
[1]

Learning Flask Framework

Build dynamic, data-driven websites and modern
web applications with Flask

Matt Copperwaite

Charles Leifer

BIRMINGHAM - MUMBAI

Learning Flask Framework

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-336-0

www.packtpub.com

www.packtpub.com

Credits

Authors
Matt Copperwaite

Charles Leifer

Reviewers
Abhishek Gahlot

Burhan Khalid

Commissioning Editor
Ashwin Nair

Acquisition Editor
Subho Gupta

Content Development Editor
Mamata Walkar

Technical Editors
Siddhesh Ghadi

Siddhesh Patil

Copy Editor
Sonia Mathur

Project Coordinator
Shipra Chawhan

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Authors

Matt Copperwaite graduated from the University of Plymouth in 2008 with a
bachelor of science (Hons) degree in computer systems and networks. Since then,
he has worked in various private and public sectors in the UK. Matt is currently
working as a Python software developer and DevOps engineer for the UK
Government, focusing mainly on Django. However, his first love is Flask, with
which he has built several products under the General Public License (GPL).

Matt is also a trustee of South London Makerspace, a hackerspace community in
South London; a cohost of The Dick Turpin Road Show, a podcast for free and open
source software; and LUG Master of Greater London Linux User Group.

He has also been the technical reviewer of the Flask Framework Cookbook.

I would like to thank my new wife Marie who has been so patient
throughout the production of this book.

Charles Leifer is a professional software engineer with 6 years of experience
using Python. He is the author of several popular open source libraries, including
Peewee ORM and Huey, a multithreaded task queue. He is also the cocreator of
https://readthedocs.org, a free documentation hosting platform.

Charles developed a passion for Python while working at the Journal World. His
colleagues there patiently answered his endless questions and taught him everything
about the Web, Linux, open source, and how to write clean Python.

Charles maintains an active programming blog at http://charlesleifer.com.

I would like to thank my wife, Leslie, and my parents, Anne and
John, for their encouragement and support.

https://readthedocs.org
http://charlesleifer.com

About the Reviewers

Abhishek Gahlot is a Computer Engineer and holds a Bachelors degree
in Computer Science. He loves programming in Python and Go.

He created two Web Applications Cloudtub (cloudtub.com) and Dynofy
(dynofy.com). Dynofy uses the Flask framework for Web and REST API. Abhishek is
very passionate about Algorithms, Artificial Intelligence and Parallel Programming.

He occasionally writes articles related to Web Engineering at blog.abhishek.it.
Abhishek can be reached at me@abhishek.it.

Burhan Khalid has always been tinkering with technology from his early days
of XT to writing JCL on the ISPF editor, C and C++, Java, Pascal, and COBOL,
to his latest favorite, Python. As a lover of technology, he is most comfortable
experimenting with the next big technology stack.

By day, he works at a multinational bank in the alternative channels unit, where
he gets to hack, develop, and test applications that help execute transactions across
all sectors of electronic devices and channels. In addition to his work, he also
contributes to open source projects. Burhan has also released a few toolkits for
transaction processing.

cloudtub.com
dynofy.com
blog.abhishek.it

He is an avid volunteer and has mentored Sirdab Lab (a start-up accelerator).
Burhan is a frequent speaker at the local Google Developer Groups, a presenter and
volunteer at StartupQ8, a start-up community. He is also actively involved with
StackOverflow.

In his free time, you can find him splitting time nurturing his other passions—flight,
by scheduling time in flight simulators, and photography, by uploading images to
his Flickr feed.

I would like to thank my mother and father for always encouraging
me; my wife for putting up with my long days at the keyboard and
my ever - growing gadget collection; and my friends and colleagues
for providing me with new challenges to sharpen my skills.

Special thanks to Lalith Polepeddi for contributing to the book at a stage
where we needed it the most.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Creating Your First Flask Application	 1

What is Flask?	 1
With great freedom comes great responsibility	 2

Setting up a development environment	 2
Supporting Python 3	 3

Installing Python packages	 3
Installing pip	 3
Installing virtualenv	 4

Why use virtualenv?	 4
Installing virtualenv with pip	 4

Creating your first Flask app	 5
Installing Flask in your virtualenv	 6
Hello, Flask!	 6
Understanding the code	 7
Routes and requests	 9

Reading values from the request	 10
Debugging Flask applications	 11

Introducing the blog project	 14
The spec	 15
Creating the blog project	 15

A barebones Flask app	 17
Zooming out	 18
The import flow	 19

Summary	 20
Chapter 2: Relational Databases with SQLAlchemy	 21

Why use a relational database?	 22
Introducing SQLAlchemy	 23

Installing SQLAlchemy	 24

Table of Contents

[ii]

Using SQLAlchemy in our Flask app	 24
Choosing a database engine	 25
Connecting to the database	 25

Creating the Entry model	 26
Creating the Entry table	 29
Working with the Entry model	 30
Making changes to an existing entry	 32
Deleting an entry	 32

Retrieving blog entries	 32
Filtering the list of entries	 33
Special lookups	 34
Combining expressions	 35

Negation	 36
Operator precedence	 37

Building a tagging system	 37
Adding and removing tags from entries	 41
Using backrefs	 42

Making changes to the schema	 43
Adding Flask-Migrate to our project	 43
Creating the initial migration	 44
Adding a status column	 45

Summary	 46
Chapter 3: Templates and Views	 47

Introducing Jinja2	 48
Basic template operations	 49
Loops, control structures, and template programming	 51
Jinja2 built-in filters	 55

Creating a base template for the blog	 57
Creating a URL scheme	 60

Defining the URL routes	 62
Building the index view	 63
Building the detail view	 66
Listing entries matching a given tag	 67
Listing all the tags	 68
Full-text search	 69

Adding pagination links	 71
Enhancing the blog app	 73
Summary	 73

Table of Contents

[iii]

Chapter 4: Forms and Validation	 75
Getting started with WTForms	 75

Defining a form for the Entry model	 76
A form with a view	 77
The create.html template	 78
Handling form submissions	 80
Validating input and displaying error messages	 82
Editing existing entries	 85

The edit.html template	 86
Deleting entries	 89
Cleaning up	 90

Using flash messages	 91
Displaying flash messages in the template	 93

Saving and modifying tags on posts	 94
Image uploads	 96
Processing file uploads	 97

The image upload template	 99
Serving static files	 100
Summary	 101

Chapter 5: Authenticating Users	 103
Creating a user model	 104
Installing Flask-Login	 105

Implementing the Flask-Login interface	 107
Creating user objects	 108
Login and logout views	 110

The login template	 112
Logging out	 113

Accessing the current user	 114
Restricting access to views	 114

Storing an entry's author	 115
Setting the author on blog entries	 117
Protecting the edit and delete views	 117
Displaying a user's drafts	 119

Sessions	 120
Summary	 121

Chapter 6: Building an Administrative Dashboard	 123
Installing Flask-Admin	 123

Adding Flask-Admin to our app	 125

Table of Contents

[iv]

Exposing models through the Admin	 126
Customizing the list views	 129
Adding search and filtering to the list view	 132
Customizing Admin model forms	 134
Enhancing the User form	 136
Generating slugs	 138

Managing static assets via the Admin	 140
Securing the admin website	 141

Creating an authentication and authorization mixin	 143
Setting up a custom index page	 144
Flask-Admin templates	 145

Reading more	 146
Summary	 146

Chapter 7: AJAX and RESTful APIs	 147
Creating a comment model	 147

Creating a schema migration	 149
Installing Flask-Restless	 149

Setting up Flask-Restless	 150
Making API requests	 151

Creating comments using AJAX	 154
AJAX form submissions	 156
Validating data in the API	 159
Preprocessors and postprocessors	 160

Loading comments using AJAX	 161
Retrieving the list of comments	 163

Reading more	 166
Summary	 166

Chapter 8: Testing Flask Apps	 167
Unit testing	 167

Python's unit test module	 168
A simple math test	 169

Flask and unit testing	 171
Testing a page	 173
Testing an API	 175

Test-friendly configuration	 176
Mocking objects	 177

Table of Contents

[v]

Logging and error reporting	 179
Logging	 180

Logging to file	 180
Custom log messages	 181
Levels	 181

Error reporting	 182
Read more	 182
Summary	 182

Chapter 9: Excellent Extensions	 183
SeaSurf and CSRF protection of forms	 183
Creating Atom feeds	 185
Syntax highlighting using Pygments	 186
Simple editing with Markdown	 190
Caching with Flask-Cache and Redis	 192
Creating secure, stable versions of your site by creating
static content	 194

Commenting on a static site	 195
Synchronizing multiple editors	 195

Asynchronous tasks with Celery	 196
Creating command line instructions with Flask-script	 199
References	 200
Summary	 201

Chapter 10: Deploying Your Application	 203
Running Flask with a WSGI server	 203

Apache's httpd	 204
Serving static files	 206

Nginx	 207
Serving static files	 209

Gunicorn	 210
Securing your site with SSL	 210

Getting your certificate	 211
Apache httpd	 212
Nginx	 214
Gunicorn	 215

Automating deployment using Ansible	 216
Read more	 219
Summary	 219

Index	 221

[vii]

Preface
Welcome to Learning Flask, the book that will teach you the necessary skills to
build web applications with Flask, a lightweight Python web framework. This
book takes an example-driven approach that is designed to get you started quickly.
The practical examples are balanced with just the right amount of background
information to ensure that you understand not only the how, but also the why of
Flask development.

Flask was originally released by Armin Ronacher as part of an elaborate April
Fool's Day prank in 2010. The project touted itself as, "The next generation python
micro web-framework," and lampooned features made popular by similar
microframeworks. Although Flask was intended as a prank, the authors were
caught by surprise when many people expressed serious interest in the project.

Flask is a microframework that is built on top of two excellent libraries: the Jinja2
templating engine, and the Werkzeug WSGI toolkit. Despite being a relative
new-comer compared to other frameworks, such as Django, and Pylons, Flask has
garnered a large and loyal following. Flask provides powerful tools for common
web development tasks and encourages a bring-your-own-library approach for
everything else, allowing programmers the flexibility to pick and choose the best
components for their application. Every Flask app is different, and as the project's
documentation states, "Flask is Fun".

The Flask microframework represents a departure in terms of design and API from
most other popular Python web frameworks, which has led many developers that
are new to Flask to ask, "What is the right way to build an app?" Flask does not offer
any strong opinions on how we, the developers, should build our app. Instead, it
provides opinions on what you need to build an app. Flask can be thought of as a
collection of objects and functions to deal with common web tasks, such as routing
URLs to code, processing request data, and rendering templates. While the level
of flexibility that Flask provides is liberating, it can also lead to confusion and
poor designs.

Preface

[viii]

The purpose of this book is to help you see this flexibility as opportunity. Over
the course of this book, we will be building and progressively enhancing a Flask-
powered blogging site. New concepts will be introduced through the addition of
new features to the site. By the end of the book, we will have created a fully-featured
website, and you will have a strong working knowledge of Flask and the ecosystem
of its commonly-used extensions and libraries.

What this book covers
Chapter 1, Creating Your First Flask Application, begins with the bold declaration,
"Flask is fun", which is one of the first things that you see when you view the official
Flask documentation, and in this chapter, you will get to grips with why so many
Python developers agree.

Chapter 2, Relational Databases with SQLAlchemy, says that relational databases are
the bedrock upon which almost all modern web applications are built. We will use
SQLAlchemy, a powerful object-relational mapper that allows us to abstract away
the complexities of multiple database engines. In this chapter, you will learn about
how the data model that you choose early on will affect almost every facet of the code
that follows.

Chapter 3, Templates and Views, covers two of the most recognizable components of
the framework: the Jinja2 template language, and the URL routing framework. We
will fully immerse ourselves in Flask and see our app finally start to take shape.
As we progress through the chapter, our app will start looking like a proper website.

Chapter 4, Forms and Validation, shows you how to use forms to modify content on
your blog directly through the site handled by the popular WTForms library. This
is a fun chapter because we will add all sorts of new ways to interact with our site.
We will create forms to work with our data models and learn how to receive and
validate user data.

Chapter 5, Authenticating Users, explains how you can add user authentication to
your site. Being able to distinguish one user from another allows us to develop an
entirely new class of features. For instance, we will see how to restrict access to the
create, edit, and delete views, preventing anonymous users from tampering with
site content. We can also display a user's draft posts to them but hide them from
everyone else.

Preface

[ix]

Chapter 6, Building an Administrative Dashboard, shows you how you can build an
administrative dashboard for your site, using the excellent Flask-Admin. Our admin
dashboard will give certain selected users the ability to manage all the content across
the entire site. In essence, the admin site will be a graphical frontend for the database,
supporting operations to create, edit, and delete rows in our application's tables.

Chapter 7, AJAX and RESTful APIs, uses Flask-Restless to create a RESTful API
for the blogging app. A RESTful API is a powerful way of accessing your app
programmatically by providing highly-structured data to represent it. Flask-Restless
works very well with our SQLAlchemy models, and it also handles complex tasks,
such as serialization, and result filtering.

Chapter 8, Testing Flask Apps, covers how you can write unit tests covering all parts
of the blogging app. We will utilize Flask's test client to simulate "live" requests. We
will also see how the Mock library can simplify testing complex interactions, such as
calling third-party services, such as databases.

Chapter 9, Excellent Extensions, teaches you how to enhance your Flask installation
with popular third-party extensions. We used extensions throughout the book, but
we can now explore the added extra security or functionality with very little effort
and can polish off your app nicely.

Chapter 10, Deploying Your Application, teaches you how to deploy your Flask
applications securely and in an automated, repeatable manner. We will look at how
to configure the commonly-used WSGI capable servers, such as Apache and Nginx,
as well as the Python web server Gunicorn, to give you plenty of options. Then, we
will see how to secure part or the entire site using SSL before finally wrapping up
our application in a configuration management tool to automate our deployment.

What you need for this book
While Python is at home on most operating systems, and we have tried to keep
an operating system-agnostic approach within the book, it is advisable to use a
computer running a Linux distribution or OS X when working with this book,
as Python is already installed and running. The Linux distribution can be either
installed on the machine or within a virtual machine. Almost any Linux distribution
will do, and any recent version of Ubuntu will be fine.

Preface

[x]

Who this book is for
This book is for anyone who wants to develop their knowledge of Python into
something that can be used on the Web. Flask follows Python design principles,
and it can be easily understood by anyone who knows Python and even by those
who do not.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

from app import api
from models import Comment

api.create_api(Comment, methods=['GET', 'POST'])

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

{% block content %}
 {{ entry.body }}

 <h4 id="comment-form">Submit a comment</h4>
 {% include "entries/includes/comment_form.html" %}
{% endblock %}

Any command-line input or output is written as follows:

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 594ebac9ef0c ->
490b6bc5f73c, empty message

Preface

[xi]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You
should see the message Hello, Flask displayed on a blank white page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Creating Your
First Flask Application

Flask is fun. This bold declaration is one of the first things you see when you view
the official Flask documentation and, over the course of this book, you will come to
understand why so many Python developers agree.

In this chapter we shall:

•	 Briefly discuss the features of the Flask framework
•	 Set up a development environment and install Flask
•	 Implement a minimal Flask app and analyze how it works
•	 Experiment with commonly used APIs and the interactive debugger
•	 Start working on the blog project that will be progressively enhanced over

the course of the book

What is Flask?
Flask is a lightweight Web framework written in Python. Flask started out as
an April fool's joke that became a highly popular underdog in the Python web
framework world. It is now one of the most widely used Python web frameworks
for start-ups, and is becoming commonly accepted as the perfect tool for quick and
simple solutions in most businesses. At its core, it provides a set of powerful libraries
for handling the most common web development tasks, such as:

•	 URL routing that makes it easy to map URLs to your code
•	 Template rendering with Jinja2, one of the most powerful Python

template engines

Creating Your First Flask Application

[2]

•	 Session management and securing cookies
•	 HTTP request parsing and flexible response handling
•	 Interactive web-based debugger
•	 Easy-to-use, flexible application configuration management

This book will teach you how to use these tools through practical, real-world
examples. We will also discuss commonly used third-party libraries for things that
are not included in Flask, such as database access and form validation. By the end of
this book you will be ready to tackle your next big project with Flask.

With great freedom comes great responsibility
As the documentation states, Flask is fun, but it can also be challenging, especially
when you are building a large application. Unlike other popular Python web
frameworks, such as Django, Flask does not enforce ways of structuring your
modules or your code. If you have experience with other web frameworks, you may
be surprised how writing applications in Flask feels like writing Python as opposed
to the framework boilerplate.

This book will teach you to use Flask to write clean, expressive applications. As you
progress through this book, you will not only become a proficient Flask developer
but you will also become a stronger Python developer.

Setting up a development environment
Flask is written in Python, so before we can start writing Flask apps we must ensure
that Python is installed. Most Linux distributions and recent versions of OSX come
with Python pre-installed. The examples in this book will require Python 2.6 or 2.7.
Instructions for installing Python can be found at http://www.python.org.

If this is your first time using Python, there are a number of excellent resources
available for free on the web. I would recommend Learn Python The Hard Way, by Zed
Shaw, available for free online at http://learnpythonthehardway.org. Looking
for more? You can find a large list of free Python resources at http://resrc.io/
list/10/list-of-free-programming-books/#python.

http://www.python.org
http://learnpythonthehardway.org
http://resrc.io/list/10/list-of-free-programming-books/#python
http://resrc.io/list/10/list-of-free-programming-books/#python

Chapter 1

[3]

You can verify that Python is installed and that you have the correct version by
running the Python interactive interpreter from a command prompt:

$ python

Python 2.7.6 (default, Nov 26 2013, 12:52:49)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>>

At the prompt (>>>) type exit() and hit Enter to leave the interpreter.

Supporting Python 3
This book will include code that is compatible with both Python 2 and Python 3
where possible. Unfortunately, since Python 3 is still relatively new as compared
to Python 2, not all third-party packages used in this book are guaranteed to work
seamlessly with Python 3. There is a lot of effort being put into making popular
open-source libraries compatible with both versions but, at the time of writing, some
libraries have still not been ported. For best results, ensure that the version of Python
that you have installed on your system is 2.6 or above.

Installing Python packages
Now that you have ensured that Python is installed correctly, we will install some
popular Python packages that will be used over the course of this book.

We will be installing these packages system-wide but, once they are installed, we
will be working exclusively in virtual environments.

Installing pip
The de-facto Python package installer is pip . We will use it throughout the book to
install Flask and other third-party libraries.

If you already have setuptools installed, you can install pip by simply running the
following command:

$ sudo easy_install pip

Creating Your First Flask Application

[4]

After completing the installation, verify that pip is installed correctly:

$ pip --version

pip 1.2.1 from /usr/lib/python2.7/site-packages/pip-1.2.1-py2.7.egg
(python 2.7)

The version numbers are likely to change, so for a definitive guide please consult the
official instructions, which can be found at http://www.pip-
installer.org/en/latest/installing.html.

Installing virtualenv
Once pip is installed, we can proceed to install the most important tool in any
Python developer's toolkit: virtualenv. Virtualenv makes it easy to produce
isolated Python environments, complete with their own copies of system and
third-party packages.

Why use virtualenv?
Virtualenv solves a number of problems related to package management. Imagine
you have an old application that was built using a very early version of Flask, and
you would like to build a new project using the most-recent version of Flask. If Flask
was installed system-wide, you was be forced to either upgrade your old project or
write your new project against the old Flask. If both projects were using virtualenv,
then each could run its own version of Flask, with no conflicts or issues.

Virtualenv makes it easy to control which versions of the third-party package is used
by your project.

Another consideration is that installing packages system-wide generally requires
elevated privileges (sudo pip install foo). By using virtualenvs, you can create
Python environments and install packages as a regular user. This is especially useful
if you are deploying to a shared hosting environment or are in a situation where you
do not have administrator privileges.

Installing virtualenv with pip
We will use pip to install virtualenv; since it is a standard Python package, it can be
installed just like any other Python package. To ensure that virtualenv is installed
system-wide, run the following command (it requires elevated privileges):

$ sudo pip install virtualenv

$ virtualenv --version

1.10.1

http://www.pip- installer.org/en/latest/installing.html
http://www.pip- installer.org/en/latest/installing.html

Chapter 1

[5]

The version numbers are likely to change, so for a definitive guide please consult the
official instructions at http://virtualenv.org.

Creating your first Flask app
Now that we have the proper tools installed, we're ready to create our first Flask app.
To begin, create a directory somewhere convenient that will hold all of your Python
projects. At the command prompt or terminal, navigate to your projects directory;
mine is /home/charles/projects, or ~/projects for short on Unix-based systems.

$ mkdir ~/projects

$ cd ~/projects

Now we will create a virtualenv. The commands below will create a new directory
named hello_flask inside your projects folder that contains a complete, isolated
Python environment.

$ virtualenv hello_flask

New python executable in hello_flask/bin/python2.

Also creating executable in hello_flask/bin/python

Installing setuptools............done.

Installing pip...............done.

$ cd hello_flask

If you list the contents of the hello_flask directory, you will see that it has created
several sub-directories, including a bin folder (Scripts on Windows) that contains
copies of both Python and pip. The next step is to activate your new virtualenv. The
instructions differ depending on whether you are using Windows or Mac OS/Linux.
To activate your virtualenv refer to the following screenshot:

Creating the hello_flask virtualenv

http://virtualenv.org

Creating Your First Flask Application

[6]

When you activate a virtualenv, your PATH environment variable is
temporarily modified to ensure that any packages you install or use are restricted
to your virtualenv.

Installing Flask in your virtualenv
Now that we've verified that our virtualenv is set up correctly, we can install Flask.

When you are inside a virtualenv, you should never install packages with
administrator privileges. If you receive a permission error when attempting to install
Flask, double-check that you have activated your virtualenv correctly (you should
see (hello_flask) in your command prompt).

(hello_flask) $ pip install Flask

You will see some text scroll by as pip downloads the Flask package and the related
dependencies before installing it into your virtualenv. Flask depends on a couple of
additional third-party libraries, which pip will automatically download and install
for you. Let's verify that everything is installed properly:

(hello_flask) $ python

>>> import flask

>>> flask.__version__

'0.10.1'

>>> flask

<module 'flask' from
'/home/charles/projects/hello_flask/lib/python2.7/site-
packages/flask/__init__.pyc'>

Congratulations! You've installed Flask and now we are ready to start coding.

Hello, Flask!
Create a new file in the hello_flask virtualenv named app.py. Using your favorite
text editor or IDE, enter the following code:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():

Chapter 1

[7]

 return 'Hello, Flask!'

if __name__ == '__main__':
 app.run(debug=True)

Save the file and then execute app.py by running it from the command line. You will
need to ensure that you have activated the hello_flask virtualenv:

$ cd ~/projects/hello_flask

(hello_flask) $ python app.py

* Running on http://127.0.0.1:5000/

Open your favorite web-browser and navigate to the URL displayed
(http://127.0.0.1:5000). You should see the message Hello, Flask! displayed
on a blank white page. By default, the Flask development server runs locally on
127.0.0.1, bound to port 5000.

Your first Flask app.

Understanding the code
We just created a very basic Flask app. To understand what's happening let's take
this code apart line-by-line.

from flask import Flask

Our app begins by importing the Flask class. This class represents a single WSGI
application and is the central object in any Flask project.

WSGI is the Python standard web server interface, defined in PEP 333. You can
think of WSGI as a set of behaviors and methods that, when implemented, allow
your web app to just work with a large number of webservers. Flask handles all the
implementation details for you, so you can focus on writing you web app.

app = Flask(__name__)

Creating Your First Flask Application

[8]

In this line, we create an application instance in the variable app and pass it the
name of our module. The variable app can of course be anything, however app is
a common convention for most Flask applications. The application instance is the
central registry for things such as views, URL routes, template configuration, and
much more. We provide the name of the current module so that the application is
able to find resources by looking inside the current folder. This will be important
later when we want to render templates or serve static files.

@app.route('/')
def index():
 return 'Hello, Flask!'

In the preceding lines, we are instructing our Flask app to route all requests for / (the
root URL) to this view function (index). A view is simply a function or a method that
returns a response of some kind. Whenever you open a browser and navigate to the
root URL of our app, Flask will call this view function and send the return value to
the browser.

There are a few things to note about these lines of code:

•	 @app.route is a Python decorator from the app variable defined above. This
decorator (app.route) wraps the following function, in this case,index, in
order to route requests for a particular URL to a particular view. Index is
chosen as the name for the function here, as it's the common name for the
first page that a web server uses. Other examples could be homepage or
main. Decorators are a rich and interesting subject for Python developers, so
if you are not familiar with them, I recommend using your favorite search
engine to find a good tutorial.

•	 The index function takes no arguments. This might seem odd if you are
coming from other web-frameworks and were expecting a request object
or something similar. We will see in the following examples how to access
values from the request.

•	 The index function returns a plain string object. In later examples, we will
see how to render templates to return HTML.

•	 The following lines execute our app using the built-in development server in
debug mode. The 'if' statement is a common Python convention that ensures
that the app will only be run when we run our script via python app.py, and
will not run if we try to import this app from another Python file.

if __name__ == '__main__':
 app.run(debug=True)

Chapter 1

[9]

Routes and requests
Right now our Flask app isn't much fun, so let's look at the different ways in which
we can add more interesting behavior to our web app. One common way is to add
responsive behavior so that our app will look at values in the URL and handle them.
Let's add a new route to our Hello Flask app called hello. This new route will
display a greeting to the person whose name appears in the URL:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello, Flask!'

@app.route('/hello/<name>')
def hello(name):
 return 'Hello, %s' % name

if __name__ == '__main__':
 app.run(debug=True)

Again, let's run our app and open it up in a web browser. We can now navigate to a
URL such as http://127.0.0.1/hello/Charlie and see our custom message:

Our Flask app displaying a custom message

In the preceding example, the route we added specifies a single parameter: name.
This parameter also appears in the function declaration as the sole argument. Flask is
automatically matching the URL /hello/Charlie to the hello view; this is known
as mapping. It then passes the string Charlie into our view function as an argument.

Creating Your First Flask Application

[10]

What happens if we navigate to http://127.0.0.1:5000/hello/ without
specifying a name? As you can see, the Flask development server will return a 404
response, indicating that the URL did not match any known routes.

Flask 404 page

Reading values from the request
In addition to the URL, values can be passed to your app in the query string. The
query string is made up of arbitrary keys and values that are tacked onto the URL,
using a question-mark:

URL Argument Values
/hello/?name=Charlie name: Charlie
/hello/?name=Charlie&favorite_
color=green

name: Charlie
favorite_color: green

In order to access these values inside your view functions, Flask provides a request
object that encapsulates all sorts of information about the current HTTP request. In
the following example, we will modify our hello view to also respond to names
passed in via the query string. If no name is specified either on the query-string or in
the URL, we will return a 404.

from flask import Flask, abort, request

app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello, Flask!'

@app.route('/hello/<name>')
@app.route('/hello/')
def hello(name=None):

Chapter 1

[11]

 if name is None:
 # If no name is specified in the URL, attempt to retrieve it
 # from the query string.
 name = request.args.get('name')
 if name:
 return 'Hello, %s' % name
 else:
 # No name was specified in the URL or the query string.
 abort(404)

if __name__ == '__main__':
 app.run(debug=True)

As you can see, we have added another route decorator to our hello view: Flask
allows you to map multiple URL routes to the same view. Because our new route
does not contain a name parameter, we need to modify the argument signature of
our view function to make name an optional parameter, which we accomplish by
providing a default value of None.

The function body of our view has also been modified to check for the presence of
a name in the URL. If no name is specified, we will abort with a 404 page not found
status code.

Greet someone using the query string

Debugging Flask applications
It is inevitable that, sooner or later, we will introduce a bug into our code. Since bugs
are inevitable, the best thing we can hope for as developers is good tools that help
us diagnose and fix bugs quickly. Luckily, Flask comes bundled with an extremely
powerful web-based debugger. The Flask debugger makes it possible to introspect
the state of your application the moment an error occurs, removing the need to
sprinkle in print statements or breakpoints.

This can be enabled by telling the Flask app to run in debug mode at run time.
We can do this in a few ways but we have actually already done this through the
following code:

if __name__ == '__main__':
 app.run(debug=True)

Creating Your First Flask Application

[12]

In order to try it out, let's introduce a bug to the hello_flask app by creating a typo.
Here I have simply deleted the trailing e from the variable name:

@app.route('/hello/<name>')
@app.route('/hello/')
def hello(name=None):
 if nam is None:
 # No name was specified in the URL or the query string.
 abort(404)

When we fire up the development server and attempt to access our view, we are now
presented with the debugging page:

.

The Flask interactive debugger running in a web browser

Chapter 1

[13]

This list of code is called a Traceback and it is made up of the call stack, the nested
list of function calls that preceded the actual error. The traceback usually provides
a very good clue as to what may have happened. At the very bottom we see the line
of code we intentionally mistyped along with the actual Python error, which is a
NameError exception telling us that nam is not defined.

Traceback detail showing our typo and a description of the error

The real magic happens when you place your mouse on the highlighted line with the
mouse. On the right-hand side you will see two small icons representing a terminal
and a source code file. Clicking the Source Code icon will expand the source code
surrounding the line that contained the error. This is very useful for establishing
some context when interpreting an error.

The terminal icon is the most interesting. When you click the Terminal icon, a small
console appears with the standard Python prompt. This prompt allows you to inspect,
in real-time, the values of the local variables at the time of the exception. Try typing
in name and hitting Enter—it should display the value, if any, that was specified in the
URL. We can also introspect the current request arguments as follows:

Introspecting variables using the debugging console

As you work through the chapters and experiment on your own, being able to quickly
diagnose and correct any bugs will be an extremely valuable skill. We will return to the
interactive debugger in Chapter 8, Testing Flask Apps but, for now, be aware that it exists
and can be used to introspect your code when and where it breaks.

Creating Your First Flask Application

[14]

Introducing the blog project
Over the rest of this book, we will be building, enhancing, and deploying a
programmer-friendly blogging site. This project will introduce you to the most
common web development tasks, such as working with relational databases,
processing and validating form data, and (everyone's favorite), testing. In each
chapter, you will learn a new skill through practical, hands-on coding projects. In
the following table, I've listed a brief description of the core skills paired with the
corresponding features of the blog:

Skill Blog site feature(s)
Relational databases with
SQLAlchemy
Flask-SQLAlchemy

Store entries and tags in a relational database.
Perform a wide variety of queries, including
pagination, date-ranges, full-text search, inner and
outer joins, and more.

Form processing and validation
Flask-WTF

Create and edit blog entries using forms. In later
chapters, we will also use forms for logging users
into the site and allowing visitors to post comments.

Template rendering with Jinja2
Jinja2

Create a clean, extensible set of templates, making
use of inheritance and includes, where appropriate.

User authentication and
administrative dashboards
Flask-Login

Store user accounts in the database and restrict the
post management page to registered users. Build
an administrative panel for managing posts, user
accounts, and for displaying stats such as page-
views, IP geolocation, and more.

Ajax and RESTful APIs
Flask-API

Build an Ajax-powered commenting system that
will be displayed on each entry. Expose blog entries
using a RESTful API, and build a simple command-
line client for posting entries using the API.

Unit testing
unittest

We will build a full suite of tests for the blog, and
learn how to simulate real requests and use mocks
to simplify complex interactions.

Everything else Cross-Site Request Forgery (CSRF) protection,
Atom feeds, spam detection, asynchronous task
execution, deploying, Secure Socket Layer (SSL),
hosting providers, and more.

Chapter 1

[15]

The spec
It's always a good idea when starting a large project to have a functional specification
in mind. For the blogging site, our spec will simply be the list of features that we
want our blog to have. These features are based on my experience in building my
personal blog:

•	 Entries should be entered using web-based interfaces. For formatting,
the author can use Markdown, a lightweight, visually appealing
markup language.

•	 Images can be uploaded to the site and easily embedded in blog entries.
•	 Entries can be organized using any number of tags.
•	 The site should support multiple authors.
•	 Entries can be displayed in order of publication, but also listed by month,

by tag, or by author. Long lists of entries will be paginated.
•	 Entries can be saved as drafts and viewed by their author but nobody else

until they are published.
•	 Visitors to the site can post comments on entries, which will be checked

for spam and then left to the author's discretion as to whether they should
remain visible.

•	 Atom feeds will be made available for all posts, including separate feeds for
each author and tag.

•	 Entries can be accessed using a RESTful API. Authors will be given an API
token that will allow them to modify entries using the API.

While this list is not exhaustive, it covers the core functionality of our blogging site
and you will hopefully find it both fun and challenging to build. At the end of the
book, I will present some ideas for additional features that you might add, but first
you need to become comfortable working with Flask. I'm sure you're eager to get
started, so let's set up our blogging project.

Creating the blog project
Let's start by creating a new project within our working directory; on my laptop this
is /home/charles/projects, or on a Unix system ~/projects, for short. This is
exactly what we did when we created the hello_flask app:

$ cd ~/projects

$ mkdir blog

$ cd blog

Creating Your First Flask Application

[16]

We will then need to set up our virtualenv environment. This differs from what we
did earlier as this is a more structured way of using virtualenv:

$ virtualenv blog

The next step will be to install Flask into our virtualenv. To do this, we will activate
the virtualenv and use pip to install Flask:

$ source blog/bin/activate

(blog) $ pip install Flask

Up until now, all of this should be somewhat familiar to you. However, instead of
creating a single file for our app, which we are definitely allowed to do and that
makes sense for very small apps, we can also create a new folder named app that
will allow us to make our app modular and more logical. Inside that folder, we will
create five empty files named __init__.py, app.py, config.py, main.py, and
views.py as follows:

mkdir app

touch app/{__init__,app,config,main,views}.py

This last command uses a little trick of your shell to create multiple files with the
names within the brackets. If you use version control, you will want to treat the app
directory as the root of your repository. The app directory will contain the source
code, templates, and static assets for the blog app. If you haven't used version
control, now would be a great time to give it a try. Pro Git is a great resource and is
available for free at http://git-scm.com/book.

What are these files that we just created? As you will see, each file serves an
important purpose. Hopefully their names provide a clue as to their purpose, but
here is a brief overview of each module's responsibility:

__init__.py Tells Python to use the app/ directory as a python package
app.py The Flask app
config.py Configuration variables for our Flask app
main.py Entry-point for executing our application
views.py URL routes and views for the app

http://git-scm.com/book

Chapter 1

[17]

A barebones Flask app
Let's fill in these files with the minimum amount of code needed to create a runnable
Flask app. This will get our project in good shape for the second chapter, in which
we'll start working on the code to store and retrieve blog entries from the database.

We will start with the config.py module. This module will contain a
Configuration class that instructs Flask that we want to run our app in the DEBUG
mode. Add the following two lines of code to the config.py module as follows:

class Configuration(object):
 DEBUG = True

Next we will create our Flask app and instruct it to use the configuration values
specified in the config module. Add the following code to the app.py module:

from flask import Flask

from config import Configuration # import our configuration data.

app = Flask(__name__)
app.config.from_object(Configuration) # use values from our
Configuration object.

The views module will contain a single view mapped to the root URL of the site.
Add the following code to views.py:

from app import app

@app.route('/')
def homepage():
 return 'Home page'

As you probably noticed, we are still missing our call to app.run(). We will put
that code in main.py, which we will use as the entry-point into our app. Add the
following code to the main.py module:

from app import app # import our Flask app
import views

if __name__ == '__main__':
 app.run()

We do not call app.run(debug=True) because we have already instructed Flask to
run our app in the debug mode in the Configuration object.

Creating Your First Flask Application

[18]

You can run the app from the command-line by executing the main module as follows:

$ python main.py

 * Running on http://127.0.0.1:5000/

* Restarting with reloader

From humble beginnings...

Zooming out
Other than the Configuration class, most of this code should look familiar to you.
We have basically taken the code from the hello_flask example and separated it
into several modules. It may seem silly to write only two or three lines of code per
file, but as our project grows you will see how this early commitment to organization
pays off.

You may have noticed that there is an internal prioritization to these files, based on
the order in which they are imported—this is to mitigate the possibility of a circular
import. A circular import occurs when two modules mutually import each other and,
hence, cannot be imported at all. When using the Flask framework, it is very easy to
create circular imports because so many different things depend on the central app
object. To avoid problems, some people just put everything into a single module.
This works fine for smaller apps, but is not maintainable beyond a certain size or
complexity. That is why we have broken our app into several modules and created a
single entry-point that controls the ordering of imports.

Chapter 1

[19]

The import flow
Execution starts when you run python main.py from the command line. The first
line of code that the Python interpreter runs into imports the app object from the app
module. Now we're inside app.py, which imports Flask and our Configuration
object. The rest of the app.py module is read and interpreted, and we're back into
main.py again. The second line of main.py imports the views module. Now we're
in views.py, which depends on app.py for @app.route and is, in fact, already
available from main.py. The URL route and view are registered as the views module
is interpreted, and we're back into main.py again. Since we are running main.py
directly, the 'if' check will evaluate to True and our app will run.

Import flow when executing main.py

Creating Your First Flask Application

[20]

Summary
By now you should be familiar with the process of setting up a new virtualenv for
your Python project, be able to install Flask, and have created a simple app. In this
chapter,we discussed how to create virtualenvs for your projects and install
third-party packages using pip. We also learnt how to write a basic Flask app, route
requests to views, and to read request arguments. We familiarized ourselves with
the interactive debugger and with how the Python interpreter processes the
import statements.

If you were already familiar with most of the subject-matter in this chapter, do not
worry; things will soon get more challenging.

In the next chapter, you will discover how to work with a relational database to
store and retrieve blog entries. We'll add a new module to our project for storing
our database-specific code and create some models to represent blog entries and
tags. Once we are able to store the entries, we will learn how to read them back in a
variety of ways through filtering, sorting, and aggregation. For more information,
you can refer to the following links:

•	 https://www.python.org/dev/peps/pep-0333/

•	 https://wiki.python.org/moin/PythonDecorators

•	 http://charlesleifer.com

https://www.python.org/dev/peps/pep-0333/
https://wiki.python.org/moin/PythonDecorators
http://charlesleifer.com

[21]

Relational Databases with
SQLAlchemy

Relational databases are the bedrock upon which almost every modern Web
application is built. Learning to think about your application in terms of tables and
relationships is one of the keys to a clean, well-designed project. As you will see in
this chapter, the data model you choose early on will affect almost every facet of
the code that follows. We will be using SQLAlchemy, a powerful object relational
mapper that allows us to abstract away the complexities of multiple database
engines, to work with the database directly from within Python.

In this chapter, we shall:

•	 Present a brief overview of the benefits of using a relational database
•	 Introduce SQLAlchemy, the Python SQL Toolkit and Object Relational

Mapper
•	 Configure our Flask application to use SQLAlchemy
•	 Write a model class to represent blog entries
•	 Learn how to save and retrieve blog entries from the database
•	 Perform queries – sorting, filtering, and aggregation
•	 Build a tagging system for blog entries
•	 Create schema migrations using Alembic

Relational Databases with SQLAlchemy

[22]

Why use a relational database?
Our application's database is much more than a simple record of things that we need
to save for future retrieval. If all we needed to do was save and retrieve data, we
could easily use flat text files. The fact is, though, that we want to be able to perform
interesting queries on our data. What's more, we want to do this efficiently and
without reinventing the wheel. While non-relational databases (sometimes known
as NoSQL databases) are very popular and have their place in the world of the web,
relational databases long ago solved the common problems of filtering, sorting,
aggregating, and joining tabular data. Relational databases allow us to define sets of
data in a structured way that maintains the consistency of our data. Using relational
databases also gives us, the developers, the freedom to focus on the parts of our app
that matter.

In addition to efficiently performing ad hoc queries, a relational database server will
also do the following:

•	 Ensure that our data conforms to the rules set forth in the schema
•	 Allow multiple people to access the database concurrently, while at the same

time guaranteeing the consistency of the underlying data
•	 Ensure that data, once saved, is not lost even in the event of an application

crash

Relational databases and SQL, the programming language used with relational
databases, are topics worthy of an entire book. Because this book is devoted to
teaching you how to build apps with Flask, I will show you how to use a tool that
has been widely adopted by the Python community for working with databases,
namely, SQLAlchemy.

SQLAlchemy abstracts away many of the complications of writing
SQL queries, but there is no substitute for a deep understanding of
SQL and the relational model. For that reason, if you are new to SQL,
I would recommend that you check out the colorful book Learn SQL
the Hard Way, Zed Shaw available online for free at http://sql.
learncodethehardway.org/.

http://sql.learncodethehardway.org/
http://sql.learncodethehardway.org/

Chapter 2

[23]

Introducing SQLAlchemy
SQLAlchemy is an extremely powerful library for working with relational databases
in Python. Instead of writing SQL queries by hand, we can use normal Python
objects to represent database tables and execute queries. There are a number of
benefits to this approach, as follows:

•	 Your application can be developed entirely in Python.
•	 Subtle differences between database engines are abstracted away. This allows

you to do things just like a lightweight database, for instance, use SQLite
for local development and testing, then switch to the databases designed for
high loads (such as PostgreSQL) in production.

•	 Database errors are less common because there are now two layers between
your application and the database server: the Python interpreter itself (this
will catch the obvious syntax errors), and SQLAlchemy, which has well-
defined APIs and its own layer of error-checking.

•	 Your database code may become more efficient, thanks to SQLAlchemy's
unit-of-work model that helps reduce unnecessary round-trips to the
database. SQLAlchemy also has facilities for efficiently pre-fetching related
objects known as eager loading.

•	 Object Relational Mapping (ORM) makes your code more maintainable,
an aspiration known as don't repeat yourself, (DRY). Suppose you add a
column to a model. With SQLAlchemy it will be available whenever you use
that model. If, on the other hand, you had hand-written SQL queries strewn
throughout your app, you would need to update each query, one at a time, to
ensure that you were including the new column.

•	 SQLAlchemy can help you avoid SQL injection vulnerabilities.
•	 Excellent library support: As you will see in later chapters, there are a

multitude of useful libraries that can work directly with your SQLAlchemy
models to provide things such as maintenance interfaces and RESTful APIs.

I hope you're excited after reading this list. If all the items in this list don't make
sense to you right now, don't worry. As you work through this chapter and the
subsequent ones, these benefits will become more apparent and meaningful.

Now that we have discussed some of the benefits of using SQLAlchemy, let's install
it and start coding.

Relational Databases with SQLAlchemy

[24]

If you'd like to learn more about SQLAlchemy, there is a chapter
devoted entirely to its design in The Architecture of Open-Source
Applications, available online for free at http://aosabook.
org/en/sqlalchemy.html.

Installing SQLAlchemy
We will use pip to install SQLAlchemy into the blog app's virtualenv. As you will
recall from the previous chapter, to activate your virtualenv, change directories to
source the activate script as follows:

$ cd ~/projects/blog

$ source blog/bin/activate

(blog) $ pip install sqlalchemy

Downloading/unpacking sqlalchemy

…

Successfully installed sqlalchemy

Cleaning up...

You can check if your installation succeeded by opening a Python interpreter and
checking the SQLAlchemy version; note that your exact version number is likely to
differ.

$ python

>>> import sqlalchemy

>>> sqlalchemy.__version__

'0.9.0b2'

Using SQLAlchemy in our Flask app
SQLAlchemy works very well with Flask on its own, but the author of Flask has
released a special Flask extension named Flask-SQLAlchemy that provides helpers
with many common tasks, and can save us from having to re-invent the wheel later
on. Let's use pip to install this extension:

(blog) $ pip install flask-sqlalchemy

…

Successfully installed flask-sqlalchemy

http://aosabook.org/en/sqlalchemy.html
http://aosabook.org/en/sqlalchemy.html

Chapter 2

[25]

Flask provides a standard interface for the developers who are interested in building
extensions. As the framework has grown in popularity, the number of high-quality
extensions has increased. If you'd like to take a look at some of the more popular
extensions, there is a curated list available on the Flask project website at http://
flask.pocoo.org/extensions/.

Choosing a database engine
SQLAlchemy supports a multitude of popular database dialects, including SQLite,
MySQL, and PostgreSQL. Depending on the database you would like to use, you
may need to install an additional Python package containing a database driver.
Listed next are several popular databases supported by SQLAlchemy and the
corresponding pip-installable driver. Some databases have multiple driver options,
so I have listed the most popular one first.

Database Driver Package(s)
SQLite Not needed, part of the Python standard library

since version 2.5
MySQL MySQL-python, PyMySQL (pure Python), OurSQL
PostgreSQL psycopg2
Firebird fdb
Microsoft SQL Server pymssql, PyODBC
Oracle cx-Oracle

SQLite comes as standard with Python and does not require a separate server
process, so it is perfect for getting up-and-running quickly. For simplicity in the
examples that follow, I will demonstrate how to configure the blog app for use with
SQLite. If you have a different database in mind that you would like to use for the
blog project, feel free to use pip to install the necessary driver package at this time.

Connecting to the database
Using your favorite text editor, open the config.py module for our blog project
(~/projects/blog/app/config.py). We are going to add a SQLAlchemy-specific
setting to instruct Flask-SQLAlchemy how to connect to our database. The new lines
are highlighted in the following:

import os
class Configuration(object):
 APPLICATION_DIR = os.path.dirname(os.path.realpath(__file__))
 DEBUG = True
 SQLALCHEMY_DATABASE_URI = 'sqlite:///%s/blog.db' % APPLICATION_DIR

http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/

Relational Databases with SQLAlchemy

[26]

The SQLALCHEMY_DATABASE_URI comprises the following parts:

dialect+driver://username:password@host:port/database

Because SQLite databases are stored in local files, the only information we need to
provide is the path to the database file. On the other hand, if you wanted to connect
to PostgreSQL running locally, your URI might look something like this:

postgresql://postgres:secretpassword@localhost:5432/blog_db

If you're having trouble connecting to your database, try consulting
the SQLAlchemy documentation on database URIs: http://docs.
sqlalchemy.org/en/rel_0_9/core/engines.html.

Now that we've specified how to connect to the database, let's create the object
responsible for actually managing our database connections. This object is provided
by the Flask-SQLAlchemy extension and is conveniently named SQLAlchemy. Open
app.py and make the following additions:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

from config import Configuration

app = Flask(__name__)
app.config.from_object(Configuration)
db = SQLAlchemy(app)

These changes instruct our Flask app, and in turn SQLAlchemy, how to
communicate with our application's database. The next step will be to create a table
for storing blog entries and, to do so, we will create our first model.

Creating the Entry model
A model is the data representation of a table of data that we want to store in the
database. These models have attributes called columns that represent the data items
in the data. So, if we were creating a Person model, we might have columns for
storing the first and last name, date of birth, home address, hair color, and so on.
Since we are interested in creating a model to represent blog entries, we will have
columns for things like the title and body content.

http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html
http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html

Chapter 2

[27]

Note that we don't say a People model or Entries model –
models are singular even though they commonly represent many
different objects.

With SQLAlchemy, creating a model is as easy as defining a class and specifying a
number of attributes assigned to that class. Let's start with a very basic model for our
blog entries. Create a new file named models.py in the blog project's app/ directory
and enter the following code:

import datetime, re

from app import db

def slugify(s):
 return re.sub('[^\w]+', '-', s).lower()

class Entry(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100))
 slug = db.Column(db.String(100), unique=True)
 body = db.Column(db.Text)
 created_timestamp = db.Column(db.DateTime, default=datetime.
datetime.now)
 modified_timestamp = db.Column(
 db.DateTime,
 default=datetime.datetime.now,
 onupdate=datetime.datetime.now)

 def __init__(self, *args, **kwargs):
 super(Entry, self).__init__(*args, **kwargs) # Call parent
constructor.
 self.generate_slug()

 def generate_slug(self):
 self.slug = ''
 if self.title:
 self.slug = slugify(self.title)

 def __repr__(self):
 return '<Entry: %s>' % self.title

Relational Databases with SQLAlchemy

[28]

There is a lot going on, so let's start with the imports and work our way down. We
begin by importing the standard library datetime and re modules. We will be using
datetime to get the current date and time, and re to do some string manipulation.
The next import statement brings in the db object that we created in app.py. As you
recall, the db object is an instance of the SQLAlchemy class, which is a part of the
Flask-SQLAlchemy extension. The db object provides access to the classes that we
need to construct our Entry model, which is just a few lines ahead.

Before the Entry model, we define a helper function slugify, which we will use
to give our blog entries some nice URLs (used in Chapter 3, Templates and Views).
The slugify function takes a string such as A post about Flask and uses a regular
expression to turn a string that is human-readable in to a URL, and so returns a-post-
about-flask.

Next is the Entry model. Our Entry model is a normal class that extends db.Model.
By extending db.Model, our Entry class will inherit a variety of helpers that we'll
use to query the database.

The attributes of the Entry model, are a simple mapping of the names and data that
we wish to store in the database and are listed as follows:

•	 id: This is the primary key for our database table. This value is set for us
automatically by the database when we create a new blog entry, usually an
auto-incrementing number for each new entry. While we will not explicitly
set this value, a primary key comes in handy when you want to refer one
model to another, as you'll see later in the chapter.

•	 title: The title for a blog entry, stored as a String column with a maximum
length of 100.

•	 slug: The URL-friendly representation of the title, stored as a String column
with a maximum length of 100. This column also specifies unique=True, so
that no two entries can share the same slug.

•	 body: The actual content of the post, stored in a Text column. This differs
from the String type of the Title and Slug as you can store as much text as
you like in this field.

•	 created_timestamp: The time a blog entry was created, stored in a
DateTime column. We instruct SQLAlchemy to automatically populate this
column with the current time by default when an entry is first saved.

•	 modified_timestamp: The time a blog entry was last updated. SQLAlchemy
will automatically update this column with the current time whenever we
save an entry.

Chapter 2

[29]

For short strings such as titles or names of things, the String
column is appropriate, but when the text may be especially long it is
better to use a Text column, as we did for the entry body.

We've overridden the constructor for the class (__init__) so that, when a new model
is created, it automatically sets the slug for us based on the title.

The last piece is the __repr__ method that is used to generate a helpful
representation of instances of our Entry class. The specific meaning of __repr__
is not important but allows you to reference the object that the program is working
with, when debugging.

A final bit of code needs to be added to main.py, the entry-point to our application,
to ensure that the models are imported. Add the highlighted changes to main.py
as follows:

from app import app, db
import models
import views

if __name__ == '__main__':
 app.run()

Creating the Entry table
In order to start working with the Entry model, we first need to create a table for
it in our database. Luckily, Flask-SQLAlchemy comes with a nice helper for doing
just this. Create a new sub-folder named scripts in the blog project's app directory.
Then create a file named create_db.py:

(blog) $ cd app/

(blog) $ mkdir scripts

(blog) $ touch scripts/create_db.py

Add the following code to the create_db.py module. This function will
automatically look at all the code that we have written and create a new table in our
database for the Entry model based on our models:

import os, sys
sys.path.append(os.getcwd())
from main import db

if __name__ == '__main__':
 db.create_all()

Relational Databases with SQLAlchemy

[30]

Execute the script from inside the app/ directory. Make sure the virtualenv is active.
If everything goes successfully, you should see no output.

(blog) $ python create_db.py

(blog) $

If you encounter errors while creating the database tables, make
sure you are in the app directory, with the virtualenv activated,
when you run the script. Next, ensure that there are no typos in your
SQLALCHEMY_DATABASE_URI setting.

Working with the Entry model
Let's experiment with our new Entry model by saving a few blog entries. We
will be doing this from the Python interactive shell. At this stage let's install
IPython, a sophisticated shell with features such as tab-completion (that the
default Python shell lacks).

(blog) $ pip install ipython

Now check whether we are in the app directory and let's start the shell and create a
couple of entries as follows:

(blog) $ ipython

In []: from models import * # First things first, import our Entry model
and db object.

In []: db # What is db?

Out[]: <SQLAlchemy engine='sqlite:////home/charles/projects/blog/app/
blog.db'>

If you are familiar with the normal Python shell but not IPython, things
may look a little different at first. The main thing to be aware of is that
In[] refers to the code you type in, and Out[] is the output of the
commands you put into the shell.

Chapter 2

[31]

IPython has a neat feature that allows you to print detailed information about
an object. This is done by typing in the object's name followed by a question-mark
(?). Introspecting the Entry model provides a bit of information, including the
argument signature and the string representing that object (known as the
docstring) of the constructor.

In []: Entry? # What is Entry and how do we create it?

Type: _BoundDeclarativeMeta

String Form:<class 'models.Entry'>

File: /home/charles/projects/blog/app/models.py

Docstring: <no docstring>

Constructor information:

 Definition:Entry(self, *args, **kwargs)

We can create Entry objects by passing column values in as the keyword-arguments.
In the preceding example, it uses **kwargs; this is a shortcut for taking a dict object
and using it as the values for defining the object, as shown next:

In []: first_entry = Entry(title='First entry', body='This is the body of
my first entry.')

In order to save our first entry, we will to add it to the database session. The session
is simply an object that represents our actions on the database. Even after adding it to
the session, it will not be saved to the database yet. In order to save the entry to the
database, we need to commit our session:

In []: db.session.add(first_entry)

In []: first_entry.id is None # No primary key, the entry has not been
saved.

Out[]: True

In []: db.session.commit()

In []: first_entry.id

Out[]: 1

In []: first_entry.created_timestamp

Out[]: datetime.datetime(2014, 1, 25, 9, 49, 53, 1337)

As you can see from the preceding code examples, once we commit the session, a
unique id will be assigned to our first entry and the created_timestamp will be set
to the current time. Congratulations, you've created your first blog entry!

Try adding a few more on your own. You can add multiple entry objects to the same
session before committing, so give that a try as well.

Relational Databases with SQLAlchemy

[32]

At any point while you are experimenting, feel free to delete the
blog.db file and re-run the create_db.py script to start over
with a fresh database.

Making changes to an existing entry
In order to make changes to an existing Entry, simply make your edits and then
commit. Let's retrieve our Entry using the id that was returned to us earlier, make
some changes, and commit it. SQLAlchemy will know that it needs to be updated.
Here is how you might make edits to the first entry:

In []: first_entry = Entry.query.get(1)

In []: first_entry.body = 'This is the first entry, and I have made some
edits.'

In []: db.session.commit()

And just like that your changes are saved.

Deleting an entry
Deleting an entry is just as easy as creating one. Instead of calling db.session.
add, we will call db.session.delete and pass in the Entry instance that we wish
to remove.

In []: bad_entry = Entry(title='bad entry', body='This is a lousy
entry.')

In []: db.session.add(bad_entry)

In []: db.session.commit() # Save the bad entry to the database.

In []: db.session.delete(bad_entry)

In []: db.session.commit() # The bad entry is now deleted from the
database.

Retrieving blog entries
While creating, updating, and deleting are fairly straightforward operations, the real
fun starts when we look at ways to retrieve our entries. We'll start with the basics,
and then work our way up to more interesting queries.

We will use a special attribute on our model class to make queries: Entry.query.
This attribute exposes a variety of APIs for working with the collection of entries in
the database.

Chapter 2

[33]

Let's simply retrieve a list of all the entries in the Entry table:

In []: entries = Entry.query.all()

In []: entries # What are our entries?

Out[]: [<Entry u'First entry'>, <Entry u'Second entry'>, <Entry
u'Third entry'>, <Entry u'Fourth entry'>]

As you can see, in this example the query returns a list of Entry instances that we
created. When no explicit ordering is specified, the entries are returned to us in
an arbitrary order chosen by the database. Let's specify that we want the entries
returned to us in an alphabetical order by title:

In []: Entry.query.order_by(Entry.title.asc()).all()

Out []:

[<Entry u'First entry'>,

 <Entry u'Fourth entry'>,

 <Entry u'Second entry'>,

 <Entry u'Third entry'>]

Shown next is how you would list your entries in reverse-chronological order, based
on when they were last updated:

In []: oldest_to_newest = Entry.query.order_by(Entry.modified_timestamp.
desc()).all()

Out []:

[<Entry: Fourth entry>,

 <Entry: Third entry>,

 <Entry: Second entry>,

 <Entry: First entry>]

Filtering the list of entries
It is very useful to be able to retrieve the entire collection of blog entries, but what
if we want to filter the list? We could always retrieve the entire collection and then
filter it in Python using a loop, but that would be very inefficient. Instead we will
rely on the database to do the filtering for us, and simply specify the conditions for
which entries should be returned. In the following example, we will specify that we
want to filter by entries where the title equals 'First entry'.

In []: Entry.query.filter(Entry.title == 'First entry').all()

Out[]: [<Entry u'First entry'>]

Relational Databases with SQLAlchemy

[34]

If this seems somewhat magical to you, it's because it really is! SQLAlchemy uses
operator overloading to convert expressions such as <Model>.<column> == <some
value> into an abstracted object called BinaryExpression. When you are ready to
execute your query, these data-structures are then translated into SQL.

A BinaryExpression is simply an object that represents
the logical comparison and is produced by over riding the
standards methods that are typically called on an object when
comparing values in Python.

In order to retrieve a single entry, you have two options: .first() and .one().
Their differences and similarities are summarized in the following table:

Number of matching rows first() behavior one() behavior
1 Return the object Return the object
0 Return None Raise sqlalchemy.orm.

exc.NoResultFound

2+ Return the first object (based
on either explicit ordering or
the ordering chosen by the
database)

Raise sqlalchemy.
orm.exc.
MultipleResultsFound

Let's try the same query as before but, instead of calling .all(), we will call
.first() to retrieve a single Entry instance:

In []: Entry.query.filter(Entry.title == 'First entry').first()

Out[]: <Entry u'First entry'>

Notice how previously .all() returned a list containing the object, whereas
.first() returned just the object itself.

Special lookups
In the previous example we tested for equality, but there are many other types of
lookups possible. In the following table, we have listed some that you may find
useful. A complete list can be found in the SQLAlchemy documentation.

Chapter 2

[35]

Example Meaning
Entry.title == 'The title' Entries where the title is "The title", case-

sensitive.
Entry.title != 'The title' Entries where the title is not "The title".
Entry.created_timestamp < datetime.
date(2014, 1, 25)

Entries created before January 25, 2014. For less
than or equal, use <=.

Entry.created_timestamp > datetime.
date(2014, 1, 25)

Entries created after January 25, 2014. For
greater than or equal, use >=.

Entry.body.contains('Python') Entries where the body contains the word
"Python", case-sensitive.

Entry.title.endswith('Python') Entries where the title ends with the string
"Python", case-sensitive. Note that this will also
match titles that end with the word "CPython",
for example.

Entry.title.startswith('Python') Entries where the title starts with the string
"Python", case-sensitive. Note that this will also
match titles such as "Pythonistas".

Entry.body.ilike('%python%') Entries where the body contains the word
"python" anywhere in the text, case-insensitive.
The "%" character is a wild card.

Entry.title.in_(['Title one', 'Title two']) Entries where the title is in the given list, either
'Title one' or 'Title two'.

Combining expressions
The expressions listed in the preceding table can be combined using bitwise
operators to produce arbitrarily complex expressions. Let's say we want to retrieve
all blog entries that have the word Python or Flask in the title. To accomplish this,
we will create two contains expressions, then combine them using Python's bitwise
OR operator, which is a pipe | character, unlike a lot of other languages that use a
double pipe || character:

Entry.query.filter(Entry.title.contains('Python') |
Entry.title.contains('Flask'))

Using bitwise operators, we can come up with some pretty complex expressions. Try
to figure out what the following example is asking for:

Entry.query.filter(
 (Entry.title.contains('Python') |
Entry.title.contains('Flask')) &

Relational Databases with SQLAlchemy

[36]

 (Entry.created_timestamp > (datetime.date.today() -
datetime.timedelta(days=30)))
)

As you probably guessed, this query returns all entries where the title contains either
Python or Flask, and that were created within the last 30 days. We are using Python's
bitwise OR and AND operators to combine the sub-expressions. For any query you
produce, you can view the generated SQL by printing the query as follows:

In []: query = Entry.query.filter(

 (Entry.title.contains('Python') | Entry.title.contains('Flask'))
&

 (Entry.created_timestamp > (datetime.date.today() -
datetime.timedelta(days=30)))

)

In []: print str(query)

SELECT entry.id AS entry_id, ...

FROM entry

WHERE (

 (entry.title LIKE '%%' || :title_1 || '%%') OR (entry.title LIKE
'%%' || :title_2 || '%%')

) AND entry.created_timestamp > :created_timestamp_1

Negation
There is one more piece to discuss, which is negation. If we wanted to get a list of
all blog entries that did not contain Python or Flask in the title, how would we do
that? SQLAlchemy provides two ways to create these types of expressions, using
either Python's unary negation operator (~) or by calling db.not_(). This is how you
would construct this query with SQLAlchemy:

Using unary negation:

In []: Entry.query.filter(~(Entry.title.contains('Python') |
Entry.title.contains('Flask')))

Using db.not_():

In []: Entry.query.filter(db.not_(Entry.title.contains('Python') |
Entry.title.contains('Flask')))

Chapter 2

[37]

Operator precedence
Not all operations are considered equal to the Python interpreter. This is like in
math class, where we learned that expressions such as 2 + 3 * 4 are equal to 14
and not 20, because the multiplication operation occurs first. In Python, bitwise
operators all have a higher precedence than things such as equality tests, so this
means that, when you are building your query expression, you have to pay attention
to the parentheses. Let's look at some example Python expressions and see the
corresponding query:

Expression Result

(Entry.title == 'Python' | Entry.title ==
'Flask')

Wrong! SQLAlchemy throws an error
because the first thing to be evaluated is
actually the 'Python' | Entry.title!

(Entry.title == 'Python') | (Entry.title ==
'Flask')

Right. Returns entries where the title is
either "Python" or "Flask".

~Entry.title == 'Python' Wrong! SQLAlchemy will turn this into a
valid SQL query, but the results will not be
meaningful.

~(Entry.title == 'Python') Right. Returns entries where the title is not
equal to "Python".

If you find yourself struggling with operator precedence, it's a safe bet to put
parentheses around any comparison that uses ==, !=, <, <=, >, and >=.

Building a tagging system
Tags are a lightweight taxonomy system that is perfect for blogs. Tags allow you to
apply multiple categories to a blog post and allow multiple posts to be related to
one another outside their category. On my own blog I use tags to organize the posts,
so that people interested in reading my posts about Flask need only look under
the "Flask" tag and find all the relevant posts. As per the spec that we discussed in
Chapter 1, Creating Your First Flask Application, each blog entry can have as few or
as many tags as you want, so a post about Flask might be tagged with both Flask
and Python. Similarly, each tag (for example, Python) can have multiple entries
associated with it. In database parlance, this is called a many-to-many relationship.

Relational Databases with SQLAlchemy

[38]

In order to model this, we must first create a model to store tags. This model will
store the names of tags we use, so after we've added a few tags the table might look
something like the following one:

id tag
1 Python
2 Flask
3 Django
4 random-thoughts

Let's open models.py and add a definition for the Tag model. Add the following
class at the end of the file, below the Entry class:

class Tag(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(64))
 slug = db.Column(db.String(64), unique=True)

 def __init__(self, *args, **kwargs):
 super(Tag, self).__init__(*args, **kwargs)
 self.slug = slugify(self.name)

 def __repr__(self):
 return '<Tag %s>' % self.name

You've seen all of this before. We've added a primary key, which will be managed by
the database, and a single column to store the name of the tag. The name column is
marked as unique, so each tag will only be represented by a single row in this table,
regardless of how many blog entries it appears on.

Now that we have models for both blog entries and tags, we need a third model to
store the relationships between the two. When we wish to signify that a blog entry is
tagged with a particular tag, we will store a reference in this table. The following is a
diagram of what is happening at the database table level:

Chapter 2

[39]

entry_tags

tag_id entry_id

1

2

1

2

1

3

1

1

2

2

3

3

4

4

Python

Flask

Django

Random

1

2

3

4

id name

Python Post

Flask Post

More Flask

Django

1

2

3

4

id title etc

TAGS ENTRIES

Since we will never be accessing this intermediary table directly (SQLAlchemy will
handle it for us transparently), we will not create a model for it but will simply
specify a table to store the mapping. Open models.py and add the following
highlighted code:

import datetime, re

from app import db

def slugify(s):
 return re.sub('[^\w]+', '-', s).lower()

entry_tags = db.Table('entry_tags',
 db.Column('tag_id', db.Integer, db.ForeignKey('tag.id')),
 db.Column('entry_id', db.Integer, db.ForeignKey('entry.id'))
)

class Entry(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100))
 slug = db.Column(db.String(100), unique=True)
 body = db.Column(db.Text)
 created_timestamp = db.Column(db.DateTime,
default=datetime.datetime.now)
 modified_timestamp = db.Column(
 db.DateTime,
 default=datetime.datetime.now,
 onupdate=datetime.datetime.now)

 tags = db.relationship('Tag', secondary=entry_tags,
 backref=db.backref('entries', lazy='dynamic'))

 def __init__(self, *args, **kwargs):

Relational Databases with SQLAlchemy

[40]

 super(Entry, self).__init__(*args, **kwargs)
 self.generate_slug()

 def generate_slug(self):
 self.slug = ''
 if self.title:
 self.slug = slugify(self.title)

 def __repr__(self):
 return '<Entry %s>' % self.title

class Tag(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(64))
 slug = db.Column(db.String(64), unique=True)

 def __init__(self, *args, **kwargs):
 super(Tag, self).__init__(*args, **kwargs)
 self.slug = slugify(self.name)

 def __repr__(self):
 return '<Tag %s>' % self.name

By creating the entry_tags table, we have established a link between the Entry
and Tag models. SQLAlchemy provides a high-level API for working with this
relationship, the aptly-named db.relationship function. This function creates a
new property on the Entry model that allows us to easily read and write the tags
for a given blog entry. There is a lot going on in these two lines of code so let's take a
closer look:

tags = db.relationship('Tag', secondary=entry_tags,
 backref=db.backref('entries', lazy='dynamic'))

We are setting the tags attribute of the Entry class equal to the return value of the
db.relationship function. The first two arguments, 'Tag' and secondary=entry_
tags, instruct SQLAlchemy that we are going to be querying the Tag model via
the entry_tags table. The third argument creates a back-reference, allowing us
to go from the Tag model back to the associated list of blog entries. By specifying
lazy='dynamic', we instruct SQLAlchemy that, instead of it loading all the
associated entries for us, we want a Query object instead.

Chapter 2

[41]

Adding and removing tags from entries
Let's use the IPython shell to see how this works. Close your current shell and re-run
the scripts/create_db.py script. This step is necessary since we added two new
tables. Now re-open IPython:

(blog) $ python scripts/create_db.py

(blog) $ ipython

In []: from models import *

In []: Tag.query.all()

Out[]: []

There are currently no tags in the database, so let's create a couple of them:

In []: python = Tag(name='python')

In []: flask = Tag(name='flask')

In []: db.session.add_all([python, flask])

In []: db.session.commit()

Now let's load up some example entries. In my database there are four:

In []: Entry.query.all()

Out[]:

[<Entry Python entry>,

 <Entry Flask entry>,

 <Entry More flask>,

 <Entry Django entry>]

In []: python_entry, flask_entry, more_flask, django_entry = _

In IPython, you can use an underscore (_) to reference the return-
value of the previous line.

To add tags to an entry, simply assign them to the entry's tags attribute. It's that
easy!

In []: python_entry.tags = [python]

In []: flask_entry.tags = [python, flask]

In []: db.session.commit()

Relational Databases with SQLAlchemy

[42]

We can work with an entry's list of tags just like a normal Python list, so the usual
.append() and .remove() methods will also work:

In []: kittens = Tag(name='kittens')

In []: python_entry.tags.append(kittens)

In []: db.session.commit()

In []: python_entry.tags

Out[]: [<Tag python>, <Tag kittens>]

In []: python_entry.tags.remove(kittens)

In []: db.session.commit()

In []: python_entry.tags

Out[]: [<Tag python>]

Using backrefs
When we created the tags attribute on the Entry model, you will recall we passed in
a backref argument. Let's use IPython to see how the back-reference is used.

In []: python # The python variable is just a tag.

Out[]: <Tag python>

In []: python.entries

Out[]: <sqlalchemy.orm.dynamic.AppenderBaseQuery at 0x332ff90>

In []: python.entries.all()

Out[]: [<Entry Flask entry>, <Entry Python entry>]

Unlike the Entry.tags reference, the back-reference is specified as lazy='dynamic'.
This means that, unlike entry.tags, which gives us a list of tags, we will not
receive a list of entries every time we access tag.entries. Why is this? Typically,
when the result-set is larger than a few items, it is more useful to treat the backref
argument as a query, which can be filtered, ordered, and so on. For example, what if
we wanted to show the latest entry tagged with python?

In []: python.entries.order_by(Entry.created_timestamp.desc()).first()

Out[]: <Entry Flask entry>

The SQLAlchemy documentation contains an excellent overview
of the various values that you can use for the lazy argument. You
can find them online at http://docs.sqlalchemy.org/en/
rel_0_9/orm/relationships.html#sqlalchemy.orm.
relationship.params.lazy

http://docs.sqlalchemy.org/en/rel_0_9/orm/relationships.html#sqlalchemy.orm.relationship.params.lazy
http://docs.sqlalchemy.org/en/rel_0_9/orm/relationships.html#sqlalchemy.orm.relationship.params.lazy
http://docs.sqlalchemy.org/en/rel_0_9/orm/relationships.html#sqlalchemy.orm.relationship.params.lazy

Chapter 2

[43]

Making changes to the schema
The final topic we will discuss in this chapter is how to make modifications to an
existing Model definition. From the project specification, we know we would like to
be able to save drafts of our blog entries. Right now we don't have any way to tell
whether an entry is a draft or not, so we will need to add a column that lets us store
the status of our entry. Unfortunately, while db.create_all() works perfectly for
creating tables, it will not automatically modify an existing table; to do this we need
to use migrations.

Adding Flask-Migrate to our project
We will use Flask-Migrate to help us automatically update our database whenever
we change the schema. In the blog virtualenv, install Flask-Migrate using pip:

(blog) $ pip install flask-migrate

The author of SQLAlchemy has a project called alembic; Flask-
Migrate makes use of this and integrates it with Flask directly,
making things easier.

Next we will add a Migrate helper to our app. We will also create a script manager
for our app. The script manager allows us to execute special commands within the
context of our app, directly from the command-line. We will be using the script
manager to execute the migrate command. Open app.py and make the
following additions:

from flask import Flask
from flask.ext.migrate import Migrate, MigrateCommand
from flask.ext.script import Manager
from flask.ext.sqlalchemy import SQLAlchemy

from config import Configuration

app = Flask(__name__)
app.config.from_object(Configuration)
db = SQLAlchemy(app)
migrate = Migrate(app, db)

manager = Manager(app)
manager.add_command('db', MigrateCommand)

Relational Databases with SQLAlchemy

[44]

In order to use the manager, we will add a new file named manage.py along with
app.py. Add the following code to manage.py:

from app import manager
from main import *

if __name__ == '__main__':
 manager.run()

This looks very similar to main.py, the key difference being, instead of calling app.
run(), we are calling manager.run().

Django has a similar, although auto-generated, manage.py file that
serves a similar function.

Creating the initial migration
Before we can start changing our schema, we need to create a record of its current
state. To do this, run the following commands from inside your blog's app directory.
The first command will create a migrations directory inside the app folder that will
track the changes we make to our schema. The second command db migrate will
create a snapshot of our current schema so that future changes can be compared to it.

(blog) $ python manage.py db init

 Creating directory /home/charles/projects/blog/app/migrations ... done

 ...

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

 Generating /home/charles/projects/blog/app/migrations/
versions/535133f91f00_.py ... done

Finally, we will run db upgrade to run the migration that will indicate to the
migration system that everything is up-to-date:

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade None -> 535133f91f00, empty
message

Chapter 2

[45]

Adding a status column
Now that we have a snapshot of our current schema, we can start making changes.
We will be adding a new column, named status, that will store an integer value
corresponding to a particular status. Although there are only two statuses at the
moment (PUBLIC and DRAFT), using an integer instead of a Boolean gives us the
option to easily add more statuses in the future. Open models.py and make the
following additions to the Entry model:

class Entry(db.Model):
 STATUS_PUBLIC = 0
 STATUS_DRAFT = 1

 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100))
 slug = db.Column(db.String(100), unique=True)
 body = db.Column(db.Text)
 status = db.Column(db.SmallInteger, default=STATUS_PUBLIC)
 created_timestamp = db.Column(db.DateTime,
default=datetime.datetime.now)
 ...

From the command-line, we will once again be running db migrate to generate
the migration script. You can see from the command's output that it found our
new column!

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column 'entry.status'

 Generating /home/charles/projects/blog/app/migrations/
versions/2c8e81936cad_.py ... done

Because we have blog entries in the database, we need to make a small modification
to the auto-generated migration to ensure the statuses for the existing entries are
initialized to the proper value. To do this, open up the migration file (mine is
migrations/versions/2c8e81936cad_.py) and change the following line:

op.add_column('entry', sa.Column('status', sa.SmallInteger(),
nullable=True))

Relational Databases with SQLAlchemy

[46]

Replacing nullable=True with server_default='0' tells the migration script to
not set the column to null by default, but instead to use 0.

op.add_column('entry', sa.Column('status', sa.SmallInteger(), server_
default='0'))

Finally, run db upgrade to run the migration and create the status column.

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 535133f91f00 -> 2c8e81936cad,
empty message

Congratulations, your Entry model now has a status field!

Summary
By now you should be familiar with using SQLAlchemy to work with a relational
database. We covered the benefits of using a relational database and an ORM,
configured a Flask application to connect to a relational database, and created
SQLAlchemy models. All this allowed us to create relationships between our data
and perform queries. To top it off, we also used a migration tool to handle future
database schema changes.

In Chapter 3, Templates and Views we will set aside the interactive interpreter and
start creating views to display blog entries in the web browser. We will put all our
SQLAlchemy knowledge to work by creating interesting lists of blog entries, as well
as a simple search feature. We will build a set of templates to make the blogging site
visually appealing, and learn how to use the Jinja2 templating language to eliminate
repetitive HTML coding. It will be a fun chapter!

[47]

Templates and Views
This chapter could alternatively be titled The Flask Chapter, because we will cover
two of the most recognizable components of the framework: the Jinja2 template
language, and the URL routing framework. Up to this point, we have been laying
the foundation for the blog app, but we have barely scratched the surface of actual
Flask development. In this chapter, we will dive into Flask and see our app finally
start taking shape. We will turn our drab database models into dynamically rendered
HTML pages, using templates. We will come up with a URL scheme that reflects the
ways we wish to organize our blog entries. As we progress through the chapter, our
blog app will start looking like a proper website.

In this chapter we shall:

•	 Learn how to render HTML templates using Jinja2
•	 Learn how to use loops, control structures, and the filters provided by the

Jinja2 template language
•	 Use template inheritance to eliminate repetitive coding
•	 Create a clean URL scheme for our blog app and set up the routing from

URLs to views
•	 Render lists of blog entries using Jinja2 templates
•	 Add full-text search to the site

Templates and Views

[48]

Introducing Jinja2
Jinja2 is a fast, flexible, and secure templating engine. It allows you to define your
website in small blocks that are pieced together to form complete pages. On our
blog, for instance, we will have blocks for the header, the sidebar, the footer, as
well as templates, for rendering blog posts. This approach is DRY (Don't Repeat
Yourself), which means that the markup contained in each block should not be
copied or pasted elsewhere. Since the HTML for each part of the site exists in only
one place, making changes and fixing bugs is much easier. Jinja2 also allows you
to embed display logic in the template. For instance, we may wish to display a log
out button to users who are logged in, but display a log in form to users browsing
anonymously. As you will see, it is very easy to accomplish these types of things
with a bit of template logic.

From the beginning, Flask was built with Jinja2 in mind, so working with templates
in your Flask app is extremely easy. Since Jinja2 is a requirement of the Flask
framework, it is already installed in our virtualenv, so we're able to get started
immediately.

Create a new folder named templates in the blog project's app directory. Create a
single file inside the template folder named homepage.html and add the following
HTML code:

<!doctype html>
<html>
 <head>
 <title>Blog</title>
 </head>
 <body>
 <h1>Welcome to my blog</h1>
 </body>
</html>

Now open views.py in the blog project's app directory. We are going to modify our
homepage view to render the new homepage.html template. To do this, we will use
Flask's render_template() function, passing in the name of our template as the first
argument. Rendering a template is an extremely common action, so Flask makes this
part as easy as possible:

from flask import render_template

from app import app

@app.route('/')

Chapter 3

[49]

def homepage():
 return render_template('homepage.html')

Using the manage.py helper that we created in the previous chapter, start the
development server and navigate to http://127.0.0.1:5000/ to view the rendered
template, as shown in the following screenshot:

(blog) $ python manage.py runserver

* Running on http://127.0.0.1:5000/

* Restarting with reloader

Basic template operations
The previous example may not seem very impressive, since we are doing little more
than serving a plain HTML document. To make things interesting, we need to give
our templates context. Let's modify our homepage to display a simple greeting to
illustrate the point. Open views.py and make the following modifications:

from flask import render_template, request

from app import app

@app.route('/')
def homepage():
 name = request.args.get('name')
 if not name:
 name = '<unknown>'
 return render_template('homepage.html', name=name)

Templates and Views

[50]

In the view code, we are passing name into the template context. The next step is
to do something with that name inside the actual template. In this example, we
will simply print the value of name. Open homepage.html and make the
following addition:

<!doctype html>
<html>
 <head>
 <title>Blog</title>
 </head>
 <body>
 <h1>Welcome to my blog</h1>
 <p>Your name is {{ name }}.</p>
 </body>
</html>

Start the development server and navigate to the root URL. You should see
something like the following image:

Any keyword arguments passed to the render_template function are available
in the template context. In the template language of Jinja2, double brackets are
analogous to a print statement. We use the {{ name }} operation to output the
value of name, which is set to <unknown>.

The security-minded reader may have noticed that, when we
viewed our template in the browser, the brackets were escaped.
Ordinarily, brackets are treated by the browser as HTML markup,
but, as you can see, Jinja2 has escaped the brackets automatically,
replacing them with < and >.

Chapter 3

[51]

Try navigating to a URL such as http://127.0.0.1:5000/?name=Charlie.
Whatever value you specify will appear, rendered for us automatically by Jinja2, as
seen in the following image

Suppose someone malicious visits your site and wants to cause some trouble.
Noticing that values from the query-string are passed directly into the template, this
person decides to have some fun by attempting to inject a script tag. Thankfully for
us, Jinja2 automatically escapes values before inserting them into the rendered page.

Loops, control structures, and template
programming
Jinja2 supports a miniature programming language that can be used to perform
operations on data within the context. If all we could do was print values to the
context, there honestly wouldn't be too much to be excited about. Things get
interesting when we combine contextual data with things such as loops and
control structures.

Templates and Views

[52]

Let's modify our homepage view once more. This time we will accept a number, in
addition to a name, from request.args and display all the even numbers between
0 and that number. The neat part is that we will do almost all of this in the template.
Make the following changes to views.py:

from flask import render_template, request

from app import app

@app.route('/')
def homepage():
 name = request.args.get('name')
 number = request.args.get('number')
 return render_template('homepage.html', name=name, number=number)

Now open the hompage.html template and add the following code. If it seems odd,
don't worry. We will go through it line by line.

<!doctype html>
<html>
 <head>
 <title>Blog</title>
 </head>
 <body>
 <h1>Welcome to my blog</h1>
 {% if number %}
 <p>Your number is {{ number|int }}</p>

 {% for i in range(number|int) %}
 {% if i is divisibleby 2 %}
 {{ i }}
 {% endif %}
 {% endfor %}

 {% else %}
 <p>No number specified.</p>
 {% endif %}

 <p>Your name is {{ name|default('<unknown>', True) }}.</p>
 </body>
</html>

Chapter 3

[53]

Start a runserver and experiment by passing some values in using the query-string.
Also, take note of what happens when you pass a non-numeric value or a
negative value.

Let's go through our new template code line by line, starting with the {% if number
%} statement. Unlike the print tags that use double curly brackets, logical tags use
{% and %}. We are simply checking whether or not a number was passed into the
context. If the number is None or an empty string, this test will fail, just as it would
in Python.

The next line prints the integer representation of our number and uses a new syntax,
|int. The pipe symbol (|) is used in Jinja2 to indicate a call to a filter. A filter
performs some type of operation on the value to the left side of the pipe symbol, and
returns a new value. In this case, we are using the built-in int filter that converts a
string to an integer, defaulting to 0 when a number cannot be determined. There are
many filters built into Jinja2; we will discuss them later in the chapter.

Templates and Views

[54]

The {% for %} statement is used to create a for loop and looks remarkably close to
Python. We are using the Jinja2 range helper to generate a series of numbers with [0,
number). Note that we are again piping the number context value through the int filter
in the call to range. Also note that we are assigning a value to a new context variable i.
Inside the loop body, we can use i just like any other context variable.

Of course, just like in regular Python, we can also use an {% else
%} statement on a for-loop that can be used to run some code in the
eventuality that there is nothing for the loop to do.

Now that we are looping through the numbers, we need to check whether i is even,
and if so, print it. Jinja2 provides several ways we could do this, but I have chosen to
show the use of a Jinja2 feature called tests. Like filters and control structures, Jinja2
also comes with a number of useful tools for testing the attributes of a context value.
Tests are used in conjunction with {% if %} statements and are denoted by the use
of the keyword is. So we have {% if i is divisibleby 2 %}, which is very easy
to read. If the if statement evaluates to True then we will print the value of i using
double braces: {{ i }}.

Jinja2 provides a number of useful tests; to learn more check the
project documentation at http://jinja.pocoo.org/docs/
templates/#tests.

Since Jinja2 is not aware of significant whitespace, we need to explicitly close all
our logical tags. That is why you see an {% endif %} tag, signifying the closing of
the divisibleby 2 check, and an {% endfor %}, signifying the closing of the for
i in range loop. After the for loop, we are now in the outermost if statement,
which tests whether a number was passed into the context. In the event no number
is present, we want to print a message to the user so, before calling {% endif %}, we
will use an {% else %} tag to display this message.

Finally, we have changed the line that prints a greeting to the user to read {{
name|default('<unknown>', True) }} . In the view code, we removed the logic
that set it to a default value of <unknown>. Instead, we have moved that logic into the
template. Here we see the default filter (denoted by the | character) but, unlike int,
we are passing multiple arguments. In Jinja2, a filter can take multiple arguments.
By convention, the first argument appears to the left of the pipe symbol, since filters
frequently operate on single values. In the event there are multiple arguments, these
are specified in parentheses after the filter name. In the case of the default filter, we
have specified the value to use in the event no name is specified.

http://jinja.pocoo.org/docs/templates/#tests
http://jinja.pocoo.org/docs/templates/#tests

Chapter 3

[55]

Jinja2 built-in filters
In the previous example, we saw how to use the int filter to coerce a context value to
an integer. Along with int, Jinja2 provides a large array of useful built-in filters. For
reasons of space (the list is very long), I will only include the most frequently-used
filters from my experience, but the entire list can be found online at http://jinja.
pocoo.org/docs/templates/#list-of-builtin-filters.

In the following examples, the first argument in the argument list would
appear to the left-hand side of the pipe symbol. So, even though I have
written abs(number), the filter used would be number|abs. When the
filter accepts more than one parameter, the remaining parameters appear
in parentheses after the filter name.

Filter and parameter(s) Description and return value
abs(number) Returns the absolute value of the number.
default(value, default_value='',
boolean=False)

In the event value is undefined (i.e., the name does
not exist in the context) use the provided default_
value instead. In the event you simply want to test
whether value evaluates to a boolean True (i.e.,
not an empty string, the number zero, None, and so
on.), then pass True as the third argument:
{{ not_in_context|default:"The
value was not in the context"
}}

{{ ''|default('An empty string.',
True) }}

dictsort(value, case_
sensitive=False, by='key')

Sorts a dictionary by key, yielding (key, value)
pairs. You can also, however, sort by value.
<p>Alphabetically by name.</p>
{% for name, age in people|dictsort %}
 {{ name }} is {{ age }}
years old.
{% endfor %}

<p>Youngest to oldest.</p>
{% for name, age in
people|dictsort(by='value') %}
 {{ name }} is {{ age }}
years old.
{% endfor %}

http://jinja.pocoo.org/docs/templates/#list-of-builtin-filters
http://jinja.pocoo.org/docs/templates/#list-of-builtin-filters

Templates and Views

[56]

Filter and parameter(s) Description and return value
int(value, default=0) Converts value to an integer. In the event the

value cannot be converted, use the specified default.
length(object) Returns the number of items in the collection.
reverse(sequence) Reverses the sequence.
safe(value) Outputs the value unescaped. This filter is useful

when you have trusted HTML that you wish to
print. For instance, if value = "":
{{ value }} --> outputs

{{ value|safe }} --> outputs

sort(value, reverse=False, case_
sensitive=False, attribute=None)

Sorts an iterable value. If reverse is specified,
the items will be sorted in reverse order. If the
attribute parameter is used, that attribute will be
treated as the value to sort by.

striptags(value) Removes any HTML tags, useful for cleaning up
and outputting untrusted user input.

truncate(value, length=255,
killwords=False, end='...')

Returns a truncated copy of the string. The length
parameter specifies how many characters to keep.
If killwords is False, then a word may be
chopped in half; if True then Jinja2 will truncate at
the previous word boundary. In the event the value
exceeds the length and needs to be truncated, the
value in end will be appended automatically.

urlize(value, trim_url_limit=None,
nofollow=False, target=None)

Converts URLs in plain text into clickable links.

Filters can be chained together, so {{ number|int|abs }} would first
convert the number variable to an integer, then return its absolute value.

Chapter 3

[57]

Creating a base template for the blog
Jinja2's inheritance and include features make it is very easy to define a base
template that serves as the architectural foundation for each page on your site. The
base template contains basic structural things that should never change, such as the
<html>, <head>, and <body> tags, as well as the basic structure of the body. It can
also be used to include style sheets or scripts that will be served on every page. Most
importantly, the base template is responsible for defining overrideable blocks, into
which we will place page-specific content such as the page title and body content.

In order to get up-and-running quickly, we will be using Twitter's Bootstrap library
(version 3). This will allow us to focus on how templates are structured and have a
decent-looking site with minimal extra work. You are, of course, welcome to use your
own CSS if you prefer, but the example code will use bootstrap-specific constructs.

Create a new file in the templates directory named base.html, and add the
following content:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>{% block title %}{% endblock %} | My Blog</title>
 <link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.1.0/css/bootstrap.min.
css">
 <style type="text/css">
 body { padding-top: 60px; }
 </style>
 {% block extra_styles %}{% endblock %}

 <script src=
"https://code.jquery.com/jquery-1.10.2.min.js"></script>
 <script
src="//netdna.bootstrapcdn.com/bootstrap/3.1.0/js/
bootstrap.min.js"></script>
 {% block extra_scripts %}{% endblock %}
 </head>

 <body class="{% block body_class %}{% endblock %}">
 <div class="navbar navbar-inverse navbar-fixed-top"
role="navigation">
 <div class="container">
 <div class="navbar-header">

Templates and Views

[58]

 <button type="button" class="navbar-toggle"
data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 {% block branding %}My
Blog{% endblock %}
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 Home
 {% block extra_nav %}{% endblock %}

 </div>
 </div>
 </div>
 <div class="container">
 <div class="row">
 <div class="col-md-9">
 <h1>{% block content_title %}{% endblock %}</h1>
 {% block content %}
 {% endblock %}
 </div>
 <div class="col-md-3">
 {% block sidebar %}
 <ul class="well nav nav-stacked">
 Sidebar item

 {% endblock %}
 </div>
 </div>
 <div class="row">
 <hr />
 <footer>
 <p>© your name</p>
 </footer>
 </div>
 </div>
 </body>
</html>

Chapter 3

[59]

Interspersed alongside the markup is a new Jinja2 tag, block. The block tags are
used to indicate overrideable areas of the page.

You may have noticed that we are serving jQuery and Bootstrap from publicly-
available URLs. In the next chapter, we will discuss how to serve static files that
are stored locally on disk. Now we can modify our homepage template and take
advantage of the new base template. We can do this by extending the base template
and overriding certain blocks. This works very similar to class inheritance that you
find in most languages. As long as the sections of the inherited page are split up into
blocks nicely, we can override only the bits we need to change. Let's open homepage.
html and replace some of the current contents with the following:

{% extends "base.html" %}

{% block content_title %}Welcome to my blog{% endblock %}

{% block content %}
 {% if number %}
 <p>Your number is {{ number|int }}</p>

 {% for i in range(number|int) %}
 {% if i is divisibleby 2 %}
 {{ i }}
 {% endif %}
 {% endfor %}

 {% else %}
 <p>No number specified.</p>
 {% endif %}

 <p>Your name is {{ name|default('<unknown>', True) }}.</p>
{% endblock %}

Templates and Views

[60]

By extending the original page, we have removed all the HTML boilerplate and a lot
of complexity, focusing only on what makes this page, our homepage view, unique.
Start up the server and navigate to http://127.0.0.1:5000/, you will see that our
homepage has been transformed.

Congratulations! You have now learned some of the most commonly-used features
of Jinja2. There are many more advanced features that we have not covered in the
interests of time, and I would recommend reading the project's documentation to
see the full range of possibilities with Jinja2. The documentation can be found at
http://jinja.pocoo.org/docs/.

We still need to build templates to display our blog entries. Before continuing to
build out templates, though, we first must create some view functions that will
generate the lists of blog entries. We will then pass the entries into the context, just as
we did with the homepage.

Creating a URL scheme
URLs are for people, therefore they should be easy to remember. A good URL
scheme is easy to remember when it accurately reflects the implicit structure of the
website. Our goal is to create a URL scheme that makes it easy for the visitors on our
site to find blog entries on topics that interest them.

http://jinja.pocoo.org/docs/

Chapter 3

[61]

Referring back to the spec we created in Chapter 1, Creating Your First Flask
Application, we know that we want our blog entries to be organized by tag and by
date. Entries organized by tag and date will necessarily be a subset of the collection
of all entries, so that gives us a structure like this:

URL Purpose
/entries/ This displays all of our blog entries, ordered

most-recent first
/entries/tags/ This contains all the tags used to organize

our blog entries
/entries/tags/python/ This contains all the entries tagged with

python

/entries/learning-the-flask-
framework/

This is a detail page showing the body
content for a blog entry titled Learning the
Flask Framework

Since a single blog entry may be associated with multiple tags, how do we decide
what to use as its canonical URL? If I wrote a blog entry titled Learning the Flask
framework, I could conceivably nest it under /entries/, /entries/tags/python/,
/entries/tags/flask/, and so on. That would violate one of the rules about good
URLs, which is that a unique resource should have one, and only one, URL. For
that reason, I am going to advocate putting individual blog entries at the top of
the hierarchy:

/entries/learning-the-flask-framework/

News sites and blogs with a large amount of time-sensitive content will typically
nest individual pieces of content using the publication date. This prevents collisions
when two articles might share the same title, but have been written at different times.
When a lot of content is produced each day, this scheme often makes more sense:

/entries/2014/jan/18/learning-the-flask-framework/

Although we will not be covering this type of URL scheme in this chapter, the code
can be found online at http://www.packtpub.com/support.

http://www.packtpub.com/support

Templates and Views

[62]

Defining the URL routes
Let's convert the structure described previously into some URL routes that Flask
will understand. Create a new directory named entries in the blog project's
app directory. Inside the entries directory, create two files, __init__.py and
blueprint.py as follows:

(blog) $ mkdir entries

(blog) $ touch entries/{__init__,blueprint}.py

Blueprints provide a nice API for encapsulating a group of related routes and
templates. In smaller applications, typically everything gets registered on the app
object (that is, app.route). When an application has distinct components, as ours
does, blueprints can be used to separate the various moving parts. Since the /
entries/ URL is going to be devoted entirely to our blog entries, we will create a
blueprint and then define views to handle the routes that we described previously.
Open blueprint.py and add the following code:

from flask import Blueprint

from models import Entry, Tag

entries = Blueprint('entries', __name__,
template_folder='templates')

@entries.route('/')
def index():
 return 'Entries index'

@entries.route('/tags/')
def tag_index():
 pass

@entries.route('/tags/<slug>/')
def tag_detail(slug):
 pass

@entries.route('/<slug>/')
def detail(slug):
 pass

These URL routes are placeholders that we will fill in shortly, but I wanted to show
you how clean and simple it is to translate a set of URL patterns into a set of routes
and views.

Chapter 3

[63]

In order to access these new views, we need to register our blueprint with our main
Flask app object. We will also instruct our app that we want our entries' URLs to live
at the prefix /entries. Open main.py and make the following additions:

from app import app, db
import models
import views

from entries.blueprint import entries
app.register_blueprint(entries, url_prefix='/entries')

if __name__ == '__main__':
 app.run()

If you want to test it out, start the debug server (python manage.py runserver)
and navigate to http://127.0.0.1:5000/entries/. You should see the
following message:

Building the index view
The index view is the top-most URL in our /entries/ hierarchy, and as such will
contain all the entries. After a time we might have tens or even hundreds of blog
entries, so we will want to paginate this list so as not to overwhelm our visitors (or
our server!). Because we will frequently be displaying lists of objects, let's create a
helpers module that will make it easy to display paginated lists of objects. In the app
directory, create a new module named helpers.py and add the following code:

from flask import render_template, request

def object_list(template_name, query, paginate_by=20, **context):
 page = request.args.get('page')
 if page and page.isdigit():
 page = int(page)
 else:
 page = 1

Templates and Views

[64]

 object_list = query.paginate(page, paginate_by)
 return render_template(template_name, object_list=object_list,
**context)

Now, we will open entries/blueprint.py and modify the index view to return a
paginated list of entries:

from flask import Blueprint

from helpers import object_list
from models import Entry, Tag

entries = Blueprint('entries', __name__,
template_folder='templates')

@entries.route('/')
def index():
 entries = Entry.query.order_by(Entry.created_timestamp.desc())
 return object_list('entries/index.html', entries)

We are importing the object_list helper function and passing it the name of a
template and the query representing the entries we wish to display. As we build out
the rest of these views, you will see how little helper functions such as object_list
make Flask development quite easy.

The final piece is the entries/index.html template. In the entries directory, create
a directory named templates, and a sub-directory named entries. Create index.
html such that the full path from the app directory is entries/templates/entries/
index.html and add the following code:

{% extends "base.html" %}

{% block title %}Entries{% endblock %}

{% block content_title %}Entries{% endblock %}

{% block content %}
 {% include "includes/list.html" %}
{% endblock %}

This template is very minimal, all the work will happen in includes/list.html. The
{% include %} tag is new, and is useful for reusable template fragments. Create the
file includes/list.html and add the following code:

{% for entry in object_list.items %}

Chapter 3

[65]

 <p>{{
entry.title }}</p>
{% endfor %}

The url_for function is extremely useful. url_for() allows us to provide the
name of a view function or any arguments, and then generates the URL. Since the
URL we wish to reference is the detail view of the entries blueprint, the name of
the view is entries.detail. The detail view accepts a single argument, the slug of
the entry's title.

Before building out the detail view, re-open the base template and add a link to the
entries in the navigation section:

<ul class="nav navbar-nav">
 Home
 Blog
 {% block extra_nav %}{% endblock %}

The following screenshot shows the updated navigation header, along with a list of
blog entries:

Templates and Views

[66]

Building the detail view
Let's create a simple view that will render the contents of a single blog entry. The
slug of the entry will be passed in as a part of the URL. We will attempt to match that
to an existing Entry, returning a 404 response if none matches. Update the following
code to the detail view in the entries blueprint:

from flask import render_template
@entries.route('/<slug>/')
def detail(slug):
 entry = Entry.query.filter(Entry.slug == slug).first_or_404()
 return render_template('entries/detail.html', entry=entry)

Create a template in the entries template directory named detail.html and
add the following code. We will display the title and body of the entry in the main
content area, but in the sidebar we will display a list of tags and the date the entry
was created:

{% extends "base.html" %}

{% block title %}{{ entry.title }}{% endblock %}

{% block content_title %}{{ entry.title }}{% endblock %}

{% block sidebar %}
 <ul class="well nav nav-list">
 <h4>Tags</h4>
 {% for tag in entry.tags %}
 <a href="{{ url_for('entries.tag_detail', slug=tag.slug)
}}">{{ tag.name }}
 {% endfor %}

 <p>Published {{ entry.created_timestamp.strftime('%m/%d/%Y')
}}</p>
{% endblock %}

{% block content %}
 {{ entry.body }}
{% endblock %}

It should now be possible to view entries on the index page and follow the link to
the details view. As you probably guessed, the next thing we need to tackle is the tag
detail page.

Chapter 3

[67]

Listing entries matching a given tag
Listing the entries that match a given tag will combine the logic from the two
previous views. First we will need to look up the Tag using the tag slug provided in
the URL, and then we will display an object_list of Entry objects that are tagged
with the specified tag. In the tag_detail view, add the following code:

@entries.route('/tags/<slug>/')
def tag_detail(slug):
 tag = Tag.query.filter(Tag.slug == slug).first_or_404()
 entries = tag.entries.order_by(Entry.created_timestamp.desc())
 return object_list('entries/tag_detail.html', entries,
tag=tag)

The entries query will get all the entries associated with the tag, then return
them ordered most-recent first. We are also passing the tag into the context so we
can display it in the template. Create the tag_detail.html template and add the
following code. Since we are going to display a list of entries, we will re-use our
list.html include:

{% extends "base.html" %}

{% block title %}{{ tag.name }} entries{% endblock %}

{% block content_title %}{{ tag.name }} entries{% endblock %}

{% block content %}
 {% include "includes/list.html" %}
{% endblock %}

Templates and Views

[68]

In the following screenshot, I have navigated to /entries/tags/python/. This page
only contains entries that have been tagged with Python:

Listing all the tags
The final missing piece is the view that will display a list of all the tags. This view
will be very similar to the index entry, except that, instead of Entry objects, we will
be querying the Tag model. Update the following code to the tag_index view:

@entries.route('/tags/')
def tag_index():
 tags = Tag.query.order_by(Tag.name)
 return object_list('entries/tag_index.html', tags)

In the template, we will display each tag as a link to the corresponding tag detail
page. Create the file entries/tag_index.html and add the following code:

{% extends "base.html" %}

{% block title %}Tags{% endblock %}

{% block content_title %}Tags{% endblock %}

{% block content %}

 {% for tag in object_list.items %}
 <a href="{{ url_for('entries.tag_detail', slug=tag.slug)
}}">{{ tag.name }}

Chapter 3

[69]

 {% endfor %}

{% endblock %}

If you like, you can add a link to the tag list in the base template's navigation.

Full-text search
In order to allow users to find posts containing certain words or phrases, we will add
simple full-text search to the pages that contain lists of blog entries. To accomplish
this, we will do some refactoring. We will be adding a search form to the sidebar of
all pages containing lists of blog entries. While we could copy and paste the same
code into both entries/index.html and entries/tag_detail.html, we will,
instead, create another base template that contains the search widget. Create a new
template named entries/base_entries.html and add the following code:

{% extends "base.html" %}

{% block sidebar %}
 <form class="form-inline well" method="get" role="form">
 <div class="input-group">
 <input class="form-control input-xs" name="q"
placeholder="Search..." value="{{ request.args.get('q', '') }}" />

 <button class="btn btn-default" type="submit">Go</button>

 </div>
 </form>
{% endblock %}

{% block content %}
 {% include "includes/list.html" %}
{% endblock %}

Even though we will not explicitly pass request into the context, Flask
will make it accessible. You can find the list of standard context variables
in the Flask documentation at http://flask.pocoo.org/docs/
templating/#standard-context.

http://flask.pocoo.org/docs/templating/#standard-context
http://flask.pocoo.org/docs/templating/#standard-context

Templates and Views

[70]

Now we will update the entries/index.html and entries/tag_detail.html to
utilize this new base template. Since the content block contains the list of entries, we
can remove that from both templates:

{% extends "entries/base_entries.html" %}

{% block title %}Entries{% endblock %}

{% block content_title %}Entries{% endblock %}

This is how entries/index.html looks after changing the base template and
removing the context block. Do the same to entries/tag_detail.html.

{% extends "entries/base_entries.html" %}
{% block title %}Tags{% endblock %}
{% block content_title %}Tags{% endblock %}

Now we need to update our view code to actually perform the search. To do this, we
will create a new helper function in the blueprint named entry_list. This helper
will be much like the object_list helper, but will perform extra logic to filter
results based on our search inquiry. Add the entry_list function to the blueprint.
py. Note how it checks the request query-string for a parameter named q. If q is
present, we will return only the entries that contain the search phrase in either the
title or the body:

from flask import request
def entry_list(template, query, **context):
 search = request.args.get('q')
 if search:
 query = query.filter(
 (Entry.body.contains(search)) |
 (Entry.title.contains(search)))
 return object_list(template, query, **context)

In order to utilize this functionality, modify the index and tag_detail views to call
entry_list instead of object_list. The updated index view looks as follows:

@entries.route('/')
def index():
 entries = Entry.query.order_by(Entry.created_timestamp.desc())
 return entry_list('entries/index.html', entries)

Congratulations! You can now navigate to the entries list and perform searches using
the search form.

Chapter 3

[71]

Adding pagination links
As we discussed earlier, we would like to paginate long lists of entries so that users
are not overwhelmed with extremely long lists. We have actually done all the work
in the object_list function; the only remaining task is to add links allowing users
to travel from one page of entries to the next.

Because pagination links are a feature we will use in several places, we will create
the pagination include in our app's template directory (as opposed to the entries
template directory). Create a new directory in app/templates/ named includes
and create a file named page_links.html. Since object_list returns us a
PaginatedQuery object, we can utilize this object to determine, in the template,
what page we are on and how many pages there are in total. In order to make the
pagination links look nice, we will be using CSS classes provided by Bootstrap. Add
the following content to page_links.html:

<ul class="pagination">
 <li{% if not object_list.has_prev %} class="disabled"{% endif
%}>
 {% if not object_list.has_prev %}
 «
 {% else %}
 «
 {% endif %}

 {% for page in object_list.iter_pages() %}

 {% if page %}
 <a {% if page == object_list.page %}class="active" {%
endif %}href="./?page={{ page }}">{{ page }}
 {% else %}
 ...
 {% endif %}

Templates and Views

[72]

 {% endfor %}
 <li{% if not object_list.has_next %} class="disabled"{% endif
%}>
 {% if object_list.has_next %}
 »
 {% else %}
 »
 {% endif %}

Now, wherever we are displaying an object list, let's include the page_links.html
template at the bottom of the page. Currently, the only templates we will need to
update are entries/base_entries.html and entries/tag_index.html. The
content block of base_entries.html looks as follows:

{% block content %}
 {% include "includes/list.html" %}
 {% include "includes/page_links.html" %}
{% endblock %}

Chapter 3

[73]

Enhancing the blog app
Before continuing on to the next chapter, I recommend spending some time
experimenting with the views and templates we created in this chapter. Here are a
few ideas you might consider:

•	 Sort the list of tags on the entry detail view (hint: use the sort filter on the
tag's name attribute).

•	 Remove the example code from the homepage template and add your
own content.

•	 You may have noticed that we are displaying all entries regardless of their
status. Modify the entry_list function and the entry detail view to only
display Entry objects whose status is STATUS_PUBLIC.

•	 Experiment with different Bootstrap themes- http://bootswatch.com has
many available for free.

•	 Advanced: allow multiple tags to be specified. For example, /entries/tags/
flask+python/ would only display entries that are tagged with both flask
and python.

Summary
We covered a lot of information in this chapter, and by now you should be familiar
with the process of creating views and templates. We learned how to render Jinja2
templates and how to pass data from the view into the template context. We also
learned how to modify context data within the template, using Jinja2 tags and filters.
In the second half of the chapter, we designed a URL structure for our site and
translated it into Flask views. We added a simple full-text search feature to the site,
and wrapped up by adding pagination links to our lists of entries and tags.

In the next chapter, we will learn how to create and edit blog entries through the
website using Forms. We will learn how to process and validate user input, then
save the changes to the database. We will also add a photo-uploading feature so we
can embed images in our blog entries.

http://bootswatch.com

[75]

Forms and Validation
In this chapter, we will learn how to use forms to modify the content on our blog
directly through the site. This will be a fun chapter because we will be adding all
sorts of new ways to interact with our site. We will create forms for working with
the Entry model, learn how to receive and validate user data, and finally update
the values in the database. Form processing and validation will be handled by the
popular WTForms library. We will continue building out views and templates to
support these new forms, learning a few new Jinja2 tricks along the way.

In this chapter we shall:

•	 Install WTForms and create a form for working with the Entry model
•	 Write views to validate and process form data, and persist changes to

the database
•	 Create templates to display forms and validation errors
•	 Use Jinja2 macros to encapsulate complex template logic
•	 Display flash messages to the user
•	 Create an image uploader and learn how to securely handle file uploads
•	 Learn how to store and serve static assets, such as JavaScript, stylesheets

and image uploads

Getting started with WTForms
WTForms is a popular choice for form processing and validation in the Flask
community. It uses a declarative approach to building forms (similar to how we
defined our SQLAlchemy models), and supports a variety of different field types
and validators.

Forms and Validation

[76]

At the time of writing this book, WTForms 2.0 is still a development
release, but should be the official release shortly. For that reason we
will be using version 2.0 in this book.

Let's get started by installing WTForms into our blog project virtualenv:

(blog) $ pip install "wtforms>=2.0"

Successfully installed wtforms

Cleaning up...

We can verify that the installation succeeded by opening up a shell and checking the
project version:

(blog) $./manage.py shell

In [1]: import wtforms

In [2]: wtforms.__version__

Out[2]: '2.0dev'

My version shows the development release since 2.0 has not been officially
released yet.

Defining a form for the Entry model
Our goal is to be able to create and edit blog entries directly through our site, so the
first question we need to answer is—How will we input the data for our new entries?
The answer, of course, is by using forms. Forms are a part of the HTML standard,
which allows us to use free-form text inputs, large multi-line text boxes, drop-down
selects, checkboxes, radio buttons, and more. When a user submits a form, the form
specifies a URL that will receive the form data. That URL can then process the data
and then respond in any way it likes.

For blog entries, let's keep it simple with three fields:

•	 Title, displayed as a simple text input
•	 Body, displayed as a large free-form textbox
•	 Status, which will be displayed as drop-down select

Chapter 4

[77]

Inside the entries directory, create a new Python file named forms.py. We will be
defining a simple form class that will contain these fields. Open forms.py and add
the following code:

import wtforms

from models import Entry

class EntryForm(wtforms.Form):
 title = wtforms.StringField('Title')
 body = wtforms.TextAreaField('Body')
 status = wtforms.SelectField(
 'Entry status',
 choices=(
 (Entry.STATUS_PUBLIC, 'Public'),
 (Entry.STATUS_DRAFT, 'Draft')),
 coerce=int)

This should look pretty similar to our model definition. Note that we're using the
names of the columns in our model as the names for the fields in our form: this will
allow WTForms to automatically copy data between the Entry model fields and the
form fields.

The first two fields, title and body, both specify a single argument: the label that
will be displayed when the form is rendered. The status field contains a label as
well as two additional parameters: choices and coerce. The choices parameter
consists of a list of 2-tuples where the first value is the actual value we are interested
in storing and the second value is a user-friendly representation. The second
parameter, coerce, will convert the value from the form to an integer (by default, it
would be treated as a string, which we do not want).

A form with a view
In order to start using this form, we need to create a view that will display the form
and accept data when it is submitted. To do this, let's open the entries blueprint
module and define a new URL route to handle entry creation. At the top of the
blueprint.py file, we need to import the EntryForm class from the forms module:

from app import db
from helpers import object_list
from models import Entry, Tag
from entries.forms import EntryForm

Forms and Validation

[78]

Then, above the definition for the detail view, we will add a new view named
create that will be accessed by navigating to /entries/create/. The reason we
must put it above the detail view is because Flask will search your URL routes in
the order in which they are defined. Since /entries/create/ looks very much like
an entry detail URL (imagine the title of the entry was create), if the detail route is
defined first, Flask will stop there and never reach the create route.

In our create view, we will simply instantiate the form and pass it into the template
context. Add the following view definition:

@entries.route('/create/')
def create():
 form = EntryForm()
 return render_template('entries/create.html', form=form)

Before we add code to save the new entries to the database, let's build a template and
see what our form looks like. We will then circle back and add the code to validate
the form data and create the new entry.

The create.html template
Let's build a basic template for our new form. Create a new template named create.
html alongside the other entry templates. The path to this file, relative to the app
directory, should be entries/templates/entries/create.html. We will extend
the base template and override the content block to display our form. Since we are
using bootstrap, we will use special CSS classes to make our form look nice. Add the
following HTML code:

{% extends "base.html" %}

{% block title %}Create new entry{% endblock %}

{% block content_title %}Create new entry{% endblock %}

{% block content %}
 <form action="{{ url_for('entries.create') }}" class="form form-
horizontal" method="post">
 {% for field in form %}
 <div class="form-group">
 {{ field.label(class='col-sm-3 control-label') }}
 <div class="col-sm-9">
 {{ field(class='form-control') }}
 </div>
 </div>

Chapter 4

[79]

 {% endfor %}
 <div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-
default">Create</button>
 <a class="btn" href="{{ url_for('entries.index')
}}">Cancel
 </div>
 </div>
 </form>
{% endblock %}

By iterating over the form, which we passed into the context, we can render each
individual field. To render the field, we first render the field's label by simply calling
field.label() and passing in the desired CSS class. Similarly, to render the field, we
call field(), again passing in the CSS class. Also note that, in addition to a submit
button, we've added a Cancel link that will return the user to the entries list.

Start the development server and navigate to http://127.0.0.1:5000/entries/
create/ to view the following form:

Forms and Validation

[80]

Try submitting the form. When you click the Create button, you should see the
following error message:

The reason you are seeing this message is because, by default, Flask views will only
respond to HTTP GET requests. When we submit our form, the browser sends a POST
request, which our view does not currently accept. Let's return to the create view
and add the code to correctly handle the POST requests.

Whenever a form makes changes to the data (creates, edits, or deletes
something), that form should specify the POST method. Other forms, such
as our search form, which do not make any changes, should use the GET
method. Additionally, when a form is submitted using the GET method,
the form data is submitted as part of the query-string.

Handling form submissions
Before we modify our view, let's add a helper method to our EntryForm that we will
use to copy data from the form into our Entry object. Open forms.py and make the
following additions:

class EntryForm(wtforms.Form):
 ...
 def save_entry(self, entry):
 self.populate_obj(entry)
 entry.generate_slug()
 return entry

This helper method will populate the entry we pass in with the form data, re-
generate the entry's slug based on the title, and then return the entry object.

Chapter 4

[81]

Now that the form is configured to populate our Entry models, we can modify
the view to accept and handle the POST requests. We will be using two new Flask
helpers, so modify the imports at the top of blueprint.py, adding redirect and
url_for:

from flask import Blueprint, redirect, render_template, request,
url_for

Once you've added the imports, update the following changes to the create view in
blueprint.py:

from app import db
@entries.route('/create/', methods=['GET', 'POST'])
def create():
 if request.method == 'POST':
 form = EntryForm(request.form)
 if form.validate():
 entry = form.save_entry(Entry())
 db.session.add(entry)
 db.session.commit()
 return redirect(url_for('entries.detail', slug=entry.
slug))
 else:
 form = EntryForm()

 return render_template('entries/create.html', form=form)

This is quite a bit of new code, so let's take a closer look at what's happening. To
begin with, we've added a parameter to the route decorator indicating that this view
accepts both GET and POST requests. This will get rid of the Method Not Allowed
error when we submit the form.

In the body of the view, we are now checking the request method and based on that
we do one of two things. Let's look at the 'else' clause first. This branch of code will
execute when we receive a GET request, such as when someone opens their browser
and navigates to the /entries/create/ page. When this happens, we simply want
to display an HTML page containing the form, so we will instantiate a form and pass
it into the template context.

In the event this is a POST request, which will happen when someone submits
the form, we want to instantiate the EntryForm and pass in the raw form data.
Flask stores the raw POST data in the special attribute request.form, which is a
dictionary-like object. WTForms knows how to interpret the raw form data and map
it to the fields we defined.

Forms and Validation

[82]

After instantiating our form with the raw form data, we then need to check and
ensure that the form is valid by calling form.validate(). If the form fails to validate
for some reason, we will simply pass the invalid form into the context and render
the template. A bit later you will see how we can display error messages to the user
when there is a problem with their form submission.

If the form validates, we can finally proceed with saving the entry. To do this, we
will call our save_entry helper method, passing in a fresh entry instance. WTForms
will populate the Entry object with form data, then return it back to us, where we
add it to the database session, commit, and redirect. The redirect helper will issue an
HTTP 302 redirect, sending the user's browser from /entries/create/ to the detail
page of the newly-created blog post.

Open up your browser and give it a try.

Validating input and displaying error
messages
There is one glaring problem with our form: right now there is nothing to prevent us
from accidentally submitting an empty blog entry. To ensure that we have a title and
content when saving, we need to use a WTForm object called a validator. Validators
are rules that are applied to the form data, and WTForms ships with a number of
useful validators. Some of the more commonly-used validators are listed as follows:

•	 DataRequired: this field cannot be blank
•	 Length(min=?, max=?): verify that the length of the data entered either

exceeds the minimum, or does not exceed the maximum

Chapter 4

[83]

•	 NumberRange(min=?, max=?): verify that the number entered is within the
given range

•	 Email: verify that the data is a valid email address
•	 URL: verify that the data entered is a valid URL
•	 AnyOf(values=?): verify that the data entered is equal to one of the

provided values
•	 NoneOf(values=?): verify that the data entered is not equal to any of the

provided values

For the blog entry form, we will just be using the DataRequired validator to ensure
that Entries cannot be created without a title or body content. Let's open forms.py
and add the validators to our form definition. Altogether, our forms module should
look a follows:

import wtforms
from wtforms.validators import DataRequired

from models import Entry

class EntryForm(wtforms.Form):
 title = wtforms.StringField(
 'Title',
 validators=[DataRequired()])
 body = wtforms.TextAreaField(
 'Body',
 validators=[DataRequired()])
 status = wtforms.SelectField(
 'Entry status',
 choices=(
 (Entry.STATUS_PUBLIC, 'Public'),
 (Entry.STATUS_DRAFT, 'Draft')),
 coerce=int)

 def save_entry(self, entry):
 self.populate_obj(entry)
 entry.generate_slug()
 return entry

Forms and Validation

[84]

Start the development server and now try to submit an empty form. As you
might expect, it will fail to save since the call to form.validate() returns False.
Unfortunately, there is no indication on the front-end why our form is not getting
saved. Luckily, WTForms will make the validation errors available to us in the
template, and all we need to do is modify our template to display them.

To display validation errors we will be using several bootstrap CSS classes
and constructions, but the end result will look very nice, as seen in the
following screenshot:

Make the following changes to the field display code in the create.html template:

{% for field in form %}
 <div class="form-group{% if field.errors %} has-error has-feedback{%
endif %}">
 {{ field.label(class='col-sm-3 control-label') }}
 <div class="col-sm-9">
 {{ field(class='form-control') }}
 {% if field.errors %}
 <span class="glyphicon glyphicon-warning-sign form-control-
feedback">
 {% endif %}
 {% for error in field.errors %}{{ error
}}{% endfor %}

Chapter 4

[85]

 </div>
 </div>
{% endfor %}

We are checking whether the field has any errors by looking at the field.errors
attribute. If there are any errors, then we do the following things:

•	 Add a CSS class to the form-group div
•	 Add a special icon indicating there is an error
•	 Display each error in a beneath the form field. Since field.errors

is a list and may contain multiple validation errors, we will iterate through
these using a for loop

You are now able to create valid blog entries using a form, which also performs a
little validation to ensure that you do not submit blank forms. In the next section, we
will describe how to re-use this same form for editing existing entries.

Editing existing entries
Believe it or not, we can actually use the same form we used for creating entries to
edit existing ones. We will only need to make some slight changes to the view and
template logic, so let's get started.

In order to edit entries, we will need a view, so we will need a URL. Because the
view needs to know which entry we are editing, it will be important to convey that
as part of the URL structure, and for that reason we will set up the edit view at /
entries/<slug>/edit/. Open entries/blueprint.py and, below the detail view,
add the following code for the edit view. Note the similarities to the create view:

@entries.route('/<slug>/edit/', methods=['GET', 'POST'])
def edit(slug):
 entry = Entry.query.filter(Entry.slug == slug).first_or_404()
 if request.method == 'POST':
 form = EntryForm(request.form, obj=entry)
 if form.validate():
 entry = form.save_entry(entry)
 db.session.add(entry)
 db.session.commit()
 return redirect(url_for('entries.detail',
slug=entry.slug))
 else:

Forms and Validation

[86]

 form = EntryForm(obj=entry)

 return render_template('entries/edit.html', entry=entry,
form=form)

Just as we did with the create view, we check the request method and, based on
that, we will either validate and process the form, or simply instantiate it and pass it
to the template.

The biggest difference is in how we are instantiating the EntryForm. We pass it an
additional parameter, obj=entry. When WTForms receives an obj parameter, it will
attempt to pre-populate the form fields with values taken from obj (in this case, our
blog entry).

We are also passing an additional value into the template context, the entry that we
are editing. We will do this so we can display the title of the entry to the user; in this
way, we can make the Cancel button of the form link back to the entry detail view.

The edit.html template
As you might guess, the edit.html template will be almost identical to create.
html. Due to the complexity of the field rendering logic, it seems like a bad idea to
copy-and-paste all that code. If we ever decided to change the display of the form
fields, we would find ourselves touching multiple files, which should always be a
big red flag.

To avoid this, we will be using a powerful Jinja2 feature called macros to render our
fields. The field rendering code will be defined in a macro and then, wherever we
wish to render a field, we will just call our macro instead. This makes it really easy to
make changes to the way our fields are styled.

Macros are a feature of Jinja2 that allow you to treat a section of a
template like a function so it can be called multiple times with different
arguments and produce largely similar HTML. You can view more on
the Jinja documentation site: http://jinja.pocoo.org/docs/dev/
templates/

http://jinja.pocoo.org/docs/dev/templates/
http://jinja.pocoo.org/docs/dev/templates/

Chapter 4

[87]

Since this macro is going to be useful for any form field we might wish to display, we
will put it in our app's template directory. Inside the app's template directory, create
a new directory named macros and add a field form_field.html. Relative to the
app directory, the path to this file is templates/macros/form_field.html. Add the
following code:

{% macro form_field(field) %}
 <div class="form-group{% if field.errors %} has-error has-
feedback{% endif %}">
 {{ field.label(class='col-sm-3 control-label') }}
 <div class="col-sm-9">
 {{ field(class='form-control', **kwargs) }}
 {% if field.errors %}<span class="glyphicon glyphicon-
warning-sign form-control-feedback">{% endif %}
 {% for error in field.errors %}{{
error }}{% endfor %}
 </div>
 </div>
{% endmacro %}

For the most part, we have simply copied and pasted the field rendering code from
our create template but there are a couple of differences I'd like to point out:

•	 The template begins with a macro template tag that defines the name of the
macro and any arguments that it accepts.

•	 When we render the field, we are passing in **kwargs. WTForms fields
can accept arbitrary keyword arguments, which are then translated into
attributes on the HTML tag. While we are not currently going to make use of
this, we will be using it in later chapters.

•	 We indicate the end of a macro with the endmacro tag.

Now let's update create.html to make use of the new macro. In order to use the
macro, we must first import it. Then we can replace all the field markup with a
simple call to the macro. With the changes, the create.html template should
look like this:

{% extends "base.html" %}
{% from "macros/form_field.html" import form_field %}

{% block title %}Create new entry{% endblock %}

{% block content_title %}Create new entry{% endblock %}

{% block content %}

Forms and Validation

[88]

 <form action="{{ url_for('entries.create') }}" class="form form-
horizontal" method="post">
 {% for field in form %}
 {{ form_field(field) }}
 {% endfor %}
 <div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-
default">Create</button>
 <a class="btn" href="{{ url_for('entries.index')
}}">Cancel
 </div>
 </div>
 </form>
{% endblock %}

With that out of the way, we can proceed to creating our edit.html template. It will
look almost identical to the create template, except we will display text in the app/
entries/templates/entries directory to indicate to the user that they are editing
an existing entry:

{% extends "base.html" %}
{% from "macros/form_field.html" import form_field %}

{% block title %}Edit {{ entry.title }}{% endblock %}

{% block content_title %}Edit {{ entry.title }}{% endblock %}

{% block content %}
 <form action="{{ url_for('entries.edit', slug=entry.slug) }}"
class="form form-horizontal" method="post">
 {% for field in form %}
 {{ form_field(field) }}
 {% endfor %}
 <div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-default">Save</button>
 <a class="btn" href="{{ url_for('entries.detail', slug=entry.
slug) }}">Cancel
 </div>
 </div>
 </form>
{% endblock %}

Chapter 4

[89]

To wrap things up, on the entry detail page let's add a link in the sidebar that will
take us to the Edit page. Add the following link to the sidebar in detail.html:

Edit

Deleting entries
To round out this section, we will add a view for deleting entries. We will design this
view so that, when the user goes to delete an entry, they are taken to a confirmation
page. Only by submitting the confirmation form (a POST request) will they actually
be able to delete the entry. Because this form does not require any fields, we do not
need a special WTForms class and can just create it using HTML.

Create a template named delete.html alongside the create.html and edit.html
templates, and add the following HTML:

{% extends "base.html" %}

{% block title %}{{ entry.title }}{% endblock %}

{% block content_title %}{{ entry.title }}{% endblock %}

{% block content %}
 <form action="{{ url_for('entries.delete', slug=entry.slug) }}"
method="post">
 <fieldset>
 <legend>Delete this entry?</legend>
 <button class="btn btn-danger" type="submit">Delete</button>
 <a class="btn" href="{{ url_for('entries.detail', slug=entry.
slug) }}">Cancel
 </fieldset>
 </form>
{% endblock %}

Now we need to define the entries.delete view. Like the edit view, the URL for
deleting an entry needs the entry slug as part of the URL structure. For that reason,
we will be using /entries/<slug>/delete/.

Forms and Validation

[90]

When the form is submitted, we could simply remove the entry from the database
but in my experience I have usually come to regret deleting content permanently.
Instead of actually deleting the entry from the database, we will be giving it a _
DELETED status; we will change its status to STATUS_DELETED. We will then modify
our views so that entries with this status never appear on any part of the site. For
all intents and purposes, the entry is gone but, should we ever need it again, we can
retrieve it from the database. Add the following view code below the edit view:

@entries.route('/<slug>/delete/', methods=['GET', 'POST'])
def delete(slug):
 entry = Entry.query.filter(Entry.slug == slug).first_or_404()
 if request.method == 'POST':
 entry.status = Entry.STATUS_DELETED
 db.session.add(entry)
 db.session.commit()
 return redirect(url_for('entries.index'))

 return render_template('entries/delete.html', entry=entry)

We will also need to add STATUS_DELETED to the Entries model in model.py:

class Entry(db.Model):
 STATUS_PUBLIC = 0
 STATUS_DRAFT = 1
 STATUS_DELETED = 2

As we did with the Edit link, take a moment and add a delete link to the detail view
sidebar as well.

Cleaning up
Let's take a moment to refactor our blueprint. Since we do not want to display
deleted entries on the site, we will need to make sure we filter our Entries by status.
Additionally, looking at the detail, edit and delete views, I see three instances
where we have copied and pasted the code to query an entry by slug. Let's move that
into a helper function as well.

To start with, let's update the entry_list helper to filter for Entries that are either
public or drafts.

In the next chapter, we will be adding log-in functionality to the site.
Once we have that, we will add logic to display draft entries only to
the users who created them.

Chapter 4

[91]

def entry_list(template, query, **context):
 valid_statuses = (Entry.STATUS_PUBLIC, Entry.STATUS_DRAFT)
 query = query.filter(Entry.status.in_(valid_statuses))
 if request.args.get('q'):
 search = request.args['q']
 query = query.filter(
 (Entry.body.contains(search)) |
 (Entry.title.contains(search)))

 return object_list(template, query, **context)

We can now be confident that anywhere we display lists of entries, no deleted entries
will show up.

Now let's add a new helper to retrieve an Entry by its slug. If the entry cannot be
found, we will return a 404. Add the following code below entry_list:

def get_entry_or_404(slug):
 valid_statuses = (Entry.STATUS_PUBLIC, Entry.STATUS_DRAFT) (Entry.
query
 .filter(
 (Entry.slug == slug) &
 (Entry.status.in_(valid_statuses)))
 .first_or_404())

Replace the call to Entry.query.filter() in the detail, edit, and delete views
with a call to get_entry_or_404. The following is the updated detail view:

@entries.route('/<slug>/')
def detail(slug):
 entry = get_entry_or_404(slug)
 return render_template('entries/detail.html', entry=entry)

Using flash messages
When a user performs an action on a site, it is common to display a one-time
message on the subsequent page-load indicating that their action has succeeded.
These are called flash messages and Flask comes with a helper for displaying them.
In order to get started using flash messages, we need to take a brief detour to our
config module where we will be adding a secret key. The secret key is necessary
because flash messages are stored in the session, which in turn is stored as an
encrypted cookie. To securely encrypt this data, Flask needs a key.

Forms and Validation

[92]

Open config.py and add a secret key. It can be a phrase, random characters,
whatever you like:

class Configuration(object):
 APPLICATION_DIR = current_directory
 DEBUG = True
 SECRET_KEY = 'flask is fun!' # Create a unique key for your app.
 SQLALCHEMY_DATABASE_URI = 'sqlite:///%s/blog.db' %
APPLICATION_DIR

Now, wherever we have the user performing an action, we want to flash them a
message indicating that their action succeeded. This means we will be adding a
message to the create, edit, and delete views. Open up the entries blueprint and
add the flash function to the list of flask imports at the top of the module:

from flask import Blueprint, flash, redirect, render_template,
request, url_for

Then, in each of the appropriate views, let's call flash with a helpful message. The
call should occur right before we redirect:

def create():
 ...
 db.session.commit()
 flash('Entry "%s" created successfully.' % entry.title,
'success')
 return redirect(url_for('entries.detail', slug=entry.
slug))
 ...

def edit(slug):
 ...
 db.session.commit()
 flash('Entry "%s" has been saved.' % entry.title, 'success')
 return redirect(url_for('entries.detail', slug=entry.slug))
 ...

def delete(slug):
 ...
 db.session.commit()
 flash('Entry "%s" has been deleted.' % entry.title, 'success')
 return redirect(url_for('entries.index'))
 ...

Chapter 4

[93]

Displaying flash messages in the template
Because we do not always know which page we will be on when we need to display
a flash message, it is a standard practice to add the display logic to the base template.
Flask provides a Jinja2 function get_flashed_messages that will return us a list of
any pending messages to display.

Open base.html and add the following code. I have placed mine between the
content_title block and the content block:

<h1>{% block content_title %}{% endblock %}</h1>
{% for category, message in get_flashed_messages(with_categories=true)
%}
 <div class="alert alert-dismissable alert-{{ category }}">
 <button type="button" class="close" data-dismiss="alert">×</
button>
 {{ message }}
 </div>
{% endfor %}
{% block content %}{% endblock %}

Let's give it a try! Start the development server and try adding a new entry. Upon
saving, you should be redirected to your new entry and see a helpful message as
seen in the following screenshot:

Forms and Validation

[94]

Saving and modifying tags on posts
We have covered how to save and modify tags on our entries. One of the most
common approaches to managing tags is to use a comma-separated text input, so
we might list the tags as Python, Flask, Web-development. With WTForms this seems
pretty straightforward, since we would just use a StringField. The fact that we are
dealing with a database relationship, though, means that at some point we need to
do some processing to convert between Tag models and a comma-separated string.

While there are many ways we could accomplish this, we will implement a custom
field class TagField, which will encapsulate all the logic for translating between
comma-separated tag names and Tag model instances.

Another option would be to create a property on the Entry model.
A property looks like a normal object attribute, but it is actually a
combination of getter and (sometimes) setter methods. Since WTForms
can automatically work with our model attributes, this means that, if
we implement our translation logic in the getter and setter, WTForms
will just work.

Let's start by defining our tag field class. There are two important methods we need
to override:

•	 _value(): converts the list of Tag instances into a comma-separated list of
tag names

•	 process_formdata(valuelist): accepts the comma-separated tag list and
converts it into a list of Tag instances

Following is the implementation for the TagField. Note how we take special care
when processing user input to not create duplicate rows in the Tag table. We are also
using Python's set() data-type to eliminate possible duplicates in the user input.
Add the following class to forms.py above the EntryForm:

from models import Tag
class TagField(wtforms.StringField):
 def _value(self):
 if self.data:
 # Display tags as a comma-separated list.
 return ', '.join([tag.name for tag in self.data])
 return ''

 def get_tags_from_string(self, tag_string):

Chapter 4

[95]

 raw_tags = tag_string.split(',')

 # Filter out any empty tag names.
 tag_names = [name.strip() for name in raw_tags if name.
strip()]

 # Query the database and retrieve any tags we have already
saved.
 existing_tags = Tag.query.filter(Tag.name.in_(tag_names))

 # Determine which tag names are new.
 new_names = set(tag_names) - set([tag.name for tag in
existing_tags])

 # Create a list of unsaved Tag instances for the new tags.
 new_tags = [Tag(name=name) for name in new_names]

 # Return all the existing tags + all the new, unsaved tags.
 return list(existing_tags) + new_tags

 def process_formdata(self, valuelist):
 if valuelist:
 self.data = self.get_tags_from_string(valuelist[0])
 else:
 self.data = []

Now all that is left is to add the field to the EntryForm. Add the following field
below the status field. Note the use of the description keyword argument:

class EntryForm(wtforms.Form):
 ...
 tags = TagField(
 'Tags',
 description='Separate multiple tags with commas.')

In order to display this helpful description text, let's make a quick modification to
the form_field macro:

{% macro form_field(field) %}
 <div class="form-group{% if field.errors %} has-error has-feedback{%
endif %}">
 {{ field.label(class='col-sm-3 control-label') }}
 <div class="col-sm-9">
 {{ field(class='form-control', **kwargs) }}

Forms and Validation

[96]

 {% if field.errors %}<span class="glyphicon glyphicon-warning-
sign form-control-feedback">{% endif %}
 {% if field.description %}{{ field.
description|safe }}{% endif %}
 {% for error in field.errors %}{{ error
}}{% endfor %}
 </div>
 </div>
{% endmacro %}

Start the development server and experiment by saving a few tags. Your form should
look something like the following screenshot:

Image uploads
We'll round out the chapter on form processing by adding an image-uploading
feature to the site. This feature will be a simple view that accepts an image file and
stores it on the server in an uploads directory. This will make it easy to display
images on our blog entries.

Chapter 4

[97]

The first step will be to create a form for handling our image uploads. Alongside
EntryForm, let's add a new form called ImageForm. This form will be very simple
and contain a single file input. We will use a custom validator to ensure that the
uploaded file is a valid image. Add the following code to forms.py:

class ImageForm(wtforms.Form):
 file = wtforms.FileField('Image file')

Before we add a view to save the form, we need to know where we are going to
save the file. Typically, resources for an app—such as images, JavaScript, and
stylesheets—are served out of a single directory called static. Common practice
is to then over-ride the path to this directory in your web server so it can transfer
this file without having to go through a Python intermediary, making access much
faster. We make use of this usage of the static directory to store our image uploads.
In the blog project's app directory, let's create a new directory named static and a
subdirectory images:

(blog) $ cd ~/projects/blog/blog/app

(blog) $ mkdir -p static/images

Now let's add a new value to our configuration file so we can easily reference the
path to our images on-disk. This simplifies our code in the long run should we ever
choose to change this location. Open config.py and add the following value:

class Configuration(object):
 ...
 STATIC_DIR = os.path.join(APPLICATION_DIR, 'static')
 IMAGES_DIR = os.path.join(STATIC_DIR, 'images')

Processing file uploads
We are now ready to create a view for processing the image upload. The logic will
be very similar to our other form processing views with the exception that, after
validating the form, we will save the uploaded file to disk. Since these images are
intended for use in our blog entries, I am adding the view to the entries blueprint,
accessible at /entries/image-upload/.

Forms and Validation

[98]

We need to import our new form along with other helpers. Open blueprint.py and
add the following imports to the top of the module:

import os

from flask import Blueprint, flash, redirect, render_template,
request, url_for
from werkzeug import secure_filename

from app import app, db
from helpers import object_list
from models import Entry, Tag
from entries.forms import EntryForm, ImageForm

At the top of the list of views, let's add the new image-upload view. It is important
that it appears before the detail view, otherwise Flask will incorrectly treat /image-
upload/ as the slug of a blog entry. Add the following view definition:

@entries.route('/image-upload/', methods=['GET', 'POST'])
def image_upload():
 if request.method == 'POST':
 form = ImageForm(request.form)
 if form.validate():
 image_file = request.files['file']
 filename = os.path.join(app.config['IMAGES_DIR'],
 secure_filename(image_file.
filename))
 image_file.save(filename)
 flash('Saved %s' % os.path.basename(filename), 'success')
 return redirect(url_for('entries.index'))
 else:
 form = ImageForm()

 return render_template('entries/image_upload.html', form=form)

Most of the code here probably looks familiar to you, the notable exception being the
use of request.files and secure_filename. When a file is uploaded, Flask will
store it in request.files, which is a special dictionary keyed by the name of the
form field. We do some path joining using secure_filename to prevent malicious
filenames and to generate the correct path to the static/images directory, and then
save the uploaded file to disk. It is that easy.

Chapter 4

[99]

The image upload template
Let's create a simple template for our image upload form. Create a file in the entries
template directory named image_upload.html and add the following code:

{% extends "base.html" %}
{% from "macros/form_field.html" import form_field %}

{% block title %}Upload an image{% endblock %}

{% block content_title %}Upload an image{% endblock %}

{% block content %}
 <form action="{{ url_for('entries.image_upload') }}"
enctype="multipart/form-data" method="post">
 {% for field in form %}
 {{ form_field(field) }}
 {% endfor %}
 <div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-
default">Upload</button>
 <a class="btn" href="{{ url_for('entries.index')
}}">Cancel
 </div>
 </div>
 </form>
{% endblock %}

In order for Flask to process our uploaded file, we must specify
enctype="multipart/form-data" when defining our <form> element. This is
a very common mistake, so I will repeat again: whenever you are accepting file
uploads, your form element must specify enctype="multipart/form-data".

Go ahead and try out the image uploader. You should see your uploaded files
appear in the static/images/directory in your app. You can also view the image
in your browser by navigating to http://127.0.0.1:5000/static/images/the-
file-name.jpg.

Forms and Validation

[100]

Serving static files
Flask will automatically serve up files from our /static/ directory. When we deploy
our site in Chapter 10, Deploying Your Application, we will use the Nginx web server to
serve static assets but, for local development, Flask makes things really easy.

In addition to our image uploads, let's also serve our site's JavaScript and stylesheets
from /static/. Download jQuery and Bootstrap and place the JavaScript files
(jquery-<version>.min.js and boostrap.min.js) in static/js. Place the
minified bootstrap CSS file (bootstrap.min.css) in static/css. Bootstrap also
comes with some special fonts that are used for icons. Copy the bootstrap fonts
directory into the static directory as well. You should now have four directories
inside your application's static directory: css, fonts, images and js, each containing
the relevant files:

(blog) $ cd static/ && find . -type f

./fonts/glyphicons-halflings-regular.woff

./fonts/glyphicons-halflings-regular.ttf

./fonts/glyphicons-halflings-regular.eot

./fonts/glyphicons-halflings-regular.svg

./images/2012-07-17_16.18.18.jpg

./js/jquery-1.10.2.min.js

./js/bootstrap.min.js

./css/bootstrap.min.css

In order to point our base template at the local versions of these files, we will use the
url_for helper to generate the correct URL. Open base.html and remove the old
stylesheet and JavaScript tags, replacing them with the local version:

<head>
 <meta charset="utf-8">
 <title>{% block title %}{% endblock %} | My Blog</title>

 <link rel="stylesheet" href="{{="{{ url_for('static', filename='css/
bootstrap.min.css') }}">
 <style type="text/css">
 body { padding-top: 60px; }
 </style>
 {% block extra_styles %}{% endblock %}

 <script src="{{ url_for('static', filename='js/jquery-1.10.2.min.
js') }}"></script>

Chapter 4

[101]

 <script src="{{ url_for('static', filename='js/bootstrap.min.js')
}}"></script>
 {% block extra_scripts %}{% endblock %}
</head>

If you like, you can create a site.css file in the static/css directory and replace
the <style> tag with a link to site.css.

Summary
In this chapter, we added a variety of new ways to interact with the site. It is now
possible to create and modify content directly through the site. We discussed how
to create object-oriented forms with WTForms, including processing and validating
the form data from the view, as well as writing that form data to the database. We
also created templates to display forms and validation errors and used Jinja2 macros
to remove repetitive code to make the code more modular. We were then able to
display single-use flash messages to the user when they perform an action. Finally
we also explained how to handle file uploads using WTForms and Flask, and to
serve static assets, such as JavaScript, stylesheets, and image uploads.

Before jumping into the next chapter, take some time to experiment with the new
features we added to the site. Here are some ideas for ways you can improve on
what we've built in this chapter:

•	 Add a header link to the image upload form.
•	 In the image upload view, validate that the file's extension is a recognized

image extension (.png, .jpg, .gif).
•	 Add a read-only StringField to display the Entry's slug.
•	 Our tag index view will show tags that have zero entries associated with

them (which might be the case if we added a tag, then removed it from
an entry). Improve the query to only list tags with one or more associated
entries. Hint: Tag.query.join(entry_tags).distinct().

•	 Display the number of entries associated with a tag in the tag index.
Advanced: do it in a single query.

•	 Advanced: Create an Image model and views for creating, editing, and
deleting images.

In the next chapter, we will add authentication to our site so that only trusted users
can create and modify content. We will build a model to represent blog authors,
add log-in/log-out forms, and prevent unauthenticated users from accessing certain
areas of the site.

[103]

Authenticating Users
In this chapter, we will add user authentication to our site. Being able to distinguish
one user from another allows us to develop an entirely new class of features. For
instance, we will see how to restrict access to the create, edit, and delete views,
preventing anonymous users from tampering with site content. We can also display
a user's draft posts to them, but hide them from everyone else. This chapter will
cover the practical aspects of adding an authentication layer to the site, and wrap up
with a discussion of how to use sessions to track anonymous users as well.

In this chapter we shall:

•	 Create a database model to represent users
•	 Install Flask-Login and add the LoginManager helper to our site
•	 Learn to securely store and validate passwords using cryptographic hash

functions
•	 Build forms and views for logging users in and out of the site
•	 See how to reference the logged-in user in views and templates
•	 Limit access to views to logged-in users
•	 Add an author foreign key to the Entry model
•	 Use the Flask session object to track any visitor to the site

Authenticating Users

[104]

Creating a user model
The first step in building our authentication system will be to create a database
model representing an individual user account. We will store the user's login
credentials, along with some additional information such as the user's display name,
and their account creation timestamp. Our model will have the following fields:

•	 email (unique): store the user's email address and use that for authentication
•	 password_hash: instead of stringing each user's password as plaintext, we

will hash the password using a one-way cryptographic hash function
•	 name: the user's name, so we can display it alongside their blog entries
•	 slug: A URL-friendly representation of the user's name, also unique
•	 active: Boolean flag indicating whether this account is active. Only active

users will be able to log into the site
•	 created_timestamp: The time this user account was created

If there are other fields you think might be useful, feel free to make
your own additions to this list.

Now that we have our list of fields, let's create the model class. Open models.py and,
below the Tag model, add the following code:

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 email = db.Column(db.String(64), unique=True)
 password_hash = db.Column(db.String(255))
 name = db.Column(db.String(64))
 slug = db.Column(db.String(64), unique=True)
 active = db.Column(db.Boolean, default=True)
 created_timestamp = db.Column(db.DateTime, default=datetime.
datetime.now)

 def __init__(self, *args, **kwargs):
 super(User, self).__init__(*args, **kwargs)
 self.generate_slug()

 def generate_slug(self):
 if self.name:
 self.slug = slugify(self.name)

Chapter 5

[105]

As you'll recall from Chapter 2, Relational Databases with SQLAlchemy, we need to
create a migration in order to add this table to our database. From the command
line, we will use the manage.py helper to introspect our models and generate the
migration script:

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added table 'user'

 Generating /home/charles/projects/blog/app/migrations/
versions/40ce2670e7e2_.py
... done

Having generated the migration, we can now run db upgrade to make the schema
changes:

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 2ceb72931f66 ->
40ce2670e7e2, empty message

Now that we have users, the next step will be to allow them to log into the site.

Installing Flask-Login
Flask-Login is a lightweight extension that handles logging users in and out of the
site. From the project's documentation, Flask-Login will do the following:

•	 Log users in and out of the site
•	 Restrict views to the logged-in users
•	 Manage cookies and the "remember me" functionality
•	 Help protect user session cookies from being stolen

On the other hand, Flask-Login will not do the following:

•	 Make any decisions about the storage of user accounts
•	 Manage usernames, passwords, OpenIDs, or any other form of credentials
•	 Handle tiered permissions or anything beyond logged in or logged out
•	 Account registration, activation, or password reminders

Authenticating Users

[106]

The takeaway from these lists is that Flask-Login can best be thought of as a session
manager. It simply manages user sessions and lets us know which user is making a
request, and whether that user is logged in or not.

Let's get started. Use pip to install Flask-Login:

(blog) $ pip install Flask-Login

Downloading/unpacking Flask-Login

...

Successfully installed Flask-Login

Cleaning up...

In order to start using the extension in our app, we will create an instance of the
LoginManager class, which is provided by Flask-Login. In addition to creating the
LoginManager object, we will add a signal handler that will run before every request.
This signal handler will retrieve the currently logged-in user and store it on a special
object named g. In Flask, the g object can be used to store arbitrary values per-request.

Add the following lines of code to app.py. The imports go at the top of the module,
and the rest goes at the end:

from flask import Flask, g
from flask.ext.login import LoginManager, current_user

Add to the end of the module.
login_manager = LoginManager(app)
login_manager.login_view = "login"

@app.before_request
def _before_request():
 g.user = current_user

Now that we have created our login_manager and added a signal handler to load
the current user, we need to tell Flask-Login how to determine which user is logged
in. The way Flask-Login determines this is by storing the current user's ID in the
session. Our user loader will accept the ID that was stored in the session and return a
User object from the database.

Open models.py and add the following lines of code:

from app import login_manager

@login_manager.user_loader
def _user_loader(user_id):
 return User.query.get(int(user_id))

Chapter 5

[107]

Now Flask-Login knows how to convert a user ID into a User object, and that user
will be available to us as g.user.

Implementing the Flask-Login interface
In order for Flask-Login to work with our User model, we need to implement a
handful of special methods that comprise the Flask-Login interface. By implementing
these methods, Flask-Login will be able to take a User object and determine whether
they can log into the site.

Open models.py and add the following methods to the User class:

class User(db.Model):
 # ... column definitions, etc ...

 # Flask-Login interface..
 def get_id(self):
 return unicode(self.id)

 def is_authenticated(self):
 return True

 def is_active(self):
 return self.active

 def is_anonymous(self):
 return False

The first method, get_id(), instructs Flask-Login how to determine the ID of a user,
which will then be stored in the session. It is the inverse of our User Loader function,
which gives us an ID and asks us to return a User object. The rest of the methods
tell Flask-Login that User objects from the database are not anonymous, and should
be allowed to login only if the active attribute is set to True. Recall that Flask-Login
knows nothing about our User model or our database, so we have to be very explicit
in what we tell it.

Now that we have configured Flask-Login, let's add the code that will allow us to
create some users.

Authenticating Users

[108]

Creating user objects
Creating a new user is just like creating an entry or tag with one exception: we need
to securely hash the user's password. You should never store passwords as plaintext
and, due to the ever-increasing sophistication of hackers, it is best to use a strong
cryptographic hash function. We will be using the Flask-Bcrypt extension to hash
and check our passwords, so let's install the extension using pip:

(blog) $ pip install flask-bcrypt

...

Successfully installed Flask-Bcrypt

Cleaning up...

Open app.py and add the following code to register the extension with our app:

from flask.ext.bcrypt import Bcrypt

bcrypt = Bcrypt(app)

Now let's add some methods to the User object that will make creating and checking
passwords straightforward:

from app import bcrypt

class User(db.Model):
 # ... column definitions, other methods ...

 @staticmethod
 def make_password(plaintext):
 return bcrypt.generate_password_hash(plaintext)

 def check_password(self, raw_password):
 return bcrypt.check_password_hash(self.password_hash, raw_
password)

 @classmethod
 def create(cls, email, password, **kwargs):
 return User(
 email=email,
 password_hash=User.make_password(password),
 **kwargs)

 @staticmethod
 def authenticate(email, password):

Chapter 5

[109]

 user = User.query.filter(User.email == email).first()
 if user and user.check_password(password):
 return user
 return False

The make_password method accepts a plaintext password and returns the hashed
version, while the check_password method accepts a plaintext password and
determines whether it matches the hashed version stored in the database. We will
not use these methods directly, however. Instead, we will create two higher-level
methods, create and authenticate. The create method will create a new user,
automatically hashing the password before saving, and the authenticate method
will retrieve a user given a username and password.

Let's experiment with these methods by creating a new user. Open up a shell and,
using the following code as an example, create a user for yourself:

In [1]: from models import User, db

In [2]: user = User.create("charlie@gmail.com", password="secret",
name="Charlie")

In [3]: print user.password
$2a$12$q.rRa.6Y2IEF1omVIzkPieWfsNJzpWN6nNofBxuMQDKn.As/8dzoG

In [4]: db.session.add(user)

In [5]: db.session.commit()

In [6]: User.authenticate("charlie@gmail.com", "secret")
Out[6]: <User u"Charlie">

In [7]: User.authenticate("charlie@gmail.com", "incorrect")
Out[7]: False

Now that we have a way to securely store and verify a user's credentials, we can
commence with building the login and logout views.

Authenticating Users

[110]

Login and logout views
Users will log into our blogging site using their email and password; so, before we
begin building our actual login view, let's start with the LoginForm. This form will
accept the username, password, and will also present a checkbox to indicate whether
the site should remember me. Create a forms.py module in the app directory and
add the following code:

import wtforms
from wtforms import validators
from models import User

class LoginForm(wtforms.Form):
 email = wtforms.StringField("Email",
 validators=[validators.DataRequired()])
 password = wtforms.PasswordField("Password",
 validators=[validators.DataRequired()])
 remember_me = wtforms.BooleanField("Remember me?",
 default=True)

Note that WTForms also provides an e-mail validator. However, as
the documentation for this validator tells us, it is very primitive and
may not capture all edge cases as full e-mail validation is actually
extremely difficult.

In order to validate the user's credentials as part of the normal WTForms validation
process, we will override the form's validate() method. In the event the email is
not found or the password does not match, we will display an error below the email
field. Add the following method to the LoginForm class:

def validate(self):
 if not super(LoginForm, self).validate():
 return False

 self.user = User.authenticate(self.email.data, self.password.data)
 if not self.user:
 self.email.errors.append("Invalid email or password.")
 return False

 return True

Chapter 5

[111]

Now that our form is ready, let's create the login view. We will instantiate the
LoginForm and validate it on POST. In addition, when the user successfully
authenticates, we will redirect them to a new page.

When a user logs in, it is a good practice to redirect them back to the page the user
was previously browsing. To accomplish this, we will store the URL for the page the
user was previously at in a query string value called next. If a URL is found in this
value, we can redirect the user there. If no URL is found, the user will get redirected
to the homepage by default.

Open views.py in the app directory and add the following code:

from flask import flash, redirect, render_template, request,
url_for
from flask.ext.login import login_user

from app import app
from app import login_manager
from forms import LoginForm

@app.route("/")
def homepage():
 return render_template("homepage.html")

@app.route("/login/", methods=["GET", "POST"])
def login():
 if request.method == "POST":
 form = LoginForm(request.form)
 if form.validate():
 login_user(form.user, remember=form.remember_me.data)
 flash("Successfully logged in as %s." % form.user.email,
"success")
 return redirect(request.args.get("next") or url_
for("homepage"))
 else:
 form = LoginForm()
 return render_template("login.html", form=form)

The magic happens on POST after we've successfully validated the form (and
therefore authenticated the user). We are calling login_user, a helper function
provided by Flask-Login, which handles setting the correct session values. Then we
set a flash message and send the user on their way.

Authenticating Users

[112]

The login template
The login.html template is straightforward with the exception of one trick, one
exception. In the form's action attribute, we are specifying url_for('login') but we
are also passing an extra value next. This allows us to preserve the desired next URL
while the user is logging in. Add the following code to templates/login.html:

{% extends "base.html" %}
{% from "macros/form_field.html" import form_field %}
{% block title %}Log in{% endblock %}
{% block content_title %}Log in{% endblock %}
{% block content %}
<form action="{{ url_for('login', next=request.args.get('next',''))
}}" class="form form-horizontal" method="post">
{{ form_field(form.email) }}
{{ form_field(form.password) }}
<div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <div class="checkbox">
 <label>{{ form.remember_me() }} Remember me</label>
 </div>
 </div>
</div>
<div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-default">Log in</button>
 Cancel
 </div>
</div>
</form>
{% endblock %}

Chapter 5

[113]

When you visit the login page, your form will look something like the
following screenshot:

Logging out
Finally let's add a view for logging users out of the site. Interestingly, no template
is needed for this view because users will simply pass through the view, being
redirected after their session is logged out. Add the following import statement and
logout view code to views.py:

Modify the import at the top of the module.
from flask.ext.login import login_user, logout_user # Add
logout_user

@app.route("/logout/")
def logout():
 logout_user()
 flash('You have been logged out.', 'success')
 return redirect(request.args.get('next') or url_for('homepage'))

Once again, we are accepting a next URL as part of the query string, defaulting to
the homepage if no URL is specified.

Authenticating Users

[114]

Accessing the current user
Let's create links to the login and logout views in the navigation bar. To do this, we
will need to check whether the current user is authenticated. If so, we will display a
link to the logout view; otherwise, we will display a link to log in.

As you may recall from earlier in the chapter, we added a signal handler that
stores the current user as an attribute of the Flask g object. We can access this object
in the template, so we simply need to check, in the template, whether g.user is
authenticated or not.

Open base.html and make the following additions to the navigation bar:

<ul class="nav navbar-nav">
 Home
 Blog
 {% if g.user.is_authenticated %}
 Log
out
 {% else %}
 Log
in
 {% endif %}
 {% block extra_nav %}{% endblock %}

Note how we are calling the is_authenticated() method, which we implemented
on our User model. Flask-Login provides us with a special AnonymousUserMixin
that will be used if no user is currently logged in.

Also note that, in addition to the view name, we are specifying next=request.path.
This works in tandem with our login and logout views, to redirect the user to their
current page after clicking login or logout.

Restricting access to views
At the moment, all of our blog views are currently unprotected and available to
anyone who wants to visit them. In order to prevent a malicious user from trashing
our entries, let's add some protection to the views that actually modify data. Flask-
Login provides a special decorator login_required that we will use to protect views
that should require an authenticated user.

Let's go through the entries blueprint and protect all views that modify data. Start by
adding the following import at the top of the blueprint.py module:

from flask.ext.login import login_required

Chapter 5

[115]

login_required is a decorator, just like app.route, so we will simply wrap the
views that we wish to protect. For example, this is how you would protect the
image_upload view:

@entries.route('/image-upload/', methods=['GET', 'POST'])
@login_required
def image_upload():
 ...

Go through the module and add the login_required decorator to the following
views, taking care to add it below the route decorator:

•	 image_upload

•	 create

•	 edit

•	 delete

When an anonymous user attempts to access these views, they will be redirected
to the login view. As an added bonus, Flask-Login will automatically handle
specifying the next parameter when redirecting to the login view, so users will be
returned to the page they were attempting to access.

Storing an entry's author
As you might recall from the spec we created in Chapter 1, Creating your First Flask
Application, our blogging site will support multiple authors. When an entry is
created, we will store the current user in the entry's author column. In order to store
the User who authored a given Entry, we will be creating a one-to-many relationship
between users and entries, such that one user may have many entries:

Authenticating Users

[116]

To create a one-to-many relationship, we will add a column to the Entry model
that points to a user in the User table. This column will be named author_id and,
because it references a User, we will make this a foreign key. Open models.py and
make the following modification to the Entry model:

class Entry(db.Model):
 modified_timestamp = ...
 author_id = db.Column(db.Integer, db.ForeignKey("user.id"))

 tags = ...

Since we've added a new column, we once again need to create a migration. From
the command line, run db migrate and db upgrade once more:

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column
'entry.author_id'

 Generating /home/charles/projects/blog/app/migrations/
versions/33011181124e_.py
... done

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 40ce2670e7e2 ->
33011181124e, empty message

Like we did with tags, the final step will be to create a back-reference on the User
model that will allow us to access a given user's associated Entry rows. Because a
user may have many entries we would like to perform additional filtering operations
on, we will expose the back-reference as a query, just like we did for tag.entries.

In the User class, add the following line of code below the created_timestamp
column:

entries = db.relationship('Entry', backref='author', lazy='dynamic')

We now have the ability to store a User as the author of a blog entry, and the next
step will be to populate this column at the time the entry is created.

Chapter 5

[117]

If there are any blog entries in the database, we also need to be sure that
they are assigned to an author. From the interactive shell, let's manually
update the author field on all existing entries:

In [8]: Entry.query.update({"author_id": user.id})

Out[8]: 6

The query will return the number of rows updated, which in this case is
the number of entries in the database. To save these changes, once again
call commit():

In [9]: db.session.commit()

Setting the author on blog entries
Now that we have a column suitable for storing the author of the Entry, and are
able to access the currently logged-in user, we can put that information to use by
setting the author of an entry at the time it is created. Before each request, our signal
handler will patch the current user onto the Flask g object, and since the create view
is protected by the login_required decorator, we know that g.user will be a User
from the database.

Because we are using the g object to access the user, we will need to import it, so
add the following import statement to the top of the entries blueprint:

from flask import g

In the entries blueprint, we now need to modify the instantiation of the Entry object
to manually set the author attribute. Make the following change to the create view:

if form.validate():
 entry = form.save_entry(Entry(author=g.user))
 db.session.add(entry)

When you go to create an entry, you will now be saved in the database as the author
of that entry. Go ahead and try it out.

Protecting the edit and delete views
If multiple users are able to log into our site, there's nothing to stop a malicious user
from editing or even deleting another user's entries. These views are protected by the
login_required decorator, but we need to add some additional code to ensure that
only the author can edit or delete their own entries.

Authenticating Users

[118]

In order to implement this protection cleanly, we will once again refactor the
helper functions in the entries blueprint. Make the following modifications to
the entries blueprint:

def get_entry_or_404(slug, author=None):
 query = Entry.query.filter(Entry.slug == slug)
 if author:
 query = query.filter(Entry.author == author)
 else:
 query = filter_status_by_user(query)
 return query.first_or_404()

We have introduced a new helper function, filter_status_by_user. This function
will ensure that anonymous users cannot see draft entries. Add the following
function to the entries blueprint below get_entry_or_404:

def filter_status_by_user(query):
 if not g.user.is_authenticated:
 return query.filter(Entry.status == Entry.STATUS_PUBLIC)
 else:
 return query.filter(
 Entry.status.in_((Entry.STATUS_PUBLIC,
Entry.STATUS_DRAFT)))

In order to restrict access to the edit and delete views, we now only need to pass in
the current user as the author parameter. Make the following modification to the edit
and delete views:

entry = get_entry_or_404(slug, author=None)

If you were to attempt to access the edit or delete view for an entry you did not
create, you would receive a 404 response.

Finally, let's modify the entry detail template to hide the Edit and Delete links from
all users except the entry's author. In your entries app edit the template entries/
detail.html, your code might look something like this:

{% if g.user == entry.author %}
 <h4>Actions</h4>
 <a href="{{ url_for('entries.edit', slug=entry.slug)
}}">Edit
<a href="{{ url_for('entries.delete', slug=entry.slug)
}}">Delete
{% endif %}

Chapter 5

[119]

Displaying a user's drafts
There is still one slight problem with our entry list: draft entries are displayed
alongside normal entries. We don't want to display unfinished entries to just anyone,
but at the same time it would be helpful for a user to see their own drafts. For that
reason, we will modify the entry lists and detail to display only public entries to
everyone but the author of the entry.

Once again we will be modifying the helper functions in the entries blueprint. We
will first modify the filter_status_by_user function to allow logged-in users to
view their own drafts (but not anyone else's):

def filter_status_by_user(query):
 if not g.user.is_authenticated:
 query = query.filter(Entry.status == Entry.STATUS_PUBLIC)
 else:
 # Allow user to view their own drafts.
 query = query.filter(
 (Entry.status == Entry.STATUS_PUBLIC) |
 ((Entry.author == g.user) &
 (Entry.status != Entry.STATUS_DELETED)))
 return query

The new query could be parsed as—"Give me all the public entries, or the undeleted
entries for which I am the author."

Since get_entry_or_404 is using the filter_status_by_user helper already,
the detail, edit, and delete views are ready to go. We only need to address the
various list views, which use the entry_list helper. Let's update the entry_list
helper to use the new filter_status_by_user helper:

 query = filter_status_by_user(query)

 valid_statuses = (Entry.STATUS_PUBLIC, Entry.STATUS_DRAFT)
 query = query.filter(Entry.status.in_(valid_statuses))
 if request.args.get("q"):
 search = request.args["q"]
 query = query.filter(
 (Entry.body.contains(search)) |
 (Entry.title.contains(search)))
 return object_list(template, query, **context)

Authenticating Users

[120]

That's all that it takes! I hope this shows how a few helper functions, in the right
places, can really simplify your life as a developer. Before continuing on to the final
section, I'd suggest creating one or two users and experimenting with the
new functionality.

If you plan on supporting multiple authors on your blog, you could also add an
authors' index page (like the tag index), and author detail pages that list the entries
associated with a given author (user.entries).

Sessions
As you've worked through this chapter, you may have wondered how Flask-Login
(and also Flask) are able to determine which user is logged in between requests,
request after request. Flask-Login does this by storing a user's ID in a special object
called the session. Sessions utilize cookies to securely store morsels of information.
When the user makes a request to your Flask application, their cookies are sent
along with the request, and Flask is able to inspect the cookie data and load it into
the session object. Similarly, your views can add or modify information stored in the
session, updating the user's cookies in the process.

The beauty of Flask's session object is that it can be used for any visitor to the site,
whether they are logged in or not. The session can be treated just like an ordinary
Python dictionary. The following code shows how you might track the last page a
user visited using the session:

from flask import request, session

@app.before_request
def _last_page_visited():
 if "current_page" in session:
 session["last_page"] = session["current_page"]
 session["current_page"] = request.path

By default, Flask sessions last only as long as the browser is open. If you would like the
session to persist, even between restarts, simply set session.permanent = True.

Like the g object, the session object can be accessed
directly from the template.

Chapter 5

[121]

As an exercise, try implementing a simple theme chooser for your website. Create
a view that allows users to pick a color theme, which will be stored in the session.
Then, in the templates, apply extra CSS rules depending on the user's chosen theme.

Summary
In this chapter, we added user authentication to the blogging app. We created a
User model, which securely stores a user's login credentials in the database, then
built views for logging users in and out of the site. We added a signal handler that
runs before every request and retrieves the current user, then learned how to use
this information in the views and templates. In the second half of the chapter, we
integrated the User model with the Entry model, making our blog more secure in the
process. The chapter wrapped up with a brief discussion of Flask sessions.

In the next chapter, we will build an administrative dashboard that will allow super-
users to perform actions such as creating new users and modifying site content.
We will also collect and display various site metrics, such as page-views, to help
visualize what content is driving the most traffic.

Building an Administrative
Dashboard

In this chapter, we will build an administrative dashboard for our website. Our
admin dashboard will give certain, selected, users the ability to manage all the
content across the entire site. In essence, the admin site will be a graphical frontend
for the database, supporting operations for creating, editing, and deleting rows in
our application's tables. The excellent Flask-Admin extension provides almost all
these functionalities out-of-the- box, but we will go beyond the defaults to extend
and customize the admin pages.

In this chapter we shall:

•	 Install Flask-Admin and add it to our website
•	 Add views for working with the Entry, Tag, and User models
•	 Add a view for managing the website's static assets
•	 Integrate the admin with the Flask-Login framework
•	 Create a column to identify a user as an administrator
•	 Create a custom index page for the admin dashboard

Installing Flask-Admin
Flask-Admin provides a readymade admin interface for Flask applications. Flask-
Admin also integrates nicely with SQLAlchemy to provide views for managing your
application's models.

Building an Administrative Dashboard

[124]

The following image gives is a sneak preview of what the Entry admin will look like
by the end of this chapter:

While this amount of functionality requires relatively little code, we still have a lot
to cover, so let's get started. Begin by installing Flask-Admin into virtualenv using
pip. At the time of writing, the current version of Flask-Admin is 1.0.7.

(blog) $ pip install Flask-Admin

Downloading/unpacking Flask-Admin

...

Successfully installed Flask-Admin

Cleaning up...

Chapter 6

[125]

You can test that it installed correctly if you wish by entering the following code:

(blog) $ python manage.py shell

In [1]: from flask.ext import admin

In [2]: print admin.__version__

1.0.7

Adding Flask-Admin to our app
Unlike the other extensions in our app, which we instantiated in the app module, we
will be setting up the admin extension in its own module. We will be writing several
admin-specific classes, so it makes sense to put them in their own module. Create a
new module named admin.py in the app directory, and add the following code:

from flask.ext.admin import Admin
from app import app

admin = Admin(app, 'Blog Admin')

Because our admin module depends on the app module, in order to avoid a circular
import we need to be sure that admin is loaded after app. Open the main.py module
and add the following:

from flask import request, session

from app import app, db
import admin # This line is new, placed after the app import.
import models
import views

You should now be able to start the development server and navigate to /admin/ to
view a barebones admin–the default dashboard, as seen in the following image:

Building an Administrative Dashboard

[126]

As you progress through this chapter, we will turn this boring and plain admin
interface into a rich and powerful dashboard for managing your blog.

Exposing models through the Admin
Flask-Admin comes with a contrib package that contains special view classes
designed to work with SQLAlchemy models. These classes provide out-of-the-box
create, read, update, and delete functionalities.

Open admin.py and update the following code:

from flask.ext.admin import Admin
from flask.ext.admin.contrib.sqla import ModelView

from app import app, db
from models import Entry, Tag, User

admin = Admin(app, 'Blog Admin')
admin.add_view(ModelView(Entry, db.session))
admin.add_view(ModelView(Tag, db.session))
admin.add_view(ModelView(User, db.session))

Note how we call admin.add_view() and pass instances of the ModelView class,
as well as the db session, for it to access the database with. Flask-Admin works by
providing a central endpoint to which we, the developers, can then add our
own views.

Start the development server and try pulling up your admin site again. It should
look something like the following screenshot:

Chapter 6

[127]

Try clicking into one of our model's views by selecting its link in the navigation bar.
Clicking the Entry link displays all the entries in the database in a clean,
tabular format. There are even links to create, edit, or delete entries as seen in
the next screenshot:

The defaults provided by Flask-Admin are great, but if you start exploring the
interface you will start to notice subtle things that could be improved or cleaned up.
For example, it's probably not necessary to include the Entry's body text as a column.
Similarly, the Status column is displaying the status as an integer, but we would
prefer to see the name associated with that integer. We can also click the Pencil icon
in each of the Entry rows. This will take you to the default edit form view that you
can use to modify that entry.

Building an Administrative Dashboard

[128]

It all looks something like the following screenshot:

As you can see in the preceding screenshot, Flask-Admin does an impressive job of
handling our foreign key-to-key and many-to-many fields (author and tags). It also
does a pretty good job choosing which HTML widget to use for a given field
as follows:

•	 Tags can be added and removed using a nice multi-select widget
•	 Author can be selected using a drop-down menu
•	 The entry body is conveniently presented as a text area

Chapter 6

[129]

Unfortunately, there are some obvious problems with this form, as follows:

•	 The ordering of the fields seems arbitrary.
•	 The Slug field appears as an editable text input since this is managed by the

database model. This field should, instead, be generated automatically from
the Entry's title.

•	 The Status field is a free-form text input field, but should be a drop-down
menu with human-readable status labels rather than numbers.

•	 The Created Timestamp and Modified Timestamp fields appear editable,
but should be generated automatically.

In the following section, we'll see how to customize the Admin class and the
ModelView class, so that the admin really works for our app.

Customizing the list views
Let's set aside the forms for a moment and focus on cleaning up the list. To do this,
we will create a subclass of the Flask-Admin, ModelView. The ModelView class
provides numerous extension points and attributes that control the look and feel of
the list display.

We'll start by cleaning up the list columns by manually specifying the attributes we
wish to display. Additionally, since we are going to be displaying the author in its
own column, we will ask Flask-Admin to efficiently fetch it from the database. Open
admin.py and update the following code:

from flask.ext.admin import Admin
from flask.ext.admin.contrib.sqla import ModelView

from app import app, db
from models import Entry, Tag, User

class EntryModelView(ModelView):
 column_list = [
 'title', 'status', 'author', 'tease', 'tag_list',
'created_timestamp',
]
 column_select_related_list = ['author'] # Efficiently SELECT
the author.

admin = Admin(app, 'Blog Admin')
admin.add_view(EntryModelView(Entry, db.session))
admin.add_view(ModelView(Tag, db.session))
admin.add_view(ModelView(User, db.session))

Building an Administrative Dashboard

[130]

You may notice that tease and tag_list are not actually the names of columns in
our Entry model. Flask-Admin gives you the ability to use any attribute as a column
value. We also specify the column to use for creating references to other models.
Open the models.py module and add the following properties to the Entry model:

@property
def tag_list(self):
 return ', '.join(tag.name for tag in self.tags)

@property
def tease(self):
 return self.body[:100]

Now, when you visit the Entry admin, you should be presented with a clean,
readable table as seen in the following image:

Let's also fix the display of the Status column. Those numbers are difficult to
remember – it would be preferable to display a human-readable value. Flask-Admin
comes with a helper for enumerated fields (such as Status). We simply need to
provide a mapping of the status value to display the value, and Flask-Admin does
the rest. Make the following additions to the EntryModelView:

Chapter 6

[131]

class EntryModelView(ModelView):
 _status_choices = [(choice, label) for choice, label in [
 (Entry.STATUS_PUBLIC, 'Public'),
 (Entry.STATUS_DRAFT, 'Draft'),
 (Entry.STATUS_DELETED, 'Deleted'),
]]

 column_choices = {
 'status': _status_choices,
 }
 column_list = [
 'title', 'status', 'author', 'tease', 'tag_list',
'created_timestamp',
]
 column_select_related_list = ['author']

Our Entry list view is looking much better. Let's make some improvements
to the User list view now. Again, we will subclass ModelView and specify the
attributes that we wish to override. Add the following class to admin.py below
EntryModelView:

class UserModelView(ModelView):
 column_list = ['email', 'name', 'active', 'created_timestamp']

Be sure to use the UserModelView class when registering the
User:
admin.add_view(UserModelView(User, db.session))

The following screenshot shows how the User list view looks with our changes:

Building an Administrative Dashboard

[132]

Adding search and filtering to the list view
In addition to displaying lists of our model instances, Flask-Admin comes with
powerful search and filtering capabilities. Let's suppose we have a large number
of entries and want to find those that contain a certain keyword, such as Python. It
would be beneficial if, from the list view, we could enter our search and have Flask-
Admin list only those entries that contain the word 'Python' in the title or the body.

As you might expect, this is very easy to accomplish. Open admin.py and add the
following line:

class EntryModelView(ModelView):
 _status_choices = [(choice, label) for choice, label in [
 (Entry.STATUS_PUBLIC, 'Public'),
 (Entry.STATUS_DRAFT, 'Draft'),
 (Entry.STATUS_DELETED, 'Deleted'),
]]

 column_choices = {
 'status': _status_choices,
 }
 column_list = [
 'title', 'status', 'author', 'tease', 'tag_list',
'created_timestamp',
]
 column_searchable_list = ['title', 'body']
 column_select_related_list = ['author']

When you re-load the Entry list view, you will see a new textbox that will allow you
to search the title and body fields as seen in the following screenshot:

Chapter 6

[133]

As useful as a full-text search can be, for non-textual fields such as Status or Created
Timestamp, it would be nice to have more powerful filtering capabilities. Again,
Flask-Admin comes to the rescue, providing easy-to-use, easy-to-configure filtering
options.

Let's see how filters work by adding several to the Entry list. Once again, we will be
modifying the EntryModelView as follows:

class EntryModelView(ModelView):
 _status_choices = [(choice, label) for choice, label in [
 (Entry.STATUS_PUBLIC, 'Public'),
 (Entry.STATUS_DRAFT, 'Draft'),
 (Entry.STATUS_DELETED, 'Deleted'),
]]

 column_choices = {
 'status': _status_choices,
 }
 column_filters = [
 'status', User.name, User.email, 'created_timestamp'
]
 column_list = [
 'title', 'status', 'author', 'tease', 'tag_list',
'created_timestamp',
]
 column_searchable_list = ['title', 'body']
 column_select_related_list = ['author']

The column_filters attribute contains a mixture of the names of columns on the
Entry model, as well as fields on related models such as from User:

column_filters = [
 'status', User.name, User.email, 'created_timestamp'
]

Building an Administrative Dashboard

[134]

When you access the Entry list view, you will now see a new drop-down menu
labeled Add Filter. Experiment with the various data types. Note that, when
you attempt to filter on the Status column, Flask-Admin automatically uses the
Public, Draft, and Deleted labels. Also note that, when you filter on the Created
Timestamp, Flask-Admin presents a nice date/time picker widget. In the following
screenshot, I've set up a variety of filters:

At this point, the Entry list view is very functional. As an exercise, set up the
column_filters and column_searchable_list attributes for the User ModelView.

Customizing Admin model forms
We will wrap up the discussion of model views by showing how to customize the
form class. As you will recall, there were several limitations with the default forms
provided by Flask-Admin. We will show in this section how to customize the display
of the form fields used for creating and editing model instances.

Chapter 6

[135]

Our goal will be to remove the superfluous fields, and to use a more appropriate
widget for the Status field, achieving what is seen in the following screenshot:

In order to achieve this, we will first manually specify the list of fields that we wish
to display on the form. This is done by specifying a form_columns attribute on the
EntryModelView class:

class EntryModelView(ModelView):
 ...
 form_columns = ['title', 'body', 'status', 'author', 'tags']

Additionally, we wish the status field to be a drop-down widget using human-
readable labels for the various states. Since we already have defined the status
choices, we will instruct Flask-Admin to override the status field with a WTForms
SelectField, and pass in the list of valid choices:

from wtforms.fields import SelectField # At top of module.

class EntryModelView(ModelView):
 ...
 form_args = {
 'status': {'choices': _status_choices, 'coerce': int},
 }
 form_columns = ['title', 'body', 'status', 'author', 'tags']
 form_overrides = {'status': SelectField}

Building an Administrative Dashboard

[136]

By default, the user field will be displayed as a drop-down with simple type ahead.
Imagine, though, if this list contained thousands of users! That would result in a very
large query and a slow rendering time, due to all the <option> elements that would
need to be created.

When a form containing a foreign key is rendered to a very large table, Flask-Admin
allows us to use Ajax to fetch the desired row. Add the following attribute to the
EntryModelView, and now your users will be loaded efficiently using Ajax:

form_ajax_refs = {
 'author': {
 'fields': (User.name, User.email),
 },
}

This directive tells Flask-Admin that, when we are looking up the Author, it should
allow us to search on the author's name or e-mail. The following screenshot shows
what it looks like:

We now have a very nice looking Entry form.

Enhancing the User form
Because passwords are stored as hashes in the database, there is little value in
displaying or editing them directly. On the User form, however, we will make it
possible to enter a new password, replacing the old one. Like we did with the status
field on the Entry form, we will specify a form-field override. Then, in the model
change handler, we will update the user's password on-save.

Chapter 6

[137]

Make the following additions to the UserModelView module:

from wtforms.fields import PasswordField # At top of module.

class UserModelView(ModelView):
 column_filters = ('email', 'name', 'active')
 column_list = ['email', 'name', 'active', 'created_timestamp']
 column_searchable_list = ['email', 'name']

 form_columns = ['email', 'password', 'name', 'active']
 form_extra_fields = {
 'password': PasswordField('New password'),
 }

 def on_model_change(self, form, model, is_created):
 if form.password.data:
 model.password_hash =
User.make_password(form.password.data)
 return super(UserModelView, self).on_model_change(
 form, model, is_created)

The following screenshot shows what the new User form looks like now. If you wish
to change a user's password, simply enter the new one in the New password field.

Building an Administrative Dashboard

[138]

Generating slugs
There is still one aspect that we need to address. When creating new Entry, User or
Tag objects, Flask-Admin will not correctly generate slug for them. This is due to the
way Flask-Admin instantiates new model instances when saving. To remedy this,
we will create some subclasses of ModelView that will ensure that slug is generated
correctly for Entry, User, and Tag objects

Open admin.py and, at the top of the module, add the following classes:

class BaseModelView(ModelView):
 pass

class SlugModelView(BaseModelView):
 def on_model_change(self, form, model, is_created):
 model.generate_slug()
 return super(SlugModelView, self).on_model_change(
 form, model, is_created)

These changes instruct Flask-Admin that, whenever a model is changed, slug should
be re-generated.

In order to start using this functionality, update the EntryModelView and
UserModelView modules to extend the SlugModelView class. For the Tag model, it
is sufficient to simply register it directly with the SlugModelView class.

To summarize, your code should look like the following:

from flask.ext.admin import Admin
from flask.ext.admin.contrib.sqla import ModelView
from wtforms.fields import SelectField

from app import app, db
from models import Entry, Tag, User, entry_tags

class BaseModelView(ModelView):
 pass

class SlugModelView(BaseModelView):
 def on_model_change(self, form, model, is_created):
 model.generate_slug()
 return super(SlugModelView, self).on_model_change(
 form, model, is_created)

class EntryModelView(SlugModelView):

Chapter 6

[139]

 _status_choices = [(choice, label) for choice, label in [
 (Entry.STATUS_PUBLIC, 'Public'),
 (Entry.STATUS_DRAFT, 'Draft'),
 (Entry.STATUS_DELETED, 'Deleted'),
]]

 column_choices = {
 'status': _status_choices,
 }
 column_filters = ['status', User.name, User.email,
'created_timestamp']
 column_list = [
 'title', 'status', 'author', 'tease', 'tag_list',
'created_timestamp',
]
 column_searchable_list = ['title', 'body']
 column_select_related_list = ['author']

 form_ajax_refs = {
 'author': {
 'fields': (User.name, User.email),
 },
 }
 form_args = {
 'status': {'choices': _status_choices, 'coerce': int},
 }
 form_columns = ['title', 'body', 'status', 'author', 'tags']
 form_overrides = {'status': SelectField}

class UserModelView(SlugModelView):
 column_filters = ('email', 'name', 'active')
 column_list = ['email', 'name', 'active', 'created_timestamp']
 column_searchable_list = ['email', 'name']

 form_columns = ['email', 'password', 'name', 'active']
 form_extra_fields = {
 'password': PasswordField('New password'),
 }

 def on_model_change(self, form, model, is_created):
 if form.password.data:
 model.password_hash =
User.make_password(form.password.data)

Building an Administrative Dashboard

[140]

 return super(UserModelView, self).on_model_change(
 form, model, is_created)

admin = Admin(app, 'Blog Admin')
admin.add_view(EntryModelView(Entry, db.session))
admin.add_view(SlugModelView(Tag, db.session))
admin.add_view(UserModelView(User, db.session))

These changes ensure that slugs are generated correctly, whether saving existing
objects or creating new ones.

Managing static assets via the Admin
Flask-Admin provides a convenient interface for managing static assets (or other files
on disk) as an extension to the admin dashboard. Let's add a FileAdmin to our site
that will allow us to upload or modify files in our application's static directory.

Open admin.py and import the following module at the top of the file:

from flask.ext.admin.contrib.fileadmin import FileAdmin

Then, below the various ModelView implementations, add the following highlighted
lines of code:

class BlogFileAdmin(FileAdmin):
 pass

admin = Admin(app, 'Blog Admin')
admin.add_view(EntryModelView(Entry, db.session))
admin.add_view(SlugModelView(Tag, db.session))
admin.add_view(UserModelView(User, db.session))
admin.add_view(
 BlogFileAdmin(app.config['STATIC_DIR'], '/static/', name='Static
Files'))

Chapter 6

[141]

Pulling up the admin in your browser, you should see a new tab labeled Static Files.
Clicking this link will take you to a familiar file-browser, as seen in the following
screenshot:

If you run into issues managing your files, make sure that you have the
correct permissions set up for the static directory and its children.

Securing the admin website
As you may have noticed while testing the new admin website, it does not do any
sort of authentication. In order to protect our admin site from anonymous users
(or even certain logged-in users), we will add a new column to the User model to
indicate that a user can access the admin website. Then we will use a hook provided
by Flask-Admin to ensure that the requesting user has permissions.

The first step is to add a new column to our User model. Add the admin column to
the User model as follows:

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)

Building an Administrative Dashboard

[142]

 email = db.Column(db.String(64), unique=True)
 password_hash = db.Column(db.String(255))
 name = db.Column(db.String(64))
 slug = db.Column(db.String(64), unique=True)
 active = db.Column(db.Boolean, default=True)
 admin = db.Column(db.Boolean, default=False)
 created_timestamp = db.Column(db.DateTime,
default=datetime.datetime.now)

Now we will generate a schema migration using the Flask-Migrate extension:

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column 'user.admin'

 Generating /home/charles/projects/blog/app/migrations/
versions/33011181124e_.py ... done

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 40ce2670e7e2 -> 33011181124e,
empty message

Let's also add a method to the User model that will tell us if the given user is an
admin. Add the following method to the User model:

class User(db.Model):
 # ...

 def is_admin(self):
 return self.admin

This may seem silly, but it's good code-hygiene should you ever wish to change the
semantics of how your app determines whether a user is an admin.

Before continuing on to the next section, you may want to modify the
UserModelView class to include the admin column in column_list, column_
filters, and form_columns.

Chapter 6

[143]

Creating an authentication and authorization
mixin
Since we have created several views in our admin view, we need a reusable way of
expressing our authentication logic. We will achieve this reuse through composition.
You've seen composition already in the form of view decorators (@login_required)
– decorators are just a way of composing multiple functions. Flask-Admin is a little
different in that it uses Python classes to represent an individual view. Instead
of function decorators, we will use a class-friendly method of composition called
mixins.

A mixin is a class that provides a method override. In the case of Flask-Admin, the
method we wish to override is the is_accessible method. Inside this method, we
will check whether the current user is authenticated.

In order to access the current user, we must import the special g object at the top of
the admin module:

from flask import g, url_for

Below the import statements, add the following class:

class AdminAuthentication(object):
 def is_accessible(self):
 return g.user.is_authenticated and g.user.is_admin()

Finally, we will be mixing it in with several other classes through Python's multiple
inheritances. Make the following changes to the BaseModelView class:

class BaseModelView(AdminAuthentication, ModelView):
 pass

And also to the BlogFileAdmin class:

class BlogFileAdmin(AdminAuthentication, FileAdmin):
 pass

Building an Administrative Dashboard

[144]

If you attempt to access an admin view URL such as /admin/entry/ without
meeting the is_accessible criteria, Flask-Admin will return an HTTP 403
Forbidden response as seen in the following screenshot:

As we have not made changes to the Tag admin model this is still
accessible. We will leave it up to you to work out how to protect it.

Setting up a custom index page
The landing page for our admin (/admin/) is very boring. In fact, it has no content at
all besides a navigation bar. Flask-Admin allows us to specify a custom index view,
which we will use to display a simple greeting.

In order to add a custom index view, we need to import several new helpers. Add
the following highlighted imports to the top of the admin module:

from flask.ext.admin import Admin, AdminIndexView, expose

from flask import redirect request provides the @expose decorator much like
Flask itself uses @route. Since this view is the index, the URL we will be exposing is
/. The following code will create a simple index view that renders a template. Note
that we specify the index view as a parameter when initializing the Admin object:

class IndexView(AdminIndexView):
 @expose('/')
 def index(self):
 return self.render('admin/index.html')

admin = Admin(app, 'Blog Admin', index_view=IndexView())

One final piece is missing: authentication. Since users will commonly access the
admin by going directly to /admin/, it would be handy to redirect unauthenticated
users to a login page. We can do that by checking, in the index view, whether the
current user is authenticated as follows:

Chapter 6

[145]

class IndexView(AdminIndexView):
 @expose('/')
 def index(self):
 if not (g.user.is_authenticated and g.user.is_admin()):
 return redirect(url_for('login', next=request.path))
 return self.render('admin/index.html')

Flask-Admin templates
Flask-Admin provides a simple master template that you can extend to create a
uniform look to your admin site. The Flask-Admin master template comprises the
following blocks:

Block Name Description
head_meta Page metadata in header
title Page title
head_css CSS links in header
head Arbitrary content in document header
page_body Page layout
brand Logo in the menu bar
main_menu Main menu
menu_links Navigation bar
access_control Section to the right of the menu that can be

used to add login/logout buttons
messages Alerts and various messages
body Main content area
tail Empty area below content

The body block will be of most interest to us for this example. In your application's
templates directory, create a new sub-directory named admin containing a blank
file named index.html.

Let's customize the admin landing page to display the current date and time on the
server. We will extend the master template provided by Flask-Admin, overriding
just the body block. Create the admin directory in templates and add the following
code to templates/admin/index.html:

{% extends "admin/master.html" %}

{% block body %}
 <h3>Hello, {{ g.user.name }}</h3>
{% endblock %}

Building an Administrative Dashboard

[146]

The following is a screenshot of our new landing page:

This is just an example to illustrate how simple it is to extend and customize your
admin dashboard. Experiment with the various template blocks, and see if you can
add a logout button to the navigation bar.

Reading more
Flask-Admin is a versatile, highly-configurable Flask extension. While we covered a
number of the more commonly-used features of Flask-Admin, there are simply too
many features to discuss in a single chapter. So, I strongly suggest that you visit the
project's documentation if you would like to continue learning. The documentation
can be found online at https://flask-admin.readthedocs.org/.

Summary
In this chapter, we learned how to create an administrative dashboard for our app
using the Flask-Admin extension. We learned how to expose our SQLAlchemy
models as lists of editable objects, as well as how to customize the look and feel of
the tables and the forms. We added a file-browser to assist in managing our app's
static assets. We also integrated the admin with our authentication system.

In the next chapter, we will learn about adding APIs to our application so that we
can access it programmatically.

https://flask-admin.readthedocs.org/

[147]

AJAX and RESTful APIs
In this chapter, we will use Flask-Restless to create a RESTful API for the blogging
app. A RESTful API is a way of accessing your blog programmatically, by providing
highly structured data that represents your blog. Flask-Restless works very well with
our SQLAlchemy models and also handles complex tasks such as serialization and
result filtering. We will use our REST API to build an AJAX-powered commenting
feature for our blog entries. By the end of this chapter, you will be able to create
easily-configurable APIs for your SQLAlchemy models, and you'll make and
respond to AJAX requests in your Flask app.

In this chapter we shall:

•	 Create a model to store comments on blog entries
•	 Install Flask-Restless
•	 Create a RESTful API for the comment model
•	 Build a frontend for communicating with our API using Ajax

Creating a comment model
Before we start creating our API, we need to create a database model for the resource
that we wish to share. The API we are building will be used to create and retrieve
comments using AJAX, so our model will contain all the fields that would be
relevant for storing an unauthenticated user's comment on one of our entries.

For our purposes, the following fields should be sufficient:

•	 name, the name of the person making the comment
•	 email, the e-mail address of the person commenting, which we will use

solely to display an image of them from Gravatar
•	 URL, the URL to the commenters blog

AJAX and RESTful APIs

[148]

•	 ip_address, the IP address of the commenter
•	 body, the actual comment
•	 status, one of either Public, Spam, or Deleted
•	 created_timestamp, the timestamp with which the comment was created
•	 entry_id, the ID of blog entry the comment relates to

Lets begin coding by creating the Comment model definition in our app's models.py
module:

class Comment(db.Model):
 STATUS_PENDING_MODERATION = 0
 STATUS_PUBLIC = 1
 STATUS_SPAM = 8
 STATUS_DELETED = 9

 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(64))
 email = db.Column(db.String(64))
 url = db.Column(db.String(100))
 ip_address = db.Column(db.String(64))
 body = db.Column(db.Text)
 status = db.Column(db.SmallInteger, default=STATUS_PUBLIC)
 created_timestamp = db.Column(db.DateTime, default=datetime.
datetime.now)
 entry_id = db.Column(db.Integer, db.ForeignKey('entry.id'))

 def __repr__(self):
 return '<Comment from %r>' % (self.name,)

After adding the Comment model definition, we need to set up the SQLAlchemy
relationship between the Comment and Entry models. As you will recall, we did this
once before when setting up the relationship between User and Entry via the entries
relationship. We will do this for Comment by adding a comments attribute to the
Entry model.

Below the tags relationship, add the following code to the Entry model definition:

class Entry(db.Model):
 # ...
 tags = db.relationship('Tag', secondary=entry_tags,
 backref=db.backref('entries', lazy='dynamic'))
 comments = db.relationship('Comment', backref='entry',
lazy='dynamic')

Chapter 7

[149]

We've specified the relationship as lazy='dynamic', which, as you will recall from
Chapter 5, Authenticating Users, means that the comments attribute on any given
Entry instance will be a filterable query.

Creating a schema migration
In order to start using our new model, we need to update our database schema.
Using the manage.py helper, create a schema migration for the Comment model:

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added table 'comment'

 Generating /home/charles/projects/blog/app/migrations/
versions/490b6bc5f73c_.py
... done

Then apply the migration by running upgrade:

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 594ebac9ef0c ->
490b6bc5f73c, empty message

The Comment model is now ready to use! At this point, if we were implementing
comments using regular Flask views, we might create a comments blueprint and start
writing a view to handle the comment creation. However, we will be exposing the
comments using a REST API and create them using AJAX directly from the front-end.

Installing Flask-Restless
With our model in place, we are now ready to install Flask-Restless, a third-party
Flask extension that makes it simple to build RESTful APIs for your SQLAlchemy
models. After ensuring that you have activated the blog app's virtual environment,
install Flask-Restless using pip:

(blog) $ pip install Flask-Restless

AJAX and RESTful APIs

[150]

You can verify if the extension is installed by opening up the interactive interpreter
and getting the version that is installed. Don't forget, your exact version number may
differ.

(blog) $./manage.py shell

In [1]: import flask_restless

In [2]: flask_restless.__version__

Out[2]: '0.13.0'

Now that we have Flask-Restless installed, let's configure it to work with our
application.

Setting up Flask-Restless
Like other Flask extensions, we will begin in the app.py module by configuring
an object that will manage our new API. In Flask-Restless, this object is called an
APIManager and it will allow us to create RESTful endpoints for our SQLAlchemy
models. Add the following lines to app.py:

Place this import at the top of the module alongside the other
extensions.
from flask.ext.restless import APIManager

Place this line below the initialization of the app and db
objects.
api = APIManager(app, flask_sqlalchemy_db=db)

Because the API will depend on both our Flask API object and our Comment model,
we need to make sure that we don't create any circular module dependencies. We
can avoid introducing circular imports by creating a new module, api.py, at the
root of the app directory.

Let's start with the bare minimum to see what Flask-Restless provides out-of-the-box.
Add the following code to api.py:

from app import api
from models import Comment

api.create_api(Comment, methods=['GET', 'POST'])

Chapter 7

[151]

The code in api.py calls the create_api() method on our APIManager object.
This method will populate our app with additional URL routes and view code that,
together, constitute a RESTful API. The methods parameter indicates that we will
allow only GET and POST requests (meaning comments can be read or created, but
not edited or deleted).

The final action is to import the new API module in main.py, the entry-point into
our application. We are importing the module purely for its side-effects, registering
the URL routes. Add the following code to main.py:

from app import app, db
import admin
import api
import models
import views

...

Making API requests
In one terminal, start up the development server. In another terminal, let's see what
happens when we make a GET request to our API endpoint (note there is no trailing
forward slash):

$ curl 127.0.0.1:5000/api/comment

{

 "num_results": 0,

 "objects": [],

 "page": 1,

 "total_pages": 0

}

There are no comments in the database, so no objects have been serialized and
returned to us. However, there is some interesting metadata that tells us how many
objects are there in the database, what page we are on, and how many total pages of
comments exist.

AJAX and RESTful APIs

[152]

Let's create a new comment by POSTing some JSON data to our API (I will assume
that the first entry in your database has an id of 1). We will use curl to submit a
POST request containing a JSON-encoded representation of a new comment:

$ curl -X POST -H "Content-Type: application/json" -d '{

 "name": "Charlie",

 "email": "charlie@email.com",

 "url": "http://charlesleifer.com",

 "ip_address": "127.0.0.1",

 "body": "Test comment!",

 "entry_id": 1}' http://127.0.0.1:5000/api/comment

Assuming that no typos were made, the API will respond with the following data,
confirming the creation of the new Comment:

{
 "body": "Test comment!",
 "created_timestamp": "2014-04-22T19:48:33.724118",
 "email": "charlie@email.com",
 "entry": {
 "author_id": 1,
 "body": "This is an entry about Python, my favorite programming
language.",
 "created_timestamp": "2014-03-06T19:50:09",
 "id": 1,
 "modified_timestamp": "2014-03-06T19:50:09",
 "slug": "python-entry",
 "status": 0,
 "title": "Python Entry"
 },
 "entry_id": 1,
 "id": 1,
 "ip_address": "127.0.0.1",
 "name": "Charlie",
 "status": 0,
 "url": "http://charlesleifer.com"
}

As you can see, all the data we POSTed is included in the response, in addition to the
rest of the field data, such as the new comment's id and timestamps. Surprisingly,
even the corresponding Entry object has been serialized and included in the
response.

Chapter 7

[153]

Now that we have a comment in the database, let's try making another GET request
to our API as follows:

$ curl 127.0.0.1:5000/api/comment

{

 "num_results": 1,

 "objects": [

 {

 "body": "Test comment!",

 "created_timestamp": "2014-04-22T19:48:33.724118",

 "email": "charlie@email.com",

 "entry": {

 "author_id": 1,

 "body": "This is an entry about Python, my favorite programming
language.",

 "created_timestamp": "2014-03-06T19:50:09",

 "id": 1,

 "modified_timestamp": "2014-03-06T19:50:09",

 "slug": "python-entry",

 "status": 0,

 "title": "Python Entry"

 },

 "entry_id": 1,

 "id": 1,

 "ip_address": "127.0.0.1",

 "name": "Charlie",

 "status": 0,

 "url": "http://charlesleifer.com"

 }

],

 "page": 1,

 "total_pages": 1

}

The first object contains exactly the same data that was returned to us when we made
the POST request. In addition, the surrounding metadata has changed to reflect the
fact that there is now one comment in the database.

AJAX and RESTful APIs

[154]

Creating comments using AJAX
In order to allow users to post comments, we first need a way to capture their input,
which we will do by creating a Form class with wtforms. This form should allow
users to enter their name, email address, an optional URL, and their comment.

In the forms module in the entries blueprint, add the following form definition:

class CommentForm(wtforms.Form):
 name = wtforms.StringField('Name', validators=[validators.
DataRequired()])
 email = wtforms.StringField('Email', validators=[
 validators.DataRequired(),
 validators.Email()])
 url = wtforms.StringField('URL', validators=[
 validators.Optional(),
 validators.URL()])
 body = wtforms.TextAreaField('Comment', validators=[
 validators.DataRequired(),
 validators.Length(min=10, max=3000)])
 entry_id = wtforms.HiddenField(validators=[
 validators.DataRequired()])

 def validate(self):
 if not super(CommentForm, self).validate():
 return False

 # Ensure that entry_id maps to a public Entry.
 entry = Entry.query.filter(
 (Entry.status == Entry.STATUS_PUBLIC) &
 (Entry.id == self.entry_id.data)).first()
 if not entry:
 return False

 return True

You may be wondering why we are specifying validators, since the API will be
handling the POSTed data. We do this because Flask-Restless does not provide
validation, but it does provide a hook where we can perform validation. In this way,
we can leverage WTForms validation inside our REST API.

Chapter 7

[155]

In order to use the form in the entry detail page, we need to pass the form into the
context when rendering the detail template. Open the entries blueprint and import
the new CommentForm:

from entries.forms import EntryForm, ImageForm, CommentForm

Then modify the detail view to pass a form instance into the context. We will pre-
populate the entry_id hidden field with the value of the requested entry:

@entries.route('/<slug>/')
def detail(slug):
 entry = get_entry_or_404(slug)
 form = CommentForm(data={'entry_id': entry.id})
 return render_template('entries/detail.html', entry=entry,
form=form)

With the form now in the detail template context, all that is left is to render the form.
Create an empty template in entries/templates/entries/includes/ named
comment_form.html and add the following code:

{% from "macros/form_field.html" import form_field %}
<form action="/api/comment" class="form form-horizontal" id="comment-
form" method="post">
 {{ form_field(form.name) }}
 {{ form_field(form.email) }}
 {{ form_field(form.url) }}
 {{ form_field(form.body) }}
 {{ form.entry_id() }}
 <div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-default">Submit</button>
 </div>
 </div>
</form>

The interesting thing to note is that we are not using the form_field macro for the
entry_id field. This is because we do not want the comment form to display a label
for a field that will not be visible to the user. Instead, we will initialize the form with
this value.

AJAX and RESTful APIs

[156]

Lastly, we need to include the comment form in the detail.html template. Below
the entry body, add the following markup:

{% block content %}
 {{ entry.body }}

 <h4 id="comment-form">Submit a comment</h4>
 {% include "entries/includes/comment_form.html" %}
{% endblock %}

Using the development server, try navigating to the detail page for any entry. You
should see a comment form:

AJAX form submissions
To simplify making AJAX requests, we are going to use the jQuery library. Feel
free to substitute another JavaScript library if you prefer but, since jQuery is so
ubiquitous (and plays nicely with Bootstrap), we will be using it for this section. If
you have been following along with the code up to this point, jQuery should already
be included on all pages. Now we need to create a JavaScript file to handle the
comment submission.

Chapter 7

[157]

Create a new file in statics/js/ named comments.js and add the following
JavaScript code:

Comments = window.Comments || {};

(function(exports, $) {
 /* Template string for rendering success or error messages. */
 var alertMarkup = (
 '<div class="alert alert-{class} alert-dismissable">' +
 '<button type="button" class="close" data-dismiss="alert"
aria-hidden="true">×</button>' +
 '{title} {body}</div>');

 /* Create an alert element. */
 function makeAlert(alertClass, title, body) {
 var alertCopy = (alertMarkup
 .replace('{class}', alertClass)
 .replace('{title}', title)
 .replace('{body}', body));
 return $(alertCopy);
 }

 /* Retrieve the values from the form fields and return as an
object. */
 function getFormData(form) {
 return {
 'name': form.find('input#name').val(),
 'email': form.find('input#email').val(),
 'url': form.find('input#url').val(),
 'body': form.find('textarea#body').val(),
 'entry_id': form.find('input[name=entry_id]').val()
 }
 }

 function bindHandler() {
 /* When the comment form is submitted, serialize the form data
as JSON
 and POST it to the API. */
 $('form#comment-form').on('submit', function() {
 var form = $(this);
 var formData = getFormData(form);
 var request = $.ajax({
 url: form.attr('action'),

AJAX and RESTful APIs

[158]

 type: 'POST',
 data: JSON.stringify(formData),
 contentType: 'application/json; charset=utf-8',
 dataType: 'json'
 });
 request.success(function(data) {
 alertDiv = makeAlert('success', 'Success', 'your comment
was posted.');
 form.before(alertDiv);
 form[0].reset();
 });
 request.fail(function() {
 alertDiv = makeAlert('danger', 'Error', 'your comment was
not posted.');
 form.before(alertDiv);
 });
 return false;
 });
 }

 exports.bindHandler = bindHandler;
})(Comments, jQuery);

The comments.js code handles POSTing the form data, serialized as JSON, to the
REST API. It also handles taking the API response and displaying either a success or
an error message.

In the detail.html template, we simply need to include our script and bind the
submit handler. Add the following block override to the detail template:

{% block extra_scripts %}
 <script type="text/javascript" src="{{ url_for('static',
filename='js/comments.js') }}"></script>
 <script type="text/javascript">
 $(function() {
 Comments.bindHandler();
 });
 </script>
{% endblock %}

Go ahead and try submitting a comment or two.

Chapter 7

[159]

Validating data in the API
Unfortunately for us, our API is not performing any type of validation on the
incoming data. In order to validate the POST data, we need to use a hook provided
by Flask-Restless. Flask-Restless calls these hooks request preprocessors and
postprocessors.

Let's take a look at how to use the POST preprocessor to perform some validation on
our comment data. Start by opening api.py and making the following changes:

from flask.ext.restless import ProcessingException

from app import api
from entries.forms import CommentForm
from models import Comment

def post_preprocessor(data, **kwargs):
 form = CommentForm(data=data)
 if form.validate():
 return form.data
 else:
 raise ProcessingException(
 description='Invalid form submission.',
 code=400)

api.create_api(
 Comment,
 methods=['GET', 'POST'],
 preprocessors={
 'POST': [post_preprocessor],
 })

Our API will now validate the submitted comment using the validation logic from
our CommentForm. We do this by specifying a preprocessor for the POST method.
The POST preprocessor, which we've implemented as post_preprocessor, accepts
the deserialized POST data as an argument. We can then feed that data into our
CommentForm and call it's validate() method. In the event where validation fails,
we will raise a ProcessingException, signaling to Flask-Restless that this data was
unprocessable and returning a 400 Bad Request response.

AJAX and RESTful APIs

[160]

In the following screenshot, I have not supplied the Comment field, which is
required. I receive an error message when I try to submit the comment:

Preprocessors and postprocessors
We just looked at an example of using the POST method preprocessor with Flask-
Restless. In the following table, you can see the other hooks that are available:

Method name Description Preprocessor
arguments

Postprocessor
arguments

GET_SINGLE Retrieve a single
object by primary
key

instance_id, the
primary key of the
object

result, the
dictionary
representation of the
object

GET_MANY Retrieve multiple
objects

search_params, a
dictionary of search
parameters used to
filter the result set

result, the
representation of the
object's
search_params

PUT_SINGLE Update a single
object by primary
key

instance_id

data, a dictionary of
data used to update
the object

result, the
dictionary
representation of the
updated object

Chapter 7

[161]

Method name Description Preprocessor
arguments

Postprocessor
arguments

PUT_MANY Update multiple
objects

search_params, a
dictionary of search
parameters used to
determine which
objects to update.
data, a dictionary of
data used to update
the object.

query, a
SQLAlchemy
query representing
the objects to be
updated.
data

search_params

POST Create a new
instance

data, the dictionary
of data to populate
the new object

result, a
dictionary
representation of the
new object

DELETE Delete an instance
by primary key

instance_id, the
primary key of the
object to be deleted

was_deleted,
a boolean value
indicating whether
the object was
deleted

Loading comments using AJAX
Now that we are able to create validated comments using AJAX, let's use the API to
retrieve the list of comments and display them beneath the blog entry. To do this, we
will read the values from the API and dynamically create DOM elements to display
the comments. As you might recall from the earlier API responses we examined,
there is quite a bit of private information being returned, including the entire
serialized representation of each comment's associated Entry. For our purposes, this
information is redundant and will furthermore waste bandwidth.

Let's begin by doing a bit of additional configuration to our comments endpoint to
restrict the Comment fields we return. In api.py, make the following addition to the
call to api.create_api():

api.create_api(
 Comment,
 include_columns=['id', 'name', 'url', 'body',
'created_timestamp'],
 methods=['GET', 'POST'],
 preprocessors={
 'POST': [post_preprocessor],
 })

AJAX and RESTful APIs

[162]

Requesting the list of comments now gives us a more manageable response that
doesn't leak implementation details or private data:

$ curl http://127.0.0.1:5000/api/comment

{

 "num_results": 1,

 "objects": [

 {

 "body": "Test comment!",

 "created_timestamp": "2014-04-22T19:48:33.724118",

 "name": "Charlie",

 "url": "http://charlesleifer.com"

 }

],

 "page": 1,

 "total_pages": 1

}

A nice feature would be to display an avatar next to a user's comment. Gravatar,
a free avatar service, allows users to associate their e-mail address with an image.
We will use the commenter's e-mail address to display their associated avatar
(if one exists). If the user has not created an avatar, an abstract pattern will be
shown instead.

Let's add a method on the Comment model to generate the URL for a user's Gravatar
image. Open models.py and add the following method to Comment:

def gravatar(self, size=75):
 return 'http://www.gravatar.com/avatar.php?%s' % urllib.
urlencode({
 'gravatar_id': hashlib.md5(self.email).hexdigest(),
 'size': str(size)})

You will also need to be sure to import hashlib and urllib at the top of the models
module.

Chapter 7

[163]

If we attempt to include Gravatar in the list of columns, Flask-Restless will raise an
exception because gravatar is actually a method. Luckily, Flask-Restless provides a
way to include the results of method calls when serializing objects. In api.py, make
the following addition to the create_api() call:

api.create_api(
 Comment,
 include_columns=['id', 'name', 'url', 'body', 'created_
timestamp'],
 include_methods=['gravatar'],
 methods=['GET', 'POST'],#, 'DELETE'],
 preprocessors={
 'POST': [post_preprocessor],
 })

Go ahead and try fetching the list of comments. You should now see the Gravatar
URL included in the serialized response.

Retrieving the list of comments
We now need to return to our JavaScript file and add code to retrieve the list of
comments. We will do this by passing in a search filter to the API, which will retrieve
only the comments that are associated with the requested blog entry. Search queries
are expressed as a list of filters, each filter specifying the following:

•	 Name of the column
•	 Operation (for example, equals)
•	 Value to search for

Open comments.js and add the following code after the line that begins:

(function(exports, $) {:
function displayNoComments() {
 noComments = $('<h3>', {
 'text': 'No comments have been posted yet.'});
 $('h4#comment-form').before(noComments);
}

/* Template string for rendering a comment. */
var commentTemplate = (
 '<div class="media">' +
 '' +

AJAX and RESTful APIs

[164]

 '' +
 '' +
 '<div class="media-body">' +
 '<h4 class="media-heading">{created_timestamp}</h4>{body}' +
 '</div></div>'
);

function renderComment(comment) {
 var createdDate = new Date(comment.created_timestamp).
toDateString();
 return (commentTemplate
 .replace('{url}', comment.url)
 .replace('{gravatar}', comment.gravatar)
 .replace('{created_timestamp}', createdDate)
 .replace('{body}', comment.body));
}

function displayComments(comments) {
 $.each(comments, function(idx, comment) {
 var commentMarkup = renderComment(comment);
 $('h4#comment-form').before($(commentMarkup));
 });
}

function load(entryId) {
 var filters = [{
 'name': 'entry_id',
 'op': 'eq',
 'val': entryId}];
 var serializedQuery = JSON.stringify({'filters': filters});

 $.get('/api/comment', {'q': serializedQuery}, function(data) {
 if (data['num_results'] === 0) {
 displayNoComments();
 } else {
 displayComments(data['objects']);
 }
 });
}

Chapter 7

[165]

Then, near the bottom of the file, export the load function alongside the bindHandler
export as follows:

exports.load = load;
exports.bindHandler = bindHandler;

The new JavaScript code that we added makes an AJAX request to the API for
comments associated with a given Entry. If no comments exist, a message is
displayed indicating no comments have been made yet. Otherwise, the entries are
rendered as a list below the Entry body.

The final task left is to call Comments.load() in the details template when the page is
rendered. Open detail.html and add the following highlighted code:

<script type="text/javascript">
 $(function() {
 Comments.load({{ entry.id }});
 Comments.bindHandler();
 });
</script>

After making a couple comments, the comment list looks as seen in the
following image:

AJAX and RESTful APIs

[166]

As an exercise, see if you can write code to render any new comment that is POSTed
by the user. You will recall that, when a comment is successfully created, the new
data will be returned as a JSON object.

Reading more
Flask-Restless supports a number of configuration options that, in the interests of
space, could not be covered in this chapter. The search filters are a very powerful
tool, and we only scratched the surface of what is possible. Additionally, the pre and
postprocessing hooks can be used to implement a number of interesting features
such as the following:

•	 Authentication, which can be implemented in the preprocessor
•	 Default filters for GET_MANY, which could be used to restrict the list of

comments to those that are public, for instance
•	 Adding custom or calculated values to the serialized response
•	 Modifying incoming POST values to set default values on the model instance

If REST API is a key component in your application, I strongly suggest spending
time reading the Flask-Restless documentation. The documentation can be found
online at https://flask-restless.readthedocs.org/en/latest/.

Summary
In this chapter, we added a simple REST API to our app using the Flask-Restless
extension. We then used JavaScript and Ajax to integrate our frontend with the API,
allowing users to view and post new comments, all without writing a single line of
view code.

In our next chapter, we will work on creating apps that are testable and find ways
to improve our code for this purpose. This will also allow us to verify that the
code we have written is doing what we would like it to do; nothing more, nothing
less. Automating this will give you confidence and ensure that the RESTful API is
working as expected.

https://flask-restless.readthedocs.org/en/latest/

Testing Flask Apps
In this chapter, we shall learn how to write unit tests covering all parts of the
blogging app. We will utilize Flask's test client to simulate live requests, and we will
see how the Mock library can simplify the testing of complex interactions, such as
calling third-party services such as databases.

In this chapter we shall learn the following topics:

•	 Python's unit test module and general guidelines for test writing
•	 Test-friendly configuration
•	 How to simulate requests and sessions using the Flask test client
•	 How to use the Mock library to test complex interactions
•	 Logging exceptions and error e-mails

Unit testing
Unit Testing is a process that allows us to have confidence in the code, confidence in
bug fixes, and confidence in future features. The idea of unit testing is simple; you
write code that complements your functional code.

As an example, let's say we design a program that needs to calculate some math
correctly; how do you know it's successful? Why not pull out a calculator, and you
know what a computer is? A big calculator. Also, computers are really quite good
at mundane repetitive tasks, so why not write a unit test that works out the answer
for you? Repeat this pattern for all areas of your code, bundle those tests up into one
wrapper, and you have complete confidence in the code that you have produced.

Testing Flask Apps

[168]

There are some who say that tests are a sign of code "smell", that your
code is so complex that it needs tests to prove that it works. This means
that the code should be simpler. However, it really depends on your
situation and it is up to you to make that judgment call. Unit tests are a
good place to start before we start getting into making the code simpler.

What is clever about unit testing is that the tests complement the functional code.
The methods prove that the tests work and the tests prove that the methods work.
It reduces the likelihood of the code having major functional bugs, reducing the
headache of having to rework the code in future, and allows you to concentrate on
the minutiae of the new features that you want to work on.

The idea behind unit tests is to verify that small sections of code—or
rather, simple bits of functionality—are tested. This will then build to
the greater whole of your application. It is very easy to end up writing
enormous tests that test the functionality of your code and not the code
itself. If your test is looking pretty big, it's usually an indication that your
main code should be broken down into smaller methods.

Python's unit test module
Fortunately, as is almost always the case with Python, there is a built-in unit test
module. Much like Flask, it's very easy to get a simple unit test module in place. In
your main blog app, create a new directory called tests and, within that directory,
create a new file called test.py. Now, using your favorite text editor, enter in the
following code:

import unittest

class ExampleTest(unittest.TestCase):
 def setUp(self):
 pass

 def tearDown(self):
 pass

 def test_some_functionality(self):
 pass

 def test_some_other_functionality(self):

Chapter 8

[169]

 pass

if __name__ == "__main__":
 unittest.main()

The preceding snippet demonstrates the basic framework for all the unit test
modules that we will write. Simply making use of the built-in Python module
unittest, it then creates a class that wraps a particular set of tests. The tests in
this example, are the methods that start with the word test. The unit test module
recognizes these as the methods that should be run each time unittest.main is
called. Also, the TestCase class, which the ExampleTest class is inheriting from
here, has some special methods that unit test will always attempt to use. One of
them is setUp, a method that is run before each of the test methods that are run. This
can be particularly useful when you want to run each test in isolation, but want, for
example, to have a connection to a database in place.

The other special method is tearDown. This is run whenever a test method is run.
Again, this is extremely useful for running each test in isolation when we want to
maintain a database.

Obviously, this code example will not do anything if run. To get it to a usable state,
and by following the principles of test-driven development (TDD), we first need to
write a test that verifies that the code we are going to write works correctly and then
write the code that fulfills that test.

A simple math test
For this example, we are going to write a test that verifies that a method will accept
two numbers as arguments, subtract one from the second argument, then multiply
them together. Take a look at the following example:

Argument 1 Argument 2 Answer

1 1 1 * (1-1) = 0

1 2 1 * (2-1) = 1

2 3 2 * (3-1) = 4

Testing Flask Apps

[170]

In your test.py file, you can create a method within the ExampleTest class that
represents the preceding table as follows:

 def test_minus_one_multiplication(self):
 self.assertEqual(my_multiplication(1,1), 0)
 self.assertEqual(my_multiplication(1,2), 1)
 self.assertEqual(my_multiplication(2,3), 4)
 self.assertNotEqual(my_multiplication(2,2), 3)

The preceding code creates a new method that asserts, with Python's unittest
module, the answers to the questions. The assertEqual function takes the returned
response from the my_multiplication method on the first argument and compares
that to the second argument. If it passes, it does nothing, waiting for the next
assertion to be tested. But if it does not match, it will throw an error and your test
method will stop executing to tell you there was an error.

In the preceding code example, there is also an assertNotEqual method. This works
much the same as assertEqual but, rather, checks whether the values do not match
each other. It is also a good idea to check when your method is likely to fail. If you've
only checked the situations in which your method will work, you have only done
half the work, and will likely run into problems with edge cases. A wide variety of
assertion methods come with Python's unittest module, and that would be useful
to explore.

Now we can write the method that will give these results. For simplicity, we will
write the method in the same file. Within the file, create the following method:

def my_multiplication(value1, value2):
 return value1 * value2 – 1

Save the file and run it using the following command:

python test.py

Chapter 8

[171]

Oops! It failed. Why? Well, reviewing the my_multiplication method reveals that
we missed some brackets. Let's go back and correct that:

def my_multiplication(value1, value2):
 return value1 * (value2 – 1)

And now lets run it again:

Success! We now have a method that is correct; in future, we will know if it has been
changed, and how it will need to be changed at a later point. Now to use this new
skill with Flask.

Flask and unit testing
 You may be thinking: "Unit tests look great for small sections of code, but how do
you test it for an entire Flask app?" Well one of the ways, as mentioned previously, is
to make sure that all your methods are as discrete as possible—that is, to make sure
your methods do the least possible work to complete their function, and to avoid
repetition between methods. If your methods are not discrete, now is a good time to
get them tidied up.

Testing Flask Apps

[172]

Another thing that will help is that Flask comes readymade for unit testing. There is
a good chance that any existing application can have at least some unit tests applied
to it. Especially, any areas of API such as in unable to verify will be extremely easy to
test by making use of the methods that represent the HTTP requests already within
Flask. Following is a simple example:

import unittest
from flask import request
from main import app

class AppTest(unittest.TestCase):
 def setUp(self):
 self.app = app.test_client()

 def test_homepage_works(self):
 response = self.app.get("/")
 self.assertEqual(response.status_code, 200)

if __name__ == "__main__":
 unittest.main()

This code should hopefully look very familiar. It simply re-writes the previous
example to verify that the homepage is working. The test_client method that
Flask exposes, allows simple access to the app via methods that represent the HTTP
calls, as per the first line of the test method. The test method itself does not check
the content of the page, but simply that the page loaded successfully. This may
sound trivial, but it is useful to know that the homepage works. And the result? You
can see it here:

One thing to be aware of is that we won't need to test Flask itself and
must avoid testing it so that we don't create too much work for ourselves.

Chapter 8

[173]

Testing a page
One thing to notice about running the previous tests are that they are very simplistic.
No actual browser behaves that way. Browsers do things such as storing cookies
for logging in: requesting static files such as JavaScript, images, and CSS files: and
requesting data in particular formats. Somehow, we are going to need to simulate
this functionality and test whether the results were correct.

This is the part where unit testing starts becoming functional testing.
While there is nothing intrinsically wrong with that, it is worth keeping
in mind that smaller tests are better.

Fortunately, Flask does all this for you simply by using the app.get methods from
earlier, but there are some tricks you can use to make things easier. For example,
adding functions to the TestCase class for logging in and out will make things
much simpler:

 LOGIN_URL = "/login/"
 LOGOUT_URL = "/logout/"

 def login (self, email, password):
 return self.app.post(self.LOGIN_URL, data={
 "email": email,
 "password": password
 }, follow_redirects=True)

The preceding code is a framework for future test cases. Any time we have a test
case that requires logging in and out, add this Mixin to the inheritance list and it
automatically becomes available:

class ExampleFlaskTest(unittest.TestCase, FlaskLoginMixin):
 def setUp(self):
 self.app = app.test_client()

 def test_login(self):
 response = self.login("admin", "password")
 self.assertEqual(response.status_code, 200)
 self.assertTrue("Success" in response.data)

 def test_failed_login(self):
 response = self.login("admin", "PASSWORD")

Testing Flask Apps

[174]

 self.assertEqual(response.status_code, 200)
 self.assertTrue("Invalid" in response.data)

 def test_logout(self):
 response = self.logout()
 self.assertEqual(response.status_code, 200)
 self.assertTrue("logged out" in response.data)

The test case that we've just explained uses FlaskLoginMixin, a set of methods that
aid in checking whether logging in and out is working correctly. This is achieved
by checking that the response page sends the correct message and has the correct
warning in the content of the page. Our test can further be extended to check
whether a user has access to a page which they shouldn't. Flask takes care of the
sessions and cookies for you, so it's as simple as the following code snippet:

class ExampleFlaskTest(unittest.TestCase, FlaskLoginMixin):
 def setUp(self):
 self.app = app.test_client()

 def test_admin_can_get_to_admin_page(self):
 self.login("admin", "password")
 response = self.app.get("/admin/")
 self.assertEqual(response.status_code, 200)
 self.assertTrue("Hello" in response.data)

 def test_non_logged_in_user_can_get_to_admin_page(self):
 response = self.app.get("/admin/")
 self.assertEqual(response.status_code, 302)
 self.assertTrue("redirected" in response.data)

 def test_normal_user_cannot_get_to_admin_page(self):
 self.login("user", "password")
 response = self.app.get("/admin/")
 self.assertEqual(response.status_code, 302)
 self.assertTrue("redirected" in response.data)

 def test_logging_out_prevents_access_to_admin_page(self):
 self.login("admin", "password")
 self.logout()
 response = self.app.get("/admin/")
 self.assertEqual(response.status_code, 302)
 self.assertTrue("redirected" in response.data)

Chapter 8

[175]

What the preceding code snippet shows is how to test whether certain pages are
correctly protected. A very useful test. It also verifies that, when an admin logs out,
they can no longer access the pages they had access to while being logged in. The
method names are self, explanatory such that if those tests fail, it is obvious to tell
what was being tested.

Testing an API
Testing APIs is even easier as it is a programmatic interference. Using the previous
comment API set up in Chapter 7, AJAX and RESTful APIs, we can quite easily insert
and retrieve some comments and verify that it worked correctly. To test this we will
need to import the json library to work with our JSON based API:

class ExampleFlaskAPITest(unittest.TestCase, FlaskLoginMixin):
 def setUp(self):
 self.app = app.test_client()
 self.comment_data = {
 "name": "admin",
 "email": "admin@example.com",
 "url": "http://localhost",
 "ip_address": "127.0.0.1",
 "body": "test comment!",
 "entry_id": 1
 }

 def test_adding_comment(self):
 self.login("admin", "password")
 data=json.dumps(self.comment_data), content_type="application/
json")
 self.assertEqual(response.status_code, 200)
 self.assertTrue("body" in response.data)
 self.assertEqual(json.loads(response.data)['body'], self.comment_
data["body"])

 def test_getting_comment(self):
 result = self.app.post("/api/comment",
 data=json.dumps(self.comment_data), content_
type="application/json")
 response = self.app.get("/api/comment")
 self.assertEqual(response.status_code, 200)
 self.assertTrue(json.loads(result.data) in json.
loads(response.data)['objects'])

Testing Flask Apps

[176]

The preceding code example shows a comment dictionary object being created. This
is used to verify that the values that went in were the same as the ones that came out.
The methods therefore test posting the comment data to the /api/comment endpoint,
verifying the data that sent back by the server has the right data in it. The test_
getting_comment method checks again that a comment is posted to the server but is
more concerned if the result that was requested by verifying the data that was sent in
was the same as what came out.

Test-friendly configuration
One of the first obstacles faced by writing tests in a team or with a production
environment is, How do we make sure that the tests are run without interfering with
the production or even the development database. You certainly don't want to be
attempting to fix bugs, or trialing new features and then finding that the data it relies
upon has changed. Sometimes, a quick test just needs to be run on a local copy of the
database without interference from anyone else, with the Flask app knowing how to
use that.

One of the features built into Flask is the ability to load a configuration file
depending on the environment variables.

app.config.from_envvar('FLASK_APP_BLOG_CONFIG_FILE')

The preceding method call informs your Flask app that the configuration should
be loaded in the file specified in the environment variable FLASK_APP_BLOG_
CONFIG_FILE. This has to be an absolute path to the file that you would like to load.
Therefore, when you run your tests, a file specific to running your tests should be
referred to here.

As we already have a configuration file set up for our environment and we are
looking to create a testing configuration file, a useful trick is to make use of the
existing configuration and override just the important bits. The first thing to do
is to create yourself a config directory with an __init__.py file. Our testing.py
configuration file can then be added to that directory and can override some aspects
of your config.py configuration file. For example, your new testing configuration file
might look as follows:

TESTING=True
DATABASE="sqlite://

Chapter 8

[177]

The preceding code adds the TESTING attribute that can be used to determine if
your app is currently being tested, and changes the DATABASE value to a database
that is more suitable for testing, an in-memory SQLite database that doesn't have to
be cleared down once your test finishes

These values can then be used like any other configuration in Flask and, when
running the tests, the environment variable can be specified to point to that file. If
we want to automate the updating of the environment variable for our tests, we can
update Python's built-in OS environment variable object in our test.py file in the
test folder:

import os
os.environ['FLASK_APP_BLOG_CONFIG_FILE'] = os.path.join(os.getcwd(),
"config", "testing.py")

Mocking objects
Mocking is an exceptionally useful part of any tester's tool kit. Mocking allows
for custom objects to be over written with an object that can be used to verify if a
method is doing the correct thing to its arguments. Sometimes, this may need a
bit of re-imagining and a refactoring of your app so as to work in a testable way,
but otherwise the concept is simple. We create a mocking object, run it through
the method, and then run the tests on that object. It lends itself particularly well to
databases and ORM models such as from SQLAlchemy.

There are lots of Mocking frameworks available but, for this book, we shall be using
Mockito:

pip install mockito

It is one of the simplest to use:

>>> from mockito import *

>>> mock_object = mock()

>>> mock_object.example()

>>> verify(mock_object).example()

True

Testing Flask Apps

[178]

The preceding code imports the functions from the Mockito library, creates a mock
object that can be used for mocking, runs a method on it, and verifies that the
method has been run. Obviously, if you want the method being tested to function
properly without an error, you will need it to return a valid value when the method
on the mocked object is being called.

>>> duck = mock()

>>> when(duck).quack().thenReturn("quack")

>>> duck.quack()

"quack"

In the preceding example, we are creating a mocked up duck object, giving it the
ability to quack, and then proving that it can quack.

In dynamically typed languages such as Python, where an object you
have may not be the one you are expecting, it is common practice to use
duck-typing. As the phrase says "if it walks like a duck and quacks like
a duck, it must be a duck". This is really useful when creating mocking
objects, as it is easy to use a fake Mock object without your methods
noticing the switch.

The difficulty arises when Flask uses its decorators to run methods before your
method is run and you need to override it to, for example, replace the database
initiator. The technique that can be used here is to have the decorators run a method
that is globally available to the module, such as a method that creates a connection to
the database.

Say your app.py looks like the following:

from flask import Flask, g

app = Flask("example")

def get_db():
 return {}

@app.before_request
def setup_db():
 g.db = get_db()

@app.route("/")
def homepage():
 return g.db.get("foo")

Chapter 8

[179]

The preceding code sets up a very simple app that creates a fake database as a
Python dictionary object. Now to override with our own database as follows:

from mockito import *
import unittest
import app

class FlaskExampleTest(unittest.TestCase):
 def setUp(self):
 self.app = app.app.test_client()
 self.db = mock()
 def get_fake_db():
 return self.db
 app.get_db = get_fake_db

 def test_before_request_override(self):
 when(self.db).get("foo").thenReturn("123")
 response = self.app.get("/")
 self.assertEqual(response.status_code, 200)
 self.assertEqual(response.data, "123")

if __name__ == "__main__":
 unittest.main()

The preceding code uses the Mockito library to create a fake database object. It
also creates a method that overrides the method in the app module that creates the
connection to the database—in this case, a simple dictionary object. You will notice
that you can also specify arguments for methods when using Mockito. Now when
the test is run, it inserts a value into the database for the page to return; this is
then tested.

Logging and error reporting
Logging and error reporting are intrinsic to a production-ready web app. Logging
keeps a record of all problems even if your app has crashed, while error reporting
can directly notify us of specific problems even though the site keeps running.

It can be very gratifying to discover errors before anyone has reported them. It
also makes it possible to roll out fixes before your users start complaining to you.
However, to do this, you need to know what those errors were, when they occurred,
and what caused them.

Fortunately, as must be quite familiar right now, Python and Flask already have this
in hand.

Testing Flask Apps

[180]

Logging
Flask comes with a built-in logger—an already defined instance of Python's built-in
logger. You will hopefully be quite familiar with it by now. The logger messages are
displayed, by default, each time a page is accessed.

The preceding screenshot, obviously, shows the output to the terminal. We can see
here that someone accessed the root page from localhost (127.0.0.1), on that
particular date, with a GET request, as well as a few other directories. The server
responded with one '200 success' message, and two '404 not found error' messages.
While having this terminal output is useful when developing, it is not necessarily
very useful if your app crashed while running in your production environment. We
will need to see what happened from a file that was written to.

Logging to file
There are various OS, dependent ways of writing logs like this to a file. However,
as indicated previously, Python does have this built in, and Flask simply follows
Python's plan, which is quite simple. Add the following to the app.py file:

from logging.handlers import RotatingFileHandler
file_handler = RotatingFileHandler('blog.log')
app.logger.addHandler(file_handler)

One thing to note here is that loggers make use of different handlers to complete
their functionality. The handler we are using here is RotatingFileHandler. Not
only does this handler write the files to disk (in this case to blog.log)Courier
but also makes sure that our file doesn't get too big and fills up the disk with log
messages, potentially taking the site down.

Chapter 8

[181]

Custom log messages
One thing that can be really useful when trying to debug a difficult-to-trace issue is
that we can add more logging to our blogging app. This can be done with the built-in
logging object within Flask as follows:

@app.route("/")
def homepage():
 app.logger.info("Homepage has been accessed.")

The preceding example demonstrates how to create a custom logging message.
However, a message such as this will actually slow down our application quite
considerably as it will write that message to the file or to the console, each time the
homepage is accessed. Fortunately, Flask also understands the concept of logging
levels, whereby we can specify which messages should be logged in different
environments. For example, it would not be useful to record a message such as
an info message in a production environment whereas a user failing to log in would
be worthy of recording.

app.logger.warning("'{user}' failed to login successfully.".format(us
er=user))

The preceding command simply logs a warning that a user failed to log in successfully
using Python's string format method. As long as the error logging is low enough in
Python, this message will be displayed.

Levels
The principle of logging levels is: the higher the importance of the log, the higher
the level, and the less likely it is to be logged, depending on your logging level. For
example, to be able to log warnings (and above, such as ERROR), we need to adjust
the logging level to WARNING. We can do this in our configuration file. Edit the
config.py file in the config folder to add the following:

import logging
LOG_LEVEL=logging.WARNING
Now in your app.py add the line:
app.logger.setLevel(config['LOG_LEVEL'])

The preceding code snippet just uses the built-in Python logger to tell Flask how
to handle logs. Of course, you can set different logging levels depending on your
environment. For example, in your testing.py file in the config folder, we should
use the following:

LOG_LEVEL=logging.ERROR

Testing Flask Apps

[182]

As for the purpose of testing, we don't need warnings. Similarly, we should do this
for any production configuration file; for any development configuration files,
use style.

Error reporting
It's all well and good having errors logged on the machine but it's even better if
the errors come straight to your inbox where you can be immediately notified.
Fortunately, as with all these things, Python has a built-in way of doing it that Flask
can make use of. It is just another handler such as RotatingFileHandler.

from logging.handlers import SMTPHandler
email_handler = SMTPHandler("127.0.0.1", "admin@localhost",
app.config['ADMIN_EMAILS'], "{appname}
error".format(appname=app.name))
app.logger.addHandler(email_handler)

The preceding code creates SMTPHandler with a configuration that identifies where
your mail server is and what the send address is, takes a list of e-mail addresses
to send to from the configuration file, and gives the e-mail a subject so that we can
identify where the error came from.

Read more
Unit testing is a vast and complex area. Flask has some excellent documentation on
other techniques for writing effective tests: http://flask.pocoo.org/docs/0.10/
testing/.

Python, of course, has its own documentation on unit testing: https://docs.
python.org/2/library/unittest.html.

Flask uses the logging module from Python for its logging. This, in turn, follows the
C library structure for its logging levels. More detail can be found at: https://docs.
python.org/2/library/logging.html.

Summary
In this chapter, we have learnt how to create some tests for our blogging app to
verify that it is loading pages correctly, and that logging-in is taking place correctly.
We have also set up logging to files and sent e-mails when errors occur.

In the next chapter, we will learn how we can improve our blog with extensions that
add extra features with minimal effort on our part.

http://flask.pocoo.org/docs/0.10/testing/
http://flask.pocoo.org/docs/0.10/testing/
https://docs.python.org/2/library/unittest.html
https://docs.python.org/2/library/unittest.html
https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

Excellent Extensions
In this chapter, we will learn about enhancing our Flask install with some popular
third-party extensions. Extensions allow us to add extra security or functionality
with very little effort and can polish your blogging app nicely. We will investigate
Cross-Site Request Forgery (CSRF) protection for your forms, Atom feeds so others
can find your blog updates, adding syntax highlighting to the code that you use,
caching to reduce the load when rendering templates, and asynchronous tasks so
that your app doesn't become unresponsive when it is doing something intensive.

In this chapter we shall learn the following:

•	 CSRF protection using Flask-SeaSurf
•	 Atom feeds using werkzeug.contrib
•	 Syntax highlighting using Pygments
•	 Caching using Flask-Cache and Redis
•	 Asynchronous task execution using Celery

SeaSurf and CSRF protection of forms
CSRF protection adds security to your site by proving that a POST submission came
from your site, and not a carefully crafted web form on another site designed
to maliciously exploit the POST endpoints on your blog. These malicious requests
can even work around authentication if your browser still considers you logged in.

The way we avoid this is to add a special hidden field to any form on the site that
has a value in it, generated by the server. When the form is submitted, the value in
the special field can then be checked against the values generated by the server and,
if it matches, we can continue with the form submission. If the value does not match
or is non-existent, the form has come from an invalid source.

Excellent Extensions

[184]

What CSRF protection actually proves is that the template, with the CSRF
field in it, was used to generate the form. This mitigates the most basic of
CSRF attacks from other sites but isn't conclusive in validating that the
form submission only came from our server. For example, a script could
still screen-scrape the contents of the page.

Now, it would be simple to build CSRF protection ourselves and WTForms, which is
typically used to generate our forms, has this already built-in. However, let's have a
look at SeaSurf:

pip install flask-seasurf

With SeaSurf installed and using WTForms, it is now really easy to integrate it into
our app. Open your app.py file and add the following:

from flask.ext.seasurf import SeaSurf
csrf = SeaSurf(app)

This simply enables SeaSurf for your app. Now, to enable the CSRF in your forms,
open forms.py and create the following Mixin:

from flask.ext.wtf import HiddenField
import g

from app import app

class CSRFMixin(object):
 @staticmethod
 @app.before_request
 def add_csrf():
 self._csrf_token = HiddenField(default=g._csrf_token)

The preceding code creates a simple CSRF Mixin that can be used optionally within
all your forms. The decorators ensure that the method is run before a request, in
order to add the HiddenField field to your forms with the value of the randomly
generated CSRF token. To use this Mixin in your forms, in this instance your login
form, update the class as follows:

class LoginForm(Form, CSRFMixin):

That's it. We need to make this change for all the forms we want to protect, which is
usually all of them.

Chapter 9

[185]

Creating Atom feeds
A really useful feature for any blog is to have the ability for your readers to keep
up-to-date with the latest content. This most commonly happens with an RSS reader
client that polls your RSS subscription feed. While RSS is widely used, a better, more
mature subscription format is available and is called Atom.

Both are files that can be requested by a client, and are standard and simple XML
data structures. Fortunately, an Atom feed generator is built into Flask; or, more
specifically, a contributed module is built into the WSGI interface that Flask uses
called Werkzeug.

Getting it up-and-running is simple, all we need to do is to get hold of our most
recently published posts from the database. It may be best to create a new Blueprint
for this; however, you can also do it within your main.py. We just need to make use
of a few more modules:

from urlparse import urljoin
from flask import request, url_for
from werkzeug.contrib.atom import AtomFeed
from models import Entry

And create a new route:

@app.route('/latest.atom')
def recent_feed():
 feed = AtomFeed(
 'Latest Blog Posts',
 feed_url=request.url,
 url=request.url_root,
 author=request.url_root
)
 entries = EntrY.query.filter(Entry.status ==
Entry.STATUS_PUBLIC).order_by(EntrY.created_timestamp.desc()).li
mit(15).all()
 for entry in entries:
 feed.add(
 entry.title,
 entry.body,
 content_type='html',
 url=urljoin(request.url_root, url_for("entries.detail",
slug=entry.slug)),
 updated=entry.modified_timestamp,
 published=entry.created_timestamp
)
 return feed.get_response()

Now run your Flask app and the Atom feed will be accessible from
http://127.0.0.1:5000/latest.atom

Excellent Extensions

[186]

Syntax highlighting using Pygments
Often, as coders, we want to be able to display code in a web page, and while it is a
skill to read that code without syntax highlighting, a few colors can make the reading
experience much more pleasant.

As is always the way with Python, there is a module already available that is able to
do that for you, and of course it can be installed easily by the following command:

pip install Pygments

Pygments only works with the known sections of code. So, if you
want to display code snippets, we can do that. If, however, you
want to highlight inline sections of the code, we either follow
the next section on Markdown, or we need to use some online
Javascript such as highlight.js.

To create code snippets, we need to first create a new blueprint. Let's create a
directory called snippets, then an __init__.py file, followed by a blueprint.py
file with the following code:

from flask import Blueprint, request, render_template, redirect, url_
for
from helpers import object_list
from app import db, app

from models import Snippet
from forms import SnippetForm

from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter

snippets = Blueprint('snippets', __name__,
template_folder='templates')

@app.template_filter('pygments')
def pygments_filter(code):
 return highlight(code, PythonLexer(), HtmlFormatter())

@snippets.route('/')
def index():
 snippets =
Snippet.query.order_by(Snippet.created_timestamp.desc())

Chapter 9

[187]

 return object_list('entries/index.html', snippets)

@snippets.route('/<slug>/')
def detail(slug):
 snippet = Snippet.query.filter(Snippet .slug ==
slug).first_or_404()
 return render_template('snippets/detail.html',
entry=snippet)

@snippets.route('/create/', methods=['GET', 'POST'])
def create():
 if request.method == 'POST':
 form = SnippetForm(request.form)
 if form.validate():
 snippet = form.save_entry(Snippet())
 db.session.add(snippet)
 db.session.commit()
 return redirect(url_for('snippets.detail',
slug=snippet.slug))
 else:
 form = SnippetForm()

 return render_template('snippets/create.html', form=form)

@snippets.route('/<slug>/edit/', methods=['GET', 'POST'])
def edit(slug):
 snippet = Snippet.query.filter(Snippet.slug ==
slug).first_or_404()
 if request.method == 'POST':
 form = SnippetForm(request.form, obj=snippet)
 if form.validate():
 snippet = form.save_entry(snippet)
 db.session.add(snippet)
 db.session.commit()
 return redirect(url_for('snippets.detail',
slug=entry.slug))
 else:
 form = EntryForm(obj=entry)

 return render_template('entries/edit.html', entry=snippet,
form=form)

Excellent Extensions

[188]

In the preceding example, we set up the Pygments template filter that allows a
string of code to be converted into HTML code. We also sneakily make use of
the entries templates that are perfectly adequate for our needs. We use our own
detail.html because that is where the magic happens with Pygments. We need
to create a templates directory within the snippets director and another directory
called snippets within templates, this is where we store our detail.html. So now our
directory structure looks like app/snippets/templates/snipperts/detail.html Let's
set up that file now, as follows:

{% extends "base.html" %}

{% block title %}{{ entry.title }} - Snippets{% endblock %}

{% block content_title %}Snippet{% endblock %}

{% block content %}
 {{ entry.body | pygments | safe}}
{% endblock %}

This is mostly identical to the detail.html that we used earlier in the book, except
that we now pass it through the Pygments filter that we created in the app .As the
template filter we used earlier produces raw HTML, we also need to mark its
output as safe.

We also need to update our CSS file for the blog as Pygments uses CSS selectors to
highlight words rather than wastefully writing the output to the page. It also allows
us to modify the colors if we want. To find out what our CSS should be like, open up
a Python shell and run the following commands:

>>> from pygments.formatters import HtmlFormatter

>>> print HtmlFormatter().get_style_defs('.highlight')

The preceding commands will now print out the example CSS that Pygments
suggests and we can copy-and-paste it into our .css file in the static directory.

The rest of this code is not a great deal different from the previous Entry objects. It
simply allows you to create, update, and view snippets. You will notice that we are
using a SnippetForm here that we will define in a bit.

Also create a models.py with the following:

class Snippet(db.Model):
 STATUS_PUBLIC = 0
 STATUS_DRAFT = 1

 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100))

Chapter 9

[189]

 slug = db.Column(db.String(100), unique=True)
 body = db.Column(db.Text)
 status = db.Column(db.SmallInteger, default=STATUS_PUBLIC)
 created_timestamp = db.Column(db.DateTime,
default=datetime.datetime.now)
 modified_timestamp = db.Column(
 db.DateTime,
 default=datetime.datetime.now,
 onupdate=datetime.datetime.now)

 def __init__(self, *args, **kwargs):
 super(Snippet, self).__init__(*args, **kwargs) # Call
parent constructor.
 self.generate_slug()

 def generate_slug(self):
 self.slug = ''
 if self.title:
 self.slug = slugify(self.title)

 def __repr__(self):
 return '<Snippet: %s>' % self.title

Now we must re-run the create_db.py script to create the new table.

We will also need to create a new form so that the Snippets can be created. Within
forms.py, add the following code:

from models import Snippet

class SnippetForm(wtforms.Form):
 title = wtforms.StringField('Title',
validators=[DataRequired()])
 body = wtforms.TextAreaField('Body',
validators=[DataRequired()])
 status = wtforms.SelectField(
 'Entry status',
 choices=(
 (Snippet.STATUS_PUBLIC, 'Public'),
 (Snippet.STATUS_DRAFT, 'Draft')),
 coerce=int)

 def save_entry(self, entry):
 self.populate_obj(entry)
 entry.generate_slug()
 return entry

Excellent Extensions

[190]

Finally, we need to make sure that this blueprint is used by editing the main.py file
and adding in the following:

from snippets.blueprint import snippets
app.register_blueprint(snippets, url_prefix='/snippets')

And, once we have added some code here using the Snippet model, the resulting
code will render as shown in the following image:

Simple editing with Markdown
Markdown is a now widely used mark-up language on the web. It allows you
to write plain text in a special format that can be programmatically converted to
HTML. This can be especially useful when editing text from a mobile device where,
for example, highlighting text to make it bold is significantly trickier than on a PC.
You can see how to use the Markdown syntax at http://daringfireball.net/
projects/markdown/

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

Chapter 9

[191]

One interesting thing to note with Markdown is that you can still use
HTML as well as Markdown at the same time.

Of course, to get this running is quick and simple in Python. We install it as follows:

sudo pip install Flask-Markdown

Then we can apply it to our blueprint or app as follows:

from flaskext.markdown import Markdown
Markdown(app)

This makes a new filter available in our templates called markdown and that can be
used when rendering your template:

{{ entry.body | markdown }}

Now all you need to do is write and save your blog entry content in Markdown.

As previously mentioned, you may also wish to prettify the code blocks; Markdown
has this facility built-in, so we need to extend the previous example as follows:

from flaskext.markdown import Markdown
Markdown(app, extensions=['codehilite'])

This can now render the Markdown code blocks using Pygments. However, as
Pygments uses CSS to add color to the code, we need to generate our CSS from
Pygments. However, this time the parent block used has a class called codehilite
(earlier it was called highlight), so we need to accommodate for this. In a Python
shell, type the following:

>>> from pygments.formatters import HtmlFormatter

>>> print HtmlFormatter().get_style_defs('.codehilite')

Excellent Extensions

[192]

Now add the output to your .css file in the static directory. So, with your
included CSS, your Markdown entry could now look like this:

There are lots of other Markdown extensions built-in that we could also use; you
can check them out and just use their name as a string when initializing the
Markdown object.

Caching with Flask-Cache and Redis
Sometimes, (and I know it's hard to imagine) we put a lot of effort into our sites,
building in and adding features, and often that means we end up having to do a lot
of database calls or complex template rendering for a page that is simply a static
blog entry. Now database calls should not be slow and a lot of template renderings
should not be noticeable but, if you expand that to lots of users (which hopefully you
are expecting), this may become an issue.

So, if the site is mostly static why not store your response in a single, high-speed
memory-based data store? No need for expensive database calls or complex template
renderings; for the same input, or path, get the same content, and faster.

As is becoming a kind of a catch-phrase by now, we can already do this in Python
and it is as simple as the following:

sudo pip install Flask-Cache

Chapter 9

[193]

To get it running, add this to your app or your blueprint:

from flask.ext.cache import Cache

app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'redis'})

You will also want to install Redis of course, this can be done on Debian and Ubuntu
systems quite simply:

sudo apt-get install redis-server

Unfortunately, Redis is not yet available in the Red Hat and CentOS packaging
system. You can, however, download and compile Redis from their site at

http://redis.io/download

By default, Redis is unsecured; as long as we don't expose it to our network this
should be fine and we do not need any more configuration for Flask-Cache. If,
however, you are looking to lock it down, check out the Flask-Cache configuration
for Redis.

Now we can use caching in our views (as well as any methods). This is as simple
as using a decorator on a route. So, open a view and add the following:

@app.route("/")
@cache.cached(timeout=600) # 10 minutes
def homepage():
…

You will see here that the cached decorator is within the route and that we have
a timeout value of 10 minutes, in seconds. This means that, however heavy the
rendering of your homepage is, and however many database calls it may make,
the response is going to be straight out of memory for that time period.

Obviously, caching has a time and a place and can be quite an art. If you have a
custom homepage for each user, then caching will be useless. However, what we
can do is cache sections of our template, so common areas such as all the <link>
elements in the <head> will very rarely change but the url_for('static', ...)
filter doesn't have to be regenerated each time. Look at the following code for
example:

{% cache 1800 %}
<link rel="stylesheet" href="{{ url_for('static',
filename='css/blog.min.css') }}">
{% endcache %}

http://redis.io/download

Excellent Extensions

[194]

The preceding code section says that the link element should be cached for 30
minutes, in seconds. You may also want to do this for your references to the scripts
as well. We could also use it for loading a list of the latest blog posts, for example.

Creating secure, stable versions of your
site by creating static content
One technique for a high-volume site with low-dynamic content is to create a
site that is simply a static copy of the dynamic site. This works great for blogs as
the content is generally static and updated, at the most, a couple of times a day.
However, you are still doing a bunch of database calls and template renderings for
the content that effectively doesn't change.

And, of course, there is a Flask extension that has this covered: Frozen-Flask. Frozen-
Flask identifies the URLs in your Flask app and generates the content that should
be there.

So, for the pages it generates the HTML and, for static content such as JavaScript and
images, it pulls them out into a base directory that is a static copy of your site and
that can be served up by your web server as static content.

This has the added benefit of the site being much more secure since the active version
of the site cannot be changed by using the Flask app or the web server.

There are some drawbacks to this, of course. If you have dynamic content on your
site—for example, comments—it is no longer possible to store and render them in the
conventional way. Also, if you have multiple authors on your site, you need a way of
sharing your database content so they don't end up producing separate copies of the
site. Solutions are suggested at the end of this section. But first, let us install Frozen-
Flask as follows:

pip install Frozen-Flask

Next we will need to create a file called freeze.py. This is a simple script that
automatically sets up Frozen-Flask:

from flask_frozen import Freezer
from main import app

freezer = Freezer(app)

if __name__ == '__main__':
 freezer.freeze()

Chapter 9

[195]

The above code uses all the defaults of Frozen-Flask and when run as follows:

python freeze.py

will create (or overwrite) the directory build that contains the static copy of
your blog.

Frozen-Flask is quite smart and will automatically find all your links, as long as they
are hierarchically referenced from the root homepage; for blog posts this works quite
well. However, if entries get dropped from your homepage and they are accessed by
an archive page on another URL, you may need to give Frozen-Flask pointers as to
where to find those. For example, add the following to the freeze.py file:

import models

@freezer.register_generator
def archive():
 for post in models.Entry.all():
 yield {'detail': product.id}

Frozen-Flask is smart and uses the url_for method provided by Flask to create
the static files. This means that anything that is available to the url_for method is
available to be used by Frozen-Flask, if it cannot be found through the normal route.

Commenting on a static site
So, as you might have guessed, by creating a static site you lose out on some
blogging fundamentals—the one area that encourages communication and debate.
Fortunately, there is a simple solution.

Blog comment hosting services such as Disqus and Discourse work much like a
forum, with the exception that each topic is created by each blog post. You can use
their services for free to run your discussion or, with Discourse, you can run their
server on your own platform for free, as it is completely open source.

Synchronizing multiple editors
Another issue with Frozen-Flask, one that a person running the blog won't notice,
is this: with multiple authors spread across a network, how do you manage the
database where your posts are stored? Everyone will need the same up-to-date copy
of the database; otherwise, when you generate the static copy of the site, it won't be
able to create all the content.

Excellent Extensions

[196]

If you all work in the same environment, one solution is to have a working copy of
the blog running on a server within the network and, when it comes to publishing
time, it will use that centralized database to create the published version of the blog.

If, however, you all work in disparate locations where a centralized database is not
ideal or impossible to secure, the other solution is to use a file-system based database
engine such as SQLite. Then, when an update is made to the database, that file can
be spread to others via e-mail, Dropbox, Skype, and so on. They then have an
up-to-date copy of the database that they can locally run Frozen-Flask from to create
the publishable content.

Asynchronous tasks with Celery
Celery is a library that allows you to run asynchronous tasks within Python. This is
especially helpful in Python as Python runs single threaded and you may find that
you have a long-running task that you wish to either start and discard; or you may
wish to give the user of your website some feedback on the progress of the said task.

One such example is e-mail. A user may request an e-mail to be sent, for example a
password reset request, and you don't want them waiting for the page to load while
the e-mail is generated and sent. We can set this up as a start and discard operation
and let the user know that the request is being dealt with.

The way Celery is able to escape the single-threaded environment of Python is
that we have to run a Celery broker instance separately which; this creates what
Celery calls workers that do the actual work. Your Flask app and the workers then
communicate with each other via the messaging broker.

So obviously, we need to install Celery and I'm sure you can guess by now that the
command you need is the following one:

pip install celery

Now we need a message broker server. There are plenty to choose from; check out
Celery's website for the supported ones, but, however, since we have already set up
Redis in the Flask-Cache setup, let's use that.

Now we need to tell Celery how to use the Redis server. Open up the Flask app
configuration file and add the following line:

CELERY_BROKER_URL = 'redis://localhost:6379/0'

Chapter 9

[197]

This configuration tells your instance of Celery where to find the message broker that
it needs to communicate with the Celery broker. Now we need to initialize the Celery
instance in our app. In the main.py file, add the following:

from celery import Celery

celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL'])

This creates an instance of Celery with configuration from the Flask configuration
file so we can also access the celery object from the Celery broker and share the
same setup.

Now we need something for the Celery worker processes to do. At this point, we are
going to make use of the Flask-Mail library:

pip install Flask-Mail

We are also going to need some configuration for this to run. Add the following
parameters to your Flask configuration file:

MAIL_SERVER = "example.com"
MAIL_PORT = 25
MAIL_USERNAME = "email_username"
MAIL_PASSWORD = "email_password"

This configuration tells Flask-Mail where your e-mail server is. It is likely that the
defaults may be good enough for you, or you may need more options. Check out the
Flask-Mail configuration for more options.

Now lets create a new file called tasks.py and create some tasks to run as follows:

from flask_mail import Mail, Message
from main import app, celery

mail = Mail(app)

@celery.task
def send_password_verification(email, verification_code):
 msg = Message(
 "Your password reset verification code is:
{0}".format(verification_code),
 sender="from@example.com",
 recipients=[email]
)
 mail.send(msg)

Excellent Extensions

[198]

This is a really simple message generation; we are just generating an e-mail message
with the content saying what the new password is, where the e-mail is from (our
mail server), who the e-mail is going to, and the e-mail address of the user whose
account it supposedly is, and then sends; the message is then sent via the already
set up mail instance.

Now we need to get our Flask app to make use of the new asynchronous ability. Let's
create a view that listens for an e-mail address being POSTed to it. This could be in
any of the blueprints to do with accounts or your main app.

import tasks

@app.route("/reset-password", methods=['POST'])
def reset_password():
 user_email = request.form.get('email')
 user = db.User.query.filter(email=user_email).first()
 if user:
 new_password = db.User.make_password("imawally")
 user.update({"password_hash": new_password})
 user.commit()
 tasks.send_password_verification.delay(user.email,
new_password)
 flash("Verification e-mail sent")
 else:
 flash("User not found.")
 redirect(url_for('homepage'))

The preceding view accepts a POSTed message from a browser that contains the
e-mail of the user who is is claiming to have forgotten his password. We first look up
the user by their e-mail address to see if the user does indeed exist in our database.
Obviously, there's no point resetting the password on an account that doesn't exist.
Of course, if they don't exist, the user will be given a message accordingly.

However, if the user account does exist, the first thing to do is to generate them a
new password. We use a hard-coded example password here. That password is then
updated in the database so that the user can use it to log in when they receive the
e-mail. Once all of that is out of the way, we then run .delay on the task we created
earlier with the arguments that we want to use. This instructs Celery to run the
underlying method when it is ready.

Chapter 9

[199]

Note that this is not the best solution for doing password resets. It is just
to illustrate how you may want to do it in a succinct way. Password rests
are a surprisingly complicated area and there are lots of things you can do
to improve the security and privacy of this facility such as checking the
CSRF value, limiting how many times the method is called, and using a
randomly generated URL for users to reset their passwords at rather than
a hard-coded solution that is sent via e-mail.

Finally, we need to run the Celery broker when we run our Flask app; otherwise,
very little is going to happen. Don't forget, this broker is the process that starts
all our asynchronous workers. The simplest thing we can do is run the following
command from within your Flask app directory:

celeryd -A main worker

This quite simply starts the Celery broker and tells it to look for the celery
configuration within the main app so that it can find the configuration and the
tasks it is supposed to be running.

Now we can start our Flask app and send some e-mails.

Creating command line instructions with
Flask-script
One really useful thing to do with Flask is to create a command-line interface so
that, when others use your software, they can easily make use of the methods you
provide, such as setting up the database, creating administrative users, or updating
the CSRF secret key.

One area where we already have a script resembling this and one that can be used in
this way is the create_db.py script in Chapter 2, Relational Databases with SQLAlchemy.
To do this, there is again, a Flask extension. Just run the following command:

pip install Flask-Script

Now the interesting thing with Flask-Script is that the commands work a lot like the
routes and views in Flask. Let's look at an example:

from flask.ext.script import Manager
from main import app

manager = Manager(app)

Excellent Extensions

[200]

@manager.command
def hello():
 print "Hello World"

if __name__ == "__main__":
 manager.run()

You can see here that Flask-Script refers to itself as Manager, but that the manager
also hooks itself into the Flask app. This means you can do anything with the Flask
app just by using the app reference.

So, if we convert our create_db.py app into a Flask-Script app, we should create a
file for this to work in. Let's call it manage.py and insert from the file create_db.py:

from main import db

@manager.command
def create_db():
 db.create_all()

All this does is set up a decorator so that the manage.py with the argument
create_db will run the method which was in create_db.py.

We can now run from the following command line:

python manage.py create_db

References
•	 https://highlightjs.org/

•	 http://pythonhosted.org/Flask-Markdown/

•	 http://daringfireball.net/projects/markdown/

•	 http://pythonhosted.org/Markdown/extensions

•	 https://pythonhosted.org/Frozen-Flask/

•	 https://disqus.com/

•	 http://www.discourse.org

•	 http://eviltrout.com/2014/01/22/embedding-discourse.html

•	 http://flask-script.readthedocs.org/en/latest/

•	 https://pythonhosted.org/Flask-Mail/

https://highlightjs.org/
http://pythonhosted.org/Flask-Markdown/
http://daringfireball.net/projects/markdown/
http://pythonhosted.org/Markdown/extensions
https://pythonhosted.org/Frozen-Flask/
https://disqus.com/
http://www.discourse.org
http://eviltrout.com/2014/01/22/embedding-discourse.html
http://flask-script.readthedocs.org/en/latest/
https://pythonhosted.org/Flask-Mail/

Chapter 9

[201]

Summary
In this chapter, we have done a wide variety of things. You have seen how to create
your own Markdown renderer, so editing becomes easier, and move commands so
they are within Flask and more manageable. We have created Atom feeds so that our
readers can find new content when it is posted, and created asynchronous tasks so
that we don't lock up the user's browser while waiting for a page to load.

In our final chapter, we will learn how to turn our simple application into a fully
deployed blog that has all the features discussed, secured, and ready to use.

[203]

Deploying Your Application
In this chapter, we will learn how to deploy our Flask applications securely and in
an automated, repeatable manner. We will see how to configure commonly used
WSGI (Web Server Gateway Interface) capable servers such as Apache, Nginx, as
well as the Python Webserver Gunicorn. Then we will see how to secure a part or the
entire site using SSL, before finally wrapping up our application in a configuration
management tool to automate our deployment.

In this chapter we shall learn the following topics:

•	 Configuring commonly-used WSGI servers
•	 Serving static files efficiently
•	 Using SSL to secure your site
•	 Automating deployment using Ansible

Running Flask with a WSGI server
It is important to note that Flask, by itself, is not a web server. Web servers are tools
that are Internet-facing, have had many years of development and patching applied
to them, and can run many services at once.

Running Flask by itself as a Web server on the Internet will most likely be fine,
thanks to the Werkzeug WSGI layer However, the real focus of development on
Flask is page-routing and rendering the system. Running Flask as a web server may
have unintended effects. Ideally, Flask will sit behind a web server and be called
upon when the server recognizes a request for your app. To do this, the web server
and Flask need to be able to speak the same language.

Deploying Your Application

[204]

Fortunately the Werkzeug stack, upon which Flask is built, is designed to speak
WSGI. WSGI is a common protocol used by web servers such as Apache's httpd and
Nginx. It can be used to manage the load on your Flask app and communicate the
important bits of information about where the requests came from and what kind of
headers the request has, all in a way that Python can understand.

However, to get Werkzeug to talk to your web server using the WSGI protocol, we
must use a gateway. This will take the requests from your web server and the Python
application and translate the actions between them. Most web servers will speak
WSGI although some need a module, and some a separate gateway such as uWSGI.

One of the first things to do is to create a WSGI file for the WSGI gateway to
communicate through. This is simply a Python file with a known structure so that
the WSGI gateway can access it. We need to create a file called wsgi.py in the same
directory as the rest of your blog app and it will contain:

from app import app as application

Flask, by default, is WSGI-compatible so we just need to declare the object in the
right way for the WSGI gateway to understand. Now the web server needs to be
configured to find this file.

Apache's httpd
Apache's httpd is probably the most widely used web server on the internet right
now. The program's name is actually httpd, and it is maintained by the Apache
Software Foundation. However, most people refer to it as Apache so that is what we
shall call it as well.

To make sure that Apache and the WSGI module are installed on Debian- and
Ubuntu-based systems, run the following command:

sudo apt-get install apache2 libapache2-mod-wsgi

However, on Red Hat- and Fedora-based systems run the following command:

sudo yum install httpd mod_wsgi

To set up the Apache configuration, we must create a configuration file that will
specify a new VirtualHost. You must locate the directory on your system where
these files are kept. In Debian-based systems, such as Ubuntu, this will be in /etc/
apache2/sites-available; create your blog file in there. On Red Hat/Fedora-
based systems, we need to create a file called blog.conf in the /etc/apache2/
conf.d directory.

Chapter 10

[205]

In that configuration file, update the content with the following code:

<VirtualHost *:80>

 WSGIScriptAlias / <path to app>/wsgi.py

 <Directory <path to app>/>
 Order deny,allow
 Allow from all
 </Directory>

</VirtualHost>

This configuration instructs Apache that, for every request to the host on port 80,
there is to attempt to load from the wsgi.py script. The directory section tells Apache
how to handle requests to that directory and, by default, it is best to deny access to
the files within your source directory to anyone accessing the web server. Be aware
that, in this instance, <path to app> is the full absolute path to the directory where
the wsgi.py file is stored.

We will now need to enable the WSGI module for Apache's httpd server. This is so
that Apache knows to use it when specifying the WSGI configuration. On Debian-
and Ubuntu-based systems, we just run this command:

sudo a2enmod wsgi

However on Red Hat and CentOS systems, it is a little more tricky. We will need
to create or modify the file /etc/httpd/conf.d/wsgi.conf to contain the
following line:

LoadModule wsgi_module modules/mod_wsgi.so

Now we need to enable our new site on the web server on Debian- and
Ubuntu-based systems by running this:

sudo a2ensite blog

This instructs Apache to create a symbolic link from /etc/apache2/sites-
available to /etc/apache2/sites-enabled, where Apache actually gets its
configuration from. Now we need to restart Apache. This can be performed in many
ways in your particular environment or distribution. The simplest may be just to run
the following command:

sudo service apache2 restart

Deploying Your Application

[206]

So all we need to do is connect to the web server through your browser by going to
http://localhost/.

Check for any issues in your /var/log/apache2/error.log in Debian and Ubuntu
systems and /var/log/httpd/error_log in Red Hat- and CentOS-based systems.

Be aware that some Linux distros ship with a default configuration that must be
disabled. This can likely be disabled in Debian- and Ubuntu-based systems by typing
the following command:

sudo a2dissite default

However, in Red Hat- and CentOS-based systems we need to remove the /etc/
httpd/conf.d/welcome.conf file:

sudo rm /etc/httpd/conf.d/welcome.conf

We will, of course, have to restart the server again for Debian- and Ubuntu-based
systems:

sudo service apache2 restart

And in Red Hat- and CentOS-based systems:

sudo service httpd restart

Apache also has a reload option rather than restart. This tells the server to have a
look at the configuration files again and work with them. This is typically faster than
restart and can keep the existing connections open. Where as, restart exits the server
and starts again, taking open connections with it. The benefit of restart is that it is
more definitive and, for setup purposes, more consistent.

Serving static files
One very important step to go through when using Flask, through a web server,
is to decrease the load on your app by creating a shortcut for your web server to
the static content on your site. This offloads to the web server the relatively trivial
task of serving basic files to the end browser, making the process faster and more
responsive. It is also a straightforward thing to do.

Edit your blog.conf file to add the following line within the <VirtualHost *:80>
tags:

Alias /static <path to app>/static

Chapter 10

[207]

Here, <path to app> is the full absolute path to the directory where your
static directory exists. Then reload the Apache configuration for Debian- and
Ubuntu-based systems as follows:

sudo service apache2 restart

And for Red Hat- and CentOS-based systems as follows:

sudo service httpd restart

This will now inform Apache where to look for files when /static is requested by
the browser. You will be able to see this happening by looking at your Apache log
file, /var/log/apache2/access.log for Debian- and Ubuntu-based systems and /
var/log/httpd/access.log for Red Hat- and CentOS-based systems.

Nginx
Nginx is rapidly becoming the de facto web server to replace Apache's httpd. It
is proven to be faster and more lightweight and its configuration, although quite
different, can be simpler to understand.

While Nginx has supported WSGI for some time, even newer Linux distros may not
have updated to it and therefore we must use an interface layer called uWSGI to
access the Python web apps. uWSGI is a WSGI gateway written in Python that can
translate between WSGI and your web server via sockets. We need to install both
Nginx and uWSGI. In Debian and Ubuntu based systems run the following:

sudo apt-get install nginx

And in Red Hat- or Fedora-based systems, the following

sudo yum install nginx

Now since uWSGI is a Python module, we can install it using pip:

sudo pip install uwsgi

To configure Nginx in Debian- and Ubuntu-based systems, create a file called blog.
conf in /etc/nginx/sites-available or, in Red Hat- or Fedora-based systems,
create the file in /etc/nginx/conf.d and add the content with:

server {
 listen 80;
 server_name _;

 location / { try_files $uri @blogapp; }

Deploying Your Application

[208]

 location @blogapp {
 include uwsgi_params;
 uwsgi_pass unix:/var/run/blog.wsgi.sock;
 }
}

This configuration is very much the same as the Apache configuration, although
expressed in Nginx form. It accepts connections on port 80 and for any server
name, it tries to access the blog.wsgi.sock, which is a unix socket file used to
communicate with uWSGI. You will notice that @blogapp is used as a shortcut
reference to the location.

Only in Debian- and Ubuntu-based systems do we now need to enable the new site,
by creating a symlink from the available site to the enabled one:

sudo ln -s /etc/nginx/sites-available/blog.conf /etc/nginx/sites-enabled

Then we need to tell uWSGI where to find the socket file so it can communicate with
Nginx. To do this, we need to create a uWSGI configuration file in the blog app
directory called uwsgi.ini that contains the following:

[uwsgi]
base = <path to app>
app = app
module = app
socket = /var/run/blog.wsgi.sock

You will have to change <path to app> to the path where your app.py file exists.
Also note how the socket is set up in the same path as specified in the Nginx site
configuration file.

You may note that the formatting and structure of the INI file are
very much like a Windows INI file.

We can verify if this configuration works by running the following command:

uwsgi –ini uwsgi.ini

Now Nginx knows how to talk to the gateway but isn't yet using the site
configuration file; we need to restart it. This can be performed in many ways in your
particular environment. The simplest may be just to run the following command:

sudo service nginx restart

Chapter 10

[209]

So all we need to do is connect to the web server through your browser by going to
http://localhost/.

Be aware that some Linux distros ship with a default configuration that must be
disabled. This can normally be done in both Debian- and Ubuntu-based systems,
and Red Hat- and CentOS-based systems, by deleting the /etc/nginx/conf.d/
default.conf file.

sudo rm /etc/nginx/conf.d/default.conf

And restarting the nginx service:

sudo service nginx restart

Nginx also has a reload option rather than restart. This tells the server
to have a look at the configuration files again and work with them.
This is typically faster than restart and can keep existing connections
open. Where as, restart exits the server and starts again, taking open
connections with it. The benefit of restart is that it is more definitive and,
for setup purposes, more consistent.

Serving static files
One very important step to go through when using Flask, through a web server,
is to decrease the load on your app by creating a shortcut for your web server to
the static content on your site. This offloads, to the web server, the relatively trivial
task of serving basic files to the end browser, making the process faster and more
responsive. It is also a straightforward task to do.

Edit your blog.conf file to add this line within the server { tag:

location /static {
 root <path to app>/static;
}

where <path to app> is the full absolute path to the directory where your static
directory exists. Reload the Nginx configuration:

sudo service nginx restart

Deploying Your Application

[210]

This will now inform Nginx where to look for files when /static is requested by the
browser. You will be able to see this happening by looking at your Nginx log file, /
var/log/nginx/access.log.

Gunicorn
Gunicorn is a web server written in Python. It already understands WSGI and so
does Flask, so getting Gunicorn running it is as easy as entering the following code:

pip install gunicorn

gunicorn app:app

where app:app is your app and the module name the one we used within that (much
the same as the uWSGI configuration). There are way more options than that, but it
is useful, for example, to work from and set a port and binding:

gunicorn --bind 127.0.0.1:8000 app:app

The --bind flag tells Gunicorn what interface to connect to and on what port. This is
useful if we need to only use the web app internally.

Another useful flag is the --daemon flag that tells Gunicorn to run in the background
and detach from your shell. This means we no longer have direct control of the
process but it is running and can be accessed via the bind interface and the port that
was setup.

Securing your site with SSL
In an increasingly ruthless Internet, it is important to improve the security of your
site by proving its authenticity. A common tool for improving this for your site is
to use SSL, or even better TLS.

SSL and TLS certificates allow your server to be verified by a trusted third-party
based upon the domain name that your browser is connecting to. This means that,
as a web user, we can be sure that the web site we are talking to hasn't been changed
in transit, is the correct server we are talking to, and that the data being sent between
the server and our browser cannot be sniffed. This obviously becomes important
when we want to verify that the information our users are sending us is valid, and
protected, and our users want to know that our data is protected in transit.

Chapter 10

[211]

Getting your certificate
The first thing to do is generate your SSL certificate request. This is used in
conjunction with a third party who signs the request to verify your server with any
browser. There are a few ways of doing this, depending on your system, but the
easiest is to run the command:

openssl req -nodes -newkey rsa:2048 -sha256 -keyout private.key -out
public.csr

You will now be asked a few questions about the organization you're affiliated to,
but the important line is the Common Name. This is the domain name (without
https://) that your server will be accessed at:

Country Name (2 letter code) [AU]: GB
State or Province Name (full name) [Some-State]: London
Locality Name (eg, city) []: London
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Example Company
Organizational Unit Name (eg, section) []: IT
Common Name (eg, YOUR name) []: blog.example.com
Email Address []:
A challenge password []:
An optional company name []:

You can see here we used blog.example.com as our example domain name that
our blog app will be accessed at. You must use your own here. E-mail addresses
and passwords are not hugely important and can be left blank, but you should fill
in the Organization Name field as this will be the name your SSL certificate will be
recognized as. If you are not a company, just use your own name.

That command generates two files for us; one is a private.key file, the file our
server will use to sign our communication with the browser, and the other is
public.csr, which is the certificate request file sent to the third-party
service that handles the verification between the server and your browser.

Public/Private key cryptography is a vast but well explored
subject. In the light of the Heartbleed attack, it is worth
having a reasonable understanding of this, if you are looking
to secure a server.

Deploying Your Application

[212]

The next step is to sign your public.csr request with a third party. There are many
services that will do this for you, some free and some at a slight cost; some such
as Let's Encrypt automate the entire process with a script completely free of cost.
All of them offer essentially the same service, but they may not all be built-in to all
browsers, and offer various levels of support for varying degrees of cost.

These services will go through a verification process with you, ask for your
public.csr certificate request, and return you a signed .crt certificate file for
your host name.

Note that it will most likely help you to name your .crt and .key
file with your site's host name in it, with which you applied for the
certificate. In our case, this would be blog.example.com.crt.

Your new .crt file and your existing .key file can be placed anywhere on your
server. However, typically the .crt files go into /etc/ssl/certs and the .key files
in /etc/ssl/private.

With all the correct files in the right place, we need to reopen the existing Apache
configuration that we used for our blog service. It would be preferable to run a
normal HTTP and HTTPS service. However, since we have gone to the effort of
setting up the HTTPS service, it makes sense to enforce it by redirecting our users.
This can be done using a new specification called HSTS however not all builds of
web servers support this yet, so we will use rewrites.

You can run tests on your local machine with SSL certs by adding an
entry to your operating system's host file for your domain. Just don't
forget to remove it when you are done.

Apache httpd
The first thing to change is the port on the VirtualHost line from the default HTTP
port of 80 to the default HTTPS port of 443:

<VirtualHost *:443>

We should also specify the server's hostname the SSL cert is being used on; so within
the VirtualHost section add a ServerName parameter. This will ensure the certificate
will not be used in the wrong domain.

ServerName blog.example.com

Chapter 10

[213]

You must replace blog.example.com with the host name that you will be using.

We also need to set up the SSL configuration so as to tell Apache how to respond:

SSLEngine on
SSLProtocol -all +TLSv1 +SSLv2
SSLCertificateFile /etc/ssl/certs/blog.example.com.crt
SSLCertificateKeyFile /etc/ssl/private/blog.example.com.key
SSLVerifyClient None

What is going on here is that the SSL module in Apache is being enabled, the public
certificate and private key file are being specified for this site, and there is no client
certificate required. It is important to disable the default SSL protocols and enable
TLS, which is considered more secure than SSL. However, SSLv2 is still enabled to
support older browsers.

Now we need to test it. Let's restart Apache:

sudo service apache2 restart

Try connecting to the web server with your browser, not forgetting that you are now
using https://.

Now that is working, the final step is to redirect plain old HTTP to HTTPS. In the
configuration file, again add the following:

<VirtualHost *:80>
 ServerName blog.example.com
 RewriteEngine On
 RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI}
</VirtualHost>

We create a new VirtualHost for port 80 and specify that it is for the ServerName
blog.example.com hostname. But then we use the Rewrite module in Apache to
simply redirect the browser to the same URL it requested, however, using HTTPS
at the beginning.

Again, restart Apache:

sudo service apache2 restart

Now test this configuration in your browser on the site; verify that you get
redirected to HTTPS for whichever page you access.

Deploying Your Application

[214]

Nginx
The configuration of Nginx is pretty simple. In much the same way as the Apache
configuration, we need to change the port that Nginx will be listening to for our site.
Since HTTPS works on port 443, the difference here is to tell Nginx to expect SSL
connections. In the configuration, we must update the line as follows:

listen 443 ssl;

Now to add the SSL configuration to the server element of the configuration, enter
the following:

server_name blog.example.com;
ssl_certificate /etc/ssl/certs/blog.example.com.crt;
ssl_certificate_key /etc/ssl/private/blog.example.com.key;
ssl_protocols TLSv1 SSLv2;

This tells Nginx to apply this configuration to requests for the blog.example.com
hostname (don't forget to replace it with your own), as we wouldn't like to send the
SSL cert for a domain that it doesn't apply to. We also specify the public certificate
file location and the private SSL key file location on the file system. Finally, we
specify the SSL protocols we want to use, which means enabling TLS (considered
more secure than SSL). However SSLv2 is still enabled to support older browsers.

Now to test it. Let's restart the Nginx service:

sudo service nginx restart

Try connecting to the web server with your browser, not forgetting you are now
using https://.

Once we have proved that it is working, the final step is to redirect plain old HTTP to
HTTPS. In the configuration file again add the following:

server {
 listen 80;
 server_name blog.example.com;
 rewrite ^ https://$server_name$request_uri? permanent;
}

This works much the same as the previous, plain old HTTP configuration; except that
we use the rewrite command to tell Nginx to pick up all URLs and send a redirect
command to the browser accessing port HTTP to go to HTTPS instead, with the exact
path they attempted to use on HTTP.

Chapter 10

[215]

For the last time, restart Nginx:

sudo service nginx restart

Finally, test your browser on the site on which you get redirected to HTTPS
whichever page you access.

Gunicorn
Gunicorn has also had SSL support added to it as of 0.17. To enable SSL from the
command line, we need a few flags:

gunicorn --bind 0.0.0.0:443 --certfile /etc/ssl/certs/blog.example.
com.crt --keyfile /etc/ssl/private/blog.example.com.key --ssl-version 2
--ciphers TLSv1 app:app

This works much the same as the Nginx and Apache SSL configurations. It specifies
the port to bind to, as well as all the interfaces in this case. It then directs Gunicorn to
the public certificate and private key files, and opts to use SSLv2 for older browsers
and the (commonly considered more secure) TLS cipher protocols.

Test this in your browser by going to the host name and the HTTPS in your browser.

Now that is ready, let's set up a redirection from port 80 to port 443. This is quite
complicated in Gunicorn as it does not have a built-in redirection facility. One
solution is to create a really simple Flask app that is started on port 80 in Gunicorn
and redirects to port 443. It would be a new app with a new app.py file, and with
its contents looking as follows:

from flask import Flask,request, redirect
import urlparse

app = Flask(__name__)

@app.route('/')
@app.route('/<path:path>')
def https_redirect(path='/'):
 url = urlparse.urlunparse((
 'https',
 request.headers.get('Host'),
 path,
 '','',''
))

 return redirect(url, code=301)

Deploying Your Application

[216]

if __name__ == '__main__':
 app.run()

This is a really simple Flask app that can be used anywhere to redirect a browser
to the equivalent URL that was requested of it, but with HTTPS on the front. It
builds a URL by making use of the standard Python urlparse library, the requested
hostname using the header that is sent by the browser to the server, and the generic
path variable in the route to pick up all document requests. It then uses the Flask
redirect method to tell the browser where it really needs to go.

Note that the empty strings are important to the urlunparse function as it
is expecting a complete URL tuple, much like that generated by urlparse.

It is likely you will know how to run this in Gunicorn by now, nevertheless the
command to use is as follows:

gunicorn --bind 0.0.0.0:80 app:app

Now connect using your browser to your old HTTP host and you should be
redirected to the HTTPS version.

Automating deployment using Ansible
Ansible is a configuration management tool. It allows us to automate the deployment
of our applications in a repeatable and manageable manner, without having to
consider how our application is deployed each time.

Ansible works both locally and over SSH. One of the clever things you can do with
Ansible is to get Ansible to configure itself. Based on your own configuration, it can
then be told to deploy the other machines that it needs.

We, however, are just going to concentrate on building our own local Flask instance
using Apache, WSGI, and Flask.

The first thing to do is install Ansible on the machine that we are going to deploy our
Flask app on to. Since Ansible is written in Python, we can achieve this quite simply
by making use of pip:

sudo pip install ansible

We now have a configuration manager and, since a configuration manager is
designed to set up servers, let's build up a playbook that Ansible can use to build the
entire machine.

Chapter 10

[217]

In a new project or directory, create a file called blog.yml. We are creating a file that
Ansible calls a Playbook; it is a list of commands that will run in sequence and build
our blog running under Apache. For simplicity, in this file it is assumed that you are
using an Ubuntu-derivative operating system:

- hosts: webservers
 user: ubuntu
 sudo: True

 vars:
 app_src: ../blog
 app_dest: /srv/blog

 tasks:
 - name: install necessary packages
 action: apt pkg=$item state=installed
 with_items:
 - apache2
 - libapache2-mod-wsgi
 - python-setuptools
 - name: Enable wsgi module for Apache
 action: command a2enmod wsgi
 - name: Blog app configuration for Apache
 action: template src=templates/blog dest=/etc/apache/sites-
available/blog
 - name: Copy blog app in
 action: copy src=${app_src} dest=${app_dest}
 - name: Enable site
 action: command a2ensite blog
 - name: Reload Apache
 action: service name=apache2 state=reloaded

An Ansible Playbook is a YAML file that consists of a few sections; the main
section describes the "play". The hosts value describes what group of machines the
subsequent settings should apply to. user describes what user the play should run
as; for you, this should be a user that Ansible can run as to install your application.
The sudo setting tells Ansible to run this play with sudo permissions and not to run
it as root.

Deploying Your Application

[218]

The vars section describes variables common to the playbook. These settings can
be found easily as they are at the top but can also be used later in the playbook
configuration in the format ${example_variable}, if example_variable was defined
in the vars section here. The most important variable here is the app_src variable
which tells Ansible where to find our app when it is copying it to the correct location.
In this example, we are assuming it is in a directory called blog, but for you it may be
located elsewhere on your file system and you may need to update this variable.

The final and most important section is the tasks section. This tells Ansible what
to run when it is updating the machine it is controlling. If you are familiar with
Ubuntu, these tasks should be somewhat familiar. action: apt, for example, tells
apt to make sure that all the packages specified in the with_items list are installed.
You will notice the $item variable with the pkg argument. The $item variable is
automatically populated by Ansible as it iterates over the with_items command and
the apt command uses the pkg argument to verify that the package is installed.

The subsequent tasks enable the WSGI module using the command-line command
a2enmod wsgi, which is shorthand in Debian systems for enabling a module, setting
up the Apache configuration for our blog site by populating a template. Fortunately
for us, the language Ansible uses for its templates is Jinja, which you are most
likely already familiar with. The contents of our template file should be relative to
this blog.yml, in a directory called templates, and a file called blog. The contents
should look like the following:

NameVirtualHost *:80

<VirtualHost *:80>
 WSGIScriptAlias / {{ app_dest }}/wsgi.py

 <Directory {{ app_dest }}/>
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

This should be pretty familiar, it is a direct rip-off of the example in the Apache
section; however, we have made use of the Ansible variables to populate the
locations of the blog app. This means that, if we want to install the app to another
location, it will just be a matter of updating the app_dest variable.

Finally, among the Playbook tasks, it copies our all-important blog app onto the
machine, enables the site in Apache by using the Debian shorthand, and reloads
Apache so it can make use of the site.

Chapter 10

[219]

So all that is left is to run Ansible on that machine and get it to build your system for
you.

ansible-playbook blog.yml --connection=local

This tells Ansible to run the Playbook file blog.yml that we created earlier and to
use it on the local connection type, which means applying to the local machine.

Ansible Tips
It is worth noting this may not be the best way to use Ansible
in a large distributed environment. For one, you may want
to apply it to remote machines or to separate out the Apache
configuration, Apache WSGI configuration, Flask app
configuration, and blog configuration into separate files that
Ansible calls a role; this will make them reusable.
Another useful tip would be to to specify the configuration
file used and set up the static directory in Apache. Read the
Ansible documentation for more ideas about ways to improve
your deployment:
http://docs.ansible.com/

Read more
For more information on how to secure your Flask deployment more effectively
in Apache and WSGI by creating shell-less users that can only run the Flask app,
see http://www.subdimension.co.uk/2012/04/24/Deploying_Flask_to_
Apache.html.

This guide has more examples for CentOS systems along with Lighttpd and
Gunicorn all through Ansible https://www.zufallsheld.de/2014/11/19/
deploying-lighttpd-your-flask-apps-gunicorn-and-supervisor-with-
ansible-on-centos/.

Summary
In this chapter, we have seen many ways in which you can run your Flask app,
including securing it for privacy and security in multiple web servers and serving
static files to reduce load on your Flask app. We have also made a configuration file
for Ansible that will enable repeatable application deployment so that if the machine
ever needs to be built again, it will be a simple task.

http://docs.ansible.com/
http://www.subdimension.co.uk/2012/04/24/Deploying_Flask_to_Apache.html
http://www.subdimension.co.uk/2012/04/24/Deploying_Flask_to_Apache.html
https://www.zufallsheld.de/2014/11/19/deploying-lighttpd-your-flask-apps-gunicorn-and-supervisor-with-ansible-on-centos/
https://www.zufallsheld.de/2014/11/19/deploying-lighttpd-your-flask-apps-gunicorn-and-supervisor-with-ansible-on-centos/
https://www.zufallsheld.de/2014/11/19/deploying-lighttpd-your-flask-apps-gunicorn-and-supervisor-with-ansible-on-centos/

[221]

Index
A
Admin model forms

customizing 134-136
admin website

authentication mixin, creating 143
authorization mixin, creating 143
custom index page, setting up 144
Flask-Admin templates 145, 146
securing 141, 142

AJAX
form submissions 156-158
used, for creating comments 154-156
used, for loading comments 161-163

Ansible
tips 219
URL 219
used, for automating deployment 216-218

Apache httpd
about 204-206
static files, serving 206
with SSL support 212, 213

asynchronous tasks
running, with Celery 196-199

Atom feeds
creating 185

B
backrefs

using 42
base template

creating, for blog 57-60
blog app

enhancing 73

blog entries
author, setting 117
expressions, combining 35, 36
filtering 33, 34
lookups, using 34, 35
retrieving 32, 33

blog project
about 14
core skills 14
creating 15, 16
features 14
import flow 19
runnable Flask app, creating 17
spec 15
zooming out 18

built-in filters, Jinja2
about 55
abs() 55
default() 55
dictsort() 55
int() 56
length() 56
reverse() 56
safe() 56
sort() 56
striptags() 56
truncate() 56
URL 55
urlize() 56

built-in logger 180

C
caching

with Flask-Cache 192, 193
with Redis 192, 193

[222]

Celery
about 196
used, for running asynchronous

tasks 196-199
columns 26
command line instructions

creating, with Flask-Script 199, 200
comments

AJAX form submissions 156-158
comment model, creating 147, 148
creating, AJAX used 154-156
data, validating in API 159
loading, AJAX used 161-163
postprocessors, using 160, 161
preprocessors, using 160, 161
retrieving 163-165
schema migration, creating 149

contrib package 126
control structures, Jinja2 51-54
create.html template

creating 78-80
Cross-Site Request Forgery (CSRF)

protection
about 14, 183
adding 184

current user
accessing 114

custom index page
setting up 144

custom log message
creating 181

D
data

validating, in API 159
database

database engine, selecting 25
driver packages 25
SQLAlchemy, connecting to 25, 26

delete view
protecting 117, 118

detail view
building 66

Django 44
Don't Repeat Yourself (DRY) 23, 48

E
eager loading 23
edit.html template

creating 86-89
edit view

protecting 117, 118
Entry model

attributes 28
creating 26-29
entry, deleting 32
Entry table, creating 29
existing entry, modifying 32
form, defining 76, 77
working with 30, 31

entry's author
storing 115, 116

error messages
displaying 82-85
validating 82-85

error reporting 179, 182
expressions

combining 35, 36
negation 36
operator precedence 37

F
file uploads

processing 97, 98
filter 53
first() method

versus one() method 34
flash messages

displaying, in template 93
using 91

Flask
running, with WSGI server 203, 204
unit testing 171, 172

Flask-Admin
adding, to app 125
features 146
installing 123, 124
models, exposing 126-129
static assets, managing 140, 141
URL 146

[223]

Flask app
coding 7, 8
creating 6
debugging 11-13
Flask-Admin, adding 125
Flask, installing into virtualenv 6
new file, creating 6, 7
reference link, for securing 219
requests, adding 9
routes, adding 9
SQLAlchemy, using 24
values, reading from request 10, 11

Flask-Bcrypt extension
using 108

Flask-Cache
used, for caching 192, 193

Flask-Login
about 105
implementing 107
installing 105, 106

Flask-Migrate
adding, to project 43, 44

Flask-Restless
API requests, creating 151-153
installing 149
setting up 150
URL 166

Flask-Script
used, for creating command line

instructions 199
Flask-SQLAlchemy 24
form

creating, with view 77, 78
CSRF protection 183, 184
defining, for Entry model 76, 77
SeaSurf 183, 184
submissions, handling 80-82
submissions, with AJAX 156-158

Frozen-Flask 194, 195
full-text search

adding 69, 70

G
Gravatar 147
Gunicorn

about 210
with SSL support 215, 216

I
image uploads

file uploads, processing 97, 98
handling 96, 97
template, creating 99

index function 8
index view

building 63, 64
initial migration

creating, for schema 44
IPython

installing 30

J
Jinja2

about 48
built-in filters 55, 56
control structures 51-54
homepage, creating 48
loops 51-54
template operations, performing 49-51
template, programming 51-54
URL, for documentation 60

L
logging

about 179
built-in logger 180
custom log message, creating 181
levels 181
reference link 182
to file 180

login view
building 110, 111
template, creating 112, 113

logout view
building 110, 111
coding 113

lookups
example 35
using 34, 35

loops, Jinja2 51

[224]

M
macros

about 86
reference link 86

Markdown
about 15
URL 190
used, for editing 190-192

mixins 143
mocking, objects 177-179
models

about 26
Admin model forms, customizing 134, 135
exposing 126-129
filters, adding to list view 132-134
list views, customizing 129-131
search, adding to list view 132-134
slugs, generating 138-140
User form, enhancing 136, 137

multiple editors
synchronizing 195

N
negation 36
Nginx

about 207, 208
static files, serving 209, 210
with SSL support 214

O
Object Relational Mapping (ORM) 23
objects

mocking 177-179
one() method

versus first() method 34
operator precedence 37

P
pagination links

adding 71, 72
postprocessors

using 160, 161
preprocessors

using 160, 161

Pro Git
about 16
URL 16

Pygments
used, for syntax highlighting 186-189

Python's unit test module 168, 169

R
Redis

URL 193
used, for caching 192, 193

relational database
advantages 22

S
schema

Flask-Migrate, adding 43, 44
initial migration, creating 44
modifying 43
schema migration, creating 149
status column, adding 45

SeaSurf
about 183
adding 184

Secure Socket Layer (SSL) 14
sessions 120, 121
slugs

generating 138-140
SQLAlchemy

about 22
benefits 23
connecting, to database 25, 26
database engine, selecting 25
installing 24
online resources 24
URL, for documentation 26, 42
using, in Flask app 24

SSL
certificate request, generating 211, 212
used, for securing site 210
with Apache httpd 212, 213
with Gunicorn 215, 216
with Nginx 214

static assets
managing, via Flask-Admin 140, 141

[225]

static files
serving 100

static site
commenting 195
creating 194
multiple editors, synchronizing 195

status column
adding, to schema 45

syntax highlighting
with Pygments 186-189

T
tagging system

backrefs, using 42
building 37-40
tags, adding from entries 41
tags, removing from entries 41

tags
listing 68
modifying, on posts 94-96
saving, on posts 94-96

template, Flask-Admin
about 145
blocks 145
using 146

test-driven development (TDD) 169
testing configuration file

creating 176, 177
tests, Jinja2

about 54
URL 54

Traceback 13

U
unit testing

about 167, 168
API, testing 175, 176
example 169-171
page, testing 173-175
Python's unit test module 168, 169
references 182
with Flask 171, 172

URL scheme
creating 60, 61
detail view, building 66
entries, listing for given tag 67
full-text search, adding 69, 70
index view, building 63, 64
purpose 61
structure 61
tags, listing 68
URL routes, defining 62

User form
enhancing 136, 137

user model
active field 104
created_timestamp field 104
creating 104, 105
email (unique) field 104
name field 104
password_hash field 104
slug field 104

user objects
creating 108, 109

user's drafts
displaying 119, 120

uWSGI 207

V
validator 82
view

form, creating 77, 78
view access

author, setting on blog entries 117
delete view, protecting 118
edit view, protecting 117, 118
entry's author, storing 115, 116
restricting 114
user's drafts, displaying 119, 120

W
Web Server Gateway Interface (WSGI)

server
Apache httpd 204-206
Flask, running 203, 204
Nginx 207, 208

[226]

WTForms
about 75
cleaning up 90
create.html template, creating 78-80
edit.html template, creating 86-89
entries, deleting 89
error messages, displaying 82-85
error messages, validating 82-85
existing entries, editing 85, 86
form, creating with view 77, 78
form, defining for Entry model 76, 77
form submissions, handling 80-82
installing 76

Thank you for buying
Learning Flask Framework

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Flask Framework Cookbook
ISBN: 978-1-78398-340-7 Paperback: 258 pages

Over 80 hands-on recipes to help you create
small-to-large web applications using Flask

1.	 Get the most out of the powerful Flask
framework while remaining flexible with
your design choices.

2.	 Build end-to-end web applications, right from
their installation to the post-deployment stages.

3.	 Packed with recipes containing lots of sample
applications to help you understand the
intricacies of the code.

Instant Flask Web Development
ISBN: 978-1-78216-962-8 Paperback: 78 pages

Tap into Flask to build a complete application in a
style that you control

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Build a small but complete web application
with Python and Flask.

3.	 Explore the basics of web page layout using
Twitter Bootstrap and jQuery.

4.	 Get to know how to validate data entry using
HTML forms and WTForms.

Please check www.PacktPub.com for information on our titles

Play Framework Essentials
ISBN: 978-1-78398-240-0 Paperback: 200 pages

An intuitive guide to creating easy-to-build scalable
web applications using the Play framework

1.	 Master the complexity of designing a modern
and scalable Web application by leveraging the
Play framework stack.

2.	 The key concepts of the framework are
illustrated with both Scala and Java code
examples.

3.	 A step-by-step guide with code examples based
on a sample application built from the ground
up, providing the practical skills required to
develop Scala- or Java-based applications.

Mastering Flask
ISBN: 978-1-78439-365-6 Paperback: 288 pages

Gain expertise in Flask to create dynamic and
powerful web applications

1.	 Work with scalable Flask application structures
to create complex web apps.

2.	 Discover the most powerful Flask extensions
and learn how to create one.

3.	 Deploy your application to real-world
platforms using this step-by-step guide.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating your
First Flask Application
	What is Flask?
	With great freedom comes great responsibility

	Setting up a development environment
	Supporting Python 3

	Installing Python packages
	Installing pip
	Installing virtualenv
	Why use virtualenv?
	Installing virtualenv with pip

	Creating your first Flask app
	Installing Flask in your virtualenv
	Hello, Flask!
	Understanding the code
	Routes and requests
	Reading values from the request

	Debugging Flask applications

	Introducing the blog project
	The spec
	Creating the blog project
	A barebones Flask app
	Zooming out
	The import flow

	Summary

	Chapter 2: Relational Databases with SQLAlchemy
	Why use a relational database?
	Introducing SQLAlchemy
	Installing SQLAlchemy
	Using SQLAlchemy in our Flask app
	Choosing a database engine
	Connecting to the database

	Creating the Entry model
	Creating the Entry table
	Working with the Entry model
	Making changes to an existing entry
	Deleting an entry

	Retrieving blog entries
	Filtering the list of entries
	Special lookups
	Combining expressions
	Negation
	Operator precedence

	Building a tagging system
	Adding and removing tags from entries
	Using backrefs

	Making changes to the schema
	Adding Flask-Migrate to our project
	Creating the initial migration
	Adding a status column

	Summary

	Chapter 3: Templates and Views
	Introducing Jinja2
	Basic template operations
	Loops, control structures, and template programming
	Jinja2 built-in filters

	Creating a base template for the blog
	Creating a URL scheme
	Defining the URL routes
	Building the index view
	Building the detail view
	Listing entries matching a given tag
	Listing all the tags
	Full-text search

	Adding pagination links
	Enhancing the blog app
	Summary

	Chapter 4: Forms and Validation
	Getting started with WTForms
	Defining a form for the Entry model
	A form with a view
	The create.html template
	Handling form submissions
	Validating input and displaying error messages
	Editing existing entries
	The edit.html template

	Deleting entries
	Cleaning up

	Using flash messages
	Displaying flash messages in the template

	Saving and modifying tags on posts
	Image uploads
	Processing file uploads
	The image upload template

	Serving static files
	Summary

	Chapter 5: Authenticating Users
	Creating a user model
	Installing Flask-Login
	Implementing the Flask-Login interface

	Creating user objects
	Login and logout views
	The login template
	Logging out

	Accessing the current user
	Restricting access to views
	Storing an entry's author
	Setting the author on blog entries
	Protecting the edit and delete views
	Displaying a user's drafts

	Sessions
	Summary

	Chapter 6: Building an Administrative Dashboard
	Installing Flask-Admin
	Adding Flask-Admin to our app

	Exposing models through the Admin
	Customizing the list views
	Adding search and filtering to the list view
	Customizing Admin model forms
	Enhancing the User form
	Generating slugs

	Managing static assets via the Admin
	Securing the admin website
	Creating an authentication and authorization mixin
	Setting up a custom index page
	Flask-Admin templates

	Reading more
	Summary

	Chapter 7: AJAX and RESTful APIs
	Creating a comment model
	Creating a schema migration

	Installing Flask-Restless
	Setting up Flask-Restless
	Making API requests

	Creating comments using AJAX
	AJAX form submissions
	Validating data in the API
	Preprocessors and postprocessors

	Loading comments using AJAX
	Retrieving the list of comments

	Reading more
	Summary

	Chapter 8: Testing Flask Apps
	Unit testing
	Python's unit test module
	A simple math test

	Flask and unit testing
	Testing a page
	Testing an API

	Test-friendly configuration
	Mocking objects
	Logging and error reporting
	Logging
	Logging to file
	Custom log messages
	Levels

	Error reporting

	Read more
	Summary

	Chapter 9: Excellent Extensions
	SeaSurf and CSRF protection of forms
	Creating Atom feeds
	Syntax highlighting using Pygments
	Simple editing with Markdown
	Caching with Flask-Cache and Redis
	Creating secure, stable versions of your site by creating static content
	Commenting on a static site
	Synchronizing multiple editors

	Asynchronous tasks with Celery
	Creating command line instructions with Flask-script
	References
	Summary

	Chapter 10: Deploying Your Application
	Running Flask with a WSGI server
	Apache's httpd
	Serving static files

	Nginx
	Serving static files

	Gunicorn

	Securing your site with SSL
	Getting your certificate
	Apache httpd
	Nginx
	Gunicorn

	Automating deployment using Ansible
	Read more
	Summary

	Index

