of the equations for one-
dimensional calculus that you find in mathematics reference books cannot be used in
three dimensions).

If the position of the object is given as a vector in three dimensions, then its rate
of change is also represented by a vector. Because a change in the position on one axis
doesn’t change the position on any other axis, we can treat each axis as if it were its
own scalar differential.

The velocity and the acceleration of a vector depends only on the velocity and
acceleration of its components, as in

2. [Itisparticularly important in the design of roller coasters, among other things, because part of the way
that humans experience a roller coaster has to do with the patterns of jerk at play.

42 Chapter 2 The Mathematics of Particles

and similarly,

a

Aslong as our formulas do not involve the products of vectors, the way we defined
vector addition and vector—scalar multiplication earlier in the chapter works perfectly.
The upshot of this is that for most of the formulas that involve the differentials of
vectors, we don’t need any more complex math (or code) than if we were dealing with
scalars. We'll see an example of this in the next section.

As soon as we have formulas that involve multiplying vectors together, or that
involve matrices, things are no longer as simple. Fortunately, they are rare in this
book.

Velocity, Direction, and Speed

Although in everyday English we often use speed and velocity as synonyms, they have
different technical meanings. The velocity of an object, as we’ve seen, is a vector giving
the rate that its position is changing.

The speed of an object is the magnitude of this velocity vector, irrespective of the
direction it is moving in. By decomposing the velocity vector, we can get the speed
and the direction of movement:

x=sd

where s is the speed of the object, and d is its direction of movement. Using the equa-
tions for the magnitude and direction of any vector, the speed is given by

s=|x|
and the direction by
~ X
d=—
x|

Both the speed and direction can be calculated from a velocity vector using the
magnitude and normalize methods developed earlier in the chapter; they do not need
additional code.

The speed of an object is rarely needed in game physics development; it has an
application in calculating aerodynamic drag but little else. Both the speed and the
direction of movement are often used by an animation engine to work out what ani-
mation to play as a character moves. This is less common for physically controlled
characters.

This is largely a terminology issue, and the main point is to get into the habit of
calling velocity by its name.

2.2 Calculus 43

2.2.2 INTEGRAL CALCULUS

In mathematics, integration is the opposite of differentiation. If we differentiate
something and then integrate it, we get back to where we started.

In the same way that we obtained velocity from the position using differentiation,
we go the other way in integration. If we know the velocity, then we integrate to work
out the position at some point in the future. If we know the acceleration, we can find
the velocity at any point in time.

In physics engines, the term “integration” refers to updating the position and
velocity of each object in each frame. The chunk of code that performs this opera-
tion is called the integrator.

Although integration in mathematics is an even more complex process than dif-
ferentiation, in game development it can be very simple. If we know that an object
is moving with a constant velocity (i.e., no acceleration), and we know this velocity
along with how much time has passed, we can update the position of the object using
the formula:

pP=p+pt [2.7]

where p is the constant velocity of the object over the whole time interval.

This is the integral of the velocity—an equation that gives us the position. In the
same way, we could update the object’s velocity in terms of its acceleration using the
formula:

p'=p+pt (2.8]

Equation 2.7 only works for an object that is not accelerating.

Rather than finding the position by the first integral of the velocity, we could find it
as the second integral of the acceleration (just as acceleration was the second derivative
of the position). This would give us an update equation of

Lot
p=ptpttp [2.9]
where p is the velocity of the object at the start of the time interval, and p is the con-
stant acceleration over the entire time.

Describing how these equations are arrived at is beyond the scope of this book;
any introductary calculus book will derive them from first principles.

Just as Equation 2.7 assumes a constant velocity, Equation 2.9 assumes a con-
stant acceleration. We could generate further equations to cope with changing accel-
erations. As we will see in the next chapter, however, even 2.9 isn’t needed. When it
comes to updating the position, we can make do with the assumption that there is no
acceleration.

In mathematics, when we talk about integrating, we mean converting a formula
for velocity into a formula for position, or a formula for acceleration into one for
velocity—in other words, to do the opposite of a differentiation. In game develop-
ment, the term is often used slightly differently; to integrate means to perform the

44 Chapter 2 The Mathematics of Particles

position or velocity updates. From this point on, I will stick to the second use, since
we will have no need to do any other kind of integration.

Vector Integral Calculus

Just as we saw for differentiation, vectors take the place of scalars in the update func-
tions. Again, this is not the case for mathematics in general, and most of the formulas
you find in mathematical textbooks on integration will not work for vectors. The two
integrals we will use in this book—Equations 2.7 and 2.8—have the same form for
both scalar and vector terms. So we can write

P =p+pt
and perform the calculation on a component-by-component basis:
px+ Pt
P=ptpt=|p
bz + pet

This could be converted into code as in:

position += velocity * t;

using the overloaded operator forms of + and * we defined earier. In fact, this is exactly
the purpose of the addScaledVector method, so we can write:

position.addScaledVector(velocity, t);

and compute it in single operation, rather than risking our compiler deciding to create
and pass around extra vectors on the stack.

We have now implemented almost all the mathematics we need for our particle
engine. We will implement the integration step in the next chapter, after we look at
the physics involved in simulating particles.

23 SUMMARY

Vectors form the basis of all the mathematics in this book. As we’ve seen, they are easy
to manipulate numerically and through simple routines in code. It is important to
remember, however, that vectors are geometric—they represent positions and move-
ments in space. It is often simpler to understand the formulas in this book in terms
of their corresponding geometric properties, rather than numerically.

2.4 Exercises 45

Describing positions and movements in terms of vectors is fine, but to make a
physics engine, we’ll need to begin to link the two, that is, to encode into our physics
engine the laws of physics that say how position, movement and time are connected.
That is the subject of Chapter 3.

24 EXERCISES

Exercise 2.1
Decompose the following vector

2
-2
-2
into its magntiude and direction.
Exercise 2.2
(a) Calculate the scalar product:
3 0
2

N =
|

(b) What does the result of (a) tell us about the angle between the two vectors?

Exercise 2.3
Calculate the scalar product of a vector with itself.
(a) Which other method that we have defined corresponds to this value?
(b) Is it more or less efficient to calculate this value using a scalar product?
Exercise 2.4
Assume the following vector,
1
2
3
and another vector containing an unknown, x,
7
=2
X

If we know that the two vectors are perpendicular to one another, what is the
value of x?

46 Chapter 2 The Mathematics of Particles

Exercise 2.5
(a) Use the scalar product to find the angle between the following vectors:
0
1
1

0
-1
0

(b) Calculate the angle using the vector product. If you are doing this as an assign-
ment, you must show your work.

Exercise 2.6
Assume the following vectors:

and

(a) Calculate the scalar product c =4 - b.

(b) Calculate the value of vector d where d =b — ca.

(c) What is the angle between vectors @ and d? Geometrically, what have we done
to get this result?

Exercise 2.7
If a vector starts at

and changes with velocity
1
—1
2

per second, what will it be after 10 seconds?

THE LAWS OF
MOTION

hysics engines are based on Newton’s laws of motion. In later sections, we will
begin to use results that were added to Newton’s original work, but the funda-
mentals are his.

Newton discovered three laws of motion that describe with great accuracy how
point masses behave. A point mass is somewhat imaginary: it is an object that has
mass, but no size. It is an object, therefore, that can’t rotate, but otherwise moves
around normally. It might seem that this fantasy is particularly useless: every real
object does have size, after all. But the physics of many things can be simplified to
point masses. Newton used his laws very successfully in describing the motion of plan-
ets. Clearly, planets have considerable size, but on the scale of their orbits, Newton
found he could treat them as point masses.

The term point masses is rarely used in game physics, however. Almost always we
call them “particles.” So we have to be a little careful: what we’re doing shouldn’t be
confused with particle physics, which studies tiny particles such as electrons or photons
that definitely do not conform to Newton’s laws. For this book we’ll follow the rest of
the game development community and call them particles rather than point masses.

Later in the book we will move beyond particles and add the physics of rotating.
This introduces additional complications and new laws that were added to Newton’s
laws decades later. Even in these cases, however, the point-mass laws still can be seen
at work.

Before we look at the laws themselves, and how they are implemented, we need to
look at how to represent a particle in code.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00003-6 47

48 Chapter 3 The Laws of Motion

31 THE PARTICLE

A particle has a position, but no orientation. In other words, we can’t tell what direc-
tion a particle is pointing: it either doesn’t matter or it doesn’t make sense. In the
former category are bullets: in a game we don’t really care which direction a bul-
let is pointing in, we just care what direction it is traveling and whether it hits the
target. In the second cateogry are sparks of light, from an explosion for example—
because the spark is a dot of light, it doesn’t make sense to ask which direction it is
pointing.

For each particle we'll need to keep track of various properties: current position,
velocity, and acceleration. We will add properties to the particle as we go. Position,
velocity, and acceleration are all vectors.

The particle can be implemented with the following structure:

Excerpt from file include/cyclone/particle.h

/**
* A particle is the simplest object that can be simulated in the
* physics system.
*/
class Particle
{
protected:

/**

* Holds the linear position of the particle in

* world space.

*/

Vector3 position;

/**

* Holds the linear velocity of the particle in

* world space.

*/

Vector3 velocity;

/**

* Holds the acceleration of the particle. This value

* can be used to set acceleration due to gravity (its primary
* use), or any other constant acceleration.

*/

Vector3 acceleration;

Using this structure, we can apply some basic physics to create our first physics
engine.

3.2 The First Two Laws 49

32 THE FIRST Two LAWS

There are three laws of motion put forward by Newton; for now we will need only
the first two. They deal with the way an object behaves in the presence and absence of
forces.

The first two laws of motion follow:

1. An object continues with a constant velocity unless a force acts upon it.

2. A force acting on an object produces acceleration that is proportional to the
object’s mass.

The First Law

The first law tells us what happens if there are no forces around. The object will con-
tinue to move with a constant velocity. In other words, the velocity of the particle
will never change, and its position will continue to be updated based on the velocity.
This may not be intuitive, as moving objects we see in the real world will slow and
come to a stop eventually if they aren’t being constantly forced along. In this case, the
object is actually experiencing a force, the force of drag. In the real world, we can’t get
away from forces acting on a body; the closest phenomenon that we can imagine is
the movement of objects in space. Newton-1 tells us that if we could remove all forces,
then objects would continue to move at the same speed forever.

In our physics engine we could simply assume that there are no forces at work and
use Newton-1 directly. To simulate drag, we could add special drag forces. This is fine
for the simple engine we are building in this part of the book, but can cause problems
with more complex systems. The problem arises because the processor that performs
the physics calculations isn’t completely accurate. This inaccuracy can lead to objects
getting faster of their own accord.

A better solution is to incorporate a rough approximation of drag directly into
the engine. This allows us to make sure objects aren’t being accelerated by numerical
inaccuracy, and it can allow us to approximate real-world drag. If we need complicated
drag (such as aerodynamic drag in a flight simulator or racing game) we can still do
that the long way, by creating a special drag force. I will call our simple and inaccurate
form of drag “damping” to avoid confusion.

To support damping, we add another property to the particle class as follows:

Excerpt from file include/cyclone/particle.h
class Particle

{

// ... Other Particle code as before ...

/**
* Holds the amount of damping applied to linear
* motion. Damping is required to remove energy added

* through numerical instability in the integrator.

50 Chapter 3 The Laws of Motion

*/
real damping;

}s

When performing the integration, we will remove a proportion of the object’s velocity
at each update. The damping parameter controls how much velocity is left after the
update. If the damping is zero then the velocity will be reduced to nothing, meaning
that the object couldn’t sustain any motion without a force and would look odd to
the player. A value of 1 means that the object keeps all its velocity (equivalent to no
damping). If you don’t want the object to look like it is experiencing drag, but still
want to use damping to avoid numerical problems, then values slightly less than 1 are
optimal. A value of 0.999 might be perfect, for example.

The Second Law

The second law tells us how forces alter the motion of an object. A force is something
that changes the acceleration of an object (i.e., the rate of change of velocity). One
implication of this law is that we cannot do anything to an object to directly change
its position or velocity: we can only do that indirectly by applying a force to change
the accleration and wait until the object reaches our target position or velocity.

Just as for the first law, we will need to abuse this law later on in the book, to make
things look good. For now we’ll leave it intact.

Because of the second law, we will treat the acceleration of the particle differently
to the velocity and position. Both velocity and position keep track of a quantity from
frame to frame during the game. They change, but not directly, and only by the process
of integration.

Acceleration, by contrast, can be different from one moment to another; the forces
applied are different. We can simply set the acceleration of an object as we see fit
(although we’ll use the force equations below) and the behavior of the object will
look fine. If we directly set the velocity or position, the particle will appear to jolt or
jump. Because of this, the position and velocity properties will only be altered by the
physics engine and should not be manually altered (other than setting up the initial
position and velocity for an object, of course). The acceleration property can be set at
any time, and it will be left alone by the integrator.

3.2.1 THE FORCE EQUATIONS

The second part of the second law tells us how force is related to the acceleration. For
the same force, two objects will experience different accelerations depending on their
mass. The formula relating the force to the acceleration is the famous

f=ma=mp [3.1]

3.2 The First Two Laws 51

The first form, F = ma, is the more famous; the second form uses our notation for
acceleration as the second derivative of position. We can manipulate this equation to
give us the acceleration in terms of the force:

L1
p=—1 (3.2]

where f is the force and m is the mass.

In a physics engine, we typically find the forces applying to each object and use
Equation 3.2 to find the acceleration, which can then be applied to the object by the
integrator. For the engine we are creating in this part of the book, we won’t be using
forces that vary. We can set the acceleration in advance using this equation, without
having to use it at every update. In the remainder of the book, however, it will be a
crucial step to carry out at least once per frame.

So far all the equations have been given in their mathematics textbook form,
applied to scalar values. As we saw in the last chapter on calculus, we can convert
them easily to use vectors. For instance,

.1
P=;f

The force is a vector, as was acceleration.

3.2.2 ADDING MASS TO PARTICLES

We need to add mass to our particle definition, alongside its position, velocity, accel-
eration, and damping. Each particle needs its own mass, so that we can correctly cal-
culate its response to forces. We could just do this in the most obvious way: add a
scalar mass value for each object. There is a better way to get the same effect, however.

First, there is an important thing to note about Equation 3.2. If the mass of an
object is zero, then any non-zero force will generate infinite acceleration. This is not a
situation that should ever occur: no particle that we can simulate should ever have zero
mass. [f we try to simulate a zero mass particle it will cause divide-by-zero errors in the
code. Zero mass particles are both physically impossible and practically dangerous.

It is often useful, however, to simulate infinite masses. These are objects that no
force of any magnitude can move. They might be just as physically impossible, but
they are very useful for immovable objects in a game: the walls or floor, for example,
cannot be moved. If we feed an infinite mass into Equation 3.2, then the acceleration
will be zero, as we want. Aslong as such an object has zero initial velocity, it will always
stay in the same place.

Unfortunately, we cannot represent a true infinity in most computer languages,
and the optimized mathematics instructions on all common game processors do not
cope well with infinities. We have to get slightly creative. Ideally we want a solution
where it is easy to get infinite masses but impossible to get zero masses.

Note that in Equation 3.2 we use 1 over the mass to calculate our acceleration.
Because we never use the 3.1 form of the equation, we can speed up our calculations

52 Chapter 3 The Laws of Motion

by storing 1 over the mass. We call this the inverse mass. This solves our problem for
representing objects of zero or infinite mass: infinite mass objects have a zero inverse
mass, which is easy to set. Objects of zero mass would have an infinite inverse mass,
which cannot be specified in most programming languages.

We update our particle class to include the inverse mass as follows:

Excerpt from file include/cyclone/particle.h
class Particle

{

// ... Other Particle code as before ...

* Holds the inverse of the mass of the particle. It
* is more useful to hold the inverse mass because
* integration is simpler, and because in real-time
* simulation it is more useful to have objects with
* infinite mass (immovable) than zero mass

* (completely unstable in numerical simulation).

*/

real inverseMass;

}s

It is really important to remember that you are dealing with the inverse mass, and
not the mass. Itis quite easy to set the mass of the particle directly, without remember-
ing, only to see it have a completely inappropriate behavior on screen, such as barely
movable barrels zooming off at the slightest tap.

To help with this, 've made the inverseMass data field protected in my version of
the Particle class. To set the inverse mass, I use an accessor function. I have provided
functions for setInverseMass and setMass. Most of the time it is more convenient to
use the latter, unless we are trying to set an infinite mass.

3.2.3 MOMENTUM AND VELOCITY

Although Newton-1 is most often introduced in terms of velocity, it is a misrepresen-
tation. It is not velocity that is constant in the absence of any force, but momentum.

Momentum is the product of velocity and mass. Since mass is normally constant,
we can assume that velocity is therefore constant by Newton-1. In the event that a
traveling object is changing mass, then its velocity would also be changing, even with
no force.

We don’t need to worry about this for our physics engine, because we are not
dealing with situations where mass changes. This will be an important distinction
when we consider rotations later, however, because rotating objects can change the

3.2 The First Two Laws 53

way their mass is distributed. Under the rotational form of Newton-1, that means a
change in rotational speed with no other forces acting.

3.24 THE FORCE OF GRAVITY

Gravity is the most important force in a physics engine. In the real world, grav-
ity applies between every pair of objects, attracting them together with a force that
depends on their mass and distance. Newton also discovered this fact, and along with
the three laws of motion, he used it to explain the motion of planets and moons with
a new level of accuracy.

The formula he developed is called the law of universal gravitation:

my n,

f=6G

3 [3.3]
where m; and m;, are the masses of the two objects, r is the distance between their cen-
ters, f is the resulting force, and G is the “universal gravitational constant,” a scaling
factor derived from observation of planetary motion.

The effects of gravity between two objects the size of a planet are significant;
the effects between a (relatively) small objects such as a car, or even a building, are
small. Our experience of gravity is completely dominated by the Earth. We notice the
pull of the moon in the way our tides work, but other than that we only experience
gravity pulling us down to the planet’s surface. I don’t notice the gravitational force
beween me and my computer, for example. The same thing will apply to our physics
engine: the only gravity we’ll be interested in simulating is between each object and
the ground.

Because we are only interested in the pull of the Earth, we can simplify Equa-
tion 3.3. First, we can assume that m, is always constant (i.e., the Earth doesn’t change
mass). Second, and less obviously, we can assume that r is also constant. This is due
to the huge distances involved. The distance from the surface of the Earth to its center
is so huge (6400 km) that there is almost no difference in gravity between standing at
sea level and standing on the top of a mountain. For the accuracy we need in a game,
we can therefore assume the r parameter is constant.

With these assumptions, Equation 3.3 simplifies to:

f=mg [3.4]

where m is the mass of the object we are simulating, f is the force, as before, and g
is a constant that includes the universal gravitational constant, the mass of the Earth,
and its radius:
Mearth

2

§=G

This constant, g, is an acceleration, which we shall measure in meters per second. On
Earth this g constant has a value of around 10 ms™? (scientists sometimes use a value

54 Chapter 3 The Laws of Motion

0f9.807 ms~?, although because of the variations in r and other effects, this is a global
average rather than a measured value).

Equation 3.3 tells us the force that a mass experiences. And using our simplifica-
tions, this force depends on the mass of the object. If we work out the acceleration
using Equation 3.2, then we get:

. 1
p=—mg=g
m

In other words, no matter what mass the object has, it will always accelerate at the same
rate due to gravity. As the legend goes, Galileo dropped a heavy and a light object from
the Tower of Pisa and they hit the ground at the same time.!

This means that the most significant force we need to apply in our engine can be
applied directly as an acceleration. There is no point using Equation 3.4 to calculate a
force, then using Equation 3.2 to convert it back into an acceleration. In this iteration
of the engine we will introduce gravity as the sole force at work on particles, and it
will be applied directly as an acceleration.

The Value of g

It is worth noting that although the acceleration due to gravity on Earth is about
10 ms~2, this doesn’t look very convincing on screen. Games are intended to be more
exciting than the real world: things happen more quickly and at a greater intensity.

Creating simulations with a g value of 10 ms™ can look dull and insipid. Most
developers use higher values, from around 15 ms~2 for shooters (to avoid projectiles
having arcs that are too curved) up to 20 ms~? typical of driving games. Some devel-
opers go further and incorporate the facility to tune the g value on an object-by-object
basis. Our engine will include this facility.

Gravity typically acts in the down direction, unless you are going for a special
effect. In most games, the Y axis represents up and down in the game world, and
almost exclusively the positive Y axis points up.

The acceleration due to gravity can therefore be represented as a vector with the
following form:

0

g=|-¢
0

where g is the value we discussed above, and g is the acceleration vector we will use
to update the particle in the next section.

1. Isay legend, because if you actually do this experiment, you'll see that they don’t hit the ground at the
same time. As we’ve already seen, on Earth you can’t escape drag, and because drag doesn’t depend on an
object’s mass, it won’t be the same for the two objects. There is excellent footage from the moon, however,
showing a hammer and a feather being dropped and hitting the lunar surface at the same time.

3.3 The Integrator 55

33 THE INTEGRATOR

We now have all the equations and background needed to finish the first implemen-
tation of the engine. At each frame, the engine needs to look at each object in turn,
work out its acceleration, and perform the integration step. The calculation of the
acceleration in this case will be trivial: we will use the acceleration due to gravity
only.

The integrator consists of two parts—one to update the position of the object,
and the other to update its velocity. The position will depend on the velocity and
acceleration, while the velocity will depend only on the acceleration.

Integration requires a time interval over which to update the position and velocity:
because we update every frame, we use the time interval between frames as the update
time. If your engine is running on a console that has a consistent frame rate, then you
can hard code this value (although it is wise not to do so, because the same console
can have different frame rates in different territories, and eventually you’ll want to
port your game or run it slowly for debugging). If you are running on a PC with a
variable frame rate, then you probably need to time the duration of the frame.

Typically developers will time a frame, and then use that value to update the next
frame. This can cause noticeable jolts if the frame durations are dramatically incon-
sistent, but the game is unlikely to feel smooth in this case anyway, so it is a common
rule of thumb.

Another major approach to timing is to decouple the physics entirely from the
drawing loop, running it in its own thread at a fixed update interval (which should
still be adjustable in your code). This is particularly important if you need your physics
to be reproducible in multiplayer games.

In my sample code I use a central timing system that calculates the duration of
each frame. The physics code we will develop here simply takes in a time parameter
when it updates, and doesn’t care how this value was calculated.

3.3.1 THE UPDATE EQUATIONS

We need to update both position and velocity; each is handled slightly differently.

Position Update

In Chapter 2 we saw that integrating the acceleration twice gives us the following
equation for the position update:

. 1.
p/=p+pt+§pt2

This is a well-known equation seen in high school and undergraduate textbooks on
applied mathematics. We could use this equation to perform the position update in

56 Chapter 3 The Laws of Motion

the engine, with code something like:

object.position += object.velocity * time +
object.acceleration * time * time * 0.5;

or

object.position.addScaledVector(object.velocity, time);
object.position.addScaledVector(object.acceleration, time * time * 0.5);

In fact, if we are running the update every frame, then the time interval will be very
small (typically, 0.033 s for a 30 frames-per-second game). If we look at the accelera-
tion part of this equation, we are taking half of the squared time (which gives 0.0005).
This is such a small value that it is unlikely the acceleration will have much of an
impact on the change in position of an object.

For this reason we typically ignore the acceleration entirely in the position update
and use the simpler form,

pP=p+pt

This is the equation we will use in the integrator throughout this book.

If your game regularly uses short bursts of huge accelerations, then you might
conclude that you would be better off using the longer form of the equation. If you
do intend to use huge accelerations, however, you are likely to get all sorts of other
accuracy problems in your engine—all physics engines typically become unstable with
very large accelerations. Later in the book, we will develop a whole alternative set of
tools for applying very short bursts of high acceleration.

Velocity Update
The velocity update has a similar basic form:
B=p+it
Earlier in the chapter, however, we introduced another factor to alter the velocity: the

damping parameter. The damping parameter is used to remove a bit of velocity at
each frame. This is done by simply multiplying the velocity by the damping factor,

p = pd+pt (3.5]

where d is the damping for the object.

3.3 The Integrator 57

This form of the equation hides a problem, however. No matter whether we have
a long or a short time interval over which to update, the amount of velocity being
removed is the same. If our frame rate suddenly improves, then there will be more
updates per second and the object will suddenly appear to have more drag. A more
correct version of the equation solves this problem by incorporating the time into the
drag part of the equation,

P =pd +pt (3.6]

where the damping parameter d is now the proportion of the velocity retained each
second, rather than each frame.

Calculating one floating-point number to the power of another is a relatively slow
process on most modern hardware. If you are simulating a huge number of objects,
then it is normally best to avoid recaculating this value for each particle. You could, for
example, rewrite your code so that all particles have the same damping value—then
you only have to calculate d* once per frame, and use it for all objects.

A different approach favored by many engine developers is to use Equation 3.5,
with a damping value very near to 1, which is so small that it will not be noticable to
the player, but big enough to solve the numerical instability problem. In this case, a
variation in frame rate will not make any visual difference. Drag forces can then be
created and applied as explicit forces acting on each object (as we'll see in Chapter 5).
Unfortunately, this simply moves the problem to another part of the code, the part
where we calculate the size of the drag force. For this reason, I prefer to make the
damping parameter more flexible and allow it to be used to simulate visible levels of
drag.

I will use the full form in this book, as given in Equation 3.6.

3.3.2 THE COMPLETE INTEGRATOR

We can now implement our integrator. The code looks like this:

Excerpt from file include/cyclone/particle.h
class Particle

{

// ... Other Particle code as before ...

/**

* Integrates the particle forward in time by the given amount.

* This function uses a Newton-Euler integration method, which is a
* linear approximation to the correct integral. For this reason it
* may be inaccurate in some cases.

*/

void integrate(real duration);

}s

58 Chapter 3 The Laws of Motion

Excerpt from file include/cyclone/precision.h

/** Defines the precision of the power operator. */
#define real_pow powf

Excerpt from file src/particle.cpp

#include <assert.h>
#include <cyclone/particle.h>

using namespace cyclone;

void Particle::integrate(real duration)

{
// We don't integrate things with infinite mass.
if (inverseMass <= 0.0f) return;

assert(duration > 0.0);

// Update Tlinear position.
position.addScaledVector(velocity, duration);

// Work out the acceleration from the force.
// (We'll add to this vector when we come to generate forces.)
Vector3 resultingAcc = acceleration;

// Update linear velocity from the acceleration.
velocity.addScaledVector(resultingAcc, duration);

// Impose drag.
velocity *= real_pow(damping, duration);

// Clear the forces.
clearAccumulator();

I have added the integration method to the Particle class because it simply
updates the particle’s internal data. It takes a time interval and updates the position
and velocity of the particle, returning no data.

34 SUMMARY

In two short chapters we’ve gone from coding vectors to a first complete physics
engine.

3.5 Exercises 59

The laws of motion are elegant, simple, and incredibly powerful. The fundamental
connections that Newton discovered drive all the physical simulations in this book.
Calculating forces and integrating position and velocity based on force and time are
the fundamental steps of all physics engines, complex or simple.

Although we now have a physics engine that can be used in games (and is equiv-
alent to the systems used in many hundreds of published games), it isn’t yet suit-
able for a wide range of physical applications. In Chapter 4 we’ll look at some of the
applications that it can support and some of its limitations.

35 EXERCISES

Exercise 3.1

An equal force is applied for 1s to two stationary objects, a and b. The mass of a is
double that of b. After the force has been applied (and assuming no other forces are
involved), which object will be moving the fastest and by how much faster? Give your
answer as a multiplier (e.g., a is moving three times as fast as b—that’s the wrong
answer, by the way).

Exercise 3.2

The value of Newton’s universal gravitational constant is approximately 6.67428 x
10~""'m?kg' s72. Using Equation 3.3, calculate the force between two people, each
weighing 100 kg, who are standing 1 m apart.

Exercise 3.3

Kinetic energy is given by %m| v|?, where m is the mass of the object and v is its veloc-
ity. Add a method to your Particle class to calculate and return the kinetic energy. We
will see a use for this value at the end of the book when we look at putting a simulation
to sleep.

Exercise 3.4
A particle begins at

and is moving with velocity

1
—1 | per second,
- 2 -
and acceleration
o]
1 | per second per second.

60 Chapter 3 The Laws of Motion

(a) Use Equation 2.9 to calculate what its position will be after 5.
(b) Use Equations 2.7 and 2.8 to calculate its position and velocity after 1s.
(c) Repeat part b for an additional 4s.

(d) Compare the results from parts a and c. How much error has been introduced
by using the simpler equation?

Exercise 3.5

In the text we looked at two ways to represent damping: Equations 3.5 and 3.6. Imple-
ment a small test program that repeatedly simulates a pair of particles moving under
gravity for a fixed duration (1, for example). One particle should use Equation 3.5
and the other 3.6. Use random durations for the frame (within some small margin)
to simulate a variable frame rate. How much difference, on average, is there between
the velocities of the two particles at the end of each simulation?

~,

THE PARTICLE
PHYSICS ENGINE

e now have our first working physics engine. It is capable of simulating the
movement of particles under gravity.

Considering that it is such a simple piece of code, I've spent a long time talking
about the theory behind it. This will become important later in the book when we
repeat the same kind of logic for the rotation of objects.

At the moment our engine is fairly limited, as it can only deal with isolated parti-
cles, and they cannot interact in any way with their environment. Although these are
serious limitations that will be addressed in the next part of the book, we can still do
some useful things with we what we have.

In this chapter, we will look at how to set up the engine to process ballistics, that
is, bullets, shells, and the like. We will also use the engine to create a fireworks display.
Both of these applications are presented in skeleton form here, with no rendering
code. They can be found with full source code on the website.

4. 1 BALLISTICS

One of the most common applications of physics simulation in games is to model
ballistics. This has been the case for two decades, predating the current vogue for
physics engines.

In our ballistics simulation, each weapon fires a particle. Particles may represent
anything from bullets to artillery shells, from fireballs to laser bolts. Regardless of the
object being fired, we will call this a “projectile.”

Copyright © 2010, Elsevier Inc. All rights reserved.
DOL: 10.1016/B978-0-12-381976-5.00004-8 61

62 Chapter 4 The Particle Physics Engine

Each weapon has a characteristic muzzle velocity, the speed at which the projec-
tile is emitted from the weapon. This will be very fast for a laser bolt, and probably
considerably slower for a fireball. For each weapon, the muzzle velocity used in the
game is unlikely to be the same as its real-world equivalent.

4.1.1 SETTING PROJECTILE PROPERTIES

The muzzle velocity for the slowest real-world guns is on the order of 250 ms™!,

whereas tank rounds designed to penetrate armor plate can move at 1800 ms™!. The
muzzle velocity of an energy weapon such as a laser would be the speed of light:
300,000,000 ms™ . Even for relatively large game levels, any of these values is too high.
A bullet that can cross a game level in half a second would be practically invisible to
the player. If this speed is required, then it is better not to use a physics simulation,
but to simply cast a ray through the level the instant that the weapon is shot and check
if it collides with the target.

Instead, if we want the projectile’s motion to be visible, we use muzzle velocities
that are in the region of 5 to 25 ms™!, for a human-scale game (if your game represents
half a continent, and each unit is the size of a city, then it would be correspondingly
larger). This causes two knock-on effects that we have to cope with.

First, the mass of the particle should be larger than in real life, especially if you are
working with the full physics engine later in the book and you want impacts to look
impressive (being able to shoot a crate and topple it over, for example). The effect
that a projectile has when it impacts depends on both its mass and its velocity: if we
drop the velocity, we should increase the mass to compensate. The equation that links
energy, mass, and speed is

6:17152

where e is the energy, and s is the speed of the projectile (this equation doesn’t work
with vectors, so we can’t use velocity). If we want to keep the same energy, we can
work out the change in mass for a known change in speed as follows':

Am = (As)?

Real-world ammunition ranges from a gram in mass up to a few kilograms for
heavy shells and beyond for other tactical weapons (the bunker-busting shells used
in the second Gulf War are more than 1000kg in weight). A typical 5-g bullet that
normally travels at 500 ms™! might be slowed to 25ms™!. This is a As of 20. To get
the same energy, we need to give it 400 times the weight, or 2 kg.

Most projectiles shouldn’t slow too much in flight, so the damping parameter
would be near 1. Shells and mortars may arch under gravity, but other types of pro-
jectiles should barely feel the effect. If they were traveling at very high speed, then
they wouldn’t have time to be pulled down by gravity to a great extent, but since

1. Tam using the symbol A here to mean the difference in mass or speed as a factor of the original. So,
500 — 50 hasa A value of 0.1 for our purposes. It is more common to see it refer to the difference between
the two quantities, or —450 in the previous example.

FIGURE 4.1

4.1 Ballistics 63

Screenshot of the ballistic demo.

we've slowed them down, gravity will have longer to do its work. Likewise, if we are
using a higher gravity coefficient in the game, it will make the ballistic trajectory far
too severe: well-aimed projectiles will hit the ground only a few meters in front of the
character. To avoid this, we lower the gravity. For a known change in speed, we can
work out a “realistic” gravity value using the formula,

1
Sbullet = A_Sgnormal

where gnormal is the gravity you'd expect if the particle was traveling at full speed. This
would be 10ms~2 for most games (Earth gravity, i.e., not the same as the general
gravity being used elsewhere in the simulation, which is typically higher).

For our bullet example, we therefore have a gyujer of 0.5 ms™2.

4.1.2 IMPLEMENTATION

The ballistic demo in the source code (shown in Figure 4.1) gives you the choice of
four weapons: a pistol, an artillery piece, a fireball, and a laser gun (indicated by name
at the bottom of the screen). When you click the mouse, a new round is fired. The code
that creates a new round and fires it looks like this:

Excerpt from file src/demos/ballistic/ballistic.cpp
// Set the properties of the particle.
switch(currentShotType)
{
case PISTOL:
shot->particle.setMass(2.0f); // 2.0kg
shot->particle.setVelocity(0.0f, 0.0f, 35.0f); // 35m/s
shot->particle.setAcceleration(0.0f, -1.0f, 0.0f);
shot->particle.setDamping(0.99f);
break;

64 Chapter 4 The Particle Physics Engine

case ARTILLERY:
shot->particle.setMass(200.0f); // 200.0kg
shot->particle.setVelocity(0.0f, 30.0f, 40.0f); // 50m/s
shot->particle.setAcceleration(0.0f, -20.0f, 0.0f);
shot->particle.setDamping(0.99f);
break;

case FIREBALL:
shot->particle.setMass(1.0f); // 1.0kg - mostly blast damage
shot->particle.setVelocity(0.0f, 0.0f, 10.0f); // 5m/s
shot->particle.setAcceleration(0.0f, 0.6f, 0.0f); // Floats up
shot->particle.setDamping(0.9f);
break;

case LASER:
// Note that this is the kind of Taser bolt seen in films,
// not a realistic laser beam!
shot->particle.setMass(0.1f); // 0.1kg - almost no weight
shot->particle.setVelocity(0.0f, 0.0f, 100.0f); // 100m/s
shot->particle.setAcceleration(0.0f, 0.0f, 0.0f); // No gravity
shot->particle.setDamping(0.99f);
break;

// Set the data common to all particle types.
shot->particle.setPosition(0.0f, 1.5f, 0.0f);
shot->startTime = TimingData::get().lastFrameTimestamp;
shot->type = currentShotType;

// Clear the force accumulators.
shot->particle.clearAccumulator();

Note that each weapon configures the particle with a different set of values. The sur-
rounding code is skipped here for brevity (you can refer to the source code to see how
and where variables and data types are defined).

The physics update code looks like this:

Excerpt from file src/demos/ballistic/ballistic.cpp

// Update the physics of each particle in turn.
for (AmmoRound *shot = ammo; shot < ammo+ammoRounds; shot++)
{

if (shot->type != UNUSED)

{

4.1 Ballistics 65

// Run the physics.
shot->particle.integrate(duration);

// Check to see if the particle is now invalid.

if (shot->particle.getPosition().y < 0.0f ||
shot->startTime+5000 < TimingData::get().lastFrameTimestamp]| |
shot->particle.getPosition().z > 200.0f)

// We simply set the shot type to be unused, so the
// memory it occupies can be reused by another shot.
shot->type = UNUSED;

It simply calls the integrator on each particle in turn. After it has updated the par-
ticle, it checks whether the particle is below zero height, in which case it is removed.
The particle will also be removed if it is a long way from the firing point (100 m), or
if it has been in flight for more than 5s. In a real game you would use some kind of
collision detection system to check if the projectile had collided with anything. Addi-
tional game logic could then be used to reduce the hit points of the target character,
or add a bullet-hole graphic to a surface.

Because we have no detailed collision model at this stage, it is difficult to show the
effect of the energy in each projectile. When combined with the collisions and contacts
in the later parts of the book, this is obvious. I've provided a version of the demo (see
the screenshot in Figure 4.2) called bigballistic that includes objects to shoot at that
are simulated using the full physics engine. You can clearly see the different impact
effects of the different types of projectiles in this simulation.

FIGURE 4.2 Screenshot of the bigballistic demo.

66 Chapter 4 The Particle Physics Engine

FIGURE 4.3

Screenshot of the fireworks demo.

42 FIREWORKS

Our second example may appear less useful, but demonstrates a common application
of particle physics used in most games. Fireworks are just a very ostentatious applica-
tion of a particle system that could be used to display explosions, flowing water, and
even smoke and fire.

The fireworks demo in the source code allows you to create an interactive fire-
works display. You can see a display in progress in Figure 4.3.

42.1 THE FIREWORKS DATA

In our fireworks display we need to add extra data to the basic particle structure. First,
we need to know what kind of particle it represents. Fireworks consist of a number
of payloads: the initial rocket may burst into several lightweight minifireworks that
explode again after a short delay. We represent the type of firework by an integer value.

Second, we need to know the age of the particle. Fireworks consist of a chain reac-
tion of pyrotechnics with carefully timed fuses. A rocket will first ignite its rocket
motor, and then after a short time of flight, the motor will burn out as the explo-
sion stage detonates. This may scatter additional units, each of which has a fuse of the
same length, allowing the final bursts to occur at roughly the same time (not exactly
the same time, however, as that would look odd). To support this, we keep the age for
each particle and update it at each frame.

The firework structure can be implemented in this way:

Excerpt from file src/demos/fireworks/fireworks.cpp

/**
* Fireworks are particles, with additional data for rendering and
* evolution.

*/

4.2 Fireworks 67

class Firework : public cyclone::Particle

{

public:
/** Fireworks have an integer type, used for firework rules. */
unsigned type;

/**

* The age of a firework determines when it detonates. Age gradually
* decreases; when it passes zero the firework delivers its payload.
* Think of age as fuse left.

*/

cyclone::real age;

}s

I’ve used an object-oriented approach here, and made the firework structure a
subclass of the particle structure. This allows me to add just the new data without
changing the original particle definition.

4.2.2 FIREWORK RULES

To define the effect of a composite firework, which may be made up of several of our
firework effects, we need to be able to specify how one type of particle changes into
another. We do this as a set of rules: for each firework type we store an age, and a set
of data for additional fireworks that will be spawned when the age is passed. This is
held in a rules data structure with the following form:

Excerpt from file src/demos/fireworks/fireworks.cpp
/**
* Firework rules control the length of a firework's fuse and the
* particles it should evolve into.
*/
struct FireworkRule

{
/** The type of firework that is managed by this rule. */
unsigned type;

/** The minimum length of the fuse. */
cyclone::real minAge;

/** The maximum length of the fuse. */
cyclone::real maxAge;

/** The minimum relative velocity of this firework. */

68 Chapter 4 The Particle Physics Engine

cyclone::Vector3 minVelocity;
/** The maximum relative velocity of this firework. */
cyclone::Vector3 maxVelocity;

/** The damping of this firework type. */
cyclone::real damping;

/**

* The payload is the new firework type to create when this
* firework's fuse is over.

*/

struct Payload

{
/** The type of the new particle to create. */

unsigned type;

/** The number of particles in this payload. */
unsigned count;

/** Sets the payload properties in one go. */
void set(unsigned type, unsigned count)

{
Payload::type = type;
Payload::count = count;

}s

/** The number of payloads for this firework type. */
unsigned payloadCount;

/** The set of payloads. */
Payload *payloads;

Rules are provided in the code, and defined in a single function that controls the
behavior of all possible fireworks. The following is a sample of that function:

Excerpt from file src/demos/fireworks/fireworks.cpp

void FireworksDemo::initFireworkRules ()

{

// Go through the firework types and create their rules.
rules[0].init(2);
rules[0].setParameters (

4.2 Fireworks 69

1, // type
0.5f, 1.4f, // age range
cyclone::Vector3(-5, 25, -5), // min velocity
cyclone::Vector3(5, 28, 5), // max velocity
0.1 // damping
)s

rules[0] .payloads[0].set(3, 5);

rules[0] .payloads[1].set(5, 5);

rules[1].init(1);

rules[1].setParameters(
2, // type
0.5f, 1.0f, // age range
cyclone::Vector3(-5, 10, -5), // min velocity
cyclone::Vector3(5, 20, 5), // max velocity
0.8 // damping
)s

rules[1].payloads[0].set (4, 2);

rules[2].init(0);

rules[2].setParameters(
3, // type
0.5f, 1.5f, // age range
cyclone::Vector3(-5, -5, -5), // min velocity
cyclone::Vector3(5, 5, 5), // max velocity
0.1 // damping
)s

// -.. and so on for other firework types ...

In a game development studio, it is often the art staff who need to decide how the
particles in a game will behave. In this case it is inconvenient to have the rules defined
in code. A full game is likely to have some kind of editing tool that allows art staff to
author the particle appearance and behavior. These rules are then inferred from the
resulting data file.

423 THE IMPLEMENTATION

In each frame, each firework has its age updated, and is checked against the rules.
If its age is past the threshold, then it will be removed and more fireworks will
be created in its place (the last stage of the chain reaction spawns no further
fireworks).

70 Chapter 4 The Particle Physics Engine

The firework update function now looks like this:

Excerpt from file src/demos/fireworks/fireworks.cpp
class Firework : public cyclone::Particle
{
public:
/**
* Updates the firework by the given duration of time. Returns true
* if the firework has reached the end of its 1life and needs to be
* removed.
*/
bool update(cyclone::real duration)
{
// Update our physical state.
integrate(duration);

// We work backward from our age to zero.
age -= duration;

return (age < 0) || (position.y < 0);

}s

Note that if we don’t have any spare firework slots when a firework explodes into
its components, then not all the new fireworks will be initialized. In other words, when
resources are tight, older fireworks get priority. This allows us to put a hard limit on
the number of fireworks being processed, which can avoid having the physics slow
down when things get busy. Many developers use a different strategy in their engines:
give priority to newly spawned particles, and remove old particles to make way.

Your choice of strategy depends on the application. For particles being constantly
emitted froma source, such as smoke, my approach would produce odd-looking oscil-
lations. In the fireworks demo, it is the better choice.

The code that actually creates new fireworks looks like this:

Excerpt from file src/demos/fireworks/fireworks.cpp
struct FireworkRule
{
/**
* Creates a new firework of this type and writes it into the given
* instance. The optional parent firework is used to base position
* and velocity on.
*/
void create(Firework *firework, const Firework *parent = NULL) const

{

firework->type = type;

}s

4.2 Fireworks

firework->age = random.randomReal (minAge, maxAge);

cyclone::Vector3 vel;

if (parent) {
// The position and velocity are based on the parent.
firework->setPosition(parent->getPosition());
vel += parent->getVelocity();

}

else

{
cyclone::Vector3 start;
int x = (int)random.randomInt(3) - 1;
start.x = 5.0f * cyclone::real(x);
firework->setPosition(start);

vel += random.randomVector(minVelocity, maxVelocity);
firework->setVelocity(vel);

// We use a mass of 1 in all cases (no point having fireworks

71

// with different masses, since they are only under the influence

// of gravity).
firework->setMass(1);

firework->setDamping(damping);
firework->setAcceleration(cyclone::Vector3::GRAVITY);

firework->clearAccumulator();

void FireworksDemo::create(unsigned type, const Firework *parent)

{

// Get the rule needed to create this firework.
FireworkRule *rule = rules + (type - 1);

// Create the firework.
rule->create(fireworks+nextFirework, parent);

// Increment the index for the next firework.
nextFirework = (nextFirework + 1) % maxFireworks;

72 Chapter 4 The Particle Physics Engine

As fireworks are spawned, they have their particle properties set, with velocities
determined with a random component. Note that I've used high damping values
for several of the firework types; this allows them to drift back down to the ground
slowly, which is especially important for fireworks that need to hang in the air before
exploding.

In each frame, all of the currently active fireworks are updated. This is performed
by a simple loop that first checks whether the firework should be processed (fireworks
with a type of zero are defined to be inactive).

Excerpt from file src/demos/fireworks/fireworks.cpp
for (Firework *firework = fireworks;
firework < fireworks+maxFireworks;
firework++)

// Check to see if we need to process this firework.
if (firework->type > 0)
{
// Does it need removing?
if (firework->update(duration))
{
// Find the appropriate rule.
FireworkRule *rule = rules + (firework->type-1);

// Delete the current firework (this doesn't affect its

// position and velocity for passing to the create function,
// just whether it is processed for rendering or

// physics.

firework->type = 0;

// Add the payload.

for (unsigned i = 0; i < rule->payloadCount; i++)

{
FireworkRule::Payload * payload = rule->payloads + i;
create(payload->type, payload->count, firework);

These code fragments are taken from the fireworks demo in the accompa-
nying source code. You can create your own fireworks display using the number keys
to launch new fireworks (there are nine basic firework types).

4.4 Projects 73

Exactly the same kind of particle system is used in many game engines. By setting
the gravity of particles to a very low value, or even having gravity pull some kinds
of particle upward, we can create smoke, fire, waterfalls, explosions, sparks, rain, and
many other effects.

The difference between each type of particle is simply one of rendering. Particles
are normally drawn as a flat bitmap on screen, rather than as a 3D model. This is the
approach I’ve used in the demo.

Most production particle systems also allow particles to rotate—not the full 3D
rotation we will cover later in this book, but a screen rotation, so that each particle
bitmap is not drawn with the same orientation on screen. It can be useful to have this
rotation change over time. I will not try to implement this technique in this book. It
is relatively easy to add a constant-speed rotation to particles, and forms one of the
exercises for this chapter.

43 SUMMARY

The particle physics engine is most suitable for special effects, such as the ballistics of
projectile weapons and visual effects for explosions. A system built for visual effects
is often simply called a “particle system.”

In this chapter we’ve used a particle system to render fireworks. There are tens
of other uses. Most games have some kind of particle system at work (often com-
pletely separate from the main physics engine, but increasingly they are united).
By setting particles with different properties for gravity, drag, and initial velocity,
it is possible to simulate everything from sparks to smoke and from fireballs to
fireworks.

Eventually, however, single particles won’t be enough. We’ll need full 3D objects.
In Part II of this book, we’ll look at one way to simulate objects, by building struc-
tures out of particles connected by springs, rods, and cables. To handle these struc-
tures we'll need to consider more forces than just gravity on particles, the topic of
Chapter 5.

44 PROJECTS

Mini-Project 4.1
Add a grenade shot type to the bigballistic demo. Make sure that it behaves differ-
ently, but convincingly alongside the other ammunition types.

Mini-Project 4.2
Add two new firework types to the fireworks demo. Make sure that at least one of the
fireworks you add spawns further fireworks when it reaches its maximum age.

74 Chapter 4 The Particle Physics Engine

Mini-Project 4.3
Add the ability to aim to the bigballistic demo. Extend the system to use several target
blocks with varying masses, including at least one with infinite mass.

Mini-Project 4.4

Add one or more firework types to the fireworks demo to implement a Catherine
wheel effect. Can this be done without using a force generator to implement the
rotation?

Project 4.1

Create a game where a player has to keep a fireworks display going for as long as possi-
ble. By default, fireworks should not spawn others; they should just age and disappear.
If a firework in flight is clicked, however, it should release a further shower of sparks.
A player’s turn is over when there are no more live fireworks to click. Make sure that
you implement a range of interesting firework effects, with different speeds and age
characteristics, to add variety to the game play.

Project 4.2

Create the training mode for a sniper game. The game level should consist of sev-
eral targets of the same size at different locations and distances from the fixed player
location. The player may turn to aim and fire at the targets, scoring points when the
target is hit. Add a wind force (using a force generator from Chapter 5) that changes
in a random way between each shot. The direction and strength of the wind should
be indicated on screen to help the player plan the next shot.

PART 1]

Mass Aggregate Physics

This page intentionally left blank

ADDING GENERAL
FORCES

n Part I, we built a particle physics engine that included the force of gravity. We
looked at the mathematics of forces in Chapter 3, which let us simulate any force
we liked by calculating the resulting acceleration.

In this chapter, we will extend our physics engine so it can cope with multiple dif-
ferent forces acting at the same time. We will assume that gravity is one force, although
this can be removed or set to zero if required. We will also look at force generators,
that is, code that can calculate forces based on the current state of the game world.

51 D’ALEMBERT’S PRINCIPLE

Although we have equations for the behavior of an object when a force is acting on
it, we haven’t considered what happens when more than one force is acting. Clearly
the behavior is going to be different than if either force acts alone: one force could
be acting in the opposite direction to another or reinforcing it in parallel. We need a
mechanism to work out the overall behavior as a result of all forces.

D’Alembert’s principle comes to the rescue here. The principle itself is more com-
plex and far-reaching than we’ll need to consider. It is based on a different form of the
equations of motion, and relates quantities we’re not directly manipulating. For our
purposes it has two important implications. The first applies here, and the second will
arise in Chapter 10.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00005-X 77

78 Chapter 5 Adding General Forces

For particles, D’Alembert’s principle implies that if we have a set of forces acting
on an object, we can replace all those forces with a single force, which is calculated by:

=3

In other words, we simply add the forces together using vector addition, and we apply
the single force that results.

To make use of this result, we use a vector as a force accumulator. In each frame
we zero the vector and add each applied force in turn using vector addition. The final
value will be the resultant force to apply to the object. We add a method to the particle
that is called at the end of each integration step to clear the accumulator of the forces
that have just been applied:

Excerpt from file include/cyclone/particle.h

class Particle

{

// ... Other Particle code as before ...

/**
* Holds the accumulated force to be applied at the next
* simulation iteration only. This value is zeroed at each
* integration step.
*/
Vector3 forceAccum;
/**
* Clears the forces applied to the particle. This will be
* called automatically after each integration step.
*
/
void clearAccumulator();

}s

Excerpt from file src/particle.cpp

void Particle::integrate(real duration)

{
// We don't integrate things with infinite mass.
if (inverseMass <= 0.0f) return;

assert(duration > 0.0);

// Update Tlinear position.
position.addScaledVector(velocity, duration);

// Work out the acceleration from the force.

5.1 D’Alembert’s Principle

Vector3 resultingAcc = acceleration;
resultingAcc.addScaledVector(forceAccum, inverseMass);

// Update Tinear velocity from the acceleration.
velocity.addScaledVector(resultingAcc, duration);

// Impose drag.
velocity *= real_pow(damping, duration);

// Clear the forces.
clearAccumulator();

}

void Particle::clearAccumulator()

{

forceAccum.clear();

79

We then add a method that can be called to add a new force into the accumulator:

Excerpt from file include/cyclone/particle.h
class Particle

{

// ... Other particle code as before ...

/**

* Adds the given force to the particle to be applied at the
* next iteration only.

*/

void addForce(const Vector3 &force);

}s

Excerpt from file src/particle.cpp
void Particle::addForce(const Vector3 &force)

{

forceAccum += force;

This accumulation stage needs to be completed just before the particle is inte-
grated. All the forces that apply need to have a chance to add themselves to the accu-
mulator. We can do this by manually adding code to our frame update loop that adds
the appropriate forces. This is appropriate for forces that will only occur for a few

frames.

80 Chapter 5 Adding General Forces

For forces that apply over an extended period of time, it would be better to have
some automated mechanism. We can make it easier to manage these long-term forces
by creating a registry. A force registers itself with a particle, and then will be asked to
provide a force each frame. I called these “force generators.”

52 FORCE GENERATORS

We have a mechanism for applying multiple forces to an object. We now need to work
out where these forces come from. The force of gravity is fairly intuitive: it is always
present for all objects in the game.

Some forces arise because of the behavior of an object, such as a dedicated drag
force. Other forces are a consequence of the environment that an object finds itself
in; a buoyancy force for a floating object or the blast force from an explosion are
examples. Still other types of force are a result of the way that objects are connected
together: we will look at forces that behave like springs in the next chapter. Finally,
there are forces that exist because the player (or an Al-controlled character) has
requested them, such as the acceleration force in a car or the thrust from a jetpack.

Another complication is the dynamic nature of some forces. The force of gravity
is easy because it is always constant. We can calculate it once and leave it set for the
rest of the game. Most other forces are constantly changing. Some change as a result
of the position or velocity of an object: drag is stronger at higher speeds, and a spring’s
force is greater the more it is compressed. Others change because of external factors:
an explosion dissipates, and the player’s jetpack burst will come to a sudden end when
they release the thrust button.

We need to be able to deal with a range of different forces with very different
mechanics for their calculation. Some might be constant, others might apply some
function to the current properties of the object (such as position and velocity), some
might require user input, and others might be time-based.

If we simply programmed all these types of forces into the physics engine, and set
parameters to mix and match them for each object, the code would rapidly become
unmanageable. Ideally we would like to be able to abstract away the details of how a
force is calculated and allow the physics engine to simply work with forces in general.
This would allow us to apply any number of forces to an object, without the object
knowing the details of how those forces are calculated.

I will do this through a structure called a “force generator.” There can be as many
different types of force generators as there are types or sources of force, but each object
doesn’t need to know how a generator works. The object uses a consistent interface
to find the force associated with each generator; these forces can then be accumulated
and applied in the integration step. This allows us to apply any number of forces, of
any type we choose, to any object. It also allows us to create new types of forces for
new games or levels, as we need to, without having to rewrite any code in the physics
engine.

Not every physics engine has the concept of force generators: many require
handwritten code to add forces, or else limit the possible forces to just a handful of

5.2 Force Generators 81

common options. Having a general solution is more flexible, and allows us to exper-
iment more quickly.

To implement this we will use an object-oriented design pattern called an inter-
face. Some languages (such as Actionscript) have this built in as part of the language,
while in others it can be approximated with a regular class. Before we look at the
force generator code, I will briefly review the concept of an interface, and its relative,
polymorphism.

5.2.1 INTERFACES AND POLYMORPHISM

In programming, an interface is a specification of how one software component
interacts with others. In an object-oriented language, it normally refers to a class: an
interface is a specification of the methods, constants, data types, and exceptions (i.e.,
errors) that a class will expose. The interface itself is not a class, but rather a specifi-
cation that any number of classes can fulfill. When a class fulfills the specification, we
say that it implements the interface (in fact, Actionscript uses the explicit impTements
keyword to denote a class that implements an interface).

Interfaces show their power when used in polymorphism. Polymorphism is the
ability of a language to use some software component on the basis that it fulfills a
predefined specification, without having to know the exact component it is talking
to. As long as the specification is met, we can easily change and add different imple-
mentations without altering the code that uses them.

This replaceability is key for our needs: we will create an interface for a force gener-
ator, and any number of implementations representing specific forces. Through poly-
morphism, our physics engine will not need to know what kind of force generators
are running, as long as they implement the interface.

In C++, there is no dedicated interface structure in the language. Instead we use a
base class, with a selection of pure virtual functions. This ensures that we can’t create
an instance of the base class. Each class that derives from the base class then has to
implement all its methods before it can be instantiated.

5.2.2 IMPLEMENTATION

The interface for the force generator only needs to provide a current force. This can
then be accumulated and applied to the object.
The interface we will use looks like this:

Excerpt from file include/cyclone/pfgen.h

/**

* A force generator can be asked to add a force to one or more
* particles.

*/

class ParticleForceGenerator

82 Chapter 5 Adding General Forces

{
public:

/**

* Overload this in implementations of the interface to calculate
* and update the force applied to the given particle.

*/

virtual void updateForce(Particle *particle, real duration) = 0;

}s

The updateForce method is passed the duration of the frame for which the force
is needed and a pointer to the particle that is requesting the force. The duration of the
frame is needed for some force generators (we will encounter a spring-force generator
in Chapter 6 that depends critically on this value).

We pass the pointer of the particle into the function so that a force generator
does not need to keep track of the object itself. This also allows us to create force
generators that can be attached to several objects at the same time. As long as the
generator instance does not contain any data that is specific to a particular object,
it can simply use the object passed in to calculate the force. Both the example force
generators below have this property.

The force generator does not return any value. We could have it return a force to
add to the force accumulator, but then force generators would have to return some
force (even if it were zero), and that would remove flexibility we’ll use later in the book
when we support rotation. Instead, if a force generator wants to apply a force, it can
call the addForce method to the object it is passed.

As well as the interface for force generators we need to be able to register which
force generators affect which particles. We could add this into each particle with a
data structure such as a linked list or a growable array of generators. This would be
a valid approach, but it has performance implications: either each particle needs to
have lots of wasted storage (using a growable array), or new registrations will cause
lots of memory operations (creating elements in linked lists). For performance and
modularity, I think it is better to decouple the design and have a central registry of
particles and force generators. The one I have provided looks like this:

Excerpt from file include/cyclone/pfgen.h

/**

* Holds all the force generators and the particles that they apply to.
*/

class ParticleForceRegistry

{

protected:

/**

5.2 Force Generators

* Keeps track of one force generator and the particle it
* applies to.
*/
struct ParticleForceRegistration
{
Particle *particle;
ParticleForceGenerator *fg;

}s

/**

* Holds the Tist of registrations.

*/

typedef std::vector<ParticleForceRegistration> Registry;
Registry registrations;

public:
/**
* Registers the given force generator to apply to the
* given particle.
*/

void add(Particle* particle, ParticleForceGenerator *fg);

/**

* Removes the given registered pair from the registry.
* If the pair is not registered, this method will have
* no effect.

*/

void remove(Particle* particle, ParticleForceGenerator *fg);

/**

* Clears all registrations from the registry. This will
* not delete the particles or the force generators

* themselves, just the records of their connection.

*/

void clear();

/**

* Calls all the force generators to update the forces of
* their corresponding particles.

*/

void updateForces(real duration);

83

84 Chapter 5 Adding General Forces

I have used the C++ standard template library’s growable array, st1::vector. The
implementation of the first three methods are simple wrappers around corresponding
methods in the st1::vector data structure.

At each frame, before the update is performed, the force generators are all called.

They will hopefully be adding forces to each particle’s accumulator. Later these accu-
mulated forces are used to calculate each particle’s acceleration:

Excerpt from file src/pfgen.cpp
#include <cyclone/pfgen.h>

using namespace cyclone;

void ParticleForceRegistry::updateForces(real duration)
{

Registry::iterator i = registrations.begin();

for (5 i != registrations.end(); i++)

{

i->fg->updateForce(i->particle, duration);

5.2.3 A GRAVITY FORCE GENERATOR

We can replace our previous implementation of gravity by a force generator. Rather
than special-case code to apply a constant acceleration at each frame, gravity is rep-
resented as a regular force generator attached to each particle.

The implementation looks like this:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a gravitational force. One instance
* can be used for multiple particles.
*/
class ParticleGravity : public ParticleForceGenerator
{

/** Holds the acceleration due to gravity. */

Vector3 gravity;

public:

/** Creates the generator with the given acceleration. */
ParticleGravity(const Vector3 &gravity);

5.2 Force Generators 85

/** Applies the gravitational force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

}s

Excerpt from file src/pfgen.cpp

void ParticleGravity::updateForce(Particle* particle, real duration)
{

// Check that we do not have infinite mass.

if (!particle->hasFiniteMass()) return;

// Apply the mass-scaled force to the particle.
particle->addForce(gravity * particle->getMass());

Note that the force is calculated based on the mass of the object passed into the
updateForce method. The only piece of data stored by the class is the acceleration due
to gravity. One instance of this class could be shared among any number of objects.

524 A DRAG FORCE GENERATOR

We could also implement a force generator for drag. Drag is a force that acts on a body
and depends on its velocity. A full model of drag involves more complex mathemat-
ics than we can easily perform in real time. Typically, in game applications we use a
simplified model of drag where the drag acting on a body depends on the speed of the
object and the square of its speed,

farag = —P(k1 1P| + ko [pI?) [5.1]

where k; and k; are two constants that characterize how strong the drag force is—they
are usually called the “drag coefficients” and they depend on both the object and the
type of drag being simulated.

The formula looks complex, but is simple in practice: it says that the force acts in
the opposite direction to the velocity of the object (this is the —p part of the equation;
p is the normalized velocity of the particle), with a strength that depends on both the
speed of the object and the square of the speed.

Drag that has a k; value will grow faster at higher speeds. This is the case with the
aerodynamic drag that keeps a car from accelerating indefinitely. At slow speeds, the
car feels almost no drag from the air, but for every doubling of the speed, the drag
almost quadruples.

86 Chapter 5 Adding General Forces

The implementation for the drag generator looks like this:

Excerpt from file include/cyclone/pfgen.h
/**
* A force generator that applies a drag force. One instance
* can be used for multiple particles.
*/
class ParticleDrag : public ParticleForceGenerator
{
/** Holds the velocity drag coefficient. */
real kl;

/** Holds the velocity squared drag coefficient. */
real k2;

public:

/** Creates the generator with the given coefficients. */
ParticleDrag(real k1, real k2);

/** Applies the drag force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

Excerpt from file src/pfgen.cpp

void ParticleDrag::updateForce(Particle* particle, real duration)
{

Vector3 force;

particle->getVelocity(&force);

// Calculate the total drag coefficient.
real dragCoeff = force.magnitude();
dragCoeff = k1 * dragCoeff + k2 * dragCoeff * dragCoeff;

// Calculate the final force and apply it.
force.normalize();

force *= -dragCoeff;
particle->addForce(force);

Once again the force is calculated based only on the properties of the object it is
passed. The only pieces of data stored by the class are the values for the two constants.

5.4 Summary 87

As before, one instance of this class could be shared among any number of objects
that have the same drag coefficients.

This drag model is considerably more complex than the simple damping we
used in Chapter 3. It can be used to model the kind of drag that a golf ball experi-
ences in flight, for example. For the aerodynamics needed in a flight simulator, how-
ever, it will still not be sufficient: we will return to flight simulator aerodynamics in
Chapter 11.

5.3 BUILT-IN GRAVITY AND DAMPING

Using the generators above we can replace both the damping and the acceleration
due to gravity with force generators. This is a valid approach and one used by many
different engines. It allows us to remove the special code that processes damping, and
it means that we don’t need to store an acceleration due to gravity with the object. It
can be calculated among all the other forces during transient force accumulation.

Although it has some advantages in simplicity, this is not the approach I will use.
Directly applying the damping and acceleration due to gravity, in the way we did in
Chapter 3, is fast. If we have to calculate forces for them each time, we waste extra
time performing calculations for which we already know the answer.

To avoid this, [keep damping and acceleration unchanged. If we need more com-
plex drag, we can set a damping value nearer to 1, and add a drag force generator.
Similarly if we needed some exotic form of gravity (for an orbiting space ship, for
example), we could create a gravity force generator that provides the correct behavior
and set the acceleration due to gravity to be zero.

54 SUMMARY

Forces are easily combined by adding their vectors together, and the resulting force
acts as if it were the only force applied to an object. This is a result of D’Alembert’s
principle, and it allows us to support any number of general forces without having to
know anything about how the forces are generated.

Throughout this book we’ll see force generators of various kinds that simulate
some kind of physical property by calculating a force to apply to an object. The code
we've created in this chapter allows us to manage those forces, combining them and
applying them before integrating.

Drag and gravity are important force generators, but they only replicate function-
ality we had in our particle physics engine. To move toward a mass aggregate physics
engine, we need to start linking particles together. Chapter 6 introduces springs and
other spring-like connections, using the force generator structure we’ve built in this
chapter.

88 Chapter 5 Adding General Forces

55 EXERCISES

Exercise 5.1

Implement an uplift force generator. The force generator should have an origin rep-
resenting the center of the uplift. When the force generator is asked to apply its force,
it should test the X-Z coordinate of the object against the origin. If this coordinate
is within a given distance of the origin, then the uplift should be applied. Otherwise
there is no force. We use only the X-Z coordinates to represent a chimney of rising
uplift above a particular point, so the Y coordinate is irrelevant.

Exercise 5.2

Implement an airbrake force generator. This should contain a Boolean value. When
the value is false (the airbrake is off), the generator should provide no force. When
the value is true, the generator should provide a large drag force. Be careful not to
make the drag too high, however, because the object being dragged might reverse
direction.

Exercise 5.3

Implement a variant of the gravity force generator that pulls objects toward a fixed
point (the attraction point), rather than using the down direction. You will have to
calculate the direction to apply the force from the object to the attraction point, and
make sure that it is scaled accordingly.

Exercise 5.4

Extend the gravity force generator from the previous exercise so that it scales the forces
it applies based on the square of the distance from the attraction point. This provides
a simple model of planetary gravity because it conforms to Equation 3.3.

SPRINGS AND
SPRING-LIKE
THINGS

ne of the most useful forces we can create for our engine is a spring force.
Although springs have an obvious use in driving games (for simulating the
suspension of a car), they come into their own in representing soft, deformable, or
non-solid objects of many kinds. Springs and particles alone can produce a whole
range of impressive effects, such as ropes, flags, cloth garments, and water ripples.
Along with the hard constraints we’ll cover in the next chapter, they can represent
almost any kind of object.
To extend our engine to support springs, this chapter will first cover the theory of
springs, and then look at how they can be created for our engine. Finally, we’ll look
at a major problem in the simulation of springs.

6. 1 HookK’s LAw

HooK’s law gives us the mathematics of springs. Hook discovered that the force exerted
by a spring depends only on the distance the spring is extended or compressed.
A spring extended twice as far from this rest position will exert twice the force. The
formula is therefore:

f=—kAl

Copyright © 2010, Elsevier Inc. All rights reserved.
DOL: 10.1016/B978-0-12-381976-5.00006-1 89

90 Chapter 6 Springsand Spring-Like Things

where Al is the distance that the spring is extended or compressed, and k is called the
“spring constant,” a value that gives the stiffness of the spring. The force given in this
equation is felt at both ends of the spring. In other words, if two objects are connected
by a spring, then they will each be attracted together by the same force given by the
equation above.

Note that we have used Al in the equation. This is because, at rest, with no forces
acting to extend or compress the spring, the spring will have some natural length.
This is also called the “rest length,” and has the symbol k. If the spring is currently at
length [, then the force generated by the spring is

f=—k—1h)

So far we have considered Hook’s law only in terms of a one-dimensional spring.
When it comes to three dimensions, we need to generate a force vector rather than a
scalar. The corresponding formula for the force is

f=—k(d| - lyd [6.1]

where d is the vector from one end of the spring to the other. The direction of this
vector points towards the object we're generating a force for. It is given by

d= XA — XB [62]

where x, is the position of the end of the spring attached to the object under consid-
eration, and xp is the position of the other end of the spring.

Equation 6.1 states that if the spring is extended, the force should pull toward the
other end of the spring (the —d component), with a magnitude given by the spring
coefficient multiplied by the amount of extension of the spring (the k(|d| — k) part).
|d| is the magnitude of the vector between the ends of the spring, which is just the
length of the spring, making (|d| — k) just a different way of writing (I — l).

Because Equation 6.1 is defined in terms of one end of the spring only (the end
attached to the object we are currently considering), we can use it unmodified for the
other end of the spring, when we come to process the object attached there. Alterna-
tively, because the two ends of the spring always pull toward each other with the same
magnitude of force, we know that if the force on one end is f, then the force on the
other will be —f.

In our force generator below, we will calculate the force separately for each object,
and not make use of this fact. A more optimized approach might use the same force
generator for both objects involved, and cache the force calculation.

Spring Compression

In the discussion above I have only considered what happens when a spring is
extended. A regular metal wire spring can also be compressed, in which case the force
it generates will try to push its ends apart.

6.1 Hook’s Law 91

Equation 6.1 holds for compression as well as extension. When a spring is com-
pressed below its rest length, the (|d| — k) term will be negative. This negative will
cancel with the —d term, leaving the force in the direction of d. This will act to push
the object away from the other end of the spring. So, we don’t need to do anything
special to support spring compression.

Spring-like behavior is very common in physical simulation. Some simulated ele-
ments will have both compression and extension (like a wire spring), others will
just have compression (like a trampoline), and others just extension (like an elastic
bungee).

The Limit of Elasticity

Real springs only follow Hook’s law within a range of lengths, called their limit of elas-
ticity. If you continue to extend a metal spring, eventually you will exceed its elasticity
and it will deform. Similarly, if you compress a spring too much its coils will touch
and further compression is impossible. The behavior outside the limit of elasticity is
often very complex, and there is no single formula that can help us simulate it.

Assuming we could work out the behavior we wanted outside the limit of elasticity,
we could encode the limits into our force generator to produce a realistic model of a
spring. For extension, however, we are unlikely to need this sophistication. Using the
simple Hook’s model will mean that when the player sees a spring doing its most
spring-like thing, they are unlikely to notice whether it behaves correctly beyond its
limit of elasticity.

The only case I've seen of a real-time physics engine modeling springs extended
beyond their limits of elasticity was a commercial driving simulator, where a more
complex suspension model was needed. I've never seen it used in a game.

For compression, it is common to model a minimum compression length. Thisis a
very common requirement for car suspensions when they hit their “stop.” After being
compressed to this point, they no longer act like springs but rather like a collision
between two objects. We will cover this kind of hard constraint in the next chapter: it
can’t be easily modeled using a spring.

Spring-Like Things

HooK’s law applies to a huge range of natural phenomena, beyond a coiled metal
spring. Anything that resists being deformed will have some limit of elasticity in which
HooK’s law applies.

The applications are limitless. We can implement elastic bungees as springs. We
could simulate the buoyancy of water in the same way, connecting the submerged
object to the nearest point on the surface with an inivisible spring. Some developers
even use springs to control the camera as it follows a game character by applying a
spring from the camera to a point just behind the character (see Figure 6.1).

92 Chapter 6 Springs and Spring-Like Things

Camera
at fixed
height

FIGURE 6.1 The game’s camera attached to a spring.

62 SPRING-LIKE FORCE GENERATORS

We will implement four force generators that are based on spring forces. Although
each has a slightly different way of calculating the current length of the spring, they
all use HooK’s law to calculate the resulting force.

This section illustrates a feature of many physics systems. The core processing
engine remains generic, but it is surrounded by helper classes and functions (in this
case the different types of spring force generators) that are often quite similar to one
another. In the remainder of the book, I will avoid going through similar variations in
detail; you can find several suites of similar classes in the source code. This first time,
however, it is worth looking at some variations in detail.

6.2.1 A BAsSIC SPRING FORCE GENERATOR

The basic spring generator simply calculates the length of the spring using
Equation 6.2, and then uses Hook’s law to calculate the force. It can be implemented

like this:
Excerpt from file include/cyclone/pfgen.h
/**
* A force generator that applies a spring force.
*/

class ParticleSpring : public ParticleForceGenerator

{
/** The particle at the other end of the spring. */
Particle *other;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restlLength;

6.2 Spring-Like Force Generators

public:
/** Creates a new spring with the given parameters. */
ParticleSpring(Particle *other,

real springConstant, real restlength);

/** Applies the spring force to the given particle. */

virtual void updateForce(Particle *particle, real duration);

93

Excerpt from file include/cyclone/precision.h

#define real_abs fabsf

/** Defines the precision of the absolute magnitude operator. */

Excerpt from file src/pfgen.cpp

{
// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);
force -= other->getPosition();

// Calculate the magnitude of the force.

real magnitude = force.magnitude();
magnitude = real_abs(magnitude - restLength);
magnitude *= springConstant;

// Calculate the final force and apply it.
force.normalize();

force *= -magnitude;
particle->addForce(force);

void ParticleSpring::updateForce(Particle* particle, real duration)

The generator is created with three parameters: (1) a pointer to the object at the
other end of the spring, (2) the spring constant, and (3) the rest length of the spring.

We can create and add the generator using this code:

Particle a, b;
ParticleForceRegistry registry;

94

Chapter 6 Springs and Spring-Like Things

6.2.2 AN

ParticleSpring ps(&b, 1.0f, 2.0f);
registry.add(&a, ps);

Because it contains data that depends on the spring, one instance cannot be used
for multiple objects in the way that the force generators from Chapter 5 were. Instead
we need to create a new generator for each object.!

Note also that the force generator (like the others we have met) creates a force for
only one object. If we want to link two objects with a spring, then we’ll need to create
and register a generator for each:

Particle a, b;
ParticleForceRegistry registry;

ParticleSpring psA(&b, 1.0f, 2.0f);
registry.add(&a, psA);

ParticleSpring psB(&a, 1.0f, 2.0f);
registry.add(&b, psB);

ANCHORED SPRING GENERATOR

In many cases we don’t want to link two objects together with a spring, but rather one
end of the spring at a fixed point in space. This might be the case for the supporting
cables on a springy rope bridge, for example. One end of the spring is attached to the
bridge; the other is fixed in space. See Figure 6.2 for an example.

In this case, the form of the spring generator we created previously will not work.
We can modify it so that the generator expects a fixed location rather than an object
to link to. The force generator code is also modified to use the location directly rather
than looking it up in an object. The anchored force generator implementation looks
like this:

Excerpt from file include/cyclone/pfgen.h
/**
* A force generator that applies a spring force, where
* one end is attached to a fixed point in space.
*/
class ParticleAnchoredSpring : public ParticleForceGenerator

{

1. Strictly speaking, we can reuse the force generator. If we have a set of springs all connected to the same
object, and having the same values for rest length and spring constant, we could use one generator for all
of them. Rather than try to anticipate these obscure situations in practice, it is simpler to just assume that
instances cannot be reused.

6.2 Spring-Like Force Generators

95

Fixed points

£y

FIGURE 6.2 A rope bridge held up by springs.

protected:
/** The Tocation of the anchored end of the spring. */
Vector3 *anchor;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restlLength;

public:
/** Creates a new spring with the given parameters. */
ParticleAnchoredSpring(Vector3 *anchor,
real springConstant,
real restlength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

}s

Excerpt from file src/pfgen.cpp
void ParticleAnchoredSpring::updateForce(Particle* particle, real
duration)

// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);

force -= *anchor;

96 Chapter 6 Springs and Spring-Like Things

6.2.3 AN

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = (restlLength - magnitude) * springConstant;

// Calculate the final force and apply it.
force.normalize();

force *= magnitude;
particle->addForce(force);

If we wanted to connect the game’s camera to the player’s character, this is an
approach we would use. Instead of an anchor point that never moves, however, we
would recalculate and reset the anchor point for each frame based on the position
of the character. The previous implementation needs no modification (other than a
setAnchor method to give the new value); we would just need to perform the update
of the anchor point somewhere in the game loop.

Alternatively, if our player character is represented as a particle in the engine, then
we could use the original spring generator. We’'d want the spring to be connected only
in one direction, however, so the camera is dragged around by the player and not the
other way around.

ELASTIC BUNGEE GENERATOR

An elastic bungee only produces pulling forces: you can scrunch it into a tight ball and
it will not push back out, but it behaves like any other spring when extended. This is
useful for keeping a pair of objects together—they will be pulled together if they stray
too far, but they can get as close as they like without being separated.

The generator can be implemented like this:

Excerpt from file include/cyclone/pfgen.h
/**
* A force generator that applies a spring force only
* when extended.
*/
class ParticleBungee : public ParticleForceGenerator
{
/** The particle at the other end of the spring. */
Particle *other;

/** Holds the spring constant. */
real springConstant;

6.2 Spring-Like Force Generators 97

/**

* Holds the length of the bungee at the point it begins to
* generate a force.

*/

real restlLength;
public:

/** Creates a new bungee with the given parameters. */
ParticleBungee(Particle *other,
real springConstant, real restlength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

}s

Excerpt from file src/pfgen.cpp

void ParticleBungee::updateForce(Particle* particle, real duration)
{

// Calculate the vector of the spring.

Vector3 force;

particle->getPosition(&force);

force -= other->getPosition();

// Check if the bungee is compressed.
real magnitude = force.magnitude();
if (magnitude <= restlLength) return;

// Calculate the magnitude of the force.
magnitude = springConstant * (restlLength - magnitude);

// Calculate the final force and apply it.
force.normalize();

force *= -magnitude;
particle->addForce(force);

I have added a factory function to this class as well to allow us to easily connect
two objects with a bungee.

This implementation assumes that the elastic connects to two objects. We could
create a version of the code that connects an object to a fixed anchor point in space,
exactly as before. The modifications we would need are exactly the same as we saw
above: implementing this generator is one of the exercises for this chapter.

98 Chapter 6 Springs and Spring-Like Things

6.2.4 A BUOYANCY FORCE GENERATOR

A buoyancy force is what keeps an object afloat. The Greek mathematician
Archimedes first worked out that the buoyancy force is equal to the weight of water
that an object displaces.

The first part of Figure 6.3 shows a block submerged in the water. The block has a
mass of 0.5 kg. Pure water has a density of 1000 kgm ~?; in other words, a cubic meter
of water has a mass of about 1 MT. The block in the figure has a volume of 0.001 m?3,
so it is displacing the same amount of water. The mass of this water would therefore
be 1kg.

Weight isn’t the same as mass in physics. Mass is the property of an object that
makes it resist acceleration. The mass of an object will always be the same. Weight is
the force that gravity exerts on an object. As we have already seen, force is given by
the equation

f=mg

where f is the weight, m is the mass, and g is the acceleration due to gravity. This
means that on different planets, the same object will have different weights (but the
same mass) because g changes.

On Earth, we assume ¢ = 10ms2, so an object with a weight of 1kg will have a
weight of 1 x 10 = 10kN. The kN unit is a unit of weight: kilograms, kg, is not a unit
of weight, despite what your bathroom scales might say! This causes space scientists
various problems: because ¢ is different, they can no longer convert English units such
as pounds to kilograms using the conversion factors found in science reference books;
pounds is a measure of weight and kilograms is a measure of mass.

So, back to buoyancy: our block in the first part of Figure 6.3 has a buoyancy force
of 10kN. In the second part of the figure only half is submerged, so using the same
calculations, it has a buoyancy force of 5 kN.

Although we don’t need to use it for our force generator, it is instructive to look
at the weight of the object too. In both cases, the weight of the block is the same: 5 kN
(a mass of 0.5 kg, multiplied by the same value of g = 10ms™2). So in the first part

A |10kN 5kN
m = 0.5 kg
[] AV WYY VIV VIV AVVVV VY
5kN 5kN

FIGURE 6.3 A buoyant block submerged and partially submerged.

6.2 Spring-Like Force Generators 99

of the figure, the buoyancy force will push the block upward. In the second part of
the figure, the weight is exactly the same as the buoyancy, so the object will stay at the
same position, floating.

Calculating the exact buoyancy force for an object involves knowing exactly how
it is shaped, because the shape affects the volume of water displaced, which is used
to calculate the force. Unless you are designing a physics engine specifically to model
the behavior of different shapes of boat hulls, you are unlikely to need this level of
detail.

Instead we can use a spring-like calculation as an approximation. When the object
is near the surface, we use a spring force to give it buoyancy. The force is proportional
to the depth of the object, just as the spring force is proportional to the extension or
compression of the spring. As we saw in Figure 6.3, this will be accurate for a rectan-
gular block that is not completely submerged. For any other object it will be slightly
inaccurate, but hopefully not enough to be noticeable.

When the block is completely submerged, it behaves slightly differently. Pushing
it deeper in the water will not displace any more water; so as long as we assume water
has the same density, the force when submerged will be constant. The point masses
we are dealing with in this part of the book have no size, so we can’t tell how big they
are to determine whether they are fully submerged. We can simply use a fixed depth
instead: when we create the buoyancy force we give a depth at which the object is
considered to be fully submerged. At this point, the buoyancy force will not increase
for deeper submersion.

By contrast, when the object is lifted out of the water, it will still have some part
of itself submerged until it reaches its maximum submersion depth above the surface.
At this point we consider the last part of the object to have left the water. In this case,
there will be no buoyancy force at all, no matter how high we lift the object: it simply
is displacing no more water.

So, the formula for the force calculation is:

0 when d <0
f=qv0 whend>1

dvp otherwise

where p is the density of the liquid, v is the volume of the object, and d is the amount
of the object submerged, given as a proportion of its maximum submersion depth
(i.e., when it is fully submerged d = 1, and when it is fully out of the water d =0). d
is given by

yo_yw_s
2s

d=

where s is the submersion depth (the depth at which the object is completely sub-
merged), y, is the y coordinate of the object, and y,, is the y coordinate of the liquid
plane (assuming it is parallel to the XZ plane).

100 Chapter 6 Springs and Spring-Like Things

This can be implemented as follows:

Excerpt from file include/cyclone/pfgen.h

/**
* A force generator that applies a buoyancy force for a plane of
* 1liquid parallel to XZ plane.
*/
class ParticleBuoyancy : public ParticleForceGenerator
{

/**

* The maximum submersion depth of the object before

* it generates its maximum buoyancy force.

*/

real maxDepth;

/**
* The volume of the object.
*/

real volume;

/**

* The height of the water plane above y = 0. The plane will be
* parallel to the XZ plane.

*/

real waterHeight;

/**

* The density of the Tiquid. Pure water has a density of
* 1000 kg per cubic meter.

*/

real TiquidDensity;
public:

/** Creates a new buoyancy force with the given parameters. */
ParticleBuoyancy(real maxDepth, real volume, real waterHeight,
real liquidDensity = 1000.0f);

/** Applies the buoyancy force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

}s

6.3 Stiff Springs 101

Excerpt from file src/pfgen.cpp

void ParticleBuoyancy::updateForce(Particle* particle, real duration)
{

// Calculate the submersion depth.

real depth = particle->getPosition().y;

// Check if we're out of the water.
if (depth >= waterHeight + maxDepth) return;
Vector3 force(0,0,0);

// Check if we're at maximum depth.
if (depth <= waterHeight - maxDepth)
{
force.y = liquidDensity * volume;
particle->addForce(force);
return;

// Otherwise we are partly submerged.
force.y = liquidDensity * volume *

(depth - maxDepth - waterHeight) / 2 * maxDepth;
particle->addForce(force);

I have assumed in this code that the buoyancy is acting in the up direction. I have
therefore used only the y component of the object’s position to calculate the length of
the spring for Hook’s law, making it simpler than calculating the force using vector
operations.

The generator takes four parameters: the submersion depth parameter, as dis-
cussed above; the volume of the object; the height of the suface of the water; and the
density of the liquid in which it is floating. If no density parameter is given, then
water, with a density of 1000 kgm® is assumed (ocean water has a density of 1020 to
1030kg m® up to 1250 kg m? for the Dead Sea).

This generator applies to only one object, because it contains the data for the
object’s size and volume. One instance could be given to multiple objects with the
same size and volume, floating in the same liquid, but it is probably best to create a
new instance per object to avoid confusion.

63 STIFF SPRINGS

In real life almost everything acts as a spring. If a rock falls onto the ground, then
the ground gives a little, like a very stiff spring. Collisions between objects could be

102 Chapter 6 Springs and Spring-Like Things

modeled in a similar way to the buoyancy force: the objects would be allowed to pass
into one another (called “interpenetration”) and a spring force would push them back
out again.

With the correct spring parameters for each object, this method would give us
perfect collisions. Itis called the “penalty” method and has been used in many physics
simulators, including several used in games.

If life were so simple, this book would be two hundred pages shorter. If you tried
this approach (see the exercises for a suggestion on how), youd find that every-
thing in the game looks really spongy as it bounces around on soggy springs. We
would have to increase the spring constant to a really high level. If you try to do that
and run the engine, you will see everything go haywire: objects will almost instantly
disappear off to infinity, and your program may even crash with numerical errors.
This is the problem with stiff springs, and it makes penalty methods very difficult
to use.

6.3.1 THE STIFF SPRINGS PROBLEM

FIGURE 6.4

To understand why stiff springs cause problems, we need to break down the behavior
of aspring into short time steps. Figure 6.4 shows a spring’s behavior over several time
steps. In the first step, the spring is extended and we calculate the force at that point.

The force is applied to the end of the spring using the update function from
Chapter 3:

P =p+pt
In other words, the force is converted into an acceleration: the acceleration of the end
of the spring at that instant of time. This acceleration is then applied to the object for
the entire time interval. This would be accurate if the object didn’t move, that is, if the
spring were held at a constant extension over the entire time period.
In the real world, as soon as the spring has moved a bit, a tiny fraction of the time

interval later, the force will have decreased slightly. So applying the same force for
the whole time interval means we have applied too much force. In the figure, we see

No velocity é

—>

Natural length

&—

] No force

No velocity

A non-stiff spring over time.

6.3 Stiff Springs 103

that this doesn’t matter very much; even though the force is too high, the end doesn’t
move far before the next time frame, and then a lower force is applied for the next
time frame, and so on. The overall effect is that the spring behaves normally, but is
slightly stiffer than the spring constant we specified.

Figure 6.5 shows the same problem, but with a much stiffer spring. Now the force
in the first frame is enough to carry the end of the spring past the rest length and to
compress the spring. In reality, the movement of the spring wouldn’t do this: it would
begin to move inward having had a huge instantaneous force applied, but this force
would drop rapidly as the ends came closer together.

The figure shows that the spring has compressed more than it was extended orig-
inally. In the next time frame, it receives a force that tries to push its ends apart, and
so it moves in the opposite direction. But it has an even greater force applied, so that
it overshoots and is extended even farther. In each time frame the spring will oscillate
with ever-growing forces until the end of the spring ends up at infinity. Clearly this is
not accurate.

The longer the time frame we use, the more likely this is to happen. If your game
uses springs and variable frame rates, you need to take a lot of care that your spring
constants aren’t too large when used on a very slow machine. If a player switches all
the graphics options on, and slows their machine down to 10 frames per second (or
slower), you don’t want all your physics to explode!

We can address this problem by forcing small time periods for the update, or we
can use several smaller updates for each frame we render. Either approach doesn’t buy
us much, however. The kinds of spring stiffness needed to simulate realistic collisions
just aren’t possible in the framework we have built so far.

Instead, we will have to use alternative methods to simulate collisions and other
hard constraints.

FIGURE 6.5 A stiff spring over time.

104 Chapter 6 Springs and Spring-Like Things

6.3.2 FAKING STIFF SPRINGS

This section will implement a more advanced spring force generator that uses a dif-
ferent method of calculating spring forces to help with stiff springs. It provides a
hack for making stiff springs work in certain cases. In the remaining chapters of the
book we will look at more robust techniques for simulating constraints, collisions,
and contacts.

You can safely skip this section: the mathematics are not explored in detail; there
are restrictions on where we can use faked stiff springs, and the formulation is not
always guaranteed to work. In particular, while they fake the effect reasonably on their
own, when more than one is combined, or when a series of objects is connected to
them, the physical innacuracies in the calculation can interact nastily and cause seri-
ous problems. In the right situation, they can be a useful addition to your library of
force generators, however.

Our approach to the problem is to try and predict how the force will change over
the time interval. If we can predict the way the force changes, we can avoid applying
the maximum force (from the start of the time period) to the whole time interval.
Instead we can work out what the average force would be over the time period and
use that.

This is sometimes called an implicit spring, and a physics engine that can deal with
varying forces in this way is called “implicit,” or “semi-implicit.” For reasons we’ll see
at the end of the chapter, our engine can’t do anything more than guess the correct
force to generate. So I have called this approach “fake implicit force generation.”

In order to work out the force equation, we need to understand how a spring will
act if left to its own devices.

Harmonic Motion

A spring that has no friction or drag will oscillate forever. If we stretch such a spring
to a particular extension, then release it, its ends will accelerate together. It will pass
its natural length and begin to compress. When its ends are compressed to exactly
the same degree as they were extended initially, it will begin to accelerate apart. This
would continue forever. This kind of motion is well known to physicists as simple
harmonic motion. The position of each end of the spring obeys the equation

p=—xp [6.3]

where k is the spring constant, m is the mass of the object, and y is defined, for con-
venience in the following equations, to be

| k
X =\
m

This kind of equation is called a “differential equation,” as it links the different
differentials together, sometimes with the original quantity, in this case the second
differential p and the original p. Differential equations can sometimes be solved to

6.3 Stiff Springs 105

give an expression just in terms of the original quantity. In our case, the equation can
be solved to give us an expression that links the position and initial velocity with the
current time.> The expression is solved to give

D, = po cos(xt) + % sin(xt) (6.4]

where p, is the position of the end of the spring relative to the natural length at the
start of the prediction, and p,, is the velocity at the same time.

We can substitute the time interval we are interested in (i.e., the duration of the
current frame) into Equation 6.4, and work out where the spring would end up if
were left to do its own thing. We can then create a force that is just big enough to get
it to the correct location over the duration of the frame. If the final location needs to
be p,, then the force to get it there would be

f=mp

and the acceleration p is given by

. 1 .
p=(p, —Po)g —Po [6.5]

Note that although this gets the particle to the correct place, it doesn’t necessarily
get it there with the correct speed. We'll return to the problems caused by this failing
at the end of the section.

Damped Harmonic Motion

A real spring experiences drag as well as spring forces. The spring will not continue
to oscillate forever to the same point. Its maximum extension will become less with
each oscillation, until eventually it settles at the rest length. This gradual decrease is
caused by the drag that the spring experiences.

When we run our physics engine normally, the drag will be incorporated in the
damping parameter. When we predict the behavior of the spring using the formula
above, this does not happen.

We can include the damping in the equations to give a damped harmonic oscilla-
tor. The differential Equation 6.3 becomes

p=—kp—dp
where k is the spring constant (no need for y in this case) and d is a drag coefficient (it

matches the k; coefficient from Equation 5.1 in the previous chapter). This equation
doesn’t allow for drag that is proportional to the velocity squared, the k, value from

2. Not all differential equations have a simple solution, although most simple equations of the kind above
do. Solving differential equations can involve applying a whole range of techniques and is beyond the scope
of this book. When neccessary, I will provide the answers needed for the physics simulator. If you want to
understand more about how I get these answers, you can consult any undergraduate-level calculus textbook
for more details.

106 Chapter 6 Springs and Spring-Like Things

Equation 5.1. If we added this, the mathematics would become considerably more
complex, for little visible improvement (remember, we're faking this in any case). So
we stick with the simplest kind of drag.

Solving the differential equation gives an expression for the position at any time
in the future:

P, = [p, cos(yt) + csin(yt)] e 2

where y is a constant given by

y = %\/4k—d2

and c is a constant given by
d 1.
c= g?o + ;Po
Substituting the time interval for ¢ in the equations above as before, we can get a

value for p,, and calculate the acceleration required using Equation 6.5 as we did for
regular harmonic motion.

Implementation

The code to implement a faked implicit spring force generator looks like this:

Excerpt from file include/cyclone/pfgen.h
/**
* A force generator that fakes a stiff spring force, and where
* one end is attached to a fixed point in space.
*/
class ParticleFakeSpring : public ParticleForceGenerator
{
/** The Tocation of the anchored end of the spring. */
Vector3 *anchor;

/** Holds the spring constant. */
real springConstant;

/** Holds the damping on the oscillation of the spring. */
real damping;

public:
/** Creates a new spring with the given parameters. */

ParticleFakeSpring(Vector3 *anchor, real springConstant,
real damping);

6.3 Stiff Springs 107

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

}s

Excerpt from file include/cyclone/precision.h

/** Defines the precision of the sine operator. */
#define real_sin sinf

/** Defines the precision of the cosine operator. */
#define real_cos cosf

/** Defines the precision of the exponent operator. */
#define real_exp expf

Excerpt from file src/pfgen.cpp

void ParticleFakeSpring::updateForce(Particle* particle, real duration)
{

// Check that we do not have infinite mass.

if (!particle->hasFiniteMass()) return;

// Calculate the relative position of the particle to the anchor.
Vector3 position;

particle->getPosition(&position);

position -= *anchor;

// Calculate the constants and check that they are in bounds.

real gamma = 0.5f * real_sqrt(4 * springConstant - damping*damping);

if (gamma == 0.0f) return;

Vector3 ¢ = position * (damping / (2.0f * gamma)) +
particle->getVelocity() * (1.0f / gamma);

// Calculate the target position.

Vector3 target = position * rea]_cos(gamma * duration) +
¢ * real_sin(gamma * duration);

target *= real_exp(-0.5f * duration * damping);

// Calculate the resulting acceleration, and therefore the force.

Vector3 accel = (target - position) * (1.0f / duration*duration) -
particle->getVelocity() * duration;

particle->addForce(accel * particle->getMass());

108 Chapter 6 Springs and Spring-Like Things

FIGURE 6.6

The force generator looks like the anchored regular spring generator we created
earlier in the chapter, with one critical difference: it no longer has a natural spring
length. This, and the fact that we have used an anchored generator rather than a spring
capable of attaching two objects, is a result of some of the mathematics used above.
The consequence is that we must always have a rest length of zero.

Zero Rest Lengths

If a spring has a zero rest length, then any displacement of one end of the spring results
in extension of the spring. If we fix one end of the spring, then there will always be a
force in the direction of the anchored end.

For a spring where both ends of the spring are allowed to move, the direction of
the force is much harder to determine. The previous formulas assume that the force
can be expressed in terms of the location of the object only. If we didn’t anchor the
spring, then we would have to include the motion of the other end of the spring in
the equation, which would make it insoluble.

A similar problem occurs if we anchor one end, but use a non-zero rest length. In
one dimension, a non-zero rest length is equivalent to moving the equilibrium point
along a bit, as shown in Figure 6.6. The same is true in 3D, but because the spring
is allowed to swivel freely, this equilibrium point is now in motion with the same
problems as for a nonanchored spring.

So the previous equations only work well for keeping an object at a pre-
determined fixed location. Just as for the previous anchored springs, we can move
this location manually from frame to frame, as long as we don’t expect the force gen-
erator to cope with the motion in its prediction.

Velocity Mismatches

So far we have only talked about position. Equation 6.5 calculates the force needed
to get the object to its predicted position. Unfortunately, it will not get there with an

Rest length
é Equilibrium position

The rest length and the equilibrium position.

6.3 Stiff Springs 109

accurate velocity (although it will often be close). Could this equation end up increas-
ing the velocity of the object each time, getting faster and faster and still exploding out
to infinity?

For damped harmonic motion, when the anchor point is not in motion, the veloc-
ity resulting from performing this kind of prediction will never mount up to achieve
this. The mathematics involved in demonstrating this is complex, so I'll leave it as an
exercise for the talented skeptic.

Even though we won’t get exploding velocities, the mismatch between the result-
ing velocity and the correct velocity causes the spring to behave with an inconsistent
spring constant. Sometimes it will be stiffer than we specified, and sometimes it will
be looser. In most cases it is not noticeable, but it is an inescapable consequence of
faking the force in the way we have done.

Interacting with Other Forces

Another major limitation of the faked spring generator is the way that it interacts with
other forces.

The equations above assume that the object is moving freely, not under the influ-
ence of any other forces. The spring force will decrease over the course of the time
interval, because the spring is moving toward its rest length. If we have another force
that is keeping the spring extended or compressed at a constant length, then the force
will be constant, and the original force generator would give a perfect result, no matter
what the spring constant is.

We could theoretically incorporate all the other forces into the prediction for the
spring generator, and then it would return exactly the correct force. Unfortunately, to
correctly work out the force, we'd need to know the behavior of all the objects being
simulated. Simulating the behavior of all the objects is, of course, the whole purpose
of the physics engine. So the only way we could get this to work is to put a full physics
engine in the force calculations. This is not practical (in fact, strictly speaking, it is
impossible, because in that engine we’d need another one, and so on ad infinitum).

For springs that are intended to be kept extended (such as the springs holding
up the rope bridge earlier in the chapter), faked spring forces will be too small, often
considerably too small. In practice, it is best to try to find a blend of techniques to get
the effect you want, that is, using different spring force generators for different objects
in the game.

I have used this faked force generator successfully to model the spring in a char-
acter’s hair (and other wobbly body parts). The rest position is given by the original
position of a hair vertex in the 3D model, and the spring force attracts the actual
drawn vertex to this rest position. As the character moves, the hair bobs naturally.
This method is ideally suited to the problem because the vertices don’t have any other
forces on them (a natural sag caused by gravity is incorporated by the artist in the
model design), and they need to have very high spring coefficients to avoid looking
too bouncy.

110 Chapter 6 Springs and Spring-Like Things

64 SUMMARY

A surprising number of physical effects can be modeled using Hook’s law. Even effects
that aren’t elastic, such as buoyancy, have such similar properties to a spring that they
can be implemented using similar code.

We've built a set of force generators that can be used in the remainder of the book
to model anything that should appear elastic or bouncy. But we’ve also seen the start
of a problem that motivates much of the rest of the book: springs with high spring
constants (i.e., those that have a fast and strong bounce) are difficult to simulate on a
frame-by-frame basis. When the action of the spring is faster than the time between
simulated frames, then the spring can get unruly and out of control.

If it weren’t for this problem, we could simulate almost anything using spring-like
forces. All collisions, for example, would be easily handled. Even though we were able
to fake stiff springs in some cases, the solution wasn’t robust enough to cope with stiff
springs in the general case, and so we need to find alternative approaches (involv-
ing significantly more complex code) to handle the very fast bounce of a collision.
Chapter 7 looks at this, building a set of special case codes for handling collisions and
hard constraints such as rods and inelastic cables.

65 EXERCISES

Exercise 6.1

Implement a spring generator that simulates extending a spring beyond its limit of
elasticity. Store the limit of elasticity as a maximum distance. If the spring is extended
beyond this, use a fraction of the spring’s normal spring constant. This simulates the
spring being stretched and deforming. This approach can also be used as a safeguard
against springs exploding.

Exercise 6.2

Implement a lighter-than-air force generator. It is like a buoyancy force generator, but
the amount of force diminishes. Any object with this force generator will therefore
find its natural altitude, simulating the point where the density of the object matches
the density of the surrounding air. Take care to implement the force generator so that
it does not have an infinite force at ground level.

Exercise 6.3

Implement an overcrowding force generator. It should track a whole list of particles.
When it calculates its force, it should check if any of these particles is within some
distance. Any particles within this distance should generate a spring force that will
act to separate them. This force generator allows particles to move independently, but
prevents them from getting too close to one another.

6.5 Exercises 111

Exercise 6.4

Implement a homing-bullet force generator. It is based on a spring force generator:
given a target object it should generate a force toward that target; the farther away
the target is, the greater the force should be. Unlike a spring, however, the generator
should not use the current position of the object and its target. Instead, integrate the
position of both particles using their velocity and some small time step (a second,
for example). Use these new positions to calculate the force. This approach takes into
account the current motion of the objects involved, provides a basic intelligence, and
is the basis of some Al homing behaviors.

Exercise 6.5

Implement a simulation with a particle on a spring, and no gravity. The particle
should be attached to a fixed point and start 10 units from that point. Use constant
update intervals (of s, for example). For a range of damping values, what is the
maximum spring constant that you can use before the spring explodes?

Exercise 6.6
(a) Construct an equation that links a maximum spring constant and damping. You
can do this either mathematically or by implementing the previous exercise and
deriving the equation from the experimental data.

(b) Extend your equation to include the update interval.

This page intentionally left blank

HARD CONSTRAINTS

n the last chapter, we looked at springs both as a force generator, and as one way of

having multiple objects affect one another. This is the first time we’ve had objects
that move based on the motion of other objects.

While springs can be used to represent many situations, there are limits. When we
want objects to be tightly coupled together, the spring constant we’d need is practically
impossible to simulate. For sitations where objects are linked by stiff rods, or kept
apart by hard collisions, springs are not a viable option.

In this chapter, I'll talk about hard constraints. Initially, we’ll look at the most
common hard constraints, which include collisions and contact between objects. The
same mathematics can be used for other kinds of hard constraints that can be used to
connect objects together, such as rods or unstretchable cables.

To cope with hard constraints in our physics engine, we’ll need to leave the com-
fortable world of force generators. All the engines we're building in this book treat
hard constraints differently from force generators. In Chapter 20, we’ll look briefly at
alternative approaches that unify them again.

71 SIMPLE COLLISION RESOLUTION

To cope with hard constraints, we’ll add a collision resolution system to our engine.
For the sake of this part of the book, a collision refers to any situation in which two
objects are touching. In normal English, we think about collisions being violent pro-
cesses where two objects meet with some significant closing velocity.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOL: 10.1016/B978-0-12-381976-5.00007-3 113

114 Chapter 7 Hard Constraints

For the purposes of this book, we can also think of two objects that just happen
to be touching as being in a collision with no closing velocity. The same process we
use to resolve high-speed collisions will be used to resolve resting contacts. This is a
significant assumption that needs justifying, and I'll return to it later in the chapter
and at various points later in the book. To avoid changing terminology later, I'll use
the terms “collision” and “contact” interchangably during this chapter.

When two objects collide, their movement after the collision can be calculated
from their movement before the collision: this process is called collision resolution.
We resolve the collision by making sure the two objects have the correct motion that
would result from the collision. Because collision happens in such a small instant of
time (for most objects we can’t see the process of collision happening, and it appears
to be instant), we go in and directly manipulate the motion of each object, setting its
velocity and possibly its position.

7.1.1 THE CLOSING VELOCITY

The laws governing the motion of colliding bodies depend on their closing velocity.
The closing velocity is the total speed at which two objects are moving together.

Note also that this is a closing velocity, rather than a speed, even though it is a
scalar quantity. Speeds have no direction; they are only ever positive (or zero) values.
Velocities have direction. For vectors, the direction is given by the direction of the
vector. For scalars, the direction is given by the sign of the value. So two objects that
are moving apart from one another will have a closing velocity that is less than zero.

We calculate the closing velocity of two objects by finding the component of their
velocity in the direction from one object to another:

UCZI.JQ (Pu)+Pb (pa Ph)

where v, is the closing velocity (a scalar quantity), p, and p, are the positions of
objects a and b, the dot (-) is the scalar product, and p is the unit length vector in the
same direction as p. This can be simplified to give

ve=—(p,— Py) - (Po— Py) [7.1]

Although it is just a convention, it is more common to change the sign of this
quantity. Rather than a closing velocity, we are effectively working with a separating
velocity.

Two objects that are closing in on one another will have a negative relative velocity,
and objects that are separating will have a positive velocity. Mathematically, this is
simply a matter of changing the sign of Equation 7.1 to give

Vo= (p,— py) - (Pa—Pp) (7.2]

where v; is the separating velocity, which is the format we’ll use in the rest of this book.
You can stick with closing velocities if you like: it is simply a matter of preference,
although you’ll have to flip the sign of various quantities in the engine to compensate.

7.1 Simple Collision Resolution 115

7.1.2 THE COEFFICIENT OF RESTITUTION

As we saw in the last chapter, when two objects collide, they compress together, and
the spring-like deformation of their surfaces causes forces to build up that separate
the objects. All of this happens in a very short space of time (too fast for us to simu-
late frame by frame, although long enough to be captured on very high-speed film).
Eventually the two objects will no longer have any closing velocity.

Although this behavior is spring-like, in reality there is more going on. All kinds of
things can be happening during the compression, and the peculiarities of the materials
involved can cause very complicated interactions to take place. In reality we can’t hope
to capture the subtleties of the real process.

In particular, the spring model assumes that momentum (the product of mass
and velocity) is conserved during the collision, as in

Map, + mpp, = map, + myp}, [7.3]

where m, is the mass of object a; p, is the velocity of object a before the collision, and
P/, is the velocity after the collision. Collisions that correspond to this equation (and
are therefore spring-like) are called “perfectly elastic.”

Fortunately, most collisions don’t stray too far from this idea. We can’t hope to
be accurate, but we can produce believable behavior by assuming the conservation of
momentum, and we will use Equation 7.3 to model our collisions.

Equation 7.3 tells us about the total velocity before and after the collision, but it
doesn’t tell us about the individual velocities of each object. The individual velocities
are linked together using the closing velocity, according to the equation,

4
v, = —CUs

where v] is the separating velocity after the collision, v, is the separating velocity
before the collision, and c¢ is a constant called the coefficient of restitution.

The coefficient of restitution controls the speed at which the objects will separate
after colliding. It depends on the materials that are in collision. Different pairs of
material will have different coefficients. Some objects bounce apart such as billiard
balls or a tennis ball on a racquet. Other objects stick together when they collide, such
as a snowball and a person’s face.

If the coefficient is 1, then the objects will bounce apart with the same speed as
they were closing. If the coefficient is zero, then the objects will coalesce and travel
together (i.e., their separating velocity will be zero). Regardless of the coefficient of
restitution, Equation 7.3 will still hold—the total momentum will be the same.

So we have two equations in two unknowns. We can therefore calculate values for

5, and i,

7.1.3 THE COLLISION DIRECTION AND THE CONTACT NORMAL

So far we've talked in terms of collisions between two objects. Often we also want to
be able to support collisions between an object and something we’re not physically

116 Chapter 7 Hard Constraints

simulating. This might be the ground, the walls of a level, or any other immovable
object. We could represent these as objects of infinite mass, but it would be a waste of
time, since by definition they never move.

If we have a collision between one object and some piece of immovable scenery,
then we can’t calculate the separating velocity in terms of the vector between the
locations of each object; we only have one object. In other words, we can’t use the
(pu/—\pb) term in Equation 7.2, and so we need to replace it.

The (pu/—\ph) term gives us the direction in which the separating velocity is occur-
ring. The separating velocity is calculated by the dot product of the relative velocity of
the two objects and this term. If we don’t have two objects, we can ask that the direc-
tion is given to us explicitly. It is the direction in which the two objects are colliding
and is usually called the collision normal or contact normal. Because it is a direction,
the vector should always have a magnitude of 1.

In cases where we have two particles colliding, then the contact normal will always
be given by

= (p,— Py

By convention, we always give the contact normal from object a’s perspective. In
this case, from a’s perspective the contact is incoming from b, so we use p, — p,. To
give the direction of collision from b’s point of view, we could simply multiply by —1.
In practice we don’t do this explicitly, but factor this inversion into the code used to
calculate the separating velocity for b. You'll see this in the code we implement later
in the chapter, as a minus sign appears in b’s calculations.

When a particle is colliding with the ground, we only have an object a (the par-
ticle), and no object b. In this case from object a’s perspective, the contact normal
will be

Q)
I

0

assuming that the ground is level at the point of collision.

When weleave particles and begin to work with full rigid bodies, having an explicit
contact normal becomes crucial even for interobject collisions. Without preempting
later chapters, Figure 7.1 gives a taste of the situation we might come across. Here
the two objects colliding, by virtue of their shapes, have a contact normal in almost
exactly the opposite direction than we’d expect if we simply considered their loca-
tions. The objects arch over one another and the contact acts to prevent them mov-
ing apart, rather than keeping them together. At the end of this chapter, we’ll look
at similar situations for particles, which can be used to represent rods and other stiff
connections.

With the correct contact normal, Equation 7.2 becomes

b= (P, —py) 7 [7.4]

FIGURE 7.1

7.1 Simple Collision Resolution 117

Direction of
object centers
Contact
normal

Contact normal is different from the vector between objects in contact.

7.14 IMPULSES

The change we need to make to resolve a collision is a change in velocity only. So
far in the physics engine, we’ve only ever made changes to velocity using acceleration.
Acceleration changes velocity by an amount that depends on time: if the acceleration is
applied for alonger time, there will be a larger change in velocity. Here the changes are
instant: the velocities immediately take on new values, and we don’t want the duration
of the frame to affect the result.

Recall that applying a force changes the acceleration of an object. If we instantly
change the force, the acceleration instantly changes too. We can think of acting on
an object to change its velocity in a similar way. Rather than a force, this is called an
impulse, an instantaneous change in velocity. In the same way as we have

f=mp [7.5]

for forces, we have

g= mp [7-6]

for impulses. Impulses are often written with the letter p. Instead, I will use g to avoid
confusion with the position of the object p.

There is a major difference between force and impulse, however. An object has no
acceleration unless it is being acted on by a force: we can work out the total accelera-
tion by combining all the forces using D’Alembert’s principle. On the other hand, an
object will continue to have a velocity even if no impulses (or forces) are acting on it.
The impulse therefore can only change the velocity; it is not completely responsible
for the velocity. We can combine impulses using D’Alembert’s principle, but the result

118 Chapter 7 Hard Constraints

will be the total change in velocity, not the total velocity:
. 1
P=p+—28

where g1, ..., g is the set of all impulses acting on the object. In practice we won’t
accumulate impulses in the way we did for forces. We will apply impulses as they arise
during the collision resolution process. Each will be applied one at a time using the
equation
. 1
p=p+t—g
m

The result of our collision resolution will be an impulse to apply to each object.
The impulse will be immediately applied and will instantly change the velocity of the
object.

There is one more important result to note about impulses before we move on to
using them in collision resolution, and it is best seen using a technique called “dimen-
sional analysis.” If we fill in the units for Equation 7.5, we might put the mass m
in kilograms (kg), and the velocity in meters per second per second (ms~2). So the
force is measured in kg m s~2. This unit is called a Newton (N)!. Doing the same with
Equation 7.6 gives a unit of kg ms™!. We can write this in terms of Newtons in this
way:

1

kgms™' =kgms™ x s =Ns

So, impulses are measured in units of force multiplied by time. Or put another
way, 1 Ns of impulse is equivalent to 1 N of force applied for 1 s. We can use this result
to convert between forces and impulses: an impulse can always be represented as a
force applied for some specific length of time, as in

g=fi
We will make use of this important result when we come to look at resting contact in
the following section.

72 COLLISION PROCESSING

To handle collisions, we will create a new piece of code, the ContactResolver. It has
the job of taking an entire set of collisions and applying the relevant impulses to the
objects involved. Each collision is provided in a Contact data structure that looks like
this:

1. Tam using the standard SI units here, as in the rest of the book. This makes conversions much simpler.
If I were to use pounds for the weight and feet per second per second as the acceleration, I would need a
conversion factor to convert the resulting force into a sensible unit.

7.2 Collision Processing

Excerpt from file include/cyclone/pcontacts.h
/**
* A contact represents two objects in contact (in this case
* ParticleContact representing two particles). Resolving a
* contact removes their interpenetration, and applies sufficient
* impulse to keep them apart. Colliding bodies may also rebound.
*
* The contact has no callable functions, it just holds the
* contact details. To resolve a set of contacts, use the particle
* contact resolver class.
*/
class ParticleContact
{
public:
/**
* Holds the particles that are involved in the contact. The
* second of these can be NULL for contacts with the scenery.
*/

Particle* particle[2];

/**

* Holds the normal restitution coefficient at the contact.
*/

real restitution;

/**

* Holds the direction of the contact in world coordinates.
*/

Vector3 contactNormal;

}s

119

The structure holds a pointer to each object involved in the collision, including

a vector representing the contact normal (from the first object’s perspective) and a
data member for the coefficient of restitution for the contact. If we are dealing with
a collision between an object and the scenery (i.e., there is only one object involved),
then the pointer for the second object will be NULL.

To resolve one contact, we implement the collision equations from earlier in the

section as follows:

Excerpt from file include/cyclone/pcontacts.h

class ParticleContact

{

// ... Other ParticleContact code as before ...

120 Chapter 7 Hard Constraints

protected:
/**
* Resolves this contact for both velocity and interpenetration.
*/

void resolve(real duration);

/**
* Calculates the separating velocity at this contact.
*/

real calculateSeparatingVelocity() const;

private:
/**
* Handles the impulse calculations for this collision.
*/
void resolveVelocity(real duration);

}s

Excerpt from file src/pcontacts.cpp

void ParticleContact::resolve(real duration)
{
resolveVelocity(duration);
resolvelnterpenetration(duration);

real ParticleContact::calculateSeparatingVelocity() const

{
Vector3 relativeVelocity = particle[0]->getVelocity();
if (particle[1]) relativeVelocity -= particle[1]->getVelocity();
return relativeVelocity * contactNormal;

void ParticleContact::resolveVelocity(real duration)

{
// Find the velocity in the direction of the contact.
real separatingVelocity = calculateSeparatingVelocity();

// Check if it needs to be resolved.

if (separatingVelocity > 0)

{
// The contact is either separating, or stationary;
// no impulse is required.
return;

7.2 Collision Processing 121

// Calculate the new separating velocity.
real newSepVelocity = -separatingVelocity * restitution;

real deltaVelocity = newSepVelocity - separatingVelocity;

// We apply the change in velocity to each object in proportion to
// their inverse mass (i.e., those with lTower inverse mass [higher
// actual mass] get Tess change in velocity).

real totallnverseMass = particle[0]->getInverseMass();

if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then impulses have no effect.
if (totallnverseMass <= 0) return;

// Calculate the impulse to apply.
real impulse = deltaVelocity / totallnverseMass;

// Find the amount of impulse per unit of inverse mass.
Vector3 impulsePerIMass = contactNormal * impulse;

// Apply impulses: they are applied in the direction of the contact,
// and are proportional to the inverse mass.
particle[0]->setVelocity(particle[0]->getVelocity() +
impulsePerIMass * particle[0]->getInverseMass()
)s
if (particle[1])
{
// Particle 1 goes in the opposite direction
particle[1]->setVelocity(particle[1]->getVelocity() +
impulsePerIMass * -particle[1]->getInverseMass()

)s

This directly changes the velocities of each object to reflect the collision.

7.2.1 CoOLLISION DETECTION

Collision points will normally be found using a collision detector. A collision detector
is a chunk of code responsible for finding pairs of objects that are colliding, or single
objects that are colliding with some piece of immovable scenery.

In our engine, the end result of the collision detection algorithm is a set of Contact
data structures filled with the appropriate information. Collision detection obviously

122 Chapter 7 Hard Constraints

FIGURE 7.2

needs to take account of the geometries of the objects, that is, their shape and size. So
far in the physics engine, we've assumed that we are dealing with particles, which lets
us avoid taking any geometry into account.

This is a distinction we’ll keep even with more complicated 3D objects: the physics
simulation system (that part of the engine that handles laws of motion, collision res-
olution, and forces) will not need to know the details of the shape of the objects it is
dealing with. The collision detection system is responsible for calculating any prop-
erties that are geometric, such as when and where two objects are touching, and the
contact normal between them.

There are a whole range of algorithms used for working out contact points, and
we'll implement a range of useful collision detection routines for full 3D objects in
Chapter 12. For now, we’ll assume that this is a magic process hidden inside a black box.

As one exception, I'll cover the simplest possible collision detection for parti-
cles represented as small spheres in the next chapter. This will allow us to build
some useful physics systems with only the mass aggregate engine we are con-
structing. I'll leave all other details until after we’ve looked at full rotating rigid bodies
in Chapter 10.

Some collision detection algorithms can take into account the way objects are
moving and try to predict likely collisions in the future. Others simply look through
the set of objects and check if any pairs of objects are interpenetrating.

Two objects are interpenetrating if they are partially embedded in one another, as
shown in Figure 7.2. When we’re processing a collision between partially embedded
objects, it is not enough to only change their velocity. If the objects are colliding with
a small coefficient of restitution, their separation velocity might be almost zero. In
this case, they will never move apart and the player will see the objects stuck together
in an impossible way.

As part of resolving collisions, we need to resolve interpenetration.

Region of
interpenetration

Interpenetrating objects.

7.2 Collision Processing 123

7.2.2 RESOLVING INTERPENETRATION

When two objects are interpenetrating, we will move them apart just enough to sep-
arate them. We will expect the collision detector to tell us how far the objects have
interpenetrated, as part of the Contact data structure that it creates. The calculation
of the interpenetration depth depends on the geometries of the objects colliding. As
seen previously, this is the domain of the collision detection system, rather than the
physics simulator, and we’ll treat it as a magic process until Chapter 12.

We add a data member to the contact data structure to hold this information:

Excerpt from file include/cyclone/pcontacts.h

class ParticleContact

{

// ... Other ParticleContact code as before ...
/**

* Holds the depth of penetration at the contact.
*/

real penetration;

}s

Note that, just like the closing velocity, the penetration depth has both size and
sign. A negative depth represents two objects that have no interpenetration. A depth
of zero represents two objects that are merely touching.

To resolve the interpenetration, we check the interpenetration depth. If it is
already zero or less, then we need to take no action; otherwise, we can move the two
objects apart just far enough so that the penetration depth becomes zero. The pene-
tration depth that is provided should be the depth of penetration in the direction of
the contact normal. So if we move the objects in the direction of the contact normal
by a distance equal to the penetration depth, the objects will no longer be in contact.
The same occurs when we have just one object involved in the contact (i.e., it is inter-
penetrating with the scenery of the game): the penetration depth is in the direction
of the contact normal.

So we know the total distance that needs to be moved (i.e., the depth) and the
direction in which the objects will be moving. We need to work out how much each
individual object should be moved.

If we have only one object involved in the contact, then this is simple: the object
needs to move the entire distance. If we have two objects, then we have a whole range
of choices. We could simply move each object by the same amount, by half of the
interpenetration depth. This would work in some situations, but causes believability
problems. Imagine that we are simulating a small box resting on a planet’s surface. If
the box is found slightly interpenetrating the surface, should we move the box and
the planet out of the way by the same amount?

124 Chapter 7 Hard Constraints

FIGURE 7.3

Box moves a lot
Planet barely moves

_ >

Interpenetration and reality.

We have to take into account how the interpenetration came to be in the first place,
and what would have happened in the same situation in reality. Figure 7.3 shows the
box and planet in penetration, and if real physics were in operation. We'd like to get
as near to the situation in part B of the figure as possible.

To do this we move two objects apart in inverse proportion to their mass. An
object with a large mass gets almost no change, and an object with a tiny mass gets
to move a lot. If one of the objects has infinite mass, then it will not move; the other
object gets moved the whole way.

The total motion of each object is equal to the depth of interpenetration:

Apa+Apy,=d

where Ap, is the scalar distance that object a will be moved (we’ll return to the direc-
tion in the following). The two distances are related to each other according to the
ratio of their masses:

maApa - mbAPb

which, combined, gives us

Apy= —12
pa_mg+m;7
and
my
Apy = ——
4 m, + my

Combining these with the direction from the contact normal, we get a total change
in the vector position of

my,
Ap =——dn
P -
and
Mg
Ap, =——dn
Py -

where n is the contact normal. (Note the minus sign in the second equation; this is
because the contact normal is given from object a’s perspective.)

7.2 Collision Processing 125

We can implement the interpenetration resolution equations with the following
function:

Excerpt from file include/cyclone/pcontacts.h

class ParticleContact

{

// ... Other ParticleContact code as before ...
private:
/**
* Handles the interpenetration resolution for this contact.
*/

void resolvelnterpenetration(real duration);

}s

Excerpt from file src/pcontacts.cpp

void ParticleContact::resolvelnterpenetration(real duration)
{

// 1f we don't have any penetration, skip this step.

if (penetration <= 0) return;

// The movement of each object is based on their inverse mass,

// so total that.

real totallnverseMass = particle[0]->getInverseMass();

if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// 1f all particles have infinite mass, then we do nothing.
if (totallnverseMass <= 0) return;

// Find the amount of penetration resolution per unit
// of inverse mass.
Vector3 movePerIMass =

contactNormal * (penetration / totalInverseMass);

// Calculate the movement amounts.
particleMovement[0] = movePerIMass * particle[0]->getInverseMass();
if (particle[1]) {
particleMovement[1] =
movePerIMass * -particle[1]->getInverseMass();
} else {
particleMovement[1].clear();

126 Chapter 7 Hard Constraints

// Apply the penetration resolution.

particle[0]->setPosition(
particle[0]->getPosition() + particleMovement[0]
)s

if (particle[1]) {
particle[1]->setPosition(
particle[1]->getPosition() + particleMovement[1]
)s

We now have code to apply the change in velocity at a collision, and to resolve
objects that are interpenetrating. If you implement and run the contact resolution
system, it will work well for medium-speed collisions, but objects resting (a particle
resting on a table, for example) may appear to vibrate and may even leap into the air
occasionally.?

To have a complete and stable contact resolution system we need to reconsider
what happens when two objects are touching, but have a very small or zero closing
velocity.

7.2.3 RESTING CONTACTS

Consider the situation shown in Figure 7.4. We have a particle resting on the ground.
It is experiencing only one force, gravity. In the first frame, the particle accelerates
downward. Its velocity increases, but its position stays constant (it has no velocity at
the start of the frame). In the second frame, the position is updated, and the velocity
increases again. Now it is moving downward and has begun to interpenetrate with
the ground. The collision detector picks up on the interpenetration and generates a
collision.

The contact resolver looks at the particle, and sees that it has a penetrating veloc-
ity of

b=
Applying the collision response, the particle is given a velocity of
P =cp=c2pt

2. Isaid medium speed here, because very high-speed collisions are notoriously difficult to cope with. The
physics simulation we’ve provided will usually cope (except for insanely high speeds where lack of floating-
point accuracy starts to cause problems), but collision detectors can start to provide strange results. For
instance, it is possible for two objects to pass right through one another before the collision detector realizes
they have even touched. If it does detect a collision, they may be at least halfway through one another and be
separating again, in which case they have a positive separating velocity and no impulse is generated. We’ll
return to these issues when we create our collision detection system later in the book, although we will not
be able to resolve them fully; they are an endemic problem with very high-speed collision detection.

FIGURE 7.4

7.2 Collision Processing 127

No collision Collision generated

Y Acceleration
by gravity

Vibration on resting contact.

and is moved out of interpenetration. In frame three, therefore, it has an upward
velocity, which will carry it off the ground and into the air. The upward velocity will
only be small, but it may be enough to be noticed. In particular, if frame one or two is
abnormally long, the velocity will have a chance to significantly build up and send the
particle skyward. If you implement this algorithm for a game with a variable frame
rate, then slow down the frame rate (by dragging a window around, for example, or
having email arrive in the background), any resting objects will suddenly jump.

To solve this problem we can do two things.

First, we need to detect the contact earlier. In the example, two frames have passed
before we find out that there is a problem. If we set our collision detector so that it
returns contacts that are nearly but not quite interpenetrating, then we get a contact
to work with after frame one.

Second, we need to recognize when an object has velocity that could only have
arisen from its forces acting for one frame. After frame one, the velocity of the particle
is caused solely by the force of gravity acting on it for one frame. We can work out
what the velocity would be if only the force had acted upon it, by simply multiplying
the force by the frame duration. If the actual velocity of the object is less than or equal
to this value (or even slightly above it, if we acknowledge that rounding errors can
creep in), we know that the particle was stationary at the previous frame. In this case,
the contact is likely to be a resting contact, rather than a colliding contact. Rather
than performing the impulse calculation for a collision, we can apply the impulse
that would result in zero separating velocity.

This is what would happen for a resting contact: no closing velocity would have
time to build up, so there would be no separating velocity after the contact. In our
case we are recognizing that the velocity we do have is likely to be only a by-product
of the way we split time into frames, and we can therefore treat the object as if it had
a zero velocity before the contact. The particle is given a zero velocity. This happens
at every frame: in effect the particle always remains at frame one in Figure 7.4.

You could also look at this as a collision with a zero coefficient of restitution. So, as
the closing velocity drops, the coefficient of restitution changes suddenly from being
a bounce to a resting contact. Needless to say, if you only ever used zero coefficients
of restitution, this distinction would be moot.

This series of microcollisions keep the objects apart. For this reason, an engine
that handles resting contact in this way is sometimes called a microcollision engine.

128 Chapter 7 Hard Constraints

Velocity and the Contact Normal

When we have two objects in resting contact, we are interested in their relative velocity
rather than the absolute velocity of either. The two objects might be in resting contact
with one another in one diretcion, but moving across each other in another direction.
A box might be resting on the ground, even though it is skidding across the surface at
the same time. We want the vibrating contacts code to cope with pairs of objects that
are sliding across one another. This means we can’t use the absolute velocity of either
object.

To cope with this situation, the velocity and acceleration calculations are all per-
formed in the direction of the contact normal only. We first find the velocity in this
direction, and test to see whether it could have been solely caused by the component
of the acceleration in the same direction. If so, then the velocity is changed so there is
no separating or closing velocity in this direction. There still may be relative velocity
in any other direction: but it is ignored.

We can add this special case code to the collision processing function in the fol-
lowing way:

Excerpt from file src/pcontacts.cpp

void ParticleContact::resolveVelocity(real duration)

{
// Find the velocity in the direction of the contact.
real separatingVelocity = calculateSeparatingVelocity();

// Check if it needs to be resolved.

if (separatingVelocity > 0)

{
// The contact is either separating, or stationary; there's
// no impulse required.
return;

// Calculate the new separating velocity.
real newSepVelocity = -separatingVelocity * restitution;

// Check the velocity buildup due to acceleration only.
Vector3 accCausedVelocity = particle[0]->getAcceleration();
if (particle[1]) accCausedVelocity -= particle[1]->getAcceleration();
real accCausedSepVelocity = accCausedVelocity * contactNormal
* duration;

// 1f we've got a closing velocity due to aceleration buildup,
// remove it from the new separating velocity.
if (accCausedSepVelocity < 0)

7.2 Collision Processing 129

newSepVelocity += restitution * accCausedSepVelocity;

// Make sure we haven't removed more than was
// there to remove.
if (newSepVelocity < 0) newSepVelocity = 0;

real deltaVelocity = newSepVelocity - separatingVelocity;

// We apply the change in velocity to each object in proportion to
// their inverse mass (i.e., those with lTower inverse mass [higher
// actual mass] get Tess change in velocity).

real totallnverseMass = particle[0]->getInverseMass();

if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then impulses have no effect.
if (totallnverseMass <= 0) return;

// Calculate the impulse to apply.
real impulse = deltaVelocity / totallnverseMass;

// Find the amount of impulse per unit of inverse mass.
Vector3 impulsePerIMass = contactNormal * impulse;

// Apply impulses: they are applied in the direction of the contact,
// and are proportional to the inverse mass.
particle[0]->setVelocity(particle[0]->getVelocity() +
impulsePerIMass * particle[0]->getInverseMass()
)s
if (particle[1])
{
// Particle 1 goes in the opposite direction.
particle[1]->setVelocity(particle[1]->getVelocity() +
impulsePerIMass * -particle[1]->getInverseMass()

)s

To keep two objects in resting contact, we are applying a small change in velocity
at each frame. The change is just big enough to correct the increase in velocity that
would arise from them settling into one another over the course of one frame.

130 Chapter 7 Hard Constraints

Other Approaches to Resting Contact

The microcollision approach I've given here is only one of many possibilities. Resting
contact is one of two key challenges to get right in a physics engine (the other being
friction; in fact, the two often go together). There are many routes of attack, as well
as countless variations and tweaks.

My solution is somewhat ad hoc; effectively we second-guess the mistakes of a
rough implementation, and then try to correct it after the event. This has the flavor of
a hack, and despite being easy to implement and suitable for adding in friction (which
we'll do in Chapter 15), it is frowned upon by engineering purists.

A more physically realistic approach would be to recognize that a force would be
applied on the particle from the ground. This reaction force pushes the object back so
that its total acceleration in the vertical direction becomes zero. No matter how hard
the particle pushes down, the ground will push up with the same force. We can create
a force generator that works in this way, making sure that there can be no acceleration
into the ground.

This works okay for particles that can have only one contact with the ground.
For more complex rigid bodies the situation becomes considerably more complex.
We may have several points of contact between an object and the ground (or worse,
we might have a whole series of contacts between an object and immovable resting
points). It isn’t immediately clear how to calculate the reaction forces at each contact
so that the overall motion of the object is correct. We'll return to reaction forces in
some depth in Chapter 15, and to more complex resolution methods in Chapter 20
at the end of the book.

73 THE CONTACT RESOLVER ALGORITHM

The collision resolver receives a list of contacts from the collision detection system,
and needs to update the objects being simulated to take account of the contacts.
We have three bits of code for performing this update:

1. The collision resolution function that applies impulses to objects to simulate
them bouncing apart.

2. The interpenetration resolution function that moves objects apart so that they
aren’t partially embedded in one another.

3. The resting contact code that sits inside the collision resolution function and
keeps an eye out for contacts that might be resting rather than colliding.

Which of these functions needs calling for a contact depends on its separating
velocity and interpenetration depth. Interpenetration resolution only needs to occur
if the contact has a penetration depth greater than zero. Similarly, we might need to
perform interpenetration resolution only, with no collision resolution, if the objects
are interpenetrated but separating.

7.3 The Contact Resolver Algorithm 131

Regardless of the combination of functions needed, each contact is resolved one at
a time. This is a simplification of the real world. In reality, each contact would occur at
a slightly different instant in time or be spaced out over a range of time. Some contacts
would apply their effects in series, and others would combine and act simultaneously
on the objects that they affect. Some physics engines will try to accurately replicate this
by treating sequential contacts in their correct order and resolving resting contacts all
at the same time. In Section 7.3.2, we’ll look at an alternative resolution scheme that
honors sequential series. In Chapter 20, we'll look at systems to perform simultaneous
resolution of multiple contacts.

For our engine, we’d like keep things simple and do neither. We'd like to resolve all
the contacts one at a time at the end of a frame. We can still get very believable results
with this scheme, with a considerably less complex implementation. To get the best
results, however, we need to make sure that the contacts are resolved in a particular
order.

7.3.1 RESOLUTION ORDER

If an object has two simultaneous contacts, as shown in Figure 7.5, then changing its
velocity to resolve one contact may change its separating velocity at the other contact.
In the figure, if we resolve the first contact, then the second contact stops being a
collision at all, as it is now separating. If we resolve the second contact only, however,
the first contact still needs to be resolved because the change in velocity isn’t enough
to save it.

To avoid doing unneccesary work in situations like this, we resolve the most severe
contact first, that is, the contact with the lowest separating velocity (i.e., the most
negative). In addition to the most convenient, this is also the most physically realistic
thing we can do. In the figure, if we compared the behavior of the full three-object

Contact 1 Contact 2

FIGURE 7.5 Resolving one contact may resolve another automatically.

132 Chapter 7 Hard Constraints

situation with the behavior after having removed one of the two lower blocks, we
would find that the final result is similar to the case where we have block A but not
block B. In other words, the most severe collisions tend to dominate the behavior of
the simulation. If we have to prioritize which collisions to handle, it should be those
that give the most realism.

The figure illustrates a complication in our contact resolution algorithm. If we
handle one collision, then we might change the separating velocity for other contacts.
We can’t just sort the contacts by their separating velocity, and then handle them in
order. Once we have handled the first collision, the next contact may have a positive
separating velocity and not need any processing.

There is also another, more subtle, problem that doesn’t tend to arise in many par-
ticle situations. We could have a situation where we resolve one contact, then another,
but resolving the second puts the first contact back into collision, so we need to re-
resolve it. Fortunately, it can be shown that for certain types of simulation (particu-
larly those with no friction, but some friction situations can also work), this looping
will eventually settle into a correct answer. We'll not need to loop round forever, and
we'll not end up with a situation where the corrections get bigger and bigger until
the whole simuation explodes. Unfortunately, this equilibrium could still take a long
time to reach, and there is no accurate way to estimate how long it will take. To avoid
getting stuck, we place a limit on the number of resolutions that can be performed
each frame.

The contact resolver we will use follows this algorithm:

1. Calculate the separating velocity of each contact, keeping track of the contact
with the lowest (i.e., most negative) value.

2. If the lowest separating velocity is greater than or equal to zero, then we’re done:
exit the algorithm.

3. Process the collision response algorithm for the contact with the lowest separat-
ing velocity.
4. If we have more iterations, then return to Step 1.

The algorithm will automatically re-examine contacts that it has previous resol-
ved, and it will ignore contacts that are separating. It resolves the most severe collision
at each iteration.

The number of iterations allowed should be at least the number of contacts (to
give them all a chance of getting seen at least once), and can be greater. For simple
particle simulations having the same number of iterations as there are contacts can
often work fine. I tend to use double as a rule of thumb, but more is needed for com-
plex interconnected sets of contacts. You could also give the algorithm no iteration
limit and see how it performs. This is a good approach for debugging when difficult
situations arise.

You may have noticed that I've ignored interpenetration so far. We could combine
interpenetration resolution with collision resolution and embed it in the algorithm

7.3 The Contact Resolver Algorithm 133

above. A better solution, in practice, is to separate the two into distinct phases. First,
we resolve the collisions in order, using the algorithm above. Second, we resolve all
interpenetrations.

Separating the two resolution steps allows us to use a different order to resolve
interpenetration than for velocity. Once again we want to get the most realistic results.
We can do this by resolving the contacts in order of severity, as before. If we com-
bine the two stages, we’'d be tied to a suboptimal order for one or another kind of
resolution.

The interpenetration resolution follows the same algorithm as for collision reso-
lution. As before, we need to recalculate all the interpenetration depths between each
iteration. Recall that interpenetration depths are provided by the collision detector.
We don’t want to perform collision detection again after each iteration, as it is far too
time consuming. To update the interpenetration depth, we keep track of how much
we moved the two objects at the previous iteration. The objects in each contact are
then examined. If either object was moved in the last frame, then its interpenetration
depth is updated by finding the component of the move in the direction of the contact
normal.

Putting all this together, we get the following contact resolver function:

Excerpt from file include/cyclone/pcontacts.h

/**

* The contact resolution routine for particle contacts. One
* resolver instance can be shared for the entire simulation.
*/

class ParticleContactResolver

{

protected:
/**
* Holds the number of iterations allowed.
*/

unsigned iterations;

/**
* This is a performance tracking value; we keep a record
* of the actual number of iterations used.

*/

unsigned iterationsUsed;

public:
/**
* Creates a new contact resolver.
*/

ParticleContactResolver(unsigned iterations);

134 Chapter 7 Hard Constraints

/**
* Sets the number of iterations that can be used.
*/

void setIterations(unsigned iterations);

/**
* Resolves a set of particle contacts for both penetration
* and velocity.
*/
void resolveContacts(ParticleContact *contactArray,
unsigned numContacts,
real duration);

Excerpt from file src/pcontacts.cpp

void ParticleContactResolver::resolveContacts(ParticleContact
*contactArray, unsigned
numContacts, real duration)

unsigned i;

iterationsUsed = 0;
while(iterationsUsed < iterations)
{
// Find the contact with the largest closing velocity.
real max = REAL_MAX;
unsigned maxIndex = numContacts;
for (i = 0; i < numContacts; i++)
{
real sepVel = contactArray[i].calculateSeparatingVelocity();
if (sepVel < max &&
(sepVel < 0 || contactArray[i].penetration > 0))

max = sepVel;
maxIndex = i;

// Do we have anything worth resolving?
if (maxIndex == numContacts) break;

// Resolve this contact.
contactArray[maxIndex].resolve(duration);

7.3 The Contact Resolver Algorithm 135

iterationsUsed++;

The number of iterations we use to resolve interpenetrations might not be the
same as the number used in resolving collisions. We could implement the function to
use a different limit in each case. In practice, there is rarely any need to have different
values, as we can pass the same for both. As a simulation gets more complex with
interacting objects, the number of collision iterations needed will increase at roughly
the same rate as the number of interpenetration iterations. In the function above, I've
used one iteration limit for both parts.

The recalculation of the closing velocity and interpenetration depth at each iter-
ation is the most time-consuming part of this algorithm. For very large numbers of
contacts, this can dominate the execution speed of the physics engine. In practice,
most of the updates will have no effect: one contact may have no possible effect on
another contact. In Chapter 16, we’ll return to this issue and optimize the way colli-
sions are resolved.

7.3.2 TIME-DIVISION ENGINES

There is another approach to creating a physics engine that avoids having to resolve
interpenetration or generate a sensible resolution order for the contacts. Rather than
have one update of the physics engine per frame, we could have many updates punc-
tuated by collisions.

The theory goes like this:

B When there are no collisions, objects are moving around freely, using just the
laws of motion and force generators we saw in Chapter 6.

B When a collision occurs, it is at the exact point that two objects touch. At this
stage there is no interpenetration.

B If we can detect exactly when a collision occurs, we can use the normal laws
of motion up to this point, stop, perform the impulse calculations, and then
start up with the normal laws of motion again.

m [f there are numerous collisions, we process them in order, and between each
collision, we update the world using the normal laws of motion.
In practice, this kind of engine has the following algorithm:
1. Let the start time be the current simulation time, and the end time be the end
of the current update request.
2. Perform a complete update for the entire time interval.
3. Run the collision detector and collect a list of collisions.

4. If there are no collisions, we are done: exit the algorithm.

136 Chapter 7 Hard Constraints

For each collision, work out the exact time of the first collision.
Choose the first collision to have occurred.

Ifthe first collision occurs after the end time, then we’re done: exit the algorithm.

® N W

Remove the effects of the Step 2 update, and perform a new update from the
start time to the first collision time.

9. Process the collision, applying the appropriate impulses (no interpenetration
resolution is needed, because at the instant of collision the objects are only just
touching).

10. Set the start time to be the first collision time, keep the end time unchanged,
and return to Step 1.

This gives an accurate result, and avoids the problems with interpenetration res-
olution. It is a commonly used algorithm in engineering physics applications where
accuracy is critical. Unfortunately, it is very time consuming. For each collision, we
run the collision detector again and rerun the regular physics update every time. We
still need to have special case code to cope with resting contacts; otherwise, the resting
contacts will be returned as the first collision at every iteration. Even without resting
contacts, numerical errors in the collision detection calculations can cause a never-
ending cycle, that is, a constant stream of collisions occurring at the same time that
causes the algorithm to loop endlessly.

For almost all game projects, this approach isn’t practical. A once-per-frame
update is a better solution, where all the contacts are resolved for velocity and inter-
penetration.

The “almost” T am thinking of is pool, snooker, or billiards games. In these cases,
the sequence of collisions and the position of balls when they collide is critical.
A pool game using once-per-frame physics might be believable when two balls collide,
but strange effects can appear when the cue ball hits a tightly packed (but not quite
touching) bunch of balls. For a serious simulation, it is almost essential to follow the
algorithm above, with the advantage that if you are writing from scratch it is easier
to implement without the interpenetration code (not to mention the simplifications
you can get because all the balls have the same mass).

You can see this in pool simulation games running on older PCs. When you break
off, there is a fraction of a second pause when the cue ball hits the pack, as the thou-
sands of internal collisions are detected and handled sequentially.

For a simple arcade pool game, if you already have a once-per-frame physics
engine available, it is worth a try: it may be good enough to do the job.

74 COLLISION-LIKE THINGS

Just as for springs, we will look at several types of connections that can be modeled
using the techniques in this chapter.

7.4 Collision-Like Things 137

You can think of a collision as acting to maintain two objects at least some min-
imum distance apart. A contact is generated between two objects if they ever get too
close. In the same way, we can use contacts to keep objects together.

7.4.1 CABLES

A cable is a constraint that forces two objects to be no more than a specific distance
apart. If we have two objects connected by a light cable, they will feel no effects as
long as they are close together. When the cable is pulled taut, the objects cannot sepa-
rate further. Depending on the characteristics of the cable, the objects may appear to
bounce off this limit in the same way that objects colliding might bounce apart. Just
like any other collision, the cable has a characteristic coefficient of restitution that
controls this bounce effect.

We can model cables by generating contacts whenever the ends of the cable sep-
arate too far. The contact is very much like those used for collisions, except that its
contact normal is reversed: it pulls the objects together rather than bouncing them
apart. Similarly, the interpenetration depth of the contact corresponds to how far the
cable has been stretched beyond its limit.

We can implement a contact generator for a cable in the following way:

Excerpt from file include/cyclone/plinks.h
/**
* Links connect two particles together, generating a contact if
* they violate the constraints of their Tink. It is used as a
* base class for cables and rods, and could be used as a base
* class for springs with a Timit to their extension.
*/
class ParticleLink : public ParticleContactGenerator
{
public:
/**
* Holds the pair of particles that are connected by this link.
*/

Particle* particle[2];

protected:
/**
* Returns the current length of the Tink.
*/

real currentLength() const;

public:
/**

138 Chapter 7 Hard Constraints

* Generates the contacts to keep this Tink from being

* violated. This class can only ever generate a single

* contact, so the pointer can be a pointer to a single

* element, the 1imit parameter is assumed to be at least 1
* (0 isn't valid), and the return value is 0 if the

* cable wasn't overextended, or 1 if a contact was needed.

* NB: This method is declared in the same way (as pure

* virtual) in the parent class, but is replicated here for

* documentation purposes.

*/

virtual unsigned addContact(ParticleContact *contact,
unsigned Timit) const = 0;

}s

/**
* Cables link a pair of particles, generating a contact if they
* stray too far apart.
*/
class ParticleCable : public ParticlelLink
{
public:
/**
* Holds the maximum length of the cable.
*/

real maxLength;

/**
* Holds the restitution (bounciness) of the cable.
*/

real restitution;

public:
/**
* Fills the given contact structure with the contact needed
* to keep the cable from overextending.
*/
virtual unsigned addContact(ParticleContact *contact,
unsigned Timit) const;

7.4 Collision-Like Things 139

Excerpt from file src/plinks.cpp

real ParticlelLink::currentLength() const
{
Vector3 relativePos = particle[0]->getPosition() -
particle[1]->getPosition();
return relativePos.magnitude();

unsigned ParticleCable::addContact(ParticleContact *contact,
unsigned Timit) const

// Find the length of the cable.
real length = currentlLength();

// Check if we're overextended.
if (length < maxLength)
{

return 0;

// Otherwise, return the contact.
contact->particle[0] = particle[0];
contact->particle[1] = particle[1];

// Calculate the normal.
Vector3 normal =
particle[1]->getPosition() - particle[0]->getPosition();
normal.normalize();
contact->contactNormal = normal;

contact->penetration = length-maxLength;
contact->restitution = restitution;

return 1;

This code acts as a collision detector: it examines the current state of the cable
and can return a contact if the cable has reached its limit. This contact should then
be added to all the others generated by the collision detector, and processed in the
normal contact resolver algorithm.

140 Chapter 7 Hard Constraints

7.4.2 RODS

Rods combine the behaviors of cables and collisions. Two objects linked by a rod can-
not separate nor get closer together. They are kept at a fixed distance apart.

We can implement this in the same way as the cable contact generator. At each
frame, we look at the current state of the rod, and generate either a contact to bring
the ends inward or a contact to keep them apart.

We need to make two modifications to what we’ve seen so far, however. First, we
should always use a coefficient of restitution of zero. It doesn’t make sense for the two
ends to either bounce together or apart. They should be kept at a constant distance
from one another, so that the relative velocity along the line between them should
be zero.

Second, if we apply just one of the two contacts (to separate or to close) each
frame, we will end up with a vibrating rod. On successive frames the rod is likely to
be too short and then too long, and each contact will drag it backward and forward.
To avoid this, we generate both contacts in every frame. If either of the contacts is not
needed (i.e., the separating velocity is greater than zero, or there is no interpenetra-
tion), then it will be ignored. Having the extra contact there helps the contact resolver
algorithm not to overcompensate, and the rod will be more stable. The downside of
this approach is that for complex assemblies of rods, the number of iterations needed
to reach a really stable solution can rise dramatically. If you have a low iteration limit,
the vibration can return.

We can implement our contact generator in the following way:

Excerpt from file include/cyclone/plinks.h

/**
* Rods link a pair of particles, generating a contact if they
* stray too far apart or too close.
*/
class ParticleRod : public ParticleLink
{
public:

/**

* Holds the Tength of the rod.

*/

real length;

public:
/**
* Fills the given contact structure with the contact needed
* to keep the rod from extending or compressing.

*/

7.4 Collision-Like Things

virtual unsigned addContact(ParticleContact *contact,
unsigned Timit) const;

141

Excerpt from file src/plinks.cpp

unsigned ParticleRod::addContact(ParticleContact *contact,

unsigned 1imit) const

// Find the length of the rod.
real currentLen = currentlLength();

// Check if we're overextended.
if (currentLen == length)
{

return 0;

// Otherwise, return the contact.
contact->particle[0] = particle[0];
contact->particle[1] = particle[1];

// Calculate the normal.
Vector3 normal =

particle[1]->getPosition() - particle[0]->getPosition();
normal.normalize();

// The contact normal depends on whether we're extending or
compressing.

if (currentLen > length) {
contact->contactNormal = normal;
contact->penetration = currentlLen - length;

} else {
contact->contactNormal = normal * -1;
contact->penetration = length - currentlLen;

// Always use zero restitution (no bounciness).
contact->restitution = 0;

return 1;

142 Chapter 7 Hard Constraints

The code always generates two contacts, which should be added to the list returned
by the collision detector and passed to the contact resolver.

75 SUMMARY

We've now built a set of physics code that can connect particles using both hard con-
straints such as rods and cables and elastic constraints such as springs and bungees.

Rods and cables behave similarly to collisions between separate objects. Cables
can cause particles joined together to bounce toward one another, in the same way
that particles bounce off one another when they collide. In the same way, rods cause
connected particles to stay togther, moving with a fixed separation distance. This is
equivalent to collisions with no bounce, when the particles stick together and their
closing velocity is reduced to zero.

Supporting both hard and elastic connections between particles allows us to com-
bine particles into interesting larger structures and simulate them in our game.

This forms our second complete physics engine, the mass aggregate engine. Unlike
the particle engine we built first, the mass aggregate engine is rare in published games.
Its major exposure has been in a few 2D platform and casual games.

While it has largely been superceded by the more complex engines later in the
book, it is still useful in some games in its own right. Chapter 8 looks at its strengths
and selected applications.

76 EXERCISES

Exercise 7.1

Collect a selection of objects made from different (nonbreakable) materials and find
a hard floor. Using a tape measure, drop each object from a known height (e.g., 1 m),
and measure how high they bounce. The object should be dropped in such a way that
it does not spin when falling or after bouncing; balls are best for this experiment. From
the bounce height, hpounce> and initial height, hinial, you can calculate the coefficient
of restitution, c, as follows:

hbounce

cC =
hinitial

Use the data you collect to create a table of coefficients of restitution between the floor
and the materials you used.

Exercise 7.2
(a) Use the equation of motion,

p=pt+3p

7.6 Exercises 143

from Chapter 1 to work out how long it would take for an object with a particular
mass to hit the ground when dropped from some specific height.

(b) Use the equation
b=t
to work out the speed that the object would be traveling when it hits the ground.
(c) Combining both results, derive the equation shown in the previous exercise,

that is,

hbounce

‘ Binitial
Exercise 7.3
Two balls placed almost on top of one another are dropped from a height of 1 m. The
bottom ball hits the ground and bounces with a coefficient of restitution of 0.5. An
instant later (i.e., after having lost none of its new upward velocity), it hits the second
ball, which is still traveling down. The collision between the balls has a coefficient
of restitution of 0.75. The mass of the bottom ball is nine times that of the top ball.
What is the upward speed of the top ball after its collision? Assume in this question
that the balls have zero radius (i.e., each one drops the full meter before its contact),
and gravity is 10ms~2.
Exercise 7.4
A force of k is applied to an object for a small fraction of a second, #, less than the
duration of one frame, #r. Our simulation doesn’t support applying forces for less than
an entire frame, so if we wanted to simulate the effect of force k over a duration of #,
how much force should we apply over our frame duration, #?

Exercise 7.5
(a) Implement a collision detector that can detect whether a particle has passed
through the ground plane (Y = 0) and generate a collision.

(b) Extend this code so that the objects can be spheres of some given size.

Exercise 7.6

Create another constraint that generates contacts if two objects get closer than a min-
imum distance apart, or if they get farther than some (possibly different) maximum
distance. This constraint is similar to the rod, described above, but allows some mar-
gin in which no force is generated.

This page intentionally left blank

THE MASS
AGGREGATE
PHYSICS ENGINE

W e’ve now built a mass aggregate physics engine capable of both particle sim-
ulation and constructions made of many objects connected by rods, cables,
and springs. It’s time to test the engine on some example scenarios.

The engine still has limits; in particular, it can’t describe the way that objects
rotate. We'll look at ways around this, faking the rotation of objects in terms of mass
aggregates. It is a useful technique for some applications, and can eliminate the need
for more advanced physics.

81 OVERVIEW OF THE ENGINE

The mass aggregate physics engine has three components:

1. The particles themselves keep track of their position and movement and their
mass. To set up a simulation, we need to work out what particles are needed
and set their initial position velocity. We also need to set their inverse mass. The
acceleration of an object due to gravity is also held in the rigid body (this could
be removed and replaced by a force, if you so desire).

2. The force generators are used to keep track of forces that apply over several frames
of the game.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOL: 10.1016/B978-0-12-381976-5.00008-5 145

146 Chapter 8 The Mass Aggregate Physics Engine

3. The collision system accumulates a set of contact objects and passes them to the
contact resolver. Any bit of code can generate new contacts. We have considered
two: a collision detector and rod or cable constraints.

At each frame we take each particle, calculate its internal data, call its force gener-
ators, and call its integrator to update position and velocity. We then accumulate the
contacts on the particle and pass all the contacts for all the particles into the collision
resolver.

To make this process easier, we will construct a simple structure to hold any num-
ber of rigid bodies. We hold the rigid bodies in a st1::vector, exactly as we did for
force generators (again you could use a linked list if you preferred not to use the
STL). This is contained in a World class, representing the whole physically simulated
world:

Excerpt from file include/cyclone/pworld.h

/**
* Keeps track of a set of particles, and provides the means to
* update them all.
*/
class ParticleWorld
{
public:

typedef std::vector<Particle*> Particles;

protected:
/**
* Holds the particles.
*/
Particles particles;

public:
/**
* Creates a new particle simulator that can handle up to the
* given number of contacts per frame. You can also optionally
* give a number of contact-resolution iterations to use. If you
* don't give a number of iterations, then twice the number of
* contacts will be used.
*/
ParticleWorld(unsigned maxContacts, unsigned iterations=0);

}s

At each frame, the startFrame method is first called, which sets up each object
ready for the force accumulation:

8.1 Overview of the Engine 147

Excerpt from file include/cyclone/pworld.h

class ParticleWorld

{
// ... Other ParticleWorld code as before ...

/**

* Initializes the world for a simulation frame. This clears
* the force accumulators for particles in the world. After
* calling this, the particles can have their forces for this
* frame added.

*/

void startFrame();

}s

Additional forces can be applied after calling this method.
We will also create another system to register contacts. Just like we saw for force
generators, we create a polymorphic interface for contact detectors.

Excerpt from file include/cyclone/pcontacts.h
/**
* This is the basic polymorphic interface for contact generators
* applying to particles.
*/
class ParticleContactGenerator
{
public:
/**
* Fills the given contact structure with the generated
* contact. The contact pointer should point to the first
* available contact in a contact array, where limit is the
* maximum number of contacts in the array that can be written
* to. The method returns the number of contacts that have
* been written.
*/
virtual unsigned addContact(ParticleContact *contact,
unsigned Timit) const = 0;

Each contact generator gets called in turn from the world, and can contribute any
contacts it finds back to the world by calling its addContact method.

148 Chapter 8 The Mass Aggregate Physics Engine

To execute the physics, the runPhysics method is called. This calls all the force
generators to apply their forces, and then performs the integration of all objects, runs
the contact detectors, and resolves the resulting contact list:

Excerpt from file include/cyclone/pworld.h
class ParticleWorld

{
// ... Other ParticleWorld code as before ...

typedef std::vector<ParticleContactGenerator*> ContactGenerators;

/**
* Holds the force generators for the particles in this world.
*
/
ParticleForceRegistry registry;
/**
* Holds the resolver for contacts.
*/
ParticleContactResolver resolver;
/**
* Contact generators.
*/
ContactGenerators contactGenerators;
/**
* Holds the Tist of contacts.
*/

ParticleContact *contacts;

/**
* Holds the maximum number of contacts allowed (i.e., the
* size of the contacts array).

*/

unsigned maxContacts;

/**
* Calls each of the registered contact generators to report
* their contacts. Returns the number of generated contacts.

*/

unsigned generateContacts();

/**

* Integrates all the particles in this world forward in time

8.1 Overview of the Engine

* by the given duration.
*/

void integrate(real duration);

/**
* Processes all the physics for the particle world.
*/

void runPhysics(real duration);

149

Excerpt from file src/pworld.cpp

unsigned ParticleWorld::generateContacts()

{
unsigned 1imit = maxContacts;
ParticleContact *nextContact = contacts;

for (ContactGenerators::iterator g = contactGenerators.begin();
g != contactGenerators.end();
g++)

unsigned used =(*g)->addContact (nextContact, Timit);
Timit -= used;
nextContact += used;

// We've run out of contacts to fill. This means we're missing
// contacts.
if (1imit <= 0) break;

// Return the number of contacts used.
return maxContacts - Timit;

void ParticleWorld::integrate(real duration)
{
for (Particles::iterator p = particles.begin();
p != particles.end();
p++)

// Integrate the particle by the given duration.
p->integrate(duration);

150 Chapter 8 The Mass Aggregate Physics Engine

void ParticleWorld::runPhysics(real duration)
{
// First, apply the force generators.
registry.updateForces(duration);

// Then integrate the objects.
integrate(duration);

// Generate contacts.
unsigned usedContacts = generateContacts();

// And process them.

if (usedContacts)

{
if (calculatelterations) resolver.setIterations(usedContacts * 2);
resolver.resolveContacts(contacts, usedContacts, duration);

We add a call to startFrame at the start of each frame of the game, and a call to

runPhysics wherever we want the physics to occur. A typical game loop might look
like this:

void Toop()

{
while (true) {
// Prepare the objects for this frame.
world.startFrame();

// Calls to other parts of the game code.
runGraphicsUpdate();

updateCharacters();

// Update the physics.
world.runPhysics();

if (gameOver) break;

8.2 Using the Physics Engine 151

82 USING THE PHYSICS ENGINE

We will look at a useful application of the mass aggregate engine—creating structures
out of particle masses and hard constraints. Using this technique, we can create and
simulate many larger objects. The possibilities are endless, such as crates, mechanical
devices, even chains, vehicles, or (with the addition of springs) soft deformable blobs.

8.2.1 ROPE BRIDGES AND CABLES

FIGURE 8.1

Sagging bridges, cables, and tilting platforms are all stalwarts of the platform game
genre, as well as having applications in other genres.

We can set up a bridge using pairs of particles suspended by cables. Figure 8.1
shows an arrangement that has this effect. Each pair of particles along the bridge is
linked with a rod constraint to keep them connected with their neighbors. Pairs of
particles are likewise linked together to give the bridge some strength. The cables are
cable constraints descending from a fixed point in space.

In the source code accompanying this book, the bridge demo shows this setup in
operation. You can move an object (representing a character) over the bridge. The col-
lision detector applies contacts to the nearest particles to the objects. Note that the
bridge stretches and conforms to the presence of the heavy object. In the demo, the
constraints are shown as lines in the simulation.

The collision detector needs some explanation. Because we have only particles in
our simulation, but we want to give the impression of a bridge, it is not the collision
between particles that interests us, but the collision between the character and the
planks of the bridge. We will return later in the book to a more robust way of doing
this. For the purposes of this chapter, I have created a custom collision detector. The
detector treats the character as a sphere, and checks whether it intersects with any of

N

AN

/

Screenshot of the bridge demo.

152 Chapter 8 The Mass Aggregate Physics Engine

FIGURE 8.2

Screenshot of the platform demo.

the planks. A plank is a line segment between one pair of particles. If the object does
intersect, then a contact is generated between the character object and the nearest of
the plank particles. The contact normal is set based on the position of the object and
the line of the plank.

Tilting platforms can use the same idea. Figure 8.2 shows a suitable structure. The
accompanying platform demo shows this in operation: the platform will naturally
tilt in one direction. A weight can be added to the opposite end, causing it to tilt back.
The particles that make up the pivot of the platform have been set with infinite mass,
to prevent them from moving. If the platform was intended to be mobile, they could
be set with a mass similar to the other particles.

The simulation setup is similar to the bridge demo. You can download the full
source code for both on the website.

8.2.2 FRICTION

One key limitation of this approach is the lack of friction in our contact model. It
was a deliberate choice to leave out friction at this stage: we’ll implement it as part of
the engine in Part V. If you create mass aggregates, they will appear to slide over the
ground as if skating on ice. Try replacing the infinite masses of the platform demo
and see the platform slide about.

If you are intending to only implement a mass aggregate physics system, then it is
worth skipping forward to Chapter 15. The discussion of friction there can be easily
adapted for particle contacts. In fact, the mathematics is a little simpler: we can ignore
all the rotational components of the contact.

For anything but the simplest assemblies of particle masses, it may be worth
implementing the full physics engine in any case. You can create any object with a
mass aggregate system, but as the number of constraints increases, so does the burden
on the collision response system and the tendency for stiff constraints to flex slightly
as groups of hard constraints compete to be resolved. A full rigid-body solution is the

8.3 Summary 153

most practical for general physics simulation. It is time to bite the bullet and move
from particles to complete, rotating, extended objects.

8.2.3 BLOB GAMES

Over the last 5 years, mass aggregates have seen some use in games with “blobs” as cen-
tral characters. The independent Gish, and the hit PSP game Loco Roco use 2D char-
acters made up of a set of particles that move in ways we can replicate using our mass
aggregate engine. I strongly suspect (but don’t know) that a more complete physics
engine is used in both games. But the characters themselves only require the features
we have built so far.

Each character is made up of a series of particles. Only a handful are needed,
though in Loco Roco, the number changes throughout the game. The particles are
connected using soft springs, so they can move a reasonable distance apart. To avoid
moving too far apart, the springs have a limit of elasticity, beyond which they act like
cables. It is possible to also detect this situation and break the connection, allowing
part of the character to fall away for future recapturing.

The difficult part of this setup is to render the characters nicely. The simplest
approach is to draw a circle or sphere at each particle, making sure that they don’t
separate far enough to leave a gap. This gives the right general impression, but isn’t
entirely convincing. A more complete approach would have to generate new geome-
try for the character based on where its particles are lying. This could be a meta-ball
type of algorithm (as seen in many 3D design packages) or more likely a custom piece
of geometry-generating code.

The blob demo in the accompanying source code provides a simple implementa-
tion of this kind of character, using only the mass aggregate engine.

83 SUMMARY

While slightly cumbersome, a mass aggregate physics engine is capable of simulat-
ing some interesting and complex effects. Sets of relatively simple objects joined by a
mixture of hard and elastic constraints are particularly suited to this approach.

The first examples we saw, rope bridges, have been simulated with a mass aggre-
gate approach for many years. The second example showed how to build large objects
out of a set of particles. While this can work successfully, it is prone to many problems.
Objects made up of lots of particles and lots of hard constraints can be slightly unsta-
ble; they can appear to flex and bend when simulated, and in the worst case there can
be noticeable vibration in the particles as their constraints pull them in different ways.

There is a better way to simulate a single large object. Rather than build it out of
particles, we can treat it as a whole. To do this, we’ll need to change our physics engine
dramatically. As well as simulating the position, velocity, and acceleration of an object,
we'll need to take into account how it rotates as it moves. This will introduce a large

154 Chapter 8 The Mass Aggregate Physics Engine

amount of complexity into our physics engine, and will take us the rest of the book
to implement properly. Chapter 9 takes the first step, introducing the mathematics of
rotation.

84 PROJECTS

Mini-Project 8.1
Remove the infinite masses from the anchor points in the platform demo and see
how the platform responds.

Mini-Project 8.2
Create a cube mass aggregate shape (using either of the demos in this chapter). How
many rods do you need for it to keep a reasonably square shape?

Mini-Project 8.3
(a) Create a mass aggregate wheel, where the center of the wheel is fixed with infi-
nite mass. The center should radiate spokes (made of rods) to masses on the
circumference of the wheel. These masses should be joined by further rods to
make the outer edge of the wheel.

(b) Add a force generator to the masses at the circumference of the wheel to make
the wheel turn.

(c) Add the force generator to just a few of the masses on the circumference. Does
this set of unbalanced forces cause the wheel to deform as it turns?

Project 8.1

Create a game in which the player controls a bouncing ball. The player can make
the ball bounce left, right, or higher (add these movements using a custom force
generator that responds to the player’s key presses). Create a very simple level using
mass aggregate objects such as a rope bridge or tilting platform. See the bridge and
platform demos for examples of how to detect collisions between a spherical ball and
these objects.

Project 8.2

Create a trebuchet game, with the structure of the trebuchet implemented as a mass
aggregate system. There should be a base with infinite mass and a swinging arm, one
end of which has a heavy counterweight. A particle is attached to the other end of
the arm, and is released when it reaches a particular point of the swing. By chang-
ing the length of the arm, the weights of both the counterweight and the projectile,
and the angle at which the projectile is released, the player can alter the projectile’s
trajectory.

PART IlI

Rigid-Body Physics

This page intentionally left blank

THE MATHEMATICS
OF ROTATIONS

hus far we have covered a lot of ground on our way to building the first two

physics engines. We have built a sophisticated system capable of simulating par-
ticles, either individually or connected into aggregates. To arrive at our goal of build-
ing a complete physics engine, we are missing two things:

B A robust, general-purpose collision detection system (currently we're using
quite an ad hoc system of hard constraints and special case code).

® The ability of objects to rotate as well as move around linearly.

Collision detection is often a self-contained problem solved by a piece of code
more or less independent of the physics engine. It will be the subject of Part IV of the
book.

The second impacts the code we've already written: it is the difference between
a complete rigid-body physics system and the mass aggregate systems we’ve seen so
far. To add rotations, we’ll need to go backward in the capability of our engine. We'll
need to remove a good deal of functionality and rebuild it based on full rotating rigid
bodies. Such treatments comprise this part of the book and Part V, most of the rest
of the book.

This chapter focuses on the properties of rotating bodies, and considers the math-
ematical structures needed to represent and manipulate them. As in Chapter 2, we’ll
focus on understanding and implementing the mathematics here before building it
into our physics engine in Chapter 10.

Copyright © 2010, Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381976-5.00009-7 157

158 Chapter 9 The Mathematics of Rotations

91 ROTATING OBJECTS IN 2D

Before we look at rotations in three dimensions, it is worth understanding them in
two. [will not implement any code from this section, but thinking about the 2D case
is a good first step toward understanding three dimensions.

In two dimensions, we can represent any object’s configuration in space by its 2D
position and an angle that shows how it is oriented. Just as the position is specified
relative to some fixed origin point, the angle is also given relative to a predetermined
direction. Figure 9.1 illustrates this.

If the object is rotating, its orientation will change over time. Just as velocity is the
first derivative of position (see Chapter 2), angular velocity is the first derivative of
orientation with respect to time.

I will use the word “orientation” throughout this book to refer to the direction
in which an object is facing. The word “rotation” is sometimes used for the same
thing, but it can also mean the process of rotating, or the amount of rotation that has
occurred.

To be specific, I'll try to only use “rotation” to mean a change in orientation. If
something is rotated, it is natural to mean that its orientation has changed. So to
rephrase the previous section, we could say that each orientation can be seen as a
rotation from some predetermined reference orientation.

If an object is spinning, I'll continue to use the term “angular velocity” to mean
the rate of change of orientation.

9.1.1 THE MATHEMATICS OF ANGLES

FIGURE 9.1

If we do any mathematics with orientations, we need to be careful, as many different
orientation values can represent the same orientation. If we measure orientation in
radians (there are 27 radians in the 360° of a circle), then the orientation of 27 is the
same as 0. Developers normally set a fixed range of orientation values, say (—, 7]
(the square bracket indicates that 7 is included in the range, and the round bracket
that — is not). If an orientation falls outside this range, it is brought back into the
range. The mathematical routines that deal with this kind of orientation scalar can
look messy, with lots of adjustments and checks.

O

Orientation =0 Orientation = 100 Orientation = —100

Angle that an object is facing.

9.1 Rotating Objects in2D 159

An alternative approach is to use vectors to represent orientation. We take a two-
element vector representing the direction in which the object is pointing. The vector
is related to the scalar value according to the equation

0 cosf (9.1]
sin@
where 6 is the angular representation of orientation, and @ is the vector represen-
tation. I have assumed that zero orientation would see the object facing along the
positive X axis, and that orientation increases in the counterclockwise direction. This
is simply a matter of convention.

The vector form of orientation makes many (but not all) mathematical operations
easier to perform, with less special case code and bounds checking. But in moving to
a 2D representation, we have doubled the number of values representing our orien-
tation. We have only one degree of freedom when deciding which direction an object
should face, but the representation of a vector has two degrees of freedom. A degree of
freedom is some quantity that we could change independent of others. A 3D position
has three degrees of freedom, for example, because we can move it in any of three
directions without altering its position in the other two. Calculating the number of
degrees of freedom will be an important tool for understanding rotations in 3D.

Having this extra degree of freedom means that we could end up with a vector that
doesn’t represent an orientation. In fact, most vectors will not match Equation 9.1.
In order to guarantee that our vector represents an orientation, we need to remove
some of its freedom. We do this by forcing the vector to have a magnitude of 1. Any
vector with a magnitude of 1 will match Equation 9.1, and we’ll be able to find its
corresponding angle.

There’s a geometric way of looking at this constraint. If we draw a point at the end
of all possible vectors with a magnitude of 1, we get a circle, as shown in Figure 9.2. We
could say that a vector orientation correctly represents an orientation if it lies on this
circle. If we find a vector that is supposed to represent an orientation but is slightly
off (because of numerical errors in a calculation), we can fix it by bringing it onto the
circle. Mathematically we do this by forcing its magnitude to be 1 by normalizing the
vector.

If we build a 2D physics engine using vectors to represent orientations, we’d need
to occasionally make sure that the orientations still lie on the circle by normalizing
them.

Let’s summarize these steps (not surprisingly we’ll see them again later): we
started with problems of bounds checking, which led us to use a representation with
one more degree of freedom, which needed an extra constraint, which in turn led us
to add in an extra step to enforce the constraint.

9.1.2 ANGULAR SPEED

When we look at the angular speed of an object (sometimes called its rotation), we
don’t have any of the problems we saw for orientation. An angular speed of 47 radians

160 Chapter 9 The Mathematics of Rotations

FIGURE 9.2

Circle of
radius 1

The circle of orientation vectors.

per second is different from 27 radians per second. Every angular speed, expressed
as a single scalar value, is unique. So, the mathematics for angular speed is sim-
ple; we don’t need bound checking and special case code, which in turn means that
we don’t need to use a vector representation. Instead, we can stick with our scalar
value.

9.1.3 THE ORIGIN AND THE CENTER OF MASS

Before we leave two dimensions, it is worth considering what our position and orien-
tation represent. When we were dealing with particles, the position represented the
location of the particle. Particles by definition exist only at a single point in space,
even though in this book we’ve stretched the definition slightly and treated them like
small spheres.

The Origin of an Object

If we have a larger object, what does the position represent? The object is at many
locations at the same time, as it covers an extended area.

The position that we store must represent some pre-agreed location for the object.
This position is sometimes called the origin of the object. In a game we might choose
the root of the spine of a character, or the center of the chassis of a car. The position
doesn’t need to be inside the object at all. Many developers represent the position of
a character as a location between their heels resting on the ground.

FIGURE 9.3

9.1 Rotating Objects in2D 161

1.5
/R /_ O\ Center of headlight at []
< -0.75

Center of car

The relative position of a car component.

As long as the location doesn’t move around relative to the object, we can always
determine where every bit of the object will be from just its position and orientation.
Locations on the object are given relative to the origin of the object. If the origin of a
car is in the center of its chassis, as shown in Figure 9.3, then its right headlight might

be at a position of
1.5
—0.75

relative to the origin. If the car is moved so that its origin is at

)
EAUME

This movement is called translation—we are translating the car from one position to
another.

then its headlight will be at

Rotations

The same thing occurs if the object is facing in a different direction. In Figure 9.4, the
car’s position and orientation have been altered.

162 Chapter 9 The Mathematics of Rotations

FIGURE 9.4

‘ Center of headlight

[]
Center of car

Origin

The car is rotated.

So how do we calculate the location of the headlight now? First, we need to turn
the headlight around to represent the direction the car is facing.

We do this by using a third version of our orientation value. This time the ori-
entation is expressed in matrix form. If you are unsure about matrices, I'll return to
their mathematics when we come to implementing matrix classes for 3D below. You
can skip the mathematics here if you do not need a refresher.

The matrix form of orientation looks like this:

0 —sinf
o— c?s sin
sinf cos@
where 6 is the orientation angle, as before. This matrix is usually called the rotation

matrix: it can be used to rotate a vector by some angle. We can work out the new
position of the headlight by multiplying the relative position of the headlight by the

rotation matrix
, cosf —sin6
1= sinf cos6 e

where g, is the relative location of the headlight. In our case, where 6 = 37/8, we
obtain the following:

., 0.38-0.92 15 | [057+0.69| |1.27
T= 1092 038 || —075| " |139-020] " |1.10

where all values are given to two decimal places.

9.1 Rotating Objects in2D 163

After applying the orientation in this way, we can then apply the change in
position as before. The total process looks like this:

q=0q,+p [9.2]

where p is the position of the object. This equation works in both 2D and 3D, although
the definition of © is different, as we’ll see later in the chapter.
For our car example, we get:

1038 -0.92 1.5 N 4 | |127 N 4 | 527
1= 1092 038 || —0.75 385 |[1.10 3.85| [4.95

This calculation is called a transformation. We're calculating the location of part of
an object based on the position and orientation of the origin of the object it belongs
to and the relative position of the component. Transformations can be thought of
as converting between different sets of coordinates. In this case, we're transforming
from object space (the relative position of the component, also called local space or
sometimes body space) to world space (the final coordinate of the component). I'll
return to describing what I mean by world space and object space in more detail in
Section 9.4.5.

The Composition of Rotations and Translations

One vital result to note is that any sequence of translations and rotations can be rep-
resented with a single position and orientation. In other words, no matter how many
times I move and turn the car, we can always give a single set of values for its current
position and orientation.

This is equivalent to saying that any combination of rotations and translations is
equivalent to some single rotation followed by some single translation.

Rigid Bodies

The fact that all components of an object are fixed relative to its origin is the reason
why we talk about rigid bodies when it comes to physics engines. If our car is an
infant’s toy made of squashable rubber, then knowing the position and orientation
isn’t enough to tell us where the headlight is: the headlight might have been stretched
into a very different position.

Some physics engines can deal with simple soft bodies, but usually they work by
assuming that the body is rigid, and then applying some after-effects to make it look
soft. Or else they use a series of rigid bodies or particles joined by springs. In our
engine, as well as the majority of game physics engines, we will only support rigid
bodies.

Theoretically, we could choose any point on the object to be its origin. For objects
that aren’t being physically simulated, this is often the approach developers take, that
is, to choose a point that is convenient for the artist or AI programmer to work

164 Chapter 9 The Mathematics of Rotations

with. It is possible to create physics code that works with an arbitrary origin, but
the code rapidly becomes very complicated. There is one position on every object
where the origin can be set that dramatically simplifies the mathematics: the center of
mass.

Center of Mass

The center of mass (often called the “center of gravity”) is the balance point of an
object. If you divide the object in two by cutting any straight line through this point,
you will end up with two objects that have exactly the same weight. If the object is a
two-dimensional shape, you can balance it on your finger by placing your finger at
the center of mass.'

If you think of an object as being made up of millions of tiny particles (atoms, for
example), you can think of the center of mass as being the average position of all these
little particles, where each particle contributes to the average depending on its mass.
In fact, this is how we can calculate the center of mass. We split the object into tiny
particles and take the average position of all of them, as in

1
Pcofm = ;Zmipi
n

where p_ . is the position of the center of mass, m is the total mass of the object, and
m; is the mass and p; of particle i.

The center of mass of a sphere of uniform density will be located at the center
point of the sphere. Similarly, with a cuboid, the center of mass will be at its geometric
center. The center of mass isn’t always contained within the object. A donut has its
center of mass in the hole, for example. Appendix A gives a breakdown of a range of
different geometries and where their center of mass is located.

The center of mass is important because it behaves in a very useful way. If we watch
the center of mass of a rigid body, it will always behave like a particle. In other words,
we can use exactly the same formulas we have used so far in this book to perform
the force calculations and update the position and velocity for the center of mass. By
selecting the center of mass as our origin position, we can completely separate the
calculations for the linear motion of the object (which is the same as for particles)
and its angular motion (for which we’ll need extra mathematics).

Any physical behavior of the object can be decomposed into the linear motion of
the center of mass, and angular motion around the same point. This is a profound
and crucial result, but one that takes some time to prove: if you want the background,
any good undergraduate textbook on mechanics will give details.

If we choose any other point as the origin, we can no longer separate the two kinds
of motion; we’d need to take into account how the object was rotating in order to work

1. This isn’t always possible. As we’ll see, an object’s center of mass may lie outside the bounds of the
object. It is always the case that cutting an object through its center of mass gives you two halves of equal
mass, however.

9.2 Orientation in 3D 165

out where the origin is. Obviously this would make all our calculations considerably
more complicated.

Some authors and instructors work through code either way (although typically
only for a few results; when the mathematics gets really hard they give up). Personally,
I think it is a very bad idea to even consider having your origin anywhere else but at
the center of gravity. I'll assume this will always be the case for the rest of the book; if
you want your origin somewhere else, you're on your own!

92 ORIENTATION IN 3D

In 2D we started out with a single angle for orientation. Problems with keeping this
value in bounds led us to look at alternative representations. In many 2D games, a
vector representation is useful, but the mathematics for angles alone isn’t so difficult
that you couldn’t stick with the angle and adjust the surrounding code to cope.

Not surprisingly, there are similar problems in 3D. In 3D, however, the obvious
representation is so fundamentally flawed that it is almost impossible to imagine pro-
viding the right workarounds to get it running. We will be forced to use an alternative
representation. The representation we choose will, unfortunately, be a rather uncom-
mon bit of mathematics, not something you were taught in high school.

I don’t want to get bogged down in representations that don’t work, but it is worth
taking a brief look at the problems before we look at a range of solutions.

9.2.1 EULER ANGLES

In 3D an object has three degrees of freedom for rotation. By analogy, with the move-
ment of aircraft we can call these yaw, pitch, and roll. Any rotation of the aircraft can
be made up of a combination of these three maneuvers as illustrated in Figure 9.5.

For an aircraft, these rotations pivot about the three axes: pitch is a rotation about
the X axis, yaw is about the Y axis, and roll is about the Z axis (assuming the reference
orientation of an aircraft is looking down the Z axis, with the Y axis up).

Recall that a position is represented as a vector, where each component repre-
sents the distance from the origin in one direction. We could use a vector to represent
rotation, where each component represents the amount of rotation about the corre-
sponding axis. We have a similar situation to our 2D rotation, but here rather than a
single angle, we need three, or one for each axis. These three angles are called Euler
angles.

This is the most obvious representation of orientation. It has been used in many
graphics applications. Several of the leading graphics modeling packages use Euler
angles internally, and those that don’t still represent orientations to the user as Euler
angles.

Unfortunately, Euler angles are almost useless for our needs. We can see this by
looking at some of the implications of working with them. You can follow this through

166 Chapter 9 The Mathematics of Rotations

FIGURE 9.5

Roll

Pitch

Aircraft rotation axes.

by making a set of axes with your hand (as described in Section 2.1.1), remembering
that your imaginary object is facing in the same direction as your palm (along the Z
axis) and your index pointer should be pointing up (i.e., the Y axis is vertical).

Imagine we first perform a pitch, by 30 degrees or so, keeping your thumb pointed
in the same direction. The object now has its nose up in the air. Now perform a yaw
by about the same amount, keeping your first finger pointed in the same direction.
Note that the yaw axis (your first finger) is no longer pointing up: when we pitched
the object the yaw axis also moved.

Remember where the object is pointing. Now start again, but perform the yaw first
and then the pitch. Note now that the object will be in a slightly different position (if
it doesn’t seem to be different, then try it again with bigger rotations, until you can
see the difference—the bigger the rotation, the bigger the difference). What does this
mean? If we have a rotation vector like

0.3
0.4
0.1
in which order do we perform the rotations? The result may be different for each

order. What is more, because the order is crucial, we can’t simply use regular vector
mathematics to combine rotations. In particular,

Ty 1) ="1)-1

where r; and r, are two vectors, but the rotations themselves shouldn’t behave like
this (as we saw with the hand example). For rotations r; and r,,

r-rFErn-n

In case you think that the problem is caused by moving the rotation axes around
(i.e., keeping them welded to the object rather than fixed in the world), try it the other

9.2 Orientationin 3D 167

way. Not only does the same problem still occur, but now we have another issue—
gimbal lock.

Gimbal lock occurs when we rotate an object so that what started off as one axis
now aligns with another. For example, assume we’re applying the rotations in the
order X, Y, and then Z. If we yaw around by 90 degrees (i.e., no X rotation, 90-degree
Y rotation), the front of the object is now pointing in the negative X direction. Say we
wanted to have the object roll slightly now (roll from its own point of view), but we
can’t do that. The axis we need (the local Z axis) is now pointing in the X direction,
and we've already passed the point of applying X rotations.

So maybe we should have applied a little bit of X rotation first before rotating in
the Y direction. Try it: you can’t do it. For this particular problem, we could perform
the rotations in a different order, such as ZYX. This would solve the problem for the
example above, but there would be new orientations that this ordering couldn’t repre-
sent. Once rotations of around 90 degrees come into play, we can’t achieve all desired
orientations with a combination of Euler angles. This is called gimbal lock.

There are ways to mitigate the problem by using combinations of axes, some of
which move with the object and some of which are fixed in world space. Alterna-
tively, we can repeat rotations around some axes. There are many different schemes,
and some of them are more useful than others. All of them are characterized by
very arbitrary mathematics, horrendous boundary conditions, and a tendency to find
difficult situations that cause the system to crash long after you think it has been
debugged.

Gimbal lock is a significant problem in real-world engineering as well. In order to
calculate the orientation of an object (a spacecraft, for example), nested gyroscopes
are used to keep track of the total amount of rotation the craft has experienced. These
gyros suffer the same kind of ordering problems we’ve seen above, including gimbal
lock. In NASA’s Apollo moon program, to avoid the craft reaching gimbal lock and
finding it impossible to represent the orientation of the spacecraft, restrictions were
placed on the way that astronauts could control it. If the craft got too near gimbal
lock, a warning would sound. There was no physical reason why the craft couldn’t
orient in that way; it was purely a feature of the ability to measure and do calculations
with the orientation of the craft.

Fortunately, there are much better ways of dealing with orientation. They may
not be so intuitive to visualize, and they may be impossible to build a gyroscope to
measure, but their mathematics is a lot more reliable.

9.2.2 AXIS-ANGLE

Any rotation or combination of rotations can be represented as a single rotation about
an axis. In other words, no matter what combination of rotations takes place, we can
always specify the orientation of an object as an axis and an angle.

This was obvious in the 2D case, but probably isn’t so obvious now that we’re in
3D. You can easily verify it for yourself with a small ball. Regardless of how you orient

168 Chapter 9 The Mathematics of Rotations

the ball, you can get it into any other orientation by one rotation about a suitably
chosen axis.

We could use this as a representation for orientation (it is called, not surpris-
ingly, axis-angle representation). It is roughly equivalent to the angle representation
we used for 2D, and suffers some of the same problems. In particular, we would need
to perform bounds checking to make sure that the angle is always in the correct range
(—m, m].

Having a vector (for the axis) and an angle gives us four degrees of freedom. The
rotation is only three degrees of freedom. The extra degree of freedom is removed
by requiring that the vector representing the axis is normalized. It represents only a
direction.

Another possible representation using axis and angle is the scaled axis represen-
tation. If the axis is normalized, then we can combine the axis and angle into a single
vector. The direction of the vector gives the axis, and the magnitude of the vector
gives the angle. The angle is therefore in the range (0, 7]. We don’t need to repre-
sent negative angles, because they are equivalent to a positive rotation in the opposite
direction.

The scaled axis representation is the most compact representation we have. It
has three values for three degrees of freedom, and it can represent any orientation.
Although it will be useful to us later in the chapter when we come to look at angular
velocity, it is almost never used to represent orientations.

This is for the same reasons we avoided a single-angle representation for 2D rota-
tions. The mathematics involved in manipulating a scaled axis representation of ori-
entation isn’t simple. Unlike for the 2D case, we have more than just the bounds to
worry about: it isn’t clear how to combine rotations easily, because the axis as well as
the angle needs to change.

So far, we’ve drawn a blank on compact representations that are practical to use.
Up until a few years ago, the most common way to represent orientations went to the
opposite extreme. Rather than use three values, a three-by-three matrix was used.

9.2.3 ROTATION MATRICES

If we are interested in the mathematics of combining rotations, then we could bor-
row from 3D graphics and represent orientations with a rotation matrix. In games,
we regularly use matrices to represent rotations. In fact, chances are that whatever
representation we use, we’'ll have to turn it into a rotation matrix and send it to the
rendering engine in order to draw the object. Why not save the effort and use the
rotation matrix from the start?

Using rotation matrices is a good solution, as we can represent any rotation with a
rotation matrix, and the mathematics of combining these rotations is relatively simple
and clean to implement.

9.2 Orientationin 3D 169

The elements of the matrix follow:

tx*+c txy+sz txz—sy
O=|txy—sz ty>’+c tyz+sx [9.3]
txz+sy tyz—sx tz>+x

where

X

y

z

is the axis of rotation, ¢ = cos 6, s =sin6, t = 1 — cos6, and 6 is the angle.

Because the elements are related to the sine and cosine of the angle, rather than
the angles themselves, we don’t have to do any bounds checking. This is exactly as we
saw in the 2D case. Combining two rotations is simply a matter of multiplying the
two matrices together.

The downside with using rotation matrices is their numerous degrees of freedom.
We are representing a three-degrees-of-freedom system with nine numbers. Floating-
point arithmetic in the computer isn’t totally accurate. So, we need to make sure that
the matrix represents a rotation (as opposed to some other kind of transformation
such as a skew or even mirror image), even after we’ve manipulated it in some way.
As for the 2D case, we need to adjust its values periodically. With so many degrees of
freedom, this adjustment process needs to take place more often than we’d like, and
it isn’t a trivial process like normalizing a vector is.

It is at this point that the rotation matrix becomes less practical than we’d like. It
is workable (unlike the previous possible representations), but it isn’t optimal.

Ideally, we’d like a representation that has the advantages of matrices: straightfor-
ward combination of rotations and no bounds checking, with fewer degrees of free-
dom. The solution, now almost ubiquitous, is to use a mathematical structure called
a quaternion.

9.24 QUATERNIONS

The best and most widely used representation for orientations is the quaternion.
A quaternion represents an orientation with four values related to the axis and angle
in the following way:

cos 5
xsin =
. (9.4]
ysing

ZSlIlE

170 Chapter 9 The Mathematics of Rotations

where

is the axis, and 6 is the angle, as before.

Quaternions are not merely a four-element vector, however; their mathematics are
more exotic. If you are allergic to mathematics, then feel free to skip this explanation
and head for the implementation in the next section.

You may remember in high school mathematics learning about the square root of
—1, the so-called imaginary number (in contrast to the real numbers), often written
as i or j. So, i = —1. A complex number is then made up of both a real number
and some multiple of i, in the form a + bi. If your mathematical memory is very
good, you might recall drawing complex numbers as coordinates in 2D (the Argand
diagram), and deriving lots of their properties geometrically. Complex numbers have
a very strong connection with geometry, and in particular rotations in 2D.

A quaternion is a number of the form w + xi + yj + zk, where i, j, and k are all
different imaginary numbers. Each one squares to —1:

=i =k=-1
and when all are multiplied together, we also get —1:
ijk = —1

Together, these two equations provide the fundamental formula of quaternion alge-
bra.? The second part of this result means that any two of the three imaginary num-
bers, when multiplied together, give us the third:

ijk=k> = ij=k

But beware, quaternion mathematics isn’t commutative (in other words ab # ba for
at least some values of a,b), and in particular,

ji=—ji=k
k=—ki=i
ki=—ik=j

by definition.

2. The formula is reputed to have been scratched in the stone of the Brougham Bridge near Dublin by the
discoverer of quaternions, William Rowan Hamilton (the site is now marked by a plaque and the original
carving, if it existed, cannot be seen).

9.2 Orientationin3D 171

With these laws we can combine quaternions by multiplication:
(w1 +x1i+ y1j+ 21k) X (w2 + %0+ yj + 2k) =
(wiwy —x1% — N1y, —2122) +
(Wi +x1w2 + 112 — 21)2)i+
(Wiy2 —x12 + y1w2 + z10)) +
(w122 + x12 —)12 + ZIwn)k

If the original two quaternions represent rotations according to Equation 9.4, then the
resulting quaternion is equivalent to the two rotations combined. I will write quater-
nions using the notation . Rather than writing them out with their three imaginary
and one real terms, I will write them as a four-element vector format to show their
four components:

0=w+xi+yj+zk=

SIS

Quaternions have four degrees of freedom to represent the three degrees of free-
dom of rotation. Clearly we have an extra degree of freedom that we need to constrain
away.

In fact, for all rotations, Equation 9.4 implies that the magnitude of the quaternion
is exactly 1. We calculate the magnitude of the quaternion in exactly the same way as
we did for a three-element vector, by using a four-component version of Pythagoras’s
theorem:

\/w2+x2+y2+zz

To ensure that a quaternion always represents a rotation, we therefore need to make
sure it has unit length, or

Vw242 4+22=1

We do this using a procedure identical to normalizing a vector, but operating on
all four components of the quaternion. Just like for 2D rotation, we have fixed the
problem of messy bound checking by adding an extra value to our representation,
and then adding a constraint to remove the extra degree of freedom and to ensure
that we only get rotations.

In the same way that normalizing our 2D vector representation gave us a point
on a circle, normalizing a quaternion can be thought of as giving a point on the sur-
face of a four-dimensional sphere. In fact, lots of the mathematics of quaternions can
be derived based on the surface geometry of a four-dimensional sphere. While some
developers like to think in these terms (or at least claim they do), personally I find
four-dimensional geometry even more difficult to visualize than 3D rotations, so I
tend to stick with the algebraic formulation I've given above.

172 Chapter 9 The Mathematics of Rotations

93 ANGULAR VELOCITY AND ACCELERATION

Representing the current orientation of rigid bodies is only one part of the problem.
We also need to be able to keep track of how fast and in what direction the bodies are
rotating.

Recall that in 2D we could use a single value for the angular velocity without the
need to perform bound checking. The same thing is true of angular velocity in 3D. We
abandoned the scaled axis representation for orientations because of boundary prob-
lems. Once again, when we are concerned with the speed that an object is rotating,
we have no bounds: the object can be rotating as fast as it likes.

Our solution is to stick with the scaled axis representation for angular velocity.
It has exactly the right number of degrees of freedom, and without the problems of
keeping its angle in bounds, the mathematics is simple enough for efficient imple-
mentation.

The angular velocity is a three-element vector that can be decomposed into an
axis and rate of angular change,

0=ra
where 4 is the axis around which the object is turning, and r is the rate at which it is
spinning, which (by convention) is measured in radians per second.
The mathematics of vectors matches well with the mathematics of angular veloc-
ity. In particular, if we have an object spinning at a certain rate #, and we add to its

rotation a spin at some rate in a new direction ®, then the new total angular velocity
will be given by

L
0 =0+o

In other words, we can add two angular velocities together using vector arithmetic

and get a new, and correct, angular velocity.

Combining angular velocities is all very well, but we’ll also need to update the
orientation by angular velocity. For linear updates, we use the following formula:

p'=p+pt

We need some way to do the same for orientation and angular velocity, that is, to
update a quaternion by a vector and a time. The equivalent formula is not much more

complex:
) At
o' =6+ 0f (9.5
where
0
O
o=
~ 9}/
0.

which is a quaternion constructed from the angular velocity.

9.4 Implementing the Mathematics 173

The angular velocity quaternion, w, has a zero w component, and the remaining
components taken directly from the three components of the angular velocity vector.
It doesn’t represent an orientation, so it shouldn’t be normalized.

Note in Equation 9.5 that the multiplication (between @ and 6) is a quaternion
multiplication, not a vector multiplication.

9.3.1 VELOCITY OF A POINT

In Section 9.1.3, we calculated the position of part of an object even when it had been
moved and rotated. To process collisions between objects in Chapter 14 we’ll also need
to be able to calculate the velocity of any point of an object.

The velocity of a point on an object depends on both its linear and angular
velocity:

qg=0x@q-p) +p 9.6]

where ¢ is the velocity of the point, q is the position of the point in world coordinates,
p is the position of the origin of the object, and 8 is the angular velocity of the object.

If we want to calculate the velocity of a known point on the object (the mirror on
the side of a car, for example), we can calculate q from Equation 9.2.

9.3.2 ANGULAR ACCELERATION

Because angular acceleration is simply the first derivative of angular velocity, we can
use the same vector representation in both acceleration and velocity. What is more, the
relationships between them remain the same as for linear velocity and acceleration.
In particular, we can update the angular velocity using the following equation:

0' =6+ 06t

where is the angular acceleration and is the angular velocity, as before.

94 IMPLEMENTING THE MATHEMATICS

We've covered the theory. Now it’s time to implement functions and data structures
that are capable of performing the right mathematics. In Chapter 2, we created a
Vector3 class that encapsulated vector mathematics; we’'ll now do the same thing for
matrices and for quaternions. As part of this process, I'll introduce the mathematics
of many operations for each type.

If you are working with an existing rendering library, you may already have matrix,
vector, and quaternion classes implemented. There is nothing physics-specific in the
implementations I give here. You should be able to use your own implementations

174 Chapter 9 The Mathematics of Rotations

without alteration. I've personally worked with the DirectX utility library implemen-
tations on many projects without having to make any changes to the rest of the physics
code.

9.4.1 THE MATRIX CLASSES

A matrix is a rectangular array of scalar values. They don’t have the same obvious
geometric interpretation as vectors did. We will use them in several different contexts,
but in each case they will be used to change (transform) vectors.

Although matrices can be any size with any number of rows and columns, we will
be primarily interested in two kinds: 3 x 3 matrices and 3 x 4 matrices. To implement
matrices we could create a general matrix data structure, capable of supporting any
number of rows and columns. We could implement matrix mathematics in the most
general way, and use the same code for both of our matrix types (and other types
of matrices we might need later). While this would be an acceptable strategy, having
the extra flexibility is difficult to optimize. It would be better to create specific data
structures for the types of matrices we need. This will be our approach.

We will create a data structure called Matrix3 for 3 x 3 matrices, and Matrix4 for
3 x 4 matrices.

The basic data structure for Matrix3 looks like this:

Excerpt from file include/cyclone/core.h
/**
* Holds a 3 x 3 row major matrix representing a transformation in
* 3D space that does not include a translational component. This
* matrix is not padded to produce an aligned structure.
*/
class Matrix3
{
public:
/**
* Holds the tensor matrix data in array form.
*/
real data[9];
bs

The Matrix4 data structure looks like this:

Excerpt from file include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements, and it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.

9.4 Implementing the Mathematics 175

*/
class Matrix4

{
public:
/**
* Holds the transform matrix data in array form.
*/
real data[l2];
bs

If you are used to other engines or math libraries, you may find it odd that I've defined
a3 x 4 rather than a 4 x 4 matrix. Itis true that most libraries (including most render-
ing libraries) use 4 x 4 matrices. We could use a 4 x 4 matrix in our physics engine,
but we'd need to change our position vectors to four-element vectors and the bot-
tom row of our 4 x 4 matrices would always contain the same values. The reason for
this isn’t obvious, and I'll return to it in more detail when I describe homogeneous
coordinates in Section 9.4.2.

I hope you'll agree there is nothing taxing in the implementations so far; we have
only two arrays of numbers.

Just as we did for the Vector3 class in Chapter 2, we can add methods to these
classes to implement their mathematics.

9.4.2 MATRIX MULTIPLICATION

Since I've said that matrices exist mainly to transform vectors, let’s look at this first.
We transform a vector by multiplying it by the matrix

v =My

which is often called post-multiplication, because the vector occurs after the matrix
in the multiplication.

Matrix multiplication works in the same way whether we are multiplying two
matrices or a matrix and a vector. In fact, we can think of a vector as simply a matrix
with a single column, that is, a 3 x 1 matrix.

It is important to realize that matrix multiplication of all kinds is not commu-
tative; in general, ab # ba. In particular, to multiply two matrices, the number of
columns in the first matrix needs to be the same as the number of rows in the second.
So if we wanted to do

vM

where M is a 3 x 3 matrix and v is a three-element vector, we would have a mismatch.
The vector has one column, and the matrix has three rows. We cannot perform this
multiplication, as it is undefined. Some game engines do use a pre-multiplication

176 Chapter 9 The Mathematics of Rotations

scheme, but they do so by treating vectors as having one row and three columns, as in

[72]

rather than the column form we have used. With a row vector we can perform
pre-multiplication, but not post-multiplication. Confusingly, I have also seen pre-
multiplication mathematics written with the vector after the matrix (i.e., a matrix
and then a row vector), so it’s worth taking care if you are liaising with existing code.
I will use post-multiplication and column vectors exclusively in this book. If you are
working with an engine that uses pre-multiplication, you will have to adapt the order
in your code accordingly.

The result of matrix multiplication is a new matrix with the same number of rows
as the first matrix in the multiplication, and the same number of columns as the sec-
ond. So if we multiply a 3 x 3 matrix by a 3 x 1 vector, we get a matrix with 3 rows
and 1 column (i.e., another 3 x 1 vector). If we multiply a 3 x 3 matrix by another
3 x 3 matrix, we end up with a 3 x 3 matrix.

If we multiply matrices A and B to give matrix C, each element in C is found by
the formula:

Cip =D AinBuj
k

where C; j) is the entry in matrix C at the i-th row and j-th column, and where k
ranges up to the number of columns in the first matrix (i.e., the number of rows in
the second—this is why they need to be the same).

For a 3 x 3 matrix multiplied by a vector, we get:

ab c||x ax+ by + cz
defl|ly|l=|dc+ey+/fz
g h ill|z g+ hy+iz

With this result, we can implement multiplication of a vector by a matrix. I have over-
loaded the * operator for the matrix class to perform the operation.

Excerpt from file include/cyclone/core.h
class Matrix3

{
// ... Other Matrix3 code as before ...

/**

* Transform the given vector by this matrix.

*/

Vector3 operator*(const Vector3 &vector) const

{

return Vector3(

vector.x * data[0] + vector.y * data[l] + vector.z * data[2],
vector.x * data[3] + vector.y * data[4] + vector.z * data[5],

9.4 Implementing the Mathematics 177

vector.x * data[6] + vector.y * data[7] + vector.z * data[8]

)s

/**
* Transform the given vector by this matrix.
*/
Vector3 transform(const Vector3 &vector) const

{

return (*this) * vector;

Matrices as Transformations

Earlier in the chapter, I talked about using matrices to represent orientations. In fact,
matrices can represent all kinds of transformations: rotations, scaling, sheering, and
any combination of these.

The elements of the matrix control the transformation being performed, and it is
worth getting to know how they do it.

We can think of the matrix

ab c
d e f
g h i
as being made up of three vectors:
a b c
dl,|el|,and|f
g h i

These three vectors represent where each of the three main axes X, Y, and Z will end
up pointing after the transformation. For example, if we have a vector pointing along
the positive X axis

it will be transformed into the vector

178 Chapter 9 The Mathematics of Rotations

which we can verify with the matrix multiplication,

ab c||1 axl4+bx0+cx0 a
de fl|0|=]|dx1+ex0+fx0|=]|d
g h i|lo0 gx14+hx0+ix0 g

and so on for the other two axes. When I introduced vectors, I mentioned that their
three components could be thought of as a position along three axes. The x compo-
nent is the distance along the X axis and so on. We could write the vector as

X 1 0 0
v=|y|l=x|0|+y|1l|+2z]|O0
z 0 0 1

In other words, a vector is made up of some proportion of each basic axis.

If the three axes move under a transformation, then the new location of the vector
will be determined in the same way as before. The axes will have moved but the new
vector will still combine them in the same proportions:

a b c ax+ by + cz
V=x|d|+y|le|+z|f|=|dctey+fz
g h i g+ hy+iz

Thinking about matrix transformations as a change of axis is an important visualiza-
tion tool.

The set of axes is called a basis: we looked at orthonormal bases in Chapter 2,
where the axes all have a length of 1 and are at right angles to one another. A 3 x 3
matrix will transform a vector from one basis to another. This is sometimes, not sur-
prisingly, called a “change of basis.”

Thinking back to the rotation matrices in Section 9.1.3, we saw how the position
of a headlight on a car could be converted into a position in the game level. This is
a change of basis. We start with the local coordinates of the headlight relative to the
origin of the car, and end up with the world coordinates of the headlight in the game.
We’ve moved from a basis where the Z axis is along the car and the X axis is across its
width, to a basis where the X, Y, and Z axes are defined globally.

In the headlight example, we had two stages: first, we rotated the object (using
a matrix multiplication, a change of basis), and then we translated it (by adding an
offset vector). If we extend our matrices a little, we can perform both steps in one go.
This is the purpose of the 3 x 4 matrix.

Three-by-Four Matrices

If you are thinking ahead you may have noticed that according to the matrix multi-
plication rules, we can’t multiply a 3 x 4 matrix by a 3 x 1 vector. In fact, we want to
end up doing just this, but to understand how, we need to look more closely at what
the 3 x 4 matrix will be used for.

9.4 Implementing the Mathematics 179

In the previous section, we looked at transformation matrices. The transforma-
tions that can be represented as a 3 x 3 matrix all keep the origin at the same place.
To handle general combinations of movement and rotation in our game, we need to
be able to move the origin around: there is no use modeling a car if it is stuck with its
origin at the origin of the game level. We could do this as a two-stage process com-
prising a rotation matrix multiplication and then adding an offset vector. A better
alternative is to extend our matrices and do it in one step.

First, we extend our vector by one element, so we have four elements, where the
last element is always 1:

— N R R

The four values in the vector are called “homogeneous” coordinates, and they are
used explicitly in a few graphics packages, but are behind the scenes in almost all 3D
graphics systems. You can think of them as a four-dimensional coordinate if you like,
although thinking in four dimensions probably may not help you visualize what we’re
doing with them much (it sure doesn’t help me).

If we now take a 3 x 4 matrix,

a
e

— S

b ¢
f g
i j k

and multiply it in the normal way by our four-element vector,

ab cd * ax+by+cz+d
e f g h }Z/ =|e+fr+gz+h [9.7]
ij kI) ix+jy +kz+1

we get a combination of two effects. It is as if we had first multiplied by the 3 x 3
matrix,

ab c||x ax+ by + cz
e fglly|=|et+h+g
i j ok||z ix+jy+kz
and then added the vector,
ax+ by + cz d ax+by+cz+d

ex+fr+gz |+ |h ex+fy+gz+h
ix +jy + kz i ix+jy+kz+1

180 Chapter 9 The Mathematics of Rotations

which is exactly the transform-then-move process we had before, but all in one step.
If the first three columns give the directions of the three axes in the new basis, the
fourth column gives us the new position of the origin.

We could also view this as multiplying a 4 x 4 matrix by the 1 x 4 vector:

abcd||x ax+by+cz+d
e f g hi|y|_|ex+fy+g+h
ik 1|]z| | ix+jy+ke+1
000 1]|1 1

In other words, we start and end with a homogeneous coordinate. Because we are not
interested in four-dimensional coordinates, the bottom row of the matrix is always
[0 0 0 1] and the last value in the vector is always 1. We can therefore use just the
version given in Equation 9.7, and make the fourth value in the multiplied vector
(the 1) magically appear as needed. We don’t need to store it in the Vector3 class.

The matrix—vector multiplication gets implemented in the Matrix4 class as
follows:

Excerpt from file include/cyclone/core.h

class Matrix4

{
// ... Other Matrix4 code as before ...

/**

* Transform the given vector by this matrix.

*/

Vector3 operator*(const Vector3 &vector) const

{

return Vector3(

vector.x * data[0]
vector.y * data[1]
vector.z * data[2] + data[3],

+

+

+

vector.x * data[4]
vector.y * data[5]
vector.z * data[6] + data[7],

+

+

vector.x * data[8]
vector.y * data[9]
vector.z * data[10] + data[11]

+

/**

9.4 Implementing the Mathematics 181

* Transform the given vector by this matrix.
*/
Vector3 transform(const Vector3 &vector) const

{

return (*this) * vector;

Multiplying Two Matrices

We can use exactly the same process to multiply two matrices. If we multiply two 3 x 3
matrices, we get another 3 x 3 matrix. This can be easily done with the following code:

Excerpt from file include/cyclone/core.h

class Matrix3

{
// ... Other Matrix3 code as before ...

/**
* Returns a matrix, which is this one multiplied by the other given
* matrix.
*/
Matrix3 operator*(const Matrix3 &o) const
{
return Matrix3(
data[0]*o.data[0] + data[l1]*o.data[3] + data[2]*o0.data[6],
data[0]*o.data[1] + data[l1]*o.data[4] + data[2]*o.data[7],
data[0]*o.data[2] + data[l1]*o.data[5] + data[2]*o0.data[8],

data[3]*o.data[0] + data[4]*o.data[3] + data[5]*0.data[6],
data[3]*o.data[1] + data[4]*o.data[4] + data[5]*0.data[7],
data[3]*o.data[2] + data[4]*o.data[5] + data[5]*0.data[8],

data[6]*o.data[0] + data[7]*o.data[3] + data[8]*o.data[6],
data[6]*o.data[1] + data[7]*o.data[4] + data[8]*o.data[7],
data[6]*o.data[2] + data[7]*o.data[5] + data[8]*o.data[8]
)s

/**
* Multiplies this matrix in place by the other given matrix.
*/

void operator*=(const Matrix3 &o)

182 Chapter 9 The Mathematics of Rotations

real tl;
real t2;
real t3;

t1l = data[0]*o.data[0] + data[1]*o.data[3] + data[2]*o.data[6];
t2 = data[0]*o.data[1] + data[l]*o.data[4] + data[2]*o.data[7];
t3 = data[0]*o.data[2] + data[l]*o.data[5] + data[2]*o0.data[8];
data[0] = t1;
data[1] = t2;
data[2] = t3;

t1l = data[3]*o0.data[0] + data[4]*o.data[3] + data[5]*0.data[6];
t2 = data[3]*o.data[1] + data[4]*o.data[4] + data[5]*o.data[7];
t3 = data[3]*o.data[2] + data[4]*o.data[5] + data[5]*0.data[8];
data[3] = t1;
data[4] = t2;
data[5] = t3;

tl = data[6]*o0.data[0] + data[7]*o.data[3] + data[8]*o.data[6];
t2 = data[6]*o.data[1] + data[7]*o.data[4] + data[8]*o.data[7];
t3 = data[6]*o0.data[2] + data[7]*o.data[5] + data[8]*o.data[8];
data[6] = t1;
data[7] = t2;
data[8] = t3;

Multiplying two matrices together in this way combines their effects. If matrices
A and B are both transformations, then the matrix AB will represent the combined
transformation. Order is crucial for both transformation and matrix multiplication:
the matrix AB is a transformation that would result from first doing B, then doing A.
In other words, the order of the transformations is the opposite of the order of the
matrices in the multiplication. This is a gotcha that catches out even experienced
developers from time to time.

So much for 3 x 3 matrices. How about for 3 x 4 matrices? From the rules of
matrix multiplication, we can’t multiply two 3 x 4 matrices together: the columns
of the first matrix don’t match the rows of the second. To make progress, we need to
return to the full form of our 4 x 4 matrix. Remember that the matrix we are storing as

a b c d

e f g h
ij ok

9.4 Implementing the Mathematics 183

is shorthand for

 _
o

i

b
f
j
00

S = 0
—_ - > X

We can certainly multiply two 4 x 4 matrices together. If we multiply two 4 x 4
matrices with [0 0 0 1] as their bottom line, we end up with another matrix whose
bottom lineis [0 0 0 1].

So in our code, when we come to multiply together two 3 x 4 matrices (to combine
their transformations), we magically make the extra values appear, without storing
them, exactly as we did for transforming vectors. The code looks like this:

Excerpt from file include/cyclone/core.h
class Matrix4

{
// ... Other Matrix4 code as before ...

/**
* Returns a matrix, which is this one multiplied by the other given
* matrix.
*/
Matrix4 operator*(const Matrix4 &o) const
{
Matrix4 result;
result.data[0] = o.data[0]*data[0] + o.data[4]*data[1] +
.data[8] *data[2];
.data[0]*data[4] + o.data[4]*data[5] +
.data[8] *data[6];
.data[0]*data[8] + o.data[4]*data[9] +
.data[8] *data[10];

o O O o o o

result.data[4]

result.data[8]

o O o o o o

result.data[1] .data[1]*data[0] + o.data[5]*data[1] +
.data[9]*data[2];
.data[1]*data[4] + o.data[5]*data[5] +
.data[9] *data[6];
.data[1]*data[8] + o.data[5]*data[9] +

.data[9]*data[10];

result.data[5] =

result.data[9]

o O o o

result.data[2] .data[2]*data[0] + o.data[6]*data[1] +
.data[10]*data[2];
.data[2]*data[4] + o.data[6]*data[5] +

.data[10]*data[6];

result.data[6]

184 Chapter 9 The Mathematics of Rotations

result.data[10] = o.data[2]*data[8] + o.data[6]*data[9] +
o.data[10]*data[10];

result.data[3] = o.data[3]*data[0] + o.data[7]*data[1] +
o.data[l1]*data[2] + data[3];
o.data[3]*data[4] + o.data[7]*data[5] +
o.data[11]*data[6] + data[7];
result.data[11] = o.data[3]*data[8] + o.data[7]*data[9] +
o.data[11]*data[10] + data[11];

result.data[7]

return result;

Some graphics libraries use a full 16-element matrix for transforms; most of those
(but not all) will also use four-element vectors for position. They allow the program-
mer to work in four dimensions: there are some interesting graphical effects that are
made possible this way, including the perspective transformations needed to model
a camera. If you are relying on the mathematics libraries that these APIs provide,
you will not need to worry about the number of entries in the matrix: chances are
you'll only be using the first 12 for your physics development, but the other four
won’t harm you. If you are implementing the mathematics classes as I have been,
then you have the choice of whether to use the full 4 x 4 or the optimized 3 x 4
matrix.

We added an extra padding element to our vector class, so that it sits nicely on
machines with 128-bit math processors and 16-byte alignment. We don’t need to do
the same for matrices; since each row of the matrix is 16 bytes long (assuming we’re
using 32-bit, floating-point numbers; running this at double precision will be much
slower in any case), the entire matrix will also be word aligned.

The code will take less memory if you use 3 x 4 matrices, and rely on the last
unstored line of every matrix being [0 0 0 1]. But check whether the machine you
are developing has built-in hardware-level support for matrix transformation; imple-
menting your own routines and ignoring these will give worse performance (and take
more effort) in the long run.

9.43 MATRIX INVERSE AND TRANSPOSE

A matrix represents a transformation, and we often need to find out how to reverse the
transformation. If we have a matrix that transforms from an object’s local coordinates
to world coordinates, it will be useful to be able to create a matrix that gets us back
again, that is, transforming world coordinates to local coordinates.

9.4 Implementing the Mathematics 185

For example, if we determine that our car has collided with a barrier, our collision
detector might tell us the position of the collision in world coordinates. We’'d like to
be able to turn this position into local coordinates to see which bit of the car got hit.

If a matrix transforms vectors from one basis to another, then the inverse of the
matrix can convert them back. If we combine a matrix with its inverse, we get the
identity matrix, a matrix representing a transformation that has no effect. In other
words, if we transform a vector by a matrix, then by its inverse, we get back to where
we started:

M 'M=I

For a 3 x 3 matrix, the identity matrix is

I =

S O -
oS = O
—_— O O

Inverting large matrices is a challenging computer science problem (in fact, it is
the fundamental problem that the most complex game physics engines try to solve,
as we'll see in Chapter 20). Techniques involve walking through the matrix and re-
arranging its elements using a range of mathematical manipulations. Fortunately, for
3 x 3 and 4 x 4 matrices, we can write the solutions directly. For a 3 x 3 matrix,

ab c
M=|d e f
g h i

the inverse is
| ei—fh ch—Dbi bf —ce
M~ = —di ai— - .
Set M fg—di ai—cg cd—af [9.8]
dh—eg bg—ah ae— bd

where det M is the determinant of the matrix, which for a 3 x 3 matrix is
det M = aei + dhc + gbf — ahf — gec — dbi

Because we take 1 over the determinant in Equation 9.8, the inverse only exists if the
determinant is non-zero.

The reason the inverse has the form it does and the meaning of the determi-
nant are beyond the scope of this book.” To understand why the equations above

3. Agood rule of thumb that I use (which may offend mathematical purists) is to think of the determinant
as the “size” of the matrix, or alternatively, the amount of scaling present in the transformation. In fact,
for 2 x 2 dimensional matrices, the determinant is the area of the parallelogram formed from its column
vectors, and for a 3 x 3 matrix it is the area of the parallelepiped formed from its three columns.

The inverse formula of Equation 9.8 can then be thought of as adjusting the elements, and dividing by
the size of the matrix (deflating back to the original size). Thinking this way can cause problems with more
advanced matrix math, so remember that it’s only a mnemonic.

186 Chapter 9 The Mathematics of Rotations

work, we’d need to cover various bits of matrix mathematics that we otherwise
wouldn’t need. If you are interested in the features and mathematics of matri-
ces, any undergraduate textbook on matrix analysis will have these details. For an
even more exhaustive (if considerably tougher) reference, I recommend [Horn and
Charles, 1990] and [Horn and Charles, 1994], two highly respected references on the
topic.

We can implement our 3 x 3 matrix inverse as follows:

Excerpt from file include/cyclone/core.h

class Matrix3

{
// ... Other Matrix3 code as before ...

/**

* Sets the matrix to be the inverse of the given matrix.
*/

void setInverse(const Matrix3 &m)

{

real t1 = m.data[0]*m.data[4];
real t2 = m.data[0]*m.data[5];
real t3 = m.data[1]*m.data[3];
real t4 = m.data[2]*m.data[3];
real t5 = m.data[1]*m.data[6];
real t6 = m.data[2]*m.data[6];

// Calculate the determinant.
real det = (tl*m.data[8] - t2*m.data[7] - t3*m.data[8]+
t4*m.data[7] + tb*m.data[5] - t6*m.data[4]);

// Make sure the determinant is non-zero.
if (det == (real)0.0f) return;
real invd = (real)l.0f/det;

data[0] = (m.data[4]*m.data[8]-m.data[5]*m.data[7])*invd;
data[1] = -(m.data[1]*m.data[8]-m.data[2]*m.data[7])*invd;
data[2] = (m.data[1]*m.data[5]-m.data[2]*m.data[4])*invd;
data[3] = -(m.data[3]*m.data[8]-m.data[5]*m.data[6])*invd;
data[4] = (m.data[0]*m.data[8]-t6)*invd;

data[5] = -(t2-t4)*invd;

data[6] = (m.data[3]*m.data[7]-m.data[4]*m.data[6])*invd;
data[7] = -(m.data[0]*m.data[7]-t5)*invd;

data[8] = (t1-t3)*invd;

9.4 Implementing the Mathematics 187

/** Returns a new matrix containing the inverse of this matrix. */
Matrix3 inverse() const
{

Matrix3 result;

result.setInverse(*this);

return result;

/**

* Inverts the matrix.
*/

void invert()

{

setInverse(*this);

Only square matrices have an inverse. For a 3 x 4 matrix, we need to again remem-
ber that our matrix is shorthand for a 4 x 4 matrix. The 4 x 4 matrix has an inverse
that can be written in much the same way as the 3 x 3 matrix. And the resulting
matrix will have a bottom row of [0 0 0 1], so we can represent the inverse as a 3 x 4
matrix.

Unfortunately, the algebra is much more complex than the 3 x 3 case, and it would
run to about a page of equations. Assuming your aim is to implement the code, I'll
skip the algebra and give the implementation:

Excerpt from file include/cyclone/core.h
class Matrix4

{
// ... Other Matrix4 code as before ...

/**
* Returns the determinant of the matrix.
*/

real getDeterminant() const;

/**
* Sets the matrix to be the inverse of the given matrix.
*/

void setInverse(const Matrix4 &m);

/** Returns a new matrix containing the inverse of this matrix. */

188 Chapter 9 The Mathematics of Rotations

Matrix4 inverse() const

{
Matrix4 result;
result.setInverse(*this);
return result;

/**

* Inverts the matrix.
*/

void invert()

{

setInverse(*this);

Excerpt from file src/core.cpp

real Matrix4::getDeterminant() const
{
return data[8]*data[5]*data[2]+
data[4]*data[9]*data[2]+
data[8] *data[1]*data[6]-
data[0]*data[9]*data[6]-
data[4]*data[1]*data[10]+
data[0]*data[5]*data[10];

void Matrix4::setInverse(const Matrix4 &m)
{
// Make sure the determinant is non-zero.
real det = getDeterminant();
if (det == 0) return;
det = ((real)l.0f)/det;

data[0] = (-m.data[9]*m.data[6]+m.data[5]*m.data[10])*det;
data[4] = (m.data[8]*m.data[6]-m.data[4]*m.data[10])*det;
data[8] = (-m.data[8]*m.data[5]+m.data[4]*m.data[9]*m.data[15])*det;

data[1] = (m.data[9]*m.data[2]-m.data[1]*m.data[10])*det;
data[5] = (-m.data[8]*m.data[2]+m.data[0]*m.data[10])*det;
data[9] = (m.data[8]*m.data[1]-m.data[0]*m.data[9]*m.data[15])*det;

data[2] = (-m.data[5]*m.data[2]+m.data[1]*m.data[6]*m.data[15])*det;

data[3]

-m
-m

-m
data[7]

-m

+m

+m

+m.
+m.

+m.
.data[8]*m.
-m.
-m.

data[1]*m.
data[5]*m.

.data[1]*m.
.data[8]*m.

data[4]*m.

data[0]*m.
data[4]*m.

.data[0]*m.
data[11] =(m.data[8]*m.data[5]*m.data[3]

9.4 Implementing the Mathematics

data[6] = (+m.data[4]*m.data[2]-m.data[0]*m.data[6]*m.data[15])*det;
data[10] = (-m.data[4]*m.data[1]+m.data[0]*m.data[5]*m.data[15])*det;

(m.data[9]*m.data[6]*m.data[3]
.data[5]*m.
.data[9]*m.

data[10]*m.data[3]
data[2]*m.data[7]
data[10]*m.data[7]
data[2]*m.data[11]
data[6]*m.data[11])*det;
data[6]*m.data[3]
data[10]*m.data[3]
data[2]*m.data[7]
data[10]*m.data[7]
data[2]*m.data[11]
data[6]*m.data[11])*det;

-m.data[4]*m.data[9]*m
-m.data[8]*m.data[1]*m
+m.data[0]*m.data[9]*m
+m.data[4]*m.data[1]*m
-m.data[0] *m.data[5]*m

.data[3]
.data[7]
.data[7]
.data[11]
.data[11])*det;

189

You'll note from this code that the inverse again exists only when the determinant
of the matrix is non-zero.

The Matrix Transpose

Whenever the determinant is non-zero, we can always use the previous equations to
find the inverse of a matrix. It is not the simplest process, however, and in some cases

we can do much better.

If we have a matrix that represents a rotation only, we can make use of the fact
that the inverse of the transformation is another rotation, about the same axis but the
opposite angle. This is equivalent to inverting the axis, and using the same angle. We
can create a matrix that rotates the same degree in the opposite direction by transpos-

ing the original matrix.

The transpose of a matrix,

a b ¢

M=|d e f

g h i

190 Chapter 9 The Mathematics of Rotations

is made by swapping its rows and columns:

a8 S
oo
- = 0q

M =

If M is a rotation matrix, then
M'=M"
We can implement this for our 3 x 3 matrix in the following way:

Excerpt from file include/cyclone/core.h

class Matrix3

{
// ... Other Matrix3 code as before ...

/**

* Sets the matrix to be the transpose of the given matrix.
*/

void setTranspose(const Matrix3 &m)

{
data[0] = m.data[0];

data[1] = m.data[3];
data[2] = m.data[6];
data[3] = m.data[1];
data[4] = m.data[4];
data[5] = m.data[7];
data[6] = m.data[2];
data[7] = m.data[5];
data[8] = m.data[8];

/** Returns a new matrix containing the transpose of this matrix. */
Matrix3 transpose() const
{

Matrix3 result;

result.setTranspose(*this);

return result;

It will be useful at several points in the engine to transpose rather than request a full
inverse when we know the matrix is a rotation matrix only.

9.4 Implementing the Mathematics 191

There is no point implementing a transpose function for the 3 x 4 matrix. It
doesn’t have a geometric correlate, as transposing a homogeneous matrix doesn’t
make sense geometrically. If there is any non-zero element in the fourth column, then
it will be transposed into the fourth row, which we don’t have in our matrix.

This makes sense: we will only use transposition to do cheap inverses on rotation
matrices; if the 3 x 4 matrix were a pure rotation matrix with no translation, then it
would have zeros in its fourth column. If this were the case, we could represent it as a
3 X 3 matrix.

There are other reasons to transpose a matrix, outside of our needs. If you are
working with an existing matrix library with a full 4 x 4 matrix implementation, it is
likely to have a transpose function.

9.44 CONVERTING A QUATERNION TO A MATRIX

In addition to the matrix manipulation above, we’ll need an operation to convert
a quaternion into a matrix. Your graphics engine is likely to need transformations
expressed as a matrix, so in order to draw an object, we’ll need to convert from its
position vector and orientation quaternion into a transform matrix for rendering.

Sometimes we’ll want just the rotation matrix in its 3 X 3 matrix form, and other
times we’ll want the full 3 x 4 transformation matrix.

In each case, the conversion from a quaternion to a matrix uses the results we
saw in Sections 9.2.3 and 9.2.4, where both the quaternion and rotation matrix were
expressed in terms of an axis and angle. We could reconstruct the axis and angle from
the quaternion, and then feed it into Equation 9.3. If we do this, we find that the
resulting expression simplifies into a matrix purely in terms of the coefficients of the

quaternion,
1—Q2y*+2z%) 2xy+2zw 2xz — 2yw
O=| 2xy—2zw 1—Qx*+2z%) 2yz+2xw
2xz + 2yw 2yz —2xw 1 —(2x* +2y%)

where w, x, y, and z are the components of the quaternion

>D
Il
[T S

When implemented, the 3 x 3 version including rotation only requires this step.
The code looks like this:

Excerpt from file include/cyclone/core.h

class Matrix3

{

// ... Other Matrix3 code as before ...

192 Chapter 9 The Mathematics of Rotations

/**

* Sets this matrix to be the rotation matrix corresponding to

* the given quaternion.

*/

void setOrientation(const Quaternion &q)

{
dataf[0] = 1 - (2*q.j*q.j + 2*q.k*q.k);
data[l] = 2*q.i*q.j + 2*q.k*q.r;
data[2] = 2*q.i*q.k - 2*q.j*q.r;
data[3] = 2*q.i*q.j - 2*q.k*q.r;
data[4] = 1 - (2*q.i*q.i + 2*q.k*q.k);
data[5] = 2*q.j*q.k + 2*q.i*q.r;
data[6] = 2*q.i*q.k + 2*q.j*q.r;
data[7] = 2*q.j*q.k - 2*q.i*q.r;
data[8] = 1 - (2*q.i*q.i + 2*q.j*q.J);

The 3 x 4 version, adding position to the rotation, looks like this:

Excerpt from file include/cyclone/core.h
class Matrix4

{
// ... Other Matrix4 code as before ...

/**
* Sets this matrix to be the rotation matrix corresponding to
* the given quaternion.
*/
void setOrientationAndPos(const Quaternion &g, const Vector3 &pos)
{
dataf[0] = 1 - (2*q.j*q.j + 2*q.k*q.k);
data[l] = 2*q.i*q.j + 2*q.k*q.r;
data[2] = 2*q.i*q.k - 2*q.j*q.r;
data[3] = pos.x;

data[4] = 2*q.i*q.j - 2*q.k*q.r;
data[5] = 1 - (2*q.i*q.i + 2*q.k*q.k);
data[6] = 2*q.j*q.k + 2*q.i*q.r;
data[7] = pos.y;

data[8] = 2*q.i*q.k + 2*q.j*q.r;

9.4 Implementing the Mathematics 193

data[9] = 2*q.j*q.k - 2*q.i*q.r;
data[10] = 1 - (2*q.i*q.i + 2*q.j*q.J);
data[11] = pos.z;

9.45 TRANSFORMING VECTORS

In Section 9.1.3, we looked at finding the position of part of an object, even when the
object had been moved and rotated. This is a conversion between object coordinates
(i.e., the position of the part relative to the origin of the object and its axes) and world
coordinates (its position relative to the global origin and axes directions).

This conversion can be performed by multiplying the local coordinates by the
object’s transform matrix. The transform matrix, in turn, can be generated from the
quaternion and position as we saw above. We end up with a 3 x 4 transform matrix.
Working out the world coordinates given local coordinates and a transform matrix is
a matter of simply multiplying the vector by the matrix:

Vector3 localToWorld(const Vector3 &local, const Matrix4 &transform)

{

return transform.transform(local);

The opposite transform, from world coordinates to local coordinates, involves
the same process, but using the inverse of the transform matrix. The inverse does the
opposite of the original matrix, as it converts world coordinates into local coordinates.

Vector3 worldTolLocal(const Vector3 &world, const Matrix4 &transform)

Matrix4 inverseTransform;
inverseTransform.setInverse(transform);

return inverseTransform.transform(world);

We can simplify this code to perform the inverse and transform in a single step. If
the transform matrix is made up of only a rotation and a translation (as it should be
for our needs), the resulting code is simple and efficient.

First, we split the 3 x 4 matrix into two components—the translation vector (i.e.,
the fourth column of the matrix) and the 3 x 3 rotation matrix. Next, we perform

194 Chapter 9 The Mathematics of Rotations

the inverse translation by simply subtracting the translation vector. Finally, we make
use of the fact that the inverse of a 3 x 3 rotation matrix is simply its transpose, and
multiply by the transpose. This can be done in a method that looks like this:

Excerpt from file include/cyclone/core.h
class Matrix4

{
// ... Other Matrix4 code as before ...

/**
* Transform the given vector by the transformational inverse
* of this matrix.
*/
Vector3 transformInverse(const Vector3 &vector) const
{
Vector3 tmp = vector;
tmp.x -= data[3];
tmp.y -= data[7];
tmp.z -= data[l1];
return Vector3(
tmp.x * data[0] +
tmp.y * data[4] +
tmp.z * data[8],

tmp.x * data[l] +
tmp.y * data[5] +
tmp.z * data[9],

tmp.x * data[2] +
tmp.y * data[6] +
tmp.z * data[10]

which is called as follows:

Vector3 worldToLocal (const Vector3 &world, const Matrix4 &transform)

{

return transform.transformInverse(world);

9.4 Implementing the Mathematics 195

In Chapter 2, we saw that vectors can represent both positions and directions.
This is a significant distinction when it comes to transforming vectors. So far we have
looked at vectors representing positions. In this case, converting between local and
object coordinates is a matter of multiplying by the transform matrix, as we have
seer.

For direction vectors, however, the same is not true. If we start with a direction
vector in object space, for example, the Z-axis direction vector

0
0

and we multiply it by a transformation matrix, for example, the translation only

1001
0100
0010

we end up with a direction vector of

Clearly, converting the local Z-axis direction vector into world coordinates for an
object that has no rotation should give us the Z-axis direction vector. Directions
should not change magnitude in any case. And if there is no rotation then the direc-
tions should not change in any way.

In other words, direction vectors should be immune to any translational com-
ponent of the transformation matrix. We can do this by only ever multiplying the
vector by a 3 x 3 matrix, which ensures that there is no translational component.
Unfortunately, this will be inconvenient at several points, because we will have gone
to the trouble of building a 3 x 4 transform matrix, and it would be a waste to create
another matrix just for transforming directions. To solve this, we can add two spe-
cialized methods to the Matrix4 class to deal specifically with transforming vectors.
One performs the normal transformation (from local to world coordinates), and the
other performs the inverse (from world to local coordinates):

Excerpt from file include/cyclone/core.h
class Matrix4

{
// ... Other Matrix4 code as before ...

/**

* Transform the given direction vector by this matrix.

196 Chapter 9 The Mathematics of Rotations

*
*/
Vector3 transformDirection(const Vector3 &vector) const
{
return Vector3(
vector.x * data[0] +
vector.y * data[l] +
vector.z * data[2],

*

vector.x * data[4] +
vector.y * data[5] +
vector.z * data[6],

vector.x * data[8] +
vector.y * data[9] +
vector.z * data[10]

/**
* Transform the given direction vector by the
* transformational inverse of this matrix.
*/
Vector3 transformInverseDirection(const Vector3 &vector) const
{
return Vector3(
vector.x * data[0] +
vector.y * data[4] +
vector.z * data[8],

vector.x * data[l] +
vector. data[5] +
vector.z * data[9],

<
*

*

vector.x * data[2] +
vector.y * data[6] +
vector.z * data[10]

9.4 Implementing the Mathematics 197

which can be called in the same way as before, as in

Vector3 localToWorldDirn(const Vector3 &local, const Matrix4 &transform)

{

return transform.transformDirection(local);

and

Vector3 worldTolLocalDirn(const Vector3 &world, const Matrix4 &transform)

{

return transform.transformInverseDirection(world);

9.4.6 CHANGING THE BASIS OF A MATRIX

There is one final thing we’ll need to do with matrices that hasn’t been covered yet.
Recall that we can think of a transformation matrix as converting between one basis
and another, that is, between one set of axes and another. If the transformation is
a 3 X 4 matrix, then the change can also involve a shift in the origin. We used this
transformation to convert a vector from one basis to another.

We will also meet a situation in which we need to transform an entire matrix from
one basis to another. This can be a little more difficult to visualize.

Let’s say that we have a matrix M, that performs some transformation, as shown
in the first part of Figure 9.6 (the figure is in 2D for ease of illustration; the same
principles apply in 3D). It performs a small rotation around the origin; part A of the
figure shows an object being rotated.

Now let’s say we have a different basis, but we want exactly the same transfor-
mation. In our new basis, we’d like to find a transformation that has the same effect
(i.e., leaves the object at the same final position), but works with the new coordinate
system. This is shown in part B of the figure: now the origin has moved (we’re in a
different basis), but we’d like the effect of the transformation to be the same. Clearly,
if we applied M; in the new basis, it would give a different end result.

Let’s assume we have a transformation M, between our original basis B; and our
new basis 3. Is there some way we can create a new transformation from M, and M,
that would replicate the behavior that M, gave us in 3;, but in the new 5,?

198 Chapter 9 The Mathematics of Rotations

A i B
Object Object
[]
Origin
[]
Origin
Rotation ?
Object Object
[]
Origin

FIGURE 9.6 A matrix basis is changed.

The solution is to use M, and M, ' in a three-stage process:

1. We perform the transformation M, ! which takes us from B, back into B;.

2. We then perform the original transform M;, since we are now in the basis B,
where it was originally correct.

3. We then need to get back into basis 13,, so we apply transformation M.

So we end up with
M, = M,M, M, "
bearing in mind that multiplied matrices are equivalent to transformations carried
out in right-to-left order.

We will need to use this function whenever we have a matrix expressed in one
basis and we need it in another. We can do this using the multiplication and inverse
functions we have already implemented: there is no need for a specialized function.

In particular, the technique will be indispensable in the next chapter when we
come to work with the inertia tensor of a rigid body. At that stage, I will provide a
dedicated implementation that takes advantage of some other properties of the inertia
tensor to simplify the mathematics.

9.47 THE QUATERNION CLASS

We’ve covered the basic mathematical operations for matrices, and have a solid matrix
and vector class implemented. Before we can move on, we also need to create a data
structure to manipulate quaternions.

9.4 Implementing the Mathematics

199

In this section, we will build a Quaternion class. The basic data structure looks like

this:

Excerpt from file include/cyclone/core.h

/**
* Holds a three-degrees-of-freedom orientation.
*/
class Quaternion
{
public:
union {
struct {
/**
* Holds the real component of the quaternion.
*/
real r;
/**

* Holds the first complex component of the
* quaternion.
*/

real i;

/**

* Holds the second complex component of the
* quaternion.

*/

real j;

/**

* Holds the third complex component of the
* quaternion.

*/

real k;

}s

/**
* Holds the quaternion data in array form.
*/
real data[4];
bs
bs

200 Chapter 9 The Mathematics of Rotations

9.4.8 NORMALIZING QUATERNIONS

Aswe saw in the earlier discussion, quaternions only represent a rotation if they have a
magnitude of 1. All the operations we will be performing keep the magnitude at 1, but
numerical inaccuracies and rounding errors can cause this constraint to be violated
over time. From time to time, it is a good idea to renormalize the quaternion. We can
perform this with the following method:

Excerpt from file include/cyclone/core.h
class Quaternion

{

// ... Other quaternion code as before ...

/**

* Normalizes the quaternion to unit length, making it a valid
* orientation quaternion.

*/

void normalize()

{

real d = r*r+i*i+j*j+k*k;

// Check for zero-length quaternion, and use the no-rotation
// quaternion in that case.

if (d == 0) {
r=1;
return;

d = ((real)1.0)/real_sqrt(d);
r

i k=

d
JoF=d;
d

9.49 COMBINING QUATERNIONS

We combine two quaternions by multiplying them together. This is exactly the same
as for rotation (or any other transformation) matrices. The result of gp is a rotation

that is equivalent to performing rotation p first and then q.

9.4 Implementing the Mathematics 201

Aswe saw in Section 9.2.4, the multiplication of two quaternions has the following

form:
wq Wy WiwW2 — X1X — Y1)2 — 212
X X | |wixtxwy+nz — 2y
41)2 Wiy — X122 + 1W2 + 216
2) W1z + X1)2 — Y1% + 212

which is implemented as follows:

Excerpt from file include/cyclone/core.h

class Quaternion

{

// ... Other quaternion code as before ...

/**

* Multiplies the quaternion by the given quaternion.
*/

void operator *=(const Quaternion &multiplier)

{

Quaternion q = *this;

r =g.r*multiplier.r - q.i*multiplier.i -
g.j*multiplier.j - q.k*multiplier.k;
i=g.r*multiplier.i + q.i*multiplier.r +
g.j*multiplier.k - g.k*multiplier.j;
J = q.r*multiplier.j + g.j*multiplier.r +
q.k*multiplier.i - q.i*multiplier.k;
k = g.r*multiplier.k + g.k*multiplier.r +
g.i*multiplier.j - q.j*multiplier.i;

9.4.10 ROTATING

We occasionally need to rotate a quaternion by some given amount. If a quaternion
represents the orientation of an object, and we need to alter that orientation by rotat-
ing it, we could convert the orientation and the desired rotation into matrices and
multiply them. But there is a more direct way to do this.

The amount of rotation is most simply represented as a scaled vector (since the
rotation amount isn’t bounded), just as we saw for angular velocity.

We can then alter the quaternion using the equation

1
0'=9+5n00 [9.9]

202 Chapter 9 The Mathematics of Rotations

which is similar to the equation we saw in Section 9.3, but replaces velocity x time
with a single absolute angular change (6).

Here, as in the case of angular velocity, the rotation is provided as a vector, con-
verted into a non-normalized quaternion:

[26.20,0.] > [0a6,86,0.]
This can be implemented as:

Excerpt from file include/cyclone/core.h

class Quaternion

{

// ... Other quaternion code as before ...

void rotateByVector(const Vector3& vector)

{
Quaternion q(0, vector.x, vector.y, vector.z);
(*this) *= q;

9.4.11 UPDATING BY THE ANGULAR VELOCITY

The final operation we will need is to update the orientation quaternion by the angular
velocity and a time. In Section 9.3, we saw that this is handled by the equation

where w is the quaternion form of the angular velocity, and ¢ is the duration to update
by. This can be implemented as:

Excerpt from file include/cyclone/core.h

class Quaternion

{

// ... Other quaternion code as before ...

/**

* Adds the given vector to this one, scaled by the given amount.
* This is used to update the orientation quaternion by a rotation
* and time.

*

* @param vector The vector to add.

* @param scale The amount of the vector to add.

9.6 Exercises 203

*/
void addScaledVector(const Vector3& vector, real scale)
{

Quaternion q(0,
vector.x * scale,
vector.y * scale,
vector.z * scale);

q *= *this;

r +=qg.r * ((real)0.5);

i+=q.i * ((real)0.5);

J +=q.j * ((real)0.5);

k += q.k * ((real)0.5);

We now have a quaternion class that contains all the functionality we need for the
rest of the engine. As with vectors and matrices, there are a lot of other operations we
could add: more conversions, other mathematical operators, and utility functions.
If you are using an existing quaternion library, it might have many other functions
defined, but those presented here are sufficient for our needs.

95 SUMMARY

We have come a long way in this chapter, and if you weren’t familiar with matrices
and quaternions before, then it’s been a big step. We’ve now met all the mathematics
we need to see us to our final physics engine at the end of the book.

In this chapter, I've hinted at the way some of this mathematics is used in the
engine. Chapter 10 starts to rebuild our engine to support full 3D rigid bodies, with
angular as well as linear motion.

96 EXERCISES

Exercise 9.1

A rotation about the X axis by 90 degrees, followed by a rotation about the Y axis by
90 degrees is equivalent to a rotation about the Z axis, followed by another about the
X axis. About what angles?

Exercise 9.2

Buy yourself a cheap tennis ball or other ball of the same size. Draw six points on
the ball: one each for the positive and negative X, Y, and Z axes, arranged in a right-
handed basis. Orient the ball along some fixed reference direction (Y pointing up,

204 Chapter 9 The Mathematics of Rotations

Z pointing in the direction you're looking, for example). Now rotate the ball in any
way you choose, so that it is in a random orientation. Now rotate the ball about a single
axis by placing your fingertips on opposite sides of the ball. You should be able to find
one (and only one) such axis that allows you to rotate the ball back to its reference
orientation. Pay attention to where the features of the ball began and ended. Can you
work out a method for quickly finding the rotation axis needed to return the ball to
its original orientation?

Exercise 9.3
(a) Perform the following quaternion multiplication:

(b) The complex numbers from high school mathematics are of the form r 4 ci. What
does the structure of your answer to (a) tell you about the relationship between
complex numbers and quaternions?

Exercise 9.4
(a) Arigid body has the orientation quaternion,

D= M= D= N —

and is rotating with angular velocity,

(=)

0

Using your understanding of rotation, what will the orientation of the rigid body
be after 2 seconds?

(b) Derive the above result from Equation 9.5.

Exercise 9.5
A non-skewing affine transformation, represented by the 3 x 4 matrix,

a c
4

— > X
=

b
f
j

= 0

i

9.6 Exercises 205

can be written as a combination of a 3 x 3 matrix for rotation and a vector addition
for translation as follows:

Op+t
Give the coefficents of ® and ¢ in terms of the coefficients of the original matrix (i.e.,
values a through /).

Exercise 9.6
Calculate the inverse of the affine transform matrix from the previous exercise:

ab cd

e fghlp

i j kI
Beware, as there’s an easy (but perhaps not obvious) way and a difficult way to attempt
this; the hard way will not give the correct result.

Exercise 9.7

Create a box with an unusual mass distribution by taking an empty cardboard box and
securely taping small stones to various points on the inside surface. Now determine
the center of mass of the box. For each axis of the box (length, width, and depth), find
the point where the box balances on a thin pivot, such as a pencil. Mark that point
by drawing a band completely around the box in the axis of the pivot. When you’ve
repeated this for all three sides, you should have two lines crossing on each face of
the box. The box should balance on a point pivot (such as a pen cap) at these points.
Where is the center of mass of the box?

This page intentionally left blank

10

LAWS OF MOTION
FOR RIGID BODIES

l n this