

Two Scoops of Django
Best Practices For Django 1.8

Daniel Roy Greenfeld
Audrey Roy Greenfeld

Two Scoops of Django: Best Practices for Django 1.8
Ļird Edition, 2015-05-25

by Daniel Roy Greenfeld and Audrey Roy Greenfeld

Copyright c⃝ 2013-2015 Daniel Roy Greenfeld, Audrey Roy Greenfeld, and Two Scoops Press.

All rights reserved. Ļis book may not be reproduced in any form, in whole or in part, without written permission from the
authors, except in the case of brief quotations embodied in articles or reviews.

Limit of Liability and Disclaimer of Warranty: Ļe authors have used their best efforts in preparing this book, and the
information provided herein “as is.” Ļe information provided is sold without warranty, either express or implied. Neither the
authors nor Cartwheel Web will be held liable for any damages to be caused either directly or indirectly by the contents of
this book.

Trademarks: Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an
editorial fashion and to the beneŀt of the trademark owner with no intention of infringement of the trademark.

First Printing, April 2015

For more information, visit https://twoscoopspress.com.

https://twoscoopspress.com

iii

iv

Dedication

For Malcolm Tredinnick
1971-2013

We miss you.

http://2scoops.co/malcolm-tredinnick-memorial

v

http://2scoops.co/malcolm-tredinnick-memorial

About the Dedication

Malcolm Tredinnick wasn’t just a Django core developer and reviewer of “Two Scoops of Django:
Best Practices for Django 1.5.” To us, he was much, much more.

Daniel had worked with Malcolm Tredinnick in the summer of 2010, but we ŀrst met him in person
at DjangoCon 2010. He was funny and charming, sharply opinionated but always a gentleman; we
instantly became close friends.

In 2012, when we co-organized the ŀrst PyCon Philippines, as soon as we told him about it, Mal-
colm instantly declared he was coming. He gave two memorable talks and ran an impromptu all-day
Django tutorial. He also pushed and encouraged the local community to work on Filipino language
translations for Django, including Tagalog, Tausug, Cebuano, and more.

After the conference, we started working on a book about Django best practices. We gathered friends
and colleagues to help us as technical reviewers. Malcolm Tredinnick became the most active of them.
He was our mentor and forced us to dig deeper and work harder. He did this while working a day
job as the leader of a combined Rails and Haskell team; Malcolm was a true programming language
polyglot.

For our book, he provided so much assistance and guidance we tried to ŀgure out a way to include
him in the author credits. When we told him about our dilemma, he laughed it off saying, “For a
book called ‘Two Scoops’, you can’t have three authors.” We suggested he share credit with us on
a second book, and he refused, saying he preferred to just comment on our work. He said that he
wanted people to have proper references, and for him, simply reviewing our work was contributing
to the greater good. Eventually the two of us quietly planned to somehow coerce him into being a
co-author on a future work.

After months of effort, we released the ŀrst iteration on January 17th, 2013. Malcolm stepped back
from Two Scoops of Django, but we stayed in touch. Since Malcolm was unable to attend PyCon
US 2013 we weren’t sure when we would meet him again.

Two months later, on March 17th, 2013, Malcolm passed away.

We knew Malcolm for less than three years and yet he made an incredible difference in our lives.
We’ve heard many similar stories in the community about Malcolm; He was a friend and mentor to
countless others around the world. His last lesson to us went beyond code or writing, he taught us
to never take for granted friends, family, mentors, and teachers.

Contents

Dedication v
About the Dedication . vi

Authors’ Notes xxvii
A Few Words From Daniel Roy Greenfeld . xxvii
A Few Words From Audrey Roy Greenfeld . xxviii

Introduction xxix
A Word About Our Recommendations . xxix
Why Two Scoops of Django? . xxx
Before You Begin . xxxi

Ļis book is intended for Django 1.8 and Python 2.7.x/3.3.3+ xxxi
Each Chapter Stands On Its Own . xxxi

Conventions Used in Ļis Book . xxxii
Core Concepts . xxxiii

Keep It Simple, Stupid . xxxiii
Fat Models, Utility Modules, Ļin Views, Stupid Templates xxxiv
Start With Django By Default . xxxiv
Be Familiar with Django’s Design Philosophies xxxiv
Ļe Twelve-Factor App . xxxv

Our Writing Concepts . xxxv
Provide the Best Material . xxxv
Stand on the Shoulders of Giants . xxxv
Listen to Our Readers and Reviewers . xxxvi
Publish Errata . xxxvi

1 Coding Style 1
1.1 Ļe Importance of Making Your Code Readable 1

vii

Contents

1.2 PEP 8 . 2
1.2.1 Ļe 79-Character Limit . 3

1.3 Ļe Word on Imports . 3
1.4 Use Explicit Relative Imports . 4
1.5 Avoid Using Import * . 7
1.6 Django Coding Style . 9

1.6.1 Consider the Django Coding Style Guidelines 9
1.6.2 Use Underscores in URL Pattern Names Rather Ļan Dashes 9
1.6.3 Use Underscores in Template Block Names Rather Ļan Dashes 10

1.7 Choose JS, HTML, and CSS Style Guides . 10
1.7.1 JavaScript Style Guides . 10
1.7.2 HTML and CSS Style Guides . 11

1.8 Never Code to the IDE (Or Text Editor) . 11
1.9 Summary . 12

2 Ļe Optimal Django Environment Setup 13
2.1 Use the Same Database Engine Everywhere . 13

2.1.1 You Can’t Examine an Exact Copy of Production Data Locally 13
2.1.2 Different Databases Have Different Field Types/Constraints 14
2.1.3 Fixtures Are Not a Magic Solution . 15

2.2 Use Pip and Virtualenv . 15
2.3 Install Django and Other Dependencies via Pip 17
2.4 Use a Version Control System . 18
2.5 Optional: Identical Environments . 19

2.5.1 Vagrant and VirtualBox . 19
2.6 Summary . 20

3 How to Lay Out Django Projects 21
3.1 Django 1.8’s Default Project Layout . 21
3.2 Our Preferred Project Layout . 22

3.2.1 Top Level: Repository Root . 23
3.2.2 Second Level: Project Root . 23
3.2.3 Ļird Level: Conŀguration Root . 23

3.3 Sample Project Layout . 24
3.4 What About the Virtualenv? . 27
3.5 Going Beyond startproject . 28

viii

Contents

3.5.1 Generating Project Boilerplate With Cookiecutter 29
3.5.2 Our Favorite Project Template . 30
3.5.3 An Alternative Template: django-kevin 31
3.5.4 Other Alternatives . 31

3.6 Summary . 32

4 Fundamentals of Django App Design 33
4.1 Ļe Golden Rule of Django App Design . 34

4.1.1 A Practical Example of Apps in a Project 35
4.2 What to Name Your Django Apps . 36
4.3 When in Doubt, Keep Apps Small . 37
4.4 What Modules Belong in an App? . 37

4.4.1 Common App Modules . 37
4.4.2 Uncommon App Modules . 38

4.5 Summary . 40

5 Settings and Requirements Files 41
5.1 Avoid Non-Versioned Local Settings . 42
5.2 Using Multiple Settings Files . 43

5.2.1 A Development Settings Example . 46
5.2.2 Multiple Development Settings . 47

5.3 Separate Conŀguration From Code . 48
5.3.1 A Caution Before Using Environment Variables for Secrets 49
5.3.2 How to Set Environment Variables Locally 49
5.3.3 How to Set Environment Variables in Production 51
5.3.4 Handling Missing Secret Key Exceptions 52

5.4 When You Can’t Use Environment Variables . 54
5.4.1 Using JSON Files . 54
5.4.2 Using Conŀg, YAML, and XML File Formats 55

5.5 Using Multiple Requirements Files . 55
5.5.1 Installing From Multiple Requirements Files 57
5.5.2 Using Multiple Requirements Files With Platforms as a

Service (PaaS) . 57
5.6 Handling File Paths in Settings . 58
5.7 Summary . 60

ix

Contents

6 Model Best Practices 63
6.1 Basics . 64

6.1.1 Break Up Apps With Too Many Models 64
6.1.2 Be Careful With Model Inheritance . 64
6.1.3 Model Inheritance in Practice: Ļe TimeStampedModel 66
6.1.4 Database Migrations . 67

6.2 Django Model Design . 69
6.2.1 Start Normalized . 69
6.2.2 Cache Before Denormalizing . 69
6.2.3 Denormalize Only if Absolutely Needed 69
6.2.4 When to Use Null and Blank . 70
6.2.5 When to Use BinaryField . 72
6.2.6 Try to Avoid Using Generic Relations 73
6.2.7 PostgreSQL-Speciŀc Fields: When to Use Null and Blank 74

6.3 Ļe Model meta API . 75
6.4 Model Managers . 75
6.5 Understanding Fat Models . 77

6.5.1 Model Behaviors a.k.a Mixins . 78
6.5.2 Stateless Helper Functions . 79
6.5.3 Model Behaviors vs Helper Functions 79

6.6 Summary . 79

7 Queries and the Database Layer 81
7.1 Use get object or 404() for Single Objects . 81
7.2 Be Careful With Queries Ļat Might Ļrow Exceptions 82

7.2.1 ObjectDoesNotExist vs. DoesNotExist 82
7.2.2 When You Just Want One Object but Get Ļree Back 83

7.3 Use Lazy Evaluation to Make Queries Legible 83
7.4 Lean on Advanced Query Tools . 84

7.4.1 Query Expressions . 85
7.4.2 Database Functions . 86

7.5 Don’t Drop Down to Raw SQL Until It’s Necessary 87
7.6 Add Indexes as Needed . 88
7.7 Transactions . 89

7.7.1 Wrapping Each HTTP Request in a Transaction 89
7.7.2 Explicit Transaction Declaration . 92

x

Contents

7.7.3 django.http.StreamingHttpResponse and Transactions 93
7.7.4 Transactions in MySQL . 94
7.7.5 Django ORM Transaction Resources . 94

7.8 Summary . 94

8 Function- and Class-Based Views 95
8.1 When to Use FBVs or CBVs . 95
8.2 Keep View Logic Out of URLConfs . 97
8.3 Stick to Loose Coupling in URLConfs . 98

8.3.1 What if We Aren’t Using CBVs? . 101
8.4 Use URL Namespaces . 101

8.4.1 Makes for Shorter, More Obvious and Don’t Repeat Yourself URL Names 102
8.4.2 Increases Interoperability With Ļird-Party Libraries 103
8.4.3 Easier Searches, Upgrades, and Refactors 104
8.4.4 Allows for More App and Template Reverse Tricks 104

8.5 Don’t Reference Views as Strings in URLConfs 104
8.6 Try to Keep Business Logic Out of Views . 105
8.7 Django Views Are Functions . 106

8.7.1 Ļe Simplest Views . 106
8.8 Don’t Use locals() as Views Context . 107
8.9 Summary . 108

9 Best Practices for Function-Based Views 109
9.1 Advantages of FBVs . 109
9.2 Passing the HttpRequest Object . 110
9.3 Decorators Are Sweet . 113

9.3.1 Be Conservative With Decorators . 115
9.3.2 Additional Resources on Decorators . 116

9.4 Passing the HttpResponse Object . 116
9.5 Summary . 116

10 Best Practices for Class-Based Views 117
10.1 Guidelines When Working With CBVs . 118
10.2 Using Mixins With CBVs . 118
10.3 Which Django GCBV Should Be Used for What Task? 120
10.4 General Tips for Django CBVs . 121

xi

Contents

10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users 122
10.4.2 Performing Custom Actions on Views With Valid Forms 122
10.4.3 Performing Custom Actions on Views With Invalid Forms 123
10.4.4 Using the View Object . 124

10.5 How GCBVs and Forms Fit Together . 126
10.5.1 Views + ModelForm Example . 127
10.5.2 Views + Form Example . 131

10.6 Using Just django.views.generic.View . 133
10.7 Additional Resources . 135
10.8 Summary . 136

11 Form Fundamentals 137
11.1 Validate All Incoming Data With Django Forms 137
11.2 Use the POST Method in HTML Forms . 140
11.3 Always Use CSRF Protection With HTTP Forms Ļat Modify Data 141

11.3.1 Posting Data via AJAX . 141
11.4 Understand How to Add Django Form Instance Attributes 142
11.5 Know How Form Validation Works . 143

11.5.1 ModelForm Data Is Saved to the Form, Ļen the Model Instance 145
11.6 Add Errors to Forms with Form.add error() 146

11.6.1 Other Useful Form Methods . 147
11.7 Fields Without Pre-Made Widgets . 147
11.8 Additional Resources . 148
11.9 Summary . 148

12 Common Patterns for Forms 149
12.1 Pattern 1: Simple ModelForm With Default Validators 150
12.2 Pattern 2: Custom Form Field Validators in ModelForms 151
12.3 Pattern 3: Overriding the Clean Stage of Validation 156
12.4 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model) 159
12.5 Pattern 5: Reusable Search Mixin View . 163
12.6 Summary . 165

13 Templates: Best Practices 167
13.1 Keep Templates Mostly in templates/ . 167
13.2 Template Architecture Patterns . 168

xii

Contents

13.2.1 2-Tier Template Architecture Example 168
13.2.2 3-Tier Template Architecture Example 169
13.2.3 Flat Is Better Ļan Nested . 170

13.3 Limit Processing in Templates . 171
13.3.1 Gotcha 1: Aggregation in Templates . 173
13.3.2 Gotcha 2: Filtering With Conditionals in Templates 175
13.3.3 Gotcha 3: Complex Implied Queries in Templates 177
13.3.4 Gotcha 4: Hidden CPU Load in Templates 178
13.3.5 Gotcha 5: Hidden REST API Calls in Templates 179

13.4 Don’t Bother Making Your Generated HTML Pretty 179
13.5 Exploring Template Inheritance . 181
13.6 block.super Gives the Power of Control . 184
13.7 Useful Ļings to Consider . 185

13.7.1 Avoid Coupling Styles Too Tightly to Python Code 186
13.7.2 Common Conventions . 186
13.7.3 Location, Location, Location! . 186
13.7.4 Use Named Context Objects . 187
13.7.5 Use URL Names Instead of Hardcoded Paths 187
13.7.6 Debugging Complex Templates . 188

13.8 Error Page Templates . 188
13.9 Follow a Minimalist Approach . 189
13.10 Summary . 190

14 Template Tags and Filters 191
14.1 Filters Are Functions . 191

14.1.1 Filters Are Easy to Test . 192
14.1.2 Filters and Code Reuse . 192
14.1.3 When to Write Filters . 193

14.2 Custom Template Tags . 193
14.2.1 Template Tags Are Harder to Debug . 193
14.2.2 Template Tags Make Code Reuse Harder 193
14.2.3 Ļe Performance Cost of Template Tags 193
14.2.4 When to Write Template Tags . 194

14.3 Naming Your Template Tag Libraries . 194
14.4 Loading Your Template Tag Modules . 195

14.4.1 Watch Out for Ļis Crazy Anti-Pattern 195

xiii

Contents

14.5 Summary . 196

15 Django Templates and Jinja2 197
15.1 What’s the Syntactical Difference? . 197
15.2 Should I Switch? . 198

15.2.1 Advantages of DTL . 198
15.2.2 Advantages of Jinja2 . 199
15.2.3 Which One Wins? . 199

15.3 Considerations When Using Jinja2 With Django 199
15.3.1 CSRF and Jinja2 . 200
15.3.2 Using Template Tags in Jinja2 Templates 200
15.3.3 Using Django-Style Template Filters in Jinja2 Templates 200
15.3.4 Context Processors Aren’t Called by Jinja2 Templates 202
15.3.5 Ļe Jinja2 Environment Object Should Be Considered Static 204

15.4 Resources . 205
15.5 Summary . 205

16 Building REST APIs 207
16.1 Fundamentals of Basic REST API Design . 208
16.2 Implementing a Simple JSON API . 210
16.3 REST API Architecture . 213

16.3.1 Code for a Project Should Be Neatly Organized 213
16.3.2 Code for an App Should Remain in the App 214
16.3.3 Try to Keep Business Logic Out of API Views 214
16.3.4 Grouping API URLs . 215
16.3.5 Test Your API . 217
16.3.6 Version Your API . 217

16.4 Service-Oriented Architecture . 217
16.5 Shutting Down an External API . 218

16.5.1 Step #1: Notify Users of Pending Shut Down 218
16.5.2 Step #2: Replace API With 410 Error View 219

16.6 Evaluating REST Frameworks . 219
16.6.1 Django Rest Framework Is the Defacto Package 220
16.6.2 How Much Boilerplate Do You Want to Write? 220
16.6.3 Are Remote Procedure Calls Easy to Implement? 220
16.6.4 CBVs or FBVs? . 221

xiv

Contents

16.7 Rate Limiting Your API . 221
16.7.1 Unfettered API Access is Dangerous . 221
16.7.2 REST Frameworks Must Come with Rate Limiting 222
16.7.3 Rate Limit Can Be A Business Plan . 222

16.8 Advertising Your REST API . 222
16.8.1 Documentation . 223
16.8.2 Provide Client SDKs . 223

16.9 Additional Reading . 223
16.10 Summary . 223

17 Consuming REST APIs 225
17.1 Learn How to Debug the Client . 226
17.2 Consider Using JavaScript-Powered Static Asset Preprocessors 227
17.3 Making Content Indexable by Search Engines 227

17.3.1 Read the Search Engine Documentation 227
17.3.2 Hand-Craft the sitemap.xml . 228
17.3.3 Use a Service to Make Your Site Crawlable 229

17.4 Real-Time Woes a.k.a. Latency . 229
17.4.1 Solution: Mask the Latency With Animations 229
17.4.2 Solution: Fake Successful Transactions 230
17.4.3 Solution: Geographically Based Servers 230
17.4.4 Solution: Restrict Users Geographically 230

17.5 Avoid the Anti-Patterns . 230
17.5.1 Building Single Page Apps When Multi-Page Apps Suffice 231
17.5.2 Not Writing Tests . 231
17.5.3 Not Understanding JavaScript Memory Management 231
17.5.4 Storing Data in the DOM When It’s Not jQuery 231

17.6 AJAX and the CSRF Token . 232
17.6.1 JQuery and the CSRF Token . 232
17.6.2 Backbone.js and the CSRF Token . 234
17.6.3 AngularJS and the CSRF Token . 234

17.7 Improving JavaScript Skills . 235
17.7.1 Assessing Skill Levels . 235
17.7.2 Learn More JavaScript! . 235

17.8 Follow JavaScript Coding Standards . 235
17.9 Useful Resources . 236

xv

Contents

17.10 Summary . 236

18 Tradeoffs of Replacing Core Components 237
18.1 Ļe Temptation to Build FrankenDjango . 238
18.2 Non-Relational Databases vs. Relational

Databases . 239
18.2.1 Not All Non-Relational Databases Are ACID Compliant 239
18.2.2 Don’t Use Non-Relational Databases for Relational Tasks 240
18.2.3 Ignore the Hype and Do Your Own Research 240
18.2.4 How We Use Non-Relational Databases With Django 241

18.3 What About Replacing the Django Template Language? 241
18.4 Summary . 241

19 Working With the Django Admin 243
19.1 It’s Not for End Users . 244
19.2 Admin Customization vs. New Views . 244
19.3 Viewing String Representations of Objects . 244
19.4 Adding Callables to ModelAdmin Classes . 248
19.5 Don’t Use list editable in Multiuser Environments 249
19.6 Django’s Admin Documentation Generator . 250
19.7 Securing the Django Admin and Django Admin Docs 251
19.8 Using Custom Skins With the Django Admin 251

19.8.1 Evaluation Point: Documentation is Everything 252
19.8.2 Write Tests for Any Admin Extensions You Create 252

19.9 Summary . 253

20 Dealing With the User Model 255
20.1 Use Django’s Tools for Finding the User Model 255

20.1.1 Use settings.AUTH USER MODEL for Foreign Keys to User 256
20.1.2 Don’t Use get user model() for Foreign Keys to User 256

20.2 Migrating Pre-1.5 User Models to 1.5+’s Custom User Models 257
20.3 Custom User Fields for Django 1.8 Projects . 257

20.3.1 Option 1: Subclass AbstractUser . 258
20.3.2 Option 2: Subclass AbstractBaseUser . 259
20.3.3 Option 3: Linking Back From a Related Model 259

20.4 Summary . 261

xvi

Contents

21 Django’s Secret Sauce: Ļird-Party Packages 263
21.1 Examples of Ļird-Party Packages . 264
21.2 Know About the Python Package Index . 264
21.3 Know About DjangoPackages.com . 265
21.4 Know Your Resources . 265
21.5 Tools for Installing and Managing Packages . 265
21.6 Package Requirements . 266
21.7 Wiring Up Django Packages: Ļe Basics . 266

21.7.1 Step 1: Read the Documentation for the Package 266
21.7.2 Step 2: Add Package and Version Number to Your Requirements 266
21.7.3 Step 3: Install the Requirements Into Your Virtualenv 267
21.7.4 Step 4: Follow the Package’s Installation Instructions Exactly 268

21.8 Troubleshooting Ļird-Party Packages . 268
21.9 Releasing Your Own Django Packages . 268
21.10 What Makes a Good Django Package? . 269

21.10.1 Purpose . 269
21.10.2 Scope . 270
21.10.3 Documentation . 270
21.10.4 Tests . 270
21.10.5 Templates . 270
21.10.6 Activity . 271
21.10.7 Community . 271
21.10.8 Modularity . 271
21.10.9 Availability on PyPI . 271
21.10.10 Uses the Broadest Requirements Speciŀers Possible 272
21.10.11 Proper Version Numbers . 273
21.10.12 Name . 274
21.10.13 License . 275
21.10.14 Clarity of Code . 275
21.10.15 Use URL Namespaces . 275

21.11 Creating Your Own Packages the Easy Way . 276
21.12 Maintaining Your Open Source Package . 277

21.12.1 Give Credit for Pull Requests . 277
21.12.2 Handling Bad Pull Requests . 277
21.12.3 Do Formal PyPI Releases . 278

xvii

Contents

21.12.4 Create and Deploy Wheels to PyPI . 279
21.12.5 Upgrade the Package to New Versions of Django 280
21.12.6 Follow Good Security Practices . 280
21.12.7 Provide Sample Base Templates . 280
21.12.8 Give the Package Away . 281

21.13 Additional Reading . 281
21.14 Summary . 282

22 Testing Stinks and Is a Waste of Money! 283
22.1 Testing Saves Money, Jobs, and Lives . 283
22.2 How to Structure Tests . 284
22.3 How to Write Unit Tests . 285

22.3.1 Each Test Method Tests One Ļing . 285
22.3.2 For Views, When Possible Use the Request Factory 288
22.3.3 Don’t Write Tests Ļat Have to Be Tested 289
22.3.4 Don’t Repeat Yourself Doesn’t Apply to Writing Tests 289
22.3.5 Don’t Rely on Fixtures . 290
22.3.6 Ļings Ļat Should Be Tested . 290
22.3.7 Test for Failure . 291
22.3.8 Use Mock to Keep Unit Tests From Touching the World 292
22.3.9 Use Fancier Assertion Methods . 294
22.3.10 Document the Purpose of Each Test . 295

22.4 What About Integration Tests? . 295
22.5 Continuous Integration . 296
22.6 Who Cares? We Don’t Have Time for Tests! . 296
22.7 Ļe Game of Test Coverage . 297
22.8 Setting Up the Test Coverage Game . 297

22.8.1 Step 1: Start Writing Tests . 297
22.8.2 Step 2: Run Tests and Generate Coverage Report 298
22.8.3 Step 3: Generate the Report! . 298

22.9 Playing the Game of Test Coverage . 299
22.10 Alternatives to unittest . 299
22.11 Summary . 300

23 Documentation: Be Obsessed 301
23.1 Use reStructuredText for Python Docs . 301

xviii

Contents

23.2 Use Sphinx to Generate Documentation From reStructuredText 303
23.3 What Docs Should Django Projects Contain? 303
23.4 Additional Documentation Resources . 305
23.5 Ļe Markdown Alternative . 305

23.5.1 README.md to README.rst: Using Pandoc for Packages Uploaded to
PyPI . 306

23.5.2 Markdown Resources . 306
23.6 Wikis and Other Documentation Methods . 307
23.7 Summary . 307

24 Finding and Reducing Bottlenecks 309
24.1 Should You Even Care? . 309
24.2 Speed Up Query-Heavy Pages . 309

24.2.1 Find Excessive Queries With Django Debug Toolbar 309
24.2.2 Reduce the Number of Queries . 310
24.2.3 Speed Up Common Queries . 311
24.2.4 Switch ATOMIC REQUESTS to False 312

24.3 Get the Most Out of Your Database . 312
24.3.1 Know What Doesn’t Belong in the Database 312
24.3.2 Getting the Most Out of PostgreSQL 313
24.3.3 Getting the Most Out of MySQL . 313

24.4 Cache Queries With Memcached or Redis . 314
24.5 Identify Speciŀc Places to Cache . 314
24.6 Consider Ļird-Party Caching Packages . 314
24.7 Compression and Miniŀcation of HTML, CSS, and JavaScript 315
24.8 Use Upstream Caching or a Content Delivery Network 316
24.9 Other Resources . 316
24.10 Summary . 318

25 Asynchronous Task Queues 319
25.1 Do We Need a Task Queue? . 320
25.2 Choosing Task Queue Software . 321
25.3 Best Practices for Task Queues . 322

25.3.1 Treat Tasks Like Views . 322
25.3.2 Tasks Aren’t Free . 322
25.3.3 Only Pass JSON-Serializable Values to Task Functions 323

xix

Contents

25.3.4 Learn How to Monitor Tasks and Workers 323
25.3.5 Logging! . 323
25.3.6 Monitor the Backlog . 324
25.3.7 Periodically Clear Out Dead Tasks . 324
25.3.8 Ignore Results We Don’t Need . 324
25.3.9 Use the Queue’s Error Handling . 324
25.3.10 Learn the Features of Your Task Queue Software 325

25.4 Resources for Task Queues . 325
25.5 Summary . 326

26 Security Best Practices 327
26.1 Harden Your Servers . 327
26.2 Know Django’s Security Features . 327
26.3 Turn Off DEBUG Mode in Production . 328
26.4 Keep Your Secret Keys Secret . 328
26.5 HTTPS Everywhere . 328

26.5.1 Use Secure Cookies . 330
26.5.2 Use HTTP Strict Transport Security (HSTS) 330
26.5.3 HTTPS Conŀguration Tools . 332

26.6 Use Allowed Hosts Validation . 332
26.7 Always Use CSRF Protection With HTTP Forms Ļat Modify Data 333
26.8 Prevent Against Cross-Site Scripting (XSS) Attacks 333

26.8.1 Use Django Templates Over mark safe 333
26.8.2 Don’t Allow Users to Set Individual HTML Tag Attributes 333
26.8.3 Use JSON Encoding for Data Consumed by JavaScript 333
26.8.4 Additional Reading . 334

26.9 Defend Against Python Code Injection Attacks 334
26.9.1 Python Built-Ins Ļat Execute Code . 334
26.9.2 Python Standard Library Modules Ļat Can Execute Code 334
26.9.3 Ļird-Party Libraries Ļat Can Execute Code 335
26.9.4 Be Careful With Cookie-Based Sessions 335

26.10 Validate All Incoming Data With Django Forms 336
26.11 Disable the Autocomplete on Payment Fields 337
26.12 Handle User-Uploaded Files Carefully . 337

26.12.1 When a CDN Is Not an Option . 338
26.12.2 Django and User-Uploaded Files . 338

xx

Contents

26.13 Don’t Use ModelForms.Meta.exclude . 339
26.13.1 Mass Assignment Vulnerabilities . 341

26.14 Don’t Use ModelForms.Meta.fields = " all " 342
26.15 Beware of SQL Injection Attacks . 342
26.16 Never Store Credit Card Data . 342
26.17 Secure the Django Admin . 343

26.17.1 Change the Default Admin URL . 343
26.17.2 Use django-admin-honeypot . 344
26.17.3 Only Allow Admin Access via HTTPS 344
26.17.4 Limit Admin Access Based on IP . 344
26.17.5 Use the allow tags Attribute With Caution 345

26.18 Secure the Admin Docs . 345
26.19 Monitor Your Sites . 345
26.20 Keep Your Dependencies Up-to-Date . 345
26.21 Prevent Clickjacking . 346
26.22 Guard Against XML Bombing With defusedxml 346
26.23 Explore Two-Factor Authentication . 346
26.24 Embrace SecurityMiddleware . 347
26.25 Force the Use of Strong Passwords . 347
26.26 Give Your Site a Security Checkup . 348
26.27 Put Up a Vulnerability Reporting Page . 348
26.28 Stop Using django.utils.html.remove tag . 349
26.29 Have a Plan Ready for When Ļings Go Wrong 349

26.29.1 Shut Everything Down or Put It in Read-Only Mode 349
26.29.2 Put Up a Static HTML Page . 350
26.29.3 Back Everything Up . 350
26.29.4 Email security@djangoproject.com, Even if It’s Your Fault 350
26.29.5 Start Looking Into the Problem . 351

26.30 Obfuscate Primary Keys with UUIDs . 352
26.31 Reference Our Security Settings Appendix . 353
26.32 Keep Up-to-Date on General Security Practices 353
26.33 Summary . 354

27 Logging: What’s It For, Anyway? 355
27.1 Application Logs vs. Other Logs . 355
27.2 Why Bother With Logging? . 356

xxi

Contents

27.3 When to Use Each Log Level . 356
27.3.1 Log Catastrophes With CRITICAL . 357
27.3.2 Log Production Errors With ERROR 357
27.3.3 Log Lower-Priority Problems With WARNING 358
27.3.4 Log Useful State Information With INFO 359
27.3.5 Log Debug-Related Messages to DEBUG 359

27.4 Log Tracebacks When Catching Exceptions . 361
27.5 One Logger Per Module Ļat Uses Logging . 362
27.6 Log Locally to Rotating Files . 362
27.7 Other Logging Tips . 363
27.8 Necessary Reading Material . 363
27.9 Useful Ļird-Party Tools . 364
27.10 Summary . 364

28 Signals: Use Cases and Avoidance Techniques 365
28.1 When to Use and Avoid Signals . 365
28.2 Signal Avoidance Techniques . 366

28.2.1 Using Custom Model Manager Methods Instead of Signals 366
28.2.2 Validate Your Model Elsewhere . 369
28.2.3 Override Your Model’s Save or Delete Method Instead 369
28.2.4 Use a Helper Function Instead of Signals 370

28.3 Summary . 370

29 What About Ļose Random Utilities? 371
29.1 Create a Core App for Your Utilities . 371
29.2 Optimize Apps with Utility Modules . 372

29.2.1 Storing Code Used in Many Places . 372
29.2.2 Trimming Models . 372
29.2.3 Easier Testing . 373

29.3 Django’s Own Swiss Army Knife . 373
29.3.1 django.contrib.humanize . 374
29.3.2 django.utils.decorators.method decorator(decorator) 374
29.3.3 django.utils.decorators.decorator from middleware(middleware) 375
29.3.4 django.utils.encoding.force text(value) 375
29.3.5 django.utils.functional.cached property 375
29.3.6 django.utils.html.format html(format str, *args, **kwargs) 376

xxii

Contents

29.3.7 django.utils.html.remove tags(value, tags) 376
29.3.8 django.utils.html.strip tags(value) . 376
29.3.9 django.utils.six . 377
29.3.10 django.utils.text.slugify(value) . 377
29.3.11 django.utils.timezone . 379
29.3.12 django.utils.translation . 379

29.4 Exceptions . 379
29.4.1 django.core.exceptions.ImproperlyConŀgured 379
29.4.2 django.core.exceptions.ObjectDoesNotExist 379
29.4.3 django.core.exceptions.PermissionDenied 381

29.5 Serializers and Deserializers . 382
29.5.1 django.core.serializers.json.DjangoJSONEncoder 384
29.5.2 django.core.serializers.pyyaml . 385
29.5.3 django.core.serializers.xml serializer . 385

29.6 Summary . 385

30 Deployment: Platforms as a Service 387
30.1 Evaluating a PaaS . 388

30.1.1 Compliance . 388
30.1.2 Pricing . 389
30.1.3 Uptime . 389
30.1.4 Staffing . 390
30.1.5 Scaling . 390
30.1.6 Documentation . 391
30.1.7 Performance Degradation . 391
30.1.8 Geography . 392
30.1.9 Company Stability . 392

30.2 Best Practices for Deploying to PaaS . 392
30.2.1 Aim for Identical Environments . 392
30.2.2 Automate All the Ļings! . 393
30.2.3 Maintain a Staging Instance . 393
30.2.4 Prepare for Disaster With Backups and Rollbacks 393
30.2.5 Keep External Backups . 394

30.3 Summary . 394

31 Deploying Django Projects 395

xxiii

Contents

31.1 Single-Server for Small Projects . 395
31.1.1 Should You Bother? . 395
31.1.2 Example: Quick Ubuntu + Gunicorn Setup 396

31.2 Multi-Server for Medium to Large Projects . 397
31.2.1 Advanced Multi-Server Setup . 400

31.3 WSGI Application Servers . 401
31.4 Performance and Tuning: uWSGI and Gunicorn 402
31.5 Stability and Ease of Setup: Gunicorn and Apache 403
31.6 Common Apache Gotchas . 403

31.6.1 Apache and Environment Variables . 403
31.6.2 Apache and Virtualenv . 404

31.7 Automated, Repeatable Deployments . 404
31.7.1 A Rapidly Changing World . 406

31.8 Which Automation Tool Should Be Used? . 407
31.8.1 Too Much Corporate Fluff . 407
31.8.2 Do Your Own Research . 407

31.9 Current Infrastructure Automation Tools . 407
31.10 Other Resources . 410
31.11 Summary . 410

32 Continuous Integration 411
32.1 Principles of Continuous Integration . 412

32.1.1 Write Lots of Tests! . 412
32.1.2 Keeping the Build Fast . 412

32.2 Tools for Continuously Integrating Your Project 413
32.2.1 Tox . 413
32.2.2 Jenkins . 414

32.3 Continuous Integration as a Service . 414
32.3.1 Code Coverage as a Service . 415

32.4 Additional Resources . 415
32.5 Summary . 415

33 Ļe Art of Debugging 417
33.1 Debugging in Development . 417

33.1.1 Use django-debug-toolbar . 417
33.1.2 Ļat Annoying CBV Error . 417

xxiv

Contents

33.1.3 Master the Python Debugger . 419
33.1.4 Remember the Essentials for Form File Uploads 419
33.1.5 Lean on the Text Editor or IDE . 422

33.2 Debugging Production Systems . 422
33.2.1 Read the Logs the Easy Way . 423
33.2.2 Mirroring Production . 423
33.2.3 UserBasedExceptionMiddleware . 423
33.2.4 Ļat Troublesome settings.ALLOWED HOSTS Error 424

33.3 Feature Flags . 425
33.3.1 Feature Flag Packages . 426
33.3.2 Unit Testing Code Affected by Feature Flags 426

33.4 Summary . 426

34 Where and How to Ask Django Questions 427
34.1 What to Do When You’re Stuck . 427
34.2 How to Ask Great Django Questions in IRC 427
34.3 Feed Your Brain . 428
34.4 Insider Tip: Be Active in the Community . 429

34.4.1 9 Easy Ways to Participate . 429
34.5 Summary . 430

35 Closing Ļoughts 431

Appendix A: Packages Mentioned In Ļis Book 433

Appendix B: Troubleshooting Installation 441
Identifying the Issue . 441
Our Recommended Solutions . 442

Check Your Virtualenv Installation . 442
Check If Your Virtualenv Has Django 1.8 Installed 443
Check For Other Problems . 443

Appendix C: Additional Resources 445
Beginner Python Material . 445
Beginner Django Material . 445
More Advanced Django Material . 447
Useful Python Material . 449

xxv

Contents

JavaScript Resources . 449

Appendix D: Internationalization and Localization 451
Start Early . 451
Wrap Content Strings with Translation Functions . 452
Don’t Interpolate Words in Sentences . 453
Browser Page Layout . 456

Appendix E: Settings Alternatives 459
Twelve Factor-Style Settings . 459

Appendix F: Working with Python 3 461
Most Critical Packages Work with Python 3 . 461
Use Python 3.3.3 or Later . 463
Working With Python 2 and 3 . 463
Resources . 464

Appendix G: Security Settings Reference 465
Cross Site Request Forgery Protection Settings . 466
Email SSL . 466
SESSION SERIALIZER . 466

Acknowledgments 467

List of Figures 472

List of Tables 475

Index 477

xxvi

Authors' Notes

A Few Words From Daniel Roy Greenfeld
In the spring of 2006, I was working for NASA on a project that implemented a Java-based RESTful
web service that was taking weeks to deliver. One evening, when management had left for the day, I
reimplemented the service in Python in 90 minutes.

I knew then that I wanted to work with Python.

I wanted to use Django for the web front-end of the web service, but management insisted on using
a closed-source stack because “Django is only at version 0.9x, hence not ready for real projects.” I
disagreed, but stayed happy with the realization that at least the core architecture was in Python.
Django used to be edgy during those heady days, and it scared people the same way that Node.js
scares people today.

Nearly nine years later, Django is considered a mature, powerful, secure, stable framework used
by incredibly successful corporations (Instagram, Pinterest, Mozilla, etc.) and government agencies
(NASA, et al) all over the world. Convincing management to use Django isn’t hard anymore, and if
it is hard to convince them, ŀnding jobs which let you use Django has become much easier. In my 8+
years of building Django projects, I’ve learned how to launch new web applications with incredible
speed while keeping technical debt to an absolute minimum.

My goal in this book is to share with you what I’ve learned. My knowledge and experience have been
gathered from advice given by core developers, mistakes I’ve made, successes shared with others, and
an enormous amount of note taking. I’m going to admit that the book is opinionated, but many of
the leaders in the Django community use the same or similar techniques.

Ļis book is for you, the developers. I hope you enjoy it!

Contents

A Few Words From Audrey Roy Greenfeld

I ŀrst discovered Python in a graduate class at MIT in 2005. In less than 4 weeks of homework
assignments, each student built a voice-controlled system for navigating between rooms in MIT’s
Stata Center, running on our HP iPaqs running Debian. I was in awe of Python and wondered why
it wasn’t used for everything. I tried building a web application with Zope but struggled with it.

A couple of years passed, and I got drawn into the Silicon Valley tech startup scene. I wrote graphics
libraries in C and desktop applications in C++ for a startup. At some point, I left that job and picked
up painting and sculpture. Soon I was drawing and painting frantically for art shows, co-directing a
140-person art show, and managing a series of real estate renovations. I realized that I was doing a
lot at once and had to optimize. Naturally, I turned to Python and began writing scripts to generate
some of my artwork. Ļat was when I rediscovered the joy of working with Python.

Many friends from the Google App Engine, SuperHappyDevHouse, and hackathon scenes in Silicon
Valley inspired me to get into Django. Ļrough them and through various freelance projects and
partnerships I discovered how powerful Django was.

Before I knew it, I was attending PyCon 2010, where I met my husband Daniel Roy Greenfeld. We
met at the end of James Bennett’s “Django In Depth” tutorial, and now this chapter in our lives has
come full circle with the publication of this book.

Django has brought more joy to my life than I thought was possible with a web framework. My goal
with this book is to give you the thoughtful guidance on common Django development practices that
are normally left unwritten (or implied), so that you can get past common hurdles and experience
the joy of using the Django web framework for your projects.

xxviii

Introduction

Our aim in writing this book is to write down all of the unwritten tips, tricks, and common practices
that we’ve learned over the years while working with Django.

While writing, we’ve thought of ourselves as scribes, taking the various things that people assume
are common knowledge and recording them with simple examples.

A Word About Our Recommendations

Like the official Django documentation, this book covers how to do things in Django, illustrating
various scenarios with code examples.

Unlike the Django documentation, this book recommends particular coding styles, patterns, and
library choices. While core Django developers may agree with some or many of these choices, keep
in mind that many of our recommendations are just that: personal recommendations formed after
years of working with Django.

Ļroughout this book, we advocate certain practices and techniques that we consider to be the best
approaches. We also express our own personal preferences for particular tools and libraries.

Sometimes we reject common practices that we consider to be anti-patterns. For most things we
reject, we try to be polite and respectful of the hard work of the authors. Ļere are the rare, few
things that we may not be so polite about. Ļis is in the interest of helping you avoid dangerous
pitfalls.

We have made every effort to give thoughtful recommendations and to make sure that our practices
are sound. We’ve subjected ourselves to harsh, nerve-wracking critiques from Django and Python

xxix

Chapter 0: Introduction

core developers whom we greatly respect. We’ve had this book reviewed by more technical reviewers
than the average technical book, and we’ve poured countless hours into revisions. Ļat being said,
there is always the possibility of errors or omissions. Ļere is also the possibility that better practices
may emerge than those described here.

We are fully committed to iterating on and improving this book, and we mean it. If you see any
practices that you disagree with or anything that can be done better, we humbly ask that you
send us your suggestions for improvements. Ļe best way to send us feedback is to ŀle an issue
at https://github.com/twoscoops/two-scoops-of-django-1.8/issues.

Please don’t hesitate to tell us what can be improved. We will take your feedback constructively.
Errata will be published at http://www.2scoops.co/1.8-errata/.

Why Two Scoops of Django?

Like most people, we, the authors of this book, love ice cream. Every Saturday night we throw caution
to the wind and indulge in ice cream. Don’t tell anyone, but sometimes we even have some when it’s
not Saturday night!

Figure 1: Ļrowing caution to the wind.

We like to try new łavors and discuss their merits against our old favorites. Tracking our progress
through all these łavors, and possibly building a club around it, makes for a great sample Django
project.

xxx

https://github.com/twoscoops/two-scoops-of-django-1.8/issues
http://www.2scoops.co/1.8-errata/

When we do ŀnd a łavor we really like, the new łavor brings a smile to our face, just like when we
ŀnd great tidbits of code or advice in a technical book. One of our goals for this book is to write the
kind of technical book that brings the ice cream smile to readers.

Best of all, using ice cream analogies has allowed us to come up with more vivid code examples.
We’ve had a lot of fun writing this book. You may see us go overboard with ice cream silliness here
and there; please forgive us.

Before You Begin

If you are new to Django, this book will be helpful but large parts will be challenging for you.
Ļis book is not a tutorial. To use this book to its fullest extent, you should have an understand-
ing of the Python programming language and have at least gone through the 6 page Django tutorial:
https://docs.djangoproject.com/en/1.8/intro/tutorial01/. Experience with object-
oriented programming is also very useful.

This Book Is Intended for Django 1.8 and Python 2.7.x/3.3.x

Ļis book should work well with the Django 1.8 series, less so with Django 1.7, and so on. Even
though we make no promises about functional compatibility, at least the general approaches from
most of this book stand up over every post-1.0 version of Django.

As for the Python version, this book is tested on Python 2.7.x and Python 3.3.3+.

None of the content in this book, including our practices, the code examples, and the libraries ref-
erenced applies to Google App Engine (GAE). If you try to use this book as a reference for GAE
development, you may run into problems.

Each Chapter Stands on Its Own

Unlike tutorial and walkthrough books where each chapter builds upon the previous chapter’s project,
we’ve written this book in a way that each chapter intentionally stands by itself.

We’ve done this in order to make it easy for you to reference chapters about speciŀc topics when
needed while you’re working on a project.

xxxi

https://docs.djangoproject.com/en/1.8/intro/tutorial01/

Chapter 0: Introduction

Ļe examples in each chapter are completely independent. Ļey aren’t intended to be combined into
one project and are not a tutorial. Consider them useful, isolated snippets that illustrate and help
with various coding scenarios.

Conventions Used in This Book

Code blocks like the following are used throughout the book:

..

EŤōřŜŘő ȗ.Ș

class Scoop(object):
def __init__(self):

self._is_yummy = True

To keep these snippets compact, we sometimes violate the PEP 8 conventions on comments and line
spacing. Code samples are available online at http://www.2scoops.co/1.8-code-examples/.

Special “Don’t Do Ļis!” code blocks like the following indicate examples of bad code that you should
avoid:

..

BōŐ EŤōřŜŘő ȗ.Ș

DON'T DO THIS!
from rotten_ice_cream import something_bad

We use the following typographical conventions throughout the book:

ä Constant width for code fragments or commands.
ä Italic for ŀlenames.
ä Bold when introducing a new term or important word.

Boxes containing notes, warnings, tips, and little anecdotes are also used in this book:

.....

TIP: Something You Should Know

.
Tip boxes give handy advice.

xxxii

http://www.2scoops.co/1.8-code-examples/

..

WARNING: Some Dangerous Pitfall

.
Warning boxes help you avoid common mistakes and pitfalls.

.....

PACKAGE TIP: Some Useful Package Recommendation

.

Indicates notes about useful third-party packages related to the current chapter, and general
notes about using various Python, Django, and front-end packages.
We also provide a complete list of packages recommended throughout the book in Appendix
A: Packages Mentioned In Ļis Book.

We also use tables to summarize information in a handy, concise way:

Daniel Roy Greenfeld Audrey Roy Greenfeld

Can be fed coconut ice cream No Yes

Favorite ice cream flavors of the moment Ube Cookies and Cream

Authors’ Ice Cream Preferences

Core Concepts

When we build Django projects, we keep the following concepts in mind.

Keep It Simple, Stupid

Kelly Johnson, one of the most renowned and proliŀc aircraft design engineers in the history of
aviation, said it this way about 50 years ago. Centuries earlier, Leonardo da Vinci meant the same
thing when he said, “Simplicity is the ultimate sophistication.”

When building software projects, each piece of unnecessary complexity makes it harder to add new
features and maintain old ones. Attempt the simplest solution, but take care not to implement overly
simplistic solutions that make bad assumptions. Ļis concept is sometimes abbreviated as “KISS.”

xxxiii

Chapter 0: Introduction

Fat Models, Utility Modules, Thin Views, Stupid Templates

When deciding where to put a piece of code, we like to follow the “Fat Models, Utility Modules,
Ļin Views, Stupid Templates” approach.

We recommend that you err on the side of putting more logic into anything but views and templates.
Ļe results are pleasing. Ļe code becomes clearer, more self-documenting, less duplicated, and a lot
more reusable. As for template tags and ŀlters, they should contain the least amount of logic possible
to function.

We cover this further in:

Fat Models section 6.5, Understanding Fat Models
Utility Modules section 29.2 Optimize Apps with Utility Modules
Ļin Views subsection 16.3.3 Try to Keep Business Logic Out of Views
Stupid Templates I section 13.9, Follow a Minimalist Approach
Stupid Templates II chapter 14, Template Tags and Filters

Start With Django by Default

Before we consider switching out core Django components for things like alternative template en-
gines, different ORMs, or non-relational databases, we ŀrst try an implementation using standard
Django components. If we run into obstacles, we explore all possibilities before replacing core Django
components.

See chapter 18, Tradeoffs of Replacing Core Components for more details.

Be Familiar with Django's Design Philosophies

It is good to periodically read the documentation on Django’s design philosophy because it helps
us understand why Django provides certain constraints and tools. Like any framework, Django is
more than just a tool for providing views, it’s a way of doing things designed to help us put together
maintainable projects in a reasonable amount of time.

https://docs.djangoproject.com/en/1.8/misc/design-philosophies/

xxxiv

https://docs.djangoproject.com/en/1.8/misc/design-philosophies/

The Twelve-Factor App

A comprehensive approach to web-based application design, the Twelve-Factor App approach is
growing in popularity amongst many senior and core Django developers. It is a methodology for
building deployable, scalable applications worth reading and understanding. Parts of it closely match
the practices espoused in Two Scoops of Django, and we like to think of it as suggested reading for
any web-based application developer.

See http://12factor.net

Our Writing Concepts

When we wrote this book, we wanted to provide to the reader and ourselves the absolute best material
possible. To do that, we adopted the following principles:

Provide the Best Material

We’ve done our absolute best to provide the best material possible, going to the known resources
on every topic covered to vet our material. We weren’t afraid to ask questions! Ļen we distilled the
articles, responses and advice of experts into the content that exists in the book today. When that
didn’t suffice, we came up with our own solutions and vetted them with various subject matter experts.
It has been a lot of work, and we hope you are pleased with the results.

If you are curious about the differences between this edition (Django 1.8) and the previous edition
(Django 1.6) of the book, you can ŀnd the shortlist of changes at:

ä http://www.2scoops.co/1.8-change-list/

Stand on the Shoulders of Giants

While we take credit and responsibility for our work, we certainly did not come up with all the
practices described in this book on our own.

xxxv

http://12factor.net
http://www.2scoops.co/1.8-change-list/

Chapter 0: Introduction

Without all of the talented, creative, and generous developers who make up the Django, Python, and
general open source software communities, this book would not exist. We strongly believe in recog-
nizing the people who have served as our teachers and mentors as well as our sources for information,
and we’ve tried our best to give credit whenever credit is due.

Listen to Our Readers and Reviewers

In the previous editions of this book, we received a huge amount of feedback from a veritable legion
of readers and reviewers. Ļis allowed us to greatly improve the quality of the book. It is now at a
level that we hoped for but never expected to achieve.

In return, we’ve shared credit at the back of the book and are continually working on ways to pay it
forward by improving the lives of developers around the world.

If you have any questions, comments, or other feedback about this edition, please share your input
by submitting issues in our issue tracker, at:

ä https://github.com/twoscoops/two-scoops-of-django-1.8/issues

Also, at the end of the book is a link to leave a review for Two Scoops of Django on Amazon. Doing
this will help others make an informed decision about whether this book is right for them.

Publish Issues and Errata

Nothing is perfect, even after extensive review cycles. We will be publishing issues and errata at the
Two Scoops of Django 1.8 GitHub repo:

ä https://github.com/twoscoops/two-scoops-of-django-1.8

xxxvi

https://github.com/twoscoops/two-scoops-of-django-1.8/issues
https://github.com/twoscoops/two-scoops-of-django-1.8

1 | Coding Style

A little attention to following standard coding style guidelines will go a long way. We highly recom-
mend that you read this chapter, even though you may be tempted to skip it.

1.1 The Importance of Making Your Code Readable

Code is read more than it is written. An individual block of code takes moments to write, minutes
or hours to debug, and can last forever without being touched again. It’s when you or someone else
visits code written yesterday or ten years ago that having code written in a clear, consistent style
becomes extremely useful. Understandable code frees mental bandwidth from having to puzzle out
inconsistencies, making it easier to maintain and enhance projects of all sizes.

What this means is that you should go the extra mile to make your code as readable as possible:

ä Avoid abbreviating variable names.
ä Write out your function argument names.
ä Document your classes and methods.
ä Comment your code.
ä Refactor repeated lines of code into reusable functions or methods.
ä Keep functions and methods short. A good rule of thumb is that scrolling should not be nec-

essary to read an entire function or method.

When you come back to your code after time away from it, you’ll have an easier time picking up
where you left off.

Take those pesky abbreviated variable names, for example. When you see a variable called bal-
ance sheet decrease, it’s much easier to interpret in your mind than an abbreviated variable like

1

Chapter 1: Coding Style

bsd or bal s d. Ļese types of shortcuts may save a few seconds of typing, but that savings comes
at the expense of hours or days of technical debt. It’s not worth it.

1.2 PEP 8

PEP 8 is the official style guide for Python. We advise reading it in detail and learn to follow the
PEP 8 coding conventions: http://www.python.org/dev/peps/pep-0008/

PEP 8 describes coding conventions such as:

ä “Use 4 spaces per indentation level.”
ä “Separate top-level function and class deŀnitions with two blank lines.”
ä “Method deŀnitions inside a class are separated by a single blank line.”

All the Python ŀles in your Django projects should follow PEP 8. If you have trouble remembering
the PEP 8 guidelines, ŀnd a plugin for your code editor that checks your code as you type.

When an experienced Python programmer sees gross violations of PEP 8 in a Django project, even
if they don’t say something mean, they are probably thinking bad things. Trust us on this one.

..

WARNING: Don't Change an Existing Project's Conventions

.

Ļe style of PEP 8 applies to new Django projects only. If you are brought into an exist-
ing Django project that follows a different convention than PEP 8, then follow the existing
conventions.

Please read the “A Foolish Consistency is the Hobgoblin of Little Minds” section of PEP 8
for details about this and other reasons to break the rules:

ä http://2scoops.co/hobgoblin-of-little-minds

.....

PACKAGE TIP: Use flake8 For Checking Code Quality

.

Created by Tarek Ziadé and now maintained by the PyCQA group, this is a very useful
command-line tool for checking coding style, quality, and logic errors in projects. Use while
developing locally and as a component of Continuous Integration.

2

http://www.python.org/dev/peps/pep-0008/
http://2scoops.co/hobgoblin-of-little-minds

1.3: Ļe Word on Imports

1.2.1 The 79-Character Limit

“No joke, I still deal with consoles that are restricted to 80 characters.”

– Barry Morrison, Systems Engineer and reviewer of every edition of this book.

According to PEP 8, the limit of text per line is 79 characters. Ļis exists because it’s a safe value
that most text-wrapping editors and developer teams can accommodate without hurting the under-
standability of code.

However, PEP 8 also has a provision for relaxing this limit to 99 characters for exclusive team projects.
We interpret this to mean projects that are not open source.

Our preference is as follows:

ä On open source projects, there should be a hard 79-character limit. Our experience has shown
that contributors or visitors to these projects will grumble about line length issues.

ä On private projects, we relax the limit to 99 characters, taking full advantage of modern mon-
itors.

Please read http://www.python.org/dev/peps/pep-0008/#maximum-line-length.

.....

TIP: Aymeric Augustin on Line Length Issues

.

Django core developer Aymeric Augustin says, “Fitting the code in 79 columns is never a
good reason to pick worse names for variables, functions, and classes. It’s much more impor-
tant to have readable variable names than to ŀt in an arbitrary limit of hardware from three
decades ago.”

1.3 The Word on Imports

PEP 8 suggests that imports should be grouped in the following order:

..
1 Standard library imports
..
2 Related third-party imports
..
3 Local application or library speciŀc imports

3

http://www.python.org/dev/peps/pep-0008/#maximum-line-length

Chapter 1: Coding Style

When we’re working on a Django project, our imports look something like the following:

..

EŤōřŜŘő Ș.Ș

Stdlib imports
from __future__ import absolute_import
from math import sqrt
from os.path import abspath

Core Django imports
from django.db import models
from django.utils.translation import ugettext_lazy as _

Third-party app imports
from django_extensions.db.models import TimeStampedModel

Imports from your apps
from splits.models import BananaSplit

(Note: you don’t actually need to comment your imports like this. Ļe comments are just here to
explain the example.)

Ļe import order in a Django project is:

..
1 Standard library imports.
..
2 Imports from core Django.
..
3 Imports from third-party apps including those unrelated to Django.
..
4 Imports from the apps that you created as part of your Django project. (You’ll read more about

apps in chapter 4, Fundamentals of App Design.)

1.4 Use Explicit Relative Imports

When writing code, it’s important to do so in such a way that it’s easier to move, rename, and version
your work. In Python, explicit relative imports remove the need for hardcoding a module’s package,
separating individual modules from being tightly coupled to the architecture around them. Since
Django apps are simply Python packages, the same rules apply.

To illustrate the beneŀts of explicit relative imports, let’s explore an example.

4

1.4: Use Explicit Relative Imports

Imagine that the following snippet is from a Django project that you created to track your ice cream
consumption, including all of the waffle/sugar/cake cones that you have ever eaten.

Oh no, your cones app contains hardcoded imports, which are bad!

..

BōŐ EŤōřŜŘő Ș.Ș

cones/views.py
from django.views.generic import CreateView

DON'T DO THIS!
Hardcoding of the 'cones' package
with implicit relative imports
from cones.models import WaffleCone
from cones.forms import WaffleConeForm
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

Sure, your cones app works ŀne within your ice cream tracker project, but it has those nasty hardcoded
imports that make it less portable and reusable:

ä What if you wanted to reuse your cones app in another project that tracks your general dessert
consumption, but you had to change the name due to a naming conłict (e.g. a conłict with a
Django app for snow cones)?

ä What if you simply wanted to change the name of the app at some point?

With hardcoded imports, you can’t just change the name of the app; you have to dig through all of the
imports and change them as well. It’s not hard to change them manually, but before you dismiss the
need for explicit relative imports, keep in mind that the above example is extremely simple compared
to a real app with various additional utility modules.

Let’s now convert the bad code snippet containing hardcoded imports into a good one containing
explicit relative imports. Here’s the corrected example:

5

Chapter 1: Coding Style

..

EŤōřŜŘő Ș.ș

cones/views.py
from __future__ import absolute_import
from django.views.generic import CreateView

Relative imports of the 'cones' package
from .models import WaffleCone
from .forms import WaffleConeForm
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

Another concrete advantage is that we can immediately tell our local/internal imports from glob-
al/external imports, highlighting the Python package as a unit of code.

.....

TIP: Use "from future import absolute import"

.

Python 3 updates and improves how imports work, and it does this in a good way. Fortu-
nately, it’s been back-ported to Python 2.7 via the use of the from future import
absolute import statement. Even if you don’t plan to use Python 3, this is a great feature
and allows for the explicit relative imports demonstrated in the table below.

To summarize, here’s a table of the different Python import types and when to use them in Django
projects:

Code Import Type Usage

from core.views import

FoodMixin

absolute import Use when importing from outside the
current app

from .models import WaffleCone explicit relative Use when importing from another module
in the current app

6

1.5: Avoid Using Import *

from models import WaffleCone implicit relative Often used when importing from another
module in the current app, but not a good
idea

Table 1.1: Imports: Absolute vs. Explicit Relative vs. Implicit Relative

Get into the habit of using explicit relative imports. It’s very easy to do, and using explicit relative
imports is a good habit for any Python programmer to develop.

.....

TIP: Doesn't PEP 328 Clash With PEP 8?

.

See what Guido Van Rossum, BDFL of Python says about it:
ä http://2scoops.co/guido-on-pep-8-vs-pep-328

Additional reading: http://www.python.org/dev/peps/pep-0328/

1.5 Avoid Using Import *

In 99% of all our work, we explicitly import each module:

..

EŤōřŜŘő Ș.Ț

from django import forms
from django.db import models

Never do the following:

..

BōŐ EŤōřŜŘő Ș.ș

ANTI-PATTERN: Don't do this!
from django.forms import *
from django.db.models import *

Ļe reason for this is to avoid implicitly loading all of another Python module’s locals into and over
our current module’s namespace, this can produce unpredictable and sometimes catastrophic results.

7

http://2scoops.co/guido-on-pep-8-vs-pep-328
http://www.python.org/dev/peps/pep-0328/

Chapter 1: Coding Style

We do cover a speciŀc exception to this rule in chapter 5, Settings and Requirements Files.

Let’s look at the bad code example above. Both the Django forms and Django models libraries have a
class called CharField. By implicitly loading both libraries, the models library overwrote the forms
version of the class. Ļis can also happen with Python built-in libraries and other third-party libraries
overwriting critical functionality.

..

WARNING: Python Naming Collisions

.

You’ll run into similar problems if you try to import two things with the same name, such as:

..

BōŐ EŤōřŜŘő Ș.Ț

ANTI-PATTERN: Don't do this!
from django.forms import CharField
from django.db.models import CharField

Using import * is like being that greedy customer at an ice cream shop who asks for a free taster
spoon of all thirty-one łavors, but who only purchases one or two scoops. Don’t import everything
if you’re only going to use one or two things.

If the customer then walked out with a giant ice cream bowl containing a scoop of every or almost
every łavor, though, it would be a different matter.

Figure 1.1: Using import * in an ice cream shop.

8

1.6: Django Coding Style

1.6 Django Coding Style

Ļis section covers both the official guidelines as well as unofficial but commonly-accepted Django
conventions.

1.6.1 Consider the Django Coding Style Guidelines

It goes without saying that it’s a good idea to be aware of common Django style conventions. In fact,
internally Django has its own set of style guidelines that extend PEP 8:

ä http://2scoops.co/1.8-coding-style

Additionally, while the following are not speciŀed in the official standards, they are common enough
in the Django community that you will probably want to follow them in your projects.

1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes

We always try to use underscores (the “ ” character) over dashes. Ļis isn’t just more Pythonic, it’s
friendlier to more IDEs and text editors. Note that we are referring to the name argument of url()
here, not the actual URL typed into the browser.

Ļe wrong way, with dashes in url names:

..

BōŐ EŤōřŜŘő Ș.ț

patterns = [
url(regex='ˆadd/$',

view=views.add_topping,
name='add-topping'),

]

Ļe right way, with underscores in url names:

9

http://2scoops.co/1.8-coding-style

Chapter 1: Coding Style

..

EŤōřŜŘő Ș.ț

patterns = [
url(regex='ˆadd/$',

view=views.add_topping,
name='add_topping'),

]

Note that we are referring to the name argument of url() here, not the actual URL typed into the
browser. Dashes in actual URLs are ŀne (e.g. regex='âdd-topping/$').

1.6.3 Use Underscores in Template Block Names Rather Than
Dashes

For the same reasons as using underscores in URL pattern names, we recommend using underscores
when deŀning names of template blocks: in this case they’re more Pythonic and more editor-friendly.

1.7 Choose JS, HTML, and CSS Style Guides

1.7.1 JavaScript Style Guides

Unlike Python which has one official style guide, there is no official JavaScript style guide. Instead,
a number of unofficial JS style guides have been created by various individuals and/or companies:

ä idiomatic.js: Principles of Writing Consistent, Idiomatic JavaScript
https://github.com/rwaldron/idiomatic.js/

ä Pragmatic.js code style guidelines https://github.com/madrobby/pragmatic.js
ä Airbnb JavaScript Style Guide https://github.com/airbnb/javascript
ä Node.js Style Guide https://github.com/felixge/node-style-guide
ä Code Conventions for the JavaScript Programming Language

http://javascript.crockford.com/code.html

Ļere is no consensus in the Django or JavaScript communities on any one of these, so just pick your
favorite and stick with it.

10

https://github.com/rwaldron/idiomatic.js/
https://github.com/madrobby/pragmatic.js
https://github.com/airbnb/javascript
https://github.com/felixge/node-style-guide
http://javascript.crockford.com/code.html

1.8: Never Code to the IDE (Or Text Editor)

However, if you are using a JavaScript framework with a style guide of its own, you should use that
guide. For example, ember.js has its own style guide.

.....

PACKAGE TIP: The JSCS Code Style Linter

.

JSCS (http://jscs.info/) is a tool for checking JavaScript code style. It has presets for
the JS style rules of several style guides, including a few of those listed above. Ļere are also
JSCS plugins for various text editors and JSCS tasks for the Gulp and Grunt task runners.

1.7.2 HTML and CSS Style Guides

ä Code Guide by @mdo for HTML and CSS: http://codeguide.co
ä idomatic-css: Principles of Writing Consistent, Idiomatic CSS:

https://github.com/necolas/idiomatic-css

.....

PACKAGE TIP: CSScomb

.

CSScomb (http://csscomb.com/) is a coding style formatter for CSS. It checks for con-
sistency against the rules for which you conŀgure it for, and it checks the sort order of your
CSS properties. Just as for JSCS, there are CSScomb text editor and task/build tool plugins,
including for Brunch.

1.8 Never Code to the IDE (Or Text Editor)

Ļere are developers who make decisions about the layout and implementation of their project based
on the features of IDEs (Integrated Development Environment). Ļis can make discovery of project
code extremely difficult for anyone whose choice of development tool doesn’t match the original
author.

Always assume that the developers around you like to use their own tools and that your code and
project layout should be transparent enough that someone stuck using Notepad or Nano will be able
to navigate your work.

11

http://jscs.info/
https://twitter.com/mdo
http://codeguide.co
https://github.com/necolas/idiomatic-css
http://csscomb.com/

Chapter 1: Coding Style

For example, introspecting template tags or discovering their source can be difficult and time
consuming for developers not using a very, very limited pool of IDEs. Ļerefore, we follow the
commonly-used naming pattern of <app name> tags.py.

1.9 Summary

Ļis chapter covered our preferred coding style and explained why we prefer each technique.

Even if you don’t follow the coding style that we use, please follow a consistent coding style. Projects
with varying styles are much harder to maintain, slowing development and increasing the chances of
developer mistakes.

12

2 | TheOptimal Django Environment
Setup

Ļis chapter describes what we consider the best local environment setup for intermediate and ad-
vanced developers working with Django.

2.1 Use the Same Database Engine Everywhere

A common developer pitfall is using SQLite3 for local development and PostgreSQL (or MySQL)
in production. Ļis section applies not only to the SQLite3/PostgreSQL scenario, but to any scenario
where you’re using two different databases and expecting them to behave identically.

Here are some of the issues we’ve encountered with using different database engines for development
and production:

2.1.1 You Can't Examine an Exact Copy of Production Data Locally

When your production database is different from your local development database, you can’t grab an
exact copy of your production database to examine data locally.

Sure, you can generate a SQL dump from production and import it into your local database, but that
doesn’t mean that you have an exact copy after the export and import.

13

Chapter 2: Ļe Optimal Django Environment Setup

2.1.2 Different Databases Have Different Field Types/Constraints

Keep in mind that different databases handle typing of ŀeld data differently. Django’s ORM attempts
to accommodate those differences, but there’s only so much that it can do.

For example, some people use SQLite3 for local development and PostgreSQL in production, think-
ing that the Django ORM gives them the excuse not to think about the differences. Eventually they
run into problems, since SQLite3 has dynamic, weak typing instead of strong typing.

Yes, the Django ORM has features that allow your code to interact with SQLite3 in a more strongly
typed manner, but form and model validation mistakes in development will go uncaught (even in
tests) until the code goes to a production server. You may be saving long strings locally without a
hitch, for example, since SQLite3 won’t care. But then in production, your PostgreSQL or MySQL
database will throw constraint errors that you’ve never seen locally, and you’ll have a hard time repli-
cating the issues until you set up an identical database locally.

Most problems usually can’t be discovered until the project is run on a strongly typed database (e.g.
PostgreSQL or MySQL). When these types of bugs hit, you end up kicking yourself and scrambling
to set up your local development machine with the right database.

.....

TIP: Django+PostgreSQL Rocks

.

Most Django developers that we know prefer to use PostgreSQL for all environments: de-
velopment, staging, QA, and production systems.

Depending on your operating system, use these instructions:

ä Mac: Download the one-click Mac installer at http://postgresapp.com
ä Windows: Download the one-click Windows installer at

http://postgresql.org/download/windows/
ä Linux: Install via your package manager, or follow the instructions at

http://postgresql.org/download/linux/

PostgreSQL may take some work to get running locally on some operating systems, but we
ŀnd that it’s well worth the effort.

14

http://postgresapp.com
http://postgresql.org/download/windows/
http://postgresql.org/download/linux/

2.2: Use Pip and Virtualenv

2.1.3 Fixtures Are Not a Magic Solution

You may be wondering why you can’t simply use ŀxtures to abstract away the differences between
your local and production databases.

Well, ŀxtures are great for creating simple hardcoded test data sets. Sometimes you need to pre-
populate your databases with fake test data during development, particularly during the early stages
of a project.

Fixtures are not a reliable tool for migrating large data sets from one database to another in a database-
agnostic way. Ļey are simply not meant to be used that way. Don’t mistake the ability of ŀxtures
to create basic data (dumpdata/loaddata) with the capability to migrate production data between
database tools.

2.2 Use Pip and Virtualenv

If you are not doing so already, we strongly urge you to familiarize yourself with both pip and vir-
tualenv. Ļey are the de facto standard for Django projects, and most companies that use Django
rely on these tools.

Pip is a tool that fetches Python packages from the Python Package Index and its mirrors. It is used
to manage and install Python packages. It’s like easy install but has more features, the key feature
being support for virtualenv.

Virtualenv is a tool for creating isolated Python environments for maintaining package dependen-
cies. It’s great for situations where you’re working on more than one project at a time, and where
there are clashes between the version numbers of different libraries that your projects use.

For example, imagine that you’re working on one project that requires Django 1.7 and another that
requires Django 1.8.

15

Chapter 2: Ļe Optimal Django Environment Setup

ä Without virtualenv (or an alternative tool to manage dependencies), you have to reinstall
Django every time you switch projects.

ä If that sounds tedious, keep in mind that most real Django projects have at least a dozen
dependencies to maintain.

Pip is already included in Python 3.4 and higher. Further reading and installation instructions can
be found at:

ä pip: http://pip-installer.org
ä virtualenv: http://virtualenv.org

.....

TIP: virtualenvwrapper

.

We also highly recommend virtualenvwrapper for Mac OS X and Linux or
virtualenvwrapper-win for Windows. Ļe project was started by Doug Hellman.

Personally, we think virtualenv without virtualenvwrapper can be a pain to use, because every
time you want to activate a virtual environment, you have to type something long like:

..
EŤōřŜŘő ș.Ș

$ source ˜/.virtualenvs/twoscoops/bin/activate

With virtualenvwrapper, you’d only have to type:

..
EŤōřŜŘő ș.ș

$ workon twoscoops

Virtualenvwrapper is a popular companion tool to pip and virtualenv and makes our lives
easier, but it’s not an absolute necessity.

16

http://pip-installer.org
http://virtualenv.org
http://virtualenvwrapper.rtfd.org
https://pypi.python.org/pypi/virtualenvwrapper-win

2.3: Install Django and Other Dependencies via Pip

Figure 2.1: Pip, virtualenv, and virtualenvwrapper in ice cream bar form.

2.3 Install Django and Other Dependencies via Pip

Ļe official Django documentation describes several ways of installing Django. Our recommended
installation method is with pip and requirements ŀles.

To summarize how this works: a requirements ŀle is like a grocery list of Python packages that you
want to install. It contains the name and desired version of each package. You use pip to install
packages from this list into your virtual environment.

We cover the setup of and installation from requirements ŀles in chapter 5, Settings and Requirements
Files.

17

Chapter 2: Ļe Optimal Django Environment Setup

.....

TIP: Setting PYTHONPATH

.

If you have a ŀrm grasp of the command line and environment variables, you can set your
virtualenv PYTHONPATH so that the django-admin.py command can be used to serve your site
and perform other tasks.

You can also set your virtualenv’s PYTHONPATH to include the current directory with the latest
version of pip. Running “pip install -e .” from your project’s root directory will do the
trick, installing the current directory as as package that can be edited in place.

If you don’t know how to set this or it seems complicated, don’t worry about it and stick
with manage.py.

Additional reading:
ä http://cs.simons-rock.edu/python/pythonpath.html
ä https://docs.djangoproject.com/en/1.8/ref/django-admin/

2.4 Use a Version Control System

Version control systems are also known as revision control or source control. Whenever you work on
any Django project, you should use a version control system to keep track of your code changes.

Wikipedia has a detailed comparison of different version control systems:

ä http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

Of all the options, Git and Mercurial seem to be the most popular among Django developers. Both
Git and Mercurial make it easy to create branches and merge changes.

When using a version control system, it’s important to not only have a local copy of your code reposi-
tory, but also to use a code hosting service for backups. For this, we recommend that you use GitHub
(https://github.com/) or Bitbucket (https://bitbucket.org/).

18

http://cs.simons-rock.edu/python/pythonpath.html
https://docs.djangoproject.com/en/1.8/ref/django-admin/
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
https://github.com/
https://bitbucket.org/

2.5: Optional: Identical Environments

2.5 Optional: Identical Environments

What works on a programmer’s laptop might not work in production. But what if your local devel-
opment environment was identical to your project’s staging, test, and production environments?

Of course, if the production infrastructure consists of 10,000 servers, it’s completely unrealistic to
have another 10,000 local servers for development purposes. So when we say identical, we mean “as
identical as realistically possible.”

Ļere are the environment differences that you can eliminate:

Operating system differences. If we’re developing on a Mac or on Windows, and if our site is de-
ployed on Ubuntu Linux, then there are huge differences between how our Django project
works locally and how it works in production.

Python setup differences. Let’s face it, many developers and sysadmins don’t even know which ver-
sion of Python they have running locally, although no one will admit it. Why? Because setting
up Python properly and understanding your setup completely is hard.

Developer-to-developer differences. On large development teams, a lot of time can be wasted try-
ing to debug differences between one developer’s setup and another’s.

Ļe most common way to set up identical development environments is with Vagrant and VirtualBox.

2.5.1 Vagrant and VirtualBox

Vagrant is a popular tool for creating, conŀguring, and managing reproducible development envi-
ronments. Vagrant’s main beneŀt is that it makes working with VirtualBox (and other VM tools)
much easier.

For example, if our development laptops run OS X but a project’s conŀguration is Ubuntu-speciŀc,
we can use Vagrant and the project’s Vagrantŀle to quickly get a virtual Ubuntu development en-
vironment set up locally, complete with all the packages and setup conŀgurations needed for the
project.

ä Set up identical local development environments for everyone on our project’s dev team.
ä Conŀgure these local development environments in a way similar to our staging, test, and

production servers.

19

Chapter 2: Ļe Optimal Django Environment Setup

Ļe potential downsides are:

ä Extra complexity that is not needed in many situations. For simpler projects where we’re not
too worried about OS-level differences, it’s easier to skip this.

ä On older development machines, running virtual instances can slow performance to a crawl.
Even on newer machines, small but noticeable overhead is added.

.....

TIP: Experimental: Using Isolated Docker Containers

.

Working with Docker is sort of like developing inside of a VM, except more lightweight.
Docker containers share the host OS but have their own isolated process and memory space.
Furthermore, since Docker uses AUFS, containers can be built quickly off of a snapshot plus
deltas rather than building from scratch.

At Eventbrite, the architecture team uses Docker in conjunction with Vagrant to speed up
development VM provisioning. However, Docker is still evolving rapidly and considered
experimental.

2.6 Summary

Ļis chapter covered using the same database in development as in production, pip, virtualenv, and
version control systems. Ļese are good to have in your tool chest, since they are commonly used not
just in Django, but in the majority of Python software development.

20

3 | How to Lay Out Django Projects

Project layout is one of those areas where core Django developers have differing opinions about
what they consider best practice. In this chapter, we present our approach, which is one of the most
commonly-used ones.

.....

PACKAGE TIP: Django Project Templates

.

Ļere are a number of project templates that really kickstart a Django project and follow the
patterns described in this chapter. Here are two links that may be of use when we bootstrap
a project:

ä https://github.com/pydanny/cookiecutter-django
Featured in this chapter.

ä https://www.djangopackages.com/grids/g/cookiecutters/
A list of alternate cookiecutter templates.

3.1 Django 1.8's Default Project Layout

Let’s examine the default project layout that gets created when you run startproject and startapp:

..

EŤōřŜŘő Ț.Ș

$ django-admin.py startproject mysite
$ cd mysite
$ django-admin.py startapp my_app

Here’s the resulting project layout:

21

https://github.com/pydanny/cookiecutter-django
https://www.djangopackages.com/grids/g/cookiecutters/

Chapter 3: How to Lay Out Django Projects

..

EŤōřŜŘő Ț.ș

mysite/
manage.py
my_app/

__init__.py
admin.py
models.py
tests.py
views.py

mysite/
__init__.py
settings.py
urls.py
wsgi.py

Ļere are a number of problems with Django’s default project layout. While useful for the tutorial,
it’s not quite as useful once you are trying to put together a real project. Ļe rest of this chapter will
explain why.

3.2 Our Preferred Project Layout

We rely on a three-tiered approach that builds on what is generated by the django-admin.py
startproject management command. We place that inside another directory which serves as the
git repository root. Our layouts at the highest level are:

..

EŤōřŜŘő Ț.Ț

<repository_root>/
<django_project_root>/

<configuration_root>/

Let’s go over each level in detail:

22

3.2: Our Preferred Project Layout

3.2.1 Top Level: Repository Root

Ļe top-level <repository root>/ directory is the absolute root directory of the project. In addition
to the <django project root> we also place other critical components like the README.rst, docs/
directory, .gitignore, requirements.txt ŀles, and other high-level ŀles that are required for deployment.

Figure 3.1: Yet another reason why repositories are important.

.....

TIP: Common Practice Varies Here

.
Some developers like to make the <django project root> the <repository root> of the project.

3.2.2 Second Level: Project Root

Ļis second level is the root of the actual Django project. All Python code ŀles are inside this
<django project root>/ directory, its subdirectories, or below.

If using django-admin.py startproject, you would run the command from within the repos-
itory root. Ļe Django project that it generates would then be the project root.

3.2.3 Third Level: Configuration Root

Ļe <conŀguration root> directory is where the settings module and base URLConf (urls.py) are
placed. Ļis must be a valid Python package (containing an init .py module).

23

Chapter 3: How to Lay Out Django Projects

Ļe ŀles in the conŀguration root are part of what is generated by the django-admin.py start-
project command.

Figure 3.2: Ļree-tiered scoop layout.

3.3 Sample Project Layout

Let’s take a common example: a simple rating site. Imagine that we are creating Ice Cream Ratings,
a web application for rating different brands and łavors of ice cream.

Ļis is how we would lay out such a project:

..

EŤōřŜŘő Ț.ț

icecreamratings_project/
.gitignore
Makefile
docs/
README.rst
requirements.txt
icecreamratings/

manage.py
media/ # Development ONLY!

24

3.3: Sample Project Layout

..

products/
profiles/
ratings/
static/
templates/
config/

__init__.py
settings/
urls.py
wsgi.py

Let’s do an in-depth review of this layout. As you can see, in the icecreamratings project/ directory,
which is the <repository root> , we have the following ŀles and directories. We describe them in the
table below:

File or Directory Purpose

.gitignore
Lists the files and directories that Git should ignore. (This file is different for other
version control systems. For example, if you are using Mercurial instead, you'd have
an .hgignore file.)

README.rst and docs/
Developer-facing project documentation. You'll read more about this in chapter 23,
Documentation.

Makefile
Contains simple deployment tasks and macros. For more complex deployments you
may want to rely on tools like Invoke, Paver, or Fabric.

requirements.txt
A list of Python packages required by your project, including the Django 1.8 package.
You'll read more about this in chapter 21, Django's Secret Sauce: Third-Party
Packages.

icecreamratings/ The <django project root> of the project.

Table 3.1: Repository Root Files and Directories

When anyone visits this project, they are provided with a high-level view of the project. We’ve found
that this allows us to work easily with other developers and even non-developers. For example, it’s
not uncommon for designer-focused directories to be created in the root directory.

25

https://pypi.python.org/pypi/invoke
https://pypi.python.org/pypi/Paver
http://fabfile.org

Chapter 3: How to Lay Out Django Projects

Many developers like to make this at the same level as our <repository root>, and that’s perfectly
alright with us. We just like to see our projects a little more separated.

Inside the icecreamratings project/icecreamratings directory, at the <django project root>, we place the
following ŀles/directories:

File or Directory Purpose

config/
The <configuration root> of the project, where project-wide settings, urls.py, and
wsgi.py modules are placed (We'll cover settings layout later in chapter 5, Settings
and Requirements Files).

manage.py
If you leave this in, don't modify its contents. Refer to chapter 5, Settings and
Requirements Files for more details.

media/

For use in development only: user-generated static media assets such as photos
uploaded by users. For larger projects, this will be hosted on separate static media
server(s).

products/ App for managing and displaying ice cream brands.

profiles/ App for managing and displaying user profiles.

ratings/ App for managing user ratings.

static/
Non-user-generated static media assets including CSS, JavaScript, and images. For
larger projects, this will be hosted on separate static media server(s).

templates/ Where you put your site-wide Django templates.

Table 3.2: Django Project Files and Directories

.....

TIP: Conventions for Static Media Directory Names

.

In the example above, we follow the official Django documentation’s convention of using
static/ for the (non-user-generated) static media directory.

If you ŀnd this confusing, there’s no harm in calling it assets/ or site assets/ instead. Just
remember to update your STATICFILES DIRS setting appropriately.

26

3.4: What About the Virtualenv?

3.4 What About the Virtualenv?

Notice how there is no virtualenv directory anywhere in the project directory or its subdirectories?
Ļat is completely intentional.

A good place to create the virtualenv for this project would be a separate directory where you keep
all of your virtualenvs for all of your Python projects. We like to put all our environments in one
directory and all our projects in another.

Figure 3.3: An isolated environment, allowing your ice cream to swim freely.

For example, on Mac OS X or Linux:

..

EŤōřŜŘő Ț.Ȝ

˜/projects/icecreamratings_project/
˜/.envs/icecreamratings/

On Windows:

..

EŤōřŜŘő Ț.ȝ

c:\projects\icecreamratings_project\
c:\envs\icecreamratings\

If you’re using virtualenvwrapper (Mac OS X or Linux) or virtualenvwrapper-win (Windows), that
directory defaults to ˜/.virtualenvs/ and the virtualenv would be located at:

27

Chapter 3: How to Lay Out Django Projects

..
EŤōřŜŘő Ț.Ȟ

˜/.virtualenvs/icecreamratings/

.....

TIP: Listing Current Dependencies

.

If you have trouble determining which versions of dependencies you are using in your vir-
tualenv, at the command line you can list your dependencies by typing:

..
EŤōřŜŘő Ț.ȟ

$ pip freeze --local

Also, remember, there’s no need to keep the contents of your virtualenv in version control since it
already has all the dependencies captured in requirements.txt, and since you won’t be editing any of
the source code ŀles in your virtualenv directly. Just remember that requirements.txt does need to
remain in version control!

3.5 Going Beyond startproject

Django’s startproject command allows you to create and use simple Django project templates.
In Two Scoops of Django 1.6, we used this and tried to stay as vanilla as possible, providing a Django
project template called django-twoscoops-project which worked with startproject.

Our previous project template was meant to generate all the boilerplate ŀles referenced in the earlier
parts of this chapter. However, as it grew more and more complex with contributions from readers,
we hit its limitations and needed a more powerful project templating tool in order to create our ideal
Django 1.8 starting project template.

In this section, we present our version of the ultimate Django project template, which is now a
Cookiecutter template. We also present a popular alternative startproject template.

28

3.5: Going Beyond startproject

..

WARNING: What Will Happen to django-twoscoops-project?

.

Rather than updating django-twoscoops-project for Django 1.8, we’ve decided to focus
on building and enhancing cookiecutter-django. django-twoscoops-project will
no longer be updated, remaining on Django 1.6.

Here’s why we think doing this is in your best interest:
ä django-twoscoops-project ended up being too vanilla for us to use in our

real-world projects. We stopped using it ourselves. Yet we had to keep django-
twoscoops-project around as a vanilla template for Two Scoops 1.6 readers.

ä Daniel ended up creating cookiecutter-django to address our need for an less
plain, more customized, real-world Django project template.

3.5.1 Generating Project Boilerplate With Cookiecutter

In order to use our Django project template, you’ll need a lightweight command-line tool called
Cookiecutter. Cookiecutter is an advanced project templating tool that can be used for generating
Django project boilerplate.

Here’s how Cookiecutter works:

..
1 First, it asks you to enter a series of values, e.g the value for project name.
..
2 Ļen it generates all your boilerplate project ŀles based on the values you entered.

On Python 2.7+ or 3.3+, you’ll ŀrst need to install Cookiecutter as per the instructions in the official
Cookiecutter documentation.

.....

TIP: Audrey on Cookiecutter

.

I originally created Cookiecutter in 2013 to meet my own Python package boilerplate creation
needs. It was the ŀrst project to template ŀle paths and ŀle contents identically, an idea I
thought was silly but decided to implement anyway.

Ļere are now Cookiecutter templates for Python, C, C++, Common Lisp, JS, LaTeX/Xe-
TeX, Berkshelf-Vagrant, HTML, Scala, 6502 Assembly, and more.

29

Chapter 3: How to Lay Out Django Projects

3.5.2 Our Favorite Project Template

Ļe project template that we use for all our new Django 1.8 projects is cookiecutter-django.

Here’s how you would use Cookiecutter to generate your boilerplate from cookiecutter-django:

..

EŤōřŜŘő Ț.Ƞ

$ cookiecutter https://github.com/pydanny/cookiecutter-django

Cloning into 'cookiecutter-django'...
remote: Counting objects: 2358, done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 2358 (delta 4), reused 0 (delta 0), pack-reused 2346
Receiving objects: 100% (2358/2358), 461.95 KiB, done.
Resolving deltas: 100% (1346/1346), done.

project_name (default is "project_name")? icecreamratings
repo_name (default is "icecreamratings")? icecreamratings_project
author_name (default is "Your Name")? Daniel and Audrey Roy Greenfeld
email (default is "audreyr@gmail.com")? hello@twoscoopspress.org
description (default is "A short description of the project.")? A website
for rating ice cream flavors and brands.
domain_name (default is "example.com")? icecreamratings.audreyr.com
version (default is "0.1.0")? 0.1.0
timezone (default is "UTC")? America/Los_Angeles
now (default is "2015/01/13")? 2015/05/18
year (default is "2015")?
use_whitenoise (default is "y")?
github_username (default is "audreyr")? twoscoops
full_name (default is "Audrey Roy")? Daniel and Audrey Roy Greenfeld

After ŀlling out all the values, in the directory where you ran Cookiecutter, it will create a direc-
tory for your project. In this case with the values entered above, the name of this directory will be
icecreamratings project.

Ļe resulting project ŀles will be roughly similar to the layout example we provided. Ļe project will
include settings, requirements, starter documentation, a starter test suite, and more.

30

3.5: Going Beyond startproject

.....

TIP: What are all the other files?

.

Keep in mind that cookiecutter-django goes much further than the basic project layout com-
ponents that we outlined earlier in this chapter. It’s our ultimate Django project template
that we use for our projects, so it has a lot of other bells and whistles.

It’s a lot fancier than the django-twoscoops-project template that we created for Two
Scoops of Django 1.6. We’d rather have you see our actual, real-life template that we use for
our projects than a stripped-down, beginner-oriented template that we don’t use.

You are welcome to fork cookiecutter-django and customize it to ŀt your own Django project
needs.

3.5.3 An Alternative Template: django-kevin

Kevin Xu has maintained and enhanced his fork of the original “Two Scoops Project” layout, updating
it for Django 1.8.

His alternative template is located at https://github.com/imkevinxu/django-kevin.

3.5.4 Other Alternatives

People can get very opinionated about their project layout being the “right” way, but as we mentioned,
there’s no one right way.

It’s okay if a project differs from our layout, just so long as things are either done in a hierarchical fash-
ion or the locations of elements of the project (docs, templates, apps, settings, etc) are documented
in the root README.rst.

We encourage you to explore the forks of cookiecutter-django, django-kevin, and django-twoscoops-
project, and to search for other Django project templates online. You’ll learn all kinds of interesting
tricks by studying other people’s project templates.

31

https://github.com/imkevinxu/django-kevin

Chapter 3: How to Lay Out Django Projects

Figure 3.4: Project layout differences of opinion can cause ice cream ŀghts.

3.6 Summary

In this chapter, we covered our approach to basic Django project layout. We provided a detailed
example to give you as much insight as possible into our practices.

Project layout is one of those areas of Django where practices differ widely from developer to devel-
oper and group to group. What works for a small team may not work for a large team with distributed
resources. Whatever layout is chosen should be documented clearly.

32

4 | Fundamentals of Django App
Design

It’s not uncommon for new Django developers to become understandably confused by Django’s usage
of the word “app.” So before we get into Django app design, it’s very important that we go over some
deŀnitions.

A Django project is a web application powered by the Django web framework.
Django apps are small libraries designed to represent a single aspect of a project. A Django project

is made up of many Django apps. Some of those apps are internal to the project and will never
be reused; others are third-party Django packages.

INSTALLED APPS is the list of Django apps used by a given project available in its IN-
STALLED APPS setting.

Ļird-party Django packages are simply pluggable, reusable Django apps that have been packaged
with the Python packaging tools. We’ll begin coverage of them in chapter 21, Django’s Secret
Sauce: Ļird-Party Packages.

Figure 4.1: It’ll make more sense when you turn the page.

33

Chapter 4: Fundamentals of Django App Design

Figure 4.2: Did that make sense? If not, read it again.

4.1 The Golden Rule of Django App Design

James Bennett volunteers as both a Django core developer and as its release manager. He taught us
everything that we know about good Django app design. We quote him:

“Ļe art of creating and maintaining a good Django app is that it should follow the
truncated Unix philosophy according to Douglas McIlroy: ‘Write programs that do one
thing and do it well.”’

In essence, each app should be tightly focused on its task. If an app can’t be explained in a single
sentence of moderate length, or you need to say ‘and’ more than once, it probably means the app is
too big and should be broken up.

34

4.1: Ļe Golden Rule of Django App Design

4.1.1 A Practical Example of Apps in a Project

Imagine that we’re creating a web application for our ŀctional ice cream shop called “Two Scoops.”
Picture us getting ready to open the shop: polishing the countertops, making the ŀrst batches of ice
cream, and building the website for our shop.

We’d call the Django project for our shop’s website twoscoops project. Ļe apps within our Django
project might be something like:

ä A łavors app to track all of our ice cream łavors and list them on our website.
ä A blog app for the official Two Scoops blog.
ä An events app to display listings of our shop’s events on our website: events such as Strawberry

Sundae Sundays and Fudgy First Fridays.

Each one of these apps does one particular thing. Yes, the apps relate to each other, and you could
imagine events or blog posts that are centered around certain ice cream łavors, but it’s much better
to have three specialized apps than one app that does everything.

In the future, we might extend the site with apps like:

ä A shop app to allow us to sell pints by mail order.
ä A tickets app, which would handle ticket sales for premium all-you-can-eat ice cream fests.

Notice how events are kept separate from ticket sales. Rather than expanding the events app to sell
tickets, we create a separate tickets app because most events don’t require tickets, and because event
calendars and ticket sales have the potential to contain complex logic as the site grows.

Eventually, we hope to use the tickets app to sell tickets to Icecreamlandia, the ice cream theme park
ŀlled with thrill rides that we’ve always wanted to open.

Did we say that this was a ŀctional example? Ahem...well, here’s an early concept map of what we
envision for Icecreamlandia:

35

Chapter 4: Fundamentals of Django App Design

Figure 4.3: Our vision for Icecreamlandia.

4.2 What to Name Your Django Apps

Everyone has their own conventions, and some people like to use really colorful names. We like to
use naming systems that are dull, boring, and obvious. In fact, we advocate doing the following:

When possible keep to single word names like łavors, animals, blog, polls, dreams, estimates, and
ŀnances. A good, obvious app name makes the project easier to maintain.

As a general rule, the app’s name should be a plural version of the app’s main model, but there are
many good exceptions to this rule, blog being one of the most common ones.

Don’t just consider the app’s main model, though. You should also consider how you want
your URLs to appear when choosing a name. If you want your site’s blog to appear at
http://www.example.com/weblog/, then consider naming your app weblog rather than blog, posts,
or blogposts, even if the main model is Post, to make it easier for you to see which app corresponds
with which part of the site.

Use valid, PEP 8-compliant, importable Python package names: short, all-lowercase names with-
out numbers, dashes, periods, spaces, or special characters. If needed for readability, you can use
underscores to separate words, although the use of underscores is discouraged.

36

4.3: When in Doubt, Keep Apps Small

4.3 When in Doubt, Keep Apps Small

Don’t worry too hard about getting app design perfect. It’s an art, not a science. Sometimes you have
to rewrite them or break them up. Ļat’s okay.

Try and keep your apps small. Remember, it’s better to have many small apps than to have a few
giant apps.

Figure 4.4: Two small, single-łavor pints are better than a giant, 100-łavor container.

4.4 What Modules Belong in an App?

In this section we cover both the common and uncommon Python modules that belong in an app.
For those with even a modicum of experience with Django, skipping to subsection 4.4.2 may be in
order.

4.4.1 Common App Modules

Here are common modules seen in 99% of Django apps. Ļese will prove very familiar to most
readers, but we’re placing this here for those just coming into the world of Django. For reference,

37

Chapter 4: Fundamentals of Django App Design

any module ending with a slash (‘/’) represents a Python package, which can contain one or more
modules.

..

EŤōřŜŘő ț.Ș

Common modules
scoops/

__init__.py
admin.py
forms.py
management/
migrations/
models.py
templatetags/
tests/
urls.py
views.py

Over time a convention of module names has emerged for building Django apps. By following this
convention across building of apps we set behaviors for ourselves and others, making examining each
others code easier. While Python and Django are łexible enough that most of these don’t need to be
named according to this convention, doing so will cause problems. Probably not from an immediate
technical perspective, but when you or others look at nonstandard module names later, it will prove
to be a frustrating experience.

4.4.2 Uncommon App Modules

Here are less common modules, which may or may not be familiar to many readers:

..

EŤōřŜŘő ț.ș

uncommon modules
scoops/

behaviors.py
constants.py
context_processors.py
decorators.py
db/

38

4.4: What Modules Belong in an App?

..

exceptions
fields.py
factories.py
helpers.py
managers.py
middleware.py
signals.py
utils.py
viewmixins.py

What is the purpose of each module? Most of these should be obviously named, but we’ll go over a
few that might not be so clear.

behaviors.py : An option for locating model mixins per subsection 6.5.1.
constants.py : A good name for placement of app-level settings. If there are enough of them involved

in an app, breaking them out into their own module can add clarity to a project.
decorators.py Where we like to locate our decorators. For more information on decorators, see

section 9.3.
db/ Used in many projects for any custom model ŀelds or components.
ŀelds.py is commonly used for form ŀelds, but is sometimes used for model ŀelds when there isn’t

enough ŀeld code to justify creating a db/ package.
factories.py Where we like to place our test data factories. Described in brief in subsection 22.3.5
helpers.py What we call helper functions. Ļese are where we put code extracted from views (sub-

section 16.3.3) and models (section 6.5) to make them lighter. Synonymous with utils.py
managers.py When models.py grows too large, a common remedy is to move any custom model

managers to this module.
signals.py While we argue against providing custom signals (see chapter 28), this can be a useful

place to put them.
utils.py Synonymous with helpers.py
viewmixins.py View modules and packages can be thinned by moving any view mixins to this mod-

ule. See section 10.2.

For all of the modules listed in this section, their focus should be at the ‘app-level’, not global tools.
Global-level modules are described in section 29.1, ‘Create a Core App for Your Utilities’.

39

Chapter 4: Fundamentals of Django App Design

4.5 Summary

Ļis chapter covered the art of Django app design. Speciŀcally, each Django app should be tightly-
focused on its own task, possess a simple, easy-to-remember name. If an app seems too complex, it
should be broken up into smaller apps. Getting app design right takes practice and effort, but it’s
well worth the effort.

40

5 | Settings and Requirements Files

Django 1.8 has over 140 settings that can be controlled in the settings module, most of which come
with default values. Settings are loaded when your server starts up, and experienced Django devel-
opers stay away from trying to change settings in production since they require a server restart.

Figure 5.1: As your project grows, your Django settings can get pretty complex.

Some best practices we like to follow:

ä All settings ŀles need to be version-controlled. Ļis is especially true in production environ-
ments, where dates, times, and explanations for settings changes absolutely must be tracked.

ä Don’t Repeat Yourself. You should inherit from a base settings ŀle rather than cutting-and-
pasting from one ŀle to another.

ä Keep secret keys safe. Ļey should be kept out of version control.

41

Chapter 5: Settings and Requirements Files

5.1 Avoid Non-Versioned Local Settings

We used to advocate the non-versioned local settings anti-pattern. Now we know better.

As developers, we have our own necessary settings for development, such as settings for debug tools
which should be disabled (and often not installed to) staging or production servers.

Furthermore, there are often good reasons to keep speciŀc settings out of public or private code
repositories. Ļe SECRET KEY setting is the ŀrst thing that comes to mind, but API key settings to
services like Amazon, Stripe, and other password-type variables need to be protected.

..

WARNING: Protect Your Secrets!

.

Ļe SECRET KEY setting is used in Django’s cryptographic signing functionality, and needs
to be set to a unique, unpredictable setting best kept out of version control. Running Django
with a known SECRET KEY defeats many of Django’s security protections, which can lead to
serious security vulnerabilities. For more details, read
https://docs.djangoproject.com/en/1.8/topics/signing/.

Ļe same warning for SECRET KEY also applies to production database passwords, AWS
keys, OAuth tokens, or any other sensitive data that your project needs in order to operate.

Later in this chapter we’ll show how to handle the SECRET KEY issue in the “Keep Secret
Keys Out With Environment Settings” section.

A common solution is to create local settings.py modules that are created locally per server or develop-
ment machine, and are purposefully kept out of version control. Developers now make development-
speciŀc settings changes, including the incorporation of business logic without the code being tracked
in version control. Staging and deployment servers can have location speciŀc settings and logic with-
out them being tracked in version control.

What could possibly go wrong?!?

Ahem...

ä Every machine has untracked code.
ä How much hair will you pull out, when after hours of failing to duplicate a production bug

locally, you discover that the problem was custom logic in a production-only setting?

42

https://docs.djangoproject.com/en/1.8/topics/signing/

5.2: Using Multiple Settings Files

ä How fast will you run from everyone when the ‘bug’ you discovered locally, ŀxed and pushed
to production was actually caused by customizations you made in your own local settings.py
module and is now crashing the site?

ä Everyone copy/pastes the same local settings.py module everywhere. Isn’t this a violation of
Don’t Repeat Yourself but on a larger scale?

Let’s take a different approach. Let’s break up development, staging, test, and production settings
into separate components that inherit from a common base object in a settings ŀle tracked by version
control. Plus, we’ll make sure we do it in such a way that server secrets will remain secret.

Read on and see how it’s done!

5.2 Using Multiple Settings Files

.....

TIP: History of This Setup Pattern

.

Ļe setup described here is based on the so-called “Ļe One True Way”, from Ja-
cob Kaplan-Moss’ Ļe Best (and Worst) of Django talk at OSCON 2011. See
http://2scoops.co/the-best-and-worst-of-django.

Instead of having one settings.py ŀle, with this setup you have a settings/ directory containing your
settings ŀles. Ļis directory will typically contain something like the following:

..

EŤōřŜŘő Ȝ.Ș

settings/
__init__.py
base.py
local.py
staging.py
test.py
production.py

43

http://2scoops.co/the-best-and-worst-of-django

Chapter 5: Settings and Requirements Files

..

WARNING: Requirements + Settings

.

Each settings module should have its own corresponding requirements ŀle. We’ll cover this
at the end of this chapter in section 5.5, ‘Using Multiple Requirements Files.’

Settings file Purpose

base.py Settings common to all instances of the project.

local.py

This is the settings file that you use when you're working on the project locally. Local
development-specific settings include DEBUG mode, log level, and activation of developer
tools like django-debug-toolbar. Developers sometimes name this file dev.py.

staging.py
Staging version for running a semi-private version of the site on a production server. This is
where managers and clients should be looking before your work is moved to production.

test.py
Settings for running tests including test runners, in-memory database definitions, and log
settings.

production.py

This is the settings file used by your live production server(s). That is, the server(s) that host
the real live website. This file contains production-level settings only. It is sometimes called
prod.py.

Table 5.1: Settings ŀles and their purpose

.....

TIP: Multiple Files With Continuous Integration Servers

.

You’ll also want to have a ci.py module containing that server’s settings. Similarly, if it’s a large
project and you have other special-purpose servers, you might have custom settings ŀles for
each of them.

Let’s take a look at how to use the shell and runserver management commands with this setup.
You’ll have to use the --settings command line option, so you’ll be entering the following at the
command-line.

To start the Python interactive interpreter with Django, using your settings/local.py settings ŀle:

44

5.2: Using Multiple Settings Files

..
EŤōřŜŘő Ȝ.ș

python manage.py shell --settings=twoscoops.settings.local

To run the local development server with your settings/local.py settings ŀle:

..
EŤōřŜŘő Ȝ.Ț

python manage.py runserver --settings=twoscoops.settings.local

.....

TIP: DJANGO SETTINGS MODULE and PYTHONPATH

.

A great alternative to using the --settings command line option everywhere is to set the
DJANGO SETTINGS MODULE and PYTHONPATH environment variable to your desired settings
module path. You’d have to set DJANGO SETTINGS MODULE to the corresponding settings
module for each environment, of course.

For those with a more comprehensive understanding of virtualenv, another alternative is to
set DJANGO SETTINGS MODULE and PYTHONPATH in the postactivate script. Ļen, once the
virtualenv is activated, you can just type python from anywhere and import those values into
your project. Ļis also means that typing django-admin.py at the command-line works
without the --settings option.

For the settings setup that we just described, here are the values to use with the --settings com-
mand line option or the DJANGO SETTINGS MODULE environment variable:

Environment
Option To Use With --settings (or
DJANGO SETTINGS MODULE value)

Your local development server twoscoops.settings.local

Your staging server twoscoops.settings.staging

Your test server twoscoops.settings.test

Your production server twoscoops.settings.production

Table 5.2: Setting DJANGO SETTINGS MODULE per location

45

Chapter 5: Settings and Requirements Files

5.2.1 A Development Settings Example

As mentioned earlier, we need settings conŀgured for development, such as selecting the console
email backend, setting the project to run in DEBUG mode, and setting other conŀguration options
that are used solely for development purposes. We place development settings like the following into
settings/local.py:

..

EŤōřŜŘő Ȝ.ț

settings/local.py
from .base import *

DEBUG = True

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

DATABASES = {
"default": {

"ENGINE": "django.db.backends.postgresql_psycopg2",
"NAME": "twoscoops",
"USER": "",
"PASSWORD": "",
"HOST": "localhost",
"PORT": "",

}
}

INSTALLED_APPS += ("debug_toolbar",)

Now try it out at the command line with:

..
EŤōřŜŘő Ȝ.Ȝ

python manage.py runserver --settings=twoscoops.settings.local

Open http://127.0.0.1:8000 and enjoy your development settings, ready to go into version
control! You and other developers will be sharing the same development settings ŀles, which for
shared projects, is awesome.

46

http://127.0.0.1:8000

5.2: Using Multiple Settings Files

Yet there’s another advantage: No more ‘if DEBUG’ or ‘if not DEBUG’ logic to copy/paste around
between projects. Settings just got a whole lot simpler!

At this point we want to take a moment to note that Django settings ŀles are the single, solitary
place we advocate using import *. Ļe reason is that for the singular case of Django setting modules
we want to override all the namespace.

5.2.2 Multiple Development Settings

Sometimes we’re working on a large project where different developers need different settings, and
sharing the same dev.py settings module with teammates won’t do.

Well, it’s still better tracking these settings in version control than relying on everyone customizing
the same dev.py or local settings.py module to their own tastes. A nice way to do this is with multiple
dev settings ŀles, e.g. dev audrey.py and dev pydanny.py:

..

EŤōřŜŘő Ȝ.ȝ

settings/dev_pydanny.py
from .local import *

Set short cache timeout
CACHE_TIMEOUT = 30

Why? It’s not only good to keep all your own settings ŀles in version control, but it’s also good to be
able to see your teammates’ dev settings ŀles. Ļat way, you can tell if someone’s missing a vital or
helpful setting in their local development setup, and you can make sure that everyone’s local settings
ŀles are synchronized. Here is what our projects frequently use for settings layout:

..

EŤōřŜŘő Ȝ.Ȟ

settings/
__init__.py
base.py
dev_audreyr.py
dev_pydanny.py
local.py

47

Chapter 5: Settings and Requirements Files

..
staging.py
test.py
production.py

5.3 Separate Configuration From Code

One of the causes of the local settings anti-pattern is that putting SECRET KEY, AWS keys, API
keys, or server-speciŀc values into settings ŀles has problems:

ä Conŀg varies substantially across deploys, code does not.
ä Secret keys are conŀguration values, not code.
ä Secrets often should be just that: secret! Keeping them in version control means that everyone

with repository access has access to them.
ä Platforms-as-a-service usually don’t give you the ability to edit code on individual servers. Even

if they allow it, it’s a terribly dangerous practice.

To resolve this, our answer is to use environment variables in a pattern we like to call, well, Ļe
Environment Variables Pattern.

Every operating system supported by Django (and Python) provides the easy capability to create
environment variables.

Here are the beneŀts of using environment variables for secret keys:

ä Keeping secrets out of settings allows you to store every settings ŀle in version control without
hesitation. All of your Python code really should be stored in version control, including your
settings.

ä Instead of each developer maintaining an easily-outdated, copy-and-pasted version of the
local settings.py.example ŀle for their own development purposes, everyone shares the same
version-controlled settings/local.py .

ä System administrators can rapidly deploy the project without having to modify ŀles containing
Python code.

ä Most platforms-as-a-service recommend the use of environment variables for conŀguration
and have built-in features for setting and managing them.

48

5.3: Separate Conŀguration From Code

.....

TIP: 12 Factor App: Store Config in the Environment

.

If you’ve read the 12 Factor App’s article on conŀguration you’ll recognize this pattern. For
reference, see http://12factor.net/config. Some developers even advocate combin-
ing the use of environment variables with a single settings modules. We cover this practice
in Appendix E under 12 Factor-Style Settings.

5.3.1 A Caution Before Using Environment Variables for Secrets

Before you begin setting environment variables, you should have the following:

ä A way to manage the secret information you are going to store.
ä A good understanding of how bash works with environment variables on servers, or a willing-

ness to have your project hosted by a platform-as-a-service.

For more information, see http://2scoops.co/wikipedia-env-variable.

..

WARNING: Environment Variables Do Not Work With Apache

.

If your target production environment uses Apache, then you will discover that setting op-
erating system environment variables as described below doesn’t work. Confusing the issue
is that Apache has its own environment variable system, which is almost but not quite what
you’ll need.
If you are using Apache and want to avoid the local settings anti-pattern, we recommend
reading section 5.4, ‘When You Can’t Use Environment Variables,’ later in this chapter.

5.3.2 How to Set Environment Variables Locally

On Mac and many Linux distributions that use bash for the shell, one can add lines like the following
to the end of a .bashrc, .bash proŀle, or .proŀle. When dealing with multiple projects using the same
API but with different keys, you can also place these at the end of your virtualenv’s bin/activate script:

49

http://12factor.net/config
http://2scoops.co/wikipedia-env-variable

Chapter 5: Settings and Requirements Files

..

EŤōřŜŘő Ȝ.ȟ

$ export SOME_SECRET_KEY=1c3-cr3am-15-yummy
$ export AUDREY_FREEZER_KEY=y34h-r1ght-d0nt-t0uch-my-1c3-cr34m

On Windows systems, it’s a bit trickier. You can set them one-by-one at the command line (cmd.exe)
in a persistent way with the setx command, but you’ll have to close and reopen your command
prompt for them to go into effect. A better way is to place these commands at the end of the vir-
tualenv’s bin/activate.bat script so they are available upon activation:

..
EŤōřŜŘő Ȝ.Ƞ

> set SOME_SECRET_KEY 1c3-cr3am-15-yummy

PowerShell is much more powerful than the default Windows shell and comes with Windows Vista
and above. Setting environment variables while using PowerShell:

For the current Windows user only:

..

EŤōřŜŘő Ȝ.Șȗ

[Environment]::SetEnvironmentVariable("SOME_SECRET_KEY",
"1c3-cr3am-15-yummy", "User")

[Environment]::SetEnvironmentVariable("AUDREY_FREEZER_KEY",
"y34h-r1ght-d0nt-t0uch-my-1c3-cr34m", "User")

Machine-wide:

..

EŤōřŜŘő Ȝ.ȘȘ

[Environment]::SetEnvironmentVariable("SOME_SECRET_KEY",
"1c3-cr3am-15-yummy", "Machine")

[Environment]::SetEnvironmentVariable("AUDREY_FREEZER_KEY",
"y34h-r1ght-d0nt-t0uch-my-1c3-cr34m", "Machine")

For more information on Powershell, see http://2scoops.co/powershell

50

http://2scoops.co/powershell

5.3: Separate Conŀguration From Code

.....

TIP: virtualenvwrapper Makes This Easier

.

Mentioned earlier in this book, virtualenvwrapper, simpliŀes per-virtualenv environment
variables. It’s a great tool. Of course, setting it up requires a more-than-basic understanding
of the shell and Mac OS X, Linux, or Windows.

5.3.3 How to Set Environment Variables in Production

If you’re using your own servers, your exact practices will differ depending on the tools you’re us-
ing and the complexity of your setup. For the simplest 1-server setup for test projects, you can set
the environment variables manually. But if you’re using scripts or tools for automated server provi-
sioning and deployment, your approach may be more complex. Check the documentation for your
deployment tools for more information.

If your Django project is deployed via a platform-as-a-service, check the documentation for spe-
ciŀc instructions. We’ve included Heroku instructions here so that you can see that it’s similar for
platform-as-a-service options.

On Heroku, you set environment variables with the following command, executed from your devel-
opment machine:

..
EŤōřŜŘő Ȝ.Șș

$ heroku config:set SOME_SECRET_KEY=1c3-cr3am-15-yummy

To see how you access environment variables from the Python side, open up a new Python prompt
and type:

..

EŤōřŜŘő Ȝ.ȘȚ

>>> import os
>>> os.environ["SOME_SECRET_KEY"]
"1c3-cr3am-15-yummy"

To access environment variables from one of your settings ŀles, you can do something like this:

51

Chapter 5: Settings and Requirements Files

..

EŤōřŜŘő Ȝ.Șț

Top of settings/production.py
import os
SOME_SECRET_KEY = os.environ["SOME_SECRET_KEY"]

Ļis snippet simply gets the value of the SOME SECRET KEY environment variable from the operating
system and saves it to a Python variable called SOME SECRET KEY.

Following this pattern means all code can remain in version control, and all secrets remain safe.

5.3.4 Handling Missing Secret Key Exceptions

In the above implementation, if the SECRET KEY isn’t available, it will throw a KeyError, making it
impossible to start the project. Ļat’s great, but a KeyError doesn’t tell you that much about what’s
actually wrong. Without a more helpful error message, this can be hard to debug, especially under
the pressure of deploying to servers while users are waiting and your ice cream is melting.

Here’s a useful code snippet that makes it easier to troubleshoot those missing environment variables.
If you’re using our recommended environment variable secrets approach, you’ll want to add this to
your settings/base.py ŀle:

..

EŤōřŜŘő Ȝ.ȘȜ

settings/base.py
import os

Normally you should not import ANYTHING from Django directly
into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

def get_env_variable(var_name):
"""Get the environment variable or return exception."""
try:

return os.environ[var_name]
except KeyError:

error_msg = "Set the {} environment variable".format(var_name)

52

5.3: Separate Conŀguration From Code

..raise ImproperlyConfigured(error_msg)

Ļen, in any of your settings ŀles, you can load secret keys from environment variables as follows:

..
EŤōřŜŘő Ȝ.Șȝ

SOME_SECRET_KEY = get_env_variable("SOME_SECRET_KEY")

Now, if you don’t have SOME SECRET KEY set as an environment variable, you get a traceback that
ends with a useful error message like this:

..

EŤōřŜŘő Ȝ.ȘȞ

django.core.exceptions.ImproperlyConfigured: Set the SOME_SECRET_KEY
environment variable.

..

WARNING: Don't Import Django Components Into Settings
Modules

.

Ļis can have many unpredictable side effects, so avoid any sort of import of Django compo-
nents into your settings. ImproperlyConfigured is the exception because it’s the official
Django exception for...well...improperly conŀgured projects. And just to be helpful we add
the name of the problem setting to the error message.

.....

TIP: Using django-admin.py Instead of manage.py

.

Ļe official Django documentation says that you should use django-admin.py rather than
manage.py when working with multiple settings ŀles:
https://docs.djangoproject.com/en/1.8/ref/django-admin/

Ļat being said, if you’re struggling with django-admin.py, it’s perfectly okay to develop and
launch your site running it with manage.py.

53

https://docs.djangoproject.com/en/1.8/ref/django-admin/

Chapter 5: Settings and Requirements Files

5.4 When You Can't Use Environment Variables

Ļe problem with using environment variables to store secrets is that it doesn’t always work. Ļe
most common scenario for this is when using Apache for serving HTTP, but this also happens even
in Nginx-based environments where operations wants to do things in a particular way. When this
occurs, rather than going back to the local settings anti-pattern, we advocate using non-executable
ŀles kept out of version control in a method we like to call the secrets ŀle pattern.

To implement the secrets ŀle pattern, follow these three steps:

..
1 Create a secrets ŀle using the conŀguration format of choice, be it JSON, Conŀg, YAML, or

even XML.
..
2 Add a secrets loader (JSON-powered example below) to manage the secrets in a cohesive,

explicit manner.
..
3 Add the secrets ŀle name to the .gitignore or .hgignore.

5.4.1 Using JSON Files

Our preference is to use shallow JSON ŀles. Ļe JSON format has the advantage of being the format
of choice for various Python and non-Python tools. To use the JSON format, ŀrst create a secrets.json
ŀle:

..

EŤōřŜŘő Ȝ.Șȟ

{
"FILENAME": "secrets.json",
"SECRET_KEY": "I've got a secret!",
"DATABASES_HOST": "127.0.0.1",
"PORT": "5432"

}

To use the secrets.json ŀle, add the following code to your base settings module.

..

EŤōřŜŘő Ȝ.ȘȠ

settings/base.py

54

5.5: Using Multiple Requirements Files

..

import json

Normally you should not import ANYTHING from Django directly
into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

JSON-based secrets module
with open("secrets.json") as f:

secrets = json.loads(f.read())

def get_secret(setting, secrets=secrets):
"""Get the secret variable or return explicit exception."""
try:

return secrets[setting]
except KeyError:

error_msg = "Set the {0} environment variable".format(setting)
raise ImproperlyConfigured(error_msg)

SECRET_KEY = get_secret("SECRET_KEY")

Now we are loading secrets from non-executable JSON ŀles instead of from unversioned executable
code. Hooray!

5.4.2 Using Config, YAML, and XML File Formats

While we prefer the forced simplicity of shallow JSON, others might prefer other ŀle formats. We’ll
leave it up to the reader to create additional get secret() alternatives that work with these for-
mats. Just remember to be familiar with things like yaml.safe load() and XML bombs. See
section 26.9, ‘Defend Against Python Code Injection Attacks.’

5.5 Using Multiple Requirements Files
Finally, there’s one more thing you need to know about multiple settings ŀles setup. It’s good practice
for each settings ŀle to have its own corresponding requirements ŀle. Ļis means we’re only installing
what is required on each server.

55

Chapter 5: Settings and Requirements Files

To follow this pattern, recommended to us by Jeff Triplett, ŀrst create a requirements/ directory in
the <repository root>. Ļen create ‘.txt’ ŀles that match the contents of your settings directory. Ļe
results should look something like:

..

EŤōřŜŘő Ȝ.șȗ

requirements/
base.txt
local.txt
staging.txt
production.txt

In the base.txt ŀle, place the dependencies used in all environments. For example, you might have
something like the following in there:

..

EŤōřŜŘő Ȝ.șȘ

Django==1.8.0
psycopg2==2.6
djangorestframework==3.1.1

Your local.txt ŀle should have dependencies used for local development, such as:

..

EŤōřŜŘő Ȝ.șș

-r base.txt # includes the base.txt requirements file

coverage==3.7.1
django-debug-toolbar==1.3.0

Ļe needs of a continuous integration server might prompt the following for a ci.txt ŀle:

..

EŤōřŜŘő Ȝ.șȚ

-r base.txt # includes the base.txt requirements file

coverage==3.7.1
django-jenkins==0.16.4

56

5.5: Using Multiple Requirements Files

Production installations should be close to what is used in other locations, so production.txt com-
monly just calls base.txt:

..
EŤōřŜŘő Ȝ.șț

-r base.txt # includes the base.txt requirements file

5.5.1 Installing From Multiple Requirements Files

For local development:

..
EŤōřŜŘő Ȝ.șȜ

$ pip install -r requirements/local.txt

For production:

..
EŤōřŜŘő Ȝ.șȝ

$ pip install -r requirements/production.txt

5.5.2 Using Multiple Requirements Files With Platforms as a
Service (PaaS)

See chapter 30, Deployment:Platforms as a Service.

.....

TIP: Pin Requirements Exactly

.

All the pip requirements.txt examples in this chapter are explicitly set to a package version.
Ļis ensures a more stable project. We cover this at length in subsection 21.7.2, ‘Add Package
and Version Number to Your Requirements.’

57

Chapter 5: Settings and Requirements Files

5.6 Handling File Paths in Settings

If you switch to the multiple settings setup and get new ŀle path errors to things like templates and
media, don’t be alarmed. Ļis section will help you resolve these errors.

We humbly beseech the reader to never hardcode ŀle paths in Django settings ŀles. Ļis is really bad:

..

BōŐ EŤōřŜŘő Ȝ.Ș

settings/base.py

Configuring MEDIA_ROOT
’DONT DO THIS! Hardcoded to just one user's preferences
MEDIA_ROOT = "/Users/pydanny/twoscoops_project/media"

Configuring STATIC_ROOT
’DONT DO THIS! Hardcoded to just one user's preferences
STATIC_ROOT = "/Users/pydanny/twoscoops_project/collected_static"

Configuring TEMPLATES
’DONT DO THIS! Hardcoded to just one user's preferences
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
DIRS = ("/Users/pydanny/twoscoops_project/templates",)

},
]

Ļe above code represents a common pitfall called hardcoding. Ļe above code, called a ŀxed path,
is bad because as far as you know, pydanny (Daniel Roy Greenfeld) is the only person who has set
up their computer to match this path structure. Anyone else trying to use this example will see their
project break, forcing them to either change their directory structure (unlikely) or change the settings
module to match their preference (causing problems for everyone else including pydanny).

Don’t hardcode your paths!

To ŀx the path issue, we dynamically set a project root variable intuitively named BASE DIR at the
top of the base settings module. Since BASE DIR is determined in relation to the location of base.py,
your project can be run from any location on any development computer or server.

58

5.6: Handling File Paths in Settings

Figure 5.2: While we’re at it, let’s go down this path.

We ŀnd the cleanest way to set a BASE DIR-like setting is with Unipath
(http://pypi.python.org/pypi/Unipath/), a Python package that does elegant, clean
path calculations:

..

EŤōřŜŘő Ȝ.șȞ

At the top of settings/base.py
from unipath import Path

BASE_DIR = Path(__file__).ancestor(3)
MEDIA_ROOT = BASE_DIR.child("media")
STATIC_ROOT = BASE_DIR.child("static")
STATICFILES_DIRS = (

BASE_DIR.child("assets"),
)
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
DIRS = (BASE_DIR.child("templates"),)

},
]

If you really want to set your BASE DIR with the Python standard library’s os.path library, though,
this is one way to do it in a way that will account for paths:

..

EŤōřŜŘő Ȝ.șȟ

At the top of settings/base.py
from os.path import join, abspath, dirname

59

http://pypi.python.org/pypi/Unipath/

Chapter 5: Settings and Requirements Files

..

here = lambda *dirs: join(abspath(dirname(__file__)), *dirs)
BASE_DIR = here("..", "..")
root = lambda *dirs: join(abspath(BASE_DIR), *dirs)

Configuring MEDIA_ROOT
MEDIA_ROOT = root("media")

Configuring STATIC_ROOT
STATIC_ROOT = root("collected_static")

Additional locations of static files
STATICFILES_DIRS = (

root("assets"),
)

Configuring TEMPLATE_DIRS
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
DIRS = (root("templates"),)

},
]

With your various path settings dependent on BASE DIR, your ŀle path settings should work, which
means your templates and media should be loading without error.

.....

TIP: How Different Are Your Settings From the Django
Defaults?

.

If you want to know how things in your project differ from Django’s defaults, use the
diffsettings management command.

5.7 Summary

Remember, everything except for critical security related values ought to be tracked in version control.

60

5.7: Summary

Any project that’s destined for a real live production server is bound to need multiple settings and
requirements ŀles. Even beginners to Django need this kind of settings/requirements ŀle setup once
their projects are ready to leave the original development machine. We provide our solution, as well
as an Apache-friendly solution since it works well for both beginning and advanced developers.

Also, if you prefer a different shell than the ones provided, environment variables still work. You’ll
just need to know the syntax for deŀning them.

Ļe same thing applies to requirements ŀles. Working with untracked dependency differences in-
creases risk as much as untracked settings.

61

Chapter 5: Settings and Requirements Files

62

6 | Model Best Practices

Models are the foundation of most Django projects. Racing to write Django models without thinking
things through can lead to problems down the road.

All too frequently we developers rush into adding or modifying models without considering the
ramiŀcations of what we are doing. Ļe quick ŀx or sloppy “temporary” design decision that we toss
into our code base now can hurt us in the months or years to come, forcing crazy workarounds or
corrupting existing data.

So keep this in mind when adding new models in Django or modifying existing ones. Take your time
to think things through, and design your foundation to be as strong and sound as possible.

.....

PACKAGE TIP: Our Picks for Working With Models

.

Here’s a quick list of the model-related Django packages that we use in practically every
project.

ä django-model-utils to handle common patterns like TimeStampedModel.
ä django-extensions has a powerful management command called shell plus which

autoloads the model classes for all installed apps. Ļe downside of this library is that it
includes a lot of other functionality which breaks from our preference for small, focused
apps.

63

Chapter 6: Model Best Practices

6.1 Basics

6.1.1 Break Up Apps With Too Many Models

If there are 20+ models in a single app, think about ways to break it down into smaller apps, as it
probably means your app is doing too much. In practice, we like to lower this number to no more
than ŀve models per app.

6.1.2 Be Careful With Model Inheritance

Model inheritance in Django is a tricky subject. Django provides three ways to do model inheritance:
abstract base classes, multi-table inheritance, and proxy models.

..

WARNING: Django Abstract Base Classes <> Python Abstract
Base Classes

.

Don’t confuse Django abstract base classes with the abstract base classes in the Python stan-
dard library’s abc module, as they have very different purposes and behaviors.

Here are the pros and cons of the three model inheritance styles. To give a complete comparison, we
also include the option of using no model inheritance to begin with:

Model Inheritance
Style

Pros Cons

No model inheritance: if models
have a common field, give both
models that field.

Makes it easiest to understand at a
glance how Django models map to
database tables.

If there are a lot of fields
duplicated across models, this
can be hard to maintain.

Abstract base classes: tables are
only created for derived models.

Having the common fields in an
abstract parent class saves us from
typing them more than once.
We don't get the overhead of extra
tables and joins that are incurred from
multi-table inheritance.

We cannot use the parent class
in isolation.

64

6.1: Basics

Multi-table inheritance: tables
are created for both parent and
child. An implied
OneToOneField links parent
and child.

Gives each model its own table, so that
we can query either parent or child
model.
Also gives us the ability to get to a
child object from a parent object:
parent.child

Adds substantial overhead since
each query on a child table
requires joins with all parent
tables.
We strongly recommend against
using multi-table inheritance.
See the warning below.

Proxy models: a table is only
created for the original model.

Allows us to have an alias of a model
with different Python behavior.

We cannot change the model's
fields.

Table 6.1: Pros and Cons of the Model Inheritance Styles

..

WARNING: Avoid Multi-Table Inheritance

.

Multi-table inheritance, sometimes called “concrete inheritance,” is considered by the authors
and many other developers to be a bad thing. We strongly recommend against using it. We’ll
go into more detail about this shortly.

Here are some simple rules of thumb for knowing which type of inheritance to use and when:

ä If the overlap between models is minimal (e.g. you only have a couple of models that share one
or two obvious ŀelds), there might not be a need for model inheritance. Just add the ŀelds to
both models.

ä If there is enough overlap between models that maintenance of models’ repeated ŀelds causes
confusion and inadvertent mistakes, then in most cases the code should be refactored so that
the common ŀelds are in an abstract base model.

ä Proxy models are an occasionally-useful convenience feature, but they’re very different from
the other two model inheritance styles.

ä At all costs, everyone should avoid multi-table inheritance (see warning above) since it adds
both confusion and substantial overhead. Instead of multi-table inheritance, use explicit One-
ToOneFields and ForeignKeys between models so you can control when joins are traversed.

65

Chapter 6: Model Best Practices

6.1.3 Model Inheritance in Practice: The TimeStampedModel

It’s very common in Django projects to include a created and modified timestamp ŀeld on all
your models. We could manually add those ŀelds to each and every model, but that’s a lot of work
and adds the risk of human error. A better solution is to write a TimeStampedModel to do the work
for us:

..

EŤōřŜŘő ȝ.Ș

core/models.py
from django.db import models

class TimeStampedModel(models.Model):
"""
An abstract base class model that provides self-
updating ``created`` and ``modified`` fields.
"""
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)

class Meta:
abstract = True

Take careful note of the very last two lines in the example, which turn our example into an abstract
base class:

..

EŤōřŜŘő ȝ.ș

class Meta:
abstract = True

By deŀning TimeStampedModel as an abstract base class when we deŀne a new class that inherits
from it, Django doesn’t create a core timestampedmodel table when migrate is run.

Let’s put it to the test:

..
EŤōřŜŘő ȝ.Ț

flavors/models.py

66

6.1: Basics

..

from django.db import models

from core.models import TimeStampedModel

class Flavor(TimeStampedModel):
title = models.CharField(max_length=200)

Ļis only creates one table: the flavors flavor database table. Ļat’s exactly the behavior we
wanted.

On the other hand, if TimeStampedModel was not an abstract base class (i.e. a concrete base class
via multi-table inheritance), it would also create a core timestampedmodel table. Not only that,
but all of its subclasses including Flavor would lack the ŀelds and have implicit foreign keys back to
TimeStampedModel just to handle created/modified timestamps. Any reference to Flavor that
reads or writes to the TimeStampedModel would impact two tables. (Ļank goodness it’s abstract!)

Remember, concrete inheritance has the potential to become a nasty performance bottleneck. Ļis
is even more true when you subclass a concrete model class multiple times.

Further reading:

ä http://2scoops.co/1.8-model-inheritance

6.1.4 Database Migrations

Django comes with a powerful database change propagation library aptly called “migrations”,
or as we prefer to refer in the book, django.db.migrations. As of Django 1.7
django.db.migrations replaced the use of the third-party South library, but as both libraries
share the same author (Andrew Godwin), usage and practices are quite similar.

Tips for creating migrations:

ä As soon as a new app or model is created, take that extra minute to create the initial
django.db.migrations for that new model. All we do is type python manage.py
makemigrations.

67

http://2scoops.co/1.8-model-inheritance

Chapter 6: Model Best Practices

ä Examine the generated migration code before you run it, especially when complex changes are
involved. Also review the SQL that will be used with the sqlmigrate command.

ä Use the MIGRATION MODULES setting to manage writing migrations for third-party apps that
don’t have their own django.db.migrations-style migrations.

ä Don’t worry about how many migrations are created. If the number of migrations becomes
unwieldy, use squashmigrations to bring them to heel.

Deployment and management of migrations:

ä Before deployment, check that you can rollback migrations! We can’t always have perfect
round-trips, but not being able to roll back to an earlier state really hurts bug tracking and
sometimes deployment in larger projects.

ä If a project has tables with millions of rows in them, do extensive tests against data of that size
on staging servers before running a migration on a production server. Migrations on real data
can take much, much, much more time than anticipated.

ä If you are using MySQL:
ä You must back up the database before any schema change. MySQL lacks transaction

support around schema changes, hence rollbacks are impossible.
ä If you can, put the project in read-only mode before executing the change.
ä If not careful, schema changes on heavily populated tables can take a long time. Not

seconds or minutes, but hours.

Figure 6.1: Cones migrating south for the winter. Django’s built-in migration system started out as
an external project called South.

68

6.2: Django Model Design

6.2 Django Model Design

One of the most difficult topics that receives the least amount of attention is how to design good
Django models.

How do you design for performance without optimizing prematurely? Let’s explore some strategies
here.

6.2.1 Start Normalized

We suggest that readers of this book need to be familiar with database normalization. If you are
unfamiliar with database normalization, make it your responsibility to gain an understanding, as
working with models in Django effectively requires a working knowledge of this. Since a detailed
explanation of the subject is outside the scope of this book, we recommend the following resources:

ä http://en.wikipedia.org/wiki/Database_normalization
ä http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

When you’re designing your Django models, always start off normalized. Take the time to make sure
that no model should contain data already stored in another model.

At this stage, use relationship ŀelds liberally. Don’t denormalize prematurely. You want to have a
good sense of the shape of your data.

6.2.2 Cache Before Denormalizing

Often, setting up caching in the right places can save you the trouble of denormalizing your models.
We’ll cover caching in much more detail in chapter 24, Finding and Reducing Bottlenecks, so don’t
worry too much about this right now.

6.2.3 Denormalize Only if Absolutely Needed

It can be tempting, especially for those new to the concepts of data normalization, to denormalize
prematurely. Don’t do it! Denormalization may seem like a panacea for what causes problems in a

69

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

Chapter 6: Model Best Practices

project. However it’s a tricky process that risks adding complexity to your project and dramatically
raises the risk of losing data.

Please, please, please explore caching before denormalization.

When a project has reached the limits of what the techniques described in chapter 24, Finding and
Reducing Bottlenecks can address, that’s when research into the concepts and patterns of database
denormalization should begin.

6.2.4 When to Use Null and Blank

When deŀning a model ŀeld, you have the ability to set the null=True and the blank=True
options. By default, they are False.

Knowing when to use these options is a common source of confusion for developers.

We’ve put this guide together to serve as a guide for standard usage of these model ŀeld arguments.

Field Type Setting null=True Setting blank=True

CharField, TextField,
SlugField,
EmailField,
CommaSeparatedInteger-
Field,
UUIDField

Don't do this.
Django's convention is to store empty
values as the empty string, and to
always retrieve NULL or empty values
as the empty string for consistency.

Okay.
Do this if you want the
corresponding form widget to
accept empty values.
If you set this, empty values get
stored as empty strings in the
database.

FileField, ImageField Don't do this.
Django stores the path from
MEDIA ROOT to the file or to the
image in a CharField, so the same
pattern applies to FileFields.

Okay.
The same pattern for CharField
applies here.

BooleanField Don't do this. Use
NullBooleanField instead.

Don't do this.

70

6.2: Django Model Design

Field Type Setting null=True Setting blank=True

IntegerField,
FloatField,
DecimalField,
DurationField, etc

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget to
accept empty values. If so, you
will also want to set
null=True.

DateTimeField,
DateField, TimeField,
etc.

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget to
accept empty values, or if you
are using auto now or
auto now add. If so, you will
also want to set null=True.

ForeignKey,
ManyToManyField,
OneToOneField

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget (e.g.
the select box) to accept empty
values.

GenericIPAddressField Okay if you want to be able to set the
value to NULL in the database.

Okay if you want to make the
corresponding field widget
accept empty values.

IPAddressField Not recommended for use. See
warning below.

Not recommended for use. See
warning below.

Table 6.2: When to Use Null and Blank by Field

.....

TIP: Use GenericIPAddressField Instead of IPAddressField

.

For a variety of reasons including support for both IPv4 and IPv6, GenericIPAddressField is
a much better ŀeld to use than IPAddressField. Furthermore, using GenericIPAddressField
future-proofs your project because IPAddressField was deprecated in Django 1.7.

71

Chapter 6: Model Best Practices

Figure 6.2: A common source of confusion.

6.2.5 When to Use BinaryField

Added in Django 1.8, this ŀeld allows for the storage of raw binary data, or bytes. We can’t perform
ŀlters, excludes, or other SQL actions on the ŀeld, but there are use cases for it. For example we
could store:

ä MessagePack-formatted content.
ä Raw sensor data.
ä Compressed data e.g. the type of data Sentry stores as a BLOB, but is required to base64-

encode due to legacy issues.

Ļe possibilities are endless, but remember that binary data can come in huge chunks, which can slow
down databases. If this occurs and becomes a bottleneck, the solution might be to save the binary
data in a ŀle and reference it with a FileField.

72

6.2: Django Model Design

..

WARNING: Don't Serve Files From BinaryField!

.

Storing ŀles in a database ŀeld should never happen. If it’s being considered as a solution to
a problem, ŀnd a certiŀed database expert and ask for a second opinion.

To summarize PostgreSQL expert Frank Wiles on the problems with using a database as a
ŀle store:

ä ‘read/write to a DB is always slower than a ŀlesystem’
ä ‘your DB backups grow to be huge and more time consuming’
ä ‘access to the ŀles now requires going through your app (Django) and DB layers’

See http://2scoops.co/three-things-not-to-put-in-database

When someone thinks there is a good use case for serving ŀles from a database, and quotes a
success like https://npmjs.org (stored ŀles in CouchDB), it’s time to do your research.
Ļe truth is that https://npmjs.org, migrated its database-as-ŀle-store system to a more
traditional ŀle serving method (see https://scalenpm.org).

6.2.6 Try to Avoid Using Generic Relations

In general we advocate against generic relations and use of models.field.GenericForeignKey.
Ļey are usually more trouble than they are worth. Using them is often a sign that troublesome
shortcuts are being taken, that the wrong solution is being explored.

Ļe idea of a generic relations is that we are binding one table to another by way of an unconstrained
foreign key (GenericForeignKey). Using it is akin to using a NoSQL datastore that lacks foreign
key constraints as the basis for projects that could really use foreign key constraints. Ļis causes the
following:

ä Reduction in speed of queries due to lack of indexing between models.
ä Danger of data corruption as a table can refer to another against a non-existent record.

Ļe upside of this lack of constraints is that generic relations makes it easier to build apps for things
that need to interact with numerous model types we might have created. Speciŀcally things like
favorites, ratings, voting, messages, and tagging apps. Indeed, there are a number of existing apps
that are built this way. While we hesitate to use them, we are comforted by the fact that the good
ones are focused on a single task (for example, tagging).

73

http://2scoops.co/three-things-not-to-put-in-database
https://npmjs.org
https://npmjs.org
https://scalenpm.org

Chapter 6: Model Best Practices

Over time, we’ve found that we can build favorites, ratings, voting, messages, and tagging apps built
off ForeignKey and ManyToMany ŀeld. For a little more development work, by avoiding the use of
GenericForeignKey we get the beneŀt of speed and integrity.

Where the GenericForeignKey becomes really troublesome is when its unconstrained feature be-
comes the method by which a project’s primary data is deŀned. For example, if we built an Ice Cream
themed project where the relationships between toppings, łavors, containers, orders, and sales were
all tracked via GenericForeignKey, we would have the problems described in the bullets above.
In short:

ä Try to avoid generic relations and GenericForeignKey.
ä If you think you need generic relations, see if the problem can be solved through better model

design or the new PostgreSQL ŀelds.
ä If usage can’t be avoided, try to use an existing third-party app. Ļe isolation a third-party app

provides will help keep data cleaner.

6.2.7 PostgreSQL-Specific Fields: When to Use Null and Blank

Field Type Setting null=True Setting blank=True

ArrayField Okay. Okay.

HStoreField Okay. Okay.

IntegerRangeField,
BigIntegerRangeField,
and FloatRangeField

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget to
accept empty values. If so, you
will also want to set
null=True.

DatetimeRangeField and
DateRangeField

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget to
accept empty values, or if you
are using auto now or
auto now add. If so, you will
also want to set null=True.

Table 6.3: When to Use Null and Blank for Postgres Fields
74

6.3: Ļe Model meta API

6.3 The Model meta API

Before Django 1.8, the model meta API was unofficial and purposely undocumented, as is normal
with any API subject to change without notice. Ļe original purpose of metawas simply for Django
to store extra info about models for its own use. However, it has proven so useful that it is now a
documented API.

For most projects you shouldn’t need meta. Ļe main uses for it are when you need to:

ä Get a list of a model’s ŀelds.
ä Get the class of a particular ŀeld for a model (or its inheritance chain or other info derived

from such).
ä Ensure that how you get this information remains constant across future Django versions.

Examples of these sorts of situations:

ä Building a Django model introspection tool.
ä Building your own custom specialized Django form library.
ä Creating admin-like tools to edit or interact with Django model data.
ä Writing visualization or analysis libraries, e.g. analyzing info only about ŀelds that start with

“foo”.

Further reading:

ä Model meta docs: https://docs.djangoproject.com/en/1.8/ref/models/meta/
ä Django 1.8 release notes about model meta:

https://docs.djangoproject.com/en/1.8/releases/1.8/#model-meta-api

6.4 Model Managers

Every time we use the Django ORM to query a model, we are using an interface called a model
manager to interact with the database. Model managers are said to act on the full set of all possible
instances of this model class (all the data in the table) to restrict the ones you want to work with.
Django provides a default model manager for each model class, but we can deŀne our own.

Here’s a simple example of a custom model manager:

75

https://docs.djangoproject.com/en/1.8/ref/models/meta/
https://docs.djangoproject.com/en/1.8/releases/1.8/#model-meta-api

Chapter 6: Model Best Practices

..

EŤōřŜŘő ȝ.ț

from django.db import models
from django.utils import timezone

class PublishedManager(models.Manager):

use_for_related_fields = True

def published(self, **kwargs):
return self.filter(pub_date__lte=timezone.now(), **kwargs)

class FlavorReview(models.Model):
review = models.CharField(max_length=255)
pub_date = models.DateTimeField()

add our custom model manager
objects = PublishedManager()

Now, if we ŀrst want to display a count of all of the ice cream łavor reviews, and then a count of just
the published ones, we can do the following:

..

EŤōřŜŘő ȝ.Ȝ

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.count()
35
>>> FlavorReview.objects.published().count()
31

Easy, right? Yet wouldn’t it make more sense if you just added a second model manager? Ļat way
you could have something like:

..

BōŐ EŤōřŜŘő ȝ.Ș

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.filter().count()
35

76

6.5: Understanding Fat Models

..
>>> FlavorReview.published.filter().count()
31

On the surface, replacing the default model manager seems like the obvious thing to do. Unfortu-
nately, our experiences in real project development makes us very careful when we use this method.
Why?

First, when using model inheritance, children of abstract base classes receive their parent’s model
manager, and children of concrete base classes do not.

Second, the ŀrst manager applied to a model class is the one that Django treats as the default. Ļis
breaks signiŀcantly with the normal Python pattern, causing what can appear to be unpre-
dictable results from QuerySets.

With this knowledge in mind, in your model class, objects = models.Manager() should be
deŀned manually above any custom model manager.

..

WARNING: Know the Model Manager Order of Operations

.

Always set objects = models.Manager() above any custom model manager that has a
new name.

Additional reading:

ä https://docs.djangoproject.com/en/1.8/topics/db/managers/

6.5 Understanding Fat Models

Ļe concept of fat models is that rather than putting data-related code in views and templates,
instead we encapsulate the logic in model methods, classmethods, properties, even manager methods.
Ļat way, any view or task can use the same logic. For example, if we have a model that represents
Ice Cream reviews we might attach to it the following methods:

ä Review.create review(cls, user, rating, title, description) A class-
method for creating reviews. Called on the model class itself from HTML and REST views,
as well as an import tool that accepts spreadsheets.

77

https://docs.djangoproject.com/en/1.8/topics/db/managers/

Chapter 6: Model Best Practices

ä review.product average A review instance property that returns the reviewed project’s
average rating. Used on review detail views so the reader can get a feel for the overall opinion
without leaving the page.

ä review.found useful(self, user, yes) A method that sets whether or not readers
found the review useful or not. Used in detail and list views, for both HTML and REST
implementations.

As can be inferred from this list, fat models are a great way to improve reuse of code across a project.
In fact, the practice of moving logic from views and templates to models has been growing across
projects, frameworks and languages for years. Ļis is a good thing, right?

Not necessarily.

Ļe problem with putting all logic into models is it can cause models to explode in size of code,
becoming what is called a ‘god object’. Ļis anti-pattern results in model classes that are hundreds,
thousands, even tens of thousands of lines of code. Because of their size and complexity, god objects
are hard to understand, hence hard to test and maintain.

When moving logic into models, we try to remember one of the basic ideas of object-oriented pro-
gramming, that big problems are easier to resolve when broken up into smaller problems. If a model
starts to become unwieldy in size, we begin isolating code that is prime for reuse across other mod-
els, or whose complexity requires better management. Ļe methods, classmethods, and properties
are kept, but the logic they contain is moved into Model Behaviors or Stateless Helper Functions. Let’s
cover both techniques in the following subsections:

6.5.1 Model Behaviors a.k.a Mixins

Model behaviors embrace the idea of composition and encapsulation via the use of mixins. Models
inherit logic from abstract models. For more information, see the following resources:

ä http://blog.kevinastone.com/django-model-behaviors.html Kevin Stone’s ar-
ticle on using composition to reduce replication of code.

ä section 10.2, ‘Using Mixins With CBVs’.

78

http://blog.kevinastone.com/django-model-behaviors.html

6.6: Summary

6.5.2 Stateless Helper Functions

By moving logic out of models and into utility functions, it becomes more isolated. Ļis isolation
makes it easier to write tests for the logic. Ļe downside is that the functions are stateless, hence all
arguments have to be passed.

We cover this in chapter 29, ‘What About Ļose Random Utilities?’.

6.5.3 Model Behaviors vs Helper Functions

In our opinion, alone neither of these techniques are perfect. However, when both are used judi-
ciously, they can make projects shine. Understanding when to use either isn’t a static science, it is
an evolving process. Ļis kind of evolution is tricky, prompting our suggestion to have tests for the
components of fat models.

6.6 Summary
Models are the foundation for most Django projects, so take the time to design them thoughtfully.

Start normalized, and only denormalize if you’ve already explored other options thoroughly. You
may be able to simplify slow, complex queries by dropping down to raw SQL, or you may be able to
address your performance issues with caching in the right places.

Don’t forget to use indexes. Add indexes when you have a better feel for how you’re using data
throughout your project.

If you decide to use model inheritance, inherit from abstract base classes rather than concrete models.
You’ll save yourself from the confusion of dealing with implicit, unneeded joins.

Watch out for the “gotchas” when using the null=True and blank=Truemodel ŀeld options. Refer
to our handy table for guidance.

You may ŀnd django-model-utils and django-extensions pretty handy.

Finally, fat models are a way to encapsulate logic in models, but can all too readily turn into god
objects.

Our next chapter is where we begin talking about queries and the database layer.

79

Chapter 6: Model Best Practices

80

7 | Queries and the Database Layer

Like any ORM, Django converts data from different types into objects that we can use pretty con-
sistently across supported databases. Ļen it provides a set of methods for interacting with those
objects. For the most part, Django’s does a pretty good job at what its designed to do. However, it
does have quirks, and understanding those quirks is part of learning how to use Django. Let’s go over
some of them, shall we?

7.1 Use get object or 404() for Single Objects

In views such as detail pages where you want to retrieve a single object and do something with it, use
get object or 404() instead of get().

..

WARNING: get object or 404() Is for Views Only

.

ä Only use it in views.
ä Don’t use it in helper functions, forms, model methods or anything that is not a view

or directly view related.
Many years ago a certain Python coder who we won’t list by name, but likes to do
cartwheels, was deploying his ŀrst Django project. So entranced was he by Django’s
get object or 404() function that he used it everywhere, in views, in models, in forms,
everywhere. In development this worked great and passed tests. Unfortunately, this uncon-
strained use meant that when certain records were deleted by the admin staff, the entire site
broke.

Keep get object or 404() in your views!

81

Chapter 7: Queries and the Database Layer

7.2 Be Careful With Queries That Might Throw
Exceptions

When you’re getting a single Django model instance with the get object or 404() shortcut, you
don’t need to wrap it in a try-except block. Ļat’s because get object or 404() already does that
for you.

However, in most other situations you need to use a try-except block. Some tips:

7.2.1 ObjectDoesNotExist vs. DoesNotExist

ObjectDoesNotExist can be applied to any model object, whereas DoesNotExist is for a speciŀc
model.

..

EŤōřŜŘő Ȟ.Ș

from django.core.exceptions import ObjectDoesNotExist

from flavors.models import Flavor
from store.exceptions import OutOfStock

def list_flavor_line_item(sku):
try:

return Flavor.objects.get(sku=sku, quantity__gt=0)
except Flavor.DoesNotExist:

msg = "We are out of {0}".format(sku)
raise OutOfStock(msg)

def list_any_line_item(model, sku):
try:

return model.objects.get(sku=sku, quantity__gt=0)
except ObjectDoesNotExist:

msg = "We are out of {0}".format(sku)
raise OutOfStock(msg)

82

7.3: Use Lazy Evaluation to Make Queries Legible

7.2.2 When You Just Want One Object but Get Three Back

If it’s possible that your query may return more than one object, check for a MultipleObjectsRe-
turned exception. Ļen in the except clause, you can do whatever makes sense, e.g. raise a special
exception or log the error.

..

EŤōřŜŘő Ȟ.ș

from flavors.models import Flavor
from store.exceptions import OutOfStock, CorruptedDatabase

def list_flavor_line_item(sku):
try:

return Flavor.objects.get(sku=sku, quantity__gt=0)
except Flavor.DoesNotExist:

msg = "We are out of {}".format(sku)
raise OutOfStock(msg)

except Flavor.MultipleObjectsReturned:
msg = "Multiple items have SKU {}. Please fix!".format(sku)
raise CorruptedDatabase(msg)

7.3 Use Lazy Evaluation to Make Queries Legible

Django’s ORM is very powerful. And with such power comes the responsibility to make code legible,
hence maintainable. With complex queries, attempt to avoid chaining too much functionality on a
small set of lines:

..

BōŐ EŤōřŜŘő Ȟ.Ș

Don't do this!
from django.models import Q

from promos.models import Promo

def fun_function(**kwargs):
"""Find working ice cream promo"""
Too much query chaining makes code go off the screen or page. Not good.
return Promo.objects.active().filter(Q(name__startswith=name)|Q(description__icontains=name)).exclude(status='melted')

83

Chapter 7: Queries and the Database Layer

Ļis is unpleasant, right? Yet if we add in advanced Django ORM tools, then it will go from un-
pleasant to as terrible as a sriracha-based ice cream topping. To mitigate this unpleasantness, we can
use the lazy evaluation feature of Django queries to keep our ORM code clean.

By lazy evaluation, we mean that the Django ORM doesn’t make the SQL calls until the data is
actually needed. We can chain ORM methods and functions as much as we want, and until we try
to loop through the result, Django doesn’t touch the database. Instead of being forced to chain many
methods and advanced database features on a single line, we can break them up over as many lines
as needed. Ļis increases readability, which improves the ease of maintenance, which increases time
for getting ice cream.

Here we take the code from bad example 7.1 and break it up into more legible code:

..

EŤōřŜŘő Ȟ.Ț

Don't do this!
from django.models import Q

from promos.models import Promo

def fun_function(**kwargs):
"""Find working ice cream promo"""
results = Promo.objects.active()
results = results.filter(

Q(name__startswith=name) |
Q(description__icontains=name)

)
results = results.exclude(status='melted')
results = results.select_related('flavors')
return results

As can be seen in the corrected code, we can more easily tell what the end result will be. Even better,
by breaking up the query statement we can comment on speciŀc lines of code.

7.4 Lean on Advanced Query Tools

Django’s ORM is easy to learn, intuitive, and covers many use cases. Yet there are a number of things
it does not do well. What happens then is after the queryset is returned we begin processing more

84

7.4: Lean on Advanced Query Tools

and more data in Python. Ļis is a shame, because every database manages and transforms data faster
than Python (or Ruby, JavaScript, Go, Java, et al).

Instead of managing data with Python, we always try to use Django’s advanced query tools to do the
lifting. In doing so we not only beneŀt from increased performance, we also enjoy using code that was
more tested (Django and most databases are constantly-tested) than any Python-based workarounds
we create.

7.4.1 Query Expressions

When performing reads on a database, query expressions can be used to create values or computations
during that read. If that sounds confusing, don’t feel alone, we’re confused too. Since a code example
is worth a thousand words, let’s provide an example of how they can beneŀt us. In our case, we’re
trying to list all the customers who have on average ordered more than one scoop per visit to an ice
cream store.

First, how this might be done, albeit dangerously, without query expressions:

..

BōŐ EŤōřŜŘő Ȟ.ș

from models.customers import Customer

customers = []
for customer in Customer.objects.iterate():

if customer.scoops_ordered > customer.store_visits:
customers.append(customer)

Ļis example makes us shudder with fear. Why?

ä It uses Python to loop through all the Customer records in the database, one by one. Ļis is
slow and memory consuming.

ä Under any volume of use, it will generate race conditions. Ļis is where while we’re running
the script, customers are interacting with the data. While probably not an issue in this simple
‘READ’ example, in real-world code combining that with an ‘UPDATE’ it can lead to loss of
data.

85

Chapter 7: Queries and the Database Layer

Fortunately, through query expressions Django provides a way to make this more efficient and race-
condition free:

..

EŤōřŜŘő Ȟ.ț

from django.db.models import F

from models.customers import Customer

customers = Customer.objects.filter(scoops_ordered__gt=F('store_visits'))

What this does is use the database itself to perform the comparison. Under the hood, Django is
running something that probably looks like:

..
EŤōřŜŘő Ȟ.Ȝ

SELECT * from customers_customer where scoops_ordered > store_visits

Query Expressions should be in your toolkit. Ļey increase the performance and stability of projects.

ä https://docs.djangoproject.com/en/1.8/ref/models/expressions/

7.4.2 Database Functions

In Django 1.8 we were given the ability to easily use common database functions such as UPPER(),
LOWER(), COALESCE(), CONCAT(), LENGTH(), and SUBSTR(). Of all the advanced query
tools provided by Django, these are our favorites. For that matter, it’s one of our favorite things about
the 1.8 release. Why?

..
1 Very easy to use, either on new projects or existing projects.
..
2 Database functions allow us to move some of the logic from Python to the database. Ļis can

be a performance booster, as processing data in Python is not as fast as processing data in a
database.

..
3 Database functions are implemented differently per database, but Django’s ORM abstracts

this away. Code we write using them on PostgreSQL will work on MySQL or SQLite3.
..
4 Ļey are also query expressions, which means they follow a common pattern already established

by another nice part of the Django ORM.

86

https://docs.djangoproject.com/en/1.8/ref/models/expressions/

7.5: Don’t Drop Down to Raw SQL Until It’s Necessary

Reference:

ä https://docs.djangoproject.com/en/1.8/ref/models/database-functions/

7.5 Don't Drop Down to Raw SQL Until It's Necessary

Most of the queries we write are simple. Ļe Object-Relational Model or ORM provides a great
productivity shortcut: not only generating decent SQL queries for common use cases, but providing
model access/update functionality that comes complete with validation and security. If you can write
your query easily with the ORM, then take advantage of it!

It’s also good to keep in mind that if you ever release one of your Django apps as a third-party package,
using raw SQL will decrease the portability of the work.

Finally, in the rare event that the data has to be migrated from one database to another, any database-
speciŀc features that you use in your SQL queries will complicate the migration.

So when should you actually write raw SQL? If expressing your query as raw SQL would drastically
simplify your Python code or the SQL generated by the ORM, then go ahead and do it. For example,
if you’re chaining a number of QuerySet operations that each operate on a large data set, there may
be a more efficient way to write it as raw SQL.

.....

TIP: Malcolm Tredinnick's Advice on Writing SQL in Django

.

Django core developer Malcolm Tredinnick said (paraphrased):
“Ļe ORM can do many wonderful things, but sometimes SQL is the right
answer. Ļe rough policy for the Django ORM is that it’s a storage layer that
happens to use SQL to implement functionality. If you need to write advanced
SQL you should write it. I would balance that by cautioning against overuse of
the raw() and extra() methods.”

87

https://docs.djangoproject.com/en/1.8/ref/models/database-functions/

Chapter 7: Queries and the Database Layer

.....

TIP: Jacob Kaplan-Moss' Advice on Writing SQL in Django

.

Django project co-leader Jacob Kaplan-Moss says (paraphrased):
“If it’s easier to write a query using SQL than Django, then do it. extra() is
nasty and should be avoided; raw() is great and should be used where appro-
priate.”

Figure 7.1: Ļis łavor of ice cream contains raw SQL. It’s a bit chewy.

7.6 Add Indexes as Needed

While adding db index=True to any model ŀeld is easy, understanding when it should be done
takes a bit of judgment. Our preference is to start without indexes and add them as needed.

When to consider adding indexes:

ä Ļe index is used frequently, as in 10-25% of all queries.
ä Ļere is real data, or something that approximates real data, so we can analyze the results of

indexing.

88

7.7: Transactions

ä We can run tests to determine if indexing generates an improvement in results.

When using PostgreSQL, pg stat activity tells us what indexes are actually being used.

Once a project goes live, chapter 24, Finding and Reducing Bottlenecks, has information on index
analysis.

7.7 Transactions

As of Django 1.8, the default behavior of the ORM is to autocommit every query when it is called.
In the case of data modiŀcation, this means that every time a .create() or .update() is called,
it immediately modiŀes data in the SQL database. Ļe advantage of this is that it makes it easier
for beginning developers to understand the ORM. Ļe disadvantage is that if a view (or some other
operation) requires two or more database modiŀcations to occur, if one modiŀcation succeeds and
the other fails, the database is at risk of corruption.

Ļe way to resolve the risk of database corruption is through the use of database transactions. A
database transaction is where two or more database updates are contained in a single unit of work. If
a single update fails, all the updates in the transaction are rolled back. To make this work, a database
transaction, by deŀnition, must be atomic, consistent, isolated and durable. Database practitioners
often refer to these properties of database transactions using the acronym ACID.

Django has a powerful and relatively easy-to-use transaction mechanism that was overhauled and
modernized with the release of 1.8. Ļis makes it much easier to lock down database integrity on a
project, using decorators and context managers in a rather intuitive pattern.

7.7.1 Wrapping Each HTTP Request in a Transaction

..

EŤōřŜŘő Ȟ.ȝ

settings/base.py

DATABASES = {
'default': {

...
'ATOMIC_REQUESTS': True,

89

Chapter 7: Queries and the Database Layer

..
},

}

Django makes it easy to handle all web requests inside of a transaction with the ATOMIC REQUESTS
setting. By setting it to True as show above, all requests are wrapped in transactions, including
those that only read data. Ļe advantage of this approach is safety: all database queries in views are
protected, the disadvantage is performance can suffer. We can’t tell you just how much this will affect
performance, as it depends on individual database design and how well various database engines
handle locking.

When using Django 1.8, we’ve found that this is a great way to ensure at the start that a write-heavy
project’s database maintains integrity. With lots of traffic, however, we’ve had to go back and change
things to a more focused approach. Depending on the size this can be a small or monumental task.

Another thing to remember when using ATOMIC REQUESTS, is that only the database state is rolled
back on errors. It’s quite embarrassing to send out a conŀrmation email and then have the transaction
that wraps a request rolled back. Ļis problem may crop up with any “write” to anything other than
the database: sending email or SMS, calling a third-party API, writing to the ŀlesystem, etc. Ļere-
fore, when writing views that create/update/delete records but interact with non-database items, you
may choose to decorate the view with transaction.non atomic requests().

..

WARNING: Aymeric Augustin on non atomic requests()

.

Core Django developer and main implementer of the new transaction system, Aymeric Au-
gustin says, “Ļis decorator requires tight coupling between views and models, which will
make a code base harder to maintain. We might have come up with a better design if we
hadn’t had to provide for backwards-compatibility.”

Ļen you can use the more explicit declaration as described below in this super-simple API-style
function-based view:

..

EŤōřŜŘő Ȟ.Ȟ

flavors/views.py

90

7.7: Transactions

..

from django.db import transaction
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.utils import timezone

from .models import Flavor

@transaction.non_atomic_requests
def posting_flavor_status(request, pk, status):

flavor = get_object_or_404(Flavor, pk=pk)

This will execute in autocommit mode (Django's default).
flavor.latest_status_change_attempt = timezone.now()
flavor.save()

with transaction.atomic():
This code executes inside a transaction.
flavor.status = status
flavor.latest_status_change_success = timezone.now()
flavor.save()
return HttpResponse("Hooray")

If the transaction fails, return the appropriate status
return HttpResponse("Sadness", status_code=400)

If you are using ATOMIC REQUESTS=True and want to switch to a more focused approach described
in the following section, we recommend an understanding of bottleneck analysis (chapter 24), good test
coverage (chapter 22), and continuous integration (chapter 32) before you undertake this effort.

91

Chapter 7: Queries and the Database Layer

.....

TIP: Projects Touching Medical or Financial Data

.

For these kinds of projects, engineer systems for eventual consistency rather than for trans-
actional integrity. In other words, be prepared for transactions to fail and rollbacks to occur.
Fortunately, because of transactions, even with a rollback, the data will remain accurate and
clean.

7.7.2 Explicit Transaction Declaration

Explicit transaction declaration is one way to increase site performance. In other words, specifying
which views and business logic are wrapped in transactions and which are not. Ļe downside to this
approach is that it increases development time.

.....

TIP: Aymeric Augustin on ATOMIC REQUESTS vs. Explicit
Transaction Declaration

.

Aymeric Augustin says, ‘Use ATOMIC REQUESTS as long as the performance overhead
is bearable. Ļat means “forever” on most sites.’

When it comes to transactions, here are some good guidelines to live by:

ä Database operations that do not modify the database should not be wrapped in transactions.
ä Database operations that modify the database should be wrapped in a transaction.
ä Special cases including database modiŀcations that require database reads and performance

considerations can affect the previous two guidelines.

If that’s not clear enough, here is a table explaining when different Django ORM calls should be
wrapped in transactions.

Purpose ORMmethod Generally Use Transactions?

Create Data .create(), .bulk create(), .get or create(), 3

Retrieve Data .get(), .filter(), .count(), .iterate(), .exists(), .exclude(),
.in bulk, etc.

92

7.7: Transactions

Modify Data .update() 3

Delete Data .delete() 3

Table 7.1: When to Use Transactions

Figure 7.2: Because no one loves ice cream quite like a database.

We also cover this in chapter 24, Finding and Reducing Bottlenecks, speciŀcally subsection subsec-
tion 24.2.4, ‘Switch ATOMIC REQUESTS to False.’

.....

TIP: Never Wrap Individual ORMMethod Calls

.

Django’s ORM actually relies on transactions internally to ensure consistency of data. For
instance, if an update affects multiple tables because of concrete inheritance, Django has that
wrapped up in transactions.

Ļerefore, it is never useful to wrap an individual ORM method [.create(), .update(),
.delete()] call in a transaction. Instead, use transactions when you are calling several ORM
methods in a view, function, or method.

7.7.3 django.http.StreamingHttpResponse and Transactions

If a view is returning django.http.StreamingHttpResponse, it’s impossible to handle trans-
action errors once the response has begun. If your project uses this response method then

93

Chapter 7: Queries and the Database Layer

ATOMIC REQUESTS should do one of the following:

..
1 Set ATOMIC REQUESTS to Django’s default, which is False. Ļen you can use the techniques

explored in subsection 7.7.2. Or...
..
2 Wrap the view in the django.db.transaction.non atomic requests decorator.

Keep in mind that you can use ATOMIC REQUESTS with a streaming response, but the transaction
will only apply to the view itself. If the generation of the response stream triggers additional SQL
queries, they will be made in autocommit mode. Hopefully generating a response doesn’t trigger
database writes...

7.7.4 Transactions in MySQL

If the database being used is MySQL, transactions may not be supported depending on your choice
of table type such as InnoDB or MyISAM. If transactions are not supported, Django will always
function in autocommit mode, regardless of ATOMIC REQUESTS or code written to support transac-
tions. For more information, we recommend reading the following articles:

ä http://2scoops.co/1.8-transactions-in-mysql
ä http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html

7.7.5 Django ORM Transaction Resources

ä https://docs.djangoproject.com/en/1.8/topics/db/transactions/ Django’s
documentation on transactions.

ä Real Python has a great tutorial on the subject of transactions.
https://realpython.com/blog/python/transaction-management-with-django-1-6/

7.8 Summary

In this chapter we went over different ways to query a project’s persistent data. Now that we know
how to store data, let’s begin to display it. Starting with the next chapter we’re diving into views!

94

http://2scoops.co/1.8-transactions-in-mysql
http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html
https://docs.djangoproject.com/en/1.8/topics/db/transactions/
https://realpython.com/blog/python/transaction-management-with-django-1-6/

8 | Function- and Class-Based Views

Both function-based views (FBVs) and class-based views (CBVs) are in Django 1.8. We recommend
that you understand how to use both types of views.

.....

TIP: Historical Note

.

During the release of Django 1.5, there was a bit of confusion about FBVs due to the wording
of the release notes and incorrect information on some blog posts. However, no plans ever
existed for removing function-based views from Django and function-based views are still in
Django.

8.1 When to Use FBVs or CBVs

Whenever you implement a view, think about whether it would make more sense to implement as a
FBV or as a CBV. Some views are best implemented as CBVs, and others are best implemented as
FBVs.

If you aren’t sure which method to choose, on the next page we’ve included a łow chart that might
be of assistance.

95

Chapter 8: Function- and Class-Based Views

Figure 8.1: Should you use a FBV or a CBV? łow chart.

Ļis łowchart follows our preference for using CBVs over FBVs. We prefer to use CBVs for most
views, using FBVs to implement only the custom error views or complicated ones that would be a
pain to implement with CBVs.

.....

TIP: Alternative Approach - Staying With FBVs

.

Some developers prefer to err on the side of using FBVs for most views and CBVs only for
views that need to be subclassed. Ļat strategy is ŀne as well.

96

8.2: Keep View Logic Out of URLConfs

8.2 Keep View Logic Out of URLConfs

Requests are routed to views via URLConfs, in a module that is normally named urls.py. Per Django’s
URL design philosophy (http://2scoops.co/1.8-url-design), the coupling of views with
urls is loose, allows for inŀnite łexibility, and encourages best practices.

And yet, this is what Daniel feels like yelling every time he sees complex urls.py ŀles:

“I didn’t write J2EE XML and Zope ZCML conŀguration ŀles back in the day just so you
darn kids could stick logic into Django url modules!”

Remember that Django has a wonderfully simple way of deŀning URL routes. Like everything else
we bring up in this book, that simplicity is to be honored and respected. Ļe rules of thumb are
obvious:

..
1 Ļe views modules should contain view logic.
..
2 Ļe URL modules should contain URL logic.

Ever see code like this? Perhaps in the official Django tutorial?

..

BōŐ EŤōřŜŘő ȟ.Ș

from django.conf.urls import url
from django.views.generic import DetailView

from tastings.models import Tasting

urlpatterns = [
url(r"ˆ(?P<pk>\d+)/$",

DetailView.as_view(
model=Tasting,
template_name="tastings/detail.html"),

name="detail"),
url(r"ˆ(?P<pk>\d+)/results/$",

DetailView.as_view(
model=Tasting,
template_name="tastings/results.html"),

name="results"),
]

97

http://2scoops.co/1.8-url-design

Chapter 8: Function- and Class-Based Views

At a glance this code might seem okay, but we argue that it violates the Django design philosophies:

ä Loose coupling between views, urls, and models has been replaced with tight coupling, mean-
ing you can never reuse the view deŀnitions.

ä Don’t Repeat Yourself is violated by using the same/similar arguments repeatedly between
CBVs.

ä Inŀnite łexibility (for URLs) is destroyed. Class inheritance, the primary advantage of Class
Based Views, is impossible using this anti-pattern.

ä Lots of other issues: What happens when you have to add in authentication? And what about
authorization? Are you going to wrap each URLConf view with two or more decorators?
Putting your view code into your URLConfs quickly turns your URLConfs into an unmain-
tainable mess.

In fact, we’ve heard from developers that seeing CBVs deŀned in URLConfs this way was part of
why they steered clear of using them.

Alright, enough griping. We’ll show our preferences in the next section.

8.3 Stick to Loose Coupling in URLConfs

Figure 8.2: Loose coupling of chocolate chip cookie dough ice cream.

Here is how to create URLconfs that avoid the problems we mentioned on the previous page. First,
we write the views:

98

8.3: Stick to Loose Coupling in URLConfs

..

EŤōřŜŘő ȟ.Ș

tastings/views.py
from django.views.generic import ListView, DetailView, UpdateView
from django.core.urlresolvers import reverse

from .models import Tasting

class TasteListView(ListView):
model = Tasting

class TasteDetailView(DetailView):
model = Tasting

class TasteResultsView(TasteDetailView):
template_name = "tastings/results.html"

class TasteUpdateView(UpdateView):
model = Tasting

def get_success_url(self):
return reverse("tastings:detail",

kwargs={"pk": self.object.pk})

Ļen we deŀne the urls:

..

EŤōřŜŘő ȟ.ș

tastings/urls.py
from django.conf.urls import url

from . import views

urlpatterns = [
url(

regex=r"ˆ$",
view=views.TasteListView.as_view(),
name="list"

99

Chapter 8: Function- and Class-Based Views

..

),
url(

regex=r"ˆ(?P<pk>\d+)/$",
view=views.TasteDetailView.as_view(),
name="detail"

),
url(

regex=r"ˆ(?P<pk>\d+)/results/$",
view=views.TasteResultsView.as_view(),
name="results"

),
url(

regex=r"ˆ(?P<pk>\d+)/update/$",
view=views.TasteUpdateView.as_view(),
name="update"

)
]

Your ŀrst response to our version of this should go something like, “Are you sure this is a good idea?
You changed things to use two ŀles AND more lines of code! How is this better?”

Well, this is the way we do it. Here are some of the reasons we ŀnd it so useful:

ä Don’t Repeat Yourself : No argument or attribute is repeated between views.
ä Loose coupling: We’ve removed the model and template names from the URLConf because

views should be views and URLConfs should be URLConfs. We should be able to call our
views from one or more URLConfs, and our approach lets us do just that.

ä URLConfs should do one thing and do it well: Related to our previous bullet, our URLConf
is now focused primarily on just one thing: URL routing. We aren’t tracking down view logic
across both views and URLConfs, we just look in our views.

ä Our views beneŀt from being class-based: Our views, by having a formal deŀnition in the
views module, can inherit from other classes. Ļis means adding authentication, authoriza-
tion, new content formats, or any other business requirement tossed our way is much easier to
handle.

ä Inŀnite łexibility: Our views, by having a formal deŀnition in the views module, can imple-
ment their own custom logic.

100

8.4: Use URL Namespaces

8.3.1 What if We Aren't Using CBVs?

Ļe same rules apply.

We’ve encountered debugging nightmares of projects using FBVs with extensive URLConf hackery,
such as elaborate tricks with the ŀle attribute of Python modules combined with directory walking
and regular expressions to automagically create URLConfs. If that sounds painful, it was.

Keep logic out of URLConfs!

8.4 Use URL Namespaces

What URL namespaces do is provide an identiŀer for app-level and instance level namespaces. URL
namespaces are one of those things where on the surface they seem like they might not help much,
but once a developer begins using them they wonder why they didn’t use them already. We’ll sum up
using URL namespaces as follows:

Instead of writing URL names like tastings detail write them like tastings:detail.

Before we explain why this is so useful, we’ll provide an example of usage based on the app-level
URLConf code from example 8.2. In the root URLConf we would add:

..

EŤōřŜŘő ȟ.Ț

urls.py at root of project
urlpatterns += [

url(r'ˆtastings/', include('tastings.urls', namespace='tastings')),
]

To see this in action in a view, let’s take a look at a snippet of code from example 8.1:

..

EŤōřŜŘő ȟ.ț

tastings/views.py snippet
class TasteUpdateView(UpdateView):

model = Tasting

def get_success_url(self):

101

Chapter 8: Function- and Class-Based Views

..
return reverse("tastings:detail",

kwargs={"pk": self.object.pk})

See this in action in an HTML template:

..

EŤōřŜŘő ȟ.Ȝ

{% extends "base.html" %}

{% block title %}Tastings{% endblock title %}

{% block content %}

{% for taste in tastings %}

{{ taste.title }}
<small>

(update)
</small>

{% endfor %}

{% endblock content %}

Now that we understand how to implement URL namespaces, let’s cover why they are useful.

8.4.1 Makes for Shorter, More Obvious and Don't Repeat Yourself
URL Names

In example 8.2 what we don’t see are URL names like “tastings detail” and
“tastings results” that copy the model or app name. Instead there are simple, obvious
names like “detail” and “results”. Ļis greatly increases the legibility of apps, especially to newer
Django developers.

Also, who wants to type “tastings” or whatever an app is called so many extra times?

102

8.4: Use URL Namespaces

8.4.2 Increases Interoperability With Third-Party Libraries

One of the problems of writing URL names things like <myapp> detail is when app names col-
lide. While this might not be a problem with things like our tastings app, it’s certainly happened to
the authors with blog and contact applications. Fortunately, URL namespaces makes this easy to
resolve. Assuming that we have an existing contact app, but needed to add a second one, using URL
namespaces we could integrate them to our root URLConf like so:

..

EŤōřŜŘő ȟ.ȝ

urls.py at root of project
urlpatterns += [

url(r'ˆcontact/', include('contactmonger.urls',
namespace='contactmonger')),

url(r'ˆreport-problem/', include('contactapp.urls',
namespace='contactapp')),

]

Ļen work them into our templates doing the following:

..

EŤōřŜŘő ȟ.Ȟ

{% extends "base.html" %}
{% block title %}Contact{% endblock title %}
{% block content %}
<p>

Contact Us
</p>
<p>

Report a Problem
</p>
{% endblock content %}

103

Chapter 8: Function- and Class-Based Views

8.4.3 Easier Searches, Upgrades, and Refactors

Considering the prevalence of underscores in names for PEP 8-friendly frameworks like Django,
searching code or names like “tastings detail” can be challenging. When a result comes up, is
that for a view name, a URL name, or something else?

On the other hand, searching for “tastings:detail” makes for obvious search result responses.
Ļis can and has made upgrades and refactoring of apps and projects easier, including when inter-
acting with new third-party libraries.

8.4.4 Allows for More App and Template Reverse Tricks

We’re not going to cover any tricks here, because we feel such things are almost never justiŀed. In fact,
they usually just add to the complexity of a project without adding any tangible beneŀt. However,
there are a couple use cases worth mentioning:

ä Development tools like django-debug-toolbar that perform debug-level introspection.
ä Projects that allow end-users to add “modules” to change or alter the behavior of their account.

While developers can use either of these to justify the use of creative URL namespaces tricks, as
always, we recommend trying the simplest approach ŀrst.

8.5 Don't Reference Views as Strings in URLConfs

Before release 1.8 Django tutorials often instructed that referencing views in urls.py should be done
with strings:

..

BōŐ EŤōřŜŘő ȟ.ș

DON'T DO THIS!
polls/urls.py
from django.conf.urls import patterns, url

urlpatterns = patterns('',
Defining the view as a string
url(r'ˆ$', 'polls.views.index', name='index'),

)

104

8.6: Try to Keep Business Logic Out of Views

Ļere are a couple problems with this approach.

..
1 Django magically adds the view function/class. Ļe problem with magic features like this is

that when a view has an error, the abstraction required to perform said magic makes the error
harder to debug.

..
2 Instructors have to explain to beginners the need for an empty string at the beginning of the

urlpatterns variable.

Here is the correct way to deŀne views in urls.py:

..

EŤōřŜŘő ȟ.ȟ

polls/urls.py
from django.conf.urls import url

from . import views

urlpatterns = [
Defining the views explicitly
url(r'ˆ$', views.index, name='index'),

]

References:

ä Old Way: http://www.2scoops.co/7E/info/
ä New Way: http://www.2scoops.co/1.8-django-conf-urls-patterns/

8.6 Try to Keep Business Logic Out of Views

In the past, we’ve placed an amazing amount of sophisticated business logic into our views. Unfortu-
nately, when it became time to generate PDFs, add a REST API, or serve out other formats, placing
so much logic in our views made it much harder to deliver new formats.

Ļis is where our preferred approach of model methods, manager methods, or general utility helper
functions come into play. When business logic is placed into easily reusable components, and called
from within views, it makes extending components of the project to do more things much easier.

105

http://www.2scoops.co/7E/info/
http://www.2scoops.co/1.8-django-conf-urls-patterns/

Chapter 8: Function- and Class-Based Views

Since it’s not always possible to do this at the beginning of a project, our rule of thumb has become
whenever we ŀnd ourselves duplicating business logic instead of Django boilerplate between views,
it’s time to move code out of the view.

8.7 Django Views Are Functions

When it comes down to it, every Django view is a function. Ļis function takes an HTTP request
object and turns it into a HTTP response object. If you know anything about basic mathematical
functions, this process of change should look very familiar.

..

EŤōřŜŘő ȟ.Ƞ

Django FBV as a function
HttpResponse = view(HttpRequest)

Deciphered into basic math (remember functions from algebra?)
y = f(x)

... and then translated into a CBV example
HttpResponse = View.as_view()(HttpRequest)

Ļis concept of change serves as a foundation for all sorts of things you can do with Django views,
be they function- or class-based.

.....

TIP: Class-Based Views Are Actually Called as Functions

.

Django’s CBVs appear to be very different than FBVs. However, the View.as view()
classmethod called in URLConfs is actually returning a callable instance of the view. In
other words, a callback function that handles the request/response cycle in exactly the same
manner as a function-based view!

8.7.1 The Simplest Views

With this in mind, it’s good to remember the simplest possible views that can be created with Django:

106

8.8: Don’t Use locals() as Views Context

..

EŤōřŜŘő ȟ.Șȗ

simplest_views.py
from django.http import HttpResponse
from django.views.generic import View

The simplest FBV
def simplest_view(request):

Business logic goes here
return HttpResponse("FBV")

The simplest CBV
class SimplestView(View):

def get(self, request, *args, **kwargs):
Business logic goes here
return HttpResponse("CBV")

Why is this useful to know?

ä Sometimes we need one-off views that do tiny things.
ä Understanding the simplest Django views means we better understand what they are really

doing.
ä Illustrates how Django FBVs are HTTP method neutral, but Django CBVs require speciŀc

HTTP method declaration.

8.8 Don't Use locals() as Views Context

Returning locals() from any callable is an anti-pattern. While it seems like a handy shortcut, in
fact it is a time consuming nightmare. Let’s use an example to explore why. Here is a view following
this anti-pattern:

..

BōŐ EŤōřŜŘő ȟ.Ț

def ice_cream_store_display(request, store_id):
store = get_object_or_404(Store, id=store_id)
date = timezone.now()
return render(request, 'melted_ice_cream_report.html', locals())

107

Chapter 8: Function- and Class-Based Views

On the surface everything seems ŀne.

However, as we’ve gone from an explicit design to implicit anti-pattern has made this simple view
annoying to maintain. Speciŀcally that we don’t know what the view is supposed to return. Ļis
becomes an issue because changing any of the variables returned by the view is not immediately
apparent:

..

BōŐ EŤōřŜŘő ȟ.ț

def ice_cream_store_display(request, store_id):
store = get_object_or_404(Store, id=store_id)
now = timezone.now()
return render(request, 'melted_ice_cream_report.html', locals())

How long did it take you to spot the different between Bad Example 8.3 and Bad Example 8.4? Ļis
was a simple example, imagine a more complicated one with a large template. Ļis is why we strongly
advocate use of explicit context in views:

..

EŤōřŜŘő ȟ.ȘȘ

def ice_cream_store_display(request, store_id):
return render(request, 'melted_ice_cream_report.html', dict{

'store': get_object_or_404(Store, id=store_id),
'now': timezone.now()

})

ä Martin Aspelli’s Reasoning: 2scoops.co/django-views-and-locals-antipattern

8.9 Summary

Ļis chapter started with discussing when to use either FBVs or CBVs, and matched our own pref-
erence for the latter. In fact, in the next chapter we’ll start to dig deep into the functionality that can
be exploited when using FBVs, followed up by a chapter on CBVs.

We also discussed keeping view logic out of the URLConfs. We feel view code belongs in the apps’
views.py modules, and URLConf code belongs in the apps’ urls.py modules. Adhering to this prac-
tice allows for object inheritance when used with class-based views, easier code reuse, and greater
łexibility of design.

108

http://www.2scoops.co/django-views-and-locals-antipattern/

9 | Best Practices for Function-Based
Views

In Django since the beginning of the project, function-based views are in frequent use by developers
around the world. While class-based views have risen in usage, the simplicity of using a function
is appealing to both new and experienced developers alike. While the authors are in the camp of
preferring CBVs, we work on projects that use FBVs and here are some patterns we’ve grown to
enjoy.

9.1 Advantages of FBVs

Ļe simplicity of FBVs comes at the expense of code reuse: FBVs don’t have the same ability to
inherit from superclasses the way that CBVs do. Ļey do have the advantage of being more obviously
functional in nature, which lends itself to a number of interesting strategies.

We follow these guidelines when writing FBVs:

ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when possible,

or in forms if you must.
ä Keep your views simple.
ä Use them to write custom 403, 404, and 500 error handlers.
ä Complex nested-if blocks are to be avoided.

109

Chapter 9: Best Practices for Function-Based Views

9.2 Passing the HttpRequest Object

Ļere are times where we want to reuse code in views, but not tie it into global actions such as
middleware or context processors. Starting in the introduction of this book, we advised creating
utility functions that can be used across the project.

For many utility functions, we are taking an attribute or attributes from the
django.http.HttpRequest (or HttpRequest for short) object and gathering data or per-
forming operations. What we’ve found, is by having the request object itself as a primary argument,
we have simpler arguments on more methods. Ļis means less cognitive overload of managing
function/method arguments: just pass in the HttpRequest object!

..

EŤōřŜŘő Ƞ.Ș

sprinkles/utils.py

from django.core.exceptions import PermissionDenied

def check_sprinkle_rights(request):
if request.user.can_sprinkle or request.user.is_staff:

return request

Return a HTTP 403 back to the user
raise PermissionDenied

Ļe check sprinkle rights() function does a quick check against the rights of the user, raising a
django.core.exceptions.PermissionDenied exception, which triggers a custom HTTP 403
view as we describe in subsection 29.4.3.

You’ll note that we return back a HttpRequest object rather than an arbitrary value or even a None
object. We do this because as Python is a dynamically typed language, we can attach additional
attributes to the HttpRequest. For example:

..

EŤōřŜŘő Ƞ.ș

sprinkles/utils.py

from django.core.exceptions import PermissionDenied

110

9.2: Passing the HttpRequest Object

..

def check_sprinkles(request):
if request.user.can_sprinkle or request.user.is_staff:

By adding this value here it means our display templates
can be more generic. We don't need to have
{% if request.user.can_sprinkle or request.user.is_staff %}
instead just using
{% if request.can_sprinkle %}
request.can_sprinkle = True
return request

Return a HTTP 403 back to the user
raise PermissionDenied

Ļere’s another reason, which we’ll cover shortly. In the meantime, let’s demonstrate this code in
action:

..

EŤōřŜŘő Ƞ.Ț

sprinkles/views.py

from django.shortcuts import get_object_or_404
from django.shortcuts import render

from .utils import check_sprinkles
from .models import Sprinkle

def sprinkle_list(request):
"""Standard list view"""

request = check_sprinkles(request)

return render(request,
"sprinkles/sprinkle_list.html",
{"sprinkles": Sprinkle.objects.all()})

def sprinkle_detail(request, pk):
"""Standard detail view"""

111

Chapter 9: Best Practices for Function-Based Views

..

request = check_sprinkles(request)

sprinkle = get_object_or_404(Sprinkle, pk=pk)

return render(request, "sprinkles/sprinkle_detail.html",
{"sprinkle": sprinkle})

def sprinkle_preview(request):
""""preview of new sprinkle, but without the

check_sprinkles function being used.
"""
sprinkle = Sprinkle.objects.all()
return render(request,

"sprinkles/sprinkle_preview.html",
{"sprinkle": sprinkle})

Another good feature about this approach is that it’s trivial to integrate into class-based views:

..

EŤōřŜŘő Ƞ.ț

sprinkles/views.py
from django.views.generic import DetailView

from .utils import check_sprinkles
from .models import Sprinkle

class SprinkleDetail(DetailView):
"""Standard detail view"""

model = Sprinkle

def dispatch(self, request, *args, **kwargs):
request = check_sprinkles(request)
return super(SprinkleDetail, self).dispatch(

request, *args, **kwargs)

112

9.3: Decorators Are Sweet

.....

TIP: Specific Function Arguments Have Their Place

.

Ļe downside to single argument functions is that speciŀc function arguments like ‘pk’, ‘łavor’
or ‘text’ make it easier to understand the purpose of a function at a glance. In other words,
try to use this technique for actions that are as generic as possible.

Since we’re repeatedly reusing functions inside functions, wouldn’t it be nice to easily recognize when
this is being done? Ļis is when we bring decorators into play.

9.3 Decorators Are Sweet

For once, this isn’t about ice cream, it’s about code! In computer science parlance, syntactic sugar is
a syntax added to a programming language in order to make things easier to read or to express. In
Python, decorators are a feature added not out of necessity, but in order to make code cleaner and
sweeter for humans to read. So yes, Decorators Are Sweet.

When we combine the power of simple functions with the syntactic sugar of decorators, we get handy,
reusable tools like the extremely useful to the point of being ubiquitous
django.contrib.auth.decorators.login required decorator.

Here’s a sample decorator template for use in function-based views:

..

EŤōřŜŘő Ƞ.Ȝ

simple decorator template
import functools

def decorator(view_func):
@functools.wraps(view_func)
def new_view_func(request, *args, **kwargs):

You can modify the request (HttpRequest) object here.
response = view_func(request, *args, **kwargs)
You can modify the response (HttpResponse) object here.
return response

return new_view_func

113

Chapter 9: Best Practices for Function-Based Views

Ļat might not make too much sense, so we’ll go through it step-by-step, using in-line code com-
ments to clarify what we are doing. First, let’s modify the decorator template from the previous
example to match our needs:

..

EŤōřŜŘő Ƞ.ȝ

sprinkles/decorators.py
from functools import wraps

from . import utils

based off the decorator template from Example 8.5
def check_sprinkles(view_func):

"""Check if a user can add sprinkles"""
@wraps(view_func)
def new_view_func(request, *args, **kwargs):

Act on the request object with utils.can_sprinkle()
request = utils.can_sprinkle(request)

Call the view function
response = view_func(request, *args, **kwargs)

Return the HttpResponse object
return response

return new_view_func

Ļen we attach it to the function thus:

..

EŤōřŜŘő Ƞ.Ȟ

views.py
from django.shortcuts import get_object_or_404, render

from .decorators import check_sprinkles
from .models import Sprinkle

Attach the decorator to the view
@check_sprinkles
def sprinkle_detail(request, pk):

114

9.3: Decorators Are Sweet

..

"""Standard detail view"""

sprinkle = get_object_or_404(Sprinkle, pk=pk)

return render(request, "sprinkles/sprinkle_detail.html",
{"sprinkle": sprinkle})

Figure 9.1: If you look at sprinkles closely, you’ll see that they’re Python decorators.

.....

TIP: What About functools.wraps()?

.

Astute readers may have noticed that our decorator examples used the functools.wraps()
decorator function from the Python standard library. Ļis is a convenience tool that copies
over metadata including critical data like docstrings to the newly decorated function. It’s not
necessary, but it makes project maintenance much easier.

9.3.1 Be Conservative With Decorators

As with any powerful tool, decorators can be used the wrong way. Too many decorators can create
their own form of obfuscation, making even complex class-based view hierarchies seem simple in
comparison. When using decorators, establish a limit of how many decorators can be set on a view
and stick with it.

Video on the subject: http://www.2scoops.co/how-to-write-obfuscated-python/

115

http://www.2scoops.co/how-to-write-obfuscated-python/

Chapter 9: Best Practices for Function-Based Views

9.3.2 Additional Resources on Decorators

ä Decorators Explained: http://2scoops.co/decorators-explained
ä Decorators and Functional Python: http://2scoops.co/decorators-functional-python
ä Decorator Cheat Sheet by author Daniel Roy Greenfeld

http://2scoops.co/decorator-cheatsheet
ä “Appendix C: Useful Resources”, speciŀcally the section on “Useful Python Material”

9.4 Passing the HttpResponse Object

Just as with the HttpRequest object, we can also pass around the HttpResponse object from
function to function. Ļink of this as a selective Middleware.process request() method (see
http://2scoops.co/1.8-process-response).

Yes, this technique can be leveraged with decorators. See Example 8.5 which gives a hint as to how
this can be accomplished.

9.5 Summary

Function-based views are still alive and well in the Django world. If we remember that every func-
tion accepts a HttpRequest object and returns an HttpResponse object, we can use that to our
advantage. We can leverage in generic HttpRequest and HttpResponse altering functions, which
can also be used to construct decorator functions.

We’ll close this chapter by acknowledging that every lesson we’ve learned about function-based views
can be applied to what we begin to discuss next chapter, class-based views.

116

http://2scoops.co/decorators-explained
http://2scoops.co/decorators-functional-python
http://2scoops.co/decorator-cheatsheet
http://2scoops.co/1.8-process-response

10 | Best Practices for Class-Based
Views

Django provides a standard way to write class-based views (CBVs). In fact, as we mentioned in
previous chapters, a Django view is just a callable that accepts a request object and returns a re-
sponse. For function-based views (FBVs), the view function is that callable. For CBVs, the view
class provides an as view() class method that returns the callable. Ļis mechanism is implemented
in django.views.generic.View. All CBVs should inherit from that class, directly or indirectly.

Django also provides a series of generic class-based views (GCBVs) that implement common patterns
found in most web projects and illustrate the power of CBVs.

Shortly after the release of Django 1.3, due to the placement of all views, there was some confu-
sion between the general concept of CBVs because of the placement of all CBVs, including non-
generic views in django.views.generic. Ļese early problems have been addressed almost en-
tirely, thanks to improvements in the documentation, resources such as Marc Tamlyn and Charles
Denton’s ccbv.co.uk code inspector, and the advent of third party packages designed to expedite
CBV development.

.....

PACKAGE TIP: Filling the Missing Parts of Django GCBVs

.

Out of the box, Django does not provide critically important mixins for GCBVs, including
authentication. Ļe django-braces library addresses most of these issues. It provides a set of
clearly coded mixins that make Django GCBVs much easier and faster to implement. Ļe
next few chapters will demonstrate its mixins in various code examples.

117

ccbv.co.uk

Chapter 10: Best Practices for Class-Based Views

10.1 Guidelines When Working With CBVs

ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when possible,

or in forms if you must.
ä Keep your views simple.
ä Don’t use CBVs to write custom 403, 404, and 500 error handlers. Use FBVs instead.
ä Keep your mixins simpler.

10.2 Using Mixins With CBVs

Ļink of mixins in programming along the lines of mixins in ice cream: you can enhance any ice
cream łavor by mixing in crunchy candy bits, sliced fruit, or even bacon.

Figure 10.1: Popular and unpopular mixins used in ice cream.

Soft serve ice cream greatly beneŀts from mixins: ordinary vanilla soft serve turns into birthday cake
ice cream when sprinkles, blue buttercream icing, and chunks of yellow cake are mixed in.

118

10.2: Using Mixins With CBVs

In programming, a mixin is a class that provides functionality to be inherited, but isn’t meant for
instantiation on its own. In programming languages with multiple inheritance, mixins can be used
to add enhanced functionality and behavior to classes.

We can use the power of mixins to compose our own view classes for our Django apps.

When using mixins to compose our own view classes, we recommend these rules of inheritance
provided by Kenneth Love. Ļe rules follow Python’s method resolution order, which in the most
simplistic deŀnition possible, proceeds from left to right:

..
1 Ļe base view classes provided by Django always go to the right.
..
2 Mixins go to the left of the base view.
..
3 Mixins should inherit from Python’s built-in object type.

Example of the rules in action:

..

EŤōřŜŘő Șȗ.Ș

from django.views.generic import TemplateView

class FreshFruitMixin(object):

def get_context_data(self, **kwargs):
context = super(FreshFruitMixin,

self).get_context_data(**kwargs)
context["has_fresh_fruit"] = True
return context

class FruityFlavorView(FreshFruitMixin, TemplateView):
template_name = "fruity_flavor.html"

In our rather silly example, the FruityFlavorView class inherits from both FreshFruitMixin
and TemplateView.

Since TemplateView is the base view class provided by Django, it goes on the far right (rule 1),
and to its left we place the FreshFruitMixin (rule 2). Ļis way we know that our methods and
properties will execute correctly.

Finally, FreshFruitMixin inherits from object (rule 3).

119

Chapter 10: Best Practices for Class-Based Views

10.3 Which Django GCBV Should Be Used for What
Task?

Ļe power of generic class-based views comes at the expense of simplicity: GCBVs come with a
complex inheritance chain that can have up to eight superclasses on import. Trying to work out
exactly which view to use or which method to customize can be very challenging at times.

To mitigate this challenge, here’s a handy chart listing the name and purpose of each Django CBV.
All views listed here are assumed to be preŀxed with django.views.generic.

Name Purpose Two Scoops Example

View Base view or handy view that can be used for
anything.

See section 10.6, `Using Just
django.views.generic.View'.

RedirectView Redirect user to another URL Send users who visit `/log-in/' to
`/login/'.

TemplateView Display a Django HTML template. The `/about/' page of our site.

ListView List objects List of ice cream flavors.

DetailView Display an object Details on an ice cream flavor.

FormView Submit a form The site's contact or email form.

CreateView Create an object Create a new ice cream flavor.

UpdateView Update an object Update an existing ice cream flavor.

DeleteView Delete an object Delete an unpleasant ice cream flavor
like Vanilla Steak.

Generic date views For display of objects that occur over a range
of time.

Blogs are a common reason to use
them. For Two Scoops, we could create
a public history of when flavors have
been added to the database.

Table 10.1: Django CBV Usage Table

120

10.4: General Tips for Django CBVs

.....

TIP: The Three Schools of Django CBV/GCBV Usage

.

We’ve found that there are three major schools of thought around CBV and GCBV usage.
Ļey are:

Ļe School of “Use all the generic views”!
Ļis school of thought is based on the idea that since Django provides functionality to reduce
your workload, why not use that functionality? We tend to belong to this school of thought,
and have used it to great success, rapidly building and then maintaining a number of projects.

Ļe School of “Just use django.views.generic.View”
Ļis school of thought is based on the idea that the base Django CBV does just enough and
is ‘the True CBV, everything else is a Generic CBV’. In the past year, we’ve found this can
be a really useful approach for tricky tasks for which the resource-based approach of “Use all
the views” breaks down. We’ll cover some use cases for it in this chapter.

Ļe School of “Avoid them unless you’re actually subclassing views”
Jacob Kaplan-Moss says, “My general advice is to start with function views since they’re
easier to read and understand, and only use CBVs where you need them. Where do you
need them? Any place where you need a fair chunk of code to be reused among multiple
views.”

We generally belong to the ŀrst school, but it’s good for you to know that there’s no real
consensus on best practices here.

10.4 General Tips for Django CBVs

Ļis section covers useful tips for all or many Django CBV and GCBV implementations. We’ve
found they expedite writing of views, templates, and their their tests. Ļese techniques will work with
Class-Based Views, Generic Class-Based Views, and even the views provided by django-vanilla-
views.

121

Chapter 10: Best Practices for Class-Based Views

10.4.1 Constraining Django CBV/GCBV Access to Authenticated
Users

While the Django CBV documentation gives a helpful working example of using the
django.contrib.auth.decorators.login required decorator with a CBV, the example
contains a lot of boilerplate cruft: http://2scoops.co/1.8-login-required-cbv

Fortunately, django-braces provides a ready implementation of a LoginRequiredMixin that you
can attach in moments. For example, we could do the following in all of the Django GCBVs that
we’ve written so far:

..

EŤōřŜŘő Șȗ.ș

flavors/views.py
from django.views.generic import DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorDetailView(LoginRequiredMixin, DetailView):
model = Flavor

.....

TIP: Don't Forget the GCBV Mixin Order!

.

Remember that:
ä LoginRequiredMixin must always go on the far left side.
ä Ļe base view class must always go on the far right side.

If you forget and switch the order, you will get broken or unpredictable results.

10.4.2 Performing Custom Actions on Views With Valid Forms

When you need to perform a custom action on a view with a valid form, the form valid()method
is where the GCBV workłow sends the request.

122

http://2scoops.co/1.8-login-required-cbv

10.4: General Tips for Django CBVs

..

EŤōřŜŘő Șȗ.Ț

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

def form_valid(self, form):
Do custom logic here
return super(FlavorCreateView, self).form_valid(form)

To perform custom logic on form data that has already been validated, simply
add the logic to form valid(). Ļe return value of form valid() should be a
django.http.HttpResponseRedirect.

10.4.3 Performing Custom Actions on Views With Invalid Forms

When you need to perform a custom action on a view with an invalid form, the form invalid()
method is where the Django GCBV workłow sends the request. Ļis method should return a
django.http.HttpResponse.

..

EŤōřŜŘő Șȗ.ț

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

123

Chapter 10: Best Practices for Class-Based Views

..
def form_invalid(self, form):

Do custom logic here
return super(FlavorCreateView, self).form_invalid(form)

Just as you can add logic to form valid(), you can also add logic to form invalid().

You’ll see an example of overriding both of these methods in chapter 11, Form Fundamentals, sub-
section 11.5.1, ‘ModelForm Data Is Saved to the Form, Ļen the Model Instance.’

Figure 10.2: Ļe other CBV: class-based vanilla ice cream.

10.4.4 Using the View Object

If you are using class-based views for rendering content, consider using the view object itself to
provide access to properties and methods that can be called by other method and properties. Ļey
can also be called from templates. For example:

124

10.4: General Tips for Django CBVs

..

EŤōřŜŘő Șȗ.Ȝ

from django.utils.functional import cached_property
from django.views.generic import UpdateView, TemplateView

from braces.views import LoginRequiredMixin

from .models import Flavor
from .tasks import update_users_who_favorited

class FavoriteMixin(object):

@cached_property
def likes_and_favorites(self):

"""Returns a dictionary of likes and favorites"""
likes = self.object.likes()
favorites = self.object.favorites()
return {

"likes": likes,
"favorites": favorites,
"favorites_count": favorites.count(),

}

class FlavorUpdateView(LoginRequiredMixin, FavoriteMixin, UpdateView):
model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

def form_valid(self, form):
update_users_who_favorited(

instance=self.object,
favorites=self.likes_and_favorites['favorites']

)
return super(FlavorCreateView, self).form_valid(form)

class FlavorDetailView(LoginRequiredMixin, FavoriteMixin, TemplateView):
model = Flavor

125

Chapter 10: Best Practices for Class-Based Views

Ļe nice thing about this is the various łavors/ app templates can now access this property:

..

EŤōřŜŘő Șȗ.ȝ

{# flavors/base.html #}
{% extends "base.html" %}

{% block likes_and_favorites %}

Likes: {{ view.likes_and_favorites.likes }}
Favorites: {{ view.likes_and_favorites.favorites_count }}

{% endblock likes_and_favorites %}

10.5 How GCBVs and Forms Fit Together

A common source of confusion with GCBVs is their usage with Django forms.

Using our favorite example of the ice cream łavor tracking app, let’s chart out a couple of examples
of how form-related views might ŀt together.

First, let’s deŀne a łavor model to use in this section’s view examples:

..

EŤōřŜŘő Șȗ.Ȟ

flavors/models.py
from django.core.urlresolvers import reverse
from django.db import models

STATUS = (
(0, "zero"),
(1, "one"),

)

class Flavor(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField(unique=True)
scoops_remaining = models.IntegerField(default=0, choices=STATUS)

126

10.5: How GCBVs and Forms Fit Together

..
def get_absolute_url(self):

return reverse("flavors:detail", kwargs={"slug": self.slug})

Now, let’s explore some common Django form scenarios that most Django users run into at one
point or another.

10.5.1 Views + ModelForm Example

Ļis is the simplest and most common Django form scenario. Typically when you create a model,
you want to be able to add new records and update existing records that correspond to the model.

In this example, we’ll show you how to construct a set of views that will create, update and display
Flavor records. We’ll also demonstrate how to provide conŀrmation of changes.

Here we have the following views:

..
1 FlavorCreateView corresponds to a form for adding new łavors.
..
2 FlavorUpdateView corresponds to a form for editing existing łavors.
..
3 FlavorDetailView corresponds to the conŀrmation page for both łavor creation and łavor

updates.

To visualize our views:

Figure 10.3: Views + ModelForm Flow

127

Chapter 10: Best Practices for Class-Based Views

Note that we stick as closely as possible to Django naming conventions. FlavorCreateView sub-
classes Django’s CreateView, FlavorUpdateView subclasses Django’s UpdateView, and Fla-
vorDetailView subclasses Django’s DetailView.

Writing these views is easy, since it’s mostly a matter of using what Django gives us:

..

EŤōřŜŘő Șȗ.ȟ

flavors/views.py
from django.views.generic import CreateView, UpdateView, DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

class FlavorDetailView(DetailView):
model = Flavor

Simple at ŀrst glance, right? We accomplish so much with just a little bit of code!

But wait, there’s a catch. If we wire these views into a urls.py module and create the necessary tem-
plates, we’ll uncover a problem:

Ļe FlavorDetailView is not a conŀrmation page.

For now, that statement is correct. Fortunately, we can ŀx it quickly with a few modiŀcations to
existing views and templates.

Ļe ŀrst step in the ŀx is to use django.contrib.messages to inform the user visiting the Fla-
vorDetailView that they just added or updated the łavor.

128

10.5: How GCBVs and Forms Fit Together

We’ll need to override the FlavorCreateView.form valid() and FlavorUpdate-
View.form valid() methods. We can do this conveniently for both views with a Flavo-
rActionMixin.

For the conŀrmation page ŀx, we change łavors/views.py to contain the following:

..

EŤōřŜŘő Șȗ.Ƞ

flavors/views.py

from django.contrib import messages
from django.views.generic import CreateView, UpdateView, DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorActionMixin(object):

fields = ('title', 'slug', 'scoops_remaining')

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor
success_msg = "Flavor created!"

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

model = Flavor
success_msg = "Flavor updated!"

129

Chapter 10: Best Practices for Class-Based Views

..
class FlavorDetailView(DetailView):

model = Flavor

Earlier in this chapter, we covered a simpler example of how to override form valid() within a
GCBV. Here, we reuse a similar form valid() override method by creating a mixin to inherit
from in multiple views.

Now we’re using Django’s messages framework to display conŀrmation messages to the user upon
every successful add or edit. We deŀne a FlavorActionMixin whose job is to queue up a conŀr-
mation message corresponding to the action performed in a view.

.....

TIP: Mixins Should Inherit From Object

.

Please take notice that the FlavorActionMixin inherits from Python’s object type rather
than a pre-existing mixin or view. It’s important that mixins have as shallow inheritance chain
as possible. Simplicity is a virtue!

After a łavor is created or updated, a list of messages is passed to the context of the FlavorDe-
tailView. We can see these messages if we add the following code to the views’ template and then
create or update a łavor:

..

EŤōřŜŘő Șȗ.Șȗ

{# templates/flavors/flavor_detail.html #}
{% if messages %}

<ul class="messages">
{% for message in messages %}
<li id="message_{{ forloop.counter }}"

{% if message.tags %} class="{{ message.tags }}"
{% endif %}>

{{ message }}

{% endfor %}

{% endif %}

130

10.5: How GCBVs and Forms Fit Together

.....

TIP: Reuse the Messages Template Code!

.

It is common practice to put the above code into your project’s base HTML template. Doing
this allows message support for templates in your project.

To recap, this example demonstrated yet again how to override the form valid()method, incorpo-
rate this into a mixin, how to incorporate multiple mixins into a view, and gave a quick introduction
to the very useful django.contrib.messages framework.

10.5.2 Views + Form Example

Sometimes you want to use a Django Form rather than a ModelForm. Search forms are a particularly
good use case for this, but you’ll run into other scenarios where this is true as well.

In this example, we’ll create a simple łavor search form. Ļis involves creating a HTML form that
doesn’t modify any łavor data. Ļe form’s action will query the ORM, and the records found will be
listed on a search results page.

Our intention is that when using our łavor search page, if users do a łavor search for “Dough”,
they should be sent to a page listing ice cream łavors like “Chocolate Chip Cookie Dough,” “Fudge
Brownie Dough,” “Peanut Butter Cookie Dough,” and other łavors containing the string “Dough”
in their title. Mmm, we deŀnitely want this feature in our web application.

Ļere are more complex ways to implement this, but for our simple use case, all we need is a single
view. We’ll use a FlavorListView for both the search page and the search results page.

Here’s an overview of our implementation:

Figure 10.4: Views + Form Flow

131

Chapter 10: Best Practices for Class-Based Views

In this scenario, we want to follow the standard internet convention for search pages, where ‘q’ is
used for the search query parameter. We also want to accept a GET request rather than a POST
request, which is unusual for forms but perfectly ŀne for this use case. Remember, this form doesn’t
add, edit, or delete objects, so we don’t need a POST request here.

To return matching search results based on the search query, we need to modify the standard queryset
supplied by the ListView. To do this, we override the ListView's get queryset() method.
We add the following code to łavors/views.py:

..

EŤōřŜŘő Șȗ.ȘȘ

from django.views.generic import ListView

from .models import Flavor

class FlavorListView(ListView):
model = Flavor

def get_queryset(self):
Fetch the queryset from the parent get_queryset
queryset = super(FlavorListView, self).get_queryset()

Get the q GET parameter
q = self.request.GET.get("q")
if q:

Return a filtered queryset
return queryset.filter(title__icontains=q)

Return the base queryset
return queryset

Now, instead of listing all of the łavors, we list only the łavors whose titles contain the search string.

As we mentioned, search forms are unusual in that unlike nearly every other HTML form they
specify a GET request in the HTML form. Ļis is because search forms are not changing data, but
simply retrieving information from the server. Ļe search form should look something like this:

..
EŤōřŜŘő Șȗ.Șș

{# templates/flavors/_flavor_search.html #}

132

10.6: Using Just django.views.generic.View

..

{% comment %}
Usage: {% include "flavors/_flavor_search.html" %}

{% endcomment %}
<form action="{% url "flavor_list" %}" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

.....

TIP: Specify the Form Target in Search Forms

.

We also take care to specify the URL in the form action, because we’ve found that search
forms are often included in several pages. Ļis is why we preŀx them with ‘ ’ and create them
in such a way as to be included in other templates.

Once we get past overriding the ListView's get queryset() method, the rest of this example
is just a simple HTML form. We like this kind of simplicity.

10.6 Using Just django.views.generic.View

It’s entirely possible to build a project just using django.views.generic.View for all the views.
It’s not as extreme as one might think. For example, if we look at the official Django documen-
tation’s introduction to class-based views (http://2scoops.co/1.8-using-cbvs), we can see
the approach is very close to how function-based views are written. In fact, we highlighted this two
chapters ago in subsection 8.7.1 ‘Ļe Simplest Views’ because it’s important.

Imagine instead of writing function-based views with nested-ifs representing different HTTP meth-
ods or class-based views where the HTTP methods are hidden behind get context data() and
form valid() methods, they are readily accessible to developers. Imagine something like:

..

EŤōřŜŘő Șȗ.ȘȚ

from django.shortcuts import get_object_or_404
from django.shortcuts import render, redirect
from django.views.generic import View

133

http://2scoops.co/1.8-using-cbvs

Chapter 10: Best Practices for Class-Based Views

..

from braces.views import LoginRequiredMixin

from .forms import FlavorForm
from .models import Flavor

class FlavorView(LoginRequiredMixin, View):

def get(self, request, *args, **kwargs):
Handles display of the Flavor object
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])
return render(request,

"flavors/flavor_detail.html",
{"flavor": flavor}

)

def post(self, request, *args, **kwargs):
Handles updates of the Flavor object
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])
form = FlavorForm(request.POST)
if form.is_valid():

form.save()
return redirect("flavors:detail", flavor.slug)

While we can do this in a function-based view, it can be argued that the GET/POST method dec-
larations within the FlavorView are easier to read than the traditional “if request.method ==
...” conditions. In addition, since the inheritance chain is so shallow, it means using mixins doesn’t
threaten us with cognitive overload.

What we ŀnd really useful, even on projects which use a lot of generic class-based views, is using
the django.views.generic.View class with a GET method for displaying JSON, PDF or other
non-HTML content. All the tricks that we’ve used for rendering CSV, Excel, and PDF ŀles in
function-based views apply when using the GET method. For example:

..
EŤōřŜŘő Șȗ.Șț

from django.http import HttpResponse
from django.shortcuts import get_object_or_404

134

10.7: Additional Resources

..

from django.views.generic import View

from braces.views import LoginRequiredMixin

from .models import Flavor
from .reports import make_flavor_pdf

class PDFFlavorView(LoginRequiredMixin, View):

def get(self, request, *args, **kwargs):
Get the flavor
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])

create the response
response = HttpResponse(content_type='application/pdf')

generate the PDF stream and attach to the response
response = make_flavor_pdf(response, flavor)

return response

Ļis is a pretty straight-forward example, but if we have to leverage more mixins and deal with more
custom logic, the simplicity of django.views.generic.Viewmakes it much easier than the more
heavyweight views. In essence, we get all the advantages of function-based views combined with the
object-oriented power that CBVs gave us starting with Django 1.3.

10.7 Additional Resources

ä http://2scoops.co/1.8-topics-class-based-views
ä http://2scoops.co/1.8-cbv-generic-display
ä http://2scoops.co/1.8-cbv-generic-editing
ä http://2scoops.co/1.8-cbv-mixins
ä http://2scoops.co/1.8-ref-class-based-views
ä Ļe GCBV inspector at http://ccbv.co.uk
ä www.python.org/download/releases/2.3/mro/

135

http://2scoops.co/1.8-topics-class-based-views
http://2scoops.co/1.8-cbv-generic-display
http://2scoops.co/1.8-cbv-generic-editing
http://2scoops.co/1.8-cbv-mixins
http://2scoops.co/1.8-ref-class-based-views
http://ccbv.co.uk
www.python.org/download/releases/2.3/mro/

Chapter 10: Best Practices for Class-Based Views

ä http://pydanny.com/tag/class-based-views.html

.....

PACKAGE TIP: Other Useful CBV Libraries

.

ä django-extra-views Another great CBV library, django-extra-views covers the cases
that django-braces does not.

ä django-vanilla-views A very interesting library that provides all the power of classic
Django GCBVs in a vastly simpliŀed, easier-to-use package. Works great in combi-
nation with django-braces.

10.8 Summary

Ļis chapter covered:

ä Using mixins with CBVs
ä Which Django CBV should be used for which task
ä General tips for CBV usage
ä Connecting CBVs to forms
ä Using the base django.views.generic.View

Ļe next chapter explores common CBV/form patterns. Knowledge of these are helpful to have in
your developer toolbox.

136

http://pydanny.com/tag/class-based-views.html

11 | Form Fundamentals

100% of Django projects should use Forms.
95% of Django projects should use ModelForms.
91% of all Django projects use ModelForms.
80% of ModelForms require trivial logic.
20% of ModelForms require complicated logic.

– pydanny made-up statistics™

Django’s forms are really powerful, and a knowing how to use them anytime data is coming from
outside your application is part of keeping your data clean.

Ļere are edge cases that can cause a bit of anguish. If you understand the structure of how forms are
composed and how to call them, most edge cases can be readily overcome.

Ļe most important thing to remember about Django Forms is they should be used to validate all
incoming data.

11.1 Validate All Incoming Data With Django Forms

Django’s forms are a wonderful framework designed to validate Python dictionaries. While most
of the time we use them to validate incoming HTTP requests containing POST, there is nothing
limiting them to be used just in this manner.

For example, let’s say we have a Django app that updates its model via CSV ŀles fetched from another
project. To handle this sort of thing, it’s not uncommon to see code like this (albeit in not as simplistic
an example):

137

Chapter 11: Form Fundamentals

..

BōŐ EŤōřŜŘő ȘȘ.Ș

import csv
import StringIO

from .models import Purchase

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)
records_added = 0

Generate a dict per row, with the first CSV row being the keys
for row in csv.DictReader(rows, delimiter=","):

DON'T DO THIS: Tossing unvalidated data into your model.
Purchase.objects.create(**row)
records_added += 1

return records_added

In fact, what you don’t see is that we’re not checking to see if sellers, stored as a string in the Pur-
chasemodel, are actually valid sellers. We could add validation code to our add csv purchases()
function, but let’s face it, keeping complex validation code understandable as requirements and data
changes over time is hard.

A better approach is to validate the incoming data with a Django Form like so:

..

EŤōřŜŘő ȘȘ.Ș

import csv
import StringIO

from django import forms

from .models import Purchase, Seller

class PurchaseForm(forms.ModelForm):

class Meta:

138

11.1: Validate All Incoming Data With Django Forms

..

model = Purchase

def clean_seller(self):
seller = self.cleaned_data["seller"]
try:

Seller.objects.get(name=seller)
except Seller.DoesNotExist:

msg = "{0} does not exist in purchase #{1}.".format(
seller,
self.cleaned_data["purchase_number"]

)
raise forms.ValidationError(msg)

return seller

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)

records_added = 0
errors = []
Generate a dict per row, with the first CSV row being the keys.
for row in csv.DictReader(rows, delimiter=","):

Bind the row data to the PurchaseForm.
form = PurchaseForm(row)
Check to see if the row data is valid.
if form.is_valid():

Row data is valid so save the record.
form.save()
records_added += 1

else:
errors.append(form.errors)

return records_added, errors

What’s really nice about this practice is that rather than cooking up our own validation system for

139

Chapter 11: Form Fundamentals

incoming data, we’re using the well-proven data testing framework built into Django.

.....

TIP: What about the code parameter?

.

Arnaud Limbourg pointed out that the official Django docs recommend passing a code
parameter to ValidationError as follows:

..
EŤōřŜŘő ȘȘ.ș

ValidationError(_('Invalid value'), code='invalid')

In our example we don’t include one, but you can use it in your code if you want.

Django core developer Marc Tamlyn says, “On a personal note, I feel that Django’s docs are
maybe a little heavy handed with recommending they use of code as a best practice every-
where, although it should be encouraged in third party applications. It is however deŀnitely
the best practice for any situation where you wish to check the nature of the errors - it’s much
better than checking the message of the validation error as this is subject to copy changes.”

Reference:
ä http://www.2scoops.co/1.8-raising-validationerror/

11.2 Use the POST Method in HTML Forms

Every HTML form that alters data must submit its data via the POST method:

..
EŤōřŜŘő ȘȘ.Ț

<form action="{% url "flavor_add" %}" method="POST">

Ļe only exception you’ll ever see to using POST in forms is with search forms, which typically
submit queries that don’t result in any alteration of data. Search forms that are idempotent should
use the GET method.

140

http://www.2scoops.co/1.8-raising-validationerror/

11.3: Always Use CSRF Protection With HTTP Forms Ļat Modify Data

11.3 AlwaysUse CSRF ProtectionWithHTTP Forms That
Modify Data

Django comes with cross-site request forgery protection (CSRF) built in, and usage of it is introduced
in Part 4 of the Django introductory tutorial. It’s easy to use, and Django even throws a friendly
warning during development when you forget to use it. Ļis is a critical security issue, and here and
in our security chapter we recommend always using Django’s CSRF protection capabilities.

In our experience, the only use case for turning off CSRF protection across a site is for creating
machine-accessible APIs. API frameworks such as django-tastypie and django-rest-framework do
this for you. Since API requests should be signed/authenticated on a per-request basis, these two
frameworks don’t normally rely on HTTP cookies for authentication. Ļerefore, CSRF isn’t always
a problem when using these frameworks.

If you are writing an API from scratch that accepts data changes, it’s a good idea to become familiar
with Django’s CSRF documentation at
https://docs.djangoproject.com/en/1.8/ref/csrf/.

.....

TIP: HTML Search Forms

.

Since HTML search forms don’t change data, they use the HTTP GET method and do not
trigger Django’s CSRF protection.

You should use Django’s CsrfViewMiddleware as blanket protection across your site rather than
manually decorating views with csrf protect. To ensure that CSRF works in Jinja2 templates, see
section 15.3, ‘CSRF and Jinja2’.

11.3.1 Posting Data via AJAX

You should use Django’s CSRF protection even when posting data via AJAX. Do not make your
AJAX views CSRF-exempt.

Instead, when posting via AJAX, you’ll need to set an HTTP header called X-CSRFToken.

141

https://docs.djangoproject.com/en/1.8/ref/csrf/

Chapter 11: Form Fundamentals

Ļe official Django documentation includes a snippet that shows how to set this header
for only POST requests, in conjunction with jQuery 1.5 or higher’s cross-domain checking:
https://docs.djangoproject.com/en/1.8/ref/csrf/#ajax

See our complete example of how to use this snippet in practice in section 17.6, AJAX and the CSRF
Token, in chapter 16, Building REST APIs.

Recommended reading: https://docs.djangoproject.com/en/1.8/ref/csrf/

11.4 Understand How to Add Django Form Instance
Attributes

Sometimes in the clean(), clean FOO() or save() methods of a Django form, we need to have
additional form instance attributes available. A sample case for this is having the request.user
object available. Here is a simple taster-driven example.

First, the form:

..

EŤōřŜŘő ȘȘ.ț

from django import forms

from .models import Taster

class TasterForm(forms.ModelForm):

class Meta:
model = Taster

def __init__(self, *args, **kwargs):
set the user as an attribute of the form
self.user = kwargs.pop('user')
super(TasterForm, self).__init__(*args, **kwargs)

See how we set self.user before calling super(), and calls it from kwargs? Pointed out to us by
Christopher Lambacher, this makes our form more robust, especially when using multiple inheri-
tence. Now the view:

142

https://docs.djangoproject.com/en/1.8/ref/csrf/#ajax
https://docs.djangoproject.com/en/1.8/ref/csrf/

11.5: Know How Form Validation Works

..

EŤōřŜŘő ȘȘ.Ȝ

from django.views.generic import UpdateView

from braces.views import LoginRequiredMixin

from .forms import TasterForm
from .models import Taster

class TasterUpdateView(LoginRequiredMixin, UpdateView):
model = Taster
form_class = TasterForm
success_url = "/someplace/"

def get_form_kwargs(self):
"""This method is what injects forms with keyword arguments."""
grab the current set of form #kwargs
kwargs = super(TasterUpdateView, self).get_form_kwargs()
Update the kwargs with the user_id
kwargs['user'] = self.request.user
return kwargs

.....

PACKAGE TIP: django-braces's ModelForm Mixins

.

Inserting the request.user object into forms is so frequently done that django-braces can
do it for us. Nevertheless, knowing how it works is useful for when what you need to add is
not the request.user object.

ä http://www.2scoops.co/django-braces-user-form-kwargs-mixin/
ä http://www.2scoops.co/django-braces-user-kwarg-model-form-mixin/

11.5 Know How Form Validation Works

Form validation is one of those areas of Django where knowing the inner workings will drastically
improve your code. Let’s take a moment to dig into form validation and cover some of the key points.

When you call form.is valid(), a lot of things happen behind the scenes. Ļe following things

143

http://www.2scoops.co/django-braces-user-form-kwargs-mixin/
http://www.2scoops.co/django-braces-user-kwarg-model-form-mixin/

Chapter 11: Form Fundamentals

occur according to this workłow:

..
1 If the form has bound data, form.is valid() calls the form.full clean() method.
..
2 form.full clean() iterates through the form ŀelds and each ŀeld validates itself:

..a Data coming into the ŀeld is coerced into Python via the to python()method or raises
a ValidationError.

..
b Data is validated against ŀeld-speciŀc rules, including custom validators. Failure raises a

ValidationError.
..c If there are any custom clean <field>() methods in the form, they are called at this

time.
..
3 form.full clean() executes the form.clean() method.
..
4 If it’s a ModelForm instance, form. post clean() does the following:

..a Sets ModelForm data to the Model instance, regardless of whether form.is valid()
is True or False.

..
b Calls the model’s clean() method. For reference, saving a model instance through the

ORM does not call the model’s clean() method.

If this seems complicated, just remember that it gets simpler in practice, and that all of this function-
ality lets us really understand what’s going on with incoming data. Ļe example in the next section
should help to explain this further.

Figure 11.1: When ice cream validation fails.

144

11.5: Know How Form Validation Works

11.5.1 ModelForm Data Is Saved to the Form, Then the Model
Instance

We like to call this the WHAT?!? of form validation. At ŀrst glance, form data being set to the form
instance might seem like a bug. But it’s not a bug. It’s intended behavior.

In a ModelForm, form data is saved in two distinct steps:

..
1 First, form data is saved to the form instance.
..
2 Later, form data is saved to the model instance.

Since ModelForms don’t save to the model instance until they are activated by the form.save()
method, we can take advantage of this separation as a useful feature.

For example, perhaps you need to catch the details of failed submission attempts for a form, saving
both the user-supplied form data as well as the intended model instance changes.

A simple, perhaps simplistic, way of capturing that data is as follows. First, we create a form failure
history model in core/models.py as shown on the next page:

..

EŤōřŜŘő ȘȘ.ȝ

core/models.py
from django.db import models

class ModelFormFailureHistory(models.Model):
form_data = models.TextField()
model_data = models.TextField()

Second, we add the following to the FlavorActionMixin in łavors/views.py:

..

EŤōřŜŘő ȘȘ.Ȟ

flavors/views.py
import json

from django.contrib import messages
from django.core import serializers

145

Chapter 11: Form Fundamentals

..

from core.models import ModelFormFailureHistory

class FlavorActionMixin(object):

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super(FlavorActionMixin, self).form_valid(form)

def form_invalid(self, form):
"""Save invalid form and model data for later reference."""
form_data = json.dumps(form.cleaned_data)
model_data = serializers.serialize("json",

[form.instance])[1:-1]
ModelFormFailureHistory.objects.create(

form_data=form_data,
model_data=model_data

)
return super(FlavorActionMixin,

self).form_invalid(form)

If you recall, form invalid() is called after failed validation of a form with bad data. When it is
called here in this example, both the cleaned form data and the ŀnal data saved to the database are
saved as a ModelFormFailureHistory record.

11.6 Add Errors to Forms with Form.add error()

Shared with us by Michael Barr, as of Django 1.7 we can streamline Form.clean() with the
Form.add error() method.

..
EŤōřŜŘő ȘȘ.ȟ

from django import forms

146

11.7: Fields Without Pre-Made Widgets

..

class IceCreamReviewForm(forms.Form):
Rest of tester form goes here
...

def clean(self):
cleaned_data = super(TasterForm, self).clean()
flavor = cleaned_data.get("flavor")
age = cleaned_data.get("age")

if flavor == 'coffee' and age < 3:
Record errors that will be displayed later.
msg = u"Coffee Ice Cream is not for Babies."
self.add_error('flavor', msg)
self.add_error('age', msg)

Always return the full collection of cleaned data.
return cleaned_data

11.6.1 Other Useful Form Methods

Here are other form validation methods worth exploring:

ä http://www.2scoops.co/1.8-form.errors.as_data/
ä http://www.2scoops.co/1.8-form.errors.as_json/
ä http://www.2scoops.co/1.8-form.has_error/
ä http://www.2scoops.co/1.8-form.non_field_errors/

11.7 Fields Without Pre-Made Widgets

Two of the new django.contrib.postgres ŀelds, (ArrayField and HStoreField) don’t work
well with existing Django HTML ŀelds. Ļey don’t come with corresponding widgets at all. Nev-
ertheless, you should still be using forms with these ŀelds.

147

http://www.2scoops.co/1.8-form.errors.as_data/
http://www.2scoops.co/1.8-form.errors.as_json/
http://www.2scoops.co/1.8-form.has_error/
http://www.2scoops.co/1.8-form.non_field_errors/

Chapter 11: Form Fundamentals

As in the previous section this topic is covered in section 11.1, “Validate All Incoming Data With
Django Forms”.

11.8 Additional Resources

ä Author Daniel Roy Greenfeld’s blog series on forms expands upon concepts touched in this
book http://www.pydanny.com/tag/forms.html

ä Brad Montgomery’s article on how to create a widget for the ArrayField.
http://www.2scoops.co/bradmontgomery-nice-arrayfield/

ä Miguel Araujo’s tutorial on creating custom widgets and ŀelds.
http://www.2scoops.co/django-forms-i-custom-fields-and-widgets-in/

11.9 Summary

Once you dig into forms, keep yourself focused on clarity of code and testability. Forms are one of the
primary validation tools in your Django project, an important defense against attacks and accidental
data corruption.

In the next chapter we’ll dig into using Forms, CBVs, and models together.

148

http://www.pydanny.com/tag/forms.html
http://www.2scoops.co/bradmontgomery-nice-arrayfield/
http://www.2scoops.co/django-forms-i-custom-fields-and-widgets-in/

12 | Common Patterns for Forms

Django forms are powerful, łexible, extensible, and robust. For this reason, the Django admin and
CBVs use them extensively. In fact, all the major Django API frameworks use ModelForms or a
similar implementation as part of their validation.

Combining forms, models, and views allows us to get a lot of work done for little effort. Ļe learning
curve is worth it: once you learn to work łuently with these components, you’ll ŀnd that Django
provides the ability to create an amazing amount of useful, stable functionality at an amazing pace.

.....

PACKAGE TIP: Useful Form-Related Packages

.

ä django-łoppyforms for rendering Django inputs in HTML5.
ä django-crispy-forms for advanced form layout controls. By default, forms are rendered

with Twitter Bootstrap form elements and styles. Ļis package plays well with django-
łoppyforms, so they are often used together.

ä django-forms-bootstrap is a simple tool for rendering Django forms using Twitter
Bootstrap styles. Ļis package plays well with django-łoppyforms but conłicts with
django-crispy-forms.

Ļis chapter goes explicitly into one of the best parts of Django: forms, models, and CBVs working
in concert. Ļis chapter covers ŀve common form patterns that should be in every Django developer’s
toolbox.

149

Chapter 12: Common Patterns for Forms

12.1 Pattern 1: Simple ModelForm With Default
Validators

Ļe simplest data-changing form that we can make is a ModelForm using several default validators
as-is, without modiŀcation. In fact, we already relied on default validators in chapter 10, Best Practices
for Class-Based Views, subsection 10.5.1, “Views + ModelForm Example.”

If you recall, using ModelForms with CBVs to implement add/edit forms can be done in just a few
lines of code:

..

EŤōřŜŘő Șș.Ș

flavors/views.py
from django.views.generic import CreateView, UpdateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

To summarize how we use default validation as-is here:

ä FlavorCreateView and FlavorUpdateView are assigned Flavor as their model.
ä Both views auto-generate a ModelForm based on the Flavor model.
ä Ļose ModelForms rely on the default ŀeld validation rules of the Flavor model.

Yes, Django gives us a lot of great defaults for data validation, but in practice, the defaults are never
enough. We recognize this, so as a ŀrst step, the next pattern will demonstrate how to create a custom
ŀeld validator.

150

12.2: Pattern 2: Custom Form Field Validators in ModelForms

12.2 Pattern 2: Custom Form Field Validators in
ModelForms

What if we wanted to be certain that every use of the title ŀeld across our project’s dessert apps
started with the word ‘Tasty’?

Figure 12.1: At Tasty Research, every łavor must begin with “Tasty”.

Ļis is a string validation problem that can be solved with a simple custom ŀeld validator.

In this pattern, we cover how to create custom single-ŀeld validators and demonstrate how to add
them to both abstract models and forms.

Imagine for the purpose of this example that we have a project with two different dessert-related
models: a Flavor model for ice cream łavors, and a Milkshake model for different types of milk-
shakes. Assume that both of our example models have title ŀelds.

To validate all editable model titles, we start by creating a validators.py module:

151

Chapter 12: Common Patterns for Forms

..

EŤōřŜŘő Șș.ș

core/validators.py
from django.core.exceptions import ValidationError

def validate_tasty(value):
"""Raise a ValidationError if the value doesn't start with the

word 'Tasty'.
"""
if not value.startswith(u"Tasty"):

msg = u"Must start with Tasty"
raise ValidationError(msg)

In Django, a custom ŀeld validator is simply a function that raises an error if the submitted argument
doesn’t pass its test.

Of course, while our validate tasty() validator function just does a simple string check for the
sake of example, it’s good to keep in mind that form ŀeld validators can become quite complex in
practice.

.....

TIP: Test Your Validators Carefully

.

Since validators are critical in keeping corruption out of Django project databases, it’s espe-
cially important to write detailed tests for them.

Ļese tests should include thoughtful edge case tests for every condition related to your val-
idators’ custom logic.

In order to use our validate tasty() validator function across different dessert models, we’re
going to ŀrst add it to an abstract model called TastyTitleAbstractModel, which we plan to use
across our project.

Assuming that our Flavor and Milkshake models are in separate apps, it doesn’t make sense to
put our validator in one app or the other. Instead, we create a core/models.py module and place the
TastyTitleAbstractModel there.

152

12.2: Pattern 2: Custom Form Field Validators in ModelForms

..

EŤōřŜŘő Șș.Ț

core/models.py
from django.db import models

from .validators import validate_tasty

class TastyTitleAbstractModel(models.Model):

title = models.CharField(max_length=255, validators=[validate_tasty])

class Meta:
abstract = True

Ļe last two lines of the above example code for core/models.py make TastyTitleAbstractModel
an abstract model, which is what we want.

Let’s alter the original łavors/models.py Flavor code to use TastyTitleAbstractModel as the
parent class:

..

EŤōřŜŘő Șș.ț

flavors/models.py
from django.core.urlresolvers import reverse
from django.db import models

from core.models import TastyTitleAbstractModel

class Flavor(TastyTitleAbstractModel):
slug = models.SlugField()
scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse("flavors:detail", kwargs={"slug": self.slug})

Ļis works with the Flavor model, and it will work with any other tasty food-based model such
as a WaffleCone or Cake model. Any model that inherits from the TastyTitleAbstractModel

153

Chapter 12: Common Patterns for Forms

class will throw a validation error if anyone attempts to save a model with a title that doesn’t start
with ‘Tasty’.

Now, let’s explore a couple of questions that might be forming in your head:

ä What if we wanted to use validate tasty() in just forms?
ä What if we wanted to assign it to other ŀelds besides the title?

To support these behaviors, we need to create a custom FlavorForm that utilizes our custom ŀeld
validator:

..

EŤōřŜŘő Șș.Ȝ

flavors/forms.py
from django import forms

from core.validators import validate_tasty
from .models import Flavor

class FlavorForm(forms.ModelForm):
def __init__(self, *args, **kwargs):

super(FlavorForm, self).__init__(*args, **kwargs)
self.fields["title"].validators.append(validate_tasty)
self.fields["slug"].validators.append(validate_tasty)

class Meta:
model = Flavor

A nice thing about both examples of validator usage in this pattern is that we haven’t had to change
the validate tasty() code at all. Instead, we just import and use it in new places.

Attaching the custom form to the views is our next step. Ļe default behavior of Django model-based
edit views is to auto-generate the ModelForm based on the view’s model attribute. We are going
to override that default and pass in our custom FlavorForm. Ļis occurs in the łavors/views.py
module, where we alter the create and update forms as demonstrated below:

..
EŤōřŜŘő Șș.ȝ

flavors/views.py

154

12.2: Pattern 2: Custom Form Field Validators in ModelForms

..

from django.contrib import messages
from django.views.generic import CreateView, UpdateView, DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor
from .forms import FlavorForm

class FlavorActionMixin(object):

model = Flavor
fields = ('title', 'slug', 'scoops_remaining')

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

success_msg = "created"
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

success_msg = "updated"
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorDetailView(DetailView):
model = Flavor

155

Chapter 12: Common Patterns for Forms

Ļe FlavorCreateView and FlavorUpdateView views now use the new FlavorForm to validate
incoming data.

Note that with these modiŀcations, the Flavor model can either be identical to the one at the start
of this chapter, or it can be an altered one that inherits from TastyTitleAbstractModel.

12.3 Pattern 3: Overriding the Clean Stage of Validation

Let’s discuss some interesting validation use cases:

ä Multi-ŀeld validation
ä Validation involving existing data from the database that has already been validated

Both of these are great scenarios for overriding the clean() and clean <field name>()methods
with custom validation logic.

After the default and custom ŀeld validators are run, Django provides a second stage and process for
validating incoming data, this time via the clean()method and clean <field name>()methods.
You might wonder why Django provides more hooks for validation, so here are our two favorite
arguments:

..
1 Ļe clean() method is the place to validate two or more ŀelds against each other, since it’s

not speciŀc to any one particular ŀeld.
..
2 Ļe clean validation stage is a better place to attach validation against persistent data. Since the

data already has some validation, you won’t waste as many database cycles on needless queries.

Let’s explore this with another validation example. Perhaps we want to implement an ice cream
ordering form, where users could specify the łavor desired, add toppings, and then come to our store
and pick them up.

Since we want to prevent users from ordering łavors that are out of stock, we’ll put in a
clean slug() method. With our łavor validation, our form might look like:

..

EŤōřŜŘő Șș.Ȟ

flavors/forms.py
from django import forms
from flavors.models import Flavor

156

12.3: Pattern 3: Overriding the Clean Stage of Validation

..

class IceCreamOrderForm(forms.Form):
"""Normally done with forms.ModelForm. But we use forms.Form here

to demonstrate that these sorts of techniques work on every
type of form.

"""

slug = forms.ChoiceField("Flavor")
toppings = forms.CharField()

def __init__(self, *args, **kwargs):
super(IceCreamOrderForm, self).__init__(*args,

**kwargs)
We dynamically set the choices here rather than
in the flavor field definition. Setting them in
the field definition means status updates won't
be reflected in the form without server restarts.
self.fields["slug"].choices = [

(x.slug, x.title) for x in Flavor.objects.all()
]
NOTE: We could filter by whether or not a flavor
has any scoops, but this is an example of
how to use clean_slug, not filter().

def clean_slug(self):
slug = self.cleaned_data["slug"]
if Flavor.objects.get(slug=slug).scoops_remaining <= 0:

msg = u"Sorry, we are out of that flavor."
raise forms.ValidationError(msg)

return slug

For HTML-powered views, the clean slug() method in our example, upon throwing an error,
will attach a “Sorry, we are out of that łavor” message to the łavor HTML input ŀeld. Ļis is a great
shortcut for writing HTML forms!

157

Chapter 12: Common Patterns for Forms

Now imagine if we get common customer complaints about orders with too much chocolate. Yes, it’s
silly and quite impossible, but we’re just using ‘too much chocolate’ as a completely mythical example
for the sake of making a point.

In any case, let’s use the clean() method to validate the łavor and toppings ŀelds against each
other.

..

EŤōřŜŘő Șș.ȟ

attach this code to the previous example (12.7)
def clean(self):

cleaned_data = super(IceCreamOrderForm, self).clean()
slug = cleaned_data.get("slug", "")
toppings = cleaned_data.get("toppings", "")

Silly "too much chocolate" validation example
if u"chocolate" in slug.lower() and \

u"chocolate" in toppings.lower():
msg = u"Your order has too much chocolate."
raise forms.ValidationError(msg)

return cleaned_data

Ļere we go, an implementation against the impossible condition of too much chocolate!

.....

TIP: Common Fields Used in Multi-Field Validation

.

It is common practice for user account forms involved with email and password entry to force
the user to enter the same data twice. Other things to check for against those ŀelds include:

ä Strength of the submitted password.
ä If the email model ŀeld isn’t set to unique=True, whether or not the email is unique.

158

12.4: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

Figure 12.2: Why would they do this to us?

12.4 Pattern 4: Hacking Form Fields
(2 CBVs, 2 Forms, 1 Model)

Ļis is where we start to get fancy. We’re going to cover a situation where two views/forms correspond
to one model. We’ll hack Django forms to produce a form with custom behavior.

It’s not uncommon to have users create a record that contains a few empty ŀelds which need additional
data later. An example might be a list of stores, where we want each store entered into the system as
fast as possible, but want to add more data such as phone number and description later. Here’s our
IceCreamStore model:

..
EŤōřŜŘő Șș.Ƞ

stores/models.py

159

Chapter 12: Common Patterns for Forms

..

from django.core.urlresolvers import reverse
from django.db import models

class IceCreamStore(models.Model):
title = models.CharField(max_length=100)
block_address = models.TextField()
phone = models.CharField(max_length=20, blank=True)
description = models.TextField(blank=True)

def get_absolute_url(self):
return reverse("store_detail", kwargs={"pk": self.pk})

Ļe default ModelForm for this model forces the user to enter the title and block address ŀeld
but allows the user to skip the phone and description ŀelds. Ļat’s great for initial data entry, but
as mentioned earlier, we want to have future updates of the data to require the phone and description
ŀelds.

Ļe way we implemented this in the past before we began to delve into their construction was to
override the phone and description ŀelds in the edit form. Ļis resulted in heavily-duplicated code
that looked like this:

..

BōŐ EŤōřŜŘő Șș.Ș

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):
Don't do this! Duplication of the model field!
phone = forms.CharField(required=True)
Don't do this! Duplication of the model field!
description = forms.TextField(required=True)

class Meta:
model = IceCreamStore

160

12.4: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

Ļis form should look very familiar. Why is that?

Well, we’re nearly copying the IceCreamStore model!

Ļis is just a simple example, but when dealing with a lot of ŀelds on a model, the duplication becomes
extremely challenging to manage. In fact, what tends to happen is copy-pasting of code from models
right into forms, which is a gross violation of Don’t Repeat Yourself.

Want to know how gross? Using the above approach, if we add a simple help text attribute to
the description ŀeld in the model, it will not show up in the template until we also modify the
description ŀeld deŀnition in the form. If that sounds confusing, that’s because it is.

A better way is to rely on a useful little detail that’s good to remember about Django forms: instan-
tiated form objects store ŀelds in a dict-like attribute called fields.

Instead of copy-pasting ŀeld deŀnitions from models to forms, we can simply apply new attributes
to each ŀeld in the init () method of the ModelForm:

..

EŤōřŜŘő Șș.Șȗ

stores/forms.py
Call phone and description from the self.fields dict-like object
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):

class Meta:
model = IceCreamStore

def __init__(self, *args, **kwargs):
Call the original __init__ method before assigning
field overloads
super(IceCreamStoreUpdateForm, self).__init__(*args,

**kwargs)
self.fields["phone"].required = True
self.fields["description"].required = True

161

Chapter 12: Common Patterns for Forms

Ļis improved approach allows us to stop copy-pasting code and instead focus on just the ŀeld-
speciŀc settings.

An important point to remember is that when it comes down to it, Django forms are just Python
classes. Ļey get instantiated as objects, they can inherit from other classes, and they can act as
superclasses.

Ļerefore, we can rely on inheritance to trim the line count in our ice cream store forms:

..

EŤōřŜŘő Șș.ȘȘ

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreCreateForm(forms.ModelForm):

class Meta:
model = IceCreamStore
fields = ("title", "block_address",)

class IceCreamStoreUpdateForm(IceCreamStoreCreateForm):

def __init__(self, *args, **kwargs):
super(IceCreamStoreUpdateForm,

self).__init__(*args, **kwargs)
self.fields["phone"].required = True
self.fields["description"].required = True

class Meta(IceCreamStoreCreateForm.Meta):
show all the fields!
fields = ("title", "block_address", "phone",

"description",)

162

12.5: Pattern 5: Reusable Search Mixin View

..

WARNING: Use Meta.fields and Never Use Meta.exclude

.

We use Meta.fields instead of Meta.exclude so that we know exactly what ŀelds
we are exposing. See chapter 26, Security Best Practices, section 26.13, ‘Don’t use Mod-
elForms.Meta.exclude’.

Finally, now we have what we need to deŀne the corresponding CBVs. We’ve got our form classes,
so let’s use them in the IceCreamStore create and update views:

..

EŤōřŜŘő Șș.Șș

stores/views
from django.views.generic import CreateView, UpdateView

from .forms import IceCreamStoreCreateForm
from .forms import IceCreamStoreUpdateForm
from .models import IceCreamStore

class IceCreamCreateView(CreateView):
model = IceCreamStore
form_class = IceCreamStoreCreateForm

class IceCreamUpdateView(UpdateView):
model = IceCreamStore
form_class = IceCreamStoreUpdateForm

We now have two views and two forms that work with one model.

12.5 Pattern 5: Reusable Search Mixin View

In this example, we’re going to cover how to reuse a search form in two views that correspond to two
different models.

Assume that both models have a ŀeld called title (this pattern also demonstrates why naming
standards in projects is a good thing). Ļis example will demonstrate how a single CBV can be used
to provide simple search functionality on both the Flavor and IceCreamStore models.

We’ll start by creating a simple search mixin for our view:

163

Chapter 12: Common Patterns for Forms

..

EŤōřŜŘő Șș.ȘȚ

core/views.py
class TitleSearchMixin(object):

def get_queryset(self):
Fetch the queryset from the parent's get_queryset
queryset = super(TitleSearchMixin, self).get_queryset()

Get the q GET parameter
q = self.request.GET.get("q")
if q:

return a filtered queryset
return queryset.filter(title__icontains=q)

No q is specified so we return queryset
return queryset

Ļe above code should look very familiar as we used it almost verbatim in the Forms + View example.
Here’s how you make it work with both the Flavor and IceCreamStore views. First the łavor
views:

..

EŤōřŜŘő Șș.Șț

add to flavors/views.py
from django.views.generic import ListView

from core.views import TitleSearchMixin
from .models import Flavor

class FlavorListView(TitleSearchMixin, ListView):
model = Flavor

And we’ll add it to the ice cream store views:

..

EŤōřŜŘő Șș.ȘȜ

add to stores/views.py
from django.views.generic import ListView

164

12.6: Summary

..

from core.views import TitleSearchMixin
from .models import Store

class IceCreamStoreListView(TitleSearchMixin, ListView):
model = Store

As for the form? We just deŀne it in HTML for each ListView:

..

EŤōřŜŘő Șș.Șȝ

{# form to go into stores/store_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

and

..

EŤōřŜŘő Șș.ȘȞ

{# form to go into flavors/flavor_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

Now we have the same mixin in both views. Mixins are a good way to reuse code, but using too many
mixins in a single class makes for very hard-to-maintain code. As always, try to keep your code as
simple as possible.

12.6 Summary

We began this chapter with the simplest form pattern, using a ModelForm, CBV, and default val-
idators. We iterated on that with an example of a custom validator.

165

Chapter 12: Common Patterns for Forms

Next, we explored more complex validation. We covered an example overriding the clean methods.
We also closely examined a scenario involving two views and their corresponding forms that were
tied to a single model.

Finally, we covered an example of creating a reusable search mixin to add the same form to two
different apps.

166

13 | Templates: Best Practices

One of Django’s early design decisions was to limit the functionality of the template language. Ļis
heavily constrains what can be done with Django templates, which we often think is a very good
thing since it forces us to keep business logic in the Python side of things.

Ļink about it: the limitations of Django templates force us to put the most critical, complex and
detailed parts of our project into .py ŀles rather than into template ŀles. Python happens to be one of
the most clear, concise, elegant programming languages of the planet, so why would we want things
any other way?

.....

TIP: Using Jinja2 With Django

.

Starting with 1.8 Django natively supports Jinja2, as well as providing an interface for in-
cluding other template languages. We cover this topic in chapter 15, Using Alternate Template
Systems.

13.1 Keep Templates Mostly in templates/

In our projects, we keep the majority of our templates in the main ‘templates/’ directory. We put
subdirectories in ‘templates/’ to correspond to each of our apps, as shown here:

..

EŤōřŜŘő ȘȚ.Ș

templates/
base.html
... (other sitewide templates in here)

167

Chapter 13: Templates: Best Practices

..
freezers/

("freezers" app templates in here)

However, some tutorials advocate putting templates within a subdirectory of each app. We ŀnd that
the extra nesting is a pain to deal with, as shown here:

..

BōŐ EŤōřŜŘő ȘȚ.Ș

freezers/
templates/

freezers/
... ("freezers" app templates in here)

templates/
base.html
... (other sitewide templates in here)

Ļat said, some people like to do it the second way, and that’s alright.

Ļe exception to all of this is when we work with Django apps that are installed as pluggable packages.
A Django package usually contains its own in-app ‘templates/’ directory. Ļen we override those
templates anyway from our project’s main ‘templates/’ directory in order to add design and styling.

13.2 Template Architecture Patterns

We’ve found that for our purposes, simple 2-tier or 3-tier template architectures are ideal. Ļe dif-
ference in tiers is how many levels of template extending needs to occur before content in apps is
displayed. See the examples below:

13.2.1 2-Tier Template Architecture Example

With a 2-tier template architecture, all templates inherit from a single root base.html ŀle.

168

13.2: Template Architecture Patterns

..

EŤōřŜŘő ȘȚ.ș

templates/
base.html
dashboard.html # extends base.html
profiles/

profile_detail.html # extends base.html
profile_form.html # extends base.html

Ļis is best for sites with a consistent overall layout from app to app.

13.2.2 3-Tier Template Architecture Example

With a 3-tier template architecture:

ä Each app has a base <app name>.html template. App-level base templates share a common
parent base.html template.

ä Templates within apps share a common parent base <app name>.html template.
ä Any template at the same level as base.html inherits base.html .

..

EŤōřŜŘő ȘȚ.Ț

templates/
base.html
dashboard.html # extends base.html
profiles/

base_profiles.html # extends base.html
profile_detail.html # extends base_profiles.html
profile_form.html # extends base_profiles.html

Ļe 3-tier architecture is best for websites where each section requires a distinctive layout. For exam-
ple, a news site might have a local news section, a classiŀed ads section, and an events section. Each
of these sections requires its own custom layout.

Ļis is extremely useful when we want HTML to look or behave differently for a particular section
of the site that groups functionality.

169

Chapter 13: Templates: Best Practices

13.2.3 Flat Is Better Than Nested

Figure 13.1: An excerpt from the Zen of Ice Cream.

Complex template hierarchies make it exceedingly difficult to debug, modify, and extend HTML
pages and tie in CSS styles. When template block layouts become unnecessarily nested, you end up
digging through ŀle after ŀle just to change, say, the width of a box.

Giving your template blocks as shallow an inheritance structure as possible will make your templates
easier to work with and more maintainable. If you’re working with a designer, your designer will
thank you.

Ļat being said, there’s a difference between excessively-complex template block hierarchies and tem-
plates that use blocks wisely for code reuse. When you have large, multi-line chunks of the same or
very similar code in separate templates, refactoring that code into reusable blocks will make your code
more maintainable.

Ļe Zen of Python includes the aphorism “Flat is better than nested” for good reason. Each level of
nesting adds mental overhead. Keep that in mind when architecting your Django templates.

170

13.3: Limit Processing in Templates

.....

TIP: The Zen of Python

.

At the command line, do the following:

python -c `import this'

What you’ll see is the Zen of Python, an eloquently-expressed set of guiding principles for the
design of the Python programming language.

13.3 Limit Processing in Templates

Ļe less processing you try to do in your templates, the better. Ļis is particularly a problem when it
comes to queries and iteration performed in the template layer.

Whenever you iterate over a queryset in a template, ask yourself the following questions:

..
1 How large is the queryset? Looping over gigantic querysets in your templates is almost always

a bad idea.
..
2 How large are the objects being retrieved? Are all the ŀelds needed in this template?
..
3 During each iteration of the loop, how much processing occurs?

If any warning bells go off in your head, then there’s probably a better way to rewrite your template
code.

..

WARNING: Why Not Just Cache?

.

Sometimes you can just cache away your template inefficiencies. Ļat’s ŀne, but before you
cache, you should ŀrst try to attack the root of the problem.
You can save yourself a lot of work by mentally tracing through your template code, doing
some quick run time analysis, and refactoring.

Let’s now explore some examples of template code that can be rewritten more efficiently.

Suspend your disbelief for a moment and pretend that the nutty duo behind Two Scoops ran a 30-
second commercial during the Super Bowl. “Free pints of ice cream for the ŀrst million developers
who request them! All you have to do is ŀll out a form to get a voucher redeemable in stores!”

171

Chapter 13: Templates: Best Practices

Figure 13.2: Two Scoops, official halftime sponsor of the Super Bowl.

Naturally, we have a “vouchers” app to track the names and email addresses of everyone who requested
a free pint voucher. Here’s what the model for this app looks like:

..

EŤōřŜŘő ȘȚ.ț

vouchers/models.py
from django.core.urlresolvers import reverse
from django.db import models
from .managers import VoucherManager

class Voucher(models.Model):
"""Vouchers for free pints of ice cream."""
name = models.CharField(max_length=100)
email = models.EmailField()
address = models.TextField()
birth_date = models.DateField(blank=True)
sent = models.BooleanField(default=False)
redeemed = models.BooleanField(default=False)

172

13.3: Limit Processing in Templates

..objects = VoucherManager()

Ļis model will be used in the following examples to illustrate a few “gotchas” that you should avoid.

13.3.1 Gotcha 1: Aggregation in Templates

Since we have birth date information, it would be interesting to display a rough breakdown by age
range of voucher requests and redemptions.

A very bad way to implement this would be to do all the processing at the template level. To be more
speciŀc in the context of this example:

ä Don’t iterate over the entire voucher list in your template’s JavaScript section, using JavaScript
variables to hold age range counts.

ä Don’t use the add template ŀlter to sum up the voucher counts.

Ļose implementations are ways of getting around Django’s limitations of logic in templates, but
they’ll slow down your pages drastically.

Ļe better way is to move this processing out of your template and into your Python code. Sticking
to our minimal approach of using templates only to display data that has already been processed, our
template looks like this:

..

EŤōřŜŘő ȘȚ.Ȝ

{# templates/vouchers/ages.html #}
{% extends "base.html" %}

{% block content %}
<table>

<thead>
<tr>

<th>Age Bracket</th>
<th>Number of Vouchers Issued</th>

</tr>

173

Chapter 13: Templates: Best Practices

..

</thead>
<tbody>

{% for age_bracket in age_brackets %}
<tr>

<td>{{ age_bracket.title }}</td>
<td>{{ age_bracket.count }}</td>

</tr>
{% endfor %}

</tbody>
</table>
{% endblock content %}

In this example, we can do the processing with a model manager, using the Django ORM’s aggre-
gation methods and the handy dateutil library described in Appendix A: Packages Mentioned In Ļis
Book:

..

EŤōřŜŘő ȘȚ.ȝ

vouchers/managers.py
from django.utils import timezone

from dateutil.relativedelta import relativedelta

from django.db import models

class VoucherManager(models.Manager):
def age_breakdown(self):

"""Returns a dict of age brackets/counts."""
age_brackets = []
now = timezone.now()

delta = now - relativedelta(years=18)
count = self.model.objects.filter(birth_date__gt=delta).count()
age_brackets.append(

{"title": "0-17", "count": count}
)
count = self.model.objects.filter(birth_date__lte=delta).count()

174

13.3: Limit Processing in Templates

..

age_brackets.append(
{"title": "18+", "count": count}

)
return age_brackets

Ļis method would be called from a view, and the results would be passed to the template as a context
variable.

13.3.2 Gotcha 2: Filtering With Conditionals in Templates

Suppose we want to display a list of all the Greenfelds and the Roys who requested free pint vouchers,
so that we could invite them to our family reunion. We want to ŀlter our records on the name ŀeld.
A very bad way to implement this would be with giant loops and if statements at the template level.

..

BōŐ EŤōřŜŘő ȘȚ.ș

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in voucher_list %}

{# Don't do this: conditional filtering in templates #}
{% if "greenfeld" in voucher.name.lower %}

{{ voucher.name }}
{% endif %}

{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in voucher_list %}

{# Don't do this: conditional filtering in templates #}
{% if "roy" in voucher.name.lower %}

{{ voucher.name }}
{% endif %}

{% endfor %}

175

Chapter 13: Templates: Best Practices

In this bad snippet, we’re looping and checking for various “if ” conditions. Ļat’s ŀltering a poten-
tially gigantic list of records in templates, which is not designed for this kind of work, and will cause
performance bottlenecks. On the other hand, databases like PostgreSQL and MySQL are great at
ŀltering records, so this should be done at the database layer. Ļe Django ORM can help us with
this as demonstrated in the next example.

..

EŤōřŜŘő ȘȚ.Ȟ

vouchers/views.py
from django.views.generic import TemplateView

from .models import Voucher

class GreenfeldRoyView(TemplateView):
template_name = "vouchers/views_conditional.html"

def get_context_data(self, **kwargs):
context = super(GreenfeldRoyView, self).get_context_data(**kwargs)
context["greenfelds"] = \

Voucher.objects.filter(name__icontains="greenfeld")
context["roys"] = Voucher.objects.filter(name__icontains="roy")
return context

Ļen to call the results, we use the following, simpler template:

..

EŤōřŜŘő ȘȚ.ȟ

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in greenfelds %}

{{ voucher.name }}
{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in roys %}

{{ voucher.name }}
{% endfor %}

176

13.3: Limit Processing in Templates

..

It’s easy to speed up this template by moving the ŀltering to a model manager. With this change, we
now simply use the template to display the already-ŀltered data. Ļe above template now follows our
preferred minimalist approach.

13.3.3 Gotcha 3: Complex Implied Queries in Templates

Despite the limitations on logic allowed in Django templates, it’s all too easy to ŀnd ourselves calling
unnecessary queries repeatedly in a view. For example, if we list users of our site and all their łavors
this way:

..

BōŐ EŤōřŜŘő ȘȚ.Ț

{# list generated via User.object.all() #}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{# DON'T DO THIS: Generated implicit query per user #}
{{ user.flavor.title }}
{# DON'T DO THIS: Second implicit query per user!!! #}
{{ user.flavor.scoops_remaining }}

{% endfor %}

Ļen calling each user generates a second query. While that might not seem like much, we are certain
that if we had enough users and made this mistake frequently enough, our site would have a lot of
trouble.

One quick correction is to use the Django ORM’s select related() method:

177

Chapter 13: Templates: Best Practices

..

EŤōřŜŘő ȘȚ.Ƞ

{% comment %}
List generated via User.object.all().select_related("flavors")
{% endcomment %}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{{ user.flavor.title }}
{{ user.flavor.scoops_remaining }}

{% endfor %}

One more thing: If you’ve embraced using model methods, the same applies. Be cautious putting too
much query logic in the model methods called from templates.

13.3.4 Gotcha 4: Hidden CPU Load in Templates

Watch out for innocent-looking calls in templates that result in intensive CPU processing. Although
a template might look simple and contain very little code, a single line could be invoking an object
method that does a lot of processing.

Figure 13.3: Bubble gum ice cream looks easy to eat but requires a lot of processing.

Common examples are template tags that manipulate images, such as the template tags provided by

178

13.4: Don’t Bother Making Your Generated HTML Pretty

libraries like sorl-thumbnail. In many cases tools like this work great, but we’ve had some issues.
Speciŀcally, the manipulation and the saving of image data to ŀle systems (often across networks)
inside a template means there is a choke point within templates.

Ļis is why projects that handle a lot of image or data processing increase the performance of their
site by taking the image processing out of templates and into views, models, helper methods, or
asynchronous messages queues like Celery.

13.3.5 Gotcha 5: Hidden REST API Calls in Templates

You saw in the previous gotcha how easy it is to introduce template loading delays by accessing object
method calls. Ļis is true not just with high-load methods, but also with methods that contain REST
API calls. A good example is querying an unfortunately slow maps API hosted by a third-party
service that your project absolutely requires. Don’t do this in the template code by calling a method
attached to an object passed into the view’s context.

Where should actual REST API consumption occur? We recommend doing this in:

ä JavaScript code so after your project serves out its content, the client’s browser handles the
work. Ļis way you can entertain or distract the client while they wait for data to load.

ä Ļe view’s Python code where slow processes might be handled in a variety of ways including
message queues, additional threads, multiprocesses, or more.

13.4 Don't BotherMaking Your GeneratedHTML Pretty

Bluntly put, no one cares if the HTML generated by your Django project is attractive. In fact, if
someone were to look at your rendered HTML, they’d do so through the lens of a browser inspector,
which would realign the HTML spacing anyway. Ļerefore, if you shuffle up the code in your Django
templates to render pretty HTML, you are wasting time obfuscating your code for an audience of
yourself.

And yet, we’ve seen code like the following. Ļis evil code snippet generates nicely formatted HTML
but itself is an illegible, unmaintainable template mess:

179

Chapter 13: Templates: Best Practices

..

BōŐ EŤōřŜŘő ȘȚ.ț

{% comment %}Don't do this! This code bunches everything
together to generate pretty HTML.
{% endcomment %}
{% if list_type=="unordered" %}{% else %}{% endif %}{% for
syrup in syrup_list %}<li class="{{ syrup.temperature_type|roomtemp
}}">{% syrup.title %}
{% endfor %}{% if list_type=="unordered" %}{% else %}
{% endif %}

A better way of writing the above snippet is to use indentation and one operation per line to create
a readable, maintainable template:

..

EŤōřŜŘő ȘȚ.Șȗ

{# Use indentation/comments to ensure code quality #}
{# start of list elements #}
{% if list_type=="unordered" %}

{% else %}

{% endif %}

{% for syrup in syrup_list %}
<li class="{{ syrup.temperature_type|roomtemp }}">

{% syrup.title %}

{% endfor %}
{# end of list elements #}
{% if list_type=="unordered" %}

{% else %}

{% endif %}

180

13.5: Exploring Template Inheritance

Are you worried about the volume of whitespace generated? Don’t be. First of all, experienced de-
velopers favor readability of code over obfuscation for the sake of optimization. Second, there are
compression and miniŀcation tools that can help more than anything you can do manually here. See
chapter 24, Finding and Reducing Bottlenecks, for more details.

13.5 Exploring Template Inheritance

Let’s begin with a simple base.html ŀle that we’ll inherit from another template:

..

EŤōřŜŘő ȘȚ.ȘȘ

{# simple base.html #}
{% load staticfiles %}
<html>
<head>

<title>
{% block title %}Two Scoops of Django{% endblock title %}

</title>
{% block stylesheets %}

<link rel="stylesheet" type="text/css"
href="{% static "css/project.css" %}">

{% endblock stylesheets %}
</head>
<body>

<div class="content">
{% block content %}

<h1>Two Scoops</h1>
{% endblock content %}

</div>
</body>
</html>

Ļe base.html ŀle contains the following features:

ä A title block containing “Two Scoops of Django”.
ä A stylesheets block containing a link to a project.css ŀle used across our site.
ä A content block containing “<h1>Two Scoops</h1>”.

181

Chapter 13: Templates: Best Practices

Our example relies on just three template tags, which are summarized below:

Template Tag Purpose

{% load %} Loads the staticfiles built-in template tag library

{% block %}
Since base.html is a parent template, these define which child blocks can be filled in by
child templates. We place links and scripts inside them so we can override if necessary.

{% static %} Resolves the named static media argument to the static media server.

Table 13.1: Template Tags in base.html

To demonstrate base.html in use, we’ll have a simple about.html inherit the following from it:

ä A custom title.
ä Ļe original stylesheet and an additional stylesheet.
ä Ļe original header, a sub header, and paragraph content.
ä Ļe use of child blocks.
ä Ļe use of the {{ block.super }} template variable.

..

EŤōřŜŘő ȘȚ.Șș

{% extends "base.html" %}
{% load staticfiles %}
{% block title %}About Audrey and Daniel{% endblock title %}
{% block stylesheets %}

{{ block.super }}
<link rel="stylesheet" type="text/css"

href="{% static "css/about.css" %}">
{% endblock stylesheets %}
{% block content %}

{{ block.super }}
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

{% endblock content %}

182

13.5: Exploring Template Inheritance

When we render this template in a view, it generates the following HTML:

..

EŤōřŜŘő ȘȚ.ȘȚ

<html>
<head>

<title>
About Audrey and Daniel

</title>
<link rel="stylesheet" type="text/css"

href="/static/css/project.css">
<link rel="stylesheet" type="text/css"

href="/static/css/about.css">
</head>
<body>

<div class="content">
<h1>Two Scoops</h1>
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

</div>
</body>
</html>

Notice how the rendered HTML has our custom title, the additional stylesheet link, and more mate-
rial in the body? We’ll use the table below to review the template tags and variables in the about.html
template.

Template Object Purpose

{% extends %} Informs Django that about.html is inheriting or extending from base.html

{% block %}
Since about.html is a child template, block overrides the content provided by
base.html. This means our title will render as <title>Audrey and Daniel</title>.

{{ block.super }}
When placed in a child template's block, it ensures that the parent's content is also
included in the block. In the content block of the about.html template, this will
render <h1>Two Scoops</h1>.

Table 13.2: Template Objects in about.html

183

Chapter 13: Templates: Best Practices

Note that the {% block %} tag is used differently in about.html than in base.html , serving to over-
ride content. In blocks where we want to preserve the base.html content, we use {{ block.super
}} variable to display the content from the parent block. Ļis brings us to the next topic, {{
block.super }}.

13.6 block.super Gives the Power of Control

Let’s imagine that we have a template which inherits everything from the base.html but replaces the
project’s link to the project.css ŀle with a link to dashboard.css. Ļis use case might occur when you
have a project with one design for normal users, and a dashboard with a different design for staff.

If we aren’t using {{ block.super }}, this often involves writing a whole new base ŀle, often named
something like base dashboard.html . For better or for worse, we now have two template architectures
to maintain.

If we are using {{ block.super }}, we don’t need a second (or third or fourth) base template.
Assuming all templates extend from base.html we use {{ block.super }} to assume control of
our templates. Here are three examples:

Template using both project.css and a custom link:

..

EŤōřŜŘő ȘȚ.Șț

{% extends "base.html" %}
{% block stylesheets %}

{{ block.super }} {# this brings in project.css #}
<link rel="stylesheet" type="text/css"

href="{% static "css/custom.css" %}" />
{% endblock %}

Dashboard template that excludes the project.css link:

..

EŤōřŜŘő ȘȚ.ȘȜ

{% extends "base.html" %}
{% block stylesheets %}

<link rel="stylesheet" type="text/css"
href="{% static "css/dashboard.css" %}" />

184

13.7: Useful Ļings to Consider

..

{% comment %}
By not using {{ block.super }}, this block overrides the
stylesheet block of base.html

{% endcomment %}
{% endblock %}

Template just linking the project.css ŀle:

..

EŤōřŜŘő ȘȚ.Șȝ

{% extends "base.html" %}
{% comment %}

By not using {% block stylesheets %}, this template inherits the
stylesheets block from the base.html parent, in this case the
default project.css link.

{% endcomment %}

Ļese three examples demonstrate the amount of control that {{ block.super }} provides. Ļe
variable serves a good way to reduce template complexity, but can take a little bit of effort to fully
comprehend.

.....

TIP: block.super Is Similar but Not the Same as super()

.

For those coming from an object oriented programming background, it might help to think
of the behavior of the {{ block.super }} variable to be like a very limited version of the
Python built-in function, super(). In essence, the {{ block.super }} variable and the
super() function both provide access to the parent.
Just remember that they aren’t the same. For example, the {{ block.super }} variable
doesn’t accept arguments. It’s just a nice mnemonic that some developers might ŀnd useful.

13.7 Useful Things to Consider

Ļe following are a series of smaller things we keep in mind during template development.

185

Chapter 13: Templates: Best Practices

13.7.1 Avoid Coupling Styles Too Tightly to Python Code

Aim to control the styling of all rendered templates entirely via CSS and JS.

Use CSS for styling whenever possible. Never hardcode things like menu bar widths and color choices
into your Python code. Avoid even putting that type of styling into your Django templates.

Here are some tips:

ä If you have magic constants in your Python code that are entirely related to visual design layout,
you should probably move them to a CSS ŀle.

ä Ļe same applies to JavaScript.

13.7.2 Common Conventions

Here are some naming and style conventions that we recommend:

ä We prefer underscores over dashes in template names, block names, and other names in tem-
plates. Most Django users seem to follow this convention. Why? Well, because underscores
are allowed in names of Python objects but dashes are forbidden.

ä We rely on clear, intuitive names for blocks. {% block javascript %} is good.
ä We include the name of the block tag in the endblock. Never write just {% endblock %},

include the whole {% endblock javascript %}.
ä Templates called by other templates are preŀxed with ‘ ’. Ļis applies to templates called via

{% include %} or custom template tags. It does not apply to templates inheritance controls
such as {% extends %} or {% block %}.

13.7.3 Location, Location, Location!

Templates should usually go into the root of the Django project, at the same level as the apps. Ļis
is the most common convention, and it’s an intuitive, easy pattern to follow.

Ļe only exception is when you bundle up an app into a third-party package. Ļat packages template
directory should go into app directly. We’ll explore this in section 21.9, ‘How to Release Your Own
Django Packages.’

186

13.7: Useful Ļings to Consider

13.7.4 Use Named Context Objects

When you use generic display CBVs, you have the option of using the generic {{ object list }}
and {{ object }} in your template. Another option is to use the ones that are named after your
model.

For example, if you have a Topping model, you can use {{ topping list }} and {{ topping
}} in your templates, instead of {{ object list }} and {{ object }}. Ļis means both of the
following template examples will work:

..

EŤōřŜŘő ȘȚ.ȘȞ

{# toppings/topping_list.html #}
{# Using implicit names #}

{% for object in object_list %}

{{ object }}
{% endfor %}

{# Using explicit names #}

{% for topping in topping_list %}

{{ topping }}
{% endfor %}

13.7.5 Use URL Names Instead of Hardcoded Paths

A common developer mistake is to hardcode URLs in templates like this:

..
BōŐ EŤōřŜŘő ȘȚ.Ȝ

Ļe problem with this is that if the URL patterns of the site need to change, all the URLs across the
site need to be addressed. Ļis impacts HTML, JavaScript, and even RESTful APIs.

187

Chapter 13: Templates: Best Practices

Instead, we use the {% url %} tag and references the names in our URLConf ŀles:

..
EŤōřŜŘő ȘȚ.Șȟ

13.7.6 Debugging Complex Templates

A trick recommended by Lennart Regebro is that when templates are complex and it becomes dif-
ŀcult to determine where a variable is failing, you can force more verbose errors through the use of
the string if invalid option in OPTIONS of your TEMPLATES setting:

..

EŤōřŜŘő ȘȚ.ȘȠ

settings/local.py
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'OPTIONS':

'string_if_invalid': 'INVALID EXPRESSION: %s'
},

]

13.8 Error Page Templates

Even the most tested and analyzed site will have a few problems now and then, and that’s okay. Ļe
problem lies in how you handle those errors. Ļe last thing that you want to do is show an ugly
response or a blank web server page back to the end user.

It’s standard practice to create at least 404.html and 500.html templates. See the GitHub HTML
Styleguide link at the end of this section for other types of error pages that you may want to consider.

We suggest serving your error pages from a static ŀle server (e.g. Nginx or Apache) as entirely self-
contained static HTML ŀles. Ļat way, if your entire Django site goes down but your static ŀle server
is still up, then your error pages can still be served.

188

13.9: Follow a Minimalist Approach

If you’re on a PaaS, check the documentation on error pages. For example, Heroku allows users to
upload a custom static HTML page to be used for 500 errors.

..

WARNING: Resist the Temptation to Overcomplicate Your
Error Pages

.

Interesting or amusing error pages can be a draw to your site, but don’t get carried away. It’s
embarrassing when your 404 page has a broken layout or your 500 page can’t load the CSS
and JavaScript. Worse yet is dynamic 500 error pages that break in the event of a database
failure.

GitHub’s 404 and 500 error pages are great examples of fancy but entirely static, self-contained error
pages:

ä https://github.com/404
ä https://github.com/500

View the source of either of them and you’ll notice that:

ä All CSS styles are inline in the head of the same HTML page, eliminating the need for a
separate stylesheet.

ä All images are entirely contained as data within the HTML page. Ļere are no links
to external URLs.

ä All JavaScript needed for the page is contained within the HTML page. Ļere are no external
links to JavaScript assets.

For more information, see the Github HTML Styleguide:

ä https://github.com/styleguide

13.9 Follow a Minimalist Approach

We recommend taking a minimalist approach to your template code. Treat the so-called limitations
of Django templates as a blessing in disguise. Use those constraints as inspiration to ŀnd simple,
elegant ways to put more of your business logic into Python code rather than into templates.

189

https://github.com/404
https://github.com/500
https://github.com/styleguide

Chapter 13: Templates: Best Practices

Taking a minimalist approach to templates also makes it much easier to adapt your Django apps to
changing format types. When your templates are bulky and full of nested looping, complex con-
ditionals, and data processing, it becomes harder to reuse business logic code in templates, not to
mention impossible to use the same business logic in template-less views such as API views. Struc-
turing your Django apps for code reuse is especially important as we move forward into the era of
increased API development, since APIs and web pages often need to expose identical data with
different formatting.

To this day, HTML remains a standard expression of content, providing the practices and patterns
for this chapter.

13.10 Summary

In this chapter, we covered the following:

ä Template inheritance, including the use of {{ block.super }}.
ä Writing legible, maintainable templates.
ä Easy methods to optimize template performance.
ä Issues with limitations of template processing.
ä Error page templates.
ä Many other helpful little details about templates.

In the next chapter we’ll examine template tags and ŀlters.

190

14 | Template Tags and Filters

Django provides dozens of default template tags and ŀlters, all of which share the following common
traits:

ä All of the defaults have clear, obvious names.
ä All of the defaults do just one thing.
ä None of the defaults alter any sort of persistent data.

Ļese traits serve as very good best practices when you have to write your own template tags. Let’s
now dive a bit deeper into practices and recommendations when writing custom ŀlters and template
tags.

14.1 Filters Are Functions

Filters are functions that accept just one or two arguments, and that don’t give developers the ability
to add behavior controls in Django templates.

We feel that this simplicity makes ŀlters less prone to abuse, since they are essentially just functions
with decorators that make Python usable inside of Django templates. Ļis means that they can be
called as normal functions (although we prefer to have our ŀlters call functions imported from utility
modules).

In fact, a quick scan of the source code of Django’s default ŀlters at
http://2scoops.co/1.8-slugify-source shows that the slugify() template ŀlter simply
calls the django.utils.text.slugify function.

191

http://2scoops.co/1.8-slugify-source

Chapter 14: Template Tags and Filters

Figure 14.1: Ļis ŀlter transforms 1-2 łavors of ice cream into vanilla, outputting to a cone.

14.1.1 Filters Are Easy to Test

Testing a ŀlter is just a matter of testing a function, which we cover in chapter 22, Testing Stinks and
Is a Waste of Money!

14.1.2 Filters and Code Reuse

As can be seen in the Django 1.8 defaultŀlter.py source code, most of the ŀl-
ter logic is imported from other libraries. For example, it’s not necessary to
import django.template.defaultfilters.slugify. Instead we can use
django.utils.text.slugify. While it might seem to be perfectly acceptable to import
the ŀlter, it adds a level of code abstraction that can make debugging a problem a little more
difficult.

Since ŀlters are just functions, we advocate that anything but the simplest logic for them be moved
to more reusable utility functions, perhaps stored in a utils.py module. Doing this makes it easier to
introspect code bases and test, and can mean dramatically fewer imports. Over time core Django has
followed this pattern more and more.

192

https://github.com/django/django/blob/stable/1.8.x/django/template/defaultfilters.py

14.2: Custom Template Tags

14.1.3 When to Write Filters

Filters are good for modifying the presentation of data, and they can be readily reused in REST APIs
and other output formats. Being constrained to two arguments limits the functionality so it’s harder
(but not impossible) to make them unbearably complex.

14.2 Custom Template Tags

“Please stop writing so many template tags. Ļey are a pain to debug.”

– Audrey Roy Greenfeld, while debugging Daniel Roy Greenfeld’s code.

While template tags are great tools when developers have the discipline to keep them in check, in
practice they tend to get abused. Ļis section covers the problems that you run into when you put
too much of your logic into template tags and ŀlters.

14.2.1 Template Tags Are Harder to Debug

Template tags of any complexity can be challenging to debug. When they include opening and closing
elements, they become even harder to handle. We’ve found liberal use of log statements and tests are
very helpful when they become hard to inspect and correct.

14.2.2 Template Tags Make Code Reuse Harder

It can be difficult to consistently apply the same effect as a template tag on alternative output formats
used by REST APIs, RSS feeds, or in PDF/CSV generation. If you do need to generate alternate
formats, it’s worth considering putting all logic for template tags into utils.py, for easy access from
other views.

14.2.3 The Performance Cost of Template Tags

Template tags can have a signiŀcant performance cost, especially when they load other templates.
While templates run much faster than they did in previous versions of Django, it’s easy to lose those
performance beneŀts if you don’t have a deep understanding of how templates are loaded in Django.

193

Chapter 14: Template Tags and Filters

If your custom template tags are loading a lot of templates, you might want to consider caching the
loaded templates. See http://2scoops.co/1.8-template-cached-loader for more details.

14.2.4 When to Write Template Tags

Ļese days, we’re very cautious about adding new template tags. We consider two things before
writing them:

ä Anything that causes a read/write of data might be better placed in a model or object method.
ä Since we implement a consistent naming standard across our projects, we can add an abstract

base class model to our core.models module. Can a method or property in our project’s
abstract base class model do the same work as a custom template tag?

When should you write new template tags? We recommend writing them in situations where they are
only responsible for rendering of HTML. For example, projects with very complex HTML layouts
with many different models or data types might use them to create a more łexible, understandable
template architecture.

.....

PACKAGE TIP: We Do Use Custom Template Tags

.

It sounds like we stay away from custom template tags, but that’s not the case. We’re just cau-
tious. Interestingly enough, Daniel has been involved with at least three prominent libraries
that make extensive use of template tags.

ä django-crispy-forms
ä django-wysiwyg
ä django-uni-form (deprecated, use django-crispy-forms instead)

14.3 Naming Your Template Tag Libraries

Ļe convention we follow is <app name> tags.py. Using the twoscoops example, we would have ŀles
named thus:

ä łavors tags.py
ä blog tags.py

194

http://2scoops.co/1.8-template-cached-loader

14.4: Loading Your Template Tag Modules

ä events tags.py
ä tickets tags.py

Ļis makes determining the source of a template tag library trivial to discover.

..

WARNING: Don't Name Your Template Tag Libraries With the
Same Name as Your App

.

For example, naming the events app’s templatetag library events.py is problematic.
Ļis will cause all sorts of problems because of the way that Django loads template tags. If
you do this, expect things to break.

..

WARNING: Don't Use Your IDE's Features as an Excuse to
Obfuscate Your Code

.

Do not rely on your text editor or IDE’s powers of introspection to determine the name of
your templatetag library.

14.4 Loading Your Template Tag Modules

In your template, right after {% extends "base.html" %} (or any other parent template besides
base.html) is where you load your template tags:

..

EŤōřŜŘő Șț.Ș

{% extends "base.html" %}

{% load flavors_tags %}

Simplicity itself ! Explicit loading of functionality! Hooray!

14.4.1 Watch Out for This Crazy Anti-Pattern

Unfortunately, there is an obscure anti-pattern that will drive you mad with fury each and every time
you encounter it:

195

Chapter 14: Template Tags and Filters

..

BōŐ EŤōřŜŘő Șț.Ș

Don't use this code!
It's an evil anti-pattern!
from django import template
template.add_to_builtins(

"flavors.templatetags.flavors_tags"
)

Ļe anti-pattern replaces the explicit load method described above with an implicit behavior which
supposedly ŀxes a “Don’t Repeat Yourself ” (DRY) issue. However, any DRY “improvements” it
creates are destroyed by the following:

ä It will add some overhead due to the fact this literally loads the template tag library into each
and every template loaded by django.template.Template. Ļis means every inherited
template, template {% include %}, inclusion tag, and more will be impacted. While we
have cautioned against premature optimization, we are also not in favor of adding this much
unneeded extra computational work into our code when better alternatives exist.

ä Because the template tag library is implicitly loaded, it immensely adds to the difficulty in
introspection and debugging. Per the Zen of Python, “Explicit is better than Implicit.”

ä Ļe add to builtins method has no convention for placement. To our chagrin, we often
ŀnd it placed in an init module or the template tag library itself, either of which can cause
unexpected problems.

Fortunately, this is obscure because beginning Django developers don’t know enough to make this
mistake and experienced Django developers get really angry when they have to deal with it.

14.5 Summary

It is our contention that template tags and ŀlters should concern themselves only with the manipu-
lation of presentable data. So long as we remember this when we write or use them, our projects run
faster and are easier to maintain.

In the next chapter we explore the use of Django templates and Jinja2.

196

15 | Django Templates and Jinja2

With Django 1.8 comes support for multiple template engines. As of now, the only available backends
for the Django template system are the Django template language (DTL) and Jinja2, both of which
are built into Django itself.

15.1 What's the Syntactical Difference?

At the syntax level, DTL and Jinja2 are very similar. In fact, Jinja2 was inspired by DTL. Here are
the most signiŀcant syntax differences:

Subject DTL Jinja2

Method Calls {{ user.get favorites }} {{ user.get favorites() }}

Filter Arguments {{ toppings|join:", " }} {{ toppings|join(", ") }}

Loop Empty Argument {% empty %} {% else %}

Loop Variable {{ forloop }} {{ loop }}

Cycle {% cycle "odd" "even" %} {{ loop.cycle("odd", "even")
}}

Table 15.1: DTL vs Jinja2 Syntax Differences

Please note that over time DTL has evolved to have syntax much closer to Jinja2 than is described in
http://jinja.pocoo.org/docs/dev/switching/#django. Similarities that contradict the
Jinja2 Documentation:

197

http://jinja.pocoo.org/docs/dev/switching/#django

Chapter 15: Django Templates and Jinja2

Subject DTL Jinja2
Conditions {% if topping=="sprinkles" %} {% if topping=="sprinkles" %}

Conditions {% elif topping=="fudge" %} {% elif topping=="fudge" %}

Conditions {% else %} {% else %}

is operator {% customer is happy %} {% customer is happy %}

Table 15.2: DTL vs Jinja2 Syntax Similarities

15.2 Should I Switch?

First off, with the advent of Django 1.8 we don’t have to choose between DTL or Jinja2. We can set
settings.TEMPLATES to use DTL for some template directories and Jinja2 for others. If we have a
lot of templates in our codebase, we can hold onto our existing templates and leverage the beneŀts of
Jinja2 where we need it. Ļis allows for the best of both worlds: Access to the vast Django ecosystem
of third-party packages and the features of alternatives to DTL.

In short, we can use multiple template languages together harmoniously.

For example, most of a site can be rendered using DTL, with the larger pages rendered content done
with Jinja2. A good example of this behavior are the djangopackages.com/grids. Because of
their size and complexity, in the near future these pages will be refactored to be powered by Jinja2
rather than DTL.

15.2.1 Advantages of DTL

Here are reasons to use the Django template language:

ä It’s batteries-included with all the functionality clearly documented within the Django docs.
Ļe official Django documentation on DTL is very extensive and easy to follow. Ļe template
code examples in the Django docs use DTL.

ä Ļe DTL+Django combination is much more tried and mature than the Jinja2+Django com-
bination.

ä Most third-party Django packages use DTL. Converting them to Jinja2 is extra work.
ä Converting a large codebase from DTL to Jinja2 is a lot of work.

198

https://www.djangopackages.com/grids/

15.3: Considerations When Using Jinja2 With Django

15.2.2 Advantages of Jinja2

Here are reasons to use Jinja2:

ä Can be used independently of Django.
ä As Jinja2’s syntax is closer to Python’s syntax, many ŀnd it more intuitive.
ä Jinja2 is generally more explicit, e.g. function calls in the template use parentheses.
ä Jinja2 has less arbitrary restrictions on logic, e.g. you can pass unlimited arguments to a ŀlter

with Jinja2 vs. only 1 argument with DTL.
ä According to the benchmarks online and our own experiments, Jinja2 is generally faster. Ļat

said, templates are always a much smaller performance bottleneck than database optimization.
See chapter 24 ‘Finding and Reducing Bottlenecks’.

15.2.3 Which One Wins?

It depends on your situation:

ä New users should always stick with DTL.
ä Existing projects with large codebases will want to stick with DTL except for those few pages

that need performance improvements.
ä Experienced Djangonauts should try both, weigh the beneŀts of DTL and Jinja, and make

their own decision.

.....

TIP: Choose a Primary Template Language

.

While we can mix multiple template languages across a project, doing so risks adding dra-
matically to the mental overload of a project. To mitigate this risk, choose a single, primary
template language.

15.3 Considerations When Using Jinja2 With Django

Here are some things to keep in mind when using Jinja2 templates with Django:

199

Chapter 15: Django Templates and Jinja2

15.3.1 CSRF and Jinja2

Jinja2 accesses Django’s CSRF mechanism differently than DTL. To incorporate CSRF into Jinja2
templates, when rendering forms make certain to include the necessary HTML:

..

EŤōřŜŘő ȘȜ.Ș

<div style="display:none">
<input type="hidden" name="csrfmiddlewaretoken" value="{{ csrf_token }}">

</div>

15.3.2 Using Template Tags in Jinja2 Templates

At this time using Django-style Template Tags isn’t possible in Jinja2. If we need the functionality
of a particular template tag, depending on what we’re trying to do we convert it using one of these
techniques:

ä Convert the functionality into a function.
ä Create a Jinja2 Extension. See http://www.2scoops.co/writing-jinja2-extensions/

15.3.3 Using Django-Style Template Filters in Jinja2 Templates

One thing we’ve grown used to having around in DTL is Django’s default template ŀlters. Fortu-
nately, as ŀlters are functions (see section 14.1), we can easily specify a custom Jinja2 environment
that includes the template ŀlters:

..

EŤōřŜŘő ȘȜ.ș

core/jinja2.py
from __future__ import absolute_import # Python 2 only

from django.contrib.staticfiles.storage import staticfiles_storage
from django.core.urlresolvers import reverse
from django.template import defaultfilters

200

http://www.2scoops.co/writing-jinja2-extensions/

15.3: Considerations When Using Jinja2 With Django

..

from jinja2 import Environment

def environment(**options):
env = Environment(**options)
env.globals.update({

'static': staticfiles_storage.url,
'url': reverse,
'dj': defaultfilters

})
return env

Here is a an example of using Django template ŀlters as functions in a Jinja2 template:

..

EŤōřŜŘő ȘȜ.Ț

<table><tbody>
{% for purchase in purchase_list %}

<tr>

{{ purchase.title }}

</tr>
<tr>{{ dj.date(purchase.created, "SHORT_DATE_FORMAT") }}</tr>
<tr>{{ dj.floatformat(purchase.amount, 2) }}</tr>

{% endfor %}
</tbody></table>

If you want a less global approach, we can use a technique explored in Figure 10.4.3, ‘Using the View
Object’. Here we create a mixin for attach the Django template ŀlters as an attribute on views:

..

EŤōřŜŘő ȘȜ.ț

core/mixins.py
from django.template import defaultfilters

class DjFilterMixin(object):
dj = defaultfilters

201

Chapter 15: Django Templates and Jinja2

If a view inherits from our core.mixins.DjFilterMixin class, in its Jinja2 template we can do
the following:

..

EŤōřŜŘő ȘȜ.Ȝ

<table><tbody>
{% for purchase in purchase_list %}

<tr>

{{ purchase.title }}

</tr>
<!-- Call the django.template.defaultfilters functions from the view -->
<tr>{{ view.dj.date(purchase.created, "SHORT_DATE_FORMAT") }}</tr>
<tr>{{ view.dj.floatformat(purchase.amount, 2) }}</tr>

{% endfor %}
</tbody></table>

15.3.4 Context Processors Aren't Called by Jinja2 Templates

If our project has heavily embraced the use of Django’s context processor system, we might
have a problem. For reference, context processors are a list of callables speciŀed in the con-
text processors option of settings.TEMPLATES when using DTL that take in a request object
and return a dictionary of items to be merged into the context.

Currently we’re exploring the concept of moving what has previously been in context processors to
middleware that modiŀes the request object. For example, if we had a context processor that added
an ice cream themed advertisement to every template:

..

EŤōřŜŘő ȘȜ.ȝ

advertisements/context_processors.py
import random

from advertisements.models import Advertisement as Ad

def advertisements(request):
count = Advertisement.objects.filter(subject='ice-cream').count()

202

15.3: Considerations When Using Jinja2 With Django

..
ads = Advertisement.objects.filter(subject='ice-cream')
return {'ad': ads[random.randrange(0, count)]}

Which we placed in our base.html ŀle:

..

EŤōřŜŘő ȘȜ.Ȟ

<!-- base.html -->
...
<div class="ice-cream-advertisement">

</div>
...

Ļis HTML wouldn’t render as desired in Jinja2 templates. However, we can create middleware that
does something similar:

..

EŤōřŜŘő ȘȜ.ȟ

advertisements/middleware.py
import random

from advertisements.models import Advertisement as Ad

def AdvertisementMiddleware(object):

def process_request(request):
count = Advertisement.objects.filter(subject='ice-cream').count()
ads = Advertisement.objects.filter(subject='ice-cream')
If necessary, add a context variable to the request object.
if not hasattr(request, 'context'):

request.context = {}
Don't overwrite the context, instead we build on it.
request.context.update({'ad': ads[random.randrange(0, count)]})

203

Chapter 15: Django Templates and Jinja2

Ļen, in our base.html ŀle we would call it thus:

..

EŤōřŜŘő ȘȜ.Ƞ

<!-- base.html -->
{% set ctx = request.context %}
...
<div class="ice-cream-advertisement">

</div>
...

15.3.5 The Jinja2 Environment Object Should Be Considered Static

In example 15.1 we demonstrate the use of the core component of Jinja2, the jinja2.Environment
class. Ļis object is where Jinja2 shares conŀguration, ŀlters, tests, globals, and more. When the ŀrst
template in your project is loaded, Jinja2 instantiates this class as what is essentially a static object.

Example:

..

EŤōřŜŘő ȘȜ.Șȗ

core/jinja2.py
from __future__ import absolute_import # Python 2 only
from jinja2 import Environment

import random

def environment(**options):
env = Environment(**options)
env.globals.update({

Runs only on the first template load! The three displays below
will all present the same number.
{{ random }} {{ random }} {{ random }}
'random_once': random.randint(1, 5)
Can be called repeated as a function in templates. Each call

204

15.4: Resources

..

returns a random number:
{{ random() }} {{ random() }} {{ random() }}
'random': lambda: random.randint(1, 5),

})
return env

..

WARNING: Don't Alter jinja.Environment After Instantiation

.

While possible, modifying the jinja.Environment object is dangerous. Per the Jinja2 API
documentation, “Modiŀcations on environments after the ŀrst template was loaded will lead
to surprising effects and undeŀned behavior.”

Reference: http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment

15.4 Resources

ä http://www.2scoops.co/1.8-jinja2-templates/ Django’s documentation on using
Jinja2.

ä jinja.pocoo.org

15.5 Summary

In this chapter we covered the similarities and differences between DTL and Jinja2. We also explored
some of the ramiŀcations and workarounds for using Jinja2 in projects.

Starting in the next chapter we leave templates behind and explore the world of REST from both
the server and client sides.

205

http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment
http://www.2scoops.co/1.8-jinja2-templates/
jinja.pocoo.org

Chapter 15: Django Templates and Jinja2

206

16 | Building REST APIs

Today’s internet is much more than HTML-powered websites. Developers need to support AJAX
and native mobile apps. Having tools that support easy creation of JSON, YAML, XML, and other
formats is important. By design, a Representational StateTransfer (REST) ApplicationProgram-
ming Interface (API) exposes application data to other concerns.

We’ll go over the other side of REST APIs in chapter 17, Consuming REST APIs.

.....

PACKAGE TIP: Packages for Crafting APIs

.

ä django-rest-framework builds off of Django CBVs, adding a wonderful browsable
API feature. It has a lot of features, follows elegant patterns, and is great to work with.
Ļis library has the deŀnitive lead in functionality over other similar tools, providing
powerful tools for building CBV and FBV powered REST APIs. As of the release of
this book, it is the defacto Django tool for building APIs.

ä django-tastypie is a mature API framework that implements its own class-based view
system. It’s a feature-rich, mature, powerful, stable tool for creating APIs from Django
models. It was created by Daniel Lindsley, the developer who started the django-
haystack project, the most commonly used Django search library.

ä For super-quick, super-simple one-off REST API views django-braces (CBVs) and
django-jsonview (FBVs) can prove really useful. Ļe downside is that when you get
into the full range of HTTP methods and more complex designs, they rapidly become
a hindrance due to their lack of focus on building APIs.

207

Chapter 16: Building REST APIs

Figure 16.1: A tasty pie is one ŀlled with ice cream.

16.1 Fundamentals of Basic REST API Design

Ļe Hypertext Transfer Protocol (HTTP) is a protocol for distributing content that provides a set of
methods to declare actions. By convention, REST APIs rely on these methods, so use the appropriate
HTTP method for each type of action:

Purpose of Request HTTP Method Rough SQL equivalent

Create a new resource POST INSERT

Read an existing resource GET SELECT

Request the metadata of an existing resource HEAD

Update an existing resource PUT UPDATE

Update part of an existing resource PATCH UPDATE

Delete an existing resource DELETE DELETE

Return the supported HTTP methods for the given
URL

OPTIONS

Echo back the request TRACE

Tunneling over TCP/IP (usually not implemented) CONNECT

Table 16.1: HTTP Methods

A couple of notes on the above:

ä If you’re implementing a read-only API, you might only need to implement GET methods.
ä If you’re implementing a read-write API you must at least also use POST, but should consider

using PUT and DELETE.

208

16.1: Fundamentals of Basic REST API Design

ä For simplicity, REST API architects sometimes prefer the use of just GET and POST.
ä By deŀnition, GET, PUT, and DELETE are idempotent. POST and PATCH are not.
ä PATCH is often not implemented, but it’s a good idea to implement it if your API supports

PUT requests.
ä django-rest-framework and django-tastypie handle all of this for you.

Here are some common HTTP status codes that should be considered when implementing a
REST API. Note that this is a partial list; a much longer list of status codes can be found at
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

HTTP Status Code Success/Failure Meaning

200 OK Success GET - Return resource
PUT - Provide status message or return resource

201 Created Success POST - Provide status message or return newly created
resource

204 No Content Success DELETE - Response to successful delete request

304 Unchanged Redirect ALL - Indicates no changes since the last request. Used
for checking Last-Modified and Etag headers to improve
performance.

400 Bad Request Failure ALL - Return error messages, including form validation
errors.

401 Unauthorized Failure ALL - Authentication required but user did not provide
credentials.

403 Forbidden Failure ALL - User attempted to access restricted content

404 Not Found Failure ALL - Resource is not found

405 Method Not Allowed Failure ALL - An unallowed HTTP method was attempted.

410 Gone Failure ALL - A method was attempted that is no longer
supported. Used when an API is shut down in favor of a
newer version of an API. Mobile applications can test for
this condition, and if it occurs, tell the user to upgrade.

429 Too Many Requests Failure ALL - The user has sent too many requests in a given
amount of time. Intended for use with rate limiting.

Table 16.2: HTTP Status Codes

209

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 16: Building REST APIs

16.2 Implementing a Simple JSON API

Let’s use the łavors app example from previous chapters as our base, providing the capability to
create, read, update, and delete łavors via HTTP requests using AJAX, python-requests, or some
other library. We’ll also use django-rest-framework, as it provides us with the capability to build
a REST API quickly using patterns similar to the class-based views that we describe in previous
chapters. We’ll begin by listing the Flavor model again:

..

EŤōřŜŘő Șȝ.Ș

flavors/models.py
from django.core.urlresolvers import reverse
from django.db import models

class Flavor(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField(unique=True)
scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse("flavors:detail", kwargs={"slug": self.slug})

Deŀne the serializer class:

..

EŤōřŜŘő Șȝ.ș

from rest_framework import serializers

from .models import flavor

class FlavorSerializer(serializers.ModelSerializer):
class Meta:

model = flavor
fields = ('title', 'slug', 'scoops_remaining')

Now let’s add in some views:

210

16.2: Implementing a Simple JSON API

..

EŤōřŜŘő Șȝ.Ț

flavors/views
from rest_framework.generics import ListCreateAPIView
from rest_framework.generics import RetrieveUpdateDestroyAPIView
from .models import Flavor
from .serializers import FlavorSerializer

class FlavorCreateReadView(ListCreateAPIView):
queryset = Flavor.objects.all()
serializer_class = FlavorSerializer
lookup_field = 'slug'

class FlavorReadUpdateDeleteView(RetrieveUpdateDestroyAPIView):
queryset = Flavor.objects.all()
serializer_class = FlavorSerializer
lookup_field = 'slug'

We’re done! Wow, that was fast!

.....

TIP: Classy Django REST Framework is a Useful Reference

.

For working with the Django Rest Framework, we’ve found that http://cdrf.co is a great
cheat sheet. It is patterned after the famous http://ccbv.co.uk reference site, but tailored
for Django Rest Framework.

Now we’ll wire this into our łavors/urls.py module:

..

EŤōřŜŘő Șȝ.ț

flavors/urls.py
from django.conf.urls import url

from flavors import views

urlpatterns = [
url(

211

http://cdrf.co
http://ccbv.co.uk

Chapter 16: Building REST APIs

..

regex=r"ˆapi/$",
view=views.FlavorCreateReadView.as_view(),
name="flavor_rest_api"

),
url(

regex=r"ˆapi/(?P<slug>[-\w]+)/$",
view=views.FlavorReadUpdateDeleteView.as_view(),
name="flavor_rest_api"

)
]

What we are doing is reusing the same view and URLConf name, making it easier to manage when
you have a need for a JavaScript-heavy front-end. All you need to do is access the Flavor resource via
the {% url %} template tag.

In case it’s not clear exactly what our URLConf is doing, let’s review it with a table:

Url View Url Name (same)

/flavors/api/ FlavorCreateReadView flavor rest api

/flavors/api/:slug/ FlavorReadUpdateDeleteView flavor rest api

Table 16.3: URLConf for the Flavor REST APIs

..

WARNING: Our Simple API Does Not Use Permissions

.

If you implement an API using our example, don’t forget to authenticate users and assign
them permissions appropriately!

ä http://www.django-rest-framework.org/api-guide/authentication/
ä http://www.django-rest-framework.org/api-guide/permissions/

Ļe end result is the traditional REST-style API deŀnition:

212

http://www.django-rest-framework.org/api-guide/authentication/
http://www.django-rest-framework.org/api-guide/permissions/

16.3: REST API Architecture

..

EŤōřŜŘő Șȝ.Ȝ

flavors/api/
flavors/api/:slug/

.....

TIP: Common Syntax for Describing REST APIs

.

It’s not uncommon to see syntax like what is described in Example 14.4. In this particular
case, /flavors/api/:slug/ includes a :slug value. Ļis represents a variable, but in a
manner suited for documentation across frameworks and languages, and you’ll see it used in
many third-party REST API descriptions.

We’ve shown you (if you didn’t know already) how it’s very easy to build REST APIs in Django, now
let’s go over some advice on maintaining and extending them.

16.3 REST API Architecture

Building quick APIs is easy with tools like django-rest-framework and django-tastypie, but extending
and maintaining them to match your project’s needs takes a bit more thought.

16.3.1 Code for a Project Should Be Neatly Organized

For projects with a lot of small, interconnecting apps, it can be hard to hunt down where a particular
API view lives. In contrast to placing all API code within the each relevant app, sometimes it makes
more sense to build an app speciŀcally for the API. Ļis is where all the serializers, renderers, and
views are placed. Of course, the name of the app should rełect its API version (see subsection 16.3.6).

For example, we might place all our views, serializers, and other API components in an app titled
apiv4.

Ļe downside is the possibility for the API app to become too large and disconnected from the apps
that power it. Hence why we consider an alternative in the next subsection.

213

Chapter 16: Building REST APIs

16.3.2 Code for an App Should Remain in the App

When it comes down to it, REST APIs are just views. For simpler, smaller projects, REST API
views should go into views.py or viewsets.py modules and follow the same guidelines we endorse
when it comes to any other view. Ļe same goes for app- or model-speciŀc serializers and renderers.
If we do have app-speciŀc serializers or renderers, the same applies.

For larger projects with too many REST API view classes for a single views.py/viewsets.py module,
we can break them up. In other words, move the view classes into a viewset package complete with

init .py and Python modules containing a smaller number of REST API views.

Ļe downside is that if there are too many small, interconnecting apps, it can be hard to keep track
of the myriad of places API components are placed. Hence why we considered another approach in
the previous subsection.

16.3.3 Try to Keep Business Logic Out of API Views

Regardless of which architectural approach you take, it’s a good idea to try to keep as much logic as
possible out of API views. If this sounds familiar, it should. We covered this in ‘Try to Keep Business
Logic out of Views,’ chapter 8 Function- and Class-Based Views, and remember, API views are just
another type of view, after all.

214

16.3: REST API Architecture

Figure 16.2: An Ice Cream as a Service API.

16.3.4 Grouping API URLs

If you have REST API views in multiple Django apps, how do you build a project-wide API that
looks like this?

..

EŤōřŜŘő Șȝ.ȝ

api/flavors/ # GET, POST
api/flavors/:slug/ # GET, PUT, DELETE
api/users/ # GET, POST
api/users/:slug/ # GET, PUT, DELETE

In the past, we placed all API view code into a dedicated Django app called api or apiv1, with custom
logic in some of the REST views, serializers, and more. In theory it’s a pretty good approach, but in

215

Chapter 16: Building REST APIs

practice it means we have logic for a particular app in more than just one location.

Our current approach is to lean on URL conŀguration. When building a project-wide API we write
the REST views in the views.py or viewsets.py modules, wire them into a URLConf called something
like core/api.py or core/apiv1.py and include that from the project root’s urls.py module. Ļis means
that we might have something like the following code:

..

EŤōřŜŘő Șȝ.Ȟ

core/api.py
"""Called from the project root's urls.py URLConf thus:

url(r"ˆapi/", include("core.api", namespace="api")),
"""
from django.conf.urls import url

from flavors import views as flavor_views
from users import views as user_views

urlpatterns = [
{% url "api:flavors" %}
url(

regex=r"ˆflavors/$",
view=flavor_views.FlavorCreateReadView.as_view(),
name="flavors"

),
{% url "api:flavors" flavor.slug %}
url(

regex=r"ˆflavors/(?P<slug>[-\w]+)/$",
view=flavor_views.FlavorReadUpdateDeleteView.as_view(),
name="flavors"

),
{% url "api:users" %}
url(

regex=r"ˆusers/$",
view=user_views.UserCreateReadView.as_view(),
name="users"

),
{% url "api:users" user.slug %}
url(

216

16.4: Service-Oriented Architecture

..

regex=r"ˆusers/(?P<slug>[-\w]+)/$",
view=user_views.UserReadUpdateDeleteView.as_view(),
name="users"

),
]

16.3.5 Test Your API

We ŀnd that Django’s test suite makes it really easy to test API implementations. It’s certainly much
easier than staring at curl results! Testing is covered at length in chapter 22, Testing Stinks and Is a
Waste of Money!, and we even include in that chapter the tests we wrote for our simple JSON API
(see subsection 22.3.1).

16.3.6 Version Your API

It’s a good practice to abbreviate the urls of your API with the version number e.g.
/api/v1/flavors or /api/v1/users and then as the API changes, /api/v2/flavors or
/api/v2/users. When the version number changes, existing customers can continue to use the
previous version without unknowingly breaking their calls to the API.

Also, in order to avoid angering API consumers, it’s critical to maintain both the existing API and
the predecessor API during and after upgrades. It’s not uncommon for the deprecated API to remain
in use for several months.

When you do implement an API, provide customers/users with a deprecation warning along with
ample time so they can perform necessary upgrades and not break their own applications. From
personal experience, the ability to send a deprecation warning to end users is an excellent reason to
request email addresses from users of even free and open source API services.

16.4 Service-Oriented Architecture

In Service-Oriented Architecture, or SOA, a web application is broken up into isolated, independent
components. Each component might run on its own server or cluster, with the components com-

217

Chapter 16: Building REST APIs

municating with one another. For SOA-style Django projects, communication between components
typically occurs via REST APIs.

Ļe main reason to follow SOA is to make it easier for many engineers to work on different compo-
nents of a web application without running into conłicts with one another. Instead of having a giant
team of 100 engineers all working on the same codebase simultaneously, there might be 10 teams of
10 engineers, each team working on an isolated SOA component.

For smaller team projects, we’ve found that SOA tends to cause more trouble than it’s worth. Having
more moving parts causes greater complexity.

To implement an SOA-style web application, think about how to break your Django project into
isolated web applications, each running independently. Each Django app might get split off into its
own isolated Django project.

For example, if you’re implementing the Airbnb of Ice Cream Truck Rentals, you might start with a
single Django project containing 8 loosely-coupled apps: trucks, owners, renters, payments, receipts,
reservations, scheduling, and reviews. As your company grows, you might refactor each app into its
own REST API-powered Django project, maintained by its own team.

ä http://amzn.to/1KgRHG3 Domain-Driven Development by Eric Evans. Instructs on sys-
tematic approaches to domain-driven design.

ä http://en.wikipedia.org/wiki/Service-oriented_architecture
ä http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

16.5 Shutting Down an External API

When it’s time to shut down an older version of an external API in favor of a new one, here are useful
steps to follow:

16.5.1 Step #1: Notify Users of Pending Shut Down

Provide as much advanced notice as possible. Preferably six months, but as short as one month.
Inform API users via email, blogs, and social media. We like to report the shutdown notiŀcation to
the point that we worry people are getting tired of the message.

218

http://amzn.to/1KgRHG3
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

16.6: Evaluating REST Frameworks

16.5.2 Step #2: Replace API With 410 Error View

When the API is ŀnally shut down, we provide a simple 410 Error View. We include a very simple
message that includes the following information:

ä A link to the new API’s endpoint.
ä A link to the new API’s documentation.
ä A link to an article describing the details of the shut down.

Below is a sample shutdown view that works against any HTTP method:

..

EŤōřŜŘő Șȝ.ȟ

core/apiv1_shutdown.py
from django.http import HttpResponseGone

apiv1_gone_msg = """APIv1 was removed on April 2, 2015. Please switch to APIv3:

APIv3 Endpoint

APIv3 Documentation

APIv1 shut down notice

"""

def apiv1_gone(request):
return HttpResponseGone(apiv1_gone_msg)

16.6 Evaluating REST Frameworks

When you begin considering REST frameworks, it’s worthwhile to consider the following:

219

Chapter 16: Building REST APIs

16.6.1 Django Rest Framework Is the Defacto Package

Ļe vast majority of Django projects being built at the time of the release of this book use Django
Rest Framework. Ļis popularity ensures that the package will be maintained in the future, and that
ŀnding other Django coders to work on the project will be easier than if we used an alternative.

16.6.2 How Much Boilerplate Do You Want to Write?

Ļese days, most frameworks make an effort to reduce boilerplate when dealing with resources. In
fact, usually when we hear grumbling on the lines of ‘X framework has too much boilerplate!!!’ it is
actually a matter of trying to ŀgure out how to implement Remote Procedure Calls in a resource-
driven system.

Speaking of Remote Procedure calls, let’s move on to the next sub-section...

16.6.3 Are Remote Procedure Calls Easy to Implement?

Ļe resource model used by REST frameworks to expose data is very powerful, but it doesn’t cover ev-
ery case. Speciŀcally, resources don’t always match the reality of application design. For example, it is
easy to represent syrup and a sundae as two resources, but what about the action of pouring syrup? Us-
ing this analogy, we change the state of the sundae and decrease the syrup inventory by one. While we
could have the API user change things individually, that can generate issues with database integrity.
Ļerefore in some cases it can be good idea to present a method like sundae.pour syrup(syrup) to
the client as part of the RESTful API.

In computer science terms, sundae.pour syrup(syrup) could be classiŀed as a Remote Proce-
dure Call or RPC.

Depending on the REST framework or system you chose, RPC calls can be easy or challenging to
implement. Ļis is an area that needs to be investigated early on, as it’s painful to discover in the
middle of a project that a framework of choice makes this a pain point.

Additional Reading:

ä https://en.wikipedia.org/wiki/Remote_Procedure_Call
ä https://en.wikipedia.org/wiki/Resource-oriented_architecture

220

https://en.wikipedia.org/wiki/Remote_Procedure_Call
https://en.wikipedia.org/wiki/Resource-oriented_architecture

16.7: Rate Limiting Your API

16.6.4 CBVs or FBVs?

As mentioned in the previous chapters, the authors prefer CBVs, but other developers prefer FBVs.
If this is a sticking point, then consider exploring options that support FBV-based implementations
such as django-rest-framework.

16.7 Rate Limiting Your API

Rate limiting is when an API restricts how many requests can be made by a user of the API within
a period of time. Ļis is done for a number of reasons, which we’ll explain below.

16.7.1 Unfettered API Access is Dangerous

In the ancient times (2010) we launched the Django Packageswebsite. Ļe project, started during
the Django Dash contest, was an instant hit for the Django community. We sprinted on it constantly,
and its feature set grew rapidly. Unfortunately, we quickly hit the rate limit of GitHub’s ŀrst API.
Ļis meant that after a certain amount of API requests per hour, we weren’t allowed to make any
more until a new hour passed.

Fortunately at DjangoCon 2010 we had the opportunity to ask one of the founders of GitHub if we
could have unlimited access to their API. He graciously said ‘yes’ and within a day we could get data
from GitHub as much as we wanted.

We were delighted. Our users were delighted. Usage of the site increased, people were thirsty for data
as to what were the most active projects. So desirous of data were we that every hour we requested
the latest data from GitHub. And that caused a problem for GitHub.

You see, this was 2010 and GitHub was not the giant, powerful company it is today. At 17 minutes
past each hour, Django Packages would send thousands of requests to the GitHub API in a very short
period. With unfettered access to GitHub application of the time, we were causing them problems.

Eventually, GitHub contacted us and requested that we scale back how much we were using their
API. We would still have unlimited access, just needed to give them breathing room. We complied,
checking data once per day instead of by the hour, and at a more reasonable rate. We continue to do
so to this day.

221

https://www.djangopackages.com/

Chapter 16: Building REST APIs

While modern GitHub can certainly handle much, much larger volumes of API access then it could
in late 2010, we like to think we learned a shared lesson about unfettered access to an API: Grant
such access cautiously.

16.7.2 REST Frameworks Must Come with Rate Limiting

One of the features usually delegated to a feature bullet when describing a REST API framework is
if it allows for rate limiting of API users. Yet when evaluating which one to use, this is a must-have.
Being able to control this can mean the difference between joyful triumph or utter disaster.

.....

TIP: HTTP Server Rate Limiting

.

It’s possible to use nginx or apache for rate limiting. Ļe upside is faster performance. Ļe
downside is that it removes this functionality from the Python code.

16.7.3 Rate Limit Can Be A Business Plan

Imagine we launch an API-based startup that lets users add images of toppings to images of ice
cream. We know that everyone will want to use this API, and come up with several tiers of access
that we tie into pricing:

Developer tier is free, but only allows 10 API requests per hour.
One Scoop is $24/month, allows 25 requests per minute.
Two Scoops is $79/month, allows 50 requests per minute.
Corporate is $5000/month, allows for 200 requests per minute.

Now all we have to do is get people to use our API.

16.8 Advertising Your REST API

Let’s assume we’ve built our REST API and want outside coders and companies to use it. How do
we go about doing that?

222

16.9: Additional Reading

16.8.1 Documentation

Ļe most important thing to do is to provide comprehensive documentation. Ļe easier to read and
understand the better. Providing easy-to-use code examples is a must. You can write it from scratch,
use the auto-documentation provided by tools like django-rest-framework, Sphinx, and Markdown
or even embrace a commercial documentation generation service like swagger.io.

Some of the material in chapter 23, ‘Documentation: Be Obsessed ’ might prove useful for forward-
facing REST API documentation.

16.8.2 Provide Client SDKs

Something that may help spread use of your API is to provide a software development kits (SDK)
for various programming languages. Ļe more programming languages covered the better. For us,
we’ve found the must-have languages include Python, JavaScript, Ruby, PHP, Go, and Java.

In our experience, it’s a good idea to write at least one of these libraries ourselves and create a demo
project. Ļe reason is that it not only advertises our API, it forces us to experience our API from the
same vantage point as our consumers.

For building client SDKs, reading section 21.9, ‘Releasing Your Own Django Packages’ might prove
useful.

16.9 Additional Reading

We highly recommend reading the following:

ä http://en.wikipedia.org/wiki/REST
ä http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
ä http://jacobian.org/writing/rest-worst-practices/

16.10 Summary

In this chapter we covered:

223

swagger.io
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://jacobian.org/writing/rest-worst-practices/

Chapter 16: Building REST APIs

ä API creation libraries.
ä Grouping strategies.
ä Fundamentals of basic REST API design.
ä Implementing a simple JSON API.

Coming up next, we’ll go over the other side of REST APIs in chapter 17, Consuming REST APIs.

224

17 | Consuming REST APIs

Now that we’ve covered both creating REST APIs and template best practices, let’s combine them.
In other words, these are best practices for using Django-powered tools to display content to the
end user in the browser using content managed by REST APIs and presented by modern JavaScript
frameworks.

..

WARNING: This Chapter Will Be Brief

.

Our challenge in writing this chapter is twofold:
ä Django is a backend framework.
ä Ļe modern JavaScript/HTML5 landscape is evolving too fast to document.

Ļerefore, we’re going to cover best practices at a very high level.

With the advent of faster JavaScript engines and a maturation of the associated community, there
has been a rise in new JavaScript frameworks that make integration of RESTful APIs easy. Here are
some of them:

React.js https://facebook.github.io/react/
A JavaScript framework and ecosystem created and maintained by Facebook. Designed for
creation of HTML, iOS, and android applications.

Angular.js http://angularjs.org
A JavaScript framework, maintained by Google, that assists with running single-page appli-
cations. Popular in the Django community. As of the release of this book, Angular.js is in the
midst of controversy due to the incompatible break between the 1.x and 2.x.

Backbone.js http://backbonejs.org
Ļe ŀrst of the modern JavaScript libraries to really hit critical mass in popularity. It’s built on
top of the really useful underscore.js library.

225

https://facebook.github.io/react/
http://angularjs.org
http://backbonejs.org

Chapter 17: Consuming REST APIs

jQuery http://jquery.com/
While it’s no longer the cool kid on the block, 75 percent of the web can’t be wrong.

Ļese libraries can really improve what we like to call the ‘immediate user experience’. However, with
every good thing there are always things to consider and things to do.

17.1 Learn How to Debug the Client

Debugging client-side JavaScript is a lot more than simply writing console.log() and con-
sole.dir() statements. Ļere are a number of tools for debugging and ŀnding errors, and some of
them are speciŀcally written for particular JavaScript frameworks. Once a tool of choice is chosen,
it’s an excellent idea to take a day to learn how to write client-side tests.

Reference material:

ä http://2scoops.co/chrome-developer-tools
ä https://developer.mozilla.org/en-US/docs/Debugging_JavaScript

Figure 17.1: Server-side vs. client-side ice cream.

226

http://jquery.com/
http://2scoops.co/chrome-developer-tools
https://developer.mozilla.org/en-US/docs/Debugging_JavaScript

17.2: Consider Using JavaScript-Powered Static Asset Preprocessors

17.2 Consider Using JavaScript-Powered Static Asset
Preprocessors

In the past, we used Python everywhere, including JavaScript and CSS miniŀcation. However, as
of the publication of the 1.6 edition of this book, it was clear that the JavaScript community was
maintaining their version of these tools better than the Python community. Ļat’s perfectly okay,
because since they’ve done the work on this part of the toolchain, we can focus on other things.

As we write this, the most commonly used tool for this kind of work is Gulp, found at
http://gulpjs.com/. Ļink of it as an automation tool like python’s Fabric or Invoke, but for
JavaScript. Gulp.js requires node.js to be installed, but since that works everywhere Python does
(including Windows), it won’t be a problem.

17.3 Making Content Indexable by Search Engines

Single-page applications or content served by REST APIs are increasingly popular. However, with-
out care this content won’t be indexed by search engines such as Google or Baidu. If all the content is
only available to authenticated users this isn’t a big deal, but if reaching search engines is important,
then here are some steps that can be used to address the problem.

17.3.1 Read the Search Engine Documentation

Ļe teams behind Google Search and other search engines are very well aware of the growing use
of single page apps. Which is why they provide instructions on how to make your AJAX powered
content searchable.

ä https://developers.google.com/webmasters/ajax-crawling/
ä http://www.2scoops.co/bing-search-engine-best-practices/

In theory some of them are already searching through content rendered by client-side JavaScript.
Over time, their ability to weed the chaff from real content is only going to grow. If SEO isn’t
important to you right now but will be in the future, consider waiting until they ŀgure it out.

227

http://gulpjs.com/
https://developers.google.com/webmasters/ajax-crawling/
http://www.2scoops.co/bing-search-engine-best-practices/

Chapter 17: Consuming REST APIs

17.3.2 Hand-Craft the sitemap.xml

Some search engines, such as Baidu, don’t have instructions for site developers wanting their content
index. Ļe answer to this is to use the old sitemap.xml method to instruct the search engine. Since
the AJAX views are not concrete HTML, we’ll need to create a custom view instead of Django’s
built-in sitemap app:

..

EŤōřŜŘő ȘȞ.Ș

core/views.py
from __future__ import absolute_import

from django.views.generic import TemplateView

from .flavors.models import Flavor

class SiteMapView(TemplateView):
template_name = "sitemap.xml"

def flavors(self):
return Flavor.objects.all()

Ļen hand-craft the sitemap.xml (note: this is a simple example):

..

EŤōřŜŘő ȘȞ.ș

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

{# Snip the home page, contact, etc #}
{% for flavor in view.flavors %}

<url>
<loc>{{ site.domain }}/app/#{{ flavor.slug }}</loc>
<lastmod>{{ flavor.modified }}</lastmod>
<changefreq>monthly</changefreq>
<priority>0.8</priority>

</url>
{% endfor %}

</urlset>

228

17.4: Real-Time Woes a.k.a. Latency

Ļere are a lot of other things you can do, making Google’s web crawling speciŀcation an important
resource for anyone creating single page apps:
https://developers.google.com/webmasters/ajax-crawling/.

17.3.3 Use a Service to Make Your Site Crawlable

Rather than do the work of generating a sitemap yourself, consider using a service to do the work
for you. For example, for a fee, brombone.com crawls your Angular.js, Ember.js, or Backbone.js site
and shows Google pre-rendered HTML representing the data that you want to display.

17.4 Real-Time Woes a.k.a. Latency
Let’s say we’ve put together a well-designed, well-indexed, well-cached real-time project with the
widest bandwidth piping content to the world. We can handle any load, and our test users applaud
the speed and functionality of the project. Ļings look great, and we look forward to bonuses and
raises.

Ļen the complaints from the other side of the planet start coming in about the slow speed of the
application. Our effort isn’t ‘real-time’ to any of a potentially large block of users and our client/boss
is really unhappy.

Congratulations, we’ve just hit the speed of light!

Ļis isn’t a joke, it’s a very real problem. Here, Django isn’t the problem. Instead, it’s physics. Ļe time
it takes for HTTP requests to transmit back and forth across half the circumference of the planet
is noticeable to human beings. Add in server-side and client-side processing, and we risk alienating
potential or existing users.

Also, keep in mind that even the fastest local connections have hiccups and slow-downs. So it’s not
uncommon for ‘real-time’ applications to have ways to handle this sort of behavior.

17.4.1 Solution: Mask the Latency With Animations

One of the more common ŀxes is to have JavaScript-powered animation distract the user from latency
issues. We encounter this every time we use a single page app with an attractive interface, including
all modern web-based email clients.

229

https://developers.google.com/webmasters/ajax-crawling/
brombone.com

Chapter 17: Consuming REST APIs

17.4.2 Solution: Fake Successful Transactions

Another solution involves processing the request on the client-side as if the request successfully made
it to the server. We’ll need to include client-side logic to handle failures, but JavaScript frameworks
handling HTTP requests are asynchronous, making this feasible, albeit possibly complicated.

If you’ve ever suddenly discovered that your cloud-based spreadsheet hadn’t save the data entered for
the past 30 seconds, you’ve uncovered this kind of JavaScript powered trickery in action.

17.4.3 Solution: Geographically Based Servers

Geographically-based servers across all seven continents is an option. However, for Django this is
not trivial to implement, not at the programming or database level. It requires a signiŀcant volume
of skills and expertise that’s outside the scope of this book.

If you have the time and budget, this can be an exciting avenue to explore and we encourage it.
However, unless you’ve done this before there is a good chance you are going to underestimate the
effort involved.

17.4.4 Solution: Restrict Users Geographically

Sometimes we just don’t have a choice. Perhaps our application is too reliant on ‘real-time’ perfor-
mance and geolocating servers might be outside the budget. We might make some people unhappy,
but that can be mitigated to some degree by saying things like, ‘Support in your country is coming
soon!’

17.5 Avoid the Anti-Patterns

Here are a number of anti-patterns that we’ve discovered when it comes to projects consuming REST
APIs for content.

230

17.5: Avoid the Anti-Patterns

17.5.1 Building Single Page Apps When Multi-Page Apps Suffice

Single-page apps are challenging and fun to build, but does a traditional CMS-site need to be one?
Certainly the content pages can include API-powered editing controls, but when building this kind
of site, there is something to be said for traditional HTML pages.

However, when working with legacy projects, it’s often easier to add new features as single-page apps.
Ļis allows for the maintainers of the project to deliver improved experiences with new features, while
preserving the stability of the existing code base. A good example of this might be adding a calendar
application to an existing project.

17.5.2 Not Writing Tests

When you ŀrst begin working in a new language or framework, including client-side JavaScript, it’s
tempting to skip the tests. In a word, don’t. Working in the client is getting more complicated and
sophisticated every year. Between evolving client-side standards, things are simply not as readable
there as on the server side.

We cover Django/Python testing in chapter 22. A good reference for JavaScript testing is
http://2scoops.co/stack-overflow-javascript-unit-test-tools-for-tdd

17.5.3 Not Understanding JavaScript Memory Management

Single-page apps are great, but the complex implementations where users keep them open constantly
will hold objects in the browser for a very long time. Eventually, if not managed, this can cause
browser slowdowns and crashes. Each JavaScript framework comes with tools or advice on how to
handle this potential problem, and it’s a good idea to know the recommended approach.

17.5.4 Storing Data in the DOMWhen It's Not jQuery

After years of using jQuery, some of us have grown used to using DOM elements to store data
(especially Daniel). However, when using other JavaScript frameworks this isn’t ideal. Ļey have

231

http://2scoops.co/stack-overflow-javascript-unit-test-tools-for-tdd

Chapter 17: Consuming REST APIs

their own mechanisms for handling client data, and by not following them we risk losing out on
some of the features promised by these frameworks.

We recommend looking up the data management methods for your chosen JavaScript framework
and embracing them as deeply as possible.

17.6 AJAX and the CSRF Token

If you use AJAX with Django, you may discover that triggering the CSRF token validation blocks
your ability to use your API. In each subsection below we’ll provide a base example, as well as link
to at least one useful reference.

17.6.1 JQuery and the CSRF Token

Django’s CSRF protection seems like an inconvenience when writing AJAX. However, if you’re using
jQuery then you can just create a csrf.js and use the following on any page with AJAX that is updating
data.

..

EŤōřŜŘő ȘȞ.Ț

// Place at /static/js/csrf.js
// CSRF helper functions taken directly from Django docs
function getCookie(name) {

var cookieValue = null;
if (document.cookie && document.cookie != '') {
var cookies = document.cookie.split(';');
for (var i = 0; i < cookies.length; i++) {
var cookie = jQuery.trim(cookies[i]);
// Does this cookie string begin with the name we want?
if (cookie.substring(0, name.length + 1) == (name + '=')) {

cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
break;

}
}

}
return cookieValue;

}

232

17.6: AJAX and the CSRF Token

..

var csrftoken = getCookie('csrftoken');
function csrfSafeMethod(method) {

// these HTTP methods do not require CSRF protection
return (/ˆ(GET|HEAD|OPTIONS|TRACE)$/.test(method));

}
$.ajaxSetup({
beforeSend: function(xhr, settings) {
if (!csrfSafeMethod(settings.type) && !this.crossDomain) {

xhr.setRequestHeader("X-CSRFToken", csrftoken);
}

}
});

Now let’s include the JavaScript on a page which has a shopping cart form for ordering ice cream:

..

EŤōřŜŘő ȘȞ.ț

{% extends "base.html" %}
{% load static %}

{% block title %}Ice Cream Shopping Cart{% endblock %}

{% block content %}
<h1>Ice Cream Shopping Cart</h1>
<div class="shopping-cart"></div>

{% endblock %}

{% block javascript %}
{{ block.super }}
<script type="text/javascript"

src="{% static "js/csrf.js" %}"></script>
<script type="text/javascript"

src="{% static "js/shopping_cart.js" %}"></script>
{% endblock %}

Reference:

233

Chapter 17: Consuming REST APIs

ä https://docs.djangoproject.com/en/1.8/ref/csrf/

17.6.2 Backbone.js and the CSRF Token

Working with the CSRF token and Backbone.js project is pretty straight-forward:

..

EŤōřŜŘő ȘȞ.Ȝ

// Place at /static/models.js
var newSync = Backbone.sync;
Backbone.sync = function(method, model, options){

options.beforeSend = function(xhr){
xhr.setRequestHeader('X-CSRFToken', CSRF_TOKEN);

};
return newSync(method, model, options);

};

17.6.3 AngularJS and the CSRF Token

Ļe pattern we like to follow with AngularJS is to place the CSRF token in the HTTP header. It is
not uncommon to see the CSRF token added to the header thus:

..

EŤōřŜŘő ȘȞ.ȝ

<script>
var app = angular.module('icecreamlandia.app');
app.config(['$httpProvider', function($httpProvider) {

// The next two lines should just be one, but we had to break it
// up in order to preserve book formatting.
var common = $httpProvider.defaults.headers.common;
common['X-CSRFToken'] = '{{ csrf_token|escapejs }}';

}]);
</script>

AngularJS Resources:

ä http://2scoops.co/kevin-stone-django-angular-tutorial

234

https://docs.djangoproject.com/en/1.8/ref/csrf/
http://2scoops.co/kevin-stone-django-angular-tutorial

17.7: Improving JavaScript Skills

17.7 Improving JavaScript Skills

One of the best things we can do when implementing the consumption of REST APIs in templates
is to ensure our JavaScript skills are up to par. While Python developers sometimes like to grumble
about JavaScript, it is a very capable language in its own right. Any responsible web developer will
take the time to ramp up their skills so they can reap the beneŀts of modern JavaScript frameworks.

17.7.1 Assessing Skill Levels

Noted JavaScript developer Rebecca Murphey created a JavaScript assessment tool. We found it a
wonderful way to determine how much JavaScript we actually knew, and what we needed to improve.

See https://github.com/rmurphey/js-assessment

17.7.2 Learn More JavaScript!

Ļere are a plethora of JavaScript resources for taking basic skills and making them better. We list
our favorites at the end of Appendix C: ‘Additional Resources.’

17.8 Follow JavaScript Coding Standards

In the case of JavaScript, we advocate the following guides for both front- and back-end work:

ä Felix’s Node.js Style Guide
http://nodeguide.com/style.html

ä idiomatic.js
https://github.com/rwaldron/idiomatic.js/

235

https://github.com/rmurphey/js-assessment
http://nodeguide.com/style.html
https://github.com/rwaldron/idiomatic.js/

Chapter 17: Consuming REST APIs

17.9 Useful Resources

Tutorials:

ä http://2scoops.co/lightweight-django A good, mostly front-end focused Django
book by Julia Elman and Mark Lavin

ä http://2scoops.co/kevin-stone-django-angular-tutorial Kevin Stone’s exten-
sive tutorial on Django and Angular.

ä http://www.2scoops.co/joseph-misiti-django-backbone-tutorial/

17.10 Summary

Material covered in this chapter included:

ä Debugging the client.
ä JavaScript static asset preprocessors.
ä Making content indexable by search engines.
ä Real-time woes.
ä Client-side anti-patterns.
ä AJAX and CSRF tokens.
ä Improving JavaScript skills.
ä Useful resources

236

http://2scoops.co/lightweight-django
http://2scoops.co/kevin-stone-django-angular-tutorial
http://www.2scoops.co/joseph-misiti-django-backbone-tutorial/

18 | Tradeoffs of Replacing
Core Components

Ļere’s a lot of hype around swapping out core parts of Django’s stack for other pieces. Should you
do it?

Short Answer: Don’t do it. Ļese days, even Instagram says on Forbes.com that it’s completely
unnecessary: http://2scoops.co/instagram-insights.

Long Answer: It’s certainly possible, since Django modules are simply just Python modules. Is it
worth it? Well, it’s worth it only if:

ä You are okay with sacriŀcing some or all of your ability to use third-party Django pack-
ages.

ä You have no problem giving up the powerful Django admin.
ä You have already made a determined effort to build your project with core Django com-

ponents, but you are running into walls that are major blockers.
ä You have already analyzed your own code to ŀnd and ŀx the root causes of your problems.

For example, you’ve done all the work you can to reduce the numbers of queries made in
your templates.

ä You’ve explored all other options including caching, denormalization, etc.
ä Your project is a real, live production site with tons of users. In other words, you’re certain

that you’re not just optimizing prematurely.
ä You’ve looked at and rejected adopting a Service Oriented Approach (SOA) for those

cases Django has problems dealing with.
ä You’re willing to accept the fact that upgrading Django will be extremely painful or im-

possible going forward.

Ļat doesn’t sound so great anymore, does it?

237

http://2scoops.co/instagram-insights

Chapter 18: Tradeoffs of Replacing Core Components

18.1 The Temptation to Build FrankenDjango

Every year, a new fad leads waves of developers to replace some particular core Django component.
Here’s a summary of some of the fads we’ve seen come and go.

Fad Reasons

For performance reasons,
replacing the database/ORM
with a NoSQL database and
corresponding ORM
replacement.

Not okay: ``I have an idea for a social network for ice cream haters. I just
started building it last month. I need it to be web-scale!!!1!''

Okay: ``Our site has 50M users and I'm hitting the limits of what I can do with
indexes, query optimization, caching, etc. We're also pushing the limits of our
Postgres cluster. I've done a lot of research on this and am going to try storing
a simple denormalized view of data in Cassandra to see if it helps. I'm aware
of the CAP theorem (http://www.2scoops.co/CAP-theorem/),
and for this view, eventual consistency is fine.''

For data processing reasons,
replacing the database/ORM
with a NoSQL database and
corresponding ORM
replacement.

Not okay: ``SQL Sucks! We're going with a document-oriented database like
MongoDB!''

Okay: ``While PostgreSQL's HSTORE datatype replicates nearly every aspect of
MongoDB's data storage system, we want to use MongoDB's built-in
MapReduce functionality.''

Replacing Django's template
engine with Jinja2, Mako, or
something else.

Not okay: ``I read on Hacker News that Jinja2 is faster. I don't know anything
about caching or optimization, but I need Jinja2!''

Not okay: ``I hate having logic in Python modules. I want logic in my
templates!''

Okay: ``I have a small number of views which generate 1MB+ HTML pages
designed for Google to index. I'll use Django's native support for multiple
template languages to render the 1MB+ sized pages with Jinja2, and serve
the rest with Django Template Language.''

Table 18.1: Fad-based Reasons to Replace Components of Django

238

http://www.2scoops.co/CAP-theorem/

18.2: Non-Relational Databases vs. Relational
Databases

Figure 18.1: Replacing more core components of cake with ice cream seems like a good idea. Which
cake would win? Ļe one on the right, of course.

18.2 Non-Relational Databases vs. Relational
Databases

Even Django projects that use relational databases for persistent data storage rely on non-relational
databases. If a project relies on tools like Memcached for caching and Redis for queuing, then it’s
using non-relational databases.

Ļe problem occurs when NoSQL solutions are used to completely replace Django’s relational
database functionality without considering in-depth the long-term implications.

18.2.1 Not All Non-Relational Databases Are ACID Compliant

ACID is an acronym for:

Atomicity means that all parts of a transaction work or it all fails. Without this, you risk data cor-
ruption.

Consistency means that any transaction will keep data in a valid state. Strings remain strings and
integers remain integers. Without this, you risk data corruption.

Isolation means that concurrent execution of data within a transaction will not collide or leak into
another transaction. Without this, you risk data corruption.

239

Chapter 18: Tradeoffs of Replacing Core Components

Durability means that once a transaction is committed, it will remain so even if the database server
is shut down. Without this, you risk data corruption.

Did you notice how each of those descriptions ended with ‘Without this, you risk data corruption.’? Ļis
is because in the case of most NoSQL engines, there is little-to-no mechanism for ACID compliance.
It’s much easier to corrupt the data, which is mostly a non-issue for things like caching but another
thing altogether for projects handling processing of persistent medical or e-commerce data.

18.2.2 Don't Use Non-Relational Databases for Relational Tasks

Imagine if we were to use a non-relational database to track the sale of properties, property owners,
and how property laws worked for them in 50 US states. Ļere a lot of unpredictable details, so
wouldn’t a schemaless datastore be perfect for this task?

Perhaps...

We would need to track the relationship between properties, property owners, and laws of 50 states.
Our Python code would have to maintain the referential integrity between all the components. We
would also need to ensure that the right data goes into the right place.

For a task like this, stick with a relational database.

18.2.3 Ignore the Hype and Do Your Own Research

It’s often said that non-relational databases are faster and scale better than relational databases.
Whether or not this is true, don’t blindly swallow the marketing hype of the companies behind
any particular alternative database solution.

Instead, do as we do: search for benchmarks, read case studies describing when things went right or
wrong, and form opinions as independently as possible.

Also, experiment with unfamiliar NoSQL databases on small hobby side projects before you make
major changes to your main project infrastructure. Your main codebase is not a playground.

Lessons learned by companies and individuals:

240

18.3: What About Replacing the Django Template Language?

ä Pinterest: 2scoops.co/learn-to-stop-using-shiny-new-things/
ä Etsy engineer: mcfunley.com/why-mongodb-never-worked-out-at-etsy

18.2.4 How We Use Non-Relational Databases With Django

Ļis is how we prefer to do things:

ä If we use a non-relational data store, limit usage to short-term things like caches, queues, and
sometimes denormalized data. But avoid it if possible, to reduce the number of moving parts.

ä Use relational data stores for long-term, relational data and sometimes denormalized data (Post-
greSQL’s array and HStore ŀelds work great for this task).

For us, this is the sweet spot that makes our Django projects shine.

18.3 What About Replacing the Django Template
Language?

We advocate the practice of sticking entirely to the Django Template Language (DTL) with the
exception of rendered content of huge size. However, as this use case is now covered by Django’s
native support of alternate template systems, we’ve moved discussion of this topic to chapter 15,
Using Alternate Template Systems.

18.4 Summary

Always use the right tool for the right job. We prefer to go with stock Django components, just like
we prefer using a scoop when serving ice cream. However, there are times when other tools make
sense.

Just don’t follow the fad of mixing vegetables into your ice cream. You simply can’t replace the classic
strawberry, chocolate, and vanilla with supposedly “high-performance” łavors such as broccoli, corn,
and spinach. Ļat’s taking it too far.

241

http://www.2scoops.co/learn-to-stop-using-shiny-new-things/
http://mcfunley.com/why-mongodb-never-worked-out-at-etsy

Chapter 18: Tradeoffs of Replacing Core Components

242

19 | WorkingWith theDjangoAdmin

When people ask, “What are the beneŀts of Django over other web frameworks?” the admin is what
usually comes to mind.

Imagine if every gallon of ice cream came with an admin interface. You’d be able to not just see the
list of ingredients, but also add/edit/delete ingredients. If someone was messing around with your
ice cream in a way that you didn’t like, you could limit or revoke their access.

Figure 19.1: Chocolate chip ice cream with an admin interface.

Pretty surreal, isn’t it? Well, that’s what web developers coming from another background feel like
when they ŀrst use the Django admin interface. It gives you so much power over your web application
automatically, with little work required.

243

Chapter 19: Working With the Django Admin

19.1 It's Not for End Users

Ļe Django admin interface is designed for site administrators, not end users. It’s a place for your
site administrators to add/edit/delete data and perform site management tasks.

Although it’s possible to stretch it into something that your end users could use, you really shouldn’t.
It’s just not designed for use by every site visitor.

19.2 Admin Customization vs. New Views

It’s usually not worth it to heavily customize the Django admin. Sometimes, creating a simple view
or form from scratch results in the same desired functionality with a lot less work.

We’ve always had better results with creating custom management dashboards for client projects than
we have with modifying the admin to ŀt the need of the client.

19.3 Viewing String Representations of Objects

Ļe default admin page for a Django app looks something like this:

Figure 19.2: Admin list page for an ice cream bar app.

244

19.3: Viewing String Representations of Objects

Ļat’s because the default string representation of an IceCreamBar object is “IceCreamBar object”.

It would be helpful to display something better here. We recommend that you do the following as
standard practice:

..
1 Always implement the str () method for each of your Django

models. If you are using Python 2.7, decorate the model’s class with
django.utils.encoding.python 2 unicode compatible. Ļis will give you a
better default string representation in the admin and everywhere else.

..
2 If you want to change the admin list display in a way that isn’t quite a string representation of

the object, then use list display.

Implementing str () is simple:

..

EŤōřŜŘő ȘȠ.Ș

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible # For Python 3.4 and 2.7
class IceCreamBar(models.Model):

name = models.CharField(max_length=100)
shell = models.CharField(max_length=100)
filling = models.CharField(max_length=100)
has_stick = models.BooleanField(default=True)

def __str__(self):
return self.name

Ļe result is on the next page:

245

Chapter 19: Working With the Django Admin

Figure 19.3: Improved admin list page with better string representation of our objects.

Figure 19.4: What? An admin interface for ice cream bars?

It’s more than that. When you’re in the shell, you see the better string representation:

..

EŤōřŜŘő ȘȠ.ș

>>> IceCreamBar.objects.all()
[<IceCreamBar: Vanilla Crisp>, <IceCreamBar: Mint Cookie Crunch>,
<IceCreamBar: Strawberry Pie>]

Ļe str ()method is called whenever you call unicode() on an object. Ļis occurs in the Django

246

19.3: Viewing String Representations of Objects

shell, templates, and by extension the Django admin. Ļerefore, try to make the results of str ()
nice, readable representation of Django model instances.

For working in Python 2.7, Django also provides the unicode () method as a default if we don’t
add a str () method.

If you still want to show data for additional ŀelds on the app’s admin list page, you can then use
list display:

..

EŤōřŜŘő ȘȠ.Ț

from django.contrib import admin

from .models import IceCreamBar

class IceCreamBarAdmin(admin.ModelAdmin):
list_display = ("name", "shell", "filling",)

admin.site.register(IceCreamBar, IceCreamBarAdmin)

Ļe result with the speciŀed ŀelds:

Figure 19.5: Further improvements to the admin list page.

247

Chapter 19: Working With the Django Admin

19.4 Adding Callables to ModelAdmin Classes

You can use callables such as methods and functions to add functionality to the Django
django.contrib.admin.ModelAdmin class. Ļis allows you to really modify the list and display
screens to suit your ice cream project needs.

For example, it’s not uncommon to want to see the exact URL of a model instance in the Django
admin. If you deŀne a get absolute url() method for your model, what Django provides in the
admin is a link to a redirect view whose URL is very different from the actual object URL. Also, there
are cases where the get absolute url() method is meaningless (REST APIs come to mind). In
the example below, we demonstrate how to use a simple callable to provide a link to our target URL:

..

EŤōřŜŘő ȘȠ.ț

from django.contrib import admin
from django.core.urlresolvers import reverse
from django.utils.html import format_html

from icecreambars.models import IceCreamBar

class IceCreamBarAdmin(admin.ModelAdmin):

list_display = ("name", "shell", "filling",)
readonly_fields = ("show_url",)

def show_url(self, instance):
url = reverse("ice_cream_bar_detail",

kwargs={"pk": instance.pk})
response = format_html("""{1}""", url, url)
return response

show_url.short_description = "Ice Cream Bar URL"
Displays HTML tags
Never set allow_tags to True against user submitted data!!!
show_url.allow_tags = True

admin.site.register(IceCreamBar, IceCreamBarAdmin)

248

19.5: Don’t Use list editable in Multiuser Environments

Since a picture is worth a thousand words, here is what our callable does for us:

Figure 19.6: Displaying URL in the Django Admin.

..

WARNING: Use the allow tags Attribute With Caution

.

Ļe allow tags attribute, which is set to False by default, can be a security issue. When
allow tags is set to True, HTML tags are allowed to be displayed in the admin.
Our hard rule is allow tags can only be used on system generated data like primary keys,
dates, and calculated values. Data such as character and text ŀelds are completely out, as is
any other user entered data.

19.5 Don't Use list editable in Multiuser Environments

Ļis is a feature of django.contrib.admin that replaces the normal admin list view with a form,
allowing for a user to edit multiple records at the same time. Unfortunately, records are identiŀed not
by primary keys, but by their ordered position. While this is ŀne for a project with a single person
with admin-level access, on a multi-user project it’s a very serious problem. Here is what happens:

..
1 Ice cream bars are in descending created order.
..
2 Daniel brings up the list ŀeld for ice cream bars and begins making changes.

249

Chapter 19: Working With the Django Admin

..
3 Audrey decides to add a “Peppermint Sundae” ice cream bar. Since it’s the last item added, it’s

now the ŀrst IceCreamBar object returned.
..
4 Daniel ŀnally saves his changes, but the records he saw all receive the data from the next record,

corrupting at least 50 records (Django’s default admin display number).

Pointed out to us originally by Tomasz Paczkowski, our good friend and co-organizer of Django
Circus 2013, this is a known bug in Django. It will hopefully be correcting in a future release of the
project. In the meantime, if there is a need for this kind of display, it’s best to generate your own list
update view.

Related Django tickets:

ä https://code.djangoproject.com/ticket/11313
ä https://code.djangoproject.com/ticket/17118

19.6 Django's Admin Documentation Generator

One of the more interesting developer tools that Django provides is the
django.contrib.admindocs package. Created in an era before the advent of the docu-
mentation tools that we cover in chapter 23, Documentation: Be Obsessed, it remains a useful
tool.

It’s useful because it introspects the Django framework to display docstrings for project components
like models, views, custom template tags, and custom ŀlters. Even if a project’s components don’t
contain any docstrings, simply seeing a list of harder-to-introspect items like oddly named custom
template tags and custom ŀlters can be really useful in exploring the architecture of a complicated,
existing application.

Using django.contrib.admindocs is easy, but we like to to reorder the steps described in the
formal documentation:

..
1 pip install docutils into your project’s virtualenv.
..
2 Add django.contrib.admindocs to your INSTALLED APPS.
..
3 Add (r'ˆadmin/doc/', include('django.contrib.admindocs.urls')) to your

root URLConf. Make sure it’s included before the r'ˆadmin/' entry, so that requests to
/admin/doc/ don’t get handled by the latter entry.

..
4 Optional : Linking to templates requires the ADMIN FOR setting to be conŀgured.

250

https://code.djangoproject.com/ticket/11313
https://code.djangoproject.com/ticket/17118

19.7: Securing the Django Admin and Django Admin Docs

..
5 Optional : Using the admindocs bookmarklets requires the XViewMiddleware to be installed.

Once you have this in place, go to /admin/doc/ and explore. You may notice a lot of your
project’s code lacks any sort of documentation. Ļis is addressed in the formal documentation on
django.contrib.admindocs: http://2scoops.co/1.8-admindocs and our own chapter on
chapter 23, Documentation: Be Obsessed.

19.7 Securing the Django Admin and Django Admin
Docs

It’s worth the effort to take the few extra steps to prevent hackers from accessing the admin, since
the admin gives you so much power over your site. See chapter 26, Security Best Practices for details,
speciŀcally section 26.17, ‘Securing the Django Admin,’ and section 26.18, ‘Securing Admin Docs.’

19.8 Using Custom Skins With the Django Admin

Over the years there have been a number of efforts to reskin or theme the Django Admin. Ļese
range from the venerable, stable, and very popular django-grappelli to more recent up-and-comers.
Ļey turn Django’s 2005-era admin design into lovely styles more friendly to the modern eye.

.....

PACKAGE TIP: Custom django.contrib.admin Skins

.

Here are some of the more popular custom skins that are generally Python 2 and 3 compatible:
ä django-grappelli is the grand-daddy of all custom Django skins. Stable, robust, and

with a unique but friendly style.
ä django-suit is a relatively recent project and like many modern custom Django skins,

is built using the familiar Twitter Bootstrap front-end framework.
ä django-admin-bootstrapped is another port of the Django admin to Twitter Boot-

strap.
A more complete list can be found at
https://www.djangopackages.com/grids/g/admin-styling/.

Django has a gigantic community, so why aren’t there more skins?

251

http://2scoops.co/1.8-admindocs
https://www.djangopackages.com/grids/g/admin-styling/

Chapter 19: Working With the Django Admin

It turns out that besides the most basic CSS-based modiŀcations, creating custom Django themes
is very challenging. For anyone who has delved into the source code for these projects, it’s
clear that custom admin skins require arcane code to account for some of the idiosyncrasies of
django.contrib.admin.

Patrick Kranzlmueller, maintainer of django-grappelli, goes into great detail in his article on the
subject, ‘A Frontend Framework for the Django Admin Interface’, which you can read at the link
below:

ä http://sehmaschine.net/blog/django-admin-frontend-framework.

Here are some tips when working with custom django.contrib.admin skins:

19.8.1 Evaluation Point: Documentation is Everything

As mentioned earlier, writing a custom skin for django.contrib.admin is hard. While the suc-
cessful skins are relatively easy to add to a project, it’s the edge cases (invariably involved in extending
the ModelAdmin object) that can hurt.

Ļerefore, when evaluating one of these projects for use on a project, check to see how far the docu-
mentation goes beyond installation instructions.

19.8.2 Write Tests for Any Admin Extensions You Create

For our purposes, we’ve found that while clients enjoy the more modern themes, you have to be careful
of how far you extend these admin skins. What works great in vanilla django.contrib.admin can
break in a custom skin. Since the custom skins have to wrap portions of django.contrib.admin
abstractions in curious ways, debugging these problems can prove to be a mind-numbing nightmare.

Ļerefore, if you use a custom skin, the best practice is to write tests of the admin, especially for any
customization. Yes, it is a bit of work up front, but it means catching these bugs much, much earlier.

For more on testing, see chapter 22.

252

http://sehmaschine.net/blog/django-admin-frontend-framework

19.9: Summary

19.9 Summary

In this chapter we covered the following:

ä Who should be using the Django admin.
ä When to use the Django admin and when to roll a new dashboard.
ä String representation of objects.
ä Adding callables to Django admin classes.
ä Warned about using django.contrib.admin.ModelAdmin.list editable.
ä Using Django’s admin docs.
ä Encouraging you to secure the Django admin.
ä Advised on working with custom Django skins.

253

Chapter 19: Working With the Django Admin

254

20 | Dealing With the User Model

Ļe best practices for this changed signiŀcantly in Django 1.5. Ļe “right way” before Django 1.5
was a bit confusing, and there’s still confusion around pre-1.5, so it’s especially important that what
we describe here is only applied to Django 1.5 or higher.

So let’s go over best practices for Django 1.8.

20.1 Use Django's Tools for Finding the User Model

Ļe advised way to get to the user class is as follows:

..

EŤōřŜŘő șȗ.Ș

Stock user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class 'django.contrib.auth.models.User'>

When the project has a custom user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class 'profiles.models.UserProfile'>

It is now possible to get two different Usermodel deŀnitions depending on the project conŀguration.
Ļis doesn’t mean that a project can have two different User models; it means that every project can
customize its own User model. Ļis was introduced in Django 1.5 and a radical departure from
earlier versions of Django.

255

Chapter 20: Dealing With the User Model

20.1.1 Use settings.AUTH USER MODEL for Foreign Keys to User

In Django 1.8, the official preferred way to attach ForeignKey, OneToOneField, or ManyToMany-
Field to User is as follows:

..

EŤōřŜŘő șȗ.ș

from django.conf import settings
from django.db import models

class IceCreamStore(models.Model):

owner = models.OneToOneField(settings.AUTH_USER_MODEL)
title = models.CharField(max_length=255)

Yes, it looks a bit strange, but that’s what the official Django docs advise.

Figure 20.1: Ļis looks strange too.

..

WARNING: Don't Change settings.AUTH USER MODEL!

.

Once set in a project, changing settings.AUTH USER MODEL requires changing your
database schema accordingly. It’s one thing to add or modify User model ŀelds, it’s another
thing to create a whole new User object.

20.1.2 Don't Use get user model() for Foreign Keys to User

Ļis is bad, as it tends to create import loops.

256

20.2: Migrating Pre-1.5 User Models to 1.5+’s Custom User Models

..

BōŐ EŤōřŜŘő șȗ.Ș

DON'T DO THIS!
from django.db import models
from django.contrib.auth import get_user_model

class IceCreamStore(models.Model):

This following line tends to create import loops.
owner = models.OneToOneField(get_user_model())
title = models.CharField(max_length=255)

20.2 Migrating Pre-1.5 User Models to 1.5+'s Custom
User Models

Ļis isn’t for the timid. As always, before starting a large intrusive effort, there should be signiŀcant
test coverage as well as continuous integration in place. Also, if there was ever a reason to test the
backup system, this is it.

As documenting this is outside the scope of this book, we recommend reading the following:

Tobias McNulty’s Tutorial
http://www.2scoops.co/caktusgroup-migrating-custom-user-model

django-authtool’s Tutorial
http://www.2scoops.co/authtools-migrate-to-custom-user-model

20.3 Custom User Fields for Django 1.8 Projects

In Django 1.8, as long as we incorporate the required methods and attributes, we can create our own
user model with its own ŀelds. We can still do things the old pre-Django 1.5 way, but we’re not
stuck with having a User model with just email, first name, last name, and username ŀelds
for identity.

257

http://www.2scoops.co/caktusgroup-migrating-custom-user-model
http://www.2scoops.co/authtools-migrate-to-custom-user-model

Chapter 20: Dealing With the User Model

.....

PACKAGE TIP: Libraries for Defining Custom User Models

.

django-authtools is a library that makes deŀning custom user models easier. Of particular
use are the AbstractEmailUser and AbstractNamedUser models. Even if you don’t end
up using django-authtools, the source code is well worth examining.

..

WARNING: Third-Party Libraries Should Not Be Defining the
User Model

.

Unless the express purpose of the library is to deŀne custom user models for a project (à la
django-authtools), third-party libraries shouldn’t be using options #1 or #2 to add ŀelds to
user models. Instead, they should rely on option #3.

20.3.1 Option 1: Subclass AbstractUser

Choose this option if you like Django’s User model ŀelds the way they are, but need extra ŀelds. For
what it’s worth, this is the ŀrst approach that we look at anytime we start a new project. When using
django-authtools’ base models, forms, and admin objects, we ŀnd that it’s the quickest and easiest
way to implement custom user models.

Here’s an example of how to subclass AbstractUser:

..

EŤōřŜŘő șȗ.Ț

profiles/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models
from django.utils.translation import ugettext_lazy as _

class KarmaUser(AbstractUser):
karma = models.PositiveIntegerField(verbose_name=_("karma"),

default=0,
blank=True)

It’s much more elegant than the pre-1.5 way, isn’t it?

258

20.3: Custom User Fields for Django 1.8 Projects

Ļe other thing you have to do is set this in your settings:

..
EŤōřŜŘő șȗ.ț

AUTH_USER_MODEL = "profiles.KarmaUser"

20.3.2 Option 2: Subclass AbstractBaseUser

AbstractBaseUser is the bare-bones option with only 3 ŀelds: password, last login, and
is active.

Choose this option if:

ä You’re unhappy with the ŀelds that the User model provides by default, such as first name
and last name.

ä You prefer to subclass from an extremely bare-bones clean slate but want to take advantage of
the AbstractBaseUser sane default approach to storing passwords.

If you want to go down this path, we recommend the following reading:

Official Django Documentation Example
http://2scoops.co/1.8-custom-user-model-example

Source code of django-authtools (Especially admin.py, forms.py, and models.py)
https://github.com/fusionbox/django-authtools

20.3.3 Option 3: Linking Back From a Related Model

Ļis code is very similar to the pre-Django 1.5 project technique of creating ‘Proŀle’ models. Before
discarding this approach as legacy, consider the following use cases:

Use Case: Creating a Ļird Party Package

ä We are creating a third-party package for publication on PyPI.
ä Ļe package needs to store additional information per user, perhaps a Stripe ID or another

payment gateway identiŀer.

259

http://2scoops.co/1.8-custom-user-model-example
https://github.com/fusionbox/django-authtools

Chapter 20: Dealing With the User Model

ä We want to be as unobtrusive to the existing project code as possible. Loose coupling!

Use Case: Internal Project Needs

ä We are working on our own Django project.
ä We want different types of users to have different ŀelds.
ä We might have some users with a combination of different user types.
ä We want to handle this at the model level, instead of at other levels.
ä We want this to be used in conjunction with a custom user model from options #1 or #2.

Either of these use cases provide motive for the continued use of this technique.

To make this technique work, we continue to use django.contrib.models.User (called prefer-
ably via django.contrib.auth.get user model()) and keep your related ŀelds in separate
models (e.g. Profiles). Here’s an example:

..

EŤōřŜŘő șȗ.Ȝ

profiles/models.py

from django.conf import settings
from django.db import models

from flavors.models import Flavor

class EaterProfile(models.Model):

Default user profile
If you do this you need to either have a post_save signal or
redirect to a profile_edit view on initial login.
user = models.OneToOneField(settings.AUTH_USER_MODEL)
favorite_ice_cream = models.ForeignKey(Flavor, null=True, blank=True)

class ScooperProfile(models.Model):

user = models.OneToOneField(settings.AUTH_USER_MODEL)
scoops_scooped = models.IntegerField(default=0)

class InventorProfile(models.Model):

260

20.4: Summary

..user = models.OneToOneField(settings.AUTH_USER_MODEL)
flavors_invented = models.ManyToManyField(Flavor, null=True, blank=True)

Using this approach, we can query for any user’s favorite ice cream trivially with the ORM:
user.eaterprofile.favorite ice cream. In addition, Scooper and Inventor proŀles pro-
vide individual data that only applies to those users. Since that data is isolated into dedicated models,
it’s much harder for accidents between user types to occur.

Ļe only downside to this approach is that it’s possible to take it too far in complexity of proŀles or
in the supporting code. As always, keep your code as simple and clean as possible.

.....

TIP: The user.get profile() Method is Gone

.

If you are migrating forward from Django 1.6 or lower, please note that the
user.get profile() method was removed in Django 1.7.

20.4 Summary

Ļe new User model makes this an exciting time to be involved in Django. We are getting to par-
ticipate in a major infrastructure change with wide-ranging implications. We are the ones who get
to pioneer the best practices.

In this chapter we covered the new method to ŀnd the User model and deŀne our own custom ones.
Depending on the needs of a project, they can either continue with the current way of doing things
or customize the actual user model.

Ļe next chapter is a dive into the world of third-party packages.

261

Chapter 20: Dealing With the User Model

262

21 | Django's Secret Sauce:
Third-Party Packages

Ļe real power of Django is more than just the framework and documentation available at
https://djangoproject.com. It’s the vast, growing selection of third-party Django and Python
packages provided by the open source community. Ļere are many, many third-party packages avail-
able for your Django projects which can do an incredible amount of work for you. Ļese packages
have been written by people from all walks of life, and they power much of the world today.

Figure 21.1: A jar of Django’s mysterious secret sauce. Most don’t have a clue what this is.

Much of professional Django and Python development is about the incorporation of third-party
packages into Django projects. If you try to write every single tool that you need from scratch, you’ll
have a hard time getting things done.

Ļis is especially true for us in the consulting world, where client projects consist of many of the
same or similar building blocks.

263

https://djangoproject.com

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

Figure 21.2: Ļe secret is out. It’s just hot fudge.

21.1 Examples of Third-Party Packages

Appendix A: Packages Mentioned In Ļis Book covers all of the packages mentioned throughout Two
Scoops of Django. Ļis list is a great starting point if you’re looking for highly-useful packages to
consider adding to your projects.

Note that not all of those packages are Django-speciŀc, which means that you can use some of them
in other Python projects. (Generally, Django-speciŀc packages generally have names preŀxed with
“django-”, but there are many exceptions.)

21.2 Know About the Python Package Index

Ļe Python Package Index (PyPI), located at https://pypi.python.org/pypi, is a repository
of software for the Python programming language. As of the time this sentence was written, it lists
over 55,000 packages, including Django itself.

For the vast majority of Python community, no open source project release is considered official until
it occurs on the Python Package Index.

Ļe Python Package Index is much more than just a directory. Ļink of it as the world’s largest center
for Python package information and ŀles. Whenever you use pip to install a particular release of
Django, pip downloads the ŀles from the Python Package Index. Most Python and Django packages
are downloadable from the Python Package Index in addition to pip.

264

https://pypi.python.org/pypi

21.3: Know About DjangoPackages.com

21.3 Know About DjangoPackages.com

Django Packages (https://www.djangopackages.com/) is a directory of reusable apps, sites,
tools and more for your Django projects. Unlike PyPI, it doesn’t store the packages themselves,
instead providing a mix of hard metrics gathered from the Python Package Index, GitHub, Bitbucket,
ReadĻeDocs, and “soft” data entered by users.

Django Packages is best known as a comparison site for evaluating package features. On Django
Packages, packages are organized into handy grids so they can be compared against each other.

Django Packages also happens to have been created by the authors of this book, with contributions
from many, many people in the Python community. We continue to maintain and improve it as a
helpful resource for Django users.

21.4 Know Your Resources

Django developers unaware of the critical resources of Django Packages and the Python Package
Index are denying themselves one of the most important advantages of using Django and Python. If
you are not aware of these tools, it’s well worth the time you spend educating yourself.

As a Django (and Python) developer, make it your mission to use third-party libraries instead of
reinventing the wheel whenever possible. Ļe best libraries have been written, documented, and
tested by amazingly competent developers working around the world. Standing on the shoulders of
these giants is the difference between amazing success and tragic downfall.

As you use various packages, study and learn from their code. You’ll learn patterns and tricks that
will make you a better developer.

On the other hand, it’s very important to be able to identify the good packages from the bad. It’s
well worth taking the time to evaluate packages written by others the same way we evaluate our own
work. We cover this later in this chapter in section 21.10, ‘What Makes a Good Package.’

21.5 Tools for Installing and Managing Packages

To take full advantage of all the packages available for your projects, having virtualenv and pip
installed isn’t something you can skip over. It’s mandatory.

Refer to chapter 2, Ļe Optimal Django Environment Setup, for more details.

265

https://www.djangopackages.com/

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

21.6 Package Requirements

As we mentioned earlier in chapter 5, Settings and Requirements Files, we manage our Django/Python
dependencies with requirements ŀles. Ļese ŀles go into the requirements/ directory that exists in
the root of our projects.

.....

TIP: Researching Third-Party Packages to Use

.

If you want to learn more about the dependencies we list in this and other chapters, please
refer to Appendix A: Packages Mentioned In Ļis Book.

21.7 Wiring Up Django Packages: The Basics

When you ŀnd a third-party package that you want to use, follow these steps:

21.7.1 Step 1: Read the Documentation for the Package

Are you sure you want to use it? Make sure you know what you’re getting into before you install any
package.

21.7.2 Step 2: Add Package and Version Number to Your
Requirements

If you recall from chapter 5, Settings and Requirements Files, a requirements/base.txt ŀle looks some-
thing like this (but probably longer):

..

EŤōřŜŘő șȘ.Ș

Django==1.8
coverage==3.7.1
django-extensions==1.5.2
django-braces==1.4

266

21.7: Wiring Up Django Packages: Ļe Basics

Note that each package is pinned to a speciŀc version number. Always pin your package dependencies
to version numbers.

What happens if you don’t pin your dependencies? You are almost guaranteed to run into problems at
some point when you try to reinstall or change your Django project. When new versions of packages
are released, you can’t expect them to be backwards-compatible.

Our sad example: Once we followed a software-as-a-service platform’s instructions for using their
library. As they didn’t have their own Python client, but an early adopter had a working imple-
mentation on GitHub, those instructions told us to put the following into our requirements/base.txt:

..
BōŐ EŤōřŜŘő șȘ.Ș

-e git+https://github.com/erly-adptr/py-junk.git#egg=py-jnk

Our mistake. We should have known better and pinned it to a particular git revision number.

Not the early adopter’s fault at all, but they pushed up a broken commit to their repo. Once we had
to ŀx a problem on a site very quickly, so we wrote a bug ŀx and tested it locally in development. It
passed the tests. Ļen we deployed it to production in a process that grabs all dependency changes;
of course the broken commit was interpreted as a valid change. Which meant, while ŀxing one bug,
we crashed the site.

Not a fun day.

Ļe purpose of using pinned releases is to add a little formality and process to our published work.
Especially in Python, GitHub and other repos are a place for developers to publish their work-in-
progress, not the ŀnal, stable work upon which our production-quality projects depend.

One more thing, when pinning dependencies, try to pin the dependencies of dependencies. It just
makes deployment and testing that much more predictable.

21.7.3 Step 3: Install the Requirements Into Your Virtualenv

Assuming you are already in a working virtualenv and are at the <repo root> of your project, you
pip install the appropriate requirements ŀle for your setup, e.g. requirements/dev.txt.

267

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

If this is the ŀrst time you’ve done this for a particular virtualenv, it’s going to take a while for it to
grab all the dependencies and install them.

21.7.4 Step 4: Follow the Package's Installation Instructions
Exactly

Resist the temptation to skip steps unless you’re very familiar with the package. Since open source
Django package developers tend to take pride in their documentation and love to get people to use
their packages, most of the time the installation instructions they’ve authored make it easy to get
things running.

21.8 Troubleshooting Third-Party Packages

Sometimes you run into problems setting up a package. What should you do?

First, make a serious effort to determine and solve the problem yourself. Pore over the documentation
and make sure you didn’t miss a step. Search online to see if others have run into the same issue. Be
willing to roll up your sleeves and look at the package source code, as you may have found a bug.

If it appears to be a bug, see if someone has already reported it in the package repository’s issue
tracker. Sometimes you’ll ŀnd workarounds and ŀxes there. If it’s a bug that no one has reported, go
ahead and ŀle it.

If you still get stuck, try asking for help in all the usual places: StackOverłow, IRC #django, the
project’s IRC channel if it has its own one, and your local Python user group. Be as descriptive and
provide as much context as possible about your issue.

21.9 Releasing Your Own Django Packages

Whenever you write a particularly useful Django app, consider packaging it up for reuse in other
projects.

Ļe best way to get started is to follow Django’s Advanced Tutorial: How to Write Reusable Apps, for
the basics: https://docs.djangoproject.com/en/1.8/intro/reusable-apps/

In addition to what is described in that tutorial, we recommend that you also:

268

https://docs.djangoproject.com/en/1.8/intro/reusable-apps/

21.10: What Makes a Good Django Package?

ä Create a public repo containing the code. Most Django packages are hosted on GitHub these
days, so it’s easiest to attract contributors there, but various alternatives exist (Gitlab, Source-
forge, Bitbucket, Launchpad, Assembla, etc.).

ä Release the package on the Python Package Index (http://pypi.python.org). Follow the
submission instructions at http://2scoops.co/submit-to-pypi.

ä Add the package to Django Packages (https://www.djangopackages.com).
ä Use Read the Docs (https://readthedocs.org/) to host your Sphinx documentation.

.....

TIP: Where Should I Create a Public Repo?

.

Ļere are websites that offer free source code hosting and version control for open source
projects. As mentioned in chapter 2, “Ļe Optimal Django Environment Setup”, GitHub or
Bitbucket are two popular options.

When choosing a hosted version control service, keep in mind that pip only supports Git,
Mercurial, Bazaar, and Subversion.

21.10 What Makes a Good Django Package?

Here’s a checklist for you to use when creating a new open source Django package. Much of this
applies to Python packages that are not Django-speciŀc. Ļis checklist is also helpful for when you’re
evaluating a Django package to use in any of your projects.

21.10.1 Purpose

Your package should do something useful and do it well. Ļe name should be descriptive. Ļe package
repo’s root folder should be preŀxed with ‘django-’ to help make it easier to ŀnd.

If part of the package’s purpose can be accomplished with a related Python package that doesn’t
depend on Django, then create a separate Python package and use it as a dependency.

269

http://pypi.python.org
http://2scoops.co/submit-to-pypi
https://www.djangopackages.com
https://readthedocs.org/

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

21.10.2 Scope

Your package’s scope should be tightly focused on one small task. Ļis means that your application
logic will be tighter, and users will have an easier time patching or replacing the package.

21.10.3 Documentation

A package without documentation is a pre-alpha package. Docstrings don’t suffice as documentation.

As described in chapter 23, Documentation: Be Obsessed, your docs should be written in ReStruc-
turedText. A nicely-formatted version of your docs should be generated with Sphinx and hosted
publicly. We encourage you to use https://readthedocs.org/ with webhooks so that your for-
matted documentation automatically updates whenever you make a change.

If your package has dependencies, they should be documented. Your package’s installation instruc-
tions should also be documented. Ļe installation steps should be bulletproof.

21.10.4 Tests

Your package should have tests. Tests improve reliability, make it easier to advance Python/Django
versions, and make it easier for others to contribute effectively. Write up instructions on how to run
your package’s test suite. If you or any contributor can run your tests easily before submitting a pull
request, then you’re more likely to get better quality contributions.

21.10.5 Templates

In the past, some Django packages provided instructions for creating templates in their docs in lieu of
actual template ŀles. However, nowadays it’s pretty standard for Django packages to come with a set
of barebones templates that demonstrate basic functionality. Typically these templates contain only
minimalist HTML, any needed JavaScript, and no CSS. Ļe exception is for packages containing
widgets that require CSS styling.

270

https://readthedocs.org/

21.10: What Makes a Good Django Package?

21.10.6 Activity

Your package should receive regular updates from you or contributors if/when needed. When you
update the code in your repo, you should consider uploading a minor or major release to the Python
Package Index.

21.10.7 Community

Great open source packages, including those for Django, often end up receiving contributions from
other developers in the open source community. All contributors should receive attribution in a
CONTRIBUTORS.rst or AUTHORS.rst ŀle.

Be an active community leader if you have contributors or forks of your package. If your package is
forked by other developers, pay attention to their work. Consider if there are ways that parts or all
of their work can be merged into your fork. If the package’s functionality diverges a lot from your
package’s purpose, be humble and consider asking the other developer to give their fork a new name.

21.10.8 Modularity

Your package should be as easily pluggable into any Django project that doesn’t replace core compo-
nents (templates, ORM, etc) with alternatives. Installation should be minimally invasive. Be careful
not to confuse modularity with over-engineering, though.

21.10.9 Availability on PyPI

All major and minor releases of your package should be available for download from the Python
Package Index. Developers who wish to use your package should not have to go to your repo to get
a working version of it. Use proper version numbers per the next section.

271

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

21.10.10 Uses the Broadest Requirements Specifiers Possible

Your third-party package should specify in setup.py the install requires argument what other
libraries your package requires in the broadest terms possible. However, this is a terrible way to deŀne
a package’s requirements:

..

BōŐ EŤōřŜŘő șȘ.ș

DON'T DO THIS!
requirements for django-blarg

Django==1.7.2
requests==1.2.3

Ļe reason is dependency graphs. Every so often something that you absolutely pin to a speciŀc
version of Django or another library will break on someone else’s site project. For example, what
if icecreamratings.com was our site and this was its deployed project’s requirements.txt ŀle, and we
installed django-blarg?

..

EŤōřŜŘő șȘ.ș

requirements.txt for the mythical web site 'icecreamratings.com'
Django==1.8
requests==2.6.0−
djangoblarg==1.0

Note that unlike the −djangoblarg library , we explicitly pin
the requirements so we have total control over the environment

What would happen if Bad Example 21.2 were installed to a project with Example 21.3 requirements
is that the Django 1.7.2 requirement would overwrite the Django 1.8 speciŀcation during installa-
tion of icecreamratings.com requirements. As there are several backwards incompatibilities between
Django 1.7.2 and 1.8, django-blarg could make icecreamratings.com site simply throw HTTP 500
errors.

Your third-party package should specify what other libraries your package requires in the broadest
terms possible:

272

21.10: What Makes a Good Django Package?

..

EŤōřŜŘő șȘ.Ț

requirements for django-blarg

Django>=1.5,<1.9
requests>=1.2.3,<=2.6.0

Additional Reading:

ä http://www.pip-installer.org/en/latest/logic.html#requirement-specifiers
ä http://nvie.com/posts/pin-your-packages/

21.10.11 Proper Version Numbers

Like Django and Python, we prefer to adhere to the strict version of PEP 386 naming schema. In
fact we follow the ‘A.B.C’ pattern. Let’s go through each element:

‘A’ represents the major version number. Increments should only happen with large changes that
break backwards compatibility from the previous major version. It’s not uncommon to see
large API changes between versions.

‘B’ is the minor version number. Increments include less breaking changes, or deprecation notices
about forthcoming changes.

‘C’ represents bug ŀx releases, and purists call this the ‘micro’ release. It’s not uncommon for devel-
opers to wait until a project has its ŀrst release at this level before trying the latest major or
minor release of an existing project.

For alpha, beta, or release-candidates for a project, the convention is to place this information as a
suffix to the upcoming version number. So you might have:

ä Django 1.8-alpha
ä django-crispy-forms 1.4.0-beta

273

http://www.pip-installer.org/en/latest/logic.html#requirement-specifiers
http://nvie.com/posts/pin-your-packages/

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

..

WARNING: Don't Upload Unfinished Code to PyPI

.

PyPI, the Python Package Index, is meant to be the place where dependable, stable packages
can be harnessed to build Python projects. PyPI is not the place for Alpha, Beta, or Release
Candidate code, especially as pip and other tools will fetch the latest release by default.

Be nice to other developers and follow the convention of only placing proper releases
on PyPI.

Note: While recent versions of pip no longer install pre-releases by default, it’s dan-
gerous to expect users of code to have the latest pip version installed.

Additional Reading:

ä http://www.python.org/dev/peps/pep-0386
ä http://semver.org/

21.10.12 Name

Ļe name of the project is absolutely critical. A well-named project makes it easy to discover and
remember, a poor name hides it from potential users, can scare off its use from some developer shops,
and even block it from being listed on PyPI, Django Packages, and other resources.

We did cover the basics in section 4.2, ‘What to Name Your Django Apps,’ but here are tips that
apply to open source Django packages:

ä Check to see that the name isn’t already registered on PyPI. Otherwise, it won’t be trivial to install
with pip.

ä Check to see that the name isn’t on Django Packages. Ļis applies only to packages designed for
use with Django.

ä Don’t use names that include obscenity. While you might ŀnd them funny, it’s unfortunate for
others. For example a noted developer once created a library that couldn’t be used at NASA
until he agreed to change the name.

274

http://www.python.org/dev/peps/pep-0386
http://semver.org/

21.10: What Makes a Good Django Package?

21.10.13 License

Your package needs a license. Preferably, for individuals it should be licensed under the MIT licenses,
which are generally accepted for being permissive enough for most commercial or noncommercial
uses. If you are worried about patents, then go with the Apache license.

Create a LICENSE.rst ŀle in your repo root, mention the license name at the top, and paste in the
appropriate text from the (OSI) approved list at http://choosealicense.com/.

.....

TIP: Licenses Protect You and the World

.

In this era of casual litigation and patent trolls adding a software license isn’t just a matter of
protecting your ownership of the code. It’s much, much more. If you don’t license your code,
or use an unapproved license not vetted by real lawyers, you run the risk of your work being
used as a weapon by a patent troll, or in the case of ŀnancial or medical disaster, you could
be held liable.
OSI-approved licenses all include a couple critical statements on copyright, redistribution,
disclaimer of warranty, and limitation of liability.

21.10.14 Clarity of Code

Ļe code in your Django package should be as clear and simple as possible, of course. Don’t use weird,
unusual Python/Django hacks without explaining what you are doing.

21.10.15 Use URL Namespaces

Described in section 8.4, URL namespaces allow for greater Interoperability. Using means it’s easier
to manage collisions between projects, or even prepare for it ahead of time.

If there is concern about future collisions, settings-based URL namespace systems can be imple-
mented. Ļis is where the project deŀnes its URL namespace as a setting, then provides a Django
context processor and detailed instructions on use. While it’s not hard to implement, it does create a
level of abstraction that can make a project a little bit harder to maintain.

275

http://choosealicense.com/

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

21.11 Creating Your Own Packages the Easy Way

Releasing your own bit of code can be a wonderfully rewarding experience. Everyone should do it!

Ļat said, putting all the pieces together in order to make a reusable Django package is a lot of work,
and it’s common to get things wrong. Fortunately, Cookiecutter makes this easy.

.....

PACKAGE TIP: Cookiecutter: Project Templates Made Easy

.

Audrey has created a popular utility for generating project templates. It’s easy to use and very
powerful. Numerous templates exist for Python and Django packages.

ä https://github.com/audreyr/cookiecutter
ä http://cookiecutter.readthedocs.org/

In the Cookiecutter templates referenced below, we have vetted them by aggressively asking for them
to be reviewed by leaders in both the Django and Python communities. Just use the following bash
example at the command-line:

..

EŤōřŜŘő șȘ.ț

Only if you installed cookiecutter yet
$ pip install cookiecutter

Creating a Django Package from scratch
$ cookiecutter https://github.com/pydanny/cookiecutter-djangopackage.git

Creating a Python Package from scratch
$ cookiecutter https://github.com/audreyr/cookiecutter-pypackage.git

You’ll be prompted to provide information. Ļe generated result will be an implementation of a base
Django/Python/etc package template that includes code, documentation, tests, license, and much
more.

276

https://github.com/audreyr/cookiecutter
http://cookiecutter.readthedocs.org/

21.12: Maintaining Your Open Source Package

21.12 Maintaining Your Open Source Package

..

WARNING: Open Source Burnout and Giving Too Much

.

Unless you are getting paid professionally to do open source work, remember that this is
volunteer work done for pleasure. Do what you can at your own pace, and just try your best.

Ļe open source packages that you create have a life of their own. Ļey mature over time, changing
as their needs and the development standards grow over time. Here are some things we should do
when maintaining open source projects:

21.12.1 Give Credit for Pull Requests

When someone submits a pull request that’s accepted, treat them right. Make sure to add the contrib-
utor to a project’s author document called something like CONTRIBUTORS.txt or AUTHORS.txt.

21.12.2 Handling Bad Pull Requests

Sometimes you get pull requests that you just have to reject. Be nice and positive about it, since a
well-handled rejected pull request can make a friend for life.

Here are problematic pull requests that should be considered for rejection:

ä Any pull request that fails the tests. Ask for ŀxes. See chapter 22.
ä Any added code that reduces test coverage. Again, see chapter 22.
ä Pull requests should change/ŀx as little as possible. Large, wide-sweeping changes in a pull request

should be rejected, with comments to isolate changes in smaller, atomic pull requests.
ä Overly complex code submissions should be carefully considered. Ļere is nothing wrong with asking

for simpliŀcation, better comments, or even rejecting an overly complex pull request.
ä Code that breaks PEP-8 needs to be resubmitted. Ļe Django world follows PEP-8 very closely,

and so should your project. Submissions that violate PEP 8 can be requested to be improved.
ä Code changes combined with major whitespace cleanup. If someone submits a change of two lines

of code and corrects 200 lines of whitespace issues, the diff on that pull request is functionally
unreadable and should be rejected. Whitespace cleanups need to be in their own pull request.

277

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

..

WARNING: Code Changes Combined With Major Whitespace
Cleanup

.

We’re adding a warning because this is arguably a form of code obfuscation by a third party.
One could argue it’s potentially a security risk. What better way to inject malignant code
than through a pull request?

21.12.3 Do Formal PyPI Releases

In the Python community, it’s considered irresponsible to force developers to rely on a ‘stable’ master
or trunk branch of critical open source projects because the PyPI version is out of date. Ļis can
cause problems as open source code repositories are not considered to be good sources of production
quality code. For example, which particular commit or tag should be used? On the other hand, PyPI,
is a known resource designed to securely provide valid installable packages.

In the Python world, the accepted best practice is to release when signiŀcant (or even minor) changes
or bug ŀxes happen on trunk or master. In fact, minor bug ŀx releases are a part of every ongoing
software project and no one faults anyone for these kinds of things (except in US government IT
contracts, but that’s outside the scope of this book).

If you aren’t sure how this works, please look at python-request’s change history, it being one of
Python’s most popular projects: http://2scoops.co/requests-history

To create and upload your distribution, use the following steps:

..

EŤōřŜŘő șȘ.Ȝ

$ pip install twine
$ python setup.py sdist
$ twine upload dist/*

278

http://2scoops.co/requests-history

21.12: Maintaining Your Open Source Package

.....

PACKAGE TIP: What is Twine?

.

Twine is the preferred library for uploading packages to PyPI. Ļe problem with python
setup.py is that it sends ŀles over a non-SSH connection, exposing your library to a man-
in-the-middle attack. In contrast, twine uses only veriŀed TLS to upload your package.

Ļat’s not all! Twine works better at uploading Wheels (see the next subsection), doesn’t
require executing the setup.py, and even pre-signs your releases. If you are seriously security
minded, it’s the tool of choice.

21.12.4 Create and Deploy Wheels to PyPI

According to PEP 427, Wheels are the new standard of python distribution. Ļey are intended to
replace eggs and provide a number of advantages including faster installation and allow secure digital
signing. Support is offered in pip >= 1.4 and setuptools >= 0.8.

..

EŤōřŜŘő șȘ.ȝ

$ pip install wheel
$ pip install twine

Ļen, after you’ve deployed your package to PyPI, run the following commands:

..

EŤōřŜŘő șȘ.Ȟ

$ python setup.py bdist_wheel
$ twine upload dist/*

For supporting Python 2.7 and 3.3+, Twine makes universal wheels when the optional setup.cfg ŀle
is at the same level as setup.py and includes this snippet:

..

EŤōřŜŘő șȘ.ȟ

setup.cfg
[wheel]
universal = 1

279

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

Wheel Resources:

Speciŀcation: PEP 427 http://www.python.org/dev/peps/pep-0427/
Wheel Package on PyPI https://pypi.python.org/pypi/wheel
Documentation http://wheel.readthedocs.org/
Advocacy http://pythonwheels.com/

21.12.5 Upgrade the Package to New Versions of Django

Every once in awhile, Django is updated with a minor release. Approximately once a year there is
a major Django release. When this happens, it’s very important to run our package’s test suite in a
virtualenv that contain Django’s latest release.

If for no other reason, this is an excellent reason to include tests in your project.

21.12.6 Follow Good Security Practices

We discuss security in-depth in chapter 26, Security Best Practices. However, core Django, Python,
and PyPy developer Alex Gaynor has an incredibly useful article for maintainers of any open source
project:
https://alexgaynor.net/2013/oct/19/security-process-open-source-projects/

.....

TIP: Alex Gaynor on Security for Open Source Projects

.

“Security vulnerabilities put your users, and often, in turn, their users at risk. As
an author and distributor of software, you have a responsibility to your users to
handle security releases in a way most likely to help them avoid being exploited.”

21.12.7 Provide Sample Base Templates

Always include some basic templates for views using your project. We prefer to write either incredibly
simple HTML or use a common front-end frameworks such as Twitter Bootstrap. Ļis makes ‘test-
driving’ the project much easier for developers who are considering using it to solve their problems.

280

http://www.python.org/dev/peps/pep-0427/
https://pypi.python.org/pypi/wheel
http://wheel.readthedocs.org/
http://pythonwheels.com/
https://alexgaynor.net/2013/oct/19/security-process-open-source-projects/

21.13: Additional Reading

Invariably they’ll modify the templates inside their own templates/ directory, but this just makes
everything so much easier.

In addition, include a templates/myapp/base.html to increase interoperability. You can see a descrip-
tion and example of this in cookiecutter-djangopackage:

http://2scoops.co/cookiecutter-djangopackage-base.html

21.12.8 Give the Package Away

Sometimes, life takes you away from maintaining a package. It might be family or a new job, but
sometimes you just have no need for a particular open source project. Time considerations might
mean that you don’t have the ability to review pull requests or explore ideas for new features. If you’re
the creator of a project it can be extremely challenging to let it go.

However, by giving a project away to an active maintainer, it can be reborn and prove more useful. It
also earns the respect of the developer community at large.

Some notable giveaways in the Django and Python communities include:

ä Ian Bicking and pip/virtualenv.
ä Jesper Nøhr and django-piston.
ä Daniel Roy Greenfeld and django-uni-form.
ä Rob Hudson and django-debug-toolbar.

21.13 Additional Reading

Ļe following are links to useful articles for anyone contributing to, creating, or maintaining open
source libraries:

ä http://alexgaynor.net/2013/sep/26/effective-code-review/
ä http://2scoops.co/sharing-your-labor-of-love-pypi-quick-and-dirty
ä http://2scoops.co/jeff-knupp-open-sourcing-a-python-project

281

http://2scoops.co/cookiecutter-djangopackage-base.html
http://alexgaynor.net/2013/sep/26/effective-code-review/
http://2scoops.co/sharing-your-labor-of-love-pypi-quick-and-dirty
http://2scoops.co/jeff-knupp-open-sourcing-a-python-project

Chapter 21: Django’s Secret Sauce: Ļird-Party Packages

21.14 Summary

Django’s real power is in the vast selection of third-party packages available to you for use in your
Django projects.

Make sure that you have pip and virtualenv installed and know how to use them, since they’re your
best tools for installing packages on your system in a manageable way.

Get to know the packages that exist. Ļe Python Package Index and Django Packages are a great
starting point for ŀnding information about packages.

Package maturity, documentation, tests, and code quality are good starting criteria when evaluating
a Django package.

Installation of stable packages is the foundation of Django projects big and small. Being able to
use packages means sticking to speciŀc releases, not just the trunk or master of a project. Barring a
speciŀc release, you can rely on a particular commit. Fixing problems that a package has with your
project takes diligence and time, but remember to ask for help if you get stuck.

We also covered how to create your own third-party package, and provided basic instruction on how
to use cookiecutter to jump-start you on your way to releasing something on the Python Package
Index. We also included instructions on using the new Wheel format.

Finally, we provided guidance on how to maintain a package.

282

22 | Testing Stinks and Is a Waste of
Money!

Ļere, got you to this chapter.

Now you have to read it.

We’ll try and make this chapter interesting.

22.1 Testing Saves Money, Jobs, and Lives

Daniel ’s Story: Ever hear the term “smoke test”?

Gretchen Davidian, a Management and Program Analyst at NASA, told me that when she was still
an engineer, her job as a tester was to put equipment intended to get into space through such rigorous
conditions that they would begin emitting smoke and eventually catch on ŀre.

Ļat sounds exciting! Employment, money, and lives were on the line, and knowing Gretchen’s at-
tention to detail, I’m sure she set a lot of hardware on ŀre.

Keep in mind that for a lot of us, as software engineers, the same risks are on the line as NASA. I
recall in 2004 while working for a private company how a single miles-vs-kilometers mistake cost
a company hundreds of thousands of dollars in a matter of hours. Quality Assurance (QA) staff
lost their jobs, which meant that money and health beneŀts were gone. In other words, employment,
money, and possibly lives can be lost without adequate tests. While the QA staff were very dedicated,
everything was done via manually clicking through projects, and human error simply crept into the
testing process.

283

Chapter 22: Testing Stinks and Is a Waste of Money!

Today, as Django moves into a wider and wider set of applications, the need for automated testing is
just as important as it was for Gretchen at NASA and for the poor QA staff in 2004. Here are some
cases where Django is used today that have similar quality requirements:

ä Your application handles medical information.
ä Your application provides life-critical resources to people in need.
ä Your application works with other people’s money now or will at some point in the future.

.....

PACKAGE TIP: Useful Library for Testing Django Projects

.

We like to use coverage.py.

Ļis tool provides clear insight into what parts of your code base are covered by tests, and
what lines haven’t been touched by tests. You also get a handy percentage of how much of your
code is covered by tests. Even 100% test coverage doesn’t guarantee a bug-free application,
but it helps.

We want to thank Ned Batchelder for his incredible work in maintaining coverage.py. It’s a
superb project and is useful for any Python related project.

22.2 How to Structure Tests

Let’s say we’ve just created a new Django app. Ļe ŀrst thing we do is delete the default but useless
tests.py module that django-admin.py startapp creates.

In its place, because most apps need them, we create test forms.py, test models.py, test views.py mod-
ules. Tests that apply to forms go into test forms.py, model tests go into test models.py, and so on.

Here’s what it looks like:

..

EŤōřŜŘő șș.Ș

popsicles/
__init__.py
admin.py
forms.py
models.py

284

22.3: How to Write Unit Tests

..

test_forms.py
test_models.py
test_views.py
views.py

Also, if we have other ŀles besides forms.py, models.py and views.py that need testing, we create
corresponding test ŀles.

We like this approach because per the Zen of Python’s statement that “Flat is better than nested,” this
makes it easier to navigate a Django app.

.....

TIP: Prefix Test Modules With test

.

It’s critically important that we always preŀx test modules with test , otherwise Django’s test
runner can’t discover our test ŀles.

22.3 How to Write Unit Tests

It’s not uncommon for programmers to feel at the top of their game at the moment they are writing
code. When they revisit that same code in months, weeks, days, or even hours and it’s not uncommon
for programmers to feel as if that same code is of poor quality.

Ļe same applies to writing unit tests.

Over the years, we’ve evolved a number of practices we like to follow when writing tests, including
unit tests. Our goal is always to write the most meaningful tests in the shortest amount of time.
Hence the following:

22.3.1 Each Test Method Tests One Thing

A test method must be extremely narrow in what it tests. A single unit test should never assert the
behavior of multiple views, models, forms, or even multiple methods within a class. Instead, a single
test should assert the behavior of a single view, model, form, method or function.

285

Chapter 22: Testing Stinks and Is a Waste of Money!

Of course, therein lies a conundrum. How does one run a test for a view, when views often require
the use of models, forms, methods, and functions?

Ļe trick is to be absolutely minimalistic when constructing the environment for a particular test, as
shown in the example below:

..

EŤōřŜŘő șș.ș

flavors/test_api.py
import json

from django.core.urlresolvers import reverse
from django.test import TestCase

from flavors.models import Flavor

class FlavorAPITests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title="A Title", slug="a-slug")

def test_list(self):
url = reverse("flavor_object_api")
response = self.client.get(url)
self.assertEquals(response.status_code, 200)
data = json.loads(response.content)
self.assertEquals(len(data), 1)

In this test, taken from code testing the API we presented in section 16.2, ‘Implementing a Simple
JSON API,’ chapter 16, Building REST APIs, we use the setUp() method to create the minimum
possible number of records needed to run the test.

Here’s a much larger example, one based on the REST API example that we provided in chapter 16.

..

EŤōřŜŘő șș.Ț

flavors/test_api.py
import json

286

22.3: How to Write Unit Tests

..

from django.core.urlresolvers import reverse
from django.test import TestCase

from flavors.models import Flavor

class DjangoRestFrameworkTests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title="title1", slug="slug1")
Flavor.objects.get_or_create(title="title2", slug="slug2")

self.create_read_url = reverse("flavor_rest_api")
self.read_update_delete_url = \

reverse("flavor_rest_api", kwargs={"slug": "slug1"})

def test_list(self):
response = self.client.get(self.create_read_url)

Are both titles in the content?
self.assertContains(response, "title1")
self.assertContains(response, "title2")

def test_detail(self):
response = self.client.get(self.read_update_delete_url)
data = json.loads(response.content)
content = {"id": 1, "title": "title1", "slug": "slug1",

"scoops_remaining": 0}
self.assertEquals(data, content)

def test_create(self):
post = {"title": "title3", "slug": "slug3"}
response = self.client.post(self.create_read_url, post)
data = json.loads(response.content)
self.assertEquals(response.status_code, 201)
content = {"id": 3, "title": "title3", "slug": "slug3",

"scoops_remaining": 0}
self.assertEquals(data, content)

287

Chapter 22: Testing Stinks and Is a Waste of Money!

..

self.assertEquals(Flavor.objects.count(), 3)

def test_delete(self):
response = self.client.delete(self.read_update_delete_url)
self.assertEquals(response.status_code, 204)
self.assertEquals(Flavor.objects.count(), 1)

22.3.2 For Views, When Possible Use the Request Factory

Ļe django.test.client.RequestFactory provides a way to generate a request instance that
can be used as the ŀrst argument to any view. Ļis provides a greater amount of isolation than the
standard Django test client, but it does require a little bit of extra work on the part of the test writer.
Ļis is because the request factory doesn’t support middleware, including session and authentication.

See http://2scoops.co/1.8-request-factory

Unfortunately the documentation doesn’t cover when you want to test a view wrapped with a single
middleware class. For example, if your view required sessions, this is how you would do it:

..

EŤōřŜŘő șș.ț

from django.contrib.auth.models import AnonymousUser
from django.contrib.sessions.middleware import SessionMiddleware
from django.test import TestCase, RequestFactory

from .views import cheese_flavors

def add_middleware_to_request(request, middleware_class):
middleware = middleware_class()
middleware.process_request(request)
return request

def add_middleware_to_response(request, middleware_class):
middleware = middleware_class()
middleware.process_request(request)

288

http://2scoops.co/1.8-request-factory

22.3: How to Write Unit Tests

..

return request

class SavoryIceCreamTest(TestCase):
def setUp(self):

Every test needs access to the request factory.
self.factory = RequestFactory()

def test_cheese_flavors(self):
request = self.factory.get('/cheesy/broccoli/')
request.user = AnonymousUser()

Annotate the request object with a session
request = add_middleware_to_request(request, SessionMiddleware)
request.session.save()

process and test the request
response = cheese_flavors(request)
self.assertContains(response, "bleah!")

22.3.3 Don't Write Tests That Have to Be Tested

Tests should be written as simply as possible. If the code in a test (or the code called to help run
a test) feels complicated or abstracted, then you have a problem. In fact, we ourselves are guilty of
writing overly complicated utility test functions that required their own tests in the past. As you can
imagine, this made debugging the actual tests a nightmare.

22.3.4 Don't Repeat Yourself Doesn't Apply to Writing Tests

Ļe setUp() method is really useful for generating reusable data across all test methods in a test
class. However, sometimes we need similar but different data between test methods, which is where
we often fall into the trap of writing fancy test utilities. Or worse, we decide that rather than write
20 similar tests, we can write a single method that when passed certain arguments will handle all the
work for us.

289

Chapter 22: Testing Stinks and Is a Waste of Money!

Our favorite method of handling these actions is to just dig in and write the same or similar code
multiple times. In fact, we’ll quietly admit to copy/pasting code between tests to expedite our work.

22.3.5 Don't Rely on Fixtures

We’ve learned over time that using ŀxtures is problematic. Ļe problem is that ŀxtures are hard to
maintain as a project’s data changes over time. Modifying JSON-formatted ŀles to match your last
migration is hard, especially as it can be difficult to identify during the JSON load process where
your JSON ŀle(s) is either broken or a subtly inaccurate representation of the database.

Rather than wrestle with ŀxtures, we’ve found it’s easier to write code that relies on the ORM. Other
people like to use third-party packages.

.....

PACKAGE TIP: Tools to Generate Test Data

.

Ļe following are popular tools for test data generation:
ä factory boy A package that generates model test data.
ä model mommy Another package that generates model test data.
ä mock Not explicitly for Django, this allows you to replace parts of your system with

mock objects. Ļis project made its way into the standard library as of Python 3.3.

22.3.6 Things That Should Be Tested

Everything! Seriously, you should test whatever you can, including:

Views: Viewing of data, changing of data, and custom class-based view methods.
Models: Creating/updating/deleting of models, model methods, model manager methods.
Forms: Form methods, clean() methods, and custom ŀelds.
Validators: Really dig in and write multiple test methods against each custom validator you write.

Pretend you are a malignant intruder attempting to damage the data in the site.
Signals: Since they act at a distance, signals can cause grief especially if you lack tests on them.
Filters: Since ŀlters are essentially just functions accepting one or two arguments, writing tests for

them should be easy.

290

22.3: How to Write Unit Tests

Template Tags: Since template tags can do anything and can even accept template context, writing
tests often becomes much more challenging. Ļis means you really need to test them, since
otherwise you may run into edge cases.

Miscellany: Context processors, middleware, email, and anything else not covered in this list.
Failure What happens when any of the above fail? See

Ļe only things that shouldn’t be tested are parts of your project that are already covered by tests in
core Django and third-party packages. For example, a model’s ŀelds don’t have to be tested if you’re
using Django’s standard ŀelds as-is. However, if you’re creating a new type of ŀeld (e.g. by subclassing
FileField), then you should write detailed tests for anything that could go wrong with your new
ŀeld type.

Figure 22.1: Test as much of your project as you can, as if it were free ice cream.

22.3.7 Test for Failure

Let’s say we have a view that allows users to edit their own ice cream shop reviews. Ļe obvious
tests involve logging in, attempting to change the review, and then checking whether they’ve actually
changed. Test success, coverage 100%. Right?

However, this only tests part of the scenario. What if the user isn’t logged in? What if the user is
trying to edit someone else’s review? Does the view produce an error and most importantly: is the

291

Chapter 22: Testing Stinks and Is a Waste of Money!

object left unchanged? It has been argued that this test is even more important than the success
scenario: a failure in the success scenario will cause inconvenience for users, but will be reported. A
failure in the fail scenario will cause a silent security hole that could go undetected until it’s too late.

Ļis is only a sampling of the things that can go wrong when we don’t test for what happens when
our systems break down. It is up to us to learn how to test for the exceptions our code my throw:

ä 2scoops.co/unittest-assert-raises-docs/
ä 2scoops.co/pytest-assertions-about-expected-exceptions/

22.3.8 Use Mock to Keep Unit Tests From Touching the World

Unit tests are not supposed to test things external to the function or method they are calling. Which
means that during tests we should not access external APIs, receive emails or webhooks, or anything
that is not part of of the tested action. Alas, this causes a conundrum when you are trying to write a
unit test for a function that interacts with an external API.

At this point you have two choices:

ä Choice #1: Change the unit test to be an Integration Test.
ä Choice #2: Use the Mock library to fake the response from the external API.

Ļe Mock library, created by Michael Foord, has as one of its features the capability to brieły
monkey-patch libraries in order to make them return the exact value that we want. Ļis way we
are testing not the availability of the external API, but instead just the logic of our code.

In the example displayed below, we are monkey-patching a function in a mythical Ice Cream API
library so our test code doesn’t access anything external to our application.

..

EŤōřŜŘő șș.Ȝ

import mock
import unittest

import icecreamapi

from flavors.exceptions import CantListFlavors

292

http://www.2scoops.co/unittest-assert-raises-docs/
http://www.2scoops.co/pytest-assertions-about-expected-exceptions/

22.3: How to Write Unit Tests

..

from flavors.utils import list_flavors_sorted

class TestIceCreamSorting(unittest.TestCase):

Set up monkeypatch of icecreamapi.get_flavors()
@mock.patch.object(icecreamapi, "get_flavors")
def test_flavor_sort(self, get_flavors):

Instructs icecreamapi.get_flavors() to return an unordered list.
get_flavors.return_value = ['chocolate', 'vanilla', 'strawberry',]

list_flavors_sorted() calls the icecreamapi.get_flavors()
function. Since we've monkeypatched the function, it will always
return ['chocolate', 'strawberry', 'vanilla',]. Which the.
list_flavors_sorted() will sort alphabetically
flavors = list_flavors_sorted()

self.assertEqual(
flavors,
['chocolate', 'strawberry', 'vanilla',]

)

Now let’s demonstrate how to test the behavior of the list flavors sorted() function when the
Ice Cream API is innaccessible.

..

EŤōřŜŘő șș.ȝ

@mock.patch.object(icecreamapi, "get_flavors")
def test_flavor_sort_failure(self, get_flavors):

Instructs icecreamapi.get_flavors() to throw a FlavorError.
get_flavors.side_effect = icecreamapi.FlavorError()

list_flavors_sorted() catches the icecreamapi.FlavorError()
and passes on a CantListFlavors exception.
with self.assertRaises(CantListFlavors):

list_flavors_sorted()

293

Chapter 22: Testing Stinks and Is a Waste of Money!

As an added bonus for API authors, here’s how we test how code handles two different python-
requests connection problems:

..

EŤōřŜŘő șș.Ȟ

@mock.patch.object(requests, "get")
def test_request_failure(self, get)

"""Test if the target site is innaccessible."""
get.side_effect = requests.exception.ConnectionError()

with self.assertRaises(CantListFlavors):
list_flavors_sorted()

@mock.patch.object(requests, "get")
def test_request_failure(self, get)

"""Test if we can handle SSL problems elegantly."""
get.side_effect = requests.exception.SSLError()

with self.assertRaises(CantListFlavors):
list_flavors_sorted()

22.3.9 Use Fancier Assertion Methods

Comparing two lists (or tuples) is a very common use case. However, if the lists are al-
lowed to have different sort orders, then we have to sort the lists to match, then run
self.assertEqual(control list, candidate list) right?

Not if we know to use unittest’s ListItemsEqual() assertion method! In fact, Python and
Django’s unittest documentation includes handy links to the very useful assertion types we get for
free:

ä https://docs.python.org/2/library/unittest.html#assert-methods
ä https://docs.python.org/3/library/unittest.html#assert-methods
ä https://docs.djangoproject.com/en/1.8/topics/testing/tools/#assertions

We’ve found the following assert methods extremely useful:

294

https://docs.python.org/2/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.djangoproject.com/en/1.8/topics/testing/tools/#assertions

22.4: What About Integration Tests?

ä assertRaises
ä Python 2.7: ListItemsEqual(), Python 3+ assertCountEqual()
ä assertDictEqual()
ä assertFormError()
ä assertContains() Check status 200, checks in response.content.
ä assertHTMLEqual() Amongst many things, ignores whitespace differences.
ä assertJSONEqual()

22.3.10 Document the Purpose of Each Test

Just as it is a good idea to document the purpose of a class, method, or function with docstrings, it
is also a good idea to document the purpose the test analogs of these items. If undocumented code
makes a project somewhat harder to maintain, undocumented test code can make a project impossible
to test. To remedy this, a little bit of docstring can go a long way.

If you think this is boring, well, we’ve found that a good way to deal with an impossible-to-debug
problem is to document the related tests. By the time the tests are documented, you have either
ŀgured out the problem or you have documented tests. Either case is a win!

22.4 What About Integration Tests?

Integration testing is when individual software modules are combined and tested as a group. Ļis is
best done after unit tests are complete. Examples of integration tests can include:

ä Selenium tests to conŀrm that an application works in the browser.
ä Actual testing against a third-party API instead of mocking responses. For example, Django

Packages conducts periodic tests against GitHub, BitBucket, and PyPI API to ensure that its
interaction with those systems is valid.

ä Interacting with requestb.in or http://httpbin.org/ to conŀrm the validity of out-
bound requests.

ä Using runscope.com to validate that our API is working as expected.

Integration tests are a great way to conŀrm that ‘all the pieces’ are working. We can conŀrm that our
users will see what they are supposed to see and our APIs are functioning correctly.

Ļe downside of integration tests are:

295

requestb.in
http://httpbin.org/
runscope.com

Chapter 22: Testing Stinks and Is a Waste of Money!

ä Setting up integration tests can take a lot of time.
ä Compared to unit tests, integrations are extremely slow. Ļat’s because instead of testing the

smallest components, integration tests are, by deŀnition, testing the whole system.
ä When errors are thrown by integration tests, uncovering the problem is harder than unit tests.

For example, a problem affecting a single type of browser might be caused by a unicode trans-
formation happening at the database level.

ä Integration tests are fragile compared to unit tests. A small change in a component or setting
can break them. We’ve yet to work on a signiŀcant project where at least one person seemed
forever blocked from running them successfully.

Even with these problems, integration tests are useful and worth considering adding to our testing
stack.

22.5 Continuous Integration

For projects of any size, we recommend setting up a continuous integration (CI) server to run the
project’s test suite whenever code is committed and pushed to the project repo. See chapter 32,
Continuous Integration for more details.

22.6 Who Cares? We Don't Have Time for Tests!

“Tests are the Programmer’s stone, transmuting fear into boredom.” –Kent Beck

Let’s say you are conŀdent of your coding skill and decide to skip testing to increase your speed of
development. Or maybe you feel lazy. It’s easy to argue that even with test generators and using tests
instead of the shell, they can increase the time to get stuff done.

Oh, really?

What about when it’s time to upgrade?

Ļat’s when the small amount of work you did up front to add tests saves you a lot of work.

For example, in the summer of 2010, Django 1.2 was the standard when we started Django Packages
(http://www.djangopackages.com). Since then we’ve stayed current with new Django versions,
which has been really useful. Because of our pretty good test coverage, moving up a version of Django
(or the various dependencies) has been easy. Our path to upgrade:

296

http://www.djangopackages.com

22.7: Ļe Game of Test Coverage

ä Upgrade the version in a local instance of Django Packages.
ä Run the tests.
ä Fix any errors that are thrown by the tests.
ä Do some manual checking.

If Django Packages didn’t have tests, any time we upgraded anything we would have to click through
dozens and dozens of scenarios manually, which is error-prone. Having tests means we can make
changes and dependency upgrades with the conŀdence that our users (i.e. the Django community)
won’t have to deal with a buggy experience.

Ļis is the beneŀt of having tests.

22.7 The Game of Test Coverage

A great, fun game to play is trying get test coverage as high as possible. Every day that we increase
our test coverage is a victory, and every day that the coverage goes down is a loss.

22.8 Setting Up the Test Coverage Game

Yes, we call test coverage a game. It’s a good tool for developers to push themselves. It’s also a nice
metric that both developers and their clients/employers/investors can use to help evaluate the status
of a project.

We advocate following these steps because most of the time we want to only test our own project’s
apps, not all of Django and the myriad of third-party libraries that are the building blocks of our
project. Testing those ‘building blocks’ takes an enormous amount of time, which is a waste because
most are already tested or require additional setup of resources.

22.8.1 Step 1: Start Writing Tests

We’ve done that already, right?

297

Chapter 22: Testing Stinks and Is a Waste of Money!

22.8.2 Step 2: Run Tests and Generate Coverage Report

Let’s try it out! In the command-line, at the <project root>, type:

..
EŤōřŜŘő șș.ȟ

$ coverage run manage.py test --settings=twoscoops.settings.test

If we have nothing except for the default tests for two apps, we should get a response that looks like:

..

EŤōřŜŘő șș.Ƞ

Creating test database for alias "default"...
..

Ran 2 tests in 0.008s

OK

Destroying test database for alias "default"...

Ļis doesn’t look like much, but what it means is that we’ve constrained our application to only run
the tests that you want. Now it’s time to go and look at and analyze our embarrassingly low test
coverage numbers.

22.8.3 Step 3: Generate the Report!

coverage.py provides a very useful method for generating HTML reports that don’t just provide
percentage numbers of what’s been covered by tests, it also shows us the places where code is not
tested. In the command-line, at the <project root>:

..
EŤōřŜŘő șș.Șȗ

$ coverage html --omit="admin.py"

Ahem...don’t forget to change <project-root> to match the development machine’s structure! For
example, depending on where one does things, the <path-to-project-root> could be:

298

22.9: Playing the Game of Test Coverage

ä /Users/audreyr/code/twoscoops/twoscoops/
ä /Users/pydanny/projects/twoscoops/twoscoops/
ä c:\ twoscoops

After this runs, in the <project root> directory there is a new directory called htmlcov/ . In the htmlcov/
directory, open the index.html ŀle using any browser.

What is seen in the browser is the test results for our test run. Unless we already wrote some tests,
the total on the front page will be in the single digits, if not at 0%. Click into the various modules
listed and we should see lots of code that’s red-colored. Red is bad.

Let’s go ahead and admit that our project has a low coverage total. If your project has a low coverage
total, you need to admit it as well. It’s okay just so long as we also resolve to improve the coverage
total.

In fact, there is nothing wrong in saying publicly that you are working to improve a project’s test
coverage. Ļen, other developers (including ourselves) will cheer you on!

22.9 Playing the Game of Test Coverage

Ļe game has a single rule:

Mandate that no commit can lower test coverage.

If we add a feature or bug ŀx and coverage is 65% when we start, we can’t merge our code in until
coverage is at least 65% again. At the end of each day, if test coverage goes up by any amount, it
means we’re winning.

Keep in mind that the gradual increase of test coverage can be a very good thing over huge jumps.
Gradual increases can mean that we developers aren’t putting in bogus tests to bump up coverage
numbers; instead, we are improving the quality of the project.

22.10 Alternatives to unittest

All the examples in this chapter thus far have used the unittest library. While every known authority
on testing agrees that unittest is a very powerful, useful tool, not all of them like it. Ļe speciŀc
reason, and one we fully comprehend, is that it requires too much boilerplate.

299

Chapter 22: Testing Stinks and Is a Waste of Money!

Fortunately, there are alternatives that require a lot less boilerplate. Ļese are:

ä https://pypi.python.org/pypi/pytest-django/
ä https://pypi.python.org/pypi/django-nose

Ļese two libraries are wrappers around the pytest and nose libraries. In return for a little bit of extra
setup, these libraries allow for not just the running of unittest-based tests, but also for running any
function (and class/directory/module) preŀxed with “test ”. For example, you could write a simple
test that looks like this:

..

EŤōřŜŘő șș.ȘȘ

test_models.py
from pytest import raises

from cones.models import Cone

def test_good_choice():
assert Cone.objects.filter(type='sugar').count() == 1

def test_bad_cone_choice():
with raises(Cone.DoesNotExist):

Cone.objects.get(type='spaghetti')

While this example is based on pytest, similar functionality can be used with nose and it’s
nose.tools.raises decorator.

A possible downside of the simplicity of these function-based tests is the lack of inheritance. If a
project needs to have similar behavior over a lot of different tests, then writing tests this way may not
make sense.

22.11 Summary

All of this might seem silly, but testing can be very serious business. In a lot of developer groups
this subject, while gamiŀed, is taken very seriously. Lack of stability in a project can mean the loss of
clients, contracts, and even employment.

In the next chapter we cover a common obsession of Python developers: documentation.

300

https://pypi.python.org/pypi/pytest-django/
https://pypi.python.org/pypi/django-nose

23 | Documentation: Be Obsessed

Given a choice between ice cream and writing great documentation, most Python developers would
probably choose to write the documentation. Ļat being said, writing documentation while eating
ice cream is even better.

When you have great documentation tools like reStructuredText and Sphinx, you actually can’t help
but want to add docs to your projects.

.....

PACKAGE TIP: Install Sphinx Systemwide

.

We’ve found that simply installing Sphinx fetches for us all the pieces you need to document
our Django (or Python) project. We recommend pip installing Sphinx systemwide, as you’ll
want to have it handy for every Django project.

23.1 Use reStructuredText for Python Docs

You’ll want to learn and follow the standard Python best practices for documentation. Ļese days, re-
StructuredText (RST) is the most common markup language used for documenting Python projects.

What follows are links to the formal reStructuredText speciŀcation and a couple sample projects
which beneŀt from using it:

ä http://2scoops.co/restructured-text-specification
ä https://docs.djangoproject.com/en/1.8/
ä http://docs.python.org

301

http://2scoops.co/restructured-text-specification
https://docs.djangoproject.com/en/1.8/
http://docs.python.org

Chapter 23: Documentation: Be Obsessed

While it’s possible to study the formal documentation for reStructuredText and learn at least the
basics, here is a quick primer of some very useful commands you should learn.

..

EŤōřŜŘő șȚ.Ș

Section Header
==============

emphasis (bold/strong)

italics

Simple link: http://django.2scoops.org
Fancier Link: `Two Scoops of Django`_

.. _Two Scoops of Django: https://django.2scoops.org

Subsection Header

#) An enumerated list item

#) Second item

* First bullet

* Second bullet

* Indented Bullet

* Note carriage return and indents

Literal code block::

def like():
print("I like Ice Cream")

for i in range(10):
like()

302

23.2: Use Sphinx to Generate Documentation From reStructuredText

..

Python colored code block (requires pygments):

code-block:: python

You need to "pip install pygments" to make this work.

for i in range(10):
like()

JavaScript colored code block:

code-block:: javascript

console.log("Don't use alert()");

23.2 Use Sphinx to Generate Documentation From
reStructuredText

Sphinx is a tool for generating nice-looking docs from your .rst ŀles. Output formats include HTML,
LaTeX, manual pages, and plain text.

Follow the instructions to generate Sphinx docs: http://sphinx-doc.org/.

.....

TIP: Build Your Sphinx Documentation at Least Weekly

.

You never know when bad cross-references or invalid formatting can break the Sphinx build.
Rather than discover that the documentation is unbuildable at an awkward moment, just
make a habit of creating it on a regular basis.

23.3 What Docs Should Django Projects Contain?

Developer-facing documentation refers to notes and guides that developers need in order to set up
and maintain a project. Ļis includes notes on installation, deployment, architecture, how to run tests

303

http://sphinx-doc.org/

Chapter 23: Documentation: Be Obsessed

or submit pull requests, and more. We’ve found that it really helps to place this documentation in all
our projects, private or public. Here we provide a table that describes what we consider the absolute
minimum documentation:

Filename or Directory Reason Notes
README.rst Every Python project you begin should

have a README.rst file in the repository
root.

Provide at least a short
paragraph describing what the
project does. Also, link to the
installation instructions in the
docs/ directory.

docs/ Your project documentation should go
in one, consistent location. This is the
Python community standard.

A simple directory.

docs/deployment.rst This file lets you take a day off. A point-by-point set of
instructions on how to
install/update the project into
production, even if it's done via
something powered by Ruby,
Chef, Fabric, or a Makefile.

docs/installation.rst This is really nice for new people
coming into a project or when you get a
new laptop and need to set up the
project.

A point-by-point set of
instructions on how to onboard
yourself or another developer
with the software setup for a
project.

docs/architecture.rst A guide for understanding what things
evolved from as a project ages and
grows in scope.

This is how you imagine a project
to be in simple text and it can be
as long or short as you want.
Good for keeping focused at the
beginning of an effort.

Table 23.1: Documentation Django Projects Should Contain

304

23.4: Additional Documentation Resources

Figure 23.1: Even ice cream could beneŀt from documentation.

23.4 Additional Documentation Resources

ä http://www.python.org/dev/peps/pep-0257 Official speciŀcation on docstrings.
ä https://readthedocs.org/ Read the Docs is a free service that can host your Sphinx

documentation.
ä http://pythonhosted.org/ Python Hosted is another free service for documentation

hosting.

23.5 The Markdown Alternative

Markdown is a plain text formatting syntax not too dissimilar to reStructuredText. While it doesn’t
have all the built-in features of reStructuredText, it does have the advantage of being easier to learn.
While used infrequently in the Python and Django communities, it’s very popular in tangential places
including the JavaScript and technical book-writing community.

When using Markdown instead of reStructuredText for open source projects, keep the following in
mind:

305

http://www.python.org/dev/peps/pep-0257
https://readthedocs.org/
http://pythonhosted.org/

Chapter 23: Documentation: Be Obsessed

ä PyPI will not format the long description if it’s written in anything except reStructured-
Text.

ä Many Python and Django developers will search reStructuredText-powered documentation
sources before Markdown-powered ones.

23.5.1 README.md to README.rst: Using Pandoc for Packages
Uploaded to PyPI

Pandoc is a command-line tool that allows us to convert ŀles from one markup format into another.
We can write a README in one format, and for uploading to PyPI, display it in another. Here’s
how some people use pandoc in their setup.py module:

..

EŤōřŜŘő șȚ.ș

setup.py
import subprocess
import sys

if sys.argv[-1] == 'md2rst':
subprocess.call('pandoc README.md -o README.rst', shell=True)

...

To convert a README.md to README.rst, just run python setup.py md2rst. Ļen we
upload the package to PyPI as per the normal process.

23.5.2 Markdown Resources

ä https://en.wikipedia.org/wiki/Markdown
ä http://www.mkdocs.org/ is a static site generator geared towards project documentation

written in markdown.
ä http://documentup.com will host README documents written in Markdown format.
ä http://progrium.viewdocs.io/ allows for Markdown documents to be organized and

displayed in a Sphinx-like format. Also provides free hosting.

306

https://en.wikipedia.org/wiki/Markdown
http://www.mkdocs.org/
http://documentup.com
http://progrium.viewdocs.io/

23.6: Wikis and Other Documentation Methods

ä http://johnmacfarlane.net/pandoc/ is a great tool for converting between Markdown
to other formats, but it’s not perfect. It’s great for converting README.md to README.rst,
which we describe in the previous subsection

23.6 Wikis and Other Documentation Methods

For whatever reason, if you can’t place developer-facing documentation in the project itself, you
should have other options. While wikis, online document stores, and word processing documents
don’t have the feature of being placed in version control, they are better than no documentation.

Please consider creating documents within these other methods with the same names as the ones we
suggested in the table on the previous page.

23.7 Summary

In this chapter we went over the following:

ä Ļe use of reStructuredText to write documentation in plaintext format.
ä Ļe use Sphinx to render your documentation in HTML and EPUB formats. If you know

how to install LaTeX you can even render it as PDF. For reference, installing LaTeX is easy
to do on Linux and Windows and a bit harder on Mac OS X.

ä Advice on the documentation requirements for any Django project.
ä Using Markdown for documentation, and converting README.md to README.rst.

Next, we’ll take a look at common bottlenecks in Django projects and ways to deal with them.

307

http://johnmacfarlane.net/pandoc/

Chapter 23: Documentation: Be Obsessed

308

24 | Finding and Reducing
Bottlenecks

Ļis chapter covers a few basic strategies for identifying bottlenecks and speeding up your Django
projects.

24.1 Should You Even Care?

Remember, premature optimization is bad. If your site is small- or medium-sized and the pages are
loading ŀne, then it’s okay to skip this chapter.

On the other hand, if your site’s user base is growing steadily or you’re about to land a strategic
partnership with a popular brand, then read on.

24.2 Speed Up Query-Heavy Pages

Ļis section describes how to reduce bottlenecks caused by having too many queries, as well as those
caused by queries that aren’t as snappy as they could be.

We also urge you to read up on database access optimization in the official Django docs:
http://2scoops.co/1.8-db-optimization

24.2.1 Find Excessive Queries With Django Debug Toolbar

You can use django-debug-toolbar to help you determine where most of your queries are coming
from. You’ll ŀnd bottlenecks such as:

309

http://2scoops.co/1.8-db-optimization

Chapter 24: Finding and Reducing Bottlenecks

ä Duplicate queries in a page.
ä ORM calls that resolve to many more queries than you expected.
ä Slow queries.

You probably have a rough idea of some of the URLs to start with. For example, which pages don’t
feel snappy when they load?

Install django-debug-toolbar locally if you don’t have it yet. Look at your project in a web browser,
and expand the SQL panel. It’ll show you how many queries the current page contains.

.....

PACKAGE TIP: Packages for Profiling andPerformanceAnalysis

.

django-debug-toolbar is a critical development tool and an invaluable aid in page-by-page
analysis. We also recommend adding django-cache-panel to your project, but only conŀg-
ured to run when settings/dev.py module is called. Ļis will increase visibility into what your
cache is doing.

django-extensions comes with a tool called RunProfileServer that starts Django’s run-
server command with hotshot/proŀling tools enabled.

silk (https://github.com/mtford90/silk) Silk is a live proŀling Django app that in-
tercepts and stores HTTP requests and database queries before presenting them in a user
interface for further inspection.

24.2.2 Reduce the Number of Queries

Once you know which pages contain an undesirable number of queries, ŀgure out ways to reduce
that number. Some of the things you can attempt:

ä Try using select related() in your ORM calls to combine queries. It follows ForeignKey
relations and combines more data into a larger query. If using CBVs, django-braces makes
doing this trivial with the SelectRelatedMixin. Beware of queries that get too large by
explicitly passing the related ŀeld names you are interested in. Only the speciŀed relations will
be followed. Combine that with careful testing!

310

https://github.com/mtford90/silk

24.2: Speed Up Query-Heavy Pages

ä For many-to-many and many-to-one relationships that can’t be optimized with se-
lect related(), explore using prefetch related() instead.

ä If the same query is being generated more than once per template, move the query into the
Python view, add it to the context as a variable, and point the template ORM calls at this new
context variable.

ä Implement caching using a key/value store such as Memcached. Ļen write tests to assert the
number of queries run in a view. See
http://2scoops.co/1.8-test-num-queries for instructions.

ä Use the django.utils.functional.cached property decorator to cache in memory
the result of method call for the life of an object instance. Ļis is incredibly useful, so please
see subsection 29.3.5, ‘django.utils.functional.cached property’ in chapter 29.

24.2.3 Speed Up Common Queries

Ļe length of time it takes for individual queries can also be a bottleneck. Here are some tips, but
consider them just starting points:

ä Make sure your indexes are helping speed up your most common slow queries. Look at the raw
SQL generated by those queries, and index on the ŀelds that you ŀlter/sort on most frequently.
Look at the generated WHERE and ORDER BY clauses.

ä Understand what your indexes are actually doing in production. Development machines will
never perfectly replicate what happens in production, so learn how to analyze and understand
what’s really happening with your database.

ä Look at the query plans generated by common queries.
ä Turn on your database’s slow query logging feature and see if any slow queries occur frequently.
ä Use django-debug-toolbar in development to identify potentially-slow queries defensively, be-

fore they hit production.

Once you have good indexes, and once you’ve done enough analysis to know which queries to rewrite,
here are some starting tips on how to go about rewriting them:

..
1 Rewrite your logic to return smaller result sets when possible.
..
2 Re-model your data in a way that allows indexes to work more effectively.
..
3 Drop down to raw SQL in places where it would be more efficient than the generated query.

311

http://2scoops.co/1.8-test-num-queries

Chapter 24: Finding and Reducing Bottlenecks

.....

TIP: Use EXPLAIN ANALYZE / EXPLAIN

.

If you’re using PostgreSQL, you can use EXPLAIN ANALYZE to get an extremely detailed
query plan and analysis of any raw SQL query. For more information, see:

ä http://www.revsys.com/writings/postgresql-performance.html
ä http://2scoops.co/craig-postgresql-perf2

Ļe MySQL equivalent is the EXPLAIN command, which isn’t as detailed but is still helpful.
For more information, see:

ä http://dev.mysql.com/doc/refman/5.6/en/explain.html

A nice feature of django-debug-toolbar is that the SQL pane has an EXPLAIN feature.

24.2.4 Switch ATOMIC REQUESTS to False

Ļe clear, vast majority of Django projects will run just ŀne with the setting of ATOMIC REQUESTS to
True. Generally, the penalty of running all database queries in a transaction isn’t noticeable. However,
if your bottleneck analysis points to transactions causing too much delay, it’s time to change the
project run as ATOMIC REQUESTS to True. See subsection 7.7.2, ‘Explicit Transaction Declaration,’
for guidelines on this setting.

24.3 Get the Most Out of Your Database

You can go a bit deeper beyond optimizing database access. Optimize the database itself ! Much of
this is database-speciŀc and already covered in other books, so we won’t go into too much detail here.

24.3.1 Know What Doesn't Belong in the Database

Frank Wiles of Revolution Systems taught us that there are two things that should never go into any
large site’s relational database:

Logs. Don’t add logs to the database. Logs may seem OK on the surface, especially in development.
Yet adding this many writes to a production database will slow their performance. When the ability

312

http://www.revsys.com/writings/postgresql-performance.html
http://2scoops.co/craig-postgresql-perf2
http://dev.mysql.com/doc/refman/5.6/en/explain.html

24.3: Get the Most Out of Your Database

to easily perform complex queries against your logs is necessary, we recommend third-party services
such as Splunk or Loggly, or use of document-based NoSQL databases.

Ephemeral data. Don’t store ephemeral data in the database. What this means is data that re-
quires constant rewrites is not ideal for use in relational databases. Ļis includes examples such as
django.contrib.sessions, django.contrib.messages, and metrics. Instead, move this data to things like
Memcached, Redis, Riak, and other non-relational stores.

.....

TIP: Frank Wiles on Binary Data in Databases

.

Actually, Frank says that there are three things to never store in a database, the
third item being binary data. Storage of binary data in databases is addressed by
django.db.models.FileField, which does the work of storing ŀles on ŀle servers like
AWS CloudFront or S3 for you. Exceptions to this are detailed in subsection 6.2.5.

24.3.2 Getting the Most Out of PostgreSQL

If using PostgreSQL, be certain that it is set up correctly in production. As this is outside the scope
of the book, we recommend the following articles:

ä http://wiki.postgresql.org/wiki/Detailed_installation_guides
ä http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
ä http://www.revsys.com/writings/postgresql-performance.html
ä http://2scoops.co/craig-postgresql-perf
ä http://2scoops.co/craig-postgresql-perf2

For further information, you may want to read the book “PostgreSQL 9.0 High Performance”:
http://amzn.to/1fWctM2

24.3.3 Getting the Most Out of MySQL

It’s easy to get MySQL running, but optimizing production installations requires experience and
understanding. As this is outside the scope of this book, we recommend the following book to help
you:

313

http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.revsys.com/writings/postgresql-performance.html
http://2scoops.co/craig-postgresql-perf
http://2scoops.co/craig-postgresql-perf2
http://amzn.to/1fWctM2

Chapter 24: Finding and Reducing Bottlenecks

ä “High Performance MySQL” http://amzn.to/188VPcL

24.4 Cache Queries With Memcached or Redis

You can get a lot of mileage out of simply setting up Django’s built-in caching system with Mem-
cached or Redis. You will have to install one of these tools, install a package that provides Python
bindings for them, and conŀgure your project.

You can easily set up the per-site cache, or you can cache the output of individual views or template
fragments. You can also use Django’s low-level cache API to cache Python objects.

Reference material:

ä https://docs.djangoproject.com/en/1.8/topics/cache/
ä https://github.com/sebleier/django-redis-cache/

24.5 Identify Specific Places to Cache

Deciding where to cache is like being ŀrst in a long line of impatient customers at Ben and Jerry’s on
free scoop day. You are under pressure to make a quick decision without being able to see what any
of the łavors actually look like.

Here are things to think about:

ä Which views/templates contain the most queries?
ä Which URLs are being requested the most?
ä When should a cache for a page be invalidated?

Let’s go over the tools that will help you with these scenarios.

24.6 Consider Third-Party Caching Packages

Ļird-party packages will give you additional features such as:

ä Caching of QuerySets.
ä Cache invalidation settings/mechanisms.

314

http://amzn.to/188VPcL
https://docs.djangoproject.com/en/1.8/topics/cache/
https://github.com/sebleier/django-redis-cache/

24.7: Compression and Miniŀcation of HTML, CSS, and JavaScript

ä Different caching backends.
ä Alternative or experimental approaches to caching.

A couple of the popular Django packages for caching are:

ä django-cache-machine
ä johnny-cache

See http://www.djangopackages.com/grids/g/caching/ for more options.

..

WARNING: Third-Party Caching Libraries Aren't Always the
Answer

.

Having tried many of the third-party Django cache libraries, we have to ask our readers to
test them very carefully and be prepared to drop them. Ļey are cheap, quick wins, but can
lead to some hair-raising debugging efforts at the worst possible times.

Cache invalidation is hard, and in our experience, magical cache libraries are better for
projects with more static content. By-hand caching is a lot more work, but leads to better
performance in the long run and doesn’t risk those terrifying moments.

24.7 Compression and Minification of HTML, CSS, and
JavaScript

When a browser renders a web page, it usually has to load HTML, CSS, JavaScript, and image ŀles.
Each of these ŀles consumes the user’s bandwidth, slowing down page loads. One way to reduce
bandwidth consumption is via compression and miniŀcation. Django even provides tools for you:
GZipMiddleware and the {% spaceless %} template tag. Ļrough the at-large Python community,
we can even use WSGI middleware that performs the same task.

Ļe problem with making Django and Python do the work is that compression and miniŀcation take
up system resources, which can create bottlenecks of their own. A better approach is to use Apache
and Nginx web servers conŀgured to compress the outgoing content. If you are maintaining your
own web servers, this is absolutely the way to go.

315

http://www.djangopackages.com/grids/g/caching/

Chapter 24: Finding and Reducing Bottlenecks

A very common middle approach that we endorse is to use a third-party Django library to com-
press and minify the CSS and JavaScript in advance. Our preference is django-pipeline which comes
recommended by Django core developer Jannis Leidel.

Tools and libraries to reference:

ä Apache and Nginx compression modules
ä django-pipeline
ä django-compressor
ä django-htmlmin
ä Django’s built-in spaceless tag: http://2scoops.co/1.8-spaceless-tag
ä http://www.djangopackages.com/grids/g/asset-managers/

24.8 Use Upstream Caching or a Content Delivery
Network

Upstream caches such as Varnish are very useful. Ļey run in front of your web server and speed up
web page or content serving signiŀcantly. See http://varnish-cache.org/.

Content Delivery Networks (CDNs) like Fastly, Akamai, and Amazon Cloudfront serve static me-
dia such as images, video, CSS, and JavaScript ŀles. Ļey usually have servers all over the world,
which serve out your static content from the nearest location. Using a CDN rather than serving
static content from your application servers can speed up your projects.

24.9 Other Resources

Advanced techniques on scaling, performance, tuning, and optimization are beyond the scope of this
book, but here are some starting points.

On general best practices for web performance:

ä YSlow’s Web Performance Best Practices and Rules:
http://developer.yahoo.com/yslow/

ä Google’s Web Performance Best Practices:
https://developers.google.com/speed/docs/best-practices/rules_intro

316

http://2scoops.co/1.8-spaceless-tag
http://www.djangopackages.com/grids/g/asset-managers/
http://varnish-cache.org/
http://developer.yahoo.com/yslow/
https://developers.google.com/speed/docs/best-practices/rules_intro

24.9: Other Resources

On scaling large Django sites:

ä Written with a focus on scaling Django, the book “High Performance Django” espouses many
good practices. Full of useful information and tricks, as well as questions in each section that
force you to think about what you are doing. https://highperformancedjango.com

ä David Cramer often writes and speaks about scaling Django at Disqus, Dropbox, and
Sentry. Read his blog and keep an eye out for his talks, Quora posts, comments, etc.
http://justcramer.com/

ä Watch videos and slides from past DjangoCons and PyCons about different develop-
ers’ experiences. Scaling practices vary from year to year and from company to company:
http://lanyrd.com/search/?q=django+scaling

Figure 24.1: With your site running smoothly, you’ll be feeling as cool as a cone.

.....

TIP: For Sites With High Volume: High Performance Django

.

We want to reiterate that “High Performance Django” is worth getting if your site has enough
traffic to cause issues. Peter Baumgartner and Yann Malet have written a good book, one that
you should consider purchasing.

ä https://highperformancedjango.com
ä amazon.com/High-Performance-Django/dp/1508748128/

317

https://highperformancedjango.com
http://justcramer.com/
http://lanyrd.com/search/?q=django+scaling
https://highperformancedjango.com
http://www.2scoops.co/high-performance-django/

Chapter 24: Finding and Reducing Bottlenecks

24.10 Summary

In this chapter we explored a number of bottleneck reduction strategies including:

ä Whether you should even care about bottlenecks in the ŀrst place.
ä Proŀling your pages and queries.
ä Optimizing queries.
ä Using your database wisely.
ä Caching queries.
ä Identifying what needs to be cached.
ä Compression of HTML, CSS, and JavaScript.
ä Exploring other resources.

In the next chapter, we’ll cover various practices involving asynchronous task queues, which may
resolve our bottleneck problems.

318

25 | Asynchronous Task Queues

An asynchronous task queue is one where tasks are executed at a different time from when they
are created, and possibly not in the same order they were created. Here is an example of a human-
powered asynchronous task queue:

..
1 In their spare time, Audrey and Daniel make ice cream cakes, taking orders from friends and

family. Ļey use an issue tracker to track their tasks for scooping, spreading, and decorating
each cake.

..
2 Every so often, when they have spare time, they review the list of tasks and pick one to do.

Audrey prefers scooping and decorating, always doing those tasks ŀrst. Daniel prefers scooping
and spreading, ŀnishing those before decorating. Ļe result is asynchronous completion of
cake-making tasks.

..
3 As a cake-making task is completed and delivered, they mark the issue as closed.

.....

TIP: Task Queue vs Asynchronous Task Queue

.

In the Django world, both terms are used to describe asynchronous taskqueue. When some-
one writes task queue in the context of Django, they usually mean asynchronous task queue.

Before we get into best practices, let’s go over some deŀnitions:

Broker Ļe storage for the tasks themselves. Ļis can be implemented using any sort of persistence
tool, although in Django the most common ones in use are RabbitMQ and Redis. In the
human-powered example, the storage is an online issue tracker.

319

Chapter 25: Asynchronous Task Queues

Producer Ļe code that adds tasks to the queue to be executed later. Ļis is application code, the
stuff that makes up a Django project. In the human-powered example, this would be Audrey
and Daniel, plus anyone they can get to pitch in to help.

Worker Ļe code that takes tasks from the broker and performs them. Usually there is more than
one worker. Most commonly each worker runs as a daemon under supervision. In the human-
powered example, this is Audrey and Daniel.

25.1 Do We Need a Task Queue?

It depends. Ļey add complexity but can really help user experience. Arguably it comes down to
whether a particular piece of code causes a bottleneck and can be delayed for later when more free
CPU cycles are available.

Here is a useful rule of thumb for determining if a task queue should be used:

Results take time to process: Task queue should probably be used.
Users can and should see results immediately: Task queue should not be used.

Let’s go over some possible use cases:

Use Task Queue? Issue

Yes Sending bulk email

Yes Modifying files (including images)

Yes Fetching large amounts of data from third-party Ice Cream APIs

Yes Inserting or updating a lot of records into a table

No Updating a user profile

No Adding a blog or CMS entry

Yes Performing time-intensive calculations

Yes Sending or receiving of webhooks

Table 25.1: Should a Project Have a Task Queue?

Please keep in mind there are site-traffic driven exceptions to all of these use cases:

320

25.2: Choosing Task Queue Software

ä Sites with small-to-medium amounts of traffic may never need a task queue for any of these
actions.

ä Sites with larger amounts of traffic may discover that nearly every user action requires use of a
task queue.

Determining whether or not a site or action needs a task is a bit of an art. Ļere is no easy answer we
can provide. However, knowing how to use them is a really powerful tool in any developer’s toolkit.

25.2 Choosing Task Queue Software

Celery, Redis Queue, django-background-tasks, which to choose? Let’s go over their pros and
cons:

Software Pros Cons

Celery Defacto Django standard, many
different storage types, flexible,
full-featured, great for high volume

Challenging setup, overkill for
slower traffic sites

Redis Queue Flexible, powered by Redis, lower
memory footprint then Celery, great for
high volume, can use django-rq or not

Not as many features as Celery,
medium difficulty setup, Redis
only option for storage

django-background-
tasks

Very easy setup, easy to use, good for
small volume or batch jobs, uses
Django ORM for backend

Uses Django ORM for backend,
absolutely terrible for
medium-to-high volume

Table 25.2: Comparing Task Queue Software

Here is our general rule of thumb:

ä For most high-to-low volume projects, we recommend Redis Queue.
ä For high-volume projects with the need for complex task management, we recommend Celery.
ä For small volume projects, especially for running of periodic batch jobs, we recommend django-

background-tasks

Of course, your own experience and knowledge should be used to determine which task queue sys-
tem you use for a project. For example, if you have a good amount of Celery experience and are

321

http://celeryproject.org
http://python-rq.org
https://pypi.python.org/pypi/django-background-tasks
https://pypi.python.org/pypi/django-background-tasks

Chapter 25: Asynchronous Task Queues

comfortable with it, then by all means use it for small volume or toy projects.

25.3 Best Practices for Task Queues

While each of the different task queue packages has their own quirks, there are some constants we
can apply to all of them. A nice feature about these practices is that they help with the portability
of your task functions. Ļis can be incredibly useful when that low traffic django-background-tasks
powered site becomes high traffic and has to be converted to use Celery or Redis Queue.

25.3.1 Treat Tasks Like Views

Ļroughout this book we recommend that views contain as little code as possible, calling methods
and functions from other places in the code base. We believe the same thing applies to tasks.

A common trap is for the code inside task functions to become long and ugly, because the assumption
is that “the task queue hides it from the user.” We’ve been guilty of this ourselves. To avoid this, you
can put your task code into a function, put that function into a helper module, and then call that
function from a task function.

All task queue packages do some kind of serialization/abstraction of our task functions and their
arguments. Ļis makes debugging them that much more difficult. By using our task functions to call
more easily tested normal functions, we not only make writing and debugging our code easier, we
also encourage more reuse.

25.3.2 Tasks Aren't Free

Remember that the memory and resources to process a task have to come from somewhere. Overly
resource-heavy tasks might be hidden, but they can still cause site problems.

Even if resource-intensive code is executed from a task, it should still be written as cleanly as possible,
minimizing any unnecessary resource usage. Optimization and proŀling can help here.

322

25.3: Best Practices for Task Queues

25.3.3 Only Pass JSON-Serializable Values to Task Functions

Just like views, for task function arguments, only pass JSON-serializable values. Ļat limits us to
integers, łoats, strings, lists, tuples, and dictionaries. Don’t pass in complex objects. Here’s why:

..
1 Passing in an object representing persistent data (ORM instances for example can cause a race

condition. Ļis is when the underlying persistent data changes before the task is run. Instead,
pass in a primary key or some other identiŀer that can be used to call fresh data.

..
2 Passing in complex objects that have to be serialized into the task queue is time and memory

consuming. Ļis is counter-productive to the beneŀts we’re trying to achieve by using a task
queue.

..
3 We’ve found debugging JSON-serializable values easier than debugging more complex objects.
..
4 Depending on the task queue in use, only JSON-serializable primitives are accepted.

25.3.4 Learn How to Monitor Tasks and Workers

Gaining visibility into the status of tasks and workers is critical for debugging of task functions. Some
useful tools:

ä Celery: https://pypi.python.org/pypi/flower
ä Redis Queue: https://pypi.python.org/pypi/django-redisboard for using Redis

Queue directly.
ä Redis Queue: https://pypi.python.org/pypi/django-rq for using django-rq.
ä django.contrib.admin for django-background-tasks.

25.3.5 Logging!

Since task queues are working “behind the scenes,” it can be hard to determine exactly what is going
on. Ļis is where logging (chapter 27) and tools like Sentry become really useful. In error-prone task
code, it can be a good idea to log inside of each task function. Ļis will make debugging production
code easier.

323

https://pypi.python.org/pypi/flower
https://pypi.python.org/pypi/django-redisboard
https://pypi.python.org/pypi/django-rq

Chapter 25: Asynchronous Task Queues

25.3.6 Monitor the Backlog

As traffic increases, tasks can pile up if there aren’t enough workers. When we see this happening, it’s
time to increase the number of workers. If our software only has one worker (django-background-
tasks), then it is time to upgrade to Celery or Redis Queue.

25.3.7 Periodically Clear Out Dead Tasks

Sometimes a task is passed into a queue and then just sits there doing nothing for some reason. It
could be caused by a bug, e.g. a resource being used by the task might no longer exist. However these
things happen, they can build up over time, taking up space in our system.

Learn how your software cleans out dead tasks, and check to make sure it’s running properly.

25.3.8 Ignore Results We Don't Need

When a task completes, the broker is designed to record whether it succeeded or failed. While use-
ful for statistical purposes, this exit status is not the result of the job the task was performing. As
recording this status takes up time and storage space, it’s a feature we usually turn off.

25.3.9 Use the Queue's Error Handling

What happens when a task fails? It can be caused by a network error, a third-party API going down,
or anything else that can be imagined. Look up how to do the following for your task queue software
and learn how to set them:

ä Max retries for a task
ä Retry delays

Retry delays deserve a lot of consideration. When a task fails, we like to wait at least 10 seconds
before trying again. Even better, if the task queue software allows it, increase the delay each time an
attempt is made. We set things this way in order to give the conditions that caused a failure to resolve
themselves.

324

25.4: Resources for Task Queues

25.3.10 Learn the Features of Your Task Queue Software

Celery and Redis Queue allow for deŀnition of multiple queues, whereas django-background-tasks
does not. Celery has fancy routing features that no other software package possesses.

If we don’t take the time to explore, learn, and use these features, we’re losing out on lots of secret
sauce. Staying ignorant of these features can mean that instead of leaning on our package of choice,
we end up writing code that duplicates what the package provides.

25.4 Resources for Task Queues

General:

ä http://www.fullstackpython.com/task-queues.html
ä http://www.2scoops.co/why-task-queues/ Slide presentation
ä https://pypi.python.org/pypi/django-transaction-hooks

Django database backends that permit registering post-transaction-commit hooks.

Celery:

ä http://celeryproject.com Homepage of Celery
ä https://denibertovic.com/posts/celery-best-practices/Must-read article for

anyone learning Celery
ä https://pypi.python.org/pypi/flower A web-based tool for managing Celery clus-

ters
ä http://wiredcraft.com/blog/3-gotchas-for-celery/
ä https://www.caktusgroup.com/blog/2014/06/23/scheduling-tasks-celery/

Redis-Queue:

ä http://python-rq.org/ Homepage of Redis Queue
ä http://racingtadpole.com/blog/redis-queue-with-django/

django-background-tasks:

ä https://pypi.python.org/pypi/django-background-tasks

325

http://www.fullstackpython.com/task-queues.html
http://www.2scoops.co/why-task-queues/
https://pypi.python.org/pypi/django-transaction-hooks
http://celeryproject.com
https://denibertovic.com/posts/celery-best-practices/
https://pypi.python.org/pypi/flower
http://wiredcraft.com/blog/3-gotchas-for-celery/
https://www.caktusgroup.com/blog/2014/06/23/scheduling-tasks-celery/
http://python-rq.org/
http://racingtadpole.com/blog/redis-queue-with-django/
https://pypi.python.org/pypi/django-background-tasks

Chapter 25: Asynchronous Task Queues

25.5 Summary

In this chapter we explored high-level practices for working with task queues. Because of the ab-
straction involved in using them, we advocate treating them like views, minimizing the amount of
business logic within.

In the next chapter, we’ll go over the basics of securing Django projects.

326

26 | Security Best Practices

When it comes to security, Django has a pretty good record. Ļis is due to security tools provided
by Django, solid documentation on the subject of security, and a thoughtful team of core developers
who are extremely responsive to security issues. However, it’s up to individual Django developers
such as ourselves to understand how to properly secure Django-powered applications.

Ļis chapter contains a list of things helpful for securing your Django application. Ļis list is by no
means complete. Consider it a starting point.

26.1 Harden Your Servers

Search online for instructions and checklists for server hardening. Server hardening measures in-
clude but are not limited to things like changing your SSH port and disabling/removing unnecessary
services.

26.2 Know Django's Security Features

Django 1.8’s security features include:

ä Cross-site scripting (XSS) protection.
ä Cross-site request forgery (CSRF) protection.
ä SQL injection protection.
ä Clickjacking protection.
ä Support for TLS/HTTPS/HSTS, including secure cookies.
ä Secure password storage, using the PBKDF2 algorithm with a SHA256 hash by default.
ä Automatic HTML escaping.

327

Chapter 26: Security Best Practices

ä An expat parser hardened against XML bomb attacks.
ä Hardened JSON, YAML, and XML serialization/deserialization tools.

Most of Django’s security features “just work” out of the box without additional conŀguration, but
there are certain things that you’ll need to conŀgure. We’ve highlighted some of these details in this
chapter, but please make sure that you read the official Django documentation on security as well:
https://docs.djangoproject.com/en/1.8/topics/security/

26.3 Turn Off DEBUG Mode in Production

Your production site should not be running in DEBUG mode. Attackers can ŀnd out more than
they need to know about your production setup from a helpful DEBUG mode stack trace page. For
more information, see http://www.2scoops.co/1.8-settings-debug/.

Keep in mind that when you turn off DEBUG mode, you will need to set ALLOWED HOSTS or
risk raising a SuspiciousOperation error, which generates a 500 error that can be hard to debug.
For more information on setting/debugging ALLOWED HOSTS see:

ä section 26.6, ‘Use Django 1.8’s Allowed Hosts Validation’
ä subsection 33.2.4, ‘Ļat Troublesome ALLOWED HOSTS Error’

26.4 Keep Your Secret Keys Secret

If your SECRET KEY setting is not secret, this means you risk everything from remote code execution
to password hacking. Your API keys and other secrets should be carefully guarded as well. Ļese keys
should not even be kept in version control.

We cover the mechanics of how to keep your SECRET KEY out of version control in chapter 5, Set-
tings and Requirements Files, section 5.3, ‘Keep Secret Keys Out With Environment Variables,’ and
section 5.4, ‘Loading Secrets from Files Instead of From Environment Variables.’

26.5 HTTPS Everywhere

It is always better to deploy a site behind HTTPS. Not having HTTPS means that malicious network
users can sniff authentication credentials between your site and end users. In fact, all data sent between
your site and end users is up for grabs.

328

https://docs.djangoproject.com/en/1.8/topics/security/
http://www.2scoops.co/1.8-settings-debug/

26.5: HTTPS Everywhere

Ļere is also no guarantee that any of your users are seeing what you expect them to see: an attacker
could manipulate anything in the request or the response. So HTTPS makes sense even if all your
information is public, but you do care about the integrity of the information.

Your entire site should be behind HTTPS. Your site’s static resources should also be served via
HTTPS, otherwise visitors will get warnings about “insecure resources” which should rightly scare
them away from your site. For reference, these warnings exist because they are a potential man-in-
the-middle vector.

.....

TIP: Jacob Kaplan-Moss on HTTPS vs HTTP

.

Django co-leader Jacob Kaplan-Moss says, “Your whole site should only be available via
HTTPS, not HTTP at all. Ļis prevents getting “ŀresheeped” (having a session cookie stolen
when served over HTTP). Ļe cost is usually minimal.”

If visitors try to access your site via HTTP, they should be redirected to HTTPS. Ļis can be done
either through conŀguration of your web server or with Django middleware. Performance-wise, it’s
better to do this at the web server level, but if you don’t have control over your web server settings
for this, then redirecting via Django middleware is ŀne.

.....

TIP: Use django.middleware.security.SecurityMiddleware

.

Ļe tool of choice for projects on Django 1.8+ for enforcing HTTPS/SSL across an entire
site through middleware is built right in. To activate this middleware just follow these steps:

..
1 Add django.middleware.security.SecurityMiddleware to the set-

tings.MIDDLEWARE CLASSES deŀnition.
..
2 Set settings.SECURE SSL HOST to True.

..

WARNING: django.middleware.security.SecurityMiddleware
Does Not Include static/media

.

As JavaScript, CSS, images, and other static assets are typically served directly by the web
server (nginx, Apache), make certain that serving of such content is done via HTTPS.
Providers of static assets such as Amazon S3 now do this by default.

329

Chapter 26: Security Best Practices

You should purchase an SSL certiŀcate from a reputable source rather than creating a self-signed
certiŀcate. To set it up, follow the instructions for your particular web server or platform-as-a-service.

26.5.1 Use Secure Cookies

Your site should inform the target browser to never send cookies unless via HTTPS. You’ll need to
set the following in your settings:

..

EŤōřŜŘő șȝ.Ș

SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True

Read https://docs.djangoproject.com/en/1.8/topics/security/#ssl-https for
more details.

26.5.2 Use HTTP Strict Transport Security (HSTS)

HSTS can be conŀgured at the web server level. Follow the instructions for your web server, platform-
as-a-service, and Django itself (via settings.SECURE HSTS SECONDS).

..

WARNING: Choose Your HSTS Policy Duration Carefully

.

Remember that HSTS is a one-way switch. It’s a declaration that for the next N seconds,
your site will be HTTPS-only. Don’t set a HSTS policy with a max-age longer than you are
able to maintain. Browsers do not offer an easy way to unset it.

If you have set up your own web servers, Wikipedia has sample HSTS conŀguration snippets that
you can use: https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

When you enable HSTS, your site’s web pages include a HTTP header that tells HSTS-compliant
browsers to only connect to the site via secure connections:

330

https://docs.djangoproject.com/en/1.8/topics/security/#ssl-https
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

26.5: HTTPS Everywhere

ä HSTS-compliant browsers will redirect HTTP links to HTTPS.
ä If a secure connection isn’t possible (e.g. the certiŀcate is self-signed or expired), an error mes-

sage will be shown and access will be disallowed.

To give you a better idea of how this works, here’s an example of what a HTTP Strict Transport
Security response header might look like:

..
EŤōřŜŘő șȝ.ș

-Strict-Transport-Security: max-age=31536000; includeSubDomains

Some HSTS conŀguration advice:

..
1 You should use HSTS’ includeSubDomainsmode if you can. Ļis prevents attacks involving

using non-secured subdomains to write cookies for the parent domain.
..
2 Set max-age to a small value like 3600 (1 hour) during initial deployment of a secured site

to make sure you haven’t screwed something up or forgotten to make some portion of the site
available via HTTPS. We suggest this small value because once you set max-age, you can’t
unset it for users; their browsers control expiration, not you.

..
3 Once you’ve conŀrmed that your site is properly secured, set max-age to a large value like

31536000 (12 months) or 63072000 (24 months) if you can.

Note that HSTS should be enabled in addition to redirecting all pages to HTTPS as described earlier.

331

Chapter 26: Security Best Practices

..

WARNING: Additional Warning for includeSubDomains

.

We recommend everyone to use HSTS with a long duration and to use includeSubDo-
mains. However, especially in projects with lots of legacy componentss, the combination
requires great care when conŀguring.

Example: Imagine we create a new Django website called example.com. Of course, the site
is HTTPS with HSTS. We test the HSTS settings, which work ŀne, and then increase the
duration to a year. Alas, after a month, someone realises legacy.example.com is still a production
service and does not support HTTPS. We remove includeSubdomains from the header,
but by now it’s already too late: all clients inside the company have the old HSTS header
remembered.

In short, before even considering includeSubdomains, one should be entirely aware of
what might be hosted under the domain that HSTS is conŀgured on.

26.5.3 HTTPS Configuration Tools

Mozilla provides a SSL conŀguration generator at the 2scoops.co/mozilla-ssl-config-generator,
which can provide a starting point for your own conŀguration. While not perfect, it expedites setting
up HTTPS. As our security reviewers say, “In general, any HTTPS is better than plain HTTP.”

Once you have a server set up (preferably a test server), use the Qualys SSL Labs server test at
https://www.ssllabs.com/ssltest/ to see how well you did. A fun security game is trying to
score an A+. Especially as the official Two Scoops of Django reward for getting that good of a grade
is a trip to the local favorite ice cream saloon.

26.6 Use Allowed Hosts Validation

In production you must set ALLOWED HOSTS in your settings to a list of allowed host/domain names
in order to avoid raising SuspiciousOperation exceptions. Ļis is a security measure to prevent
use of fake HTTP host headers to submit requests.

We recommend that you avoid setting wildcard values here. For more information, read the Django
documentation on ALLOWED HOSTS and the get host() method:

332

http://www.2scoops.co/mozilla-ssl-config-generator/
https://www.ssllabs.com/ssltest/

26.7: Always Use CSRF Protection With HTTP Forms Ļat Modify Data

ä http://2scoops.co/1.8-allowed-hosts
ä http://2scoops.co/1.8-get_host

26.7 AlwaysUse CSRF ProtectionWithHTTP Forms That
Modify Data

Django comes with easy-to-use cross-site request forgery protection (CSRF) built in, and by default
it is activated across the site via the use of middleware. We have some strong recommendations
discussed in section 11.3, ‘Always Use CSRF Protection With HTTP Forms Ļat Modify Data’.

26.8 Prevent Against Cross-Site Scripting (XSS) Attacks

XSS attacks usually occur when users enter malignant JavaScript that is then rendered into a template
directly. Ļis isn’t the only method, but it is the most common. Fortunately for us, Django by default
escapes <, >, ', ", and &, which is all that is needed for proper HTML escaping.

Ļe following are recommended by the Django security team:

26.8.1 Use Django Templates Over mark safe

Django gives developers the ability to mark content strings as safe, meaning that Django’s own safe-
guards are taken away. Even for small snippets of HTML, try to use the template rendering system,
rather than mark safe.

26.8.2 Don't Allow Users to Set Individual HTML Tag Attributes

If you allow users to set individual attributes of HTML tags, that gives them a venue for injecting
malignant JavaScript.

26.8.3 Use JSON Encoding for Data Consumed by JavaScript

Rely on JSON encoding rather than ŀnding ways to dump Python structures directly to templates.
It’s not just easier to integrate into client-side JavaScript, it’s also safer.

333

http://2scoops.co/1.8-allowed-hosts
http://2scoops.co/1.8-get_host

Chapter 26: Security Best Practices

26.8.4 Additional Reading

Ļere are other avenues of attack that can occur, so educating yourself is important.

ä http://2scoops.co/1.8-docs-on-html-escaping
ä http://en.wikipedia.org/wiki/Cross-site_scripting

26.9 Defend Against Python Code Injection Attacks

We once were hired to help with a project that had some security issues. Ļe requests coming into
the site were being converted from django.http.HttpRequest objects directly into strings via
creative use of the str() function, then saved to a database table. Periodically, these archived Django
requests would be taken from the database and converted into Python dicts via the eval() function.
Ļis meant that arbitrary Python code could be run on the site at any time.

Needless to say, upon discovery the critical security ław was quickly removed. Ļis just goes to show
that no matter how secure Python and Django might be, we always need to be aware that certain
practices are incredibly dangerous.

26.9.1 Python Built-Ins That Execute Code

Beware of the eval(), exec(), and execfile() built-ins. If your project allows arbitrary strings
or ŀles to be passed into any of these functions, you are leaving your system open to attack.

For more information, read “Eval Really Is Dangerous” by Ned Batchelder:
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

26.9.2 Python Standard Library Modules That Can Execute Code

“Never unpickle data received from an untrusted or unauthenticated source.”

– http://docs.python.org/2/library/pickle.html

334

http://2scoops.co/1.8-docs-on-html-escaping
http://en.wikipedia.org/wiki/Cross-site_scripting
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://docs.python.org/2/library/pickle.html

26.9: Defend Against Python Code Injection Attacks

You should not use the Python standard library’s picklemodule to deserialize anything which could
have been modiŀed by the user. As a general rule, avoid accepting pickled values from user for any
reason. Speciŀc warnings about pickle and security are listed below:

ä https://lincolnloop.com/blog/playing-pickle-security/
ä https://blog.nelhage.com/2011/03/exploiting-pickle/

26.9.3 Third-Party Libraries That Can Execute Code

When using PyYAML, only use safe load(). While the use of YAML in the Python and Django
communities is rare, it’s not uncommon to receive this format from other services. Ļerefore, if you
are accepting YAML documents, only load them with the yaml.safe load() method.

For reference, the yaml.load() method will let you create Python objects, which is really
bad. As Ned Batchelder says, yaml.load() should be renamed to yaml.dangerous load():
http://nedbatchelder.com/blog/201302/war_is_peace.html

26.9.4 Be Careful With Cookie-Based Sessions

Typically most Django sites use either database- or cache-based sessions. Ļese function by storing
a hashed random value in a cookie which is used as a key to the real session value, which is stored
in the database or cache. Ļe advantage of this is that only the key to the session data is sent to the
client, making it very challenging for malignant coders to penetrate Django’s session mechanism.

However, Django sites can also be built using cookie-based sessions, which place the session data
entirely on the client’s machine. While this means slightly less storage needs for the server, it comes
with security issues that justify caution. Speciŀcally:

..
1 It is possible for users to read the contents of cookie-based sessions.
..
2 If an attacker gains access to a project’s SECRET KEY and your session serializer is JSON-based,

they gain the ability to falsify session data and therefore, if authentication is used, impersonate
any user.

..
3 If an attacker gains access to a project’s SECRET KEY and your session serializer is pickle-

based, they gain the ability to not only falsify session data and also execute arbitrary code. In

335

https://lincolnloop.com/blog/playing-pickle-security/
https://blog.nelhage.com/2011/03/exploiting-pickle/
http://nedbatchelder.com/blog/201302/war_is_peace.html

Chapter 26: Security Best Practices

other words, not only can they assume new rights and privileges, they can also upload working
Python code. If you are using pickle-based sessions or are considering using them, please read
the tip below.

..
4 Another disadvantage of this conŀguration is that sessions can’t be invalidated in a guaranteed

way (except when they expire): you can try to override the cookie in the browser with a new
value, but you can’t enforce an attacker to use it: if they continue sending requests with the old
cookie, the session backend won’t know the difference.

.....

TIP: Use JSON for Cookie-Based Sessions

.

Ļe default cookie serializer for Django is JSON-based, meaning that even if an attacker
discovers a project’s SECRET KEY, they can’t execute arbitrary code. If you decide to write
your own cookie serializer, stick to using JSON as the format.
Never, ever use the optional pickle serializer.

Resources on the subject:
ä http://2scoops.co/1.8-http-session-serialization
ä http://2scoops.co/1.8-settings-session-serializer

Another thing to consider is that cookie-based sessions are a potential client-side performance bot-
tleneck. Transmitting the session data server-to-client is generally not an issue, but client-to-server
transmissions are much, much slower. Ļis is literally the difference between download and upload
speeds all internet users encounter.

In general, we try to avoid cookie-based sessions.

Additional reading:

ä http://2scoops.co/1.8-cookie-based-sessions
ä http://2scoops.co/django-session-based-cookies-alert
ä http://yuiblog.com/blog/2007/03/01/performance-research-part-3/

26.10 Validate All Incoming Data With Django Forms
Django forms should be used to validate all data being brought into your project, including from
non-web sources. Doing so protects the integrity of our data and is part of securing your application.
We cover this in section 11.1, “Validate All Incoming Data With Django Forms”.

336

http://2scoops.co/1.8-http-session-serialization
http://2scoops.co/1.8-settings-session-serializer
http://2scoops.co/1.8-cookie-based-sessions
http://2scoops.co/django-session-based-cookies-alert
http://yuiblog.com/blog/2007/03/01/performance-research-part-3/

26.11: Disable the Autocomplete on Payment Fields

26.11 Disable the Autocomplete on Payment Fields

You should disable the HTML ŀeld autocomplete browser feature on ŀelds that are gateways to
payment. Ļis includes credit card numbers, CVVs, PINs, credit card dates, etc. Ļe reason is that a
lot of people use public computers or their personal computers in public venues.

For reference, Django forms make this easy:

..

EŤōřŜŘő șȝ.Ț

from django import forms

class SpecialForm(forms.Form):
my_secret = forms.CharField(

widget=forms.TextInput(attrs={'autocomplete': 'off'}))

For any site that might be used in a public area (an airport for example), consider changing the form
ŀeld itself to PasswordInput:

..

EŤōřŜŘő șȝ.ț

from django import forms

class SecretInPublicForm(forms.Form):

my_secret = forms.CharField(widget=forms.PasswordInput())

26.12 Handle User-Uploaded Files Carefully

Ļe only way to completely safely serve user-provided content is from a completely separate domain.
For better or worse, there are an inŀnite number of ways to bypass ŀle type validators. Ļis is why
security experts recommend the use of content delivery networks (CDNs): they serve as a place to
store potentially dangerous ŀles.

If you must allow upload and download of arbitrary ŀle types, make sure that the server uses the
“Content-Disposition: attachment” header so that browsers won’t display the content inline.

337

Chapter 26: Security Best Practices

26.12.1 When a CDN Is Not an Option

When this occurs, uploaded ŀles must be saved to a directory that does not allow them to be executed.
In addition, at the very least make sure the HTTP server is conŀgured to serve images with image
content type headers, and that uploads are restricted to a whitelisted subset of ŀle extensions.

Take extra care with your web server’s conŀguration here, because a malicious user can try to attack
your site by uploading an executable ŀle like a CGI or PHP script and then accessing the URL. Ļis
won’t solve every problem, but it’s better than the defaults.

Consult your web server’s documentation for instructions on how to conŀgure this, or consult the
documentation for your platform-as-a-service for details about how static assets and user-uploaded
ŀles should be stored.

26.12.2 Django and User-Uploaded Files

Django has two model ŀelds that allow for user uploads: FileField and ImageField. Ļey come
with some built-in validation, but the Django docs also strongly advise you to “pay close attention to
where you’re uploading them and what type of ŀles they are, to avoid security holes.”

If you are only accepting uploads of certain ŀle types, do whatever you can do to ensure that the user
is only uploading ŀles of those types. For example, you can:

ä Use the python-magic library to check the uploaded ŀle’s headers:
https://github.com/ahupp/python-magic

ä Validate the ŀle with a Python library that speciŀcally works with that ŀle type. Unfortunately
this isn’t documented, but if you dig through Django’s ImageField source code, you can see
how Django uses PIL to validate that uploaded image ŀles are in fact images.

ä Use defusedxml instead of native Python XML libraries or lxml. See section 26.22.

338

https://github.com/ahupp/python-magic

26.13: Don’t Use ModelForms.Meta.exclude

..

WARNING: Custom Validators Aren't the Answer Here

.

Don’t just write a custom validator and expect it to validate your uploaded ŀles before dan-
gerous things happen. Custom validators are run against ŀeld content after they’ve already
been coerced to Python by the ŀeld’s to python() method.

If the contents of an uploaded ŀle are malicious, any validation happening after to python()
is executed may be too late.

Further reading:

ä https://docs.djangoproject.com/en/1.8/ref/models/fields/#filefield

26.13 Don't Use ModelForms.Meta.exclude

When using ModelForms, always use Meta.fields. Never use Meta.exclude. Ļe use of
Meta.exclude is considered a grave security risk, speciŀcally a Mass Assignment Vulnerability.
We can’t stress this strongly enough. Don’t do it.

One common reason we want to avoid the Meta.exclude attribute is that its behavior implicitly
allows all model ŀelds to be changed except for those that we specify. When using the excludes
attribute, if the model changes after the form is written, we have to remember to change the form.
If we forget to change the form to match the model changes, we risk catastrophe.

Let’s use an example to show how this mistake could be made. We’ll start with a simple ice cream
store model:

..

EŤōřŜŘő șȝ.Ȝ

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

339

https://docs.djangoproject.com/en/1.8/ref/models/fields/#filefield

Chapter 26: Security Best Practices

Here is the wrong way to deŀne the ModelForm ŀelds for this model:

..

BōŐ EŤōřŜŘő șȝ.Ș

DON'T DO THIS!
from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store
DON'T DO THIS: Implicit definition of fields.
Too easy to make mistakes!
excludes = ("pk", "slug", "modified", "created", "owner")

In contrast, this is the right way to deŀne the same ModelForm’s ŀelds:

..

EŤōřŜŘő șȝ.ȝ

from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store
Explicitly specifying the fields we want
fields = (

"title", "address_1", "address_2", "email",
"usstate", "postal_code", "city",

)

Ļe ŀrst code example, as it involves less typing, appears to be the better choice. It’s not, as when
you add a new model ŀeld you now you need to track the ŀeld in multiple locations (one model and
one or more forms).

340

26.13: Don’t Use ModelForms.Meta.exclude

Let’s demonstrate this in action. Perhaps after launch we decide we need to have a way of tracking
store co-owners, who have all the same rights as the owner. Ļey can access account information,
change passwords, place orders, and specify banking information. Ļe store model receives a new
ŀeld as shown on the next page:

..

EŤōřŜŘő șȝ.Ȟ

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
co_owners = models.ManyToManyField(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

Ļe ŀrst form code example which we warned against using relies on us to remember to alter it to
include the new co owners ŀeld. If we forget, then anyone accessing that store’s HTML form can
add or remove co-owners. While we might remember a single form, what if we have more than one
ModelForm for a model? In complex applications this is not uncommon.

On the other hard, in the second example, where we used Meta.fieldswe know exactly what ŀelds
each form is designed to handle. Changing the model doesn’t alter what the form exposes, and we
can sleep soundly knowing that our ice cream store data is more secure.

26.13.1 Mass Assignment Vulnerabilities

Ļe problem we describe in this section is a Mass Assignment Vulnerability.

Ļese occur when the patterns such as Active Record, designed to empower developers, create se-
curity risks for web applications. Ļe solution is the approach we advocate in this section, which is
explicit deŀnition of ŀelds that can be modiŀed.

See https://en.wikipedia.org/wiki/Mass_assignment_vulnerability for more detail.

341

https://en.wikipedia.org/wiki/Mass_assignment_vulnerability

Chapter 26: Security Best Practices

26.14 Don't Use ModelForms.Meta.fields = " all "

Ļis includes every model ŀeld in your model form. It’s a shortcut, and a dangerous one. It’s very
similar to what we describe in section 26.13, and even with custom validation code, exposes projects
to form-based Mass Assignment Vulnerabilities. We advocate avoiding this technique as much as
possible, as we feel that it’s simply impossible to catch all variations of input.

26.15 Beware of SQL Injection Attacks

Ļe Django ORM generates properly-escaped SQL which will protect your site from users attempt-
ing to execute malignant, arbitrary SQL code.

Django allows you to bypass its ORM and access the database more directly through raw SQL.
When using this feature, be especially careful to escape your SQL code properly. Ļis is of concern
in these speciŀc components of Django:

ä Ļe .raw() ORM method.
ä Ļe .extra() ORM method.
ä Directly accessing the database cursor.

Reference:

ä http://www.2scoops.co/1.8-sql-injection-protection/

26.16 Never Store Credit Card Data

Unless you have a strong understanding of the PCI-DSS security standards
(https://www.pcisecuritystandards.org/) and adequate time/resources/funds to val-
idate your PCI compliance, storing credit card data is too much of a liability and should be
avoided.

Instead, we recommend using third-party services like Stripe, Braintree, Adyen, PayPal, and others
that handle storing this information for you, and allow you to reference the data via special tokens.
Most of these services have great tutorials, are very Python and Django friendly, and are well worth
the time and effort to incorporate into your project.

342

http://www.2scoops.co/1.8-sql-injection-protection/
https://www.pcisecuritystandards.org/

26.17: Secure the Django Admin

.....

TIP: Educate Yourself on PCI Compliance

.

Ken Cochrane has written an excellent blog post on PCI compliance. Please read
http://2scoops.co/guide-to-pci-compliant-web-apps

.....

TIP: Read the Source Code of Open Source E-Commerce
Solutions

.

If you are planning to use any of the existing open source Django e-commerce solutions,
examine how the solution handles payments. If credit card data is being stored in the database,
even encrypted, then please consider using another solution.

26.17 Secure the Django Admin

Since the Django admin gives your site admins special powers that ordinary users don’t have, it’s good
practice to make it extra secure.

26.17.1 Change the Default Admin URL

By default, the admin URL is yoursite.com/admin/. Change it to something that’s long and difficult
to guess.

.....

TIP: Jacob Kaplan-Moss Talks About Changing the Admin URL

.

Django project co-leader Jacob Kaplan-Moss says (paraphrased) that it’s an easy additional
layer of security to come up with a different name (or even different domain) for the admin.

It also prevents attackers from easily proŀling your site. For example, attackers can tell which
version of Django you’re using, sometimes down to the point-release level, by examining the
content of admin/ on a project.

343

http://2scoops.co/guide-to-pci-compliant-web-apps

Chapter 26: Security Best Practices

26.17.2 Use django-admin-honeypot

If you’re particularly concerned about people trying to break into your Django site, django-admin-
honeypot is a package that puts a fake Django admin login screen at admin/ and logs information
about anyone who attempts to log in.

See https://github.com/dmpayton/django-admin-honeypot for more information.

26.17.3 Only Allow Admin Access via HTTPS

Ļis is already implied in the “Use SSL/HTTPS in Production” section, but we want to especially
emphasize here that your admin needs to be SSL-secured. If your site allows straight HTTP access,
you will need to run the admin on a properly-secured domain, adding to the complexity of your
deployment. Not only will you need a second deployment procedure, but you’ll need to include logic
in your URLConf in order to remove the admin from HTTP access. In the experience of the authors,
it’s much easier to put the whole site on SSL/HTTPS.

Without SSL, if you log into your Django admin on an open WiFi network, it’s trivial for someone
to sniff your admin username/password.

26.17.4 Limit Admin Access Based on IP

Conŀgure your web server to only allow access to the Django admin to certain IP addresses. Look
up the instructions for your particular web server.

ä Nginx instructions http://tech.marksblogg.com/django-admin-logins.html

An acceptable alternative is to put this logic into middleware. It’s better to do it at the web server
level because every middleware component adds an extra layer of logic wrapping your views, but in
some cases this can be your only option. For example, your platform-as-a-service might not give you
ŀne-grain control over web server conŀguration.

344

https://github.com/dmpayton/django-admin-honeypot
http://tech.marksblogg.com/django-admin-logins.html

26.18: Secure the Admin Docs

26.17.5 Use the allow tags Attribute With Caution

Ļe allow tags attribute, which is set to False by default, can be a security issue. When al-
low tags is set to True, in conjunction with django.utils.html.format html, HTML tags
are allowed to be displayed in the admin.

Our hard rule is allow tags can only be used on system-generated data like primary keys, dates,
and calculated values. Data such as character and text ŀelds are completely out, as is any other user-
entered data.

26.18 Secure the Admin Docs

Since the Django admin docs give your site admins a view into how the project is constructed, it’s
good practice to keep them extra-secure just like the Django admin. Borrowing from the previous
section on the Django admin, we advocate the following:

ä Changing the admin docs URL to something besides yoursite.com/admin/doc/.
ä Only allowing admin docs access via HTTPS.
ä Limiting admin docs access based on IP.

26.19 Monitor Your Sites

Check your web servers’ access and error logs regularly. Install monitoring tools and check on them
frequently. Keep an eye out for suspicious activity.

26.20 Keep Your Dependencies Up-to-Date

You should always update your projects to work with the latest stable release of Django and third-
party dependencies. Ļis is particularly important when a release includes security ŀxes. For that, we
recommend requires.io, which automatically checks requirements ŀles against the latest versions
that PyPI provides.

‘I’ve set up requires.io for distinct actions: it mails me once a week for each project
with any outdated dependencies, and if it ŀnds an insecure version it automatically cre-
ates a pull request in GitHub, so tests run automatically and I can deploy quickly.’

– Erik Romijn, Django core and security reviewer for Two Scoops of Django 1.8

345

https://requires.io
https://requires.io

Chapter 26: Security Best Practices

Useful links for updates to Django itself.

ä Ļe official Django weblog at https://www.djangoproject.com/weblog/
ä Ļe official django-announce mailing list at http://2scoops.co/django-announce

26.21 Prevent Clickjacking

Clickjacking is when a malicious site tricks users to click on a concealed element of another site that
they have loaded in a hidden frame or iframe. An example is a site with a false social media ‘login’
button that is really a purchase button on another site.

Django has instructions and components to prevent this from happening:

ä https://docs.djangoproject.com/en/1.8/ref/clickjacking/

26.22 Guard Against XML Bombing With defusedxml

Attacks against XML libraries are nothing new. For example, the amusingly titled but devastating
‘Billion Laughs’ attack (http://en.wikipedia.org/wiki/Billion_laughs) was discovered
in 2003.

Unfortunately, Python, like many other programming languages, doesn’t account for this or other
venues of attack via XML. Furthermore, third-party Python libraries such as lxml are vulnerable to
at least 4 well-known XML-based attacks. For a list of Python and Python library vulnerabilities see
http://2scoops.co/python-xml-vulnerabilities.

Fortunately for us, Christian Heimes created defusedxml, a Python library designed to patch
Python’s core XML libraries and some of the third-party libraries (including lxml).

For more information, please read:

ä https://pypi.python.org/pypi/defusedxml

26.23 Explore Two-Factor Authentication

Two-factor authentication requires users to authenticate by combining two separate means of iden-
tiŀcation.

346

https://www.djangoproject.com/weblog/
http://2scoops.co/django-announce
https://docs.djangoproject.com/en/1.8/ref/clickjacking/
http://en.wikipedia.org/wiki/Billion_laughs
http://2scoops.co/python-xml-vulnerabilities
https://pypi.python.org/pypi/defusedxml

26.24: Embrace SecurityMiddleware

For modern web applications, what that usually means is you enter your password as well as a value
provided to you on your mobile device. A value that is either sent to your personal phone number or
is reset every thirty seconds.

Ļe advantage of 2FA is that it adds another component, one that changes frequently, to the authen-
tication process, great for any site involving personal identity, ŀnance, or medical requirements. Ļe
downside is that the user needs to have a charged mobile device with access to a network in order to
log in to your site, making it not so ideal for users who may not have a charged mobile device or easy
access to a network.

ä http://en.wikipedia.org/wiki/Two_factor_authentication
ä https://pypi.python.org/pypi/django-two-factor-auth

.....

PACKAGE TIP: Look for TOTP in 2FA Products and Packages

.

TOTP is short for 2scoops.co/time-based-one-time-password-algorithm/,
which is an open standard used by Google Authenticator and many other services. TOTP
does not require network access, which is useful for building certain kinds of Django projects.
However, SMS implementations of course require cellular network access.

26.24 Embrace SecurityMiddleware

We’ve mentioned Django 1.8’s new built in django.middleware.security.SecurityMiddleware
several times already in this chapter. It replaces most of the functionality of the venerable django-
secure package. We owe it to ourselves and our users to embrace and use this feature of Django.

26.25 Force the Use of Strong Passwords

A strong password is one that more than a list of characters. It is suitably complex, including punctu-
ation, digits, and both character cases. Let’s pledge to protect our users by enforcing the use of such
passwords.

347

http://en.wikipedia.org/wiki/Two_factor_authentication
https://pypi.python.org/pypi/django-two-factor-auth
http://www.2scoops.co/time-based-one-time-password-algorithm/

Chapter 26: Security Best Practices

.....

PACKAGE TIP: Tools for Strong Passwords

.

In order to expedite this practice, we encourage the use of django-passwords, a project cre-
ated by core Django developer, pip/PyPI maintainer, and Two Scoops of Django 1.5 security
reviewer, Donald Stufft.
Another gotcha with strong passwords is with automatically generated Django sites, such
as those created by conŀguration management tools. Since the creation of superusers is by-
passed, we always have to cook up our own work arounds. Fortunately, Roberto Rosario has
provided us with django-autoadmin, which provides automatic admin users complete with
passwords for Django projects.

ä https://github.com/dstufft/django-passwords
ä https://github.com/rosarior/django-autoadmin

26.26 Give Your Site a Security Checkup

Erik Romijn has created Pony Checkup, an automated security checkup tool for Django websites.
Ļere are several security practices that can easily be probed from the outside, and this is what his
site checks for. It’s not a security audit, but it’s a great, free way to make certain that your production
deployment doesn’t have any gaping security holes.

If you have a Django site in production, we recommend that you go and try out:

ä http://ponycheckup.com

26.27 Put Up a Vulnerability Reporting Page

It’s a good idea to publish information on your site about how users can report security vulnerabilities
to you.

GitHub’s “Responsible Disclosure of Security Vulnerabilities” page is a good example of this and
rewards reporters of issues by publishing their names:
http://2scoops.co/responsible-disclosure-of-security-vulnerabilities

348

https://github.com/dstufft/django-passwords
https://github.com/rosarior/django-autoadmin
http://ponycheckup.com
http://2scoops.co/responsible-disclosure-of-security-vulnerabilities

26.28: Stop Using django.utils.html.remove tag

26.28 Stop Using django.utils.html.remove tag

Several months after the Django project decided to emphasize the potential danger of using this
function, a similar issue prompted the deprecation of the remove tags() function and related tem-
plate tag. While you can use remove tags() in Django 1.8, we recommend against its use. Ļe
Django core team agrees with us, which is why it will be removed in Django 2.0. Consider using
bleach, a HTML-sanitizing tool instead.

ä Django’s remove tags documentation.
ä Ļe Remove Tags Advisory on Django Project’s blog.
ä Ļe bleach library on PyPI.

26.29 Have a Plan Ready for When Things Go Wrong

Handling security failures is incredibly stressful. Ļere is a sense of urgency and panic that can over-
whelm our better judgement, leading to snap decisions that can involve ill-advised ‘bug ŀxes’ and
public statements that worsen the problem.

Ļerefore, it’s critical that a point-by-point plan be written and made available to maintainers and
even non-technical participants of a project. Here is a sample plan:

..
1 Shut everything down or put it in read-only mode.
..
2 Put up a static HTML page.
..
3 Back everything up.
..
4 Email security@djangoproject.com, even if it’s your fault.
..
5 Start looking into the problem.

Let’s go over these steps:

26.29.1 Shut Everything Down or Put It in Read-Only Mode

Ļe ŀrst thing to do is remove the ability for the security problem to continue. Ļat way, further
damage is hopefully prevented.

On Heroku:

349

https://pypi.python.org/pypi/bleach
https://docs.djangoproject.com/en/1.8/ref/utils/#django.utils.html.remove_tags
https://www.djangoproject.com/weblog/2014/aug/11/remove-tags-advisory/
https://pypi.python.org/pypi/bleach

Chapter 26: Security Best Practices

..

EŤōřŜŘő șȝ.ȟ

$ heroku maintenance:on
Enabling maintenance mode for myapp... done

For projects you deploy yourself or with automated tools, you’re going to have create this capability
yourself. Fortunately, other people have faced this before so we come prepared with reference material:

ä http://2scoops.co/nginx-http503-page for putting up maintenance 503 pages.
ä django-db-tools is is great for łipping a project’s database in and out of read-only mode.
ä Other tools can be found at http://2scoops.co/emergency-management

26.29.2 Put Up a Static HTML Page

You should have a maintenance page formatted and ready to go when you launch your project. Ļis
way, when things go wrong and you’ve shut everything down, you can display that to the end user. If
done well, the users might understand and give you the breathing room to work out the problem.

26.29.3 Back Everything Up

Get a copy of the code and then the data off the servers and keep it on a local hard drive or SSD.
You might also consider a bonded, professional storage company.

Why? First, when you back things up at this stage, you are protecting your audit trail. Ļis might
provide you with the capability to determine where and when things went wrong.

Second, and this might be unpleasant to hear, but malignant staff can cause as many problems as any
bug or penetration staff. What that means is that the best software-based security is useless against
a developer who creates a backdoor or a non-technical staff level user who decides to cause trouble.

26.29.4 Email security@djangoproject.com, Even if It's Your Fault

Actually, don’t worry about whose fault it is, just send a quick email summarizing the problem. Ask
for help while you are at it.

350

http://2scoops.co/nginx-http503-page
http://2scoops.co/emergency-management

26.29: Have a Plan Ready for When Ļings Go Wrong

Ļere are a number of reasons why this is important:

ä Writing up a quick summary will help you focus and gather your thoughts. You’re going to
be under an amazing amount of stress. Ļe stress and urgency of the situation can make you
attempt stupid things that can aggravate the problem.

ä You never know, the Django security team might have good advice or even an answer for you.
ä It might be a Django problem! If that is the case, the Django security team needs to know so

they can mitigate the problem for everyone else before it becomes public.

.....

TIP: Jacob Kaplan-Moss on Reporting to the Django Project

.

Django co-leader and Director of Security for Heroku Jacob Kaplan-Moss says, “I’d
much rather have people send things that aren’t actual problems in Django to secu-
rity@djangoproject.com than accidentally disclose security issues publicly because they don’t
know better.”

26.29.5 Start Looking Into the Problem

You’ve shut things down, backed everything up, are displaying a static HTML page, emailed secu-
rity@djangoproject.com, and are looking at the problem. By following the above steps, you’ve given
yourself (and possibly your team) time to breathe and ŀgure out what really happened.

Ļis will be a stressful time and people will be on the edge of panic. Start doing research, perhaps
in this book, ask questions as per chapter 34, Where and How to Ask Django Questions, and ŀnd a
resolution.

Before you implement a correction, it’s often better to make sure you have a real, proper ŀx for the
problem then do a rushed emergency patch that destroys everything. Yes, this is where tests and
continuous integration shine.

Stay positive: now is the time for everyone to come together and ŀx the problem. Start taking notes,
ask for help from the best people you know, remind yourself (or the team) that you have the will and
the smarts to ŀx things, and make things right!

351

Chapter 26: Security Best Practices

..

WARNING: The Nightmare of the Zero-Day Attack

.

Zero-day attacks are attacks on vulnerabilities that are known to the public or a closed list
but still unpatched. For example:

ä Attacks the day of a software update release, right before most people get around to
installing the software update.

ä Attacks right after a user writes up a blog post about a vulnerability they found, before
package maintainers have the chance to write and release a patch.

ä Attacks targeting vulnerabilities in discussion on a closed security mailing list.

With zero-day attacks, there is often no time to address and patch the vulnerability, making
the compromise especially difficult to manage. If there was ever a reason to have a battle plan
for handling security issues, this is it.

See https://en.wikipedia.org/wiki/0day

26.30 Obfuscate Primary Keys with UUIDs

Django 1.8 comes with very useful models.UUIDField. While a use case for using them
as primary keys for large distributed systems exists, the rest of the time using them can
be cumbersome. For example, we can easily remember that User.objects.get(id=1) but
User.objects.get(id='0b0fb68e-5b06-44af-845a-01b6df5e0967') requires cut-and-
paste. However, if we want to hide what our primary keys are from users, then models.UUIDField
becomes really handy. Here is a sample model:

..

EŤōřŜŘő șȝ.Ƞ

import uuid as uuid_lib
from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class IceCreamPayment(models.Model):

uuid = models.UUIDField(
db_index=True,
default=uuid_lib.uuid4,

352

https://en.wikipedia.org/wiki/0day

26.31: Reference Our Security Settings Appendix

..

editable=False)

def __str__(self):
return str(self.pk)

And here is how we call that model:

..

EŤōřŜŘő șȝ.Șȗ

>>> from payments import IceCreamPayment
>>> payment = IceCreamPayment()
>>> IceCreamPayment.objects.get(id=payment.id)
<IceCreamPayment: 1>
>>> payment.uuid
UUID('0b0fb68e-5b06-44af-845a-01b6df5e0967')
>>> IceCreamPayment.objects.get(uuid=payment.uuid)
<IceCreamPayment: 1>

26.31 Reference Our Security Settings Appendix

Keeping track of everything that relates to security and Django is challenging. Ļis chapter alone is
nigh 30 pages long and at the beginning we make it very clear this is not an absolute reference.

In order to add clarity, we’ve created Appendix G: Security Settings Reference. Ļis is where we
put important and useful information on how to better conŀgure the security settings of a Django
project.

26.32 Keep Up-to-Date on General Security Practices

We end this chapter with some common-sense advice.

First, keep in mind that security practices are constantly evolving, both in the Django community
and beyond. Subscribe to http://2scoops.co/django-announce and check Twitter, Hacker
News, and various security blogs regularly.

353

http://2scoops.co/django-announce

Chapter 26: Security Best Practices

Second, remember that security best practices extend well beyond those practices speciŀc to Django.
You should research the security issues of every part of your web application stack, and you should
follow the corresponding sources to stay up to date.

.....

TIP: Good Books and Articles on Security

.

Paul McMillan, Django core developer, security expert, and Two Scoops reviewer, recom-
mends the following books:

ä “Ļe Tangled Web: A Guide to Securing Modern Web Applications”:
http://amzn.to/1hXAAyx

ä “Ļe Web Application Hacker’s Handbook”:
http://amzn.to/1dZ7xEY

In addition, we recommend the following reference site:
ä https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

26.33 Summary

Please use this chapter as a starting point for Django security, not the ultimate reference guide. See
the Django documentation’s list for additional security topics:
http://2scoops.co/1.8-additional-security-topics

Django comes with a good security record due to the diligence of its community and attention to
detail. Security is one of those areas where it’s a particularly good idea to ask for help. If you ŀnd
yourself confused about anything, ask questions and turn to others in the Django community for
help.

354

http://amzn.to/1hXAAyx
http://amzn.to/1dZ7xEY
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines
http://2scoops.co/1.8-additional-security-topics

27 | Logging: What's It For, Anyway?

Logging is like rocky road ice cream. Either you can’t live without it, or you forget about it and
wonder once in awhile why it exists.

Anyone who’s ever worked on a large production project with intense demands understands the im-
portance of using the different log levels appropriately, creating module-speciŀc loggers, meticulously
logging information about important events, and including extra detail about the application’s state
when those events are logged.

While logging might not seem glamorous, remember that it is one of the secrets to building extremely
stable, robust web applications that scale and handle unusual loads gracefully. Logging can be used
not only to debug application errors, but also to track interesting performance metrics.

Logging unusual activity and checking logs regularly is also important for ensuring the security of
your server. In the previous chapter, we covered the importance of checking your server access and
error logs regularly. Keep in mind that application logs can be used in similar ways, whether to track
failed login attempts or unusual application-level activity.

27.1 Application Logs vs. Other Logs

Ļis chapter focuses on application logs. Any log ŀle containing data logged from your Python web
application is considered an application log.

In addition to your application logs, you should be aware that there are other types of logs, and that
using and checking all of your server logs is necessary. Your server logs, database logs, network logs,
etc. all provide vital insight into your production system, so consider them all equally important.

355

Chapter 27: Logging: What’s It For, Anyway?

27.2 Why Bother With Logging?

Logging is your go-to tool in situations where a stack trace and existing debugging tools aren’t
enough. Whenever you have different moving parts interacting with each other or the possibility
of unpredictable situations, logging gives you insight into what’s going on.

Ļe different log levels available to you are DEBUG, INFO, WARNING, ERROR, and CRITICAL. Let’s
now explore when it’s appropriate to use each logging level.

27.3 When to Use Each Log Level

In places other than your production environment, you might as well use all the log levels. Log levels
are controlled in your project’s settings modules, so we can ŀne tune this recommendation as needed
to account for load testing and large scale user tests.

In your production environment, we recommend using every log level except for DEBUG.

Figure 27.1: Appropriate usage of CRITICAL/ERROR/WARNING/INFO logging in ice cream.

Since the same CRITICAL, ERROR, WARNING, and INFO logs are captured whether in production or
development, introspection of buggy code requires less modiŀcation of code. Ļis is important to
remember, as debug code added by developers working to ŀx one problem can create new ones.

Ļe rest of this section covers how each log level is used.

356

27.3: When to Use Each Log Level

27.3.1 Log Catastrophes With CRITICAL

Use the CRITICAL log level only when something catastrophic occurs that requires urgent attention.

For example, if your code relies on an internal web service being available, and if that web service is
part of your site’s core functionality, then you might log at the CRITICAL level anytime that the web
service is inaccessible.

Ļis log level is never used in core Django code, but you should certainly use it in your code anywhere
that an extremely serious problem can occur.

27.3.2 Log Production Errors With ERROR

Let’s look at core Django for an example of when ERROR level logging is appropriate. In core Django,
the ERROR log level is used very sparingly. Ļere is one very important place where it is used: whenever
code raises an exception that is not caught, the event gets logged by Django using the following code:

..

EŤōřŜŘő șȞ.Ș

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.error("Internal Server Error: %s", request.path,

exc_info=exc_info,
extra={

"status_code": 500,
"request": request

}
)

How does Django put this to good use? Well, when DEBUG=False is in your settings, everyone listed
in ADMINS immediately gets emailed the following:

ä A description of the error
ä A complete Python traceback from where the error occurred
ä Information about the HTTP request that caused the error

357

Chapter 27: Logging: What’s It For, Anyway?

If you’ve ever received one of those email notiŀcations, you know how useful ERROR logs are when
you need them most.

Similarly, we recommend that you use the ERROR log level whenever you need to log an error that is
worthy of being emailed to you or your site admins. When your code catches the exception, log as
much information as you can to be able to resolve the problem.

For example, an exception may be thrown when one of your views cannot access a needed third-party
API. When the exception is caught, you can log a helpful message and the API’s failure response, if
any.

27.3.3 Log Lower-Priority Problems With WARNING

Ļis level is good for logging events that are unusual and potentially bad, but not as bad as ERROR-
level events.

For example, if you are using django-admin-honeypot to set up a fake admin/ login form, you might
want to log intruders’ login attempts to this level.

Django uses the log level in several parts of CsrfViewMiddleware, to log events that result in a
403 Forbidden error. For example, when an incoming POST request is missing its csrf token, the
event gets logged as follows:

..

EŤōřŜŘő șȞ.ș

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.warning("Forbidden (%s): %s",

REASON_NO_CSRF_COOKIE, request.path,
extra={

"status_code": 403,
"request": request,

}
)

358

27.3: When to Use Each Log Level

27.3.4 Log Useful State Information With INFO

We recommend using this level to log any details that may be particularly important when analysis
is needed. Ļese include:

ä Startup and shutdown of important components not logged elsewhere
ä State changes that occur in response to important events
ä Changes to permissions, e.g. when users are granted admin access

In addition to this, the INFO level is great for logging any general information that may help in
performance analysis. It’s a good level to use while hunting down problematic bottlenecks in your
application and doing proŀling.

27.3.5 Log Debug-Related Messages to DEBUG

In development, we recommend using DEBUG and occasionally INFO level logging wherever you’d
consider throwing a print statement into your code for debugging purposes.

Getting used to logging this way isn’t hard. Instead of this:

..

BōŐ EŤōřŜŘő șȞ.Ș

from django.views.generic import TemplateView

from .helpers import pint_counter

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super(PintView, self).get_context_data(**kwargs)
pints_remaining = pint_counter()
print("Only %d pints of ice cream left." % (pints_remaining))
return context

We do this:

359

Chapter 27: Logging: What’s It For, Anyway?

..

EŤōřŜŘő șȞ.Ț

import logging

from django.views.generic import TemplateView

from .helpers import pint_counter

logger = logging.getLogger(__name__)

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super(PintView, self).get_context_data(**kwargs)
pints_remaining = pint_counter()
logger.debug("Only %d pints of ice cream left." % pints_remaining)
return context

Sprinkling print statements across your projects results in problems and technical debt:

ä Depending on the web server, a forgotten print statement can bring your site down.
ä Print statements are not recorded. If you don’t see them, then you miss what they were trying to

say.
ä As the Django world migrates more and more to Python 3, old-style print statements like

print IceCream.objects.flavor() will break your code.

Unlike print statements, logging allows different report levels and different response methods. Ļis
means that:

ä We can write DEBUG level statements, leave them in our code, and never have to worry about
them doing anything when we move code to production.

ä Ļe response method can provide the response as email, log ŀles, console and stdout. It can
even report as pushed HTTP requests to applications such as Sentry!

Note that there’s no need to go overboard with debug-level logging. It’s great to add log-
ging.debug() statements while you’re debugging, but there’s no need to clutter your code with
logging every single line.

360

27.4: Log Tracebacks When Catching Exceptions

Figure 27.2: Appropriate usage of DEBUG logging in ice cream.

27.4 Log Tracebacks When Catching Exceptions

Whenever you log an exception, it’s usually helpful to log the stack trace of the exception. Python’s
logging module supports this:

..
1 Logger.exception() automatically includes the traceback and logs at ERROR level.
..
2 For other log levels, use the optional exc info keyword argument.

Here’s an example of adding a traceback to a WARNING level log message:

..

EŤōřŜŘő șȞ.ț

import logging
import requests

logger = logging.getLogger(__name__)

def get_additional_data():
try:

r = requests.get("http://example.com/something-optional/")
except requests.HTTPError as e:

361

Chapter 27: Logging: What’s It For, Anyway?

..

logger.exception(e)
logger.debug("Could not get additional data", exc_info=True)
return None

return r

27.5 One Logger Per Module That Uses Logging
Whenever you use logging in another module, don’t import and reuse a logger from elsewhere. In-
stead, deŀne a new logger speciŀc to the module like this:

..

EŤōřŜŘő șȞ.Ȝ

You can place this snippet at the top
of models.py, views.py, or any other
file where you need to log.
import logging

logger = logging.getLogger(__name__)

What this gives you is the ability to turn on and off only the speciŀc loggers that you currently need.
If you’re running into a strange issue in production that you can’t replicate locally, you can temporarily
turn on DEBUG logging for just the module related to the issue. Ļen, when you identify the problem,
you can turn that logger back off in production.

27.6 Log Locally to Rotating Files
When you create a new Django project with startproject, your default settings ŀle is conŀgured
to email ERROR and higher log messages to whomever you list in ADMINS. Ļis occurs via a handler
called AdminEmailHandler that comes with Django.

In addition to this, we recommend also writing logs of level INFO and higher to rotating log ŀles
on disk. On-disk log ŀles are helpful in case the network goes down or emails can’t be sent to your
admins for some reason. Log rotation keeps your logs from growing to ŀll your available disk space.

A common way to set up log rotation is to use the UNIX logrotate utility with log-
ging.handlers.WatchedFileHandler.

362

27.7: Other Logging Tips

Note that if you are using a platform-as-a-service, you might not be able to set up rotating log ŀles. In
this case, you may need to use an external logging service such as Loggly: http://loggly.com/.

27.7 Other Logging Tips

ä Control the logging in settings ŀles per the Django documentation on logging:
https://docs.djangoproject.com/en/1.8/topics/logging/

ä While debugging, use the Python logger at DEBUG level.
ä After running tests at DEBUG level, try running them at INFO and WARNING levels. Ļe re-

duction in information you see may help you identify upcoming deprecations for third-party
libraries.

ä Don’t wait until it’s too late to add logging. You’ll be grateful for your logs if and when your
site fails.

ä You can do useful things with the emails you receive when ERROR or higher level events occur.
For example, you can conŀgure a PagerDuty (http://www.pagerduty.com/) account to
alert you and your team repeatedly until you’ve taken action.

.....

PACKAGE TIP: Logutils Provides Useful Handlers

.

Ļe logutils package by Vinay Sajip comes with a number of very interesting logging han-
dlers. Features include:

ä Colorizing of console streams under Windows, Linux and Mac OS X.
ä Ļe ability to log to queues. Useful in situations where you want to queue up log mes-

sages to a slow handler like SMTPHandler.
ä Classes that allow you to write unit tests for log messages.
ä An enhanced HTTPHandler that supports secure connections over HTTPS.

Some of the more basic features of logutils are so useful that they have been absorbed into
the Python standard library!

27.8 Necessary Reading Material

ä https://docs.djangoproject.com/en/1.8/topics/logging/
ä http://docs.python.org/2/library/logging.html
ä http://docs.python.org/2/library/logging.config.html

363

http://loggly.com/
https://docs.djangoproject.com/en/1.8/topics/logging/
http://www.pagerduty.com/
https://docs.djangoproject.com/en/1.8/topics/logging/
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.config.html

Chapter 27: Logging: What’s It For, Anyway?

ä http://docs.python.org/2/library/logging.handlers.html
ä http://docs.python.org/2/howto/logging-cookbook.html

27.9 Useful Third-Party Tools

ä Sentry (https://www.getsentry.com/) aggregates errors for you.
ä App Enlight (https://appenlight.com/) tracks errors and performance issues in your

app.
ä loggly.com (http://loggly.com/) simpliŀes log management and provides excellent query

tools.

27.10 Summary

Django projects can easily take advantage of the rich logging functionality that comes with Python.
Combine logging with handlers and analysis tools, and suddenly you have real power. You can use
logging to help you improve the stability and performance of your projects.

In the next chapter we’ll discuss signals, which become much easier to follow, debug, and understand
with the help of logging.

364

http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/howto/logging-cookbook.html
https://www.getsentry.com/
https://appenlight.com/
http://loggly.com/

28 | Signals: Use Cases and
Avoidance Techniques

Ļe Short Answer: Use signals as a last resort.
Ļe Long Answer: Often when new Djangonauts ŀrst discover signals, they get signal-happy. Ļey

start sprinkling signals everywhere they can and feeling like real experts at Django.

After coding this way for a while, projects start to turn into confusing, knotted hairballs that
can’t be untangled. Signals are being dispatched everywhere and hopefully getting received
somewhere, but at that point it’s hard to tell what exactly is going on.

Many developers also confuse signals with asynchronous message queues such as what Celery
(http://www.celeryproject.org/) provides. Make no mistake, signals are synchronous
and blocking, and calling performance-heavy processes via signals provides absolutely no beneŀt
from a performance or scaling perspective. In fact, moving such processes unnecessarily to
signals is considered code obfuscation.

Signals can be useful, but they should be used as a last resort, only when there’s no good way
to avoid using them.

28.1 When to Use and Avoid Signals

Do not use signals when:

ä Ļe signal relates to one particular model and can be moved into one of that model’s methods,
possibly called by save().

365

http://www.celeryproject.org/

Chapter 28: Signals: Use Cases and Avoidance Techniques

ä Ļe signal can be replaced with a custom model manager method.
ä Ļe signal relates to a particular view and can be moved into that view.

It might be okay to use signals when:

ä Your signal receiver needs to make changes to more than one model.
ä You want to dispatch the same signal from multiple apps and have them handled the same way

by a common receiver.
ä You want to invalidate a cache after a model save.
ä You have an unusual scenario that needs a callback, and there’s no other way to handle it besides

using a signal. For example, you want to trigger something based on the save() or init()
of a third-party app’s model. You can’t modify the third-party code and extending it might be
impossible, so a signal provides a trigger for a callback.

.....

TIP: Aymeric Augustin Thoughts on Signals

.

Django core developer Aymeric Augustin says: “I advise not to use signals as soon as a regular
function call will do. Signals obfuscate control łow through inversion of control. Ļey make
it difficult to discover what code will actually run.

Use a signal only if the piece of code sending it has positively no way to determine what its
receivers will be.”

28.2 Signal Avoidance Techniques

Let’s go over some scenarios where you can simplify your code and remove some of the signals that
you don’t need.

28.2.1 Using Custom Model Manager Methods Instead of Signals

Let’s imagine that our site handles user-submitted ice cream-themed events, and each ice cream event
goes through an approval process. Ļese events are set with a status of “Unreviewed” upon creation.
Ļe problem is that we want our site administrators to get an email for each event submission so they
know to review and post things quickly.

366

28.2: Signal Avoidance Techniques

We could have done this with a signal, but unless we put in extra logic in the post save() code,
even administrator created events would generate emails.

An easier way to handle this use case is to create a custom model manager method and use that in
your views. Ļis way, if an event is created by an administrator, they don’t have to go through the
review process.

Since a code example is worth a thousand words, here is how we would create such a method:

..

EŤōřŜŘő șȟ.Ș

events/managers.py
from django.db import models

class EventManager(models.Manager):

def create_event(self, title, start, end, creator):
event = self.model(title=title,

start=start,
end=end,
creator=creator)

event.save()
event.notify_admins()
return event

Now that we have our custom manager with its custom manager method in place, let’s attach it to
our model (which comes with a notify admins() method:

..

EŤōřŜŘő șȟ.ș

events/models.py
from django.conf import settings
from django.core.mail import mail_admins
from django.db import models

from model_utils.models import TimeStampedModel

from .managers import EventManager

367

Chapter 28: Signals: Use Cases and Avoidance Techniques

..

class Event(TimeStampedModel):

STATUS_UNREVIEWED, STATUS_REVIEWED = (0, 1)
STATUS_CHOICES = (

(STATUS_UNREVIEWED, "Unreviewed"),
(STATUS_REVIEWED, "Reviewed"),

)

title = models.CharField(max_length=100)
start = models.DateTimeField()
end = models.DateTimeField()
status = models.IntegerField(choices=STATUS_CHOICES,

default=STATUS_UNREVIEWED)
creator = models.ForeignKey(settings.AUTH_USER_MODEL)

objects = EventManager()

def notify_admins(self):
create the subject and message
subject = "{user} submitted a new event!".format(

user=self.creator.get_full_name())
message = """TITLE: {title}

START: {start}
END: {end}""".format(title=self.title, start=self.start,

end=self.end)

Send to the admins!
mail_admins(subject=subject,

message=message,
fail_silently=False)

Using this follows a similar pattern to using the User model. To generate an event, instead of calling
create(), we call a create event() method.

..
EŤōřŜŘő șȟ.Ț

>>> from django.contrib.auth import get_user_model

368

28.2: Signal Avoidance Techniques

..

>>> from django.utils import timezone
>>> from events.models import Event
>>> user = get_user_model().get(username="audreyr")
>>> now = timezone.now()
>>> event = Event.objects.create_event(
... title="International Ice Cream Tasting Competition",
... start=now,
... end=now,
... user=user
...)

28.2.2 Validate Your Model Elsewhere

If you’re using a pre save signal to trigger input cleanup for a speciŀc model, try writing a custom
validator for your ŀeld(s) instead.

If validating through a ModelForm, try overriding your model’s clean() method instead.

28.2.3 Override Your Model's Save or Delete Method Instead

If you’re using pre save and post save signals to trigger logic that only applies to one particular
model, you might not need those signals. You can often simply move the signal logic into your model’s
save() method.

Ļe same applies to overriding delete() instead of using pre delete and post delete signals.

369

Chapter 28: Signals: Use Cases and Avoidance Techniques

28.2.4 Use a Helper Function Instead of Signals

We ŀnd this approach useful under two conditions:

..
1 Refactoring: Once we realize that certain bits of code no longer need to be obfuscated as signals

and want to refactor, the question of ‘Where do we put the code that was in a signal?’ arises.
If it doesn’t belong in a model manager, custom validator, or overloaded model method, where
does it belong?

..
2 Architecture: Sometimes developers use signals because we feel the model has become too

heavyweight and we need a place for code. While Fat Models are a nice approach, we ad-
mit it’s not much fun to have to parse through a 500 or 2000 line chunk of code.

Ļis solution, suggested to us by Django core developer Aymeric Augustin, is to place the code in
helper functions. If done right, this helps us write cleaner, more reusable code.

One interesting thing about this approach is to test the transition out of signals. Simply follow these
steps:

..
1 Write a test for the existing signal call.
..
2 Write a test for the business logic of the existing signal call as if it were in a separate function.
..
3 Write a helper function that duplicates the business logic of the signal, matching the assertions

of the test written in the second step.
..
4 Run the tests.
..
5 Call the helper function from the signal.
..
6 Run the tests again.
..
7 Remove the signal and call the helper function from the appropriate location.
..
8 Run the tests again.
..
9 Rinse and repeat until done.

Ļis approach allows us to carefully remove the signal without breaking things. It also helps us iden-
tify when an existing signal is required for a speciŀc process.

28.3 Summary

Signals are a powerful tool in any Django developer’s toolbox. However, they are easy to misuse and
it’s good practice to delve into why and when to use them.

370

29 | What About Those Random
Utilities?

29.1 Create a Core App for Your Utilities

Sometimes we end up writing shared classes or little general-purpose utilities that are useful ev-
erywhere. Ļese bits and pieces don’t belong in any particular app. We don’t just stick them into a
sort-of-related random app, because we have a hard time ŀnding them when we need them. We also
don’t like placing them as “random” modules in the root of the project.

Our way of handling our utilities is to place them into a Django app called core that contains modules
which contains functions and objects for use across a project. (Other developers follow a similar
pattern and call this sort of app common, generic, util , or utils.)

For example, perhaps our project has both a custom model manager and a custom view mixin used
by several different apps. Our core app would therefore look like:

..

EŤōřŜŘő șȠ.Ș

core/
__init__.py
managers.py # contains the custom model manager(s)
models.py
views.py # Contains the custom view mixin(s)

371

Chapter 29: What About Ļose Random Utilities?

.....

TIP: Always make the core app a real Django app

.

We always make the core directory a Django app. At some point we inevitably end up doing
at least one of the following:

ä Have non-abstract models in core.
ä Have admin auto-discovery working in core.
ä Have template tags and ŀlters in core.

Now, if we want to import our custom model manager and/or view mixin , we import using the same
pattern of imports we use for everything else:

..

EŤōřŜŘő șȠ.ș

from core.managers import PublishedManager
from core.views import IceCreamMixin

29.2 Optimize Apps with Utility Modules

Synonymous with helpers, these are commonly called utils.py and sometimes helpers.py. Ļey are
places where we place functions and classes which make common patterns shorter and easier. Let’s
go into why this is helpful.

29.2.1 Storing Code Used in Many Places

Ļere are times when we have functions or classes used in several places that doesn’t quite ŀt in
models.py, forms.py, or any other speciŀcally named module. When this occurs, we put this logic in
the utils.py module.

29.2.2 Trimming Models

Ļis is best explained with an example.

We use the Flavor model frequently. We start attaching ŀeld after ŀeld, method after method,
property after property, classmethod after classmethod. One day we notice that our fat model has

372

29.3: Django’s Own Swiss Army Knife

reached brobdingnagian proprtions and is over a thousand lines of code. Debugging and maintenance
have become hard. What do we do?

We start looking for methods (or properties or classmethods) whose logic can be easily encapsulated
in functions stored in łavors/utils.py. Ļe existing methods (or properties or classmethods) become
simple wrappers calling functions from łavors/utils.py. Ļe result is a more distributed code base that
encourages code reuse as well as easier testing.

29.2.3 Easier Testing

A side effect of moving logic from more complex constructs into functions placed in isolated modules
is that it becomes easier to test. By isolation we mean it is usually imported within the app, rather
than doing in-app/in-project imports. Ļis causes less business logic overhead, hence making it easier
to write tests for what logic is present in the module.

.....

TIP: Make Utility Code Constructs as Focused as Possible

.

Be it a function or a class, avoid allowing multiple behaviors or conditions. Each utility func-
tion should do one and only one thing well. Don’t repeat yourself. Don’t create utility func-
tions that are duplicates of model behaviors.

29.3 Django's Own Swiss Army Knife

Ļe Swiss army knife is a multi-purpose tool that is compact and useful. Django has a number of
useful helper functions that don’t have a better home than the django.utils package. It’s tempting
to dig into the code in django.utils and start using things, but don’t. Most of those modules are
designed for internal use and their behavior or inclusion can change between Django versions.

Instead, read https://docs.djangoproject.com/en/1.8/ref/utils/ to see which modules
in there are stable.

373

https://docs.djangoproject.com/en/1.8/ref/utils/

Chapter 29: What About Ļose Random Utilities?

.....

TIP: Malcolm Tredinnick on Django's Utils Package.

.

Django core developer Malcolm Tredinnick liked to think of django.utils as being in the
same theme as Batman’s utility belt: indispensable tools that are used everywhere internally.

Figure 29.1: A utility belt for serious ice cream eaters.

Ļere are some gems in there that have turned into best practices:

29.3.1 django.contrib.humanize

Ļis is a set of localized template ŀlters designed to give user presented data a more ‘human’ touch.
For example it includes a ŀlter called ‘intcomma’ that converts integers to strings containing commas
(or periods depending on locale) every three digits.

While django.contrib.humanize’s ŀlters are useful for making template output more attractive,
we can also import each ŀlter individually as a function. Ļis is quite handy when processing any sort
of text, especially when used in conjunction with REST APIs.

29.3.2 django.utils.decorators.method decorator(decorator)

Django has some really great function decorators. Many of us have written decorators for Django
projects, especially when we’re working with Function-Based Views. However, there comes a time
when we discover that our favorite function decorator would also make sense as a method decorator.
Fortunately, Django provides the method decorator

374

29.3: Django’s Own Swiss Army Knife

29.3.3 django.utils.decorators.decorator from middleware(
middleware)

Middleware is a wonderful tool, but is global in nature. Ļis can generate extra queries or other
complications. Fortunately, we can isolate the use of middleware on a per-view basis by using this
view decorator.

Also see the related decorator from middleware with args decorator.

29.3.4 django.utils.encoding.force text(value)

Ļis forces Django to take anything and turn it into a plain str representation on Python 3 and
unicode on Python 2. It avoids the display of a django.utils.functional. proxy object.
For more details, see Appendix D.

29.3.5 django.utils.functional.cached property

Reinout van Rees educated us about this incredibly useful method decorator introduced in Django
1.5. What it does is cache in memory the result of a method with a single self argument as a
property. Ļis has wonderful implications in regards to performance optimization of a project. We
use it in every project, enjoying how it allows us to cache the results of expensive computations
trivially.

For a description on how to use the cached property decorator, the official Django documentation
on the subject is excellent: http://2scoops.co/1.8-cached_property

In addition to the potential performance beneŀts, we’ve used this decorator to make sure that values
fetched by methods remain static over the lifetime of their object. Ļis has proven very useful when
dealing with third-party APIs or dealing with database transactions.

375

http://2scoops.co/1.8-cached_property

Chapter 29: What About Ļose Random Utilities?

..

WARNING: Careful Using cached property Outside of Django

.

It is tempting to copy/paste the source code for cached property for use outside of Django.
However, when used outside a web framework, we discovered the code for this function has
problems in multithreaded environments. Ļerefore, if coding outside of Django, you might
want to take a look at the third-party cached property library:

ä https://github.com/pydanny/cached-property
ä http://www.pydanny.com/cached-property.html

29.3.6 django.utils.html.format html(format str,
args, **kwargs)

Ļis is similar to Python’s str.format() method, except designed for building up HTML frag-
ments. All args and kwargs are escaped before being passed to str.format() which then combines
the elements.

See http://2scoops.co/1.8-format_html for details on use.

29.3.7 django.utils.html.remove tags(value, tags)

Deprecated for security reasons per section 26.27, Stop Using django.utils.html.remove tag.

29.3.8 django.utils.html.strip tags(value)

When we need to accept content from users and have to strip out anything that could be HTML,
this function removes those tags for we while keeping all the existing text between tags.

..

WARNING: Security Advisory on strip tags Safety

.

When using the strip tags function, or the striptags template tage, make absolutely
certain that the outputted content is not marked as safe. Ļis especially applies if you have
disabled automatic escaping in your templates. Reference:
https://djangoproject.com/weblog/2014/mar/22/strip-tags-advisory/

376

https://github.com/pydanny/cached-property
http://www.pydanny.com/cached-property.html
http://2scoops.co/1.8-format_html
https://djangoproject.com/weblog/2014/mar/22/strip-tags-advisory/

29.3: Django’s Own Swiss Army Knife

29.3.9 django.utils.six

Six is a Python 2 and 3 compatibility library by Benjamin Peterson. It’s bundled directly into Django
(hence its inclusion in Django’s utils library), but we can also ŀnd it as an independent package for
other projects.

ä Six on PyPI: https://pypi.python.org/pypi/six
ä Six documentation: http://pythonhosted.org/six/
ä Six repo on BitBucket: https://bitbucket.org/gutworth/six
ä Six in Django: https://github.com/django/django/blob/master/django/utils/six.py

Figure 29.2: Six smooths over the differences between 2 and 3.

29.3.10 django.utils.text.slugify(value)

We recommend that whatever you do, don’t write your own version of the slugify() function, as
any inconsistency from what Django does with this function will cause subtle yet nasty problems in
our data. Instead, we use the same function that Django uses and slugify() consistently.

377

https://pypi.python.org/pypi/six
http://pythonhosted.org/six/
https://bitbucket.org/gutworth/six
https://github.com/django/django/blob/master/django/utils/six.py

Chapter 29: What About Ļose Random Utilities?

It is possible to use django.templates.defaultfilters.slugify() in our Python code, as
this calls the function described here. Nevertheless, we like to use the function directly from Django’s
utils directory, as it is a more appropriate import path.

However we decide to import this function, we try to keep it consistent across a project as there is a
use case for when it has to be replaced, as described in the package tip on the next page.

.....

PACKAGE TIP: slugify and languages Besides English

.

Tomasz Paczkowski points out that we should note that slugify() can cause problems
with localization:

..

EŤōřŜŘő șȠ.Ț

>>> from django.utils.text import slugify
>>> slugify(u"straße") # German
u"strae"

Fortunately, unicode-slugify, is a Mozilla foundation-supported project that addresses the
issue:

..

EŤōřŜŘő șȠ.ț

>>> from slugify import slugify
>>> slugify(u"straße") # Again with German
u"straße"

Ļere is also awesome-slugify, which shares similar functionality to unicode-slugify, but
does not have Django as a dependency.

ä https://github.com/mozilla/unicode-slugify
ä https://github.com/dimka665/awesome-slugify

378

https://github.com/mozilla/unicode-slugify
https://github.com/dimka665/awesome-slugify

29.4: Exceptions

29.3.11 django.utils.timezone

It’s good practice for us to have time zone support enabled. Chances are that our users live in more
than one time zone.

When we use Django’s time zone support, date and time information is stored in the database uni-
formly in UTC format and converted to local time zones as needed.

29.3.12 django.utils.translation

Much of the non-English speaking world appreciates use of this tool, as it provides Django’s i18n
support. See Appendix D for a more in-depth reference.

29.4 Exceptions

Django comes with a lot of exceptions. Most of them are used internally, but a few
of them stand out because the way they interact with Django can be leveraged in
fun and creative ways. Ļese, and other built-in Django exceptions, are documented at
https://docs.djangoproject.com/en/dev/ref/exceptions.

29.4.1 django.core.exceptions.ImproperlyConfigured

Ļe purpose of this module is to inform anyone attempting to run Django that there is a conŀguration
issue. It serves as the single Django code component considered acceptable to import into Django
settings modules. We discuss it in both chapter 5 and Appendix E.

29.4.2 django.core.exceptions.ObjectDoesNotExist

Ļis is the base Exception from which all DoesNotExist exceptions inherit from. We’ve found
this is a really nice tool for working with utility functions that fetch generic model instances and do
something with them. Here is a simple example:

379

https://docs.djangoproject.com/en/dev/ref/exceptions

Chapter 29: What About Ļose Random Utilities?

..

EŤōřŜŘő șȠ.Ȝ

core/utils.py
from django.core.exceptions import ObjectDoesNotExist

class BorkedObject(object):
loaded = False

def generic_load_tool(model, pk):
try:

instance = model.objects.get(pk=pk)
except ObjectDoesNotExist:

return BorkedObject()
instance.loaded = True
return instance

Also using this exception, we can create our own variant of Django’s
django.shortcuts.get object or 404 function, perhaps raising a HTTP 403 exception
instead of a 404:

..

EŤōřŜŘő șȠ.ȝ

core/utils.py
from django.core.exceptions import MultipleObjectsReturned
from django.core.exceptions import ObjectDoesNotExist
from django.core.exceptions import PermissionDenied

def get_object_or_403(model, **kwargs):
try:

return model.objects.get(**kwargs)
except ObjectDoesNotExist:

raise PermissionDenied
except MultipleObjectsReturned:

raise PermissionDenied

380

29.4: Exceptions

29.4.3 django.core.exceptions.PermissionDenied

Ļis exception is used when users, authenticated or not, attempt to get responses from
places they are not meant to be. Raising it in a view will trigger the view to return a
django.http.HttpResponseForbidden.

Ļis exception can prove useful to use in functions that are touching the sensitive data and compo-
nents of a high-security project. It means that if something bad happens, instead of just returning a
500 exception, which may rightly alarm users, we simply provide a “Permission Denied” screen.

..

EŤōřŜŘő șȠ.Ȟ

stores/calc.py

def finance_data_adjudication(store, sales, issues):

if store.something_not_right:
msg = "Something is not right. Please contact the support team."
raise PermissionDenied(msg)

Continue on to perform other logic.

In this case, if this function were called by a view and something was ‘not right,’ then the Permis-
sionDenied exception would force the view to display the project’s 403 error page. Speaking of 403
error pages, we can set this to any view we want. In the root URLConf of a project, just add:

..

EŤōřŜŘő șȠ.ȟ

urls.py

This demonstrates the use of a custom permission denied view. The default
view is django.views.defaults.permission_denied
handler403 = 'core.views.permission_denied_view'

As always, with exception-handling views, because they handle all HTTP methods equally, we prefer
to use function-based views.

381

Chapter 29: What About Ļose Random Utilities?

29.5 Serializers and Deserializers

Whether it’s for creating data ŀles or generating one-off simple REST APIs, Django has some great
tools for working with serialization and deserialization of data of JSON, Python, YAML and XML
data. Ļey include the capability to turn model instances into serialized data and then return it back
to model instances.

Here is how we serialize data:

..

EŤōřŜŘő șȠ.Ƞ

serializer_example.py
from django.core.serializers import get_serializer

from favorites.models import Favorite

Get and instantiate the serializer class
The 'json' can be replaced with 'python' or 'xml'.
If you have pyyaml installed, you can replace it with
'pyyaml'
JSONSerializer = get_serializer("json")
serializer = JSONSerializer()

favs = Favorite.objects.filter()[:5]

Serialize model data
serialized_data = serializer.serialize(favs)

save the serialized data for use in the next example
with open("data.json", "w") as f:

f.write(serialized_data)

Here is how we deserialize data:

..

EŤōřŜŘő șȠ.Șȗ

deserializer_example.py
from django.core.serializers import get_serializer

382

29.5: Serializers and Deserializers

..

from favorites.models import Favorite

favs = Favorite.objects.filter()[:5]

Get and instantiate the serializer class
The 'json' can be replaced with 'python' or 'xml'.
If you have pyyaml installed, you can replace it with
'pyyaml'
JSONSerializer = get_serializer("json")
serializer = JSONSerializer()

open the serialized data file
with open("data.txt") as f:

serialized_data = f.read()

deserialize model data into a generator object
we'll call 'python data'
python_data = serializer.deserialize(serialized_data)

iterate through the python_data
for element in python_data:

Prints 'django.core.serializers.base.DeserializedObject'
print(type(element))

Elements have an 'object' that are literally instantiated
model instances (in this case, favorites.models.Favorite)
print(

element.object.pk,
element.object.created

)

Django already provides a command-line tool for using these serializers and deserializers: the dump-
data and loaddata management commands. While we can use them, they don’t grant us the same
amount of control that direct code access to the serializers provides.

Ļis brings us to something that we always need to keep in mind when using Django’s built-in

383

Chapter 29: What About Ļose Random Utilities?

serializers and deserializers: they can cause problems. From painful experience, we know that they
don’t handle complex data structures well.

Consider these guidelines that we follow in our projects:

ä Serialize data at the simplest level.
ä Any database schema change may invalidate the serialized data.
ä Don’t just import serialized data. Consider using Django’s form libraries to validate incoming

data before saving to the database.

Let’s go over some of the features provided by Django when working with speciŀc formats:

29.5.1 django.core.serializers.json.DjangoJSONEncoder

Out of the box, Python’s built-in JSON module can’t handle encoding of date/time or decimal types.
Anyone who has done Django for a while has run into this problem. Fortunately for all of us, Django
provides a very useful JSONEncoder class. See the code example below:

..

EŤōřŜŘő șȠ.ȘȘ

json_encoding_example.py
import json

from django.core.serializers.json import DjangoJSONEncoder
from django.utils import timezone

data = {"date": timezone.now()}

If you don't add the DjangoJSONEncoder class then
the json library will throw a TypeError.
json_data = json.dumps(data, cls=DjangoJSONEncoder)

print(json_data)

384

29.6: Summary

29.5.2 django.core.serializers.pyyaml

While powered by the third-party library, pyyaml, Django’s YAML serializer tools handles the time
conversion from Python-to-YAML that pyyaml doesn’t.

For deserialization, it also uses the yaml.safe load() function under the hood, which means that
we don’t have to worry about code injection. See subsection 26.9.3 Ļird-Party Libraries Ļat Can
Execute Code for more details.

29.5.3 django.core.serializers.xml serializer

By default Django’s XML serializer uses Python’s built-in XML handlers. It also incorporates ele-
ments of Christian Heimes’ defusedxml library, protecting usage of it from XML bomb attacks. For
more information, please read section 26.22, ‘Guard Against XML Bombing With defusedxml.’

29.6 Summary

We follow the practice of putting often reused ŀles into utility packages. We enjoy being able to
remember where we placed our often reused code. Projects that contain a mix of core, common, util,
and utils directories are just that much harder to navigate.

Django’s own ‘utility belt’ includes a plethora of useful tools, including useful functions, exceptions,
and serializers. Leveraging them is on of the ways experienced Django developers accelerate devel-
opment and avoid some of the tangles that can be caused by some of the very features of Django.

Now that we’ve covered tools to make things work, in the next chapter we’ll begin to cover sharing
a project with the world.

385

Chapter 29: What About Ļose Random Utilities?

386

30 | Deployment: Platforms as a
Service

If you’re working on a small side project or are a founder of a small startup, you’ll deŀnitely save time
by using a Platform as a Service (PaaS) instead of setting up your own servers. Even large projects
can beneŀt from the advantages of using them.

First, a public service message:

.....

TIP: Never Get Locked Into a Platform as a Service

.

Ļere are amazing services which will host your code, databases, media assets, and also pro-
vide a lot of wonderful accessories services. Ļese services, however, can go through changes
that can destroy your project. Ļese changes include crippling price increases, performance
degradation, unacceptable terms of service changes, untenable service license agreements,
sudden decreases in availability, or can simply go out of business.

Ļis means that it’s in your best interest to do your best to avoid being forced into architectural
decisions based on the needs of your hosting provider. Be ready to be able to move from one
provider to another without major restructuring of your project.

We try to make sure that our projects are not intrinsically tied to any hosting solution, mean-
ing that we are not locked into a single vendor’s pricing, policies, and functionality.

As a WSGI-compliant framework, Django is supported on many PaaS providers. Ļe most
commonly-used Django-friendly PaaS companies as of this writing are:

387

Chapter 30: Deployment: Platforms as a Service

ä Heroku (http://heroku.com) is a popular option in the Python community well
known for its documentation and add-ons system. If you choose this option, please read
http://www.theherokuhackersguide.com/ by Randall Degges.

ä PythonAnywhere (https://www.pythonanywhere.com) is a Python-powered PaaS that
is incredibly beginner-friendly.

Why do we like these services? We’ve evaluated them carefully for our needs. Your needs may be
different, so read on about how to choose a PaaS.

30.1 Evaluating a PaaS

When a PaaS is chosen to host a project, that project forces architecture concessions in order for the
application to work in their system. Ļerefore, even if we heed our warning at the top of this chapter,
extracting ourselves from the PaaS takes effort and time.

Ļerefore, when a PaaS is chosen for a project, or while we are using a PaaS, we constantly consider
the following:

30.1.1 Compliance

Before you begin evaluating any other aspect, it’s critical to check to see if the PaaS meets local or
federal mandates. Examples:

ä Many medical-based projects in the United States require meeting HIPAA standards. If the
PaaS doesn’t meet HIPAA standards, and the project contains user medical data and a project
is deployed there, everyone involved is at risk for civil and criminal prosecution under Title II of
HIPAA. See https://en.wikipedia.org/wiki/HIPAA#Security_Rule

ä Most e-commerce projects require at least SSL, and anything dealing with credit cards needs to
adhere to PCI. While services like Stripe often make this moot, many projects require internal
integration of credit card processing. Make sure the PaaS complies with the PCI speciŀcation.
See http://2scoops.co/wikipedia-PCI-standard.

ä For the European Union, if you are processing any identiŀable data you’ll need to follow EU
Directive 95/46/EC on the protection of personal data into account. Amongst other things,
this places restrictions on exporting such data outside the European Union, especially if your
PaaS doesn’t participate in the US-EU Safe Harbor. If in doubt, consult legal counsel.

388

http://heroku.com
http://www.theherokuhackersguide.com/
https://www.pythonanywhere.com
https://en.wikipedia.org/wiki/HIPAA#Security_Rule
http://2scoops.co/wikipedia-PCI-standard

30.1: Evaluating a PaaS

30.1.2 Pricing

Most PaaS options provide a free tier for beginner and toy projects, and Heroku and PythonAny-
where are good examples of this trend. We’ve gotten a lot of mileage out of this, and it’s been great.
You can even add extra services for a reasonable monthly fee. However, if one loses track of projects
and services, then this ‘reasonable fee’ can quickly add up to a hefty monthly service bill. Ļerefore,
it’s a good idea to keep up on service costs and your monthly provider bills.

At the other end of things, if high traffic is anticipated, it’s a good idea to see how much a site will cost
with all the settings dialed up. For example, Heroku maxed out on dynos and enterprise PostgreSQL
will cost over $40,000 a month. While the chances of a project needing this much horsepower is
slim, the fact that Heroku offers this means that it can and does happen.

While all of this is going on, keep in mind that PaaS companies are under no legal or moral obligation
to keep their prices or pricing methods static. In fact, developers we know of have built architecture
for projects to take advantage of how billing is done by a PaaS, only to face crippling bills when the
said PaaS changes its terms. To make matters worse, because they had tied their internal infrastructure
tightly to the billing structure of the PaaS, they lacked the option of quickly moving off.

30.1.3 Uptime

For PaaS this is a very tricky issue. Ļey would really like to provide 99.999999% uptime (sometimes
referred to as the ‘nines’), but even with the best engineering, it’s not entirely under their control:

ä Most of them, including Heroku and PythonAnywhere, rent space from vendors such as AWS
and Rackspace. If those services go down, then they go down.

ä All of them are reliant on the physical infrastructure of the internet. Natural disasters or in-
dustrial accidents can bring everything to a halt.

Even if we ignore these factors, providing a PaaS infrastructure is a hard business. It’s more than
standing up servers or Linux containers, it’s maintaining a billing system, customer-facing tools,
customer contact systems, and a host of other systems. Ļis volume of work, challenging in its own
right, can conłict with the business of making sure our projects work and scale as we need them.

Ļat said, because it is integral to their business to provide consistent service, they aim for as high
a stability number as they can. In general most PaaS companies have pretty good uptime, slowly

389

Chapter 30: Deployment: Platforms as a Service

increasing over time as they make continual system improvements. Furthermore, the good companies
provide status pages and publish formal reports about any outages or issues. Ļerefore, we don’t bother
with reading outage reports that are over a few months old, as they are not indicative of the current
engineering status of a company.

However, if there are recent, multiple reports of outages, or a recent outage of an unacceptable du-
ration, we consider other PaaS options.

..

WARNING: If You Need Very High Uptime

.

It’s worth mentioning that for projects that are life-critical, i.e. people could die if they lack
immediate access, then a PaaS is not the right solution. Instead, please use an infrastructure
service that provides a formal Service License Agreement.

30.1.4 Staffing

Yes, it’s important to know about the staffing level of a PaaS:

ä If a PaaS lacks staff, then they can’t provide 24x7 engineering support, especially across holi-
days. No matter how enthusiastic a small shop is, and the deals they offer, they can’t ŀx prob-
lems when their engineer is sleeping.

ä Do they have the staff to answer emails and problem tickets? If their engineering staff is man-
aging all of these requests, when do they have time to maintain the system?

We recommend testing out their level of support and responsiveness by ŀling a support ticket early
on. Use this opportunity to ask a thoughtful question about something that’s unclear in their docu-
mentation, or get needed help from their staff.

30.1.5 Scaling

How easy is it to scale up? If an e-commerce site is mentioned on CNN or on national television,
can the site be dialed up quickly?

On the łip side, how easy it is to scale back down? Sometimes a traffic spike is followed by slow
periods and it should be easy to dial things back.

390

30.1: Evaluating a PaaS

Finally, can we automate this process?

30.1.6 Documentation

In chapter 23, Documentation: Be Obsessed we make it pretty clear that we really care about documen-
tation. While we readily admit to exploiting every channel we know to ask questions (see chapter 34,
Where and How to Ask Django Questions), we want the services that we use to have good, maintained
documentation. It’s important to have this as readily-found reference material, and it demonstrates
that the PaaS in question is serious about what they do.

.....

TIP: Why We Don't Document How Each PaaS Works

.

Every PaaS changes their API and documentation over time, some more rapidly than others.
Since the Django PaaS space is still evolving rapidly, speciŀc PaaS commands and instruc-
tions are not listed here. We ask the reader to follow the documentation listed on the PaaS
provider site.

30.1.7 Performance Degradation

Sometimes a project that has been running for a while under consistent load starts to slow down.
When this occurs, it could be caused by one or more problems. We use the following workłow:

..
1 Check the project’s commit history for changes could have caused a performance degradation.

Ļere may even be a major bug hiding.
..
2 Examine the project for undiscovered performance bottlenecks. See chapter 24, Finding and

Reducing Bottlenecks.
..
3 Ask the PaaS support team to look into the problem. Ļey might have a quick answer for you.
..
4 Ļe physical hardware that the project is running on might have a problem. Ļe ‘cloud’ is

actually hardware and hardware breaks or gets old. Start up a new project instance, port the
data, and update the DNS records to match if that resolves the issue.

..
5 Ask the PaaS support team for further assistance. It doesn’t hurt to ask for help, especially as

a paying customer.

391

Chapter 30: Deployment: Platforms as a Service

If none of this works, consider running the project on another PaaS or your own servers. If it runs
well in another environment, it might be time to move it off.

.....

TIP: Free/Beginner Tiers Will Run Slowly

.

Ļe free tier of any PaaS is not going to run fast or handle any signiŀcant load. Ļat takes
resources that cost the PaaS money. Even with the hefty angel or VC funding in the tech
industry, it’s just not going to happen. If the PaaS provides a free or inexpensive tier that
handles very high loads, see the next section on ‘Company Stability.’

30.1.8 Geography

Consider the location of primary usage compared to the location of the PaaS. For example, if the
majority of users are in China, then a PaaS that only serves from US-based data centers isn’t a good
option. Latency issues can cause clients and users to become quickly unhappy with a project.

30.1.9 Company Stability

A PaaS is an enormous undertaking. When done well, it requires a lot of overhead. Engineers, servers,
customer support, account, and marketing are all expensive business. Since the advent of PaaS so-
lutions, we’ve seen a number of them fail because of lack of sales, over expenditure of funds, and
sheer exhaustion by overworked staff. Fortunately, they’ve all provided a grace period during which
projects were given time to move off, but it’s not realistic to count on that.

Ļerefore, it behooves us to look at the pricing plans carefully. Once a PaaS is out of its beta or initial
launch period, if there isn’t a way to capture proŀtability, then using the PaaS is risky.

30.2 Best Practices for Deploying to PaaS

30.2.1 Aim for Identical Environments

Ļe holy grail of deployment is identical environments between development and production. How-
ever, as soon as you decide to use a PaaS, this is no longer possible as the production system con-

392

30.2: Best Practices for Deploying to PaaS

ŀguration is beyond your control. Nevertheless, the closer your can keep things identical between
development and production the more maintainable your project will be.

Some PaaS platforms provide tools like Heroku’s Foreman to provide a very loosely similar operating
process. However, there is nothing like using Linux locally to replicate production. We cover this in
section 2.5, Identical Environments: Ļe Holy Grail.

30.2.2 Automate All the Things!

When it comes time to push an update to a production instance, it’s never a good idea to do all the
steps manually. It’s simply too easy to make a mistake. Our solution is to use simple automation using
one of the following tools:

ä Makeŀles are useful for simple projects. Ļeir limited capability means we won’t be tempted
to make things too fancy. As soon as you need more power, it’s time to use something else.
Something like Invoke as described in the next bullet.

ä Invoke is the direct descendant of the venerable Fabric library. It is similar to Fabric, but is
designed for running tasks locally rather than on a remote server. Tasks are deŀned in Python
code, which allows for a bit more complexity in task deŀnitions (although it’s easy to take
things too far). It has full support for Python 3.4.

30.2.3 Maintain a Staging Instance

With automation often comes the ability to run staging instances of projects at a lower cost tier. Ļis
is a great place to test production deployments, not to mention a place to demo feature changes.

30.2.4 Prepare for Disaster With Backups and Rollbacks

Even with all the precautions we take, sometimes deployments just blow up. Ļerefore, before any
change is pushed a live site, we make certain for a particular PaaS we know how to:

ä Restore databases and user-uploaded ŀles from backups.
ä Roll back to a previous code push.

393

Chapter 30: Deployment: Platforms as a Service

30.2.5 Keep External Backups

Ļe great virtue of PaaS is that they abstract away many deployment and operational issues, allowing
us to focus on writing our project. With that comes the risk that the PaaS might encounter their
own problems. While some PaaS (including Heroku) provide the capability to generate backups, it’s
a good idea to periodically run backups to external services. Ļis includes the databases and uploaded
user ŀles.

Suggestions for storing the data include Dropbox, Crashplan, Amazon S3, and Rackspace Cloud
Files, but there are many more. Which service to choose should be based on architectural decisions
such as the location of the PaaS (For example, Heroku-based projects would use Amazon services).

30.3 Summary

Platforms as a Service are a great way to expedite delivery of deployable projects. Ļey allow for de-
velopers to quickly harness signiŀcant resources that are maintained by specialized operations teams.
On the other hand, they do come with a price tag and various limitations. Ļerefore, deciding to use
a PaaS should be based per the project and skill set at hand, not out of personal preference.

In addition, it’s a good idea to honor the practices we provide in this chapter, or to listen carefully to
peers to determine what they do to best utilize these services.

In the next chapter, we cover the nuts and bolts of deployment at a high level.

394

31 | Deploying Django Projects

Deployment of Django projects is an in-depth topic that could ŀll an entire book on its own. Here,
we touch upon deployment at a high level.

31.1 Single-Server for Small Projects

Single-server is the quickest way to get a small Django project up onto a server. It’s also the cheapest
Django deployment option.

Ļe obvious drawback is that your server will go down if your website URL gets featured on Hacker
News or any popular blog.

31.1.1 Should You Bother?

Typically we don’t bother with the single-server setup even for small projects, because using
cookiecutter-django with Heroku is less work and gives us peace-of-mind in the event of traffic
spikes.

However, we highly recommend that you try setting up a single-server Django deployment in these
situations:

ä If you’ve never done it before. It’s an extremely important learning experience. Doing it will
give you a deeper understanding of how Python web applications work.

ä If your Django project is more of a toy project or experiment. Websites with paying customers
can’t afford to risk downtime, but the risk of a temporary spike is bearable to non-paying side
projects.

395

Chapter 31: Deploying Django Projects

ä If you’re certain that one server is adequate for your site’s traffic. For example, a Django site
for your wedding guests will probably be ŀne on a single server.

31.1.2 Example: Quick Ubuntu + Gunicorn Setup

Here’s an example of how we could deploy a single-server Django project easily with the following
components:

ä An old computer or cheap cloud server
ä Ubuntu Server OS
ä PostgreSQL
ä Virtualenv
ä Gunicorn

You can either use a computer that you have lying around your house, or you can use a cheap cloud
server from a provider like DigitalOcean, Rackspace, or AWS.

Typicaly, we start out by installing the latest LTS version of Ubuntu Server onto a cloud server. Cloud
server providers often have readymade disk images that are installable with a click, making this triv-
ial. But doing this manually by downloading an installer like http://www.ubuntu.com/server
works ŀne too.

We then install the Ubuntu packages needed. Ļey can vary, but typically we end up installing at
least these:

For pip/virtualenv python-pip, python-virtualenv
For PostgreSQL postgresql, postgresql-contrib, libpq-dev, python-dev

Notice how Gunicorn and Django aren’t in that list. Whenever we can install a Python package
rather than an Ubuntu package, we go with the Python package. It’ll almost always be more recent.

Ļen we do all the server setup basics like updating packages and creating a user account for the
project.

At this point, it’s Django time. We clone the Django project repo into our user’s home directory and
create a virtualenv with the project’s Python package dependencies, including Gunicorn. We create
a PostgreSQL database for the Django project and run python manage.py migrate.

396

http://www.ubuntu.com/server

31.2: Multi-Server for Medium to Large Projects

Ļen we run the Django project in Gunicorn. As of this writing, this requires a simple 1-line com-
mand. See:
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/gunicorn/

At this point, we see the Django site running when we go to the server’s IP address in a web browser.
Ļen we can conŀgure the server hostname and point a domain name at that IP address.

Of course, this is just a quick overview that leaves out many important details. Once you have a
single-server setup working experimentally, you’ll want to go back and read chapter 26, Security Best
Practices, and then secure your server and site.

You’ll also outgrow the single-server setup pretty quickly. At that point, you may get fancier with
your setup, e.g. adding nginx, Redis, and/or memcached, or setting up Gunicorn behind an nginx
proxy. Eventually, you’ll want to either sign up for a PaaS or move to a multi-server setup.

.....

TIP: Look Up the Specifics Online

.

Our aim here is to give you a general idea and example of how the most minimal Django
deployment might work, rather than a detailed how-to guide.

Because commands and package names change quickly, and because this is not a tutorial
book, we have not provided links to any particular setup instructions. But you should be able
to ŀnd detailed instructions with a quick web search.

31.2 Multi-Server for Medium to Large Projects

Companies and growing startups who opt not to use a PaaS typically use a multi-server setup. Here
is what a basic one might look like:

397

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/gunicorn/

Chapter 31: Deploying Django Projects

Figure 31.1: Example of a basic multi-server setup.

Ļis is what you need at the most basic level:

ä Database server. Typically PostgreSQL in our projects when we have the choice, though
Eventbrite uses MySQL.

ä WSGI application server. Typically uWSGI or Gunicorn with Nginx, or Apache with
mod wsgi.

Additionally, we may also want one or more of the following:

ä Static ŀle server. If we want to do it ourselves, Nginx or Apache are fast at serving static ŀles.
However, CDNs such as Amazon CloudFront are relatively inexpensive at the basic level.

ä Caching and/or asynchronous message queue server. Ļis server might run Redis, Mem-
cached or Varnish.

ä Miscellaneous server. If our site performs any CPU-intensive tasks, or if tasks involve waiting
for an external service (e.g. the Twitter API) it can be convenient to offload them onto a server
separate from your WSGI app server.

By having specialized servers that each focus on one thing, they can be switched out, optimized, or
changed in quantity to serve a project’s needs.

398

31.2: Multi-Server for Medium to Large Projects

.....

TIP: Using Redis for All Ephemeral Data

.

Redis has similar features to Memcached, but adds in the following:
ä Authentication, which Memcached doesn’t have out of the box.
ä State is saved, so if a server is restarted the data doesn’t go away.
ä Additional data types means it can be used as an asynchronous message queue, in

conjunction with tools like celery and rq.

Finally, we also need to be able to manage processes on each server. We recommend in descending
order of preference:

..
1 Supervisord
..
2 init scripts

Figure 31.2: Managing an ice cream replenishment process with Supervisord.

399

Chapter 31: Deploying Django Projects

31.2.1 Advanced Multi-Server Setup

Here is an example of a much larger multi-server setup, complete with multiple servers of each type
and load balancing:

Figure 31.3: Example of an advanced multi-server setup.

Load balancers can be hardware- or software-based. Commonly-used examples include:

ä Software-based: HAProxy, Varnish, Nginx

400

31.3: WSGI Application Servers

ä Hardware-based: Foundry, Juniper, DNS load balancer
ä Cloud-based: Amazon Elastic Load Balancer, Rackspace Cloud Load Balancer

.....

TIP: Horizontal vs. Vertical Scaling

.

Ļe above is an example of horizontal scaling, where more servers are added to handle load.
Before scaling horizontally, it’s good to scale vertically by upgrading your servers’ hardware
and maxing out the RAM on each server. Vertical scaling is relatively easy, since it’s just a
matter of throwing money at the problem.

.....

TIP: Scaling Horizontally and Sessions

.

When scaling horizontally, make sure that users don’t need sticky sessions. For example, if
someone uploads a ŀle to server 1, and then comes back thru the load balancer and lands on
server 2, that shouldn’t cause problems. Ways around this are storing uploaded media in a
common shared drive or more commonly on cloud-based systems such as Amazon S3.

31.3 WSGI Application Servers

Always deploy your Django projects with WSGI.

Django 1.8’s startproject command, sets up a wsgi.py ŀle for us. Ļis ŀle contains the default
conŀguration for deploying our Django project to any WSGI server. For what it’s worth, the sample
project templates we recommend in chapter 3, How to Lay Out Django Projects also includes a wsgi.py
in its conŀg/ directory.

Ļe most commonly-used WSGI deployment setups are:

..
1 uWSGI with Nginx.
..
2 Gunicorn behind a Nginx proxy.
..
3 Apache with mod wsgi.

401

Chapter 31: Deploying Django Projects

Here’s a quick summary comparing the three setups.

Setup Advantages Disadvantages

uWSGI with Nginx Lots of great features and options.
Extremely configurable. Said to be
better performing than the other setup
options.

Documentation still growing.
Not as time-tested as Apache.
Not as beginner-friendly as the
others.

Gunicorn (sometimes with
Nginx)

Written in pure Python. Supposedly this
option has slightly better memory
usage, but your mileage may vary.

Documentation is brief for nginx
(but growing). Not as
time-tested as Apache.

Apache with mod wsgi Has been around for a long time and is
tried and tested. Very stable. Works on
Windows. Lots of great documentation,
to the point of being kind of
overwhelming.

Doesn't work with environment
variables. Apache configuration
can get overly complex. Lots of
crazy conf files.

Table 31.1: Gunicorn vs Apache vs uWSGI

Ļere’s a lot of debate over which option is faster. Don’t trust benchmarks blindly, as many of them
are based on serving out tiny “Hello World” pages, which of course will have different performance
from real web applications.

Ultimately, though, all three choices are in use in various high volume Django sites around the world.
Conŀguration of any high volume production server can be very difficult, and if a site is busy enough
it’s worth investing time in learning one of these options very well.

Ļe disadvantage of setting up our own web servers is the added overhead of extra sysadmin work.
It’s like making ice cream from scratch rather than just buying and eating it. Sometimes we just want
to buy ice cream so we can focus on the enjoyment of eating it.

31.4 Performance and Tuning: uWSGI and Gunicorn
uWSGI and Gunicorn are very popular amongst Django developers looking to squeeze every last bit
of performance out of their web servers. As of now, uWSGI is more conŀgurable, but Gunicorn is
very conŀgurable too, and arguably easier to conŀgure.

402

31.5: Stability and Ease of Setup: Gunicorn and Apache

Useful reading:

ä http://uwsgi-docs.readthedocs.org
ä https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/uwsgi/
ä http://justcramer.com/2013/06/27/serving-python-web-applications/

David Cramer’s blog article arguing for using Nginx + UWSGI
ä http://gunicorn.org/
ä http://cerebralmanifest.com/uwsgi-vs-gunicorn/

31.5 Stability and Ease of Setup: Gunicorn and Apache

If you just want to get a Django site up and running fast, Gunicorn or Apache are your best bet.
Apache used to be the easiest option, but Gunicorn has come a long way. Ļese days, with Gunicorn
and the default Django-provided wsgi.py ŀle, the setup “just works” with zero or minimal debugging.

31.6 Common Apache Gotchas

..

WARNING: Do Not Use mod python

.

Ļe official Django documentation explicitly warns against using mod python. Django’s
mod python support was deprecated in Django 1.3. In Django 1.5, the mod python request
handler was removed from Django.

Unfortunately, there are still many online resources that talk about conŀguring Django with
mod python, causing many people confusion. Do not use mod python. If using Apache, use
mod wsgi instead.

31.6.1 Apache and Environment Variables

Apache doesn’t work with environment variables as described in chapter 5. You’ll need to do some-
thing like load a local conŀguration ŀle for secret values into your settings module written in .ini,
.cfg, .json, or .xml formats. Please read section 5.4, ‘When You Can’t Use Environment Variables’.

403

http://uwsgi-docs.readthedocs.org
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/uwsgi/
http://justcramer.com/2013/06/27/serving-python-web-applications/
http://gunicorn.org/
http://cerebralmanifest.com/uwsgi-vs-gunicorn/

Chapter 31: Deploying Django Projects

31.6.2 Apache and Virtualenv

Ļanks to the hard work of Graham Dumpleton, getting Apache to work with virtualenv is a task
that’s pretty straightforward:

ä If using mod wsgi 3.4 or newer and daemon mode, just add the following option to the WS-
GIDaemonProcess directive:
python-home=/some/path/to/root/of/virtualenv

ä If using embedded mode: WSGIPythonHome /some/path/to/root/of/virtualenv
ä If using mod wsgi 3.3 or older and daemon mode, instead use the following

option to WSGIDaemonProcess where X.Y is the Python version: python-
path=/some/path/to/root/of/virtualenv/lib/pythonX.Y

Figure 31.4: How ice cream is deployed to cones and bowls.

31.7 Automated, Repeatable Deployments

When we conŀgure our servers, we really shouldn’t be SSHing into our servers and typing in con-
ŀguration commands from memory. It’s too easy to forget what we’ve done. If servers conŀgured
this way go down and need to be recreated in an emergency, it’s almost impossible to set them up
identically to what we had before.

When you have a lot of moving parts, all those pieces need to be re-creatable in the event of a problem.
Problems can and will occur. Relying on you or your system administrator’s memory of how he or
she set up everything a year ago is dangerous.

404

31.7: Automated, Repeatable Deployments

Instead, our server setup should be automated and documented in a way that makes it trivial to
recreate everything from scratch. In the reader’s case, you or your sysadmin should be able to set up
everything without having to log into a single server manually.

Speciŀcally, this means:

ä We should be able to spin up and conŀgure our entire server setup from scratch by running a
command, then sitting back and watching as everything happens automatically.

ä Even if it’s just a single command, it should be documented precisely. Imagine that someone
just got hired by our company. On their ŀrst day of work, without knowledge of our web
application or servers, he or she should be able to open our deployment.rst document and set
up our production servers.

ä Each time we run the command, there should be no dependency on pre-existing server state.
ä Any scripts should be idempotent, producing the same results no matter whether they are run

for the ŀrst time or the hundredth time.

In order to achieve all of the above, companies who don’t rely on a PaaS typically use one or more
infrastructure automation and management tools.

Figure 31.5: Infrastructure automation can be very powerful.

405

Chapter 31: Deploying Django Projects

..

WARNING: Caveat About the Rest of This Chapter

.

Our challenge in writing about automated deployments is twofold:
ä Django is a web development framework, not a deployment system.
ä Ļe fact is that everything we wrote before has gotten stale. Web application deploy-

ment is a rapidly moving target.
Ļerefore, we’re going to cover best practices at a very high level.

31.7.1 A Rapidly Changing World

As mentioned above, the world of automated deployments is evolving quickly. How quickly? Let’s
look at conŀguration management from the perspective of Two Scoops of Django:

Date Milestone Status of Config Management Tools

Through 2011 `Ancient History' Chef/Puppet preferred, CFEngine predates the
iPhone

2012 Work on Two Scoops commences Chef/Puppet preferred, Salt/Ansible still very
experimental

Jan 2013 Two Scoops of Django 1.5 Alpha Chef and Puppet still strong, Salt/Ansible getting
popular

Mar 2013 Two Scoops of Django 1.5 Final Docker open sourced.

Jan 2014 Two Scoops of Django 1.6 Salt/Ansible are stable and popular, Chef/Puppet
not so much, Docker still experimental, surges
forward

Mar 2015 Two Scoops of Django 1.8 Early Release Docker for identical environments, many use it for
deployments, Salt/Ansible going strong,
Chef/Puppet declining rapidly

June 2015 Two Scoops of Django 1.8 Final Docker maturity? Will something new emerge?

2017 Projected Django 2.2 Release Rise of tools yet imagined

2019 Projected Django 2.6 Release Tools we use today may be relagated to the same
boring place as CFEngine

Table 31.2: Timeline of DevOps Tools

406

31.8: Which Automation Tool Should Be Used?

If anything, this timeline makes it clear that it’s a good idea for us not to tie our projects to a speciŀc
conŀguration management tool. Unfortunately, as a project grows over time, moving from one of
these tools to another is a challenging process. Hence, we recommend choosing the tool of choice
very carefully.

31.8 Which Automation Tool Should Be Used?

Because Python web application deployment is such a huge problem and pain point, the space has
been łooded with tools attempting to solve it. We’re hearing lots of big promises from every tool,
but at this point no particular tool has gone mainstream as Ļe Easiest Way to Deploy, Self-Hosted.

31.8.1 Too Much Corporate Fluff

In the past few years we’ve seen an vibrant ecosystem of companies dedicated to the issue of automat-
ing deployments. Ļere is a lot of money to be made.

Ļe result is that there are many good tools being built, but there is also a lot of corporate łuff to
sift through. Ļe creators of various tools each have their own corporate interests in mind, increasing
with the amount of funding that they obtain from investors. Because a lot of money is involved, they
each have their own marketing departments putting out a lot of convincing promises about what
their tools have to offer.

Ļis isn’t a bad thing per se, but it can make it hard for us to determine what is the right tool for us.

31.8.2 Do Your Own Research

Great work is being done on great tools, but until these tools mature further, it’s hard to ŀgure out
what’s actually great and what’s just a corporate promise. Ļe only way to ŀgure out what you like is
to try everything, and to say “No, thanks!” when the “Kool-Aid” is being offered.

31.9 Current Infrastructure Automation Tools

Among Django users, Docker, Ansible, SaltStack, Puppet, and Chef are the most popular tools for
automating deployments.

407

Chapter 31: Deploying Django Projects

All of these automation tools tend to be complex to set up and use, with a steep learning curve. Ļat’s
because they’re designed to manage not just one server, but thousands or more.

Here is what these tools can perform at large scale:

Remote execution:

ä Installing packages via apt-get or other system package management tools on remote servers
ä Running commands on remote servers. For example, running the virtualenv command with

the –no-site-packages option on staging/production servers.
ä Starting services, and restarting them under certain conditions. For example, restarting an

Nginx web server when the site’s Nginx conŀguration ŀle changes.
ä When a command is executed remotely, logging and returning the response from the server.

Conŀguration management:

ä Creating or updating conf ŀles for services. For example, creating a pg hba.conf ŀle for a freshly
installed PostgreSQL instance.

ä Populating conŀguration values differently for different servers, based on variables like each
server’s particular IP address or OS-speciŀc information.

Orchestration and targeting:

ä Controlling which servers a job is sent to, and when it should be sent.
ä Managing various components at a high level, creating pipelines to handle different workłows.
ä Pushing jobs to servers from a master server, in push mode.
ä Asking the master server what needs to occur, in pull mode.

Docker, Ansible, SaltStack, Puppet, and Chef are pretty similar and can perform all of the above.
Let’s explore what differentiates them:

Tool Pros Cons

Docker Fast deployments due to only applying deltas.
Containerization approach. YAML config. Large
community. Open source.

Written in Go. Still immature enough to run
into trouble spots.

408

31.9: Current Infrastructure Automation Tools

Tool Pros Cons
SaltStack Primarily push mode. Blazing fast transport via 0mq.

YAML config. Lots of Salt states and examples
online. Large community. Open source. Written in
Python.

Complexity can be overwhelming. Still
immature enough to run into trouble spots.

Ansible Primarily push mode. Doesn't require daemons
running on remote servers aside from OpenSSH.
Easy to learn. YAML config. Open source. Written in
Python.

Slower transport over SSH, but can use
Fireball Mode which sets up a temporary
0mq daemon. Still immature enough to run
into trouble spots.

Chef Lots of recipes available. Large community. Open
source.

Extremely steep learning curve. Written in
Ruby, and recipes are written in Ruby.
Extremely complex, often in a bad way.

Puppet Large community. Open source. Steep learning curve. Written in Ruby.
Config is written in a custom DSL which can
be difficult and painful to work with.

Table 31.3: Infrastructure Automation Tool Comparison

.....

TIP: What About Fabric and Invoke?

.

Fabric and its Python 3-friendly successor Invoke are tools that allow you to execute re-
mote commands. Smaller in scope than the above, it focuses on doing one thing well. It is
frequently used in conjunction with all of the above tools.

A few years ago, the hot topic of every Python meetup seemed to be deployment conŀguration with
Puppet, Chef, and Fabric. Ļis combination is still in heavy use today by many companies.

Ļe trend now seems to be Docker, SaltStack or Ansible. Ļey all use YAML for conŀguraton. Since
the latter two are written in Python, as a Python user it’s easy to dig into their source code. Ļe reality
of development is that whenever you rely on a tool for long enough at large scale, you end up hitting
bugs or interesting edge cases. When this happens, you’ll be grateful that you can search the issue
tracker, ŀnd others with the same problem, and look at or even modify source code if you need to.

Keep in mind that things are evolving quickly. If you spend a lot of your time on devops, you need to

409

Chapter 31: Deploying Django Projects

read blogs, follow other operations engineers on Twitter, attend infrastructure-related meetups, and
keep the pulse of new developments.

Figure 31.6: Hopefully, one day someone will invent a one-button machine that deploys Django
projects and makes ice cream.

31.10 Other Resources

Ļe following are useful references for deploying projects.

ä https://highperformancedjango.com
ä http://www.fullstackpython.com/deployment.html

31.11 Summary

In this chapter we provided a very high level overview for deploying Django projects, including ba-
sic descriptions of single and multi-server setups. We also covered different the three most popular
WSGI application servers. Finally, we compared infrastructure automation and conŀguration man-
agement tools.

410

https://highperformancedjango.com
http://www.fullstackpython.com/deployment.html

32 | Continuous Integration

Continuous integration (CI) is one of those things where, to explain the concept, we quote one of its
originators:

Continuous integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily — leading
to multiple integrations per day. Each integration is veriŀed by an automated build (in-
cluding test) to detect integration errors as quickly as possible. Many teams ŀnd that
this approach leads to signiŀcantly reduced integration problems and allows a team to
develop cohesive software more rapidly.

— Martin Fowler, http://2scoops.co/martin-fowler-continuous-integration

Here’s a typical development workłow when using continuous integration:
..
1 Developer writes code, runs local tests against it, then pushes the code to an instance of a code

repository such as Git or Mercurial. Ļis should happen at least once per day.
..
2 Ļe code repository informs an automation tool that a new commit is ready for integration.
..
3 Automation integrates the code into the project, building out the project. Any failures during

the build process and the commit are rejected.
..
4 Automation runs developer-authored tests against the new build. Any failures of the tests and

the commit is rejected.
..
5 Ļe developer is notiŀed of success or the details of failure. Based on the report, the developer

can mitigate the failures. If there are no failures, the developer celebrates and moves to the
next task.

Ļe advantages of this process are immediately clear. Ļanks to continuous integration, we have the
following:

411

http://2scoops.co/martin-fowler-continuous-integration

Chapter 32: Continuous Integration

ä Earlier warnings of bugs and breakdowns.
ä Deployment-breaking issues in the code are more frequently caught.
ä Daily merges to the main trunk mean that no one person’s code dramatically changes the code

base.
ä Immediate positive and negative feedback is readily available about the project.
ä Automation tools that make this possible include a lot of metrics that make both developers

and managers happy.

32.1 Principles of Continuous Integration

Now that we’ve gone over why continuous integration is great, let’s go over some key components
when using this work process. Ļis is our interpretation of principles explored Martin Fowler’s dis-
cussion of the topic at http://2scoops.co/ci-practices

32.1.1 Write Lots of Tests!

One of the nice things about continuous integration is that it ties so well with everything we discuss
in chapter 22. Without comprehensive tests, continuous integration simply lacks that killer punch.
Sure, some people would argue that without tests, continuous integration is useful for checking if a
deployment would succeed and keeps everyone on the same branch, but we think they are thinking
from the perspective of statically-typed languages, where a successful compilation already provides
signiŀcant guarantees regarding the functionality of the software.

32.1.2 Keeping the Build Fast

Ļis is a tricky one. Your tests should arguably be running against the same database engine as your
production machine. However, under certain circumstances, tests can take a minute or ten. Once a
test suite takes that long, Continuous Integration stops being advantageous, and starts becoming a
burden.

It’s at this point that developers (including the authors) begin considering using Sqlite3 in-memory
for tests. We’ll admit that we’ve done it ourselves. Unfortunately, because SQLite3’s behaves signif-
icantly differently than PostgreSQL or MySQL, this can be a mistake. For example, ŀeld types are
not constrained the same way.

412

http://2scoops.co/ci-practices

32.2: Tools for Continuously Integrating Your Project

Here are a few tips for speeding up testing on large projects:

ä Avoid ŀxtures. Ļis is yet another reason why we advise against their use.
ä Avoid TransactionTestCase except when absolutely necessary.
ä Avoid heavyweight setUp() methods.
ä Write small, focused tests that run at lightning speed, plus a few larger integration-style tests.
ä Learn how to optimize your database for testing. Ļis is discussed in public forums like Stack

Overłow: http://stackoverflow.com/a/9407940/93270

32.2 Tools for Continuously Integrating Your Project

Use the following tools:

32.2.1 Tox

http://tox.readthedocs.org/

Ļis is a generic virtualenv management and testing command-line tool that allows us to test our
projects against multiple Python and Django versions with a single command at the shell. You can
also test against multiple database engines. It’s how the authors and oodles of developers around the
world check the compatibility of their code against different versions of Python.

If that isn’t enough to convince you:

ä Tox checks that packages install correctly with different Python versions and interpreters. Check
on Python 2.7, 3.4, and PyPy all in one go!

ä Tox runs tests in each of the environments, conŀguring your test tool of choice.
ä Tox can act “as a frontend to continuous integration servers, reducing boilerplate and merging

CI and shell-based testing.”

413

http://stackoverflow.com/a/9407940/93270
http://tox.readthedocs.org/

Chapter 32: Continuous Integration

Figure 32.1: It’s easy to get carried away. Pictured are two absolutely unnecessary Tox environments,
just so we could get extra tastes.

32.2.2 Jenkins

http://jenkins-ci.org/

Jenkins is a extensible continuous integration engine used in private and open source efforts around
the world. It is the standard for automating the components of Continuous Integration, with a huge
community and ecosystem around the tool. If an alternative to Jenkins is considered, it should be
done so after careful consideration.

32.3 Continuous Integration as a Service

Jenkins is an awesome tool, but sometimes you want to have someone else do the work in regards
to setting it up and serving it. Ļere are various services that provide automation tools powered by
Jenkins or analogues. Some of these plug right into popular repo hosting sites like GitHub and
BitBucket, and most provide free repos for open source projects. Some of our favorites include:

Service Python Versions Supported Link

Travis-CI 3.3, 3.2, 2.7, 2.6, PyPy https://travis-ci.org

414

http://jenkins-ci.org/
https://travis-ci.org

32.4: Additional Resources

Service Python Versions Supported Link
AppVeyor (Windows) 3.4, 3.3, 2.7 http://www.appveyor.com/

CircleCI 3.4, 3.3, 2.7, 2.6, PyPy, many more https://circleci.com

Drone.io 2.7, 3.3 https://drone.io/

Codeship 3.4, 2.7 https://codeship.com

Table 32.1: Continuous Integration Services

32.3.1 Code Coverage as a Service

When we use continuous integration through one of the above CI services, what we don’t get back is
our code coverage. Ļis causes problems with section 22.7, ‘Ļe Game of Test Coverage’. Fortunately
for us, services like codecov.io can generate coverage reports and the game can continue.

32.4 Additional Resources

ä http://en.wikipedia.org/wiki/Continuous_Integration
ä http://jenkins-ci.org/
ä http://www.caktusgroup.com/blog/2010/03/08/django-and-hudson-ci-day-1/
ä http://ci.djangoproject.com/
ä http://docs.python-guide.org/en/latest/scenarios/ci/

32.5 Summary

Continuous integration has become a standard for open source and private projects around the world.
While there is the cost of doing work up front, the beneŀts of safer deployments and more robust
projects easily outweigh the investment. Furthermore, there are enough resources and recipes that
setting up continuous integration is faster than ever.

One ŀnal note: even if tests are not written for a project, the practice of continual project building
makes continuous integration worth the setup.

415

http://www.appveyor.com/
https://circleci.com
https://drone.io/
https://codeship.com
https://codecov.io
http://en.wikipedia.org/wiki/Continuous_Integration
http://jenkins-ci.org/
http://www.caktusgroup.com/blog/2010/03/08/django-and-hudson-ci-day-1/
http://ci.djangoproject.com/
http://docs.python-guide.org/en/latest/scenarios/ci/

Chapter 32: Continuous Integration

416

33 | The Art of Debugging

Whether they are on a brand new shiny project or a legacy Django system that’s a decade old, debug-
ging just happens. Ļis chapter provides useful tips we can do to make the debugging process better
and easier.

33.1 Debugging in Development

Ļese are common tricks and tools for debugging locally.

33.1.1 Use django-debug-toolbar

We’ve already mentioned this invaluable package repeatedly. It is arguably the easiest/fastest way to
display various debug information about the current request/response cycle. If you want to know how
fast your templates are rendering, what queries are being made, and what variables are being used,
this is the tool.

If you don’t have it set up and conŀgured, stop everything else you are doing and add it to your project.

ä https://pypi.python.org/pypi/django-debug-toolbar
ä http://django-debug-toolbar.readthedocs.org

33.1.2 That Annoying CBV Error

If you are using CBVs this is an error you might see in the console or a view test:

417

https://pypi.python.org/pypi/django-debug-toolbar
http://django-debug-toolbar.readthedocs.org

Chapter 33: Ļe Art of Debugging

..

EŤōřŜŘő ȚȚ.Ș

twoscoopspress$ python discounts/manage.py runserver 8001
Starting development server at http://127.0.0.1:8001/
Quit the server with CONTROL-C.

Internal Server Error: /
Traceback (most recent call last):

File "/.envs/oc/lib/python2.7/site-packages/django/core/handlers/base.py",
line 132, in get_response response = wrapped_callback(request,
*callback_args, **callback_kwargs)

File "/.envs/oc/lib/python2.7/site-packages/django/utils/decorators.py",
line 145, in inner

return func(*args, **kwargs)
TypeError: __init__() takes exactly 1 argument (2 given)

Ļis is a bug that djangonauts of all skill levels introduce into their codebases.

Ļe ŀrst thing we do when we see TypeError: init () takes exactly 1 argument (2
given) in the console is we check our urls.py modules. Chances are somewhere we are deŀning
URLs where we forgot to add the as view() method to our CBV routing.

Example of TypeError generating code:

..

BōŐ EŤōřŜŘő ȚȚ.Ș

Forgetting the 'as_view()' method
url(r'ˆ$', HomePageView, name="home"),

Example of ŀxed code:

..
EŤōřŜŘő ȚȚ.ș

url(r'ˆ$', HomePageView.as_view(), name="home"),

418

33.1: Debugging in Development

33.1.3 Master the Python Debugger

Also known as just PDB, this in essence provides an enhanced REPL for interacting with source code
at breakpoints you specify. You can also step forward in the code to see how things change as the
code is executed. In regards to Django, there tends to be three places PDB is used:

..
1 Inside of test cases.
..
2 During an HTTP request against development breakpoints allow you to examine at our own

pace the process of evaluating the request.
..
3 To debug management commands.

..

WARNING: Before Deploying Check for PDB

.

Having PDB breakpoints in code that reaches production is disastrous as it will stop com-
pletion of user requests. Ļerefore, before deployment, search the code for ‘pdb’. You can also
rely on tools like łake8 to automatically check for existence of pdb (and other problems).

While PDB is useful, it becomes dramatically more powerful when extended by third-party packages
such as ipdb. What ipdb does is add the ipython interface to the PDB interface, turning a handy
tool into a something worth celebrating with ice cream.

References:

ä Python’s pdb documentation: https://docs.python.org/2/library/pdb.html
ä Using PDB with Django: https://mike.tig.as/blog/2010/09/14/pdb/

Packages:

ä IPDB: https://pypi.python.org/pypi/ipdb
ä Using IPDB with pytest https://pypi.python.org/pypi/pytest-ipdb

33.1.4 Remember the Essentials for Form File Uploads

Unless we consistently work on ŀle uploads, there are two easily forgotten items that will cause ŀle
uploads to fail silently. Ļis can be very frustrating, as code that fails silently is harder to debug.
Anyway, should there be any problems with ŀle uploads, check the following:

419

https://docs.python.org/2/library/pdb.html
https://mike.tig.as/blog/2010/09/14/pdb/
https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/pytest-ipdb

Chapter 33: Ļe Art of Debugging

1. Does the <form> tag include an encoding type?

..

EŤōřŜŘő ȚȚ.Ț

<form action="{% url 'stores:file_upload' store.pk %}"
method="post"
enctype="multipart/form-data">

2. Do the views handle request.FILES? In Function-Based Views?

..

EŤōřŜŘő ȚȚ.ț

stores/views.py

from django.shortcuts import render, redirect, get_object_or_404
from django.views.generic import View

from stores.forms import UploadFileForm
from stores.models import Store

def upload_file(request, pk):
"""Simple FBV example"""
store = get_object_or_404(Store, pk=pk)
if request.method == 'POST':

Don't forget to add request.FILES!
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

store.handle_uploaded_file(request.FILES['file'])
return redirect(store)

else:
form = UploadFileForm()

return render(request, 'upload.html', {'form': form, 'store': store})

Or what about Class-Based Views?

..

EŤōřŜŘő ȚȚ.Ȝ

stores/views.py
from django.shortcuts import render, redirect, get_object_or_404
from django.views.generic import View

420

33.1: Debugging in Development

..

from stores.forms import UploadFileForm
from stores.models import Store

class UploadFile(View):
"""Simple CBV example"""
def get_object(self):

return get_object_or_404(Store, pk=self.kwargs['pk'])

def post(self, request, *args, **kwargs):
store = self.get_object()
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

store.handle_uploaded_file(request.FILES['file'])
return redirect(store)

return redirect('stores:file_upload', pk=pk)

def get(self, request, *args, **kwargs):
store = self.get_object()
form = UploadFileForm()
return render(

request,
'upload.html',
{'form': form, 'store': store})

.....

TIP: Form-Based Class Based Generic Views

.

If a view inherits from one of the following then we don’t need to worry about re-
quest.FILES in your view code. Django handles most of the work involved.

ä django.views.generic.edit.FormMixin
ä django.views.generic.edit.FormView
ä django.views.generic.edit.CreateView
ä django.views.generic.edit.UpdateView

In these examples we don’t provide the code for the store.handle uploaded file() method.

421

Chapter 33: Ļe Art of Debugging

We’re just demonstrating where we might place such a method call.

33.1.5 Lean on the Text Editor or IDE

When using a Text Editor like Sublime Text, Textmates, Vim, Emacs, or many other choices, ŀnd
Python and Django speciŀc options or plugins and use them. Even if all they do is highlight code
and identify PEP-8 violations, that will help immensely.

When using an IDE (Integrated Development Environment) like PyCharm, PyDev, WingIDE,
Komodo, etc., then all of the IDE’s capabilities with Python and Django should be embraced and
used. Ļat means use breakpoints and other advanced features. If we aren’t using the IDE to the
fullest, then why are we bothering with the effort of setting up the IDE?

Just make sure not to code to the IDE (or Text Editor). See subsection 1.7.2.

.....

TIP: What is The Best IDE or Text Editor?

.

“Whatever you prefer the most.”

Each of us is an individual. Whatever łavor of ice cream or source code editor we prefer the
most is our own unique expression. Ļe only right answer is the one chosen for ourselves.

For what it is worth, as of 2015 Audrey prefers Textmate and Daniel prefers Sublime Text.

33.2 Debugging Production Systems

Ļere are some bugs that turn up in production that seem impossible to duplicate in development.
Ļis happens when there are speciŀc conditions that cannot be easily duplicated locally, including
load conditions, third-party APIs, and the size of data. Debugging these problems can be really
frustrating and time consuming. Ļis section provides some tips on things that can be done to ease
the pain.

422

33.2: Debugging Production Systems

33.2.1 Read the Logs the Easy Way

Ļe problem with diving into production log ŀles is they can be so large they obfuscate the cause of
errors. Instead, use a log aggregator like Sentry to get a better view into what is going on in your
application.

33.2.2 Mirroring Production

Ļis concept is to mirror production in an environment that can be accessed by the maintainers for
the sake of debugging. Ļe growing popularity of modern deployment techniques (PaaS, devops,
identical environments) in theory makes this easier to do. Generally, when duplicating a production
environment, the following steps are taken:

..
1 Behind a ŀrewall or some other protective measure, set up a remote server identical to the

production environment.
..
2 Copy production data over, taking special care to remove Personally Identifying Information.

By this, we mean anything that can be used to identify critical details of individual users,
including email addresses.

..
3 Provide shell access to those who need it.

Once these steps have been taken, try to replicate the reported bug. If the production mirror is
completely inaccessible to anyone outside the product (i.e. behind a ŀrewall), you can even consider
changing the settings.DEBUG to True.

..

WARNING: Take Special Care With Email Addresses

.

Ludvig Wadenstein notes that email addresses “might not seem like a big deal to keep around
on your dev server, but all it takes is one small mishap and you have sent emails to all of your
users.”

33.2.3 UserBasedExceptionMiddleware

What if you could provide superusers with access to the settings.DEBUG=True 500 error page in
production? Ļat would make debugging much easier, right? Ļe problem, of course, is that hav-

423

Chapter 33: Ļe Art of Debugging

ing settings.DEBUG=True in production is serious security problem. However, thanks to Simon
Willison, co-creator of Django, there is a way to use this powerful debugging tool in production.

..

EŤōřŜŘő ȚȚ.ȝ

core/middleware.py
import sys

from django.views.debug import technical_500_response

class UserBasedExceptionMiddleware(object):
def process_exception(self, request, exception):

if request.user.is_superuser:
return technical_500_response(request, *sys.exc_info())

33.2.4 That Troublesome settings.ALLOWED HOSTS Error

I see that my old nemesis, settings.ALLOWED HOSTS, has returned.

– Daniel Roy Greenfeld

Ļe ALLOWED HOSTS setting is a list of strings representing the host/domain names that a Django
site can serve. Ļis is a wonderful security measure that only turns on when settings.DEBUG is
False. Unfortunately, as soon as settings.DEBUG is False, a project with an incorrectly set AL-
LOWED HOSTS will generate constant 500 errors. Checking the logs will show that SuspiciousOp-
eration errors are being raised, but those errors don’t come with a meaningful message.

So what is happening?

..
1 settings.DEBUG is False
..
2 Django can’t match the host/domains named in ALLOWED HOSTS with what is being served.

A common example is when ALLOWED HOSTS is an empty list and we’re trying to serve pages
from example.com

..
3 Django thinks that something suspicious is going on, and raises a SuspiciousOperation

error.

424

33.3: Feature Flags

Ļerefore, whenever a project is deployed for the ŀrst time and always returns a 500 error, check
settings.ALLOWED HOSTS. As for knowing what to set, here is a starting example:

..

EŤōřŜŘő ȚȚ.Ȟ

settings.py
ALLOWED_HOSTS = [

'.djangopackages.com',
'localhost', # Ensures we can run DEBUG = False locally
'127.0.0.1' # Ensures we can run DEBUG = False locally

]

Reference:

ä https://docs.djangoproject.com/en/1.8/ref/settings/#allowed-hosts

33.3 Feature Flags

An incredibly powerful technique, Feature Flags allow us to turn a project’s feature on or off via a
web-based interface.

.....

TIP: Simon Willison' Advice on Feature Flags

.

Django project co-creator Simon Willison says:
“Feature łags offer the best bang-for-your-buck of anything I’ve ever added to
a codebase.”

Let’s say we’re adding a new feature to our site, perhaps the ability to remotely control a robot that
serves ice cream. Works great on our laptops, ŀne on a QA server. Ļen we push the change to
production, thousands of users start to command the robot and it goes haywire. Utter disaster unfolds
as chocolate ice cream is served to vanilla ice cream aŀcionados. We quickly shut everything down
then spend days cleaning up the mess. However, the damage is done as ice cream eaters around the
world decide not to use our ice cream serving robot.

While a silly example, this kind of thing happens. Identical environments can help, but aren’t always
the answer. For example, it’s not uncommon for users to discover a broken element of a new feature
or bug ŀx that was missed in tests. Anyone who has pushed code to a production server experiences

425

Chapter 33: Ļe Art of Debugging

this from time to time. Of course, you can ask people to play around on a QA or staging server, but
that isn’t the same as having them use the production site for real. What if we could allow a subset
of real users (i.e. ‘beta users’) deŀned through an admin-style interface to interact with a new feature
before turning it on for everyone?

Ļis is what feature łags are all about!

If fact, production problems have been uncovered by having a smaller set of users more willing to try
a new, possibly buggy feature. Ļis can include staff, friends of staff, and friendly users willing to try
out beta-level features before anyone else gets a chance.

33.3.1 Feature Flag Packages

Ļe two most common feature łag packages for Django are django-gargoyle and django-waffle.
Ļey both support a similar feature set, though Gargoyle offers more options for building custom
segments in exchange for more complexity. Either of them are very useful tools worth adding to
projects.

ä https://github.com/disqus/gargoyle
ä https://github.com/jsocol/django-waffle

33.3.2 Unit Testing Code Affected by Feature Flags

One gotcha with feature łags is running tests against code that are turned off by them. How do
we know that our new feature is tested when the łag to run them is turned off? Ļe answer to this
question is that our tests should cover both code paths, with feature łags on or off. To do this, we
need to familiarize ourselves with how to turn a feature łag on or off within the Django testing
framework:

ä http://www.2scoops.co/testing-with-gargoyle/
ä http://www.2scoops.co/testing-with-waffle/

33.4 Summary
Still can’t ŀgure out the problem? No worries, in the next chapter we provide some great tips for
asking questions.

426

https://github.com/disqus/gargoyle
https://github.com/jsocol/django-waffle
http://www.2scoops.co/testing-with-gargoyle/
http://www.2scoops.co/testing-with-waffle/

34 | Where and How to Ask Django
Questions

All developers get stuck at one point or another on something that’s impossible to ŀgure out alone.
When you get stuck, don’t give up!

34.1 What to Do When You're Stuck

Follow these steps to increase your chances of success:

..
1 Troubleshoot on your own as much as possible. For example, if you’re having issues with a

package that you just installed, make sure the package has been installed into your virtualenv
properly, and that your virtualenv is active.

..
2 Read through the documentation in detail, to make sure you didn’t miss something.
..
3 See if someone else has had the same issue. Check Google, mailing lists, and StackOverłow.
..
4 Can’t ŀnd anything? Now ask on StackOverłow. Construct a tiny example that illustrates the

problem. Be as descriptive as possible about your environment, the package version that you
installed, and the steps that you took.

..
5 Still don’t get an answer after a couple of days? Try asking on the django-users mailing list or

in IRC.

34.2 How to Ask Great Django Questions in IRC

IRC stands for Internet Relay Chat. Ļere are channels like #python and #django on the Freenode
IRC network, where you can meet other developers and get help.

427

Chapter 34: Where and How to Ask Django Questions

A warning to those who are new to IRC: sometimes when you ask a question in a busy IRC channel,
you get ignored. Sometimes you even get trolled by cranky developers. Don’t get discouraged or take
it personally!

Ļe IRC #python and #django channels are run entirely by volunteers. You can and should help out
and answer questions there too, whenever you have a few free minutes.

..
1 When you ask something in IRC, be sure that you’ve already done your homework. Use it as

a last resort for when StackOverłow doesn’t suffice.
..
2 Paste a relevant code snippet and traceback into https://gist.github.com/ (or another

pastebin).
..
3 Ask your question with as much detail and context as possible. Paste the link to your code snip-

pet/traceback. Be friendly and honest.

.....

TIP: Use a Pastebin!

.

Don’t ever paste code longer than a few characters into IRC. Seriously, don’t do it.
You’ll annoy people. Use a pastebin!

..
4 When others offer advice or help, thank them graciously and make them feel appreciated. A

little gratitude goes a long way. A lot of gratitude could make someone’s day. Ļink about how
you would feel if you were volunteering to help for free.

34.3 Feed Your Brain

Fill up your ice cream bowl with these tasty tidbits of Django and Python information. Ļey’ll help
you keep up to date with the latest and greatest.

..
1 https://www.djangoproject.com/community/ Django Project’s Feeds
..
2 Subscribe to Lincoln Loop’s Django Round Up, an excellent mailing list for ŀnd new articles

and packages for Django projects.
..
3 Subscribe to PyCoders Weekly and Python Weekly, two excellent methods for ŀnding new

articles and packages on the Python programming language.

428

https://gist.github.com/
https://www.djangoproject.com/community/

34.4: Insider Tip: Be Active in the Community

34.4 Insider Tip: Be Active in the Community

Ļe biggest secret to getting help when you need it is simple: be an active participant in the Python
and Django communities.

Ļe more you help others, the more you get to know people in the community. Ļe more you put in,
the more you get back.

34.4.1 9 Easy Ways to Participate

..
1 Attend Python and Django user group meetings. Join all the local groups that you can ŀnd

on http://wiki.python.org/moin/LocalUserGroups. Search meetup.com for Python
and join all the groups near you.

..
2 Attend Python and Django conferences in your region and country. Learn from the experts.

Stay for the entire duration of the sprints and contribute to open source projects. You’ll meet
other developers and learn a lot.

..
3 Contribute to open source Django packages and to Django itself. Find issues and volunteer to

help with them. File issues if you ŀnd bugs.
..
4 Join #python and #django on IRC Freenode and help out.
..
5 Find and join other smaller niche Python IRC channels. Ļere’s #py-

ladies, and there are also foreign-language Python IRC channels listed on
http://www.python.org/community/irc/.

..
6 Answer Django questions on StackOverłow.
..
7 Meet other fellow Djangonauts on Twitter. Be friendly and get to know everyone.
..
8 Join the Django group on LinkedIn, comment on posts, and occasionally post things that are

useful to others.
..
9 Volunteer for diversity efforts. Get involved with Django Girls and PyLadies and help make

the Python community more welcoming to women. Remember that there are many angles
to diversity: something as small as helping with a PyCon in an underrepresented country can
make a major difference.

429

http://wiki.python.org/moin/LocalUserGroups
http://www.python.org/community/irc/

Chapter 34: Where and How to Ask Django Questions

Figure 34.1: Ļe ice cream eating help desk.

34.5 Summary

One of the strengths of Django is the human factor of the community behind the framework. Assume
a friendly, open stance when you need guidance and odds are the community will rise to the task of
helping you. Ļey won’t do your job for you, but in general they will reach out and attempt to answer
questions or point you in the right direction.

430

35 | Closing Thoughts

While we’ve covered a lot of ground here in this third edition of the book. Yet this is just the tip
of the ice cream cone. For starters we plan to write more technical books and grow our open source
projects.

As for Two Scoops of Django, our current plan is to wait until Django 2.2 is released. Ļe reason is
that Django 1.8 is a Long Term Support version of Django, meaning that the content in this book
will remain relevant for a long time.

We’d genuinely love to hear from you, and so would the rest of the Django com-
munity. For speciŀc book content-related feedback, we’re using GitHub issues to
track submissions and commentary from readers. Report any of the following at
https://github.com/twoscoops/two-scoops-of-django-1.8/issues:

ä Did you ŀnd any of the topics unclear or confusing?
ä Any errors or omissions that we should know about?
ä What additional topics would you like us to cover in a future edition of this book?

We hope that this has been a useful and worthwhile read for you. If you enjoyed reading this book,
please tell others by writing a positive reviews. We need and appreciate your support.

Cheers to your success with your Django projects!

Daniel Roy Greenfeld and Audrey Roy Greenfeld

ä pydanny.com / audreyr.com / twoscoopspress.com
ä GitHub: @pydanny, @audreyr, and @twoscoopspress
ä Twitter: @pydanny, @audreyr, and @twoscoopspress
ä Facebook: https://www.facebook.com/twoscoopspress

431

https://github.com/twoscoops/two-scoops-of-django-1.8/issues
pydanny.com
audreyr.com
twoscoopspress.com
https://github.com/pydanny
https://github.com/audreyr
https://github.com/twoscoops
https://twitter.com/pydanny
https://twitter.com/audreyr
https://twitter.com/twoscoopspress
https://www.facebook.com/twoscoopspress

Chapter 35: Closing Ļoughts

432

Appendix A: Packages Mentioned In
This Book

Ļis is a list of the third-party Python, Django, and front-end packages that we’ve described or
mentioned in this book. We’ve also snuck in a few really useful packages that we don’t mention in
the book but that we feel are extremely useful.

As for the packages that we’re currently using in our own projects: the list has some overlap with this
list but is always changing. Please don’t use this as the deŀnitive list of what you should and should
not be using.

Core

Django https://djangoproject.com
Ļe web framework for perfectionists with deadlines.

django-debug-toolbar http://django-debug-toolbar.readthedocs.org/
Display panels used for debugging Django HTML views.

django-model-utils https://pypi.python.org/pypi/django-model-utils
Useful model utilities including a time stamped model.

ipdb https://pypi.python.org/pypi/ipdb
IPython-enabled pdb

Pillow https://pypi.python.org/pypi/Pillow
Friendly installer for the Python Imaging Library.

pip http://www.pip-installer.org
Package installer for Python. Comes built-in with Python 3.4 or higher.

433

https://djangoproject.com
http://django-debug-toolbar.readthedocs.org/
https://pypi.python.org/pypi/django-model-utils
https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/Pillow
http://www.pip-installer.org

Chapter 35: Appendix A: Packages Mentioned In Ļis Book

Sphinx http://sphinx-doc.org/
Documentation tool for Python projects.

virtualenv http://virtualenv.org
Virtual environments for Python.

virtualenvwrapper http://www.doughellmann.com/projects/virtualenvwrapper/
Makes virtualenv better for Mac OS X and Linux!

virtualenvwrapper-win https://pypi.python.org/pypi/virtualenvwrapper-win
Makes virtualenv better for Windows! win

Asynchronous

celery http://www.celeryproject.org/
Distributed task queue.

łower https://pypi.python.org/pypi/flower
Tool for monitoring and management of Celery tasks.

rq https://pypi.python.org/pypi/rq
RQ is a simple, lightweight, library for creating background jobs, and processing them.

django-rq https://pypi.python.org/pypi/django-rq
A simple app that provides django integration for RQ (Redis Queue).

django-background-tasks https://pypi.python.org/pypi/django-background-tasks
Database backed asynchronous task queue.

Database

django-db-tools https://pypi.python.org/pypi/django-db-tools
Great for łipping a site in and out of read-only mode.

psycopg2 https://pypi.python.org/pypi/psycopg2
PostgreSQL database adapter.

Deployment

circus https://pypi.python.org/pypi/circus
Program that lets you run and watch multiple processes and sockets. Used at Mozilla, compli-
cated, and not for small projects.

434

http://sphinx-doc.org/
http://virtualenv.org
http://www.doughellmann.com/projects/virtualenvwrapper/
https://pypi.python.org/pypi/virtualenvwrapper-win
http://www.celeryproject.org/
https://pypi.python.org/pypi/flower
https://pypi.python.org/pypi/rq
https://pypi.python.org/pypi/django-rq
https://pypi.python.org/pypi/django-background-tasks
https://pypi.python.org/pypi/django-db-tools
https://pypi.python.org/pypi/psycopg2
https://pypi.python.org/pypi/circus

dj-database-url https://pypi.python.org/pypi/dj-database-url
Ļis simple Django utility allows you to easily use Heroku for database access.

django-heroku-memcacheify https://pypi.python.org/pypi/django-heroku-memcacheify
Easy Memcached settings conŀguration for Heroku.

Fabric https://pypi.python.org/pypi/Fabric
Simple tool for remote execution and deployment.

Invoke https://pypi.python.org/pypi/invoke
Like Fabric, also works in Python 3.

Paver https://pypi.python.org/pypi/invoke
Easy build, distribution and deployment scripting.

Supervisor http://supervisord.org/
Supervisord is a client/server system that allows its users to monitor and control a number of
processes on UNIX-like operating systems.

Forms

django-crispy-forms http://django-crispy-forms.readthedocs.org/
Rendering controls for Django forms. Uses Twitter Bootstrap widgets by default, but
skinnable.

django-łoppyforms http://django-floppyforms.readthedocs.org/
Form ŀeld, widget, and layout that can work with django-crispy-forms.

django-forms-bootstrap https://pypi.python.org/pypi/django-forms-bootstrap
A simple form ŀlter for using Django forms with Twitter Bootstrap.

django-forms-builder A Django reusable app providing the ability for ad-
min users to create their own forms within the admin interface.
https://github.com/stephenmcd/django-forms-builder

Front-End

JSCS http://jscs.info/
JavaScript code style linter.

CSScomb http://csscomb.com/
Coding style formatter for CSS.

435

https://pypi.python.org/pypi/dj-database-url
https://pypi.python.org/pypi/django-heroku-memcacheify
https://pypi.python.org/pypi/Fabric
https://pypi.python.org/pypi/invoke
https://pypi.python.org/pypi/invoke
http://supervisord.org/
http://django-crispy-forms.readthedocs.org/
http://django-floppyforms.readthedocs.org/
https://pypi.python.org/pypi/django-forms-bootstrap
https://github.com/stephenmcd/django-forms-builder
http://jscs.info/
http://csscomb.com/

Chapter 35: Appendix A: Packages Mentioned In Ļis Book

Logging

logutils https://pypi.python.org/pypi/logutils
Adds useful handlers for logging.

Sentry http://getsentry.com
Exceptional error aggregation, with an open source code base.

App Enlight https://appenlight.com/ Track errors and performance issues in your project.
Newrelic http://newrelic.com

Realtime logging and aggregation platform.

Project Templates

cookiecutter-django https://github.com/pydanny/cookiecutter-django
Ļe sample project layout detailed in chapter 3 of this book.

Cookiecutter http://cookiecutter.readthedocs.org
Not explicitly for Django, a command-line utility for creating project and app templates. It’s
focused, heavily tested and well documented. By one of the authors of this book.

django-kevin https://github.com/imkevinxu/django-kevin
Django project template optimized for Heroku deployments. Forked from the earlier (1.5, 1.6)
Two Scoops project template

django-herokuapp https://github.com/etianen/django-herokuapp
A set of utilities and a project template for running Django sites on Heroku.

REST APIs

django-rest-framework http://django-rest-framework.org/
Ļe defacto REST package for Django. Exposes model and non-model resources as a RESTful
API.

django-jsonview https://github.com/jsocol/django-jsonview
Provides a simple decorator that translates Python objects to JSON and makes sure decorated
views will always return JSON.

django-tastypie http://django-tastypie.readthedocs.org
Expose model and non-model resources as a RESTful API.

436

https://pypi.python.org/pypi/logutils
http://getsentry.com
https://appenlight.com/
http://newrelic.com
https://github.com/pydanny/cookiecutter-django
http://cookiecutter.readthedocs.org
https://github.com/imkevinxu/django-kevin
https://github.com/etianen/django-herokuapp
http://django-rest-framework.org/
https://github.com/jsocol/django-jsonview
http://django-tastypie.readthedocs.org

Security

bleach https://pypi.python.org/pypi/bleachbleach
An easy whitelist-based HTML-sanitizing tool.

defusedxml https://pypi.python.org/pypi/defusedxml
Must-have Python library if you are accepting XML from any foreign source.

django-autoadmin https://pypi.python.org/pypi/django-autoadmin
Automatic admin users for Django projects with autogenerated passwords, takes the headache
out of providing secure access with auto-created sites.

django-admin-honeypot https://pypi.python.org/pypi/django-admin-honeypot
A fake Django admin login screen to notify admins of attempted unauthorized access.

django-axes https://github.com/django-pci/django-axes
Keep track of failed login attempts in Django-powered sites.

django-ratelimit-backend https://pypi.python.org/pypi/django-ratelimit-backend
Login rate-limiting at the auth backend level.

django-passwords https://pypi.python.org/pypi/django-passwords
A Django reusable app that provides validators and a form ŀeld that checks the strength of a
password.

django-secure https://pypi.python.org/pypi/django-secure
Helps you lock down your site’s security using practices advocated by security specialists. Much
of its functionality has been subsumed by Django’s SecurityMiddleware class.

django-two-factor-auth https://pypi.python.org/pypi/django-two-factor-auth
Complete Two-Factor Authentication for Django.

django-user-sessions https://pypi.python.org/pypi/django-user-sessions
Django sessions with a foreign key to the user.

peep https://pypi.python.org/pypi/peep
Uses only veriŀed TLS to upload to PyPI protecting your credentials from theft. Has other
useful features worth looking at.

Twine https://pypi.python.org/pypi/twine
Uses only veriŀed TLS to upload to PyPI protecting your credentials from theft. Has other
useful features worth looking at.

Testing

coverage http://coverage.readthedocs.org/
Checks how much of your code is covered with tests.

437

https://pypi.python.org/pypi/bleach
https://pypi.python.org/pypi/defusedxml
https://pypi.python.org/pypi/django-autoadmin
https://pypi.python.org/pypi/django-admin-honeypot
https://github.com/django-pci/django-axes
https://pypi.python.org/pypi/django-ratelimit-backend
https://pypi.python.org/pypi/django-passwords
https://pypi.python.org/pypi/django-secure
https://pypi.python.org/pypi/django-two-factor-auth
https://pypi.python.org/pypi/django-user-sessions
https://pypi.python.org/pypi/peep
https://pypi.python.org/pypi/twine
http://coverage.readthedocs.org/

Chapter 35: Appendix A: Packages Mentioned In Ļis Book

django-test-plus https://github.com/revsys/django-test-plus
Useful additions to Django’s default TestCase, which the Two Scoops authors learned from
the creator of this package and continue to use to this day. We’re happy to see this bundled up
for ease of use.

factory boy https://pypi.python.org/pypi/factory_boy
A package that generates model test data.

model mommy https://pypi.python.org/pypi/model_mommy
Another package that generates model test data.

mock https://pypi.python.org/pypi/mock
Not explicitly for Django, this allows you to replace parts of your system with mock objects.
Ļis project made its way into the standard library as of Python 3.4.

pytest http://pytest.org/
A mature full-featured Python testing tool that is very useful for Python and Django projects.

pytest-django http://pytest-django.readthedocs.org/
pytest-django is a plugin for py.test that provides a set of useful tools for testing Django ap-
plications and projects.

tox http://tox.readthedocs.org/
A generic virtualenv management and test command line tool that allows testing of projects
against multiple Python version with a single command at the shell.

User Registration

django-allauth http://django-allauth.readthedocs.org/
General-purpose registration and authentication. Includes Email, Twitter, Facebook, GitHub,
Google, and lots more.

python-social-auth http://django-social-auth.readthedocs.org/
Easy social authentication and registration for Twitter, Facebook, GitHub, Google, and lots
more.

Views

django-braces http://django-braces.readthedocs.org
Drop-in mixins that really empower Django’s class-based views.

django-extra-views http://django-extra-views.readthedocs.org/

438

https://github.com/revsys/django-test-plus
https://pypi.python.org/pypi/factory_boy
https://pypi.python.org/pypi/model_mommy
https://pypi.python.org/pypi/mock
http://pytest.org/
http://pytest-django.readthedocs.org/
http://tox.readthedocs.org/
http://django-allauth.readthedocs.org/
http://django-social-auth.readthedocs.org/
http://django-braces.readthedocs.org
http://django-extra-views.readthedocs.org/

Provides a number of additional generic class-based views to complement those provide by
Django itself.

django-vanilla-views http://django-vanilla-views.org/
Simpliŀes Django’s generic class-based views by simplifying the inheritance chain.

Time

python-dateutil https://pypi.python.org/pypi/python-dateutil
Provides powerful extensions to Python’s datetime module.

pytz https://pypi.python.org/pypi/pytz/
Brings the Olson tz database into Python. Ļis library allows accurate and cross platform
timezone calculations. It also solves the issue of ambiguous times at the end of daylight saving
time. Library Reference

Miscellaneous

awesome-slugify https://pypi.python.org/pypi/awesome-slugify
A łexible slugify function.

dj-stripe https://pypi.python.org/pypi/dj-stripe
Django + Stripe made easy.

django-compressor http://django-compressor.readthedocs.org/
Compresses linked and inline JavaScript or CSS into a single cached ŀle.

django-extensions http://django-extensions.readthedocs.org/
Provides shell plus management command and a lot of other utilities.

django-haystack http://django-haystack.readthedocs.org/
Full-text search that works with SOLR, Elasticsearch, and more.

django-pipeline http://django-pipeline.readthedocs.org/
Compression of CSS and JS. Use with cssmin and jsmin packages.

django-htmlmin https://pypi.python.org/pypi/django-htmlmin
HTML miniŀer for django.

django-reversion https://pypi.python.org/pypi/django-reversion
An extension to the Django web framework that provides comprehensive version control fa-
cilities.

django-watson https://github.com/etianen/django-watson
Full-text multi-table search application for Django using SQL database features.

439

http://django-vanilla-views.org/
https://pypi.python.org/pypi/python-dateutil
https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/awesome-slugify
https://pypi.python.org/pypi/dj-stripe
http://django-compressor.readthedocs.org/
http://django-extensions.readthedocs.org/
http://django-haystack.readthedocs.org/
http://django-pipeline.readthedocs.org/
https://pypi.python.org/pypi/django-htmlmin
https://pypi.python.org/pypi/django-reversion
https://github.com/etianen/django-watson

Chapter 35: Appendix A: Packages Mentioned In Ļis Book

envdir http://envdir.readthedocs.org/ A Python port of daemontools’ envdir.
łake8 https://pypi.python.org/pypi/flake8

Checks code quality by using PyFlakes, pep8, and other tools.
pathlib https://pypi.python.org/pypi/pathlib Object-oriented ŀlesystem paths being

merged into Python as of release 3.4.
pip-tools https://github.com/nvie/pip-tools

A set of tools to keep your pinned Python dependencies fresh.
pyyaml https://pypi.python.org/pypi/PyYAML

YAML parser and emitter for Python.
requests http://docs.python-requests.org

Easy-to-use HTTP library that replaces Python’s urllib2 library.
silk https://github.com/mtford90/silk

Silk is a live proŀling and inspection tool for the Django framework. Silk intercepts and stores
HTTP requests and database queries before presenting them in a user interface for further
inspection.

unicode-slugify https://github.com/mozilla/unicode-slugify
A Mozilla-supported slugiŀer that supports unicode characters.

Unipath https://pypi.python.org/pypi/Unipath
Object-oriented alternative to os/os.path/shutil.

440

http://envdir.readthedocs.org/
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pathlib
https://github.com/nvie/pip-tools
https://pypi.python.org/pypi/PyYAML
http://docs.python-requests.org
https://github.com/mtford90/silk
https://github.com/mozilla/unicode-slugify
https://pypi.python.org/pypi/Unipath

Appendix B: Troubleshooting
Installation

Ļis appendix contains tips for troubleshooting common Django installation issues.

Identifying the Issue

Often, the issue is one of:

ä Ļat Django isn’t on your system path, or
ä Ļat you’re running the wrong version of Django

Run this at the command line:

..
EŤōřŜŘő ȚȜ.Ș

python -c "import django; print django.get_version()"

If you’re running Django 1.8, you should see the following output:

..
EŤōřŜŘő ȚȜ.ș

1.8

Don’t see the same output? Well, at least you now know your problem. Read on to ŀnd a solution.

441

Chapter 35: Appendix B: Troubleshooting Installation

Our Recommended Solutions

Ļere are all sorts of different ways to resolve Django installation issues (e.g. manually editing your
PATH environment variable), but the following tips will help you ŀx your setup in a way that is
consistent with what we describe in chapter on Ļe Optimal Django Environment Setup.

Check Your Virtualenv Installation

Is virtualenv installed properly on your computer? At the command line, try creating a test virtual
environment and activating it.

If you’re on a Mac or Linux system, verify that this works:

..

EŤōřŜŘő ȚȜ.Ț

$ virtualenv testenv
$ source testenv/bin/activate

If you’re on Windows, verify that this works:

..

EŤōřŜŘő ȚȜ.ț

C:\code\> virtualenv testenv
C:\code\> testenv\Scripts\activate

Your virtualenv should have been activated, and your command line prompt should now have the
name of the virtualenv prepended to it.

On Mac or Linux, this will look something like:

..
EŤōřŜŘő ȚȜ.Ȝ

(testenv) $

On Windows, this will look something like:

442

..
EŤōřŜŘő ȚȜ.ȝ

(testenv) >

Did you run into any problems? If so, study the Virtualenv documentation
(http://virtualenv.org) and ŀx your installation of Virtualenv.

If not, then continue on.

Check if Your Virtualenv Has Django 1.8 Installed

With your virtualenv activated, check your version of Django again:

..
EŤōřŜŘő ȚȜ.Ȟ

python -c "import django; print django.get_version()"

If you still don’t see 1.8, then try using pip to install Django 1.8 into testenv:

..
EŤōřŜŘő ȚȜ.ȟ

(testenv) $ pip install Django==1.8

Did it work? Check your version of Django again. If not, check that you have pip installed correctly
as per the official documentation (http://pip-installer.org).

Check for Other Problems

Follow the instructions in the official Django docs for troubleshooting problems related to running
django-admin.py:
https://docs.djangoproject.com/en/1.8/faq/troubleshooting/

443

http://virtualenv.org
http://pip-installer.org
https://docs.djangoproject.com/en/1.8/faq/troubleshooting/

Chapter 35: Appendix B: Troubleshooting Installation

444

Appendix C: Additional Resources

Ļis appendix lists additional resources that are applicable to modern Django and Python. While
there is more content available then what is listed here, much of it is out of date. Ļerefore, we will
only list content that is current and applicable to Django 1.8, Python 2.7.x, or Python 3.4.x.

Beginner Python Material

Learn Python the Hard Way
http://amzn.to/1OOYqYv
If you don’t know Python, this is one of the best places to start. Ļe author takes you through
Python the same way he learned guitar, through rote and repetition. Don’t worry about the
title, this is a good way to get started with Python.

Learn Python the Hard Way Online Edition
http://learnpythonthehardway.org/
By going right to the source, this free for HTML, paid for video resources, is one of the best
places to start. Ļe video resources are especially useful.

Automate the Boring Stuff with Python
linkdiffhttp://www.2scoops.co/automate-boring-stuff-with-python/amazon.com/gp/product/1593275994
Ļis fascinating book teaches Python by instructing on how to make boring computer tasks
easy through automation. Why update 150 columns of a spreadsheet when Python can do it
for you?

Beginner Django Material

We actively maintain this list at http://twoscoopspress.com/pages/django-tutorials

445

http://amzn.to/1OOYqYv
http://learnpythonthehardway.org/
http://twoscoopspress.com/pages/django-tutorials

Chapter 35: Appendix C: Additional Resources

Books:

Real Python
http://www.realpython.com/ Advanced Web Development with Django 1.8, is a prac-
tical, real-world guide to Django 1.8 that teaches you how to become a software craftsman
and equips you with the techniques necessary to create innovative products that are elegant
and easy to maintain.

Test-Driven Web Development with Python
http://amzn.to/1Dky362 Harry Percival’s book is a great way to revisit the Django
tutorial and learn agile/TDD processes at the same time. Ļe HTML edition is free at
http://chimera.labs.oreilly.com/books/1234000000754/.

Web:

Django Girls Tutorial
http://tutorial.djangogirls.org/
Created and maintained by the international Django Girls organization, this is an excellent
resource no matter your gender.

TaskBuster Django Tutorial
http://www.marinamele.com/taskbuster-django-tutorial
An epic end-to-end tutorial on building a Django project. Not a common tutorial it dives into
the deep end and has you create a complex project.

Tango with Django
http://www.tangowithdjango.com/
Another online tutorial designed to get you going fast and to learn by example using Django
1.7 as of the authoring of this book. By the time you read this, it may be upgraded to 1.8.

Official Django 1.8 Documentation
https://docs.djangoproject.com/en/1.8/
Ļe official Django documentation is incredibly useful. If you’ve used a previous version of
Django, make sure that you are reading the correct edition of the documentation.

446

http://www.realpython.com/
http://amzn.to/1Dky362
http://chimera.labs.oreilly.com/books/1234000000754/
http://tutorial.djangogirls.org/
http://www.marinamele.com/taskbuster-django-tutorial
http://www.tangowithdjango.com/
https://docs.djangoproject.com/en/1.8/

Videos:

Try Django
http://2scoops.co/try-django
Ļe free Try Django Tutorial Series is designed to help you get used to using Django in building
a basic landing page (also known as splash page or MVP landing page) so you can collect data
from potential users.

Coding for Entrepreneurs
http://www.codingforentrepreneurs.com/
By the same person behind Try Django, this is a paid series of project-based tutorials that
help non-technical founders learn the basics of web development step-by-step using Python +
Django 1.8, JQuery, Bootstrap, and more. Includes video downloads, on-demand streaming,
and source code reference ŀles.

More Advanced Django Material

Books:

High Performance Django
amazon.com/High-Performance-Django/dp/1508748128/
https://highperformancedjango.com (ebook)
Written with a focus on scaling Django, this book espouses many good practices. Full of useful
information and tricks, as well as questions in each section that force you to think about what
you are doing.

Lightweight Django
amazon.com/Lightweight-Django-Julia-Elman/dp/149194594X
A good book by Django veterans Julia Elman and Mark Lavin that focuses heavily on the front-
end. Amongst other things, a handy reference for making Django work with Web sockets.

Django Design Patterns and Best Practices
amazon.com/Django-Design-Patterns-Best-Practices/dp/1783986646
Arun Ravindran’s book is a useful and quite funny book on design patterns.

Two Scoops of Django: Best Practices for Django 1.6 (print)
http://amzn.to/1dpCoIt
Ļe second printed edition of this book, which you can still order from Amazon.

Two Scoops of Django: Best Practices for Django 1.5 (electronic version)
http://2scoops.co/two-scoops-1.5

447

http://2scoops.co/try-django
http://www.codingforentrepreneurs.com/
http://www.2scoops.co/high-performance-django/
https://highperformancedjango.com
http://2scoops.co/lightweight-django
http://www.2scoops.co/django-design-patterns/
http://amzn.to/1dpCoIt
http://2scoops.co/two-scoops-1.5

Chapter 35: Appendix C: Additional Resources

Ļe ŀrst edition of this book in electronic format.
Two Scoops of Django: Best Practices for Django 1.5 (print version)

http://amzn.to/188W07W
Ļe ŀrst printed edition of this book, which you can still order from Amazon.

Web:

Django Packages
https://www.djangopackages.com
A directory of reusable apps, sites, tools, and more for your Django projects maintained by the
authors of Two Scoops of Django.

Classy Class-Based Views
http://ccbv.co.uk/
A website that has provides detailed descriptions, with full methods and attributes, for each of
Django’s class-based generic views.

Classy Django REST Framework
http://www.cdrf.co/
Detailed descriptions, with full methods and attributes, for each of Django REST Framework’s
class-based views and serializers.

pydanny’s blog
http://pydanny.com/tag/django.html
A good amount of this blog is about modern Django. As the author of this blog is also one of
this book’s authors, the style of the blog loosely resembles the content of this book.

Getting Started with Django Rest Framework and AngularJS
http://www.2scoops.co/kevin-stone-django-angular-tutorial/ Kevin Stone’s
amazing Django + Angular tutorial is an epic piece of work. It is over 25 pages long when
printed out, and great for kickstarting yourself into understanding Django, Django Rest
Framework, and Angular.js.

Django Model Behaviors
http://blog.kevinastone.com/django-model-behaviors.html
Kevin Stone explores how to structure models and associated code in large Django projects.

Lincoln Loop’s Django Best Practices
http://lincolnloop.com/django-best-practices/
Ļis free website resource is a really good reference of practices similar to those espoused in
this book.

Awesome-Django

448

http://amzn.to/188W07W
https://www.djangopackages.com
http://ccbv.co.uk/
http://www.cdrf.co/
http://pydanny.com/tag/django.html
http://www.2scoops.co/kevin-stone-django-angular-tutorial/
http://blog.kevinastone.com/django-model-behaviors.html
http://lincolnloop.com/django-best-practices/

https://github.com/rosarior/awesome-django
A curated list of awesome Django apps, projects and resources.

Video:

GoDjango
https://godjango.com
A series of short videos that each focus on something challenging to do with Django. Ļe more
recent episodes are for Django 1.8 and you can access more material by “going pro”.

Useful Python Material

Effective Python
http://amzn.to/1NsiqVr
Instructs on many useful practices and techniques when coding in Python.

Python Cookbook, 3rd Edition
http://amzn.to/I3Sv6q
An incredible book by Python luminaries David Beazley and Brian Jones, it’s ŀlled with deli-
cious ice cream recipes... err... incredibly useful Python recipes for any developer using Python
3.3 or greater.

Treading on Python Volume 2
http://amzn.to/1kVWi2a
Covers more advanced Python structures.

Writing Idiomatic Python 3.3
http://amzn.to/1aS5df4
Jeff Knupp’s book has a lot of great tips for optimizing your code and increasing the legibility
of your work. Ļere are a few places where his work differs from our practices (imports being
the largest area of difference), but overall we concur with his practices.

Writing Idiomatic Python 2.7
http://amzn.to/1fj9j7z
Jeff Knupp’s Idiomatic Python, but for Python 2.7

JavaScript Resources

Books:

449

https://github.com/rosarior/awesome-django
https://godjango.com
http://amzn.to/1NsiqVr
http://amzn.to/I3Sv6q
http://amzn.to/1kVWi2a
http://amzn.to/1aS5df4
http://amzn.to/1fj9j7z

Chapter 35: Appendix C: Additional Resources

Secrets of a JavaScript Ninja (Print and Kindle)
http://amzn.to/18QzT0r

Deŀnitive Guide to JavaScript (Print and Kindle)
http://amzn.to/1cGVkDD

JavaScript: Ļe Good Parts (Print and Kindle)
http://amzn.to/1auwJ6x

JavaScript Patterns (Print and Kindle)
http://amzn.to/1dii9Th

Web Resources:

Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript

Learning JavaScript Design Patterns
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

Stack Overłow
http://stackoverflow.com/questions/tagged/javascript

..

WARNING: Stay Away FromW3Schools

.

One problem about JavaScript (and CSS) research on the web is that W3Schools will turn
up at the top of search engine results. Ļis is unfortunate, because much of the data there is
outdated enough to be incorrect. Be smart and avoid this resource.

We scan the results page for the Mozilla Developer Network (MDN) link, usually
around the third position, and click on that one.

450

http://amzn.to/18QzT0r
http://amzn.to/1cGVkDD
http://amzn.to/1auwJ6x
http://amzn.to/1dii9Th
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://stackoverflow.com/questions/tagged/javascript

Appendix D: Internationalization and
Localization

Django and Python provides a lot of very useful tools for dealing with internationalization, local-
ization, and of course, Unicode.

Ļis appendix, added as of the second edition, contains a list of things helpful for preparing your
Django application for non-English readers and non-USA users. Ļis list is by no means complete,
and we invite the reader to provide additional feedback.

Start Early

It is always easier to start with and grow an internationalized, localized project than to convert an
existing project.

Define Python Source Code Encodings

In PEP 263 we are given a formal speciŀcation for deŀning how encoding of Python modules is
to occur. Amongst other things, this affects how Python handles unicode literals. To deŀne this
encoding in internationalized projects, at the top each module add:

..
EŤōřŜŘő ȚȜ.Ƞ

-*- coding: utf-8 -*-

Or as shown in the next code example:

451

Chapter 35: Appendix D: Internationalization and Localization

..

EŤōřŜŘő ȚȜ.Șȗ

#!/usr/bin/python
-*- coding: utf-8 -*-

More information can be found at http://www.python.org/dev/peps/pep-0263/

Wrap Content Strings with Translation Functions

Every string presented to end users should be wrapped in a translation function. Ļis is de-
scribed in-depth in the official Django documentation on django.utils.translation at
http://2scoops.co/1.8-translation. Since that is a lot of text to swallow, the table on the
following page is a reference guide for knowing when and where to use what translation function for
what tasks.

Function Purpose Link

ugettext() For content executed at runtime, e.g. form
validation errors.

http://2scoops.co/33

ugettext lazy() For content executed at compile time, e.g.
verbose name in models.

http://2scoops.co/32

string concat() Replaces the standard str.join() method for
joining strings. Rarely used.

http://2scoops.co/37

Table 35.1: django.utils.translation Function Reference

Convention: Use the Underscore Alias to Save Typing

As you know, normally we aren’t fans of abbreviations or shortcuts. However, in the case of interna-
tionalizing Python code, the existing convention is to use a , or underscore, to save on letters.

..

EŤōřŜŘő ȚȜ.ȘȘ

-*- coding: utf-8 -*-
from django.utils.translation import ugettext as _

452

http://www.python.org/dev/peps/pep-0263/
http://2scoops.co/1.8-translation
http://2scoops.co/33
http://2scoops.co/32
http://2scoops.co/37

..print(_("We like gelato."))

Don't Interpolate Words in Sentences

Ļe golden rule is always have as much grammar as possible in the string, don’t let the
code piece the grammar together; and generally verbs are the most problematic.

– Patrick McLoughlan

We used to construct translation strings all the time, going so far as to include it in the 1.5 edition
of the book. Ļis is when you use slightly-clever code to construct sentences out of various Python
objects. For reference, this was part of Example 8.7:

..

BōŐ EŤōřŜŘő ȚȜ.Ș

DON'T DO THIS!

Skipping the rest of imports for the sake of brevity
class FlavorActionMixin(object):

@property
def action(self):

msg = "{0} is missing action.".format(self.__class__)
raise NotImplementedError(msg)

def form_valid(self, form):
msg = "Flavor {0}!".format(self.action)
messages.info(self.request, msg)
return super(FlavorActionMixin, self).form_valid(form)

Snipping the rest of this module for the sake of brevity

While seemingly handy in that it makes for a self-maintaining mixin, it is overly clever in we
can’t internationalize the result of calling self. class . In other words, you can’t just add
django.utils.translation the following and expect it to produce anything meaningful for
translators to work from:

453

Chapter 35: Appendix D: Internationalization and Localization

..

BōŐ EŤōřŜŘő ȚȜ.ș

DON'T DO THIS!
from django.utils.translations import ugettext as _

Skipping the rest of this module for the sake of brevity

def form_valid(self, form):

This generates a useless translation object.
msg = _("Flavor {0}!".format(self.action))
messages.info(self.request, msg)
return super(FlavorActionMixin, self).form_valid(form)

Skipping the rest of this module for the sake of brevity

Rather than writing code that constructs sentences out of various Python constructs, now we write
more meaningful dialogues that can be readily translated. Ļis means a little more work, but the
result is a more easily translatable project. Hence why we now follow this pattern:

..

EŤōřŜŘő ȚȜ.Șș

-*- coding: utf-8 -*-
Skipping the rest of imports for the sake of brevity
from django.utils.translation import ugettext as _

class FlavorActionMixin(object):

@property
def success_msg(self):

return NotImplemented

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor

Slightly longer but more meaningful dialogue
success_msg = _("Flavor created!")

454

..
Skipping the rest of this module for the sake of brevity

For reference, you can combine individual strings representing meaningful sentences and dialogues
into larger values. However, you shouldn’t build sentences by concatenating pieces, because other
languages may require a different order. For the same reason, you should always include punctuation
in translated strings. See as follows:

..

EŤōřŜŘő ȚȜ.ȘȚ

-*- coding: utf-8 -*-
from django.utils.translation import ugettext as _

class FlavorActionMixin(object):

@property
def success_msg(self):

return NotImplemented

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor

Example combining strings
part_one = _("Flavor created! ")
part_two = _("Let's go try it!")
success_msg = part_one + part_two

Skipping the rest of this module for the sake of brevity

Unicode Tricks

Here are some things we’ve learned when dealing with unicode-related issues.

455

Chapter 35: Appendix D: Internationalization and Localization

Python 3 Can Make Unicode Easier

In our experience Python 3 makes unicode handling much, much easier. While in theory things can
and are back-ported to Python 2.7, we’ve found that when using Python 3 we just don’t have the
same kinds of problems. If working on a new project, this is as good a reason as any to consider
switching to Python 3.

Use django.utils.encoding.force text() Instead of unicode()

When you are working with Python 2.7.x or Python 3.3+ and need to ensure that a useful string-type
value is returned, don’t use the unicode() or str() built-ins. What can happen is that under certain
circumstances, instead of returning a unicode or str object, Django will return a nigh-meaningless
django.utils.functional. proxy object, which is a lazy instance of the data requested.

Instead, do as our friend Douglas Miranda suggested to us, and use
django.utils.encoding.force text. In the case that you are dealing with a proxy object or
lazy instance, it resolves them as strings.

.....

TIP: Django is Lazy

.

One of the ways that Django does optimizations is via lazy loading, a design pattern which
defers initialization of an object until it is needed. Ļe place where this is most obviously used
is Django’s ORM, as described at http://2scoops.co/1.8-querysets-are-lazy.
Ļis use of lazy objects can cause problems with display of content, hence the need for
django.utils.encoding.force text().

Browser Page Layout

Assuming you’ve got your content and Django templates internationalized and localized, you can
discover that your layouts are broken.

A good Django-based example is Mozilla and their various sites for supporting tools like Firefox.
On these sites they handle translations for over 80 languages. Unfortunately, a title that ŀts the page
in English breaks the site in more verbose languages such as German.

456

http://2scoops.co/1.8-querysets-are-lazy

Mozilla’s answer is to determine the width of a title container, then use JavaScript adjust the font
size of the title text downwards until the text ŀts into the container with wrapping.

A simpler way of handling this issue is to assume that other languages can take up twice as much
space as English. English is a pretty concise language that, because of its short words, handles text
wrapping very well.

457

Chapter 35: Appendix D: Internationalization and Localization

458

Appendix E: Settings Alternatives

Here a couple of alternative patterns for managing settings that we feel can be recommended. Ļey
avoid the local settings anti-pattern and allow for management of conŀguration that will work with
either the Environment Variables Pattern or the Secrets File Pattern.

..

WARNING: Converting Existing Settings is Hard

.

If you have an existing project using multiple settings modules and you want to convert it
to the single settings style, you might want to reconsider. Migrating settings approaches is
always a tricky process, and requires deep and wide test coverage. Even with the best test
coverage, there is a chance it’s not going to be worth it.

For these reasons, we suggest being conservative about switching to new settings approaches.
Only do it when the current settings management approach has become a pain point, not
when a new method becomes popular.

Twelve Factor-Style Settings

If we’re relying on environment variables, why not use the simplest settings.py system possible? Bruno
Renié, creator of django-łoppyforms and FeedHQ (https://feedhq.org), advocates an alternate
approach to Django settings ŀles, in which all environments use the same single settings ŀle.

Ļe argument for this approach is that when using the multiple settings ŀles approach, you end up
with environment-speciŀc code. For instance, when doing local development, you’re not running the
code with production settings. Ļis increases the chance of running into production-speciŀc bugs
when you update some code without updating the production settings accordingly.

459

https://feedhq.org

Chapter 35: Appendix E: Settings Alternatives

Ļis style involves using sensible default settings and as few environment speciŀc values as possible.
When combined with tools like Vagrant and Docker, it means that mirroring production is trivial.

It results in a much simpler settings ŀle, and for Twelve Factor App fans, it’s right in line with that
approach.

If you want to see an example of the approach in action, check out FeedHQ’s settings module:
https://github.com/feedhq/feedhq/blob/master/feedhq/settings.py

We’ve enjoyed this approach for new and smaller projects. When done right, it makes things elegantly
simple.

However, it’s not a perfect solution for all problems:

ä It doesn’t provide much beneŀt for simpliŀcation when development environments are dras-
tically different than production.

ä It doesn’t work as well with projects being deployed to more than one operating system.
ä Complex settings on large projects are not really simpliŀed or shortened by this approach. It

can be challenging to use on large or complex projects.

If you would like to know more about this approach, we recommend the following articles:

ä http://bruno.im/2013/may/18/django-stop-writing-settings-files/
ä http://12factor.net/config

460

https://github.com/feedhq/feedhq/blob/master/feedhq/settings.py
http://bruno.im/2013/may/18/django-stop-writing-settings-files/
http://12factor.net/config

Appendix F: Working with Python 3

Django’s official documentation has a well-written page that covers much of what’s involved with
working with Python 3. Here are some speciŀc sections you should pay careful attention to:

Django Official Docs on Python 3 http://2scoops.co/1.8-python3
Coding Guidelines http://2scoops.co/1.8-python3-coding-guidelines
Writing Compatible Code with Six http://2scoops.co/1.8-python3-six

Here are some other things you should know.

Most Critical Packages Work with Python 3

As of the time of this writing, Django Packages lists over 205 packages that support Python 3. Ļis
includes such critical libraries as:

ä Django itself
ä Pillow
ä django-braces
ä django-crispy-forms
ä django-debug-toolbar
ä django-łoppyforms
ä django-rest-framework
ä python-requests

You can see a list of Django speciŀc libraries at https://www.djangopackages.com/python3/.

461

http://2scoops.co/1.8-python3
http://2scoops.co/1.8-python3-coding-guidelines
http://2scoops.co/1.8-python3-six
https://www.djangopackages.com/python3/

Chapter 35: Appendix F: Working with Python 3

Checking for Python 3 Compatibility

Here are the steps we follow in rough order when determining if a third-party library actually works
with Python 3:

ä Check on https://www.djangopackages.com/python3/.
ä Look up the package on PyPI and see if any of its trove classiŀers mention Python 3 status.
ä See if a pull request for Python 3 support is outstanding.
ä Run the test suite using Python 3.4.
ä If a Django project, check the models for str () methods. If it has them, it’s a pretty good

indicator that it’s Python 3.4 friendly.

Converting a Library to Work with Python 3.4

How we convert Python 2 code to Python 3:

ä Get the test harness working with Python 3.
ä Lean on django.contrib.six as much as possible. Add a compat.py module only if abso-

lutely needed.
ä Fix any problems you ŀnd in the code. Try to keep solutions as simple as possible.
ä Submit the pull request.
ä Politely poke the package owner to accept the pull request.
ä Once the owner accepts the pull request, gently poke the package owner to push the update

to PyPI.

.....

TIP: Dealing with Slow Maintainers

.

Ranting to or complaining about slow-moving maintainers is absolutely counter-productive.
People have lives and jobs that sometimes get in the way of open source. It’s more productive
to be patient, be polite, and if necessary do an absolutely minimal fork or ŀnd a working
alternative.

462

https://www.djangopackages.com/python3/

Use Python 3.3.3 or Later

Django is a large, complicated system. While it’s heavily tested for multiple versions of Python 3,
we’ve found that it just works better with more recent versions of the language. For example, migrate
fails in curious ways with Python 3.3.0.

Working With Python 2 and 3

We usually encounter this scenario when we are writing a third-party package for use in Django
or even just vanilla Python. However, there are use cases where an entire Django project might be
deployed to Python 2.7 as well as Python 3.3. Fortunately, most of the following suggestions apply
no matter the scale of the project.

Tests and Continuous Integration

If there isn’t a working test harness and functioning continuous integration, now is the time to set it
up. Testing compatibility across major Python versions simply requires automation.

Keep Compatibility Minimally Invasive

Ļe last thing that a project needs is complex branches to deal with different versions of Python.
Ļerefore, use the following imports at the top of a Python module to keep code identical:

..

EŤōřŜŘő ȚȜ.Șț

The __future__ imports in this module means that all code
in this example will work identically in Python 2.7 and
Python 3 or higher.

Multi-Line and Absolute/Relative imports will work identically across
Python versions.
from __future__ import absolute_import

Any division will return float objects. Example 3 / 2 = 1.5
from __future__ import division

463

Chapter 35: Appendix F: Working with Python 3

..
All strings defined in Python 2 and 3 can use Python 3's name = 'django'
syntax for defining unicode-friendly strings.
from __future__ import unicode_literals

When we do need more complexity or any sort of logic, that’s when it’s time to create a compat.py
module.

Use django.utils.encoding.python 2 unicode compatible in Models

Rather than write both str () and unicode () methods, use
django.utils.encoding.python 2 unicode compatible so it only has to be written once.
See section 19.3, ‘Viewing String Representations of Objects.’

Resources

Ļe following are useful resources for Python 3 topics:

Porting to Python 3
http://python3porting.com/
Lennart Regebro’s free HTML or paid e-book bundle on the subject of moving from Python
2 to 3.

Porting Django apps to Python 3
http://youtu.be/cJMGvAYYUyY
Ļis is Jacob Kaplan-Moss’ PyCon US 2013 video on the subject.

Python Cookbook, 3rd Edition
http://amzn.to/I3Sv6q
David Beazley and Brian Jones’ book of handy recipes for Python 3.

Writing Idiomatic Python 3.3
http://amzn.to/1aS5df4
Jeff Knupp’s guide to writing Python 3 code the ‘right’ way.

464

http://python3porting.com/
http://youtu.be/cJMGvAYYUyY
http://amzn.to/I3Sv6q
http://amzn.to/1aS5df4

Appendix G: Security
Settings Reference

Appendix G: Security Settings Reference

In Django, knowing which setting should be set to what value in development vs production requires
an unfortunate amount of domain knowledge. Ļis appendix is a reference for better understanding
how to conŀgure a Django project for both development and production.

Setting Development Production

ALLOWED HOSTS any list See subsection 33.2.4

Cross Site Request Forgery protection See next page See next page

DEBUG True False

DEBUG PROPAGATE EXCEPTIONS False False

Email SSL See next page See next page

MIDDLEWARE CLASSES Standard Add SecurityMiddleware

SECRET KEY Use cryptographic key See section 5.3

SECURE PROXY SSL HEADER None See next page

SECURE SSL HOST False True

SESSION COOKIE SECURE False True

SESSION SERIALIZER See below See next page

Table 35.2: Security Settings Reference

465

Chapter 35: Appendix G: Security Settings Reference

Cross Site Request Forgery Protection Settings

For most cases, the standard Django defaults for these settings are adequate. Ļis list provides refer-
ences to edge cases and the CSRF setting documentation that might provide mitigation:

ä Internet Explorer and CSRF failure: 2scoops.co/1.8-csrf-cookie-age
ä Cross-subdomain request exclusion, (e.g. posting from vanilla.twoscoopspress.com to

chocolate.twoscoopspress.com): 2scoops.co/1.8-csrf-cookie-domain
ä Changing the default CSRF failure view: 2scoops.co/1.8-csrf-failure-view

Email SSL

Django now supports secure connections to SMTP servers. If emails from a site contains security-
related material, we strongly suggest using this feature. Documentation on the following settings
begins at https://docs.djangoproject.com/en/1.8/ref/settings/#email-use-tls

ä EMAIL USE TLS
ä EMAIL USE SSL
ä EMAIL SSL CERTFILE
ä EMAIL SSL KEYFILE

SESSION SERIALIZER

Per subsection 26.9.4:

SESSION SERIALIZER = django.contrib.sessions.serializers.JSONSerializer.

SECURE PROXY SSL HEADER

For some setups, most notably Heroku, this should be:

SECURE PROXY SSL HEADER = (`HTTP X FORWARDED PROTO', `https')

466

http://2scoops.co/1.8-csrf-cookie-age
http://www.2scoops.co/1.8-csrf-cookie-domain/
http://www.2scoops.co/1.8-csrf-failure-view/
https://docs.djangoproject.com/en/1.8/ref/settings/#email-use-tls

Acknowledgments

Ļis book was not written in a vacuum. We would like to express our thanks to everyone who had a
part in putting it together.

The Python and Django Community

Ļe Python and Django communities are an amazing family of friends and mentors. Ļanks to the
combined community we met each other, fell in love, and were inspired to write this book.

Technical Reviewers for 1.8

Bartek Ogryczak is a Python user and fanatic from 2004. From university days working with dis-
tributed systems, be it investment bankers’ computing grid, social network’s servers or AWS
cloud. Born in Warsaw, Poland, after 5 years in Madrid, Spain and another 5 in Amsterdam,
the Netherlands has settled with family in East Bay, California.

Barry Morrison is a self-proclaimed geek, lover of all technology. He is a multidiscipline systems
adminstrator with more than 10 years of experience with Windows, Linux, and storage in the
public and private sectors. He is also a Python and Django afficianado and Arduino tinkerer.
He lives in California.

Kevin Stone is a full-stack technologist with experience ranging from launching early stage startups
to designing billion-dollar systems. He’s been using Django since 2008. Currently employed at
Eventbrite to architect their highly scalable ticketing platform, he adores tools that allow him
to move faster, focusing on solving customer problems rather than implementation details. He
regularly blogs about Django best practices and is frequent speaker at meetups and conferences.

Paul Hallett is a human living in London, UK. He’s a Software Engineer with a passion for devel-
oping Web Services and RESTful APIs. His favourite ice cream łavour is salted caramel.

467

Chapter 35: Acknowledgments

Saurabh Kumar from New Delhi, is a Python evangelist and programs for web. When he is not
working for his clients, he likes to contribute to open-source projects and organizes program-
ming workshops for school and college students. Along side his passion for programming,
he is also an avid traveler. He utilizes his photography skills to capture the greatest moments
around his life. He loves to see technology from design perspective and vice versa.

Security Reviewer for 1.8

Erik Romijin started using Django in the days of 1.2. His largest contribution to Django was
GenericIPAddressField, and he has worked on all sorts of patches since. While developing
with Django, he always keeps a little list of even the slightest Django frustrations, to tackle
them at a later time and prevent other developers from having to deal with the same issues. He
also enjoys helping ordinary developers to build safer web apps, for which Django is already a
great start, and developed Erik’s http://ponycheckup.com/ with that goal in mind. Erik
lives in Amsterdam, Ļe Netherlands.

Contributors to 1.8

Ļe following individuals helped us improve this edition: Kenneth Love, Patrick McLoughlan, Se-
bastián J. Seba, Kevin Campbell, Doug Folland, Kevin London, Ramon Maria Gallart Escolà, Eli
Bendersky, Dan O’Donovan, Ryan Currah, Shaŀque Jamal, Russ Ferriday, Charles L. Johnson,
Josh Wiegand, William Vincent, Tom Atkins, Martey Dodoo, Krace Kumar Ramaraju, Felipe Ar-
ruda Pontes, Ed Patrick Tan, Sven Aßmann, Christopher Lambacher, Colin O’Brien, Sebastien de
Menten, Evangelos Mantadakis, Silas Wegg, Michal Hoftich, Markus Holterman, Pat Curry, Gas-
ton Keller, Mihail Russu, Jean-Baptiste Lab, Kaleb Elwert, Tim Bell, Zuhair Parvez, Ger Schinkel,
Athena Yao, Norberto Bensa, Abhaya Agarwal, Steve Sarjeant, Karlo Tamayo, Cary Kempston, José
Padilla, Konstantinos Faliagkas, Kelsey Gilmore-Innis, Adam Bogdał, Tyler Davis, Javier Liendo,
Kevin Xu, Michael Barr, Caroline Simpson, John Might, Tom Christie, Nicolas Pannetier, Marc
Tamlyn, Loïc Bistuer, Arnaud Limbourg, Alasdair Nicol, and Ludvig Wadenstein.

If your name is not on this list but should be, please send us an email so that we can make corrections!

Technical Reviewers for 1.6

Ļe following were critical in supporting the 1.6 edition of this book.

468

http://ponycheckup.com/

Aymeric Augustin
Barry Morrison
Ken Cochrane
Paul McMillan - Security Reviewer

Technical Reviewers for 1.5

Ļe following individuals gave us their invaluable help, aid and encouragement for the initial release
of this book. We give special recognition here to Malcolm for his contributions to this book and the
world.

Malcolm Tredinnick lived in Sydney, Australia and spent much of his time travelling internation-
ally. He was a Python user for over 15 years and Django user since just after it was released
to the public in mid-2005, becoming a Django core developer in 2006. A user of many pro-
gramming languages, he felt that Django was one of the better web libraries/frameworks that
he used professionally and was glad to see its incredibly broad adoption over the years. In 2012
when he found out that we were co-hosting the ŀrst PyCon Philippines, he immediately vol-
unteered to ły out, give two talks, and co-run the sprints. Sadly, he passed away in March
of 2013, just two months after this book was released. His leadership and generosity in the
Python and Django community will always be remembered.

Ļe following were also critical in supporting the 1.5 edition of this book.

Kenneth Love
Lynn Root
Barry Morrison
Jacob Kaplan-Moss
Jeff Triplett
Lennart Regebro
Randall Degges
Sean Bradley

Chapter Reviewers for 1.5

Ļe following are people who gave us an amazing amount of help and support with speciŀc chapters
during the writing of the 1.5 edition. We would like to thank Preston Holmes for his contributions

469

Chapter 35: Acknowledgments

to the User model chapter, Tom Christie for his sage observations to the REST API chapter, and
Donald Stufft for his support on the Security chapter.

Final Reviewers for 1.5

During the Final period the following individuals sent us corrections, cleanups, bug ŀxes, and
suggestions. Ļis includes: Chris Jones, Davide Rizzo, Tiberiu Ana, Dave Castillo, Jason Bit-
tel, Erik Romijn, Darren Ma, Dolugen Buuraldaa, Anthony Burke, Hamish Downer, Wee Liat,
Álex González, Wee Liat, Jim Kalafut, Harold Ekstrom, Felipe Coelho, Andrew Jordan, Karol
Bregu la, Charl Botha, Fabio Natali, Tayfun Sen, Garry Cairns, Dave Murphy, Chris Foresman,
Josh Schreuder, Marcin Pietranik, Vraj Mohan, Yan Kalchevskiy, Jason Best, Richard Donkin, Pe-
ter Valdez, Jacinda Shelly, Jamie Norrish, Daryl Yu, Xianyi Lin, Tyler Perkins, Andrew Halloran,
Tobias G. Waaler, Robbie Totten, Gabriel Duman, Nick Smith, Lachlan Musicman, Eric Wouden-
berg, Jim Munro, Larry Prince, Hamid Hoorzad, Matt Harrison, Aymeric Augustin, Khee Chin,
Douglas Miranda, Saul Shanabrook.

Beta Reviewers for 1.5

During the Beta period an awesome number of people sent us corrections, cleanups, bug ŀxes,
and suggestions. Ļis includes: Francisco Barros, Florian Apolloner, David Beazley, Alex Gaynor,
Jonathan Hartley, Stefane Fermigier, Deric Crago, Nicola Marangon, Bernardo Brik, Zed Shaw,
Zoltán Árokszállási, Charles Denton, Marc Tamlyn, Martin Bächtold, Carlos Cardoso, William
Adams, Kelly Nichols, Nick August, Tim Baxter, Joe Golton, Branko Vukelic, John Goodleaf,
Graham Dumpleton, Richard Cochrane, Mike Dewhirst, Jonas Obrist, Anthony Burke, Timo-
thy Goshinski, Felix Ingram, Steve Klass, Vinay Sajip, Olav Andreas Lindekleiv, Kal Sze, John
Jensen, Jonathan Miller, Richard Corden, Dan Poirier, Patrick Jacobs, R. Michael Herberge, and
Dan Loewenherz.

Alpha Reviewers for 1.5

During the Alpha period an amazing number of people sent us corrections and cleanups. Ļis list
includes: Brian Shumate, Myles Braithwaite, Robert Wȩglarek, Lee Hinde, Gabe Jackson, Jax, Bap-
tiste Mispelon, Matt Johnson, Kevin Londo, Esteban Gaviota, Kelly Nicholes, Jamie Norrish, Amar
Šahinovíc, Patti Chen, Jason Novinger, Dominik Aumayr, Hrayr Artunyan, Simon Charettes, Joe
Golton, Nicola Marangon, Farhan Syed, Florian Apolloner, Rohit Aggarwa, Vinod Kurup, Mickey

470

Cheong, Martin Bächtold, Phil Davis, Michael Reczek, Prahlad Nrsimha Das, Peter Heise, Russ
Ferriday, Carlos Cardoso, David Sauve, Maik Hoepfel, Timothy Goshinski, Francisco Barros, João
Oliveira, Zed Shaw, and Jannis Leidel.

Typesetting

We thank Laura Gelsomino for helping us with all of our LaTeX issues and for improving upon the
book layout.

Laura Gelsomino is an economist keen about art and writing, and with a soft spot for computers,
who found the meeting point between her interests the day she discovered LaTeX. Since that
day, she habitually ŀnds any excuse to vent her aesthetic sense on any text she can lay her hands
on, beginning with her economic models.

We originally typeset the alpha version of the ŀrst editions with iWork Pages. Later editions of the
book were written using LaTeX. All editions have been written on the Macbook Air.

471

List of Figures

1 Ļrowing caution to the wind. xxx

1.1 Using import * in an ice cream shop. 8

2.1 Pip, virtualenv, and virtualenvwrapper in ice cream bar form. 17

3.1 Yet another reason why repositories are important. 23
3.2 Ļree-tiered scoop layout. 24
3.3 An isolated environment, allowing your ice cream to swim freely. 27
3.4 Project layout differences of opinion can cause ice cream ŀghts. 32

4.1 It’ll make more sense when you turn the page. 33
4.2 Did that make sense? If not, read it again. 34
4.3 Our vision for Icecreamlandia. 36
4.4 Two small, single-łavor pints are better than a giant, 100-łavor container. 37

5.1 As your project grows, your Django settings can get pretty complex. 41
5.2 While we’re at it, let’s go down this path. 59

6.1 Cones migrating south for the winter. Django’s built-in migration system started out
as an external project called South. 68

6.2 A common source of confusion. 72

7.1 Ļis łavor of ice cream contains raw SQL. It’s a bit chewy. 88
7.2 Because no one loves ice cream quite like a database. 93

8.1 Should you use a FBV or a CBV? łow chart. 96
8.2 Loose coupling of chocolate chip cookie dough ice cream. 98

9.1 If you look at sprinkles closely, you’ll see that they’re Python decorators. 115

472

List of Figures

10.1 Popular and unpopular mixins used in ice cream. 118
10.2 Ļe other CBV: class-based vanilla ice cream. 124
10.3 Views + ModelForm Flow . 127
10.4 Views + Form Flow . 131

11.1 When ice cream validation fails. 144

12.1 At Tasty Research, every łavor must begin with “Tasty”. 151
12.2 Why would they do this to us? . 159

13.1 An excerpt from the Zen of Ice Cream. 170
13.2 Two Scoops, official halftime sponsor of the Super Bowl. 172
13.3 Bubble gum ice cream looks easy to eat but requires a lot of processing. 178

14.1 Ļis ŀlter transforms 1-2 łavors of ice cream into vanilla, outputting to a cone. . . . 192

16.1 A tasty pie is one ŀlled with ice cream. 208
16.2 An Ice Cream as a Service API. 215

17.1 Server-side vs. client-side ice cream. 226

18.1 Replacing more core components of cake with ice cream seems like a good idea.
Which cake would win? Ļe one on the right, of course. 239

19.1 Chocolate chip ice cream with an admin interface. 243
19.2 Admin list page for an ice cream bar app. 244
19.3 Improved admin list page with better string representation of our objects. 246
19.4 What? An admin interface for ice cream bars? . 246
19.5 Further improvements to the admin list page. 247
19.6 Displaying URL in the Django Admin. 249

20.1 Ļis looks strange too. 256

21.1 A jar of Django’s mysterious secret sauce. Most don’t have a clue what this is. 263
21.2 Ļe secret is out. It’s just hot fudge. 264

22.1 Test as much of your project as you can, as if it were free ice cream. 291

23.1 Even ice cream could beneŀt from documentation. 305

473

List of Figures

24.1 With your site running smoothly, you’ll be feeling as cool as a cone. 317

27.1 CRITICAL/ERROR/WARNING/INFO logging in ice cream. 356
27.2 Appropriate usage of DEBUG logging in ice cream. 361

29.1 A utility belt for serious ice cream eaters. 374
29.2 Six smooths over the differences between 2 and 3. 377

31.1 Example of a basic multi-server setup. 398
31.2 Managing an ice cream replenishment process with Supervisord. 399
31.3 Example of an advanced multi-server setup. 400
31.4 How ice cream is deployed to cones and bowls. 404
31.5 Infrastructure automation can be very powerful. 405
31.6 Hopefully, one day someone will invent a one-button machine that deploys Django

projects and makes ice cream. 410

32.1 It’s easy to get carried away. Pictured are two absolutely unnecessary Tox environ-
ments, just so we could get extra tastes. 414

34.1 Ļe ice cream eating help desk. 430

474

List of Tables

Author’s Ice Cream Preferences . xxxiii

1.1 Imports: Absolute vs. Explicit Relative vs. Implicit Relative 7

3.1 Repository Root Files and Directories . 25
3.2 Django Project Files and Directories . 26

5.1 Settings ŀles and their purpose . 44
5.2 Setting DJANGO SETTINGS MODULE per location 45

6.1 Pros and Cons of the Model Inheritance Styles 65
6.2 When to Use Null and Blank by Field . 71
6.3 When to Use Null and Blank for Postgres Fields 74

7.1 When to Use Transactions . 93

10.1 Django CBV Usage Table . 120

13.1 Template Tags in base.html . 182
13.2 Template Objects in about.html . 183

15.1 DTL vs Jinja2 Syntax Differences . 197
15.2 DTL vs Jinja2 Syntax Similarities . 198

16.1 HTTP Methods . 208
16.2 HTTP Status Codes . 209
16.3 URLConf for the Flavor REST APIs . 212

18.1 Fad-based Reasons to Replace Components of Django 238

23.1 Documentation Django Projects Should Contain 304

475

List of Tables

25.1 Should a Project Have a Task Queue? . 320
25.2 Comparing Task Queue Software . 321

31.1 Gunicorn vs Apache vs uWSGI . 402
31.2 Timeline of DevOps Tools . 406
31.3 Infrastructure Automation Tool Comparison . 409

32.1 Continuous Integration Services . 415

35.1 django.utils.translation Function Reference . 452

35.2 Security Settings Reference . 465

476

Index

–settings, 44, 45
<conŀguration root>, 23
<django project root>, 23, 26
<repository root>, 23, 25, 26, 56

str (), 245–247, 464
unicode (), 247, 464

{% block %}, 182, 183, 186
{% extends %}, 183
{% include %}, 186
{% load %}, 182
{% static %}, 182
{{ block.super }}, 182–185

abstract base classes, 64–67, 79
AbstractBaseUser, 259
AbstractUser, 258
ACID, 89, 239–241
Acknowledgments, 467–471
Additional Resources, 445–450
AJAX, 141–142, 207, 210, 229, 232–234
allow tags warning, 249, 345
ALLOWED HOSTS, 328, 424–425
AngularJS, 234
Ansible, 404
Apache, 49, 315, 316, 398, 401–404

Environment Variables, 49, 403
App Englight, 364, 436
assertions, 294–295

assets/, 26
Asynchronous Task Queues, 319–326
ATOMIC REQUESTS, 312
Avoid Using Import *, 7–8, 47

Backbone.js, 234
BASE DIR, 58–60
BitBucket, 18, 265, 269, 414
Bottleneck Analysis, 91, 309–318
Brunch, 11

caching, 69, 171, 194, 237, 310, 311, 314–315,
318, 366, 435

Cassandra, 238
CBVs, see Class-Based Views
CDN, see Content Delivery Networks
Chef, 404–409
Class-Based Views, 95–108, 112–113, 116–136,

187, 207, 220–221, 310
clean() methods, 144, 156–158
Coding Style, 1–12
Content Delivery Networks, 316, 337–338, 398
Continuous Integration, 91, 296, 411–415, 463
CouchDB, 238
CSRF, 141–142, 232–234, 327, 333, 358
CSScomb, 11
custom ŀeld validators, 151, 152, 154, 156
Custom User models, 255–261

477

Index

database, 81
Database Migrations, 68
database normalization, 69–70
DEBUG, 44, 46, 47, 328
debugging, 417–426

mirroring production, 423
UserBasedExceptionMiddleware, 423–424

Decorators, 113–116
denormalization, 69–70, 238, 241
deployment, 387–410, 434–435
Django Coding Style Guidelines, 9–10
Django Packages, 263–282, 296, 297
Django Templates and Jinja2, 197–205
Django’s Admin, 243–253

Secure the Django Admin, 343–345
django-admin.py, 18, 21–24, 28–31, 45, 53
django-admin.py startproject, 21–24
django.contrib.admin, 243–253, 323, 343–345
django.contrib.admindocs, 250–253, 345
django.contrib.humanize, 374
django.contrib.messages, 128–131
django.core.exceptions

ImproperlyConŀgured, 379
ObjectDoesNotExist, 379–380
PermissionDenied, 110, 381

django.core.serializers
json.DjangoJSONEncoder, 384
pyyaml, 385
xml serializer, 385

django.db, 63–79
django.db.migrations, 67–68
django.db.models, 63–77
django.db.transaction, 89–94
django.http.HttpResponse, 123
django.http.HttpResponseForbidden, 381

django.http.HttpResponseRedirect, 123
django.http.StreamingHttpResponse, 93–94
django.utils.decorators

decorator from middleware, 374–375
method decorator, 374

django.utils.encoding.force text, 375, 456
django.utils.functional.cached property, 375
django.utils.html.remove tags(), 376
django.utils.html.strip tags(), 376
django.utils.html.timezone, 379
django.utils.six, 377
django.utils.translation, 379, 452–453
django.views.generic.View, 117, 120–121, 133–

135
DJANGO SETTINGS MODULE, 45
Documentation, 250–251, 301–307
docutils, 251
Don’t Repeat Yourself, 41, 43, 98, 100, 102, 161,

196, 289

environment variables, 48–55
Environment Variables Pattern, 48–54, 459
Error Page Templates, 188–189
eval(), 334
exec(), 334
execŀle(), 334
Explicit Relative Imports, 4–7

Fat Models, 77–79
FBVs, see Function-Based Views
Feature Flags, 425–426
FileField, 72
ŀlters, 191–193, 290
ŀxtures, 15, 290
form.is valid(), 143
form invalid, 146

478

Index

form invalid(), 123–124
form valid(), 122–123, 129–131, 144
format html(), 345
Forms, 8, 122–133, 137–166, 336–337, 339–342
FrankenDjango, 237
Function-Based Views, 90, 95–116, 133–135,

207
functools.wraps(), 115

GCBVs, see Generic Class-Based Views
Generic Class-Based Views, 117, 120–121, 134–

136, 438–439
get absolute url(), 248
get env setting(), 52, 53
get object or 404(), 81, 380
get secret(), 53–55
Git, 18, 22, 267, 269, 411
GitHub, 18, 265, 267, 269, 348, 414
Grunt, 11
Gulp, 11
gulp.js, 227

Heroku, 51, 349–350, 387–394, 435
HttpRequest, 110–115
HttpResponse, 113–116

i18n, 451–457
ImproperlyConŀgured, 53
indexes, 79, 88–89
INSTALLED APPS, 33, 250
intcomma, 374
Integration Tests, 295–296
is valid(), 143

JavaScript, 225–236
Jenkins, 414
Jinja2, 197–205

context processors, 202–204
CSRF, 199–200
Django-style Filters, 200–202
jinja2.Environment, 204–205
Template Tags, 200

JQuery, 232–234
JSCS, 11
JSON, 54–55, 134, 207, 210–213, 217, 224,

286, 290, 322–323, 328, 333, 335–336,
381–384, 403

Keep It Simple, Stupid, xxxiii
kept out of version control, 42
KISS, xxxiii

license, ii
Linux, 14, 19, 27, 49, 363, 442
local settings anti-pattern, 42–43, 48, 54, 459
logging, 355–364

CRITICAL, 356, 357
DEBUG, 356, 359–361
ERROR, 356, 357
exceptions, 361–362
INFO, 356, 359
WARNING, 356, 358

loggly.com, 364
logrotate, 362
Loose coupling, 98, 100

Mac OS X, 14, 19, 27, 49, 307, 363, 442
makemigrations, 67
manage.py, 18, 53
mark safe, 333
Markdown, 305–307
Memcached, 239, 311, 313, 314, 398, 435
Mercurial, 18, 25, 269, 411
Meta.exclude, 339–341

479

Index

Meta.ŀelds, 339–342
method resolution order, 119
MIGRATION MODULES, 68
Migrations, 67–68
mixins, 118–119, 130, 131, 165, 372
mod wsgi, 398
model meta, 75
model managers, 75–77, 366, 367
ModelForms, 144, 145, 149, 150, 154, 156, 160,

339–341, 369
models, 8, 63–79
models.ŀeld.BinaryField, 72–73

warning, 72–73
models.ŀeld.GenericForeignKey, 73–74
MongoDB, 238
Mozilla, 456–457
multi-table inheritance, 64, 65, 67
Multiple Settings Files, 43–48
MySQL, 14, 68, 94, 176, 312–314, 398

NASA, xxvii, 283
Never Code to the IDE, 11–12
Newrelic, 436
Nginx, 54, 315, 316, 401–404
node.js, xxvii, 227
NoSQL, 238–241

Open Source Initiative, 275
Open Source Licenses, 275
ORM, xxxiv, 14, 63–79, 81–94, 131, 144, 174,

176, 177, 238, 261, 271, 290, 310, 311,
342, 456

PaaS, see Platforms as a Service
Packages A-D

awesome-slugify, 378, 439
bleach, 349, 437

cached-property, 375–376
celery, 179, 321–322, 325, 365, 399, 434
circus, 434
cookiecutter, 275–276, 281, 436
cookiecutter-django, 28–31
coverage.py, 284, 297–299, 437
CSScomb, 11, 435
defusedxml, 338, 346, 385, 437
dj-database-url, 435
dj-stripe, 439
django-admin-honeypot, 343–344, 437
django-allauth, 438
django-autoadmin, 347–348, 437
django-axes, 437
django-background-tasks, 321–323, 325
django-braces, 117, 122–125, 128–130,

133–135, 150, 154, 207, 310, 438, 461
django-compressor, 316, 439
django-crispy-forms, 149, 194, 273, 435,

461
django-db-tools, 350, 434
django-debug-toolbar, 44, 104, 281, 309–

312, 417, 433, 461
django-extensions, 63, 79, 310, 439
django-extra-views, 136, 439
django-łoppyforms, 149, 435, 461
django-forms-bootstrap, 149, 435
django-forms-builder, 435
django-haystack, 439
django-heroku-memcacheify, 435
django-htmlmin, 316, 439
django-jsonview, 207, 436
django-model-utils, 63, 79, 433
django-passwords, 347–348, 437
django-pipeline, 316, 439

480

Index

django-ratelimit-backend, 437
django-rest-framework, 141, 207, 209–213,

221, 436, 461
django-reversion, 439
django-rq, 434
django-secure, 347, 437
django-tastypie, 141, 207, 209, 213, 436
django-two-factor-auth, 437
django-user-sessions, 437
django-vanilla-views, 136, 439
django-watson, 439
django-wysiwyg, 194
łower, 434

Packages E-O
envdir, 440
fabric, 25, 409, 435
factory boy, 290, 438
łake8, 2, 440
gunicorn, 398, 401–404
invoke, 25, 409, 435
ipdb, 419, 433
jinja2, 197–205, 238
JSCS, 11, 435
logutils, 363, 436
Mock, 292–294
mock, 290, 438
model mommy, 290, 438

Packages P-Z
celery, 323
invoke, 435
pathlib, 440
paver, 25
peep, 437
pillow, 433, 461

pip, 15, 17, 20, 250, 251, 264–265, 269,
274, 281, 282, 301, 433, 443

pip-tools, 440
psycopg2, 434
pytest, 438
pytest-django, 438
python-dateutils, 439
python-requests, 461
python-social-auth, 438
pytz, 439
pyYAML, 335, 384–385
pyyaml, 440
Redis Queue, 321–323, 325
requests, 440
rq, 399, 434
silk, 310, 440
sphinx, 269, 270, 301–305, 307, 434
supervisor, 399, 435
tox, 413, 438
twine, 278–280, 437
unicode-slugify, 378, 440
unipath, 59, 440
uWSGI, 398, 401–404
virtualenv, 15, 16, 20, 27–28, 49–51, 250,

251, 265, 267, 268, 281, 282, 434, 442,
443

virtualenvwrapper, 16, 51, 434
virtualenvwrapper-win, 434

Pandoc, 306–307
pastebin, 428
PEPs

PEP 257, 305
PEP 263, 451–452
PEP 328, 7
PEP 427, 279–280

481

Index

PEP 8, 2–4, 7
pickle, 334–336
Platform as a Service, 57, 387–394
PostgreSQL, 13, 14, 89, 176, 238, 312, 313, 398
PowerShell, 50
print(), 359–360
Project Templates, 21–32, 459–460

cookiecutter grid, 21
cookiecutter-django, 21, 28–31, 436
cookiecutter-djangopackage, 276, 281
cookiecutter-pypackage, 276
django-herokuapp, 436
django-kevin, 31, 436

proxy models, 64, 65
Puppet, 404–409
PyPI, 265, 269, see Python Package Index
Python 3, 461–464
Python Package Index, 259, 264, 273–274, 278–

280, 282, 305–306
python 2 unicode compatible, 245, 464
PythonAnywhere, 387–394
PYTHONPATH, 18, 45

queries, 81

Rate Limiting Your API, 221–222
README.rst, 23, 31
Redis, 239, 313, 314, 398–399
Remote Procedure Calls, 220
requirements, 55–57
requirements.txt, 23, 28
requirements/, 56
REST APIs, 207–224
reStructuredText, 270, 301–303

SaltStack, 404
SECRET KEY, 42–43, 48–55, 328

Secrets File Pattern, 53–55, 459
Security, 327–354

allow tags warning, 345
Checkups, 348
Clickjacking, 346
Code Injection Attacks, 334
Cookie-based sessions, 335–336
CSRF, 141–142, 333
CSRF and Jinja2, 199–200
defusedxml, 346
django-admin-honeypot, 343–344
django.utils.html.remove tag, 348–349
HSTS, 330–332
HTTPS, 328–332
Mass Assignment Vulnerabilities, 341–342
pickle, 334–335
Planning for Disaster, 349–352
PyYAML security warning, 335
Secure the Django Admin, 343–345
SecurityMiddleware, 347
Settings Reference, 465–466
SSL, 330
strip tags, 376
TOTP, 346–347
Two-Factor Authentication, 346–347
Vulnerability Page, 348
XML bombs, 346
XSS, 333–334
Zero-Day Attack, 351–352

select related(), 177, 310
Sentry, 364, 436
settings, 26, 41–61, 423

settings/base.py, 58–60
settings/local.py, 44, 46, 48

settings/base.py, 52

482

Index

signals, 365–370
site assets/, 26
slugify(), 191, 377–378
smoke test, 283
Sphinx, 269
SQLite3, 13, 14
SQLite3„ 412
sqlmigrate, 68
squashmigrations, 68
STATICFILES DIRS, 26
syntactic sugar, 113

template tags, 12, 191, 193–196, 291
templates, 23, 26, 31, 58, 60, 128, 131, 133, 167–

190
TEMPLATES OPTIONS

string if invalid, 188
test coverage, 296–299
Testing, 91, 283–300, 373
TimeStampedModel, 66
Tips for Creating Database Migrations, 67
Transactions, 89–94

ATOMIC REQUESTS, 89–92
MySQL, 94

Twelve Factor App, 459–460
twoscoops project, 35

Unicode, 245, 375, 451, 455–456, 464
unicode(), 247
unit tests, 285
Upstream Caches, 316
URL namespaces, 101–104
URLConfs, 23, 26, 97–104, 108, 188, 251, 275,

381
User model, 255–261
Utility Modules, 372–373

uWSGI, 401–402

Vagrant, 19–20
validation, 14, 137–166
Vanilla Steak, 120
Varnish, 316, 398
VirtualBox, 20

wheel, 279–280, 282
Windows, 14, 16, 19, 27, 50, 227, 307, 363, 402,

442
WSGI, 26, 315, 401–404
WSGI Application Servers, 401–404

XML, 54–55, 207, 328, 338, 381, 385, 403
XML bombs, 346

YAML, 54–55, 207, 328, 335, 381, 384–385
YAML and PyYAML security warning, 335

Zen of Python, 169–171, 196

483

	Dedication
	About the Dedication

	Authors' Notes
	A Few Words From Daniel Roy Greenfeld
	A Few Words From Audrey Roy Greenfeld

	Introduction
	A Word About Our Recommendations
	Why Two Scoops of Django?
	Before You Begin
	This book is intended for Django 1.8 and Python 2.7.x/3.3.3+
	Each Chapter Stands On Its Own

	Conventions Used in This Book
	Core Concepts
	Keep It Simple, Stupid
	Fat Models, Utility Modules, Thin Views, Stupid Templates
	Start With Django By Default
	Be Familiar with Django's Design Philosophies
	The Twelve-Factor App

	Our Writing Concepts
	Provide the Best Material
	Stand on the Shoulders of Giants
	Listen to Our Readers and Reviewers
	Publish Errata

	1 Coding Style
	1.1 The Importance of Making Your Code Readable
	1.2 PEP 8
	1.2.1 The 79-Character Limit

	1.3 The Word on Imports
	1.4 Use Explicit Relative Imports
	1.5 Avoid Using Import *
	1.6 Django Coding Style
	1.6.1 Consider the Django Coding Style Guidelines
	1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes
	1.6.3 Use Underscores in Template Block Names Rather Than Dashes

	1.7 Choose JS, HTML, and CSS Style Guides
	1.7.1 JavaScript Style Guides
	1.7.2 HTML and CSS Style Guides

	1.8 Never Code to the IDE (Or Text Editor)
	1.9 Summary

	2 The Optimal Django Environment Setup
	2.1 Use the Same Database Engine Everywhere
	2.1.1 You Can't Examine an Exact Copy of Production Data Locally
	2.1.2 Different Databases Have Different Field Types/Constraints
	2.1.3 Fixtures Are Not a Magic Solution

	2.2 Use Pip and Virtualenv
	2.3 Install Django and Other Dependencies via Pip
	2.4 Use a Version Control System
	2.5 Optional: Identical Environments
	2.5.1 Vagrant and VirtualBox

	2.6 Summary

	3 How to Lay Out Django Projects
	3.1 Django 1.8's Default Project Layout
	3.2 Our Preferred Project Layout
	3.2.1 Top Level: Repository Root
	3.2.2 Second Level: Project Root
	3.2.3 Third Level: Configuration Root

	3.3 Sample Project Layout
	3.4 What About the Virtualenv?
	3.5 Going Beyond startproject
	3.5.1 Generating Project Boilerplate With Cookiecutter
	3.5.2 Our Favorite Project Template
	3.5.3 An Alternative Template: django-kevin
	3.5.4 Other Alternatives

	3.6 Summary

	4 Fundamentals of Django App Design
	4.1 The Golden Rule of Django App Design
	4.1.1 A Practical Example of Apps in a Project

	4.2 What to Name Your Django Apps
	4.3 When in Doubt, Keep Apps Small
	4.4 What Modules Belong in an App?
	4.4.1 Common App Modules
	4.4.2 Uncommon App Modules

	4.5 Summary

	5 Settings and Requirements Files
	5.1 Avoid Non-Versioned Local Settings
	5.2 Using Multiple Settings Files
	5.2.1 A Development Settings Example
	5.2.2 Multiple Development Settings

	5.3 Separate Configuration From Code
	5.3.1 A Caution Before Using Environment Variables for Secrets
	5.3.2 How to Set Environment Variables Locally
	5.3.3 How to Set Environment Variables in Production
	5.3.4 Handling Missing Secret Key Exceptions

	5.4 When You Can't Use Environment Variables
	5.4.1 Using JSON Files
	5.4.2 Using Config, YAML, and XML File Formats

	5.5 Using Multiple Requirements Files
	5.5.1 Installing From Multiple Requirements Files
	5.5.2 Using Multiple Requirements Files With Platforms as a Service (PaaS)

	5.6 Handling File Paths in Settings
	5.7 Summary

	6 Model Best Practices
	6.1 Basics
	6.1.1 Break Up Apps With Too Many Models
	6.1.2 Be Careful With Model Inheritance
	6.1.3 Model Inheritance in Practice: The TimeStampedModel
	6.1.4 Database Migrations

	6.2 Django Model Design
	6.2.1 Start Normalized
	6.2.2 Cache Before Denormalizing
	6.2.3 Denormalize Only if Absolutely Needed
	6.2.4 When to Use Null and Blank
	6.2.5 When to Use BinaryField
	6.2.6 Try to Avoid Using Generic Relations
	6.2.7 PostgreSQL-Specific Fields: When to Use Null and Blank

	6.3 The Model _meta API
	6.4 Model Managers
	6.5 Understanding Fat Models
	6.5.1 Model Behaviors a.k.a Mixins
	6.5.2 Stateless Helper Functions
	6.5.3 Model Behaviors vs Helper Functions

	6.6 Summary

	7 Queries and the Database Layer
	7.1 Use get_object_or_404() for Single Objects
	7.2 Be Careful With Queries That Might Throw Exceptions
	7.2.1 ObjectDoesNotExist vs. DoesNotExist
	7.2.2 When You Just Want One Object but Get Three Back

	7.3 Use Lazy Evaluation to Make Queries Legible
	7.4 Lean on Advanced Query Tools
	7.4.1 Query Expressions
	7.4.2 Database Functions

	7.5 Don't Drop Down to Raw SQL Until It's Necessary
	7.6 Add Indexes as Needed
	7.7 Transactions
	7.7.1 Wrapping Each HTTP Request in a Transaction
	7.7.2 Explicit Transaction Declaration
	7.7.3 django.http.StreamingHttpResponse and Transactions
	7.7.4 Transactions in MySQL
	7.7.5 Django ORM Transaction Resources

	7.8 Summary

	8 Function- and Class-Based Views
	8.1 When to Use FBVs or CBVs
	8.2 Keep View Logic Out of URLConfs
	8.3 Stick to Loose Coupling in URLConfs
	8.3.1 What if We Aren't Using CBVs?

	8.4 Use URL Namespaces
	8.4.1 Makes for Shorter, More Obvious and Don't Repeat Yourself URL Names
	8.4.2 Increases Interoperability With Third-Party Libraries
	8.4.3 Easier Searches, Upgrades, and Refactors
	8.4.4 Allows for More App and Template Reverse Tricks

	8.5 Don't Reference Views as Strings in URLConfs
	8.6 Try to Keep Business Logic Out of Views
	8.7 Django Views Are Functions
	8.7.1 The Simplest Views

	8.8 Don't Use locals() as Views Context
	8.9 Summary

	9 Best Practices for Function-Based Views
	9.1 Advantages of FBVs
	9.2 Passing the HttpRequest Object
	9.3 Decorators Are Sweet
	9.3.1 Be Conservative With Decorators
	9.3.2 Additional Resources on Decorators

	9.4 Passing the HttpResponse Object
	9.5 Summary

	10 Best Practices for Class-Based Views
	10.1 Guidelines When Working With CBVs
	10.2 Using Mixins With CBVs
	10.3 Which Django GCBV Should Be Used for What Task?
	10.4 General Tips for Django CBVs
	10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users
	10.4.2 Performing Custom Actions on Views With Valid Forms
	10.4.3 Performing Custom Actions on Views With Invalid Forms
	10.4.4 Using the View Object

	10.5 How GCBVs and Forms Fit Together
	10.5.1 Views + ModelForm Example
	10.5.2 Views + Form Example

	10.6 Using Just django.views.generic.View
	10.7 Additional Resources
	10.8 Summary

	11 Form Fundamentals
	11.1 Validate All Incoming Data With Django Forms
	11.2 Use the POST Method in HTML Forms
	11.3 Always Use CSRF Protection With HTTP Forms That Modify Data
	11.3.1 Posting Data via AJAX

	11.4 Understand How to Add Django Form Instance Attributes
	11.5 Know How Form Validation Works
	11.5.1 ModelForm Data Is Saved to the Form, Then the Model Instance

	11.6 Add Errors to Forms with Form.add_error()
	11.6.1 Other Useful Form Methods

	11.7 Fields Without Pre-Made Widgets
	11.8 Additional Resources
	11.9 Summary

	12 Common Patterns for Forms
	12.1 Pattern 1: Simple ModelForm With Default Validators
	12.2 Pattern 2: Custom Form Field Validators in ModelForms
	12.3 Pattern 3: Overriding the Clean Stage of Validation
	12.4 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)
	12.5 Pattern 5: Reusable Search Mixin View
	12.6 Summary

	13 Templates: Best Practices
	13.1 Keep Templates Mostly in templates/
	13.2 Template Architecture Patterns
	13.2.1 2-Tier Template Architecture Example
	13.2.2 3-Tier Template Architecture Example
	13.2.3 Flat Is Better Than Nested

	13.3 Limit Processing in Templates
	13.3.1 Gotcha 1: Aggregation in Templates
	13.3.2 Gotcha 2: Filtering With Conditionals in Templates
	13.3.3 Gotcha 3: Complex Implied Queries in Templates
	13.3.4 Gotcha 4: Hidden CPU Load in Templates
	13.3.5 Gotcha 5: Hidden REST API Calls in Templates

	13.4 Don't Bother Making Your Generated HTML Pretty
	13.5 Exploring Template Inheritance
	13.6 block.super Gives the Power of Control
	13.7 Useful Things to Consider
	13.7.1 Avoid Coupling Styles Too Tightly to Python Code
	13.7.2 Common Conventions
	13.7.3 Location, Location, Location!
	13.7.4 Use Named Context Objects
	13.7.5 Use URL Names Instead of Hardcoded Paths
	13.7.6 Debugging Complex Templates

	13.8 Error Page Templates
	13.9 Follow a Minimalist Approach
	13.10 Summary

	14 Template Tags and Filters
	14.1 Filters Are Functions
	14.1.1 Filters Are Easy to Test
	14.1.2 Filters and Code Reuse
	14.1.3 When to Write Filters

	14.2 Custom Template Tags
	14.2.1 Template Tags Are Harder to Debug
	14.2.2 Template Tags Make Code Reuse Harder
	14.2.3 The Performance Cost of Template Tags
	14.2.4 When to Write Template Tags

	14.3 Naming Your Template Tag Libraries
	14.4 Loading Your Template Tag Modules
	14.4.1 Watch Out for This Crazy Anti-Pattern

	14.5 Summary

	15 Django Templates and Jinja2
	15.1 What's the Syntactical Difference?
	15.2 Should I Switch?
	15.2.1 Advantages of DTL
	15.2.2 Advantages of Jinja2
	15.2.3 Which One Wins?

	15.3 Considerations When Using Jinja2 With Django
	15.3.1 CSRF and Jinja2
	15.3.2 Using Template Tags in Jinja2 Templates
	15.3.3 Using Django-Style Template Filters in Jinja2 Templates
	15.3.4 Context Processors Aren't Called by Jinja2 Templates
	15.3.5 The Jinja2 Environment Object Should Be Considered Static

	15.4 Resources
	15.5 Summary

	16 Building REST APIs
	16.1 Fundamentals of Basic REST API Design
	16.2 Implementing a Simple JSON API
	16.3 REST API Architecture
	16.3.1 Code for a Project Should Be Neatly Organized
	16.3.2 Code for an App Should Remain in the App
	16.3.3 Try to Keep Business Logic Out of API Views
	16.3.4 Grouping API URLs
	16.3.5 Test Your API
	16.3.6 Version Your API

	16.4 Service-Oriented Architecture
	16.5 Shutting Down an External API
	16.5.1 Step #1: Notify Users of Pending Shut Down
	16.5.2 Step #2: Replace API With 410 Error View

	16.6 Evaluating REST Frameworks
	16.6.1 Django Rest Framework Is the Defacto Package
	16.6.2 How Much Boilerplate Do You Want to Write?
	16.6.3 Are Remote Procedure Calls Easy to Implement?
	16.6.4 CBVs or FBVs?

	16.7 Rate Limiting Your API
	16.7.1 Unfettered API Access is Dangerous
	16.7.2 REST Frameworks Must Come with Rate Limiting
	16.7.3 Rate Limit Can Be A Business Plan

	16.8 Advertising Your REST API
	16.8.1 Documentation
	16.8.2 Provide Client SDKs

	16.9 Additional Reading
	16.10 Summary

	17 Consuming REST APIs
	17.1 Learn How to Debug the Client
	17.2 Consider Using JavaScript-Powered Static Asset Preprocessors
	17.3 Making Content Indexable by Search Engines
	17.3.1 Read the Search Engine Documentation
	17.3.2 Hand-Craft the sitemap.xml
	17.3.3 Use a Service to Make Your Site Crawlable

	17.4 Real-Time Woes a.k.a. Latency
	17.4.1 Solution: Mask the Latency With Animations
	17.4.2 Solution: Fake Successful Transactions
	17.4.3 Solution: Geographically Based Servers
	17.4.4 Solution: Restrict Users Geographically

	17.5 Avoid the Anti-Patterns
	17.5.1 Building Single Page Apps When Multi-Page Apps Suffice
	17.5.2 Not Writing Tests
	17.5.3 Not Understanding JavaScript Memory Management
	17.5.4 Storing Data in the DOM When It's Not jQuery

	17.6 AJAX and the CSRF Token
	17.6.1 JQuery and the CSRF Token
	17.6.2 Backbone.js and the CSRF Token
	17.6.3 AngularJS and the CSRF Token

	17.7 Improving JavaScript Skills
	17.7.1 Assessing Skill Levels
	17.7.2 Learn More JavaScript!

	17.8 Follow JavaScript Coding Standards
	17.9 Useful Resources
	17.10 Summary

	18 Tradeoffs of Replacing Core Components
	18.1 The Temptation to Build FrankenDjango
	18.2 Non-Relational Databases vs. Relational Databases
	18.2.1 Not All Non-Relational Databases Are ACID Compliant
	18.2.2 Don't Use Non-Relational Databases for Relational Tasks
	18.2.3 Ignore the Hype and Do Your Own Research
	18.2.4 How We Use Non-Relational Databases With Django

	18.3 What About Replacing the Django Template Language?
	18.4 Summary

	19 Working With the Django Admin
	19.1 It's Not for End Users
	19.2 Admin Customization vs. New Views
	19.3 Viewing String Representations of Objects
	19.4 Adding Callables to ModelAdmin Classes
	19.5 Don't Use list_editable in Multiuser Environments
	19.6 Django's Admin Documentation Generator
	19.7 Securing the Django Admin and Django Admin Docs
	19.8 Using Custom Skins With the Django Admin
	19.8.1 Evaluation Point: Documentation is Everything
	19.8.2 Write Tests for Any Admin Extensions You Create

	19.9 Summary

	20 Dealing With the User Model
	20.1 Use Django's Tools for Finding the User Model
	20.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User
	20.1.2 Don't Use get_user_model() for Foreign Keys to User

	20.2 Migrating Pre-1.5 User Models to 1.5+'s Custom User Models
	20.3 Custom User Fields for Django 1.8 Projects
	20.3.1 Option 1: Subclass AbstractUser
	20.3.2 Option 2: Subclass AbstractBaseUser
	20.3.3 Option 3: Linking Back From a Related Model

	20.4 Summary

	21 Django's Secret Sauce: Third-Party Packages
	21.1 Examples of Third-Party Packages
	21.2 Know About the Python Package Index
	21.3 Know About DjangoPackages.com
	21.4 Know Your Resources
	21.5 Tools for Installing and Managing Packages
	21.6 Package Requirements
	21.7 Wiring Up Django Packages: The Basics
	21.7.1 Step 1: Read the Documentation for the Package
	21.7.2 Step 2: Add Package and Version Number to Your Requirements
	21.7.3 Step 3: Install the Requirements Into Your Virtualenv
	21.7.4 Step 4: Follow the Package's Installation Instructions Exactly

	21.8 Troubleshooting Third-Party Packages
	21.9 Releasing Your Own Django Packages
	21.10 What Makes a Good Django Package?
	21.10.1 Purpose
	21.10.2 Scope
	21.10.3 Documentation
	21.10.4 Tests
	21.10.5 Templates
	21.10.6 Activity
	21.10.7 Community
	21.10.8 Modularity
	21.10.9 Availability on PyPI
	21.10.10 Uses the Broadest Requirements Specifiers Possible
	21.10.11 Proper Version Numbers
	21.10.12 Name
	21.10.13 License
	21.10.14 Clarity of Code
	21.10.15 Use URL Namespaces

	21.11 Creating Your Own Packages the Easy Way
	21.12 Maintaining Your Open Source Package
	21.12.1 Give Credit for Pull Requests
	21.12.2 Handling Bad Pull Requests
	21.12.3 Do Formal PyPI Releases
	21.12.4 Create and Deploy Wheels to PyPI
	21.12.5 Upgrade the Package to New Versions of Django
	21.12.6 Follow Good Security Practices
	21.12.7 Provide Sample Base Templates
	21.12.8 Give the Package Away

	21.13 Additional Reading
	21.14 Summary

	22 Testing Stinks and Is a Waste of Money!
	22.1 Testing Saves Money, Jobs, and Lives
	22.2 How to Structure Tests
	22.3 How to Write Unit Tests
	22.3.1 Each Test Method Tests One Thing
	22.3.2 For Views, When Possible Use the Request Factory
	22.3.3 Don't Write Tests That Have to Be Tested
	22.3.4 Don't Repeat Yourself Doesn't Apply to Writing Tests
	22.3.5 Don't Rely on Fixtures
	22.3.6 Things That Should Be Tested
	22.3.7 Test for Failure
	22.3.8 Use Mock to Keep Unit Tests From Touching the World
	22.3.9 Use Fancier Assertion Methods
	22.3.10 Document the Purpose of Each Test

	22.4 What About Integration Tests?
	22.5 Continuous Integration
	22.6 Who Cares? We Don't Have Time for Tests!
	22.7 The Game of Test Coverage
	22.8 Setting Up the Test Coverage Game
	22.8.1 Step 1: Start Writing Tests
	22.8.2 Step 2: Run Tests and Generate Coverage Report
	22.8.3 Step 3: Generate the Report!

	22.9 Playing the Game of Test Coverage
	22.10 Alternatives to unittest
	22.11 Summary

	23 Documentation: Be Obsessed
	23.1 Use reStructuredText for Python Docs
	23.2 Use Sphinx to Generate Documentation From reStructuredText
	23.3 What Docs Should Django Projects Contain?
	23.4 Additional Documentation Resources
	23.5 The Markdown Alternative
	23.5.1 README.md to README.rst: Using Pandoc for Packages Uploaded to PyPI
	23.5.2 Markdown Resources

	23.6 Wikis and Other Documentation Methods
	23.7 Summary

	24 Finding and Reducing Bottlenecks
	24.1 Should You Even Care?
	24.2 Speed Up Query-Heavy Pages
	24.2.1 Find Excessive Queries With Django Debug Toolbar
	24.2.2 Reduce the Number of Queries
	24.2.3 Speed Up Common Queries
	24.2.4 Switch ATOMIC_REQUESTS to False

	24.3 Get the Most Out of Your Database
	24.3.1 Know What Doesn't Belong in the Database
	24.3.2 Getting the Most Out of PostgreSQL
	24.3.3 Getting the Most Out of MySQL

	24.4 Cache Queries With Memcached or Redis
	24.5 Identify Specific Places to Cache
	24.6 Consider Third-Party Caching Packages
	24.7 Compression and Minification of HTML, CSS, and JavaScript
	24.8 Use Upstream Caching or a Content Delivery Network
	24.9 Other Resources
	24.10 Summary

	25 Asynchronous Task Queues
	25.1 Do We Need a Task Queue?
	25.2 Choosing Task Queue Software
	25.3 Best Practices for Task Queues
	25.3.1 Treat Tasks Like Views
	25.3.2 Tasks Aren't Free
	25.3.3 Only Pass JSON-Serializable Values to Task Functions
	25.3.4 Learn How to Monitor Tasks and Workers
	25.3.5 Logging!
	25.3.6 Monitor the Backlog
	25.3.7 Periodically Clear Out Dead Tasks
	25.3.8 Ignore Results We Don't Need
	25.3.9 Use the Queue's Error Handling
	25.3.10 Learn the Features of Your Task Queue Software

	25.4 Resources for Task Queues
	25.5 Summary

	26 Security Best Practices
	26.1 Harden Your Servers
	26.2 Know Django's Security Features
	26.3 Turn Off DEBUG Mode in Production
	26.4 Keep Your Secret Keys Secret
	26.5 HTTPS Everywhere
	26.5.1 Use Secure Cookies
	26.5.2 Use HTTP Strict Transport Security (HSTS)
	26.5.3 HTTPS Configuration Tools

	26.6 Use Allowed Hosts Validation
	26.7 Always Use CSRF Protection With HTTP Forms That Modify Data
	26.8 Prevent Against Cross-Site Scripting (XSS) Attacks
	26.8.1 Use Django Templates Over mark_safe
	26.8.2 Don't Allow Users to Set Individual HTML Tag Attributes
	26.8.3 Use JSON Encoding for Data Consumed by JavaScript
	26.8.4 Additional Reading

	26.9 Defend Against Python Code Injection Attacks
	26.9.1 Python Built-Ins That Execute Code
	26.9.2 Python Standard Library Modules That Can Execute Code
	26.9.3 Third-Party Libraries That Can Execute Code
	26.9.4 Be Careful With Cookie-Based Sessions

	26.10 Validate All Incoming Data With Django Forms
	26.11 Disable the Autocomplete on Payment Fields
	26.12 Handle User-Uploaded Files Carefully
	26.12.1 When a CDN Is Not an Option
	26.12.2 Django and User-Uploaded Files

	26.13 Don't Use ModelForms.Meta.exclude
	26.13.1 Mass Assignment Vulnerabilities

	26.14 Don't Use ModelForms.Meta.fields = "__all__"
	26.15 Beware of SQL Injection Attacks
	26.16 Never Store Credit Card Data
	26.17 Secure the Django Admin
	26.17.1 Change the Default Admin URL
	26.17.2 Use django-admin-honeypot
	26.17.3 Only Allow Admin Access via HTTPS
	26.17.4 Limit Admin Access Based on IP
	26.17.5 Use the allow_tags Attribute With Caution

	26.18 Secure the Admin Docs
	26.19 Monitor Your Sites
	26.20 Keep Your Dependencies Up-to-Date
	26.21 Prevent Clickjacking
	26.22 Guard Against XML Bombing With defusedxml
	26.23 Explore Two-Factor Authentication
	26.24 Embrace SecurityMiddleware
	26.25 Force the Use of Strong Passwords
	26.26 Give Your Site a Security Checkup
	26.27 Put Up a Vulnerability Reporting Page
	26.28 Stop Using django.utils.html.remove_tag
	26.29 Have a Plan Ready for When Things Go Wrong
	26.29.1 Shut Everything Down or Put It in Read-Only Mode
	26.29.2 Put Up a Static HTML Page
	26.29.3 Back Everything Up
	26.29.4 Email security@djangoproject.com, Even if It's Your Fault
	26.29.5 Start Looking Into the Problem

	26.30 Obfuscate Primary Keys with UUIDs
	26.31 Reference Our Security Settings Appendix
	26.32 Keep Up-to-Date on General Security Practices
	26.33 Summary

	27 Logging: What's It For, Anyway?
	27.1 Application Logs vs. Other Logs
	27.2 Why Bother With Logging?
	27.3 When to Use Each Log Level
	27.3.1 Log Catastrophes With CRITICAL
	27.3.2 Log Production Errors With ERROR
	27.3.3 Log Lower-Priority Problems With WARNING
	27.3.4 Log Useful State Information With INFO
	27.3.5 Log Debug-Related Messages to DEBUG

	27.4 Log Tracebacks When Catching Exceptions
	27.5 One Logger Per Module That Uses Logging
	27.6 Log Locally to Rotating Files
	27.7 Other Logging Tips
	27.8 Necessary Reading Material
	27.9 Useful Third-Party Tools
	27.10 Summary

	28 Signals: Use Cases and Avoidance Techniques
	28.1 When to Use and Avoid Signals
	28.2 Signal Avoidance Techniques
	28.2.1 Using Custom Model Manager Methods Instead of Signals
	28.2.2 Validate Your Model Elsewhere
	28.2.3 Override Your Model's Save or Delete Method Instead
	28.2.4 Use a Helper Function Instead of Signals

	28.3 Summary

	29 What About Those Random Utilities?
	29.1 Create a Core App for Your Utilities
	29.2 Optimize Apps with Utility Modules
	29.2.1 Storing Code Used in Many Places
	29.2.2 Trimming Models
	29.2.3 Easier Testing

	29.3 Django's Own Swiss Army Knife
	29.3.1 django.contrib.humanize
	29.3.2 django.utils.decorators.method_decorator(decorator)
	29.3.3 django.utils.decorators.decorator_from_middleware(middleware)
	29.3.4 django.utils.encoding.force_text(value)
	29.3.5 django.utils.functional.cached_property
	29.3.6 django.utils.html.format_html(format_str, *args, **kwargs)
	29.3.7 django.utils.html.remove_tags(value, tags)
	29.3.8 django.utils.html.strip_tags(value)
	29.3.9 django.utils.six
	29.3.10 django.utils.text.slugify(value)
	29.3.11 django.utils.timezone
	29.3.12 django.utils.translation

	29.4 Exceptions
	29.4.1 django.core.exceptions.ImproperlyConfigured
	29.4.2 django.core.exceptions.ObjectDoesNotExist
	29.4.3 django.core.exceptions.PermissionDenied

	29.5 Serializers and Deserializers
	29.5.1 django.core.serializers.json.DjangoJSONEncoder
	29.5.2 django.core.serializers.pyyaml
	29.5.3 django.core.serializers.xml_serializer

	29.6 Summary

	30 Deployment: Platforms as a Service
	30.1 Evaluating a PaaS
	30.1.1 Compliance
	30.1.2 Pricing
	30.1.3 Uptime
	30.1.4 Staffing
	30.1.5 Scaling
	30.1.6 Documentation
	30.1.7 Performance Degradation
	30.1.8 Geography
	30.1.9 Company Stability

	30.2 Best Practices for Deploying to PaaS
	30.2.1 Aim for Identical Environments
	30.2.2 Automate All the Things!
	30.2.3 Maintain a Staging Instance
	30.2.4 Prepare for Disaster With Backups and Rollbacks
	30.2.5 Keep External Backups

	30.3 Summary

	31 Deploying Django Projects
	31.1 Single-Server for Small Projects
	31.1.1 Should You Bother?
	31.1.2 Example: Quick Ubuntu + Gunicorn Setup

	31.2 Multi-Server for Medium to Large Projects
	31.2.1 Advanced Multi-Server Setup

	31.3 WSGI Application Servers
	31.4 Performance and Tuning: uWSGI and Gunicorn
	31.5 Stability and Ease of Setup: Gunicorn and Apache
	31.6 Common Apache Gotchas
	31.6.1 Apache and Environment Variables
	31.6.2 Apache and Virtualenv

	31.7 Automated, Repeatable Deployments
	31.7.1 A Rapidly Changing World

	31.8 Which Automation Tool Should Be Used?
	31.8.1 Too Much Corporate Fluff
	31.8.2 Do Your Own Research

	31.9 Current Infrastructure Automation Tools
	31.10 Other Resources
	31.11 Summary

	32 Continuous Integration
	32.1 Principles of Continuous Integration
	32.1.1 Write Lots of Tests!
	32.1.2 Keeping the Build Fast

	32.2 Tools for Continuously Integrating Your Project
	32.2.1 Tox
	32.2.2 Jenkins

	32.3 Continuous Integration as a Service
	32.3.1 Code Coverage as a Service

	32.4 Additional Resources
	32.5 Summary

	33 The Art of Debugging
	33.1 Debugging in Development
	33.1.1 Use django-debug-toolbar
	33.1.2 That Annoying CBV Error
	33.1.3 Master the Python Debugger
	33.1.4 Remember the Essentials for Form File Uploads
	33.1.5 Lean on the Text Editor or IDE

	33.2 Debugging Production Systems
	33.2.1 Read the Logs the Easy Way
	33.2.2 Mirroring Production
	33.2.3 UserBasedExceptionMiddleware
	33.2.4 That Troublesome settings.ALLOWED_HOSTS Error

	33.3 Feature Flags
	33.3.1 Feature Flag Packages
	33.3.2 Unit Testing Code Affected by Feature Flags

	33.4 Summary

	34 Where and How to Ask Django Questions
	34.1 What to Do When You're Stuck
	34.2 How to Ask Great Django Questions in IRC
	34.3 Feed Your Brain
	34.4 Insider Tip: Be Active in the Community
	34.4.1 9 Easy Ways to Participate

	34.5 Summary

	35 Closing Thoughts
	Appendix A: Packages Mentioned In This Book
	Appendix B: Troubleshooting Installation
	Identifying the Issue
	Our Recommended Solutions
	Check Your Virtualenv Installation
	Check If Your Virtualenv Has Django 1.8 Installed
	Check For Other Problems

	Appendix C: Additional Resources
	Beginner Python Material
	Beginner Django Material
	More Advanced Django Material
	Useful Python Material
	JavaScript Resources

	Appendix D: Internationalization and Localization
	Start Early
	Wrap Content Strings with Translation Functions
	Don't Interpolate Words in Sentences
	Browser Page Layout

	Appendix E: Settings Alternatives
	Twelve Factor-Style Settings

	Appendix F: Working with Python 3
	Most Critical Packages Work with Python 3
	Use Python 3.3.3 or Later
	Working With Python 2 and 3
	Resources

	Appendix G: Security Settings Reference
	Cross Site Request Forgery Protection Settings
	Email SSL
	SESSION_SERIALIZER

	Acknowledgments
	List of Figures
	List of Tables
	Index

