

	

	

Django	Cookbook
Web	Development	with	Django

Step	by	Step	Guide
2-nd	Edition

	
By	Beau	Curtin

	

	

Copyright©2016	Beau	Curtin
All	Rights	Reserved

	

	

Copyright	©	2016	Beau	Curtin

	

	

All	 rights	 reserved.	 No	 part	 of	 this	 publication	 may	 be	 reproduced,	 distributed,	 or

transmitted	 in	 any	 form	 or	 by	 any	 means,	 including	 photocopying,	 recording,	 or	 other

electronic	 or	 mechanical	 methods,	 without	 the	 prior	 written	 permission	 of	 the	 author,

except	 in	 the	 case	 of	 brief	 quotations	 embodied	 in	 critical	 reviews	 and	 certain	 other

noncommercial	uses	permitted	by	copyright	law.

Table	of	Contents

Chapter	1-	Definition
	

Chapter	2-	Setting	up	the	Environment
	

Chapter	3-	The	Admin	Interface
	

Chapter	4-	Creating	Views	in	Django
	

Chapter	5-	URL	Mapping
	

Chapter	6-	Template	System
	

Chapter	7-	Models
	

Chapter	8-	Page	Redirection
	

Chapter	9-	Sending	E-mails
	

Chapter	10-	Generic	Views
	

Chapter	11-	Form	Processing	in	Django
	

Chapter	12-	Uploading	Files
	

Chapter	13-	Handling	Cookies
	

Chapter	14-	Sessions	in	Django
	

Chapter	15-	Memory	Caching	in	Django
	

Conclusion

Disclaimer

	

	

While	all	attempts	have	been	made	to	verify	the	information	provided	in	this	book,
the	 author	 does	 assume	 any	 responsibility	 for	 errors,	 omissions,	 or	 contrary
interpretations	 of	 the	 subject	matter	 contained	within.	 The	 information	 provided	 in
this	book	is	for	educational	and	entertainment	purposes	only.	The	reader	is	responsible	for
his	or	her	own	actions	and	the	author	does	not	accept	any	responsibilities	for	any	liabilities
or	damages,	real	or	perceived,	resulting	from	the	use	of	this	information.

	
	

The	 trademarks	 that	 are	 used	 are	without	 any	 consent,	 and	 the	publication	 of	 the
trademark	 is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All
trademarks	and	brands	within	this	book	are	for	clarifying	purposes	only	and	are	the
owned	by	the	owners	themselves,	not	affiliated	with	this	document.

Introduction
	

	

There	 has	 been	 an	 increase	 in	 the	 need	 for	 web	 apps,	 however,	 most	 programming

languages	which	support	app	development	are	complex.	This	means	that	longer	periods	of

times	 are	 spent	while	 developing	 these	 apps.	 Python	 has	 a	 framework	 called	 “Django”

which	provides	web	developers	with	 a	mechanism	 to	 develop	web	 apps	 in	 an	 easy	 and

quick	manner.	 So	 it’s	 a	 good	 idea	 for	 you	 to	 learn	 how	 to	 use	 this	 framework	 for	 the

development	 of	 web	 apps,	 all	 of	 which	 is	 explained	 in	 this	 book.	Make	 sure	 that	 you

install	Python	2.6.5	or	higher.	Enjoy	reading!

Chapter	1-	Definition
	
	
Django	 is	 a	 Python-based	 web	 framework	 used	 for	 building	 web	 applications	 of	 high

quality.	It	helps	us	avoid	repetitive	tasks,	which	makes	the	process	of	web	development	an

easy	experience	and	saves	time.

The	following	are	some	of	the	design	philosophies	of	Django:

	

Loosely	 Coupled-	 In	 Django,	 the	 aim	 is	 to	 make	 each	 element	 of	 the	 stack	 as

independent	as	possible.

Fast	 Development-	 The	 aim	 is	 to	 do	 whatever	 it	 takes	 to	 facilitate	 the	 fast

development	of	web	applications.

Less	Coding-	Less	code	is	used	to	facilitate	fast	development.

Clean	Design-	The	aim	of	Django	is	to	come	up	with	a	very	clean	design	to	make

development	easy.	Clear	strategies	are	used	during	the	web	development	process.

Don’t	 Repeat	 Yourself	 (DRY)-	 Everything	 in	 Django	 has	 to	 be	 developed	 in	 a

single	place,	rather	than	repeating	it	again	and	again.

Chapter	2-	Setting	up	the	Environment
	
	

To	 set	 up	 the	 environment	 for	 development	 in	 Django,	 you	 have	 to	 install	 and	 set	 up

Python,	the	Django	and	a	Database	System.	Since	Django	is	used	for	development	of	web

apps,	you	also	have	to	set	up	a	server.

	

Installation	of	Python

	

The	code	for	Django	is	designed	100%	for	Python.	This	means	that	you	will	have	to	install

Python	in	your	system.	For	those	using	the	latest	versions	of	either	Linux	or	Mac	OS,	the

Python	will	have	already	been	installed	for	you.	To	verify	this,	just	open	your	command

prompt	and	 then	 type	 the	command	“python”.	 If	python	has	already	been	 installed,	you

should	see	something	similar	to	this:

	

$	python

Python	2.7.5	(default,	Jun	17	2014,	18:11:42)

[GCC	4.8.2	20140120	(Red	Hat	4.8.2-16)]	on	linux2

	

	

If	 you	 don’t	 get	 the	 above	 result,	 make	 sure	 that	 you	 download	 and	 install	 the	 latest

version	of	Python	to	your	system.

	

Installation	of	Django

	

This	can	easily	be	done,	but	 the	steps	 involved	are	determined	by	 the	kind	of	operating

system	you	are	using.	Please	note	that	Python	is	a	platform	that	is	platform	independent.

This	 is	 why	 there	 is	 only	 a	 single	 package	 for	Django,	 because	 it	 can	work	 on	 all	 the

platforms.

	

Installation	on	Unix/Linux	and	Mac	OS

	

In	 these	operating	systems,	 the	Django	framework	can	be	 installed	 in	 the	 following	 two

ways:

Using	the	package	manager	of	the	OS,	or	use	“pip”	or	“easy_install”,	if	they	have

already	been	installed.		

Manual	installation	by	use	of	the	archive	you	had	downloaded	before.

	

We	will	only	explore	the	second	option,	as	the	first	one	will	depend	on	the	distribution	of

the	OS	you	are	using.	If	you	choose	to	follow	the	first	method,	be	careful	with	the	version

of	the	Django	that	you	install.	It	is	best	to	install	the	latest	version	of	the	framework.

	

You	can	then	extract	and	install	the	package.	The	following	commands	are	necessary:

	

$	tar	xzvf	Django-x.xx.tar.gz

$	cd	Django-x.xx

$	sudo	python	setup.py	install

	

	

To	test	your	installation,	just	execute	the	command	given	below:

	

$	django-admin.py	–version

	

If	you	see	the	current	version	of	Django	displayed	on	the	screen,	you	will	know	that

everything	has	been	set	up	as	intended.

	

	

Installation	on	Windows

	

Our	assumption	is	that	you	already	have	your	Python	and	Django	Archive	installed	on

your	system.	Begin	by	verifying	your	path.

	

On	certain	versions	of	the	Windows	OS,	you	should	first	check	that	the	PATH	variable	has

been	set	to	the	following:

	

C:\Python27\;C:\Python27\Lib\site-packages\django\bin\

	

However,	the	above	will	be	determined	by	the	version	of	Python	that	you	are	using.	The

extraction	can	be	done	as	follows:

	

c:\>cd	c:\Django-x.xx

	

It	is	now	time	for	you	to	install	the	Django.	For	the	command	for	doing	this	to	be

executed,	you	must	have	administrative	privileges	over	the	system.	Here	is	the	command:

	

	

c:\Django-x.xx>python	setup.py	install

	

The	installation	can	be	verified	by	running	the	following	on	the	cmd:

	

c:\>django-admin.py	–version

	

The	current	version	of	the	Django	should	be	displayed	on	the	screen.

	

For	the	case	of	setup	of	the	database,	there	is	a	specific	way	to	do	it	for	any	database.

There	are	several	tutorials	online	explaining	how	to	do	this.	Django	also	comes	pre-

configured	with	a	web	server.	This	can	be	used	for	the	purpose	of	developing	and	testing

web	applications.

Creation	of	the	Project

	

For	both	Linux	and	Windows	users,	launch	your	terminal	or	cmd	and	then	navigate	to

where	you	need	your	project	to	be	located.	Just	execute	the	command	given	below:

	

$	django-admin	startproject	project1

	

	

The	above	command	will	create	a	project	named	“project1”	and	this	will	have	the

structure	given	below:

	

	

Project1/

manage.py

project1/

__init__.py

settings.py

urls.py

wsgi.py

Structure	of	the	Project

	

The	“Project1”	folder	is	in	the	project	container	and	it	is	made	up	of	two	elements:

	

•							manage.py-	this	file	is	responsible	for	facilitating	you	to	perform	an	interaction

with	your	project	via	the	command	line.	If	you	need	to	view	the	list	of	commands

that	can	be	accessed	via	this	file,	you	can	execute	the	following	command:

	

$	python	manage.py	help

	

	

										“project1”	subfolder-	this	represents	the	actual	Python	package	for	the

project.	It	has	four	files:

	

													__init__.py-	this	is	for	Python	and	it	should	be	treated	as	a	package.

	

													settings.py-	this	has	the	settings	for	your	project.

	

													urls.py-	this	has	the	links	to	your	project	as	well	as	the	functions	to	call.	It	is

just	a	kind	of	ToC	for	the	project.

	

													wsgi.py-	this	is	needed	if	you	want	to	perform	a	deployment	of	your	project

via	the	WSGI.

Setting	Up	the	Project

	

The	project	has	been	set	up	in	the	folder	named	“project1/settings.py”.	Let’s	discuss	some

of	the	important	aspects	that	you	may	have	to	set	up:

	

	

DEBUG	=	True

	

	

With	the	above	option,	you	will	be	in	a	position	to	set	the	project	to	either	be	in	debug

mode	or	not.	In	debug	mode,	you	will	be	in	a	position	to	get	more	information	regarding

the	errors	of	a	project.	This	should	not	be	set	to	“True”	when	the	project	is	live.	To	enable

your	Django	light	server	serve	static	files,	this	has	to	be	set	to	“True”.	This	should	only	be

done	in	the	development	mode.

	

	

DATABASES	=	{

‘default’:	{

‘ENGINE’:	‘django.db.backends.sqlite3’,

‘NAME’:	‘database.sql’,

‘USER’:	”,

‘PASSWORD’:	”,

‘HOST’:	”,

‘PORT’:	”,

}

}

	

	

In	the	example	given	above,	we	have	used	the	SQLite	engine.	Before	you	can	set	up	any

new	engine,	you	should	always	ensure	that	you	have	correctly	installed	the	necessary	db

driver.

	

	

Since	you	have	created	and	configured	the	project,	it	is	a	good	idea	to	check	to	make	sure

that	it	is	working.	This	can	be	done	as	shown	below:

	

	

$	python	manage.py	runserver

Chapter	3-	Apps	Life	Cycle
A	project	is	made	up	of	many	applications.	Each	of	these	applications	has	an	object	that

could	 equally	 be	 used	 in	 any	other	 project.	A	good	 example	 of	 this	 is	 the	 contact	 form

used	on	a	website,	as	it	can	be	used	on	other	websites.	It	should	be	seen	as	a	module	for	a

project.

	

Creating	an	Application

	

Our	assumption	is	that	you	are	in	the	project	folder.	The	main	“project1”	folder	is	similar

to	the	folder	“manage.py”.

	

$	python	manage.py	startapp	myapplication

	

At	 this	 point,	 you	 will	 have	 created	 the	 application	 “myapplication”	 and	 we	 can	 then

create	the	“myapplication”	folder	with	the	structure	given	below:

	

myapplication/

__init__.py

admin.py

models.py

tests.py

views.py

										__init__.py-	this	will	ensure	that	Python	handles	the	folder	as	a	package.

										admin.py-	this	helps	to	make	the	app	be	modifiable	in	admin	interface.

										models.py-	this	will	store	all	the	models	for	the	application.

										tests.py-	this	has	the	unit	tests.

										views.py-	this	is	where	the	application	views	are	stored.

	

Now	that	we	have	the	application	“myapplication”,	it	is	a	good	time	for	us	to	register	it	to

the	Django	project	we	previously	created,	which	is	“project1”.	To	do	this,	update	the

INSTALLED_APPS	tuple	located	in	the	file	settings.py	for	our	project.	This	is	shown

below:

	

INSTALLED_APPS	=	(

‘django.contrib.admin’,

‘django.contrib.auth’,

‘django.contrib.contenttypes’,

‘django.contrib.sessions’,

‘django.contrib.messages’,

‘django.contrib.staticfiles’,

‘myapplication’,

)

Chapter	4-	The	Admin	Interface
	

In	 Django,	 an	 admin	 is	 readily	 provided	 for	 administration	 purposes.	 This	 interface	 is

determined	 by	 the	 module	 “django.countrib”.	 However,	 you	 will	 have	 to	 import	 some

modules.

	

	

For	the	case	of	“INSTALLED_APPS”,	you	should	ensure	that	you	have	the	following:

	

	

INSTALLED_APPS	=	(

‘django.contrib.admin’,

‘django.contrib.auth’,

‘django.contrib.contenttypes’,

‘django.contrib.sessions’,

‘django.contrib.messages’,

‘django.contrib.staticfiles’,

‘myapplication’,

)

	

For	“MIDDLEWARE_CLASSES”,	make	sure	that	you	have	the	following:

	

	

MIDDLEWARE_CLASSES	=	(

‘django.contrib.sessions.middleware.SessionMiddleware’,

‘django.middleware.common.CommonMiddleware’,

‘django.middleware.csrf.CsrfViewMiddleware’,

‘django.contrib.auth.middleware.AuthenticationMiddleware’,

‘django.contrib.messages.middleware.MessageMiddleware’,

‘django.middleware.clickjacking.XFrameOptionsMiddleware’,

)

	

	

To	access	the	Admin	interface	and	before	launching	the	server,	you	have	to	initialize	the

database.	The	following	command	can	be	used	to	do	this:

	

	

$	python	manage.py	syncdb

	

	

The	above	command	will	then	initialize	the	creation	of	the	necessary	tables	depending	on

the	type	of	database	that	you	are	using.	These	are	very	necessary	for	the	Admin	interface

to	be	run.	You	should	then	create	the	URL	for	the	Admin	interface.

	

	

Open	the	file	“myproject/url.py”.	You	will	see	something	that	looks	like	this:

	

	

from	django.conf.urls	import	patterns,	include,	url

from	django.contrib	import	admin

admin.autodiscover()

urlpatterns	=	patterns(”,

#	Examples:

#	url(r’^$’,	‘project1.views.home’,	name	=	‘home’),

#	url(r’^blog/’,	include(‘blog.urls’)),

url(r’^admin/’,	include(admin.site.urls)),

)

	

	

The	server	can	then	be	started	using	the	following	command:

	

	

$	python	manage.py	runserver

	

Just	access	your	admin	interface	at	the	following	URL:

	

	

http://127.0.0.1:8000/admin/

	

	

You	will	then	finally	have	the	Admin	interface.	This	will	allow	you	to	perform	some

administrative	tasks	as	far	as	your	project	is	concerned.

	

http://127.0.0.1:8000/admin/

Chapter	5-	Creating	Views	in	Django
	
	

A	view	is	just	a	Python	function	that	will	take	a	request	and	then	return	a	response	object.

The	response	can	be	in	the	form	of	the	HTML	content	for	your	web	page.

	

	

Consider	 the	 example	 given	 below,	which	 shows	 how	 a	 simple	 view	 can	 be	 created	 in

Django:

	

	

from	django.http	import	HttpResponse

def	hello(request):

text	=	”””<h1>welcome	to	my	application	</h1>”””

return	HttpResponse(text)

	

	

The	above	view	should	give	you	the	message	“welcome	to	my	application”.

When	presenting	our	view,	we	can	make	use	of	the	MVT	pattern.	Suppose	that	we	have

the	template	“myapplication/templates/hello.html”.	Our	view	can	be	created	as	follows:

	

from	django.shortcuts	import	render

def	hello(request):

return	render(request,	“myapplication/template/hello.html”,	{})

	

	

It	is	possible	for	us	to	pass	parameters	to	our	view.	This	is	demonstrated	below:

	

	

from	django.http	import	HttpResponse

def	hello(request,	number):

text	=	“<h1>welcome	to	my	application	number	%s!</h1>”%	number

	

return	HttpResponse(text)

	

When	it	is	linked	to	a	URL,	the	number	which	has	been	passed	as	the	parameter	will	be

displayed.

Class	Based	Views

	

These	views	are	used	for	sub-class	View	and	then	to	implement	the	HTTP	methods	that	it

can	support.	Class	based	views	can	be	implemented	as	shown	in	the	following	program:

	

	

from	django.http	import	HttpResponse

from	django.views.generic	import	View

	

class	OurView(View):

	

def	get(self,	request,	*args,	**kwargs):

return	HttpResponse(“Hello,	there!”)

	

	

In	this	type	of	view,	the	HTTP	methods	should	be	mapped	to	the	class	method	names.	In

the	above	example,	we	have	a	defined	a	handler	for	the	GET	requests	with	a	“get”	method.

Just	like	we	have	implemented	the	function,	the	“request”	will	be	taken	as	the	first

argument,	and	an	HTTP	response	will	be	returned.

Listing	Contacts

	

Suppose	we	want	to	write	a	view	that	will	give	us	a	list	of	contacts	that	have	been	stored

in	a	database.		The	following	code	can	help	us	implement	this:

	

	

from	django.views.generic	import	ListView

from	contacts.models	import	Contact

class	ListContactView(ListView):

model	=	Contact

	

	

The	ListView	we	have	subclassed	from	is	made	up	of	numerous	mixins	that	are	expected

to	provide	some	behavior.	A	code	such	as	this	gives	us	a	lot	of	power	while	using	less

code.	We	can	then	use	“model	=	Contact”,	which	will	list	the	contacts	we	have	stored	in

the	database.

Definition	of	URLs

	

The	configuration	of	URL	informs	Django	as	to	how	to	match	the	path	of	a	request	to	the

Python	code.	Django	will	look	for	URL	configuration	that	has	been	defined	as

“urlpatterns”.

	

	

We	can	now	add	a	URL	mapping	for	the	contact	list	view.	This	is	shown	below:

	

from	django.conf.urls	import	patterns,	include,	url

import	contacts.views

urlpatterns	=	patterns(”,

url(r’^$’,	contacts.views.ListContactView.as_view(),

name=‘contacts-list’,),

)

	

Although	it	is	not	a	must	for	us	to	use	the	“url()”	function,	it	is	of	great	importance	as

after	we	begin	to	add	more	information	to	our	URL	pattern,	it	will	allow	us	to	make	use	of

named	parameters,	and	everything	will	be	made	much	clearer.	Note	that	we	have	used	a

regular	expression	as	the	first	parameter.

Creation	of	a	Template

	

Note	that	a	URL	has	already	been	defined	for	the	list	view,	and	we	can	try	this	out.	Django

usually	provides	us	with	a	server	that	we	can	use	during	development	for	the	purpose	of

testing	our	projects.	This	is	shown	below:

	

	

$	python	manage.py	runserver

Validating	models…

0	errors	found

Django	version	1.4.3,	using	settings	‘addressbook.settings’

Development	server	is	running	at	http://127.0.0.1:8000/

Quit	the	server	with	CONTROL-C.

	

	

At	this	time,	visiting	the	URL,	that	is,	http://localhost:8000/will	give	you	an	error:

“TemplateDoesNotExist”.

	

	

This	is	because,	from	our	code,	the	system	was	expecting	to	get	a	URL,	but	we	have	not

yet	created	it.	We	can	then	go	ahead	and	create	it.

http://localhost:8000/will

The	default	setting	is	that	Django	looks	for	templates	in	the	applications	and	the	directory

you	have	specified	in	“settings.TEMPLATE_DIRS”.	Generic	views	usually	expect	to	find

the	templates	in	the	directory	that	has	been	named	after	the	application,	and	the	model	is

expected	to	have	the	model	name.	This	is	especially	useful	in	the	distribution	of	a	reusable

application,	as	the	consumer	is	able	to	create	templates	that	override	the	defaults,	and	they

have	to	be	stored	in	a	directory	whose	name	is	associated	with	that	of	the	application.

	

	

In	this	case,	there	is	no	need	for	an	additional	layer,	and	that	is	why	we	want	to	specify	the

template	that	is	to	be	used	explicitly.	Therefore,	we	use	the	“template_name”	property.

That	line	can	be	added	to	our	code	as	shown	below:

	

	

from	django.views.generic	import	ListView

from	contacts.models	import	Contact

class	ListContactView(ListView):

model	=	Contact

template_name	=	‘contact_list.html’

	

	

You	can	then	create	a	subdirectory	named	“templates”	in	your	“contacts”	app,	and	then

create	the	view	“contacts_list”	there.	The	code	for	this	is	shown	below:

	

	

<h1>Contacts</h1>

		{%	for	contact	in	object_list	%}

<li	class=“contact”>{{	contact	}}

		{%	endfor	%}

	

	

You	can	open	the	file	in	your	browser	and	be	able	to	see	the	contacts	that	you	have	added

to	your	database.

Creation	of	the	Contacts

	

Since	we	need	to	add	some	contacts	to	our	database,	doing	so	via	the	shell	will	make	the

process	too	slow.	We	should	create	a	view	that	will	help	us	do	it.	This	can	be	added	as

shown	below:

	

	

from	django.views.generic	import	CreateView

from	django.core.urlresolvers	import	reverse

…																																																							

class	CreateContact(CreateView):

model	=	Contact

template_name	=	‘edit_contact.html’

def	get_success_url(self):

return	reverse(‘contacts-list’)

	

	

In	generic	views	that	carry	out	form	processing,	the	concept	of	“success	URL”	is	used.

This	is	used	for	redirecting	the	user	after	they	have	submitted	the	form	successfully.

	

	

The	code	for	“edit_contact.html”	should	be	as	shown	below:

	

	

<h1>Add	Contact</h1>

<form	action=”{%	url	“contacts-new”	%}”	method=“POST”>

		{%	csrf_token	%}

		

{{	form.as_ul	}}

		

		<input	id=“save_contact”	type=“submit”	value=“Save”	/>

</form>

back	to	list

	

	

Note	that	we	have	made	use	of	the	Django	Form	for	the	model.	This	is	because	we

specified	none	and	so	Django	created	it	for	us.	The	following	line	of	code	can	be	added	to

our	“url.py”	file	so	as	to	configure	the	URL:

url(r’^new$’,	contacts.views.CreateContact.as_view(),

name=‘contacts-new’,),

	

	

Once	you	open	the	URL	http://localhost:8000/new	on	your	browser,	you	will	be	allowed

http://localhost:8000/new

to	create	the	contacts.

	

	

We	can	then	add	a	link	that	will	lead	us	to	the	“contacts_list.html”	page	as	shown	below:

	

	

<h1>Contacts</h1>

	

		{%	for	contact	in	object_list	%}

<li	class=“contact”>{{	contact	}}

		{%	endfor	%}

add	contact

Testing	Views

	

In	Django,	two	tools	can	help	us	in	testing	views:	“RequestFactory”	and	“TestClient”.

TestClient	will	take	the	URL	to	be	retrieved,	and	then	it	will	resolve	it	according	to	the

URL	configuration	of	the	project.	A	test	request	will	then	be	created,	and	this	will	then	be

passed	through	the	view,	and	a	response	will	be	returned.

	

	

The	RequestFactory	makes	use	of	a	similar	API.	In	this	case,	one	has	to	specify	the	URL

that	is	to	be	retrieved,	as	well	as	the	form	data	or	the	parameters.	However,	this	will	not

resolve	the	URL,	but	it	will	return	the	Request	object.	The	result	can	then	be	passed	to	the

view	manually	and	the	result	tested.

	

	

Tests	carried	using	RequestFactory	are	usually	faster	compared	to	ones	carried	out	using

TestClient.	This	might	sound	like	a	small	issue,	but	it	is	of	great	significance	when	you	are

carrying	out	large	tests.

	

	

We	need	to	demonstrate	how	each	kind	of	test	can	be	carried	out	in	Django.	Consider	the

code	given	below:

	

	

from	django.test.client	import	RequestFactory

from	django.test.client	import	Client

…

from	contacts.views	import	ListContactView

…

class	ContactViewTests(TestCase):

“““Contact	list	view	tests.”””

def	test_contacts_in_the_context(self):

client	=	Client()

response	=	client.get(‘/’)

self.assertEquals(list(response.context[‘object_list’]),	[])

Contact.objects.create(f_name=‘foo’,	l_name=‘bar’)

response	=	client.get(‘/’)

self.assertEquals(response.context[‘object_list’].count(),	1)

def	test_contacts_in_the_context_request_factory(self):

factory	=	RequestFactory()

request	=	factory.get(‘/’)

response	=	ListContactView.as_view()(request)

self.assertEquals(list(response.context_data[‘object_list’]),	[])

Contact.objects.create(first_name=‘foo’,	last_name=‘bar’)

response	=	ListContactView.as_view()(request)

self.assertEquals(response.context_data[‘object_list’].count(),	1)

Integration	Tests

	

We	can	use	a	tool	named	“Selester”,	which	is	good	for	writing	tests	and	driving	a	browser.

With	this	tool,	automation	of	different	browsers	can	be	done	easily,	and	we	will	be	in	a

position	to	interact	with	the	full	app	just	as	the	user	would	do.	This	tool	can	be	installed	as

follows:

	

	

$	pip	install	selenium

	

	

We	need	to	implement	a	number	of	tests	for	our	views,	for	the	following	purposes::

	

	

1.							To	create	a	contact	and	ensure	that	it	is	listed.

	

2.							To	ensure	the	“add	contact”	link	is	visible	and	has	been	linked	to	the	list	page.

	

3.							To	exercise	the	“add	contact”	form,	fill	it	in	and	then	submit	the	form.

	

	

This	is	shown	below:

	

	

from	django.test	import	LiveServerTestCase

from	selenium.webdriver.firefox.webdriver	import	WebDriver

…

class	ContactIntegrationTests(LiveServerTestCase):

	

@classmethod

def	setUpClass(cls):

cls.selenium	=	WebDriver()

super(ContactIntegrationTests,	cls).setUpClass()

	

@classmethod

def	tearDownClass(cls):

cls.selenium.quit()

super(ContactIntegrationTests,	cls).tearDownClass()

	

def	test_contact_listed(self):

	

#	creating	a	test	contact

Contact.objects.create(f_name=‘foo’,	l_name=‘bar’)

	

#	ensure	it	is	listed	as	<first>	<last>	on	our	list

self.selenium.get(‘%s%s’	%	(self.live_server_url,	‘/’))

self.assertEqual(

self.selenium.find_elements_by_css_selector(‘.contact’)[0].text,

‘foo	bar’

)

def	test_add_contact_linked(self):

self.selenium.get(‘%s%s’	%	(self.live_server_url,	‘/’))

self.assert_(

self.selenium.find_element_by_link_text(‘add	contact’)

)

def	test_add_contact(self):

self.selenium.get(‘%s%s’	%	(self.live_server_url,	‘/’))

self.selenium.find_element_by_link_text(‘add	contact’).click()

self.selenium.find_element_by_id(‘id_f_name’).send_keys(‘test’)

self.selenium.find_element_by_id(‘id_l_name’).send_keys(‘contact’)

self.selenium.find_element_by_id(‘id_email’).send_keys(‘test@domain.com’)

self.selenium.find_element_by_id(“save_contact”).click()

self.assertEqual(

self.selenium.find_elements_by_css_selector(‘.contact’)[-1].text,

‘test	contact’

)

Chapter	6-	URL	Mapping
Our	 aim	 is	 to	 access	 a	 view	 via	 a	URL.	Django	 provides	 us	with	 a	mechanism	 named

“URL	Mapping”,	which	can	be	implemented	by	modifying	the	project	file	“url.py”.	The

file	looks	like	this:

	

	

from	django.conf.urls	import	patterns,	include,	url

from	django.contrib	import	admin

admin.autodiscover()

upatterns	=	patterns(”,

#Examples

#url(r’^$’,	‘project1.view.home’,	name	=	‘home’),

#url(r’^blog/’,	include(‘blog.urls’)),

url(r’^admin’,	include(admin.site.urls)),

)

	

	

A	mapping	is	just	a	tuple	in	the	URL	patterns	and	is	as	follows:

	

	

from	django.conf.urls	import	patterns,	include,	url

from	django.contrib	import	admin

admin.autodiscover()

upatterns	=	patterns(”,

#Examples

#url(r’^$’,	‘project1.view.home’,	name	=	‘home’),

#url(r’^blog/’,	include(‘blog.urls’)),

url(r’^admin’,	include(admin.site.urls)),

url(r’^hello/’,	‘myapplication.views.hello’,	name	=	‘hello’),

)

	

As	 you	 have	 noticed	 from	 the	 above	 code,	 there	 are	 three	 components	 associated	 in

mapping.	These	are	the	following:

	

1.	 The	pattern-	This	is	a	regexp	that	matches	the	URL	that	you	are	in	need	of	resoling

and	mapping.

	

2.	 Python	path	to	your	view-	This	is	the	same	as	when	one	is	importing	a	module.

	

3.	 The	name-	For	URL	reversing	to	be	done,	one	has	to	use	the	named	URL	patterns.

This	is	what	has	been	done	in	the	above	examples.

Organization	of	URLs

	

You	 need	 to	 create	 the	 file	 “url.py”	 for	 each	 application	 that	 you	 create	 to	 be	 able	 to

organize	your	URLs	effectively.	The	following	code	can	be	used	for	creation	of	such	a	file

for	the	app	“myapplication”:

	

	

from	django.conf.urls	import	patterns,	include,	url

upatterns	=	patterns(”,	url(r’^hello/’,	‘myapplication.views.hello’,	name	=	‘hello’),)

	

	

The	project	“project1/url.py”	should	then	change	to	the	following:

	

	

from	django.conf.urls	import	patterns,	include,	url

from	django.contrib	import	admin

admin.autodiscover()

upatterns	=	patterns(”,

#Examples

#url(r’^$’,	‘project1.view.home’,	name	=	‘home’),

#url(r’^blog/’,	include(‘blog.urls’)),

	

url(r’^admin’,	include(admin.site.urls)),

url(r’^myapplication/’,	include(myapplication.urls)),

)

	

	

All	of	the	URLs	from	the	application	“myapplication”	have	been	included.

To	map	a	new	view	to	the	“myapplication/url.py”,	the	code	for	“myapplication/url.py”	can

be	changed	to	the	following:

	

	

from	django.conf.urls	import	patterns,	include,	url

upatterns	=	patterns(”,

url(r’^hello/’,	‘myapplication.views.hello’,	name	=	‘hello’),

url(r’^morning/’,	‘myapplication.views.morning’,	name	=	‘morning’),

	

)

	

Note	 that	 according	 to	 the	 above	 code,	 the	 new	 view	 is	 located	 in	 the

“myapplication/morning”.	The	code	given	below	can	be	used	for	refactoring	the	above:

	

	

from	django.conf.urls	import	patterns,	include,	url

upatterns	=	patterns(‘myapplication.views’,

url(r’^hello/’,	‘hello’,	name	=	‘hello’),

url(r’^morning/’,	‘morning’,	name	=	‘morning’),)

How	to	send	Parameters	to	the	Views

	

	

For	 us	 to	 pass	 parameters,	 we	 just	 have	 to	 capture	 them	 using	 the	 regexp	 in	 our	URL

pattern.	Consider	the	example	view	given	below:

	

	

from	django.shortcuts	import	render

from	django.http	import	HttpResponse

def	hello(request):

return	render(request,	“hello.html”,	{})

def	vwArticle(request,	artId):

text	=	“Displaying	the	Number	of	Article	:	%s”%artId

return	HttpResponse(text)

	

	

Our	aim	is	to	map	to	the	“myapplication/url.py”	and	we	will	be	in	a	position	to	access	it

via	 the	 “myapplication/url.py”.	 The	 following	 code	 has	 to	 be	 implemented	 in	 the	 file

“myapplication/url.py”:

	

	

from	django.conf.urls	import	patterns,	include,	url

upatterns	=	patterns(‘myapplication.views’,

url(r’^hello/’,	‘hello’,	name	=	‘hello’),

url(r’^morning/’,	‘morning’,	name	=	‘morning’),

url(r’^article/(\d+)/’,	‘vwArticle’,	name	=	‘article’),)

	

	

Please	note	 that	 the	order	of	your	parameters	 is	 very	 important.	Suppose	 that	we	are	 in

need	of	a	list	of	articles	from	a	particular	month	of	the	year.	The	view	can	be	changed	to

the	following:

	

	

from	django.shortcuts	import	render

from	django.http	import	HttpResponse

def	hello(request):

return	render(request,	“hello.html”,	{})

def	vwArticle(request,	artId):

text	=	“Displaying	the	Number	of	Article	:	%s”%artId

return	HttpResponse(text)

def	vwArticle(request,	month,	yr):

text	=	“Displaying	the	articles	of	:	%s/%s”%(yr,	month)

return	HttpResponse(text)

	

	

The	corresponding	file	“url.py”	should	be	as	follows:

	

	

from	django.conf.urls	import	patterns,	include,	url

upatterns	=	patterns(‘myapplication.views’,

url(r’^hello/’,	‘hello’,	name	=	‘hello’),

url(r’^morning/’,	‘morning’,	name	=	‘morning’),

url(r’^article/(\d+)/’,	‘vwArticle’,	name	=	‘article’),

url(r’^articles/(\d{2})/(\d{4})’,	‘vwArticles’,	name	=	‘articles’),)

	

	

You	can	then	test	the	app	and	reverse	your	parameters	and	observe	what	happens.	In	my

case,	I	got	the	following	result:

	

	

Displaying	the	articles	of	:	2016/11

	

	

Upon	reversing	the	parameters,	I	got	a	different	result.	However,	this	is	not	what	we	need.

To	prevent	this,	we	only	have	to	link	the	URL	parameter	to	our	view	parameter.	Because

of	that,	the	file	“url.py”	will	be	as	follows:

	

	

from	django.conf.urls	import	patterns,	include,	url

upatterns	=	patterns(‘myapplication.views’,

url(r’^hello/’,	‘hello’,	name	=	‘hello’),

url(r’^morning/’,	‘morning’,	name	=	‘morning’),

url(r’^article/(\d+)/’,	‘vwArticle’,	name	=	‘article’),

url(r’^articles/(?P\d{2})/(?P\d{4})’,	‘vwArticles’,	name	=	‘articles’),)

	

	

That’s	it!

Chapter	7-	Template	System
	

In	Django,	it	is	possible	for	us	to	separate	HTML	and	Python.	The	Python	forms	the	views

while	our	HTML	will	form	the	template.	For	these	two	to	be	linked	together,	we	have	to

rely	on	the	Django	template	language	and	the	render	function.

	

	

The	Render	Function

	

	

This	function	takes	in	three	parameters.	These	include	the	following:

Request-	This	is	our	initial	request.

	

Path	 to	 our	 template-	 This	 represents	 the	 path	 relative	 to	 the	 option

“TEMPLATE_DIRS”	in	the	variable	“settings.py”	of	the	project.

	

Dictionary	of	parameters-	This	is	a	dictionary	that	has	all	of	the	variables	that	are

contained	in	a	template.	You	can	choose	to	declare	it	or	you	can	use	“locals()”	for

the	purpose	of	passing	all	the	local	variables	that	have	been	declared	in	the	view.

Django	Template	Language	(DTL)

	

	

The	template	engine	for	Django	provides	you	with	a	mini-language	for	 the	definition	of

the	user-facing	layer	of	your	application.

	

	

How	to	Display	Variables

	

In	Django,	a	variable	looks	like	this:

	

{{variable}}

	

	

The	 template	works	by	 replacing	 the	above	with	 the	name	of	 the	variable	 that	has	been

passed	by	our	view	as	our	third	parameter	of	the	function	“render”.	Suppose	that	we	need

our	file	“hello.html”	to	display	the	current	date.	To	do	so,	the	file	can	be	modified	to	the

following:

	

	

<html>

<body>

Hello	there!!!<p>Today	is	on	{{day}}</p>

</body>

</html>

	

	

The	view	should	also	be	changed	to	the	following:

	

	

def	hello(request):

day	=	datetime.datetime.now().date()

return	render(request,	“hello.html”,	{“today”	:	day})

	

	

You	can	 then	 try	 to	access	 the	 file	“URL/myapplication/hello”	and	you	will	observe	 the

following	result:

	

	

Hello	there!!!

Today	is	on	Nov.	11,	2016

	

	

That’s	it.	As	most	of	you	might	have	noticed,	in	case	a	particular	variable	is	not	a	string

but	the	Django	needs	to	display	it,	it	uses	the	method	“__str__”.	With	this	principle,	one

can	access	an	attribute	of	an	object	in	the	same	way.

	

	

Filters

	

	

Filters	are	useful	as	they	can	assist	you	to	display	variables	during	the	display	time.	They

have	a	structure	which	looks	like	this:

	

	

{{var|filters}}

	

	

Consider	the	filters	given	below:

{{string|truncatewords:70}}-	With	 this	 filter,	 a	 string	 will	 be	 truncated,	 meaning

that	you	will	only	see	the	first	70	words.

{{string|lower}}-	This	filter	will	convert	a	string	to	lowercase.

{{string|escape|linebreaks}}-	This	will	escape	the	contents	of	a	string,	and	convert

your	line	breaks	into	tags.

It	is	also	possible	to	set	the	default	for	a	particular	variable.

	

	

Tags

	

	

With	tags,	you	can	perform	operations	such	as	for	loop,	if	condition,	template	inheritance

and	others.

	

	

Tag	if

	

	

In	Django,	you	can	use	the	various	versions	of	the	“if”	statement	as	it	is	done	in	Python.

This	is	shown	in	the	code	given	below:

	

	

<html>

<body>

Hello	there!!!<p>Today	is	on{{day}}</p>

We	are	on

{%	if	day.day	==	1	%}

the	first	day	of	the	month.

{%	elif	day	==	30	%}

the	last	day	of	the	month.

{%	else	%}

I	am	not	aware.

{%endif%}

</body>

</html>

	

	

In	the	template	given	above,	the	current	date	will	be	displayed.

	

	

Tag	for

	

	

This	tag	works	in	the	same	way	as	the	“for”	in	Python.	We	now	need	to	change	the	hello

view	so	that	it	can	transmit	a	list	to	the	template.	This	is	shown	below:

	

	

def	hello(request):

day	=	datetime.datetime.now().date()

days	=	[‘Mon’,	‘Tue’,	‘Wed’,	‘Thu’,	‘Fri’,	‘Sat’,	‘Sun’]

return	render(request,	“hello.html”,	{“today”	:	day,	“days_of_week”	:	days})

	

	

Here	is	the	template	for	using	the	tag	for	displaying	the	list:

	

	

<html>

<body>

Hello	there!!!<p>Today	is	on	{{day}}</p>

We	are	on

{%	if	day.day	==	1	%}

the	first	day	of	the	month.

{%	elif	day	==	30	%}

the	last	day	of	the	month.

{%	else	%}

I	am	not	aware.

{%endif%}

<p>

{%	for	days	in	days_of_week	%}

{{day}}

</p>

{%	endfor	%}

</body>

</html>

	

	

The	above	code	should	give	us	the	days	of	the	week	as	we	have	specified,	together	with

the	messages	that	we	have	specified.

	

	

Block	and	Extend	Tags

	

	

A	 template	 system	 is	 not	 complete	 without	 the	 template	 inheritance.	 This	 means	 that

during	the	process	of	development	of	a	template,	we	should	have	the	main	template	with

loopholes	and	the	child	templates	should	be	designed	to	fill	those	loopholes	according	to

what	the	developer	needs.	This	works	through	the	same	mechanism	in	which	a	page	can

need	a	special	css	for	a	particular	tab.

	

	

Consider	the	code	given	below	for	the	template	“main.html”:

	

	

<html>

<head>

<title>

{%	block	title	%}Page	Title{%	endblock	%}

</title>

</head>

		<body>

{%	block	content	%}

Content	of	the	Body

{%	endblock	%}

</body>

</html>

	

	

Our	aim	is	to	change	the	template	“hello.html”	so	that	it	inherits	from	the	template	given

above.	Here	is	the	code	for	this	template:

	

	

{%	extends	“main.html”	%}

{%	block	title	%}The	Hello	Page{%	endblock	%}

{%	block	content	%}

Hello	there!!!<p>Today	is	on{{day}}</p>

We	are	on

{%	if	day.day	==	1	%}

the	first	day	of	the	month.

{%	elif	day	==	30	%}

the	last	day	of	the	month.

{%	else	%}

I	am	not	aware.

{%endif%}

<p>

{%	for	days	in	days_of_week	%}

{{days}}

</p>

{%	endfor	%}

{%	endblock	%}

Chapter	8-	Models
	
	

Models	are	a	class	that	is	used	for	representation	of	a	collection	of	a	table	in	a	DB.	In	this

case,	each	of	the	attribute	of	a	class	is	a	field	in	the	collection	or	table.	In	Django,	models

are	defined	in	the	file	“app/models.py”.

	

	

How	to	create	a	Model

	

	

Consider	the	example	given	below:

	

	

from	django.db	import	models

class	Dreamreal	(models.Model):

web	=	models.CharField(max_length	=	40)

mail	=	models.CharField(max_length	=	40)

name	=	models.CharField(max_length	=	40)

phnumber	=	models.IntegerField()

class	Meta:

db_table	=	“dreamreal”

Each	 model	 has	 to	 inherit	 from	 the	 class	 “django.db.models.Model”.	 Note	 that	 in	 the

above	class,	we	have	defined	4	attributes	that	will	form	the	fields	for	our	table.

	

	

Once	 the	model	has	been	created,	 the	Django	 should	 then	generate	our	 actual	database.

The	following	code	can	be	used:

	

	

$python	manage.py	syncdb

	

	

Manipulating	Data	(CRUD)

	

	

It	is	possible	for	us	to	perform	CRUD	operations	on	our	models.	Consider	the	code	given

below	for	“myapplication/views.py”:

	

	

from	myapplication.models	import	Dreamreal

from	django.http	import	HttpResponse

def	crudops(request):

#Creating	the	entry

dreal	=	Dreamreal(

web	=	“www.mywebsite.com”,	mail	=	“john@mywebsite.com”,

name	=	“john”,	phnumber	=	“0725626821”

)

dreal.save()

#Reading	ALL	the	entries

objects	=	Dreamreal.objects.all()

res	=‘Printing	all	the	Dreamreal	entries	in	our	DB	:	
’

for	e	in	objects:

res	+=	e.name+”
”

#Reading	a	specific	entry:

john	=	Dreamreal.objects.get(name	=	“john”)

res	+=	‘Printing	a	single	entry	
’

res	+=	john.name

#Delete	the	entry

res	+=	‘
	Deleting	the	entry	
’

john.delete()

#Update

dreal	=	Dreamreal(

web	=	“www.mywebsite.com”,	mail	=	“john@mywebsite.com”,

name	=	“john”,	phnumber	=	“0725626821”

)

dreal.save()

res	+=	‘Updating	the	entry
’

dreal	=	Dreamreal.objects.get(name	=	‘john’)

dreal.name	=	‘joel’

dreal.save()

return	HttpResponse(res)

Other	Data	Manipulations

	

	

There	 are	 also	 some	 other	 types	 of	 manipulations	 that	 can	 be	 done	 on	 models.	 The

previous	CRUD	operations	were	performed	on	the	instances	of	our	model.	However,	we

do	not	need	to	perform	our	operations	directly	on	the	class	that	represents	our	model.

We	want	 to	create	a	view	“datamanip”	 in	 the	file	“myapplication/views.py”.	Here	 is	 the

code	for	doing	this:

	

from	myapplication.models	import	Dreamreal

from	django.http	import	HttpResponse

def	datamanip	(request):

res	=	”

#Filtering	the	data:

qs	=	Dreamreal.objects.filter(name	=	“john”)

res	+=	“Found	:	%s	results
”%len(qs)

#Ordering	the	results

qs	=	Dreamreal.objects.order_by(“name”)

for	e	in	qs:

res	+=	e.name	+	‘
’

return	HttpResponse(res)

Linking	Models

	

	

There	 are	 3	ways	 in	Django	by	which	models	 can	 be	 linked	 together.	The	 first	method

involves	the	use	of	 the	“one-to-many”	relationship.	For	us	 to	define	 the	relationship,	we

have	to	use	the	“django.db.models.ForeignKey”.	This	is	shown	in	the	code	given	below:

	

	

from	django.db	import	models

class	Dreamreal(models.Model):

web	=	models.CharField(max_length	=	40)

mail	=	models.CharField(max_length	=	40)

name	=	models.CharField(max_length	=	40)

phnumber	=	models.IntegerField()

online	=	models.ForeignKey(‘Online’,	default	=	1)

class	Meta:

db_table	=	“dreal”

class	Online(models.Model):

domain	=	models.CharField(max_length	=	20)

class	Meta:

db_table	=	“onlineTable”

Chapter	9-	Page	Redirection
	
	

This	property	is	very	useful	in	web	apps.	Sometimes,	something	might	occur	and	the	user

may	need	to	be	redirected	to	another	page.	This	is	what	page	redirection	is	useful	for.	To

achieve	redirection	in	Django,	we	use	the	“redirect”	method.	This	method	takes	the	URL

of	redirection	as	the	parameter.

	

	

Consider	the	code	given	below	for	the	file	“myapplication/views”:

	

	

def	hello(request):

day	=	datetime.datetime.now().date()

dWeek	=	[‘Monday’,	‘Tuesday’,	‘Wednesday’,	‘Thursday’,	‘Friday’,	‘Saturday’,
‘Sunday’]

	

return	render(request,	“hello.html”,	{“today”	:	day,	“days_of_week”	:	dWeek})

	

def	vwArticle(request,	artId):

”””	A	view	for	displaying	an	article	based	on	the	ID”””

text	=	“Displaying	the	Number	of	the	article:	%s”	%artId

return	HttpResponse(text)

def	vwArticles(request,	year,	month):

text	=	“Displaying	the	articles	of	:	%s/%s”%(year,	month)

return	HttpResponse(text)

	

	

We	now	need	to	redirect	the	“hello”	view	to	the	“myproject.com”	and	the	“vwArticle”	 to

be	 redirected	 to	 the	 internal	 “/myapplication/articles”.	 The	 code	 for

“myapplication/view.py”	will	have	to	be	changed	to	the	following:

	

	

from	django.shortcuts	import	render,	redirect

from	django.http	import	HttpResponse

import	datetime

#	Creating	your	own	views	here.

def	hello(request):

day	=	datetime.datetime.now().date()

dWeek	=	[‘Monday’,	‘Tuesday’,	‘Wednesday’,	‘Thursday’,	‘Friday’,	‘Saturday’,
‘Sunday’]

	

return	redirect(“https://www.myproject.com”)

def	vwArticle(request,	artId):

”””	A	view	for	displaying	an	article	based	on	the	ID”””

text	=	“Displaying	the	Number	of	the	article	:	%s”	%artId

return	redirect(vwArticles,	year	=	“2050”,	month	=	“02”)

def	vwArticles(request,	year,	month):

text	=	“Displaying	the	articles	of	:	%s/%s”%(year,	month)

return	HttpResponse(text)

	

	

The	redirect	property	can	also	be	specified	to	be	either	permanent	or	temporary.	Although

the	users	may	see	this	as	being	negligible,	it	is	important	as	the	search	engines	will	use	it

for	the	purpose	of	ranking	your	website.

	

	

The	“name”	parameter	was	also	defined	in	the	file	“url.py”	during	the	process	of	mapping

of	the	URLs	as	shown	below:

	

	

url(r’^articles/(?P\d{2})/(?P\d{4})/’,	‘vwArticles’,	name	=	‘articles’),

	

	

The	name	can	be	used	as	an	argument	for	the	purpose	of	redirection,	and	the	“vwArticle”

can	be	changed	from	the	following:

	

	

def	vwArticle(request,	articleId):

”””	A	view	for	displaying	an	article	based	on	the	ID”””

text	=	“Displaying	the	Number	of	the	article	:	%s”	%artId

return	redirect(vwArticles,	year	=	“2050”,	month	=	“02”)

	

	

To	the	following:

	

	

def	vwArticle(request,	artId):

”””	A	view	for	displaying	an	article	based	on	the	ID”””

text	=	“Displaying	the	Number	of	the	article	:	%s”	%artId

return	redirect(articles,	year	=	“2050”,	month	=	“02”)

Chapter	10-	Sending	E-mails

	
	

Django	comes	with	an	inbuilt	engine	for	the	purpose	of	sending	E-mails.	To	send	the	E-

mails,	you	have	 to	 import	 the	“smtplib”,	 similar	 to	what	happens	 in	Python.	 In	Django,

one	has	 to	 import	 the	class	“django.core.mail”.	The	parameters	 for	 the	file	“settings.py”

also	have	to	be	changed.	These	parameters	are	given	below:

	

	

EMAIL_HOST	–	The	smtp	server.

EMAIL_HOST_USER	–	The	login	credentials	for	your	smtp	server.

EMAIL_HOST_PASSWORD	–	The	password	credentials	for	your	smtp	server.

EMAIL_PORT	–	The	smtp	server	port.

EMAIL_USE_TLS	or	_SSL	−	True	if	the	secure	connection	is	used.

	

	

Consider	the	view	given	below,	which	is	a	simple	demonstration	of	how	one	can	send	an

E-mail:

from	django.core.mail	import	send_mail

from	django.http	import	HttpResponse

def	sendEmail(request,emailto):

res	=	send_mail(“hello	john”,	“Were	have	you	lost?”,	“john@mywebsite.com”,
[emailto])

	

return	HttpResponse(‘%s’%res)

	

	

Below	are	the	parameters	of	the	method	“send_mail”:

	

subject	–	The	E-mail	subject.

message	–	The	E-mail	body.

from_email	–	The	E-mail	from.

recipient_list	–	A	list	of	the	receivers’	E-mail	addresses.

fail_silently	−	Boolean,	if	false,	the	send_mail	will	give	an	exception	in	case	of	an

error.

auth_user	−	User	login	if	not	set	in	the	“settings.py”.

auth_password	−	The	user	password	if	not	set	in	the	“settings.py”.

connection	–	The	E-mail	backend.

html_message	−	If	present,	our	E-mail	will	be	a	multipart/alternative.

	

	

The	following	URL	can	be	used	for	the	purpose	of	accessing	our	view:

	

	

from	django.conf.urls	import	patterns,	url

upatterns	=	paterns(‘myapplication.views’,	url(r’^email/(?P<emailto>

	

[\w.%+-]+@[A-Za-z0-9.-]+.[A-Za-z]{2,4})/’,

‘sendEmail’	,	name	=	‘sendEmail’),)

	

Using	“send_mass_mail”	to	send	E-mail

	

	

When	 this	method	 has	 been	 used,	 we	will	 get	 the	 number	 of	messages	 that	 have	 been
delivered	successfully.	It	is	similar	to	our	previous	method,	but	it	takes	an	extra	parameter.
Consider	the	code	given	below:

	

	

	

from	django.core.mail	import	send_mass_mail

from	django.http	import	HttpResponse

def	sendEmail(request,emailto):

message1	=	(‘subject	1’,	‘message	1’,	‘john@mywebsite.com’,	[emailto1])

	

message2	=	(‘subject	2’,	‘message	2’,	‘john@mywebsite.com’,	[emailto2])

	

res	=	send_	mail((message1,	message2),	fail_silently	=	False)

return	HttpResponse(‘%s’%res)

	

	

The	following	URL	can	be	used	for	accessing	the	view:

	

	

from	django.conf.urls	import	patterns,	url

upatterns	=	paterns(‘myapplication.views’,	url(r’^massEmail/(?P<emailto1>

	

[\w.%+-]+@[A-Za-z0-9.-]+.[A-Za-z]{2,4})/(?P<emailto2>

[\w.%+-]+@[A-Za-z0-9.-]+.[A-Za-z]{2,4})’,	‘sendEmail’	,	name	=	‘sendEmail’),)

	

	

The	following	are	the	parameters	for	the	method:

	

	

datatuples	−	A	tuple	in	which	each	element	will	be	like	“subject,	message,

from_email,	recipient_list”.

fail_silently	−	Boolean,	if	set	to	“false”,	send_mail	will	give	an	exception	in	case	an

error	occurs.

auth_user	–	A	user	login	if	it	has	not	been	set	in	“settings.py”.

auth_password	–	The	user	password	if	it	has	not	been	set	in	the	“settings.py”.

connection	–	The	E-mail	backend.

	

	

The	code	has	been	used	for	sending	two	E-mails.

	

	

Again,	in	our	code,	we	have	used	the	“Python	smtp	debuggingserver”	and	the	following

command	can	be	used	for	launching	it:

	

	

$python	-m	smtpd	-n	-c	DebuggingServer	localhost:1025

	

	

The	above	code	means	that	the	E-mails	that	are	sent	will	be	printed	on	the	“stdout”	and

your	dummy	server	is	being	executed	on	the	port	number	1025.

	

	

Sometimes,	we	might	need	to	send	the	mails	to	administrators	and	managers.	In	this	case,

we	can	use	the	methods	“mail_admins”	and	“mail_managers”	 respectively.	The	settings

for	 these	 are	 defined	 in	 the	 file	 “settings.py”.	 Let’s	 assume	 that	 the	 following	 are	 the

settings	for	our	option:

	

	

ADMINS	=	((‘john’,	‘john@mywebsite.com’),)

MANAGERS	=	((‘joel’,	‘joel@mywebsite.com’),)

from	django.core.mail	import	mail_admins

from	django.http	import	HttpResponse

def	AdminsEmail(request):

res	=	mail_admins(‘my	subject’,	‘User	Interface	is	tiresome.’)

return	HttpResponse(‘%s’%res)

	

	

With	the	above	code,	an	E-mail	will	be	send	to	all	of	the	administrators	who	are	contained

in	the	“ADMINS”	section.	Consider	the	code	given	below:

	

	

from	django.core.mail	import	mail_managers

from	django.http	import	HttpResponse

def	ManagersEmail(request):

res	=	mail_managers(‘my	subject’,	‘Correct	some	spelling	errors	on	your	site.’)

	

return	HttpResponse(‘%s’%res)

	

	

With	 the	 above	 code,	 an	 E-mail	 will	 be	 send	 to	 all	 of	 the	 managers	 defined	 in	 the

“MANAGERS”	section.

	

	

The	following	are	the	details	of	our	parameters:

	

	

Subject	–	The	E-mail	subject.

message	–	The	E-mail	body.

fail_silently	–	A	Boolean,	if	set	to	“false”	“send_mail”	will	give	an	exception	if	an

error	occurs.

connection	–	The	E-mail	backend.

html_message	−	if	it’s	present,	our	e-mail	will	be	a	multipart/alternative.

Sending	HTML	E-mail

	

Consider	the	code	given	below,	which	demonstrates	how	this	can	be	done:

	

	

from	django.core.mail	import	send_mail

from	django.http	import	HttpResponse

res	=	send_mail(“hello	john”,	“where	have	you	lost?”,	“john@mywebsite.com”,

	

[“john@gmail.com”],	html_message=”)

	

	

The	above	code	will	give	out	a	multipart/alternative	E-mail.	We	want	to	create	a	view	that

will	be	used	for	sending	an	HTML	E-mail:

	

	

from	django.core.mail	import	EmailMessage

from	django.http	import	HttpResponse

def	hTMLEmail(request	,	emailto):

html_cont	=	“Where	have	you	lost?”

email	=	EmailMessage(“my	subject”,	html_cont,	“john@mywebsite.com”,
[emailto])

	

email.content_subtype	=	“html”

res	=	email.send()

return	HttpResponse(‘%s’%res)

	

	

The	following	are	the	parameters	of	the	message:

Subject	–	The	E-mail	subject.

message	–	The	E-mail	body	in	HTML.

from_email	–	The	E-mail	from.

to	−	List	of	our	receivers’	E-mail	addresses.

bcc	−	List	of	the	“Bcc”	receivers’	of	E-mail	addresses.

connection	–	The	E-mail	backend.

The	following	is	a	URL	that	can	be	used	for	accessing	our	view:

	

from	django.conf.urls	import	patterns,	url

upatterns	=	paterns(‘myapplication.views’,	url(r’^htmlemail/(?P<emailto>

[\w.%+-]+@[A-Za-z0-9.-]+.[A-Za-z]{2,4})/’,

‘hTMLEmail’	,	name	=	‘hTMLEmail’),)

How	to	Send	Emails	with	Attachment

	

	

For	us	 to	do	 this,	we	have	 to	use	 the	“attach”	method	 in	 the	object	“EmailMesage”.	 A

view	for	sending	an	E-mail	with	an	attachment	can	be	implemented	as	shown	below:

	

	

from	django.core.mail	import	EmailMessage

from	django.http	import	HttpResponse

def	emailWithAttach(request,	emailto):

html_cont	=	“Where	have	you	lost?”

email	=	EmailMessage(“my	subject”,	html_content,	“john@mywebsite.com”,
emailto])

	

email.content_subtype	=	“html”

fd	=	open(‘manage.py’,	‘r’)

email.attach(‘manage.py’,	fd.read(),	‘text/plain’)

res	=	email.send()

return	HttpResponse(‘%s’%res)

	

	

The	following	is	a	description	of	the	used	parameters:

	

	

filename	−	Name	of	our	file	to	attach.

content	−	Content	of	our	file	to	attach.

mimetype	−		Content	mime	type	of	the	attachment.

Chapter	11-	Generic	Views
	
	

In	some	cases,	it	becomes	difficult	for	us	to	write	views	as	we	have	done	in	the	previous

examples.	Suppose	that	you	are	in	need	of	a	static	page.	Generic	views	in	Django	provide

us	 with	 a	 mechanism	 for	 how	 to	 set	 views	 in	 a	 simple	 manner.	 These	 can	 be	 seen	 as

classes	 rather	 than	 as	 functions,	 which	 is	 the	 case	 with	 classic	 views.	 The	 classes	 for

Generic	views	in	Django	can	be	found	in	the	class	“django.views.generic”.

	

	

To	 view	 the	 available	 generic	 classes,	 which	 are	 over	 10,	 the	 following	 steps	 are

necessary:

	

	

>>>	import	django.views.generic

>>>	dir(django.views.generic)

[‘ArchiveIndexView’,	‘CreateView’,	‘DateDetailView’,	‘DayArchiveView’,

‘DeleteView’,	‘DetailView’,	‘FormView’,	‘GenericViewError’,	‘ListView’,

	

‘MonthArchiveView’,	‘RedirectView’,	‘TemplateView’,	‘TodayArchiveView’,

	

‘UpdateView’,	‘View’,	‘WeekArchiveView’,	‘YearArchiveView’,	‘__builtins__’,

	

‘__doc__’,	‘__file__’,	‘__name__’,	‘__package__’,	‘__path__’,	‘base’,	‘dates’,

	

‘detail’,	‘edit’,	‘list’]

	

	

Static	Pages

	

	

We	need	to	publish	a	static	page	from	the	template	“static.html”.	Here	is	the	code	for	the

file	“static.html”:

	

	

<html>

<body>

A	static	page	sample!!!

</body>

</html>

	

	

For	 this	 to	 be	 done	 as	 we	 learned	 before,	 the	 file	 “myapplication/views.py”	 has	 to	 be

changed	to	the	following:

	

	

from	django.shortcuts	import	render

def	static(request):

return	render(request,	‘static.html’,	{})

	

	

And	the	file	“myapplication/urls.py”	has	to	be	changed	to	the	following:

	

	

from	django.conf.urls	import	patterns,	url

upatterns	=	patterns(“myapplication.views”,	url(r’^static/’,	‘static’,	name	=	‘static’),)

	

	

This	 can	 be	 solved	 effectively	 by	 use	 of	 the	 generic	 views.	 In	 this	 case,	 the	 file

“myapplication/views.py”	will	be	as	follows:

from	django.views.generic	import	TemplateView

class	StaticView(TemplateView):

template_name	=	“static.html”

	

	

And	the	file	“myapplication/urls.py”	should	be	as	follows:

	

	

from	myapplication.views	import	StaticView

from	django.conf.urls	import	patterns

upatterns	=	patterns(“myapplication.views”,	(r’^static/$’,	StaticView.as_view()),)

	

	

Alternatively,	we	can	achieve	this	by	changing	the	file	“url.py”	and	making	no	change	to

the	file	“views.py”.	This	is	shown	below:

	

	

from	django.views.generic	import	TemplateView

from	django.conf.urls	import	patterns,	url

upatterns	=	patterns(“myapplication.views”,

url(r’^static/’,TemplateView.as_view(template_name	=	‘static.html’)),)

	

	

As	 shown	 in	 the	 above	 code,	 only	 the	 file	 “url.py”	 has	 been	 changed	 in	 the	 second

method.

	

	

Listing	and	Displaying	Data	from	the	DB

	

Now	we	need	 to	 list	our	entries	 in	 the	Dreamreal	model.	The	generic	view	class	named

“ListView”	makes	this	easy	for	us	to	do.	You	just	have	to	edit	the	file	“url.py”	and	update

it	to	get	the	following:

	

from	django.views.generic	import	ListView

from	django.conf.urls	import	patterns,	url

upatterns	=	patterns(

“myapplication.views”,	url(r’^dreamreals/’,	ListView.as_view(model	=	Dreamreal,

	

template_name	=	”	list.html”)),

)

	

	

The	file	“url.py”	should	now	become	as	shown	below:

	

	

from	django.views.generic	import	ListView

from	django.conf.urls	import	patterns,	url

upatterns	=	patterns(“myapplication.views”,

url(r’^dreamreals/’,	ListView.as_view(

template_name	=	”	list.html”)),

model	=	Dreamreal,	context_object_name	=	”dreamreals_objects”	,)

	

	

The	associated	template	should	be	as	shown	below:

	

	

{%	extends	”	template.html”	%}

{%	block	content	%}

Dreamreals:<p>

{%	for	d	in	object_list	%}

{{d.name}}</p>

{%	endfor	%}

{%	endblock	%}

Chapter	12-	Form	Processing	in	Django
	
	

Creation	of	forms	in	Django	is	done	in	a	similar	way	to	creating	models.	We	just	have	to

inherit	from	our	Django	class	and	the	form	fields	will	be	our	class	attributes.	First,	add	a

file	named	“forms.py”	in	the	folder	named	“myapplication”.	This	file	will	hold	our	forms.

We	will	demonstrate	this	by	creating	a	login	form:

	

	

#-*-	coding:	utf-8	-*-

from	django	import	forms

class	MyForm(forms.Form):

user	=	forms.CharField(max_length	=	80)

pwd	=	forms.CharField(widget	=	forms.PasswordInput())

	

	

In	our	case,	our	password	will	be	hidden	and	that	is	why	we	have	used	the	above	widget.

There	 are	 a	 number	 of	widgets	 in	Django	 that	 you	 can	make	 use	 of	whenever	 you	 are

creating	your	forms.

How	to	use	a	Form	in	a	View

	

	

“GET”	and	“POST”	are	the	two	types	of	HTTP	requests.	The	request	object	in	Django	that

is	 passed	 as	 a	parameter	 as	 a	view	has	 an	 attribute	named	“method”.	This	 is	where	 the

type	of	 request	 is	 set.	 ,The	 request	 can	be	used	 for	 accessing	 all	 the	 data	 that	 has	 been

passed	to	the	POST.

	

	

The	login	view	can	be	created	as	follows:

	

	

#-*-	coding:	utf-8	-*-

from	myapplication.forms	import	LoginForm

	

def	login(request):

username	=	“not	yet	logged	in”

if	request.method	==	“POST”:

#Getting	the	posted	form

LoginForm	=	MyForm(request.POST)

if	LoginForm.is_valid():

username	=	LoginForm.cleaned_data[‘username’]

else:

LoginForm	=	Myform()

		return	render(request,	‘loggedin.html’,	{“username”	:	username})

	

	

Our	 view	 will	 display	 the	 result	 of	 our	 login	 form,	 which	 has	 been	 posted	 via	 the

“loggedin.html”.	For	the	purpose	of	testing,	the	login	form	template	is	needed.	This	can	be

called	“login.html”.	It	is	shown	below:

	

	

<html>

<body>

<form	name	=	“form”	action	=	“{%	url	“myapplication.views.login”	%}”

	

method	=	“POST”	>{%	csrf_token	%}

<div	style	=	“max-width:460px;”>

<center>

<input	type	=	“text”	style	=	“margin-left:19%;”

placeholder	=	“Username”	name	=	“username”	/>

</center>

</div>

												

<div	style	=	“max-width:460px;”>

<center>

<input	type	=	“password”	style	=	“margin-left:19%;”

placeholder	=	“password”	name	=	“password”	/>

</center>

</div>

								

<div	style	=	“max-width:460px;”>

<center>

<button	style	=	“border:0px;	background-color:#4285F4;	margin-top:9%;

	

height:36px;	width:79%;margin-left:20%;”	type	=	“submit”

	

value	=	“Login”	>

Login

</button>									

</center>

</div>

</form>

</body>

</html>

Our	 template	will	 show	a	 login	 form	and	 then	post	 the	 result	 to	 a	 login	view	as	 shown

above.	You	might	have	noticed	the	tag	used	in	the	template,	which	will	work	to	prevent	a

“Cross-site	Request	Forgery	(CSRF)”	attack	on	our	site.

	

	

{%	csrf_token	%}

	

	

Now	 that	 we	 are	 having	 our	 “Lofin.html”	 template,	 we	 need	 to	 have	 the	 template

“loggedin.html”	and	this	will	be	rendered	after	the	form	has	been	treated.	This	is	shown

below:

	

	

<html>

<body>

Your	username	is	:	{{username}}

</body>

</html>

	

Only	the	pair	of	the	URLs	is	remaining	for	us	to	get	started.	These	should	be	defined	in

the	file	“myapplication/urls.py”	as	shown	below:

	

	

from	django.conf.urls	import	patterns,	url

from	django.views.generic	import	TemplateView

upatterns	=	patterns(‘myapplication.views’,

url(r’^connection/’,TemplateView.as_view(template_name	=	‘login.html’)),

	

url(r’^login/’,	‘login’,	name	=	‘login’))

	

	

Form	Validation

	

Our	form	can	be	validated	by	use	of	the	method	given	below:

	

MyForm.is_valid()

	

	

That	is	self-validation	engine	for	the	Django.	This	will	ensure	that	our	fields	are	required.

We	now	want	to	make	sure	that	a	user	who	logs	into	the	system	is	present	in	the	database.

For	this	to	be	done,	the	file	“myapplication/forms.py”	has	to	be	changed	to	the	following:

	

	

#-*-	coding:	utf-8	-*-

from	django	import	forms

from	myapplication.models	import	Dreamreal

class	MyForm(forms.Form):

user	=	forms.CharField(max_length	=	90)

pwd	=	forms.CharField(widget	=	forms.PasswordInput())

def	clean_message(self):

username	=	self.cleaned_data.get(“username”)

user	=	Dreamreal.objects.filter(name	=	username)

if	not	user:

raise	forms.ValidationError(“User	is	not	in	our	db!”)

return	username

	

Once	 the	method	 “is_valid”	 has	 been	 called	 and	 the	 user	 has	 been	 found	 to	 be	 in	 the

database,	we	will	get	the	best	output.

Chapter	13-	Uploading	Files
	

Our	 web	 apps	 should	 be	 in	 a	 position	 to	 support	 uploading	 of	 files.	 The	 files	 can	 be

pictures,	pdfs,	word	documents,	songs	and	other	types.

	

	

Uploading	an	Image

	

Before	can	start	to	work	with	images	in	Django,	you	have	to	ensure	that	you	have	installed

the	Python	Image	Library	(PIL).	To	demonstrate	how	images	can	be	uploaded,	let	us	begin

by	creating	a	profile	form.	The	following	code	is	necessary	for	this:

	

	

#-*-	coding:	utf-8	-*-

from	django	import	forms

class	ProfForm(forms.Form):

name	=	forms.CharField(max_length	=	90)

pict	=	forms.ImageFields()

	

	

The	“ImageField”	works	to	ensure	that	the	file	that	is	uploaded	is	an	image.	If	this	is	not

the	case,	then	validation	of	the	form	will	fail.

	

	

We	 now	 need	 to	 create	 a	 model	 named	 “Profile”,	 which	 will	 be	 used	 for	 storing	 the

images	 that	 we	 upload.	 This	 has	 to	 be	 done	 in	 the	 file	 “myapplication/models.py”	 as

shown	in	the	code	given	below:

	

	

from	django.db	import	models

class	Profiles(models.Model):

name	=	models.CharField(max_length	=	60)

pic	=	models.ImageField(upload_to	=	‘pictures’)

	

class	Meta:

db_table	=	“profiles”

As	 shown	 in	 the	 above	 code,	 the	 “ImageField”	 has	 taken	 a	 compulsory	 field	 named

“upload_to”.	This	property	represents	the	location	in	our	hard	drive	in	which	we	will	store

our	uploaded	images.

	

	

Now	 that	 we	 have	 the	 model	 and	 the	 form,	 the	 view	 can	 be	 created	 in	 the	 directory

“myapplication/views.py”.	This	is	shown	below:

	

	

#-*-	coding:	utf-8	-*-

from	myapplication.forms	import	ProfileForm

from	myapplication.models	import	Profile

def	SvProfile(request):

saved	=	False

if	request.method	==	“POST”:

#Getting	our	posted	form

MyProfForm	=	ProfileForm(request.POST,	request.FILES)

if	MyProfForm.is_valid():

prof	=	Profile()

prof.name	=	MyProfForm.cleaned_data[“name”]

prof.picture	=	MyProfForm.cleaned_data[“picture”]

prof.save()

saved	=	True

else:

MyProfForm	=	Profform()

			

return	render(request,	‘saved.html’,	locals())

	

	

Here	is	the	code	for	the	file	“myapplication/templates/saved.html”:

	

	

<html>

<body>

{%	if	saved	%}

The	profile	picture	was	successfully	saved.

{%	endif	%}

{%	if	not	saved	%}

The	profile	was	not	saved.

{%	endif	%}

</body>

</html>

Here	is	the	code	for	the	file	“myapplication/templates/profile.html”

	

	

<html>

<body>

<form	name	=	“form”	enctype	=	“multipart/form-data”

action	=	“{%	url	“myapplication.views.SvProfile”	%}”	method	=	“POST”	>{%

csrf_token	%}

<div	style	=	“max-width:460px;”>

<center>		

<input	type	=	“text”	style	=	“margin-left:19%;”

placeholder	=	“Name”	name	=	“name”	/>

</center>

</div>

																

<div	style	=	“max-width:460px;”>

<center>

<input	type	=	“file”	style	=	“margin-left:19%;”

placeholder	=	“Picture”	name	=	“picture”	/>

</center>

</div>

			

<div	style	=	“max-width:460px;”>

<center>

<button	style	=	“border:1px;background-color:#4285F4;	margin-top:9%;

	

height:36px;	width:79%;	margin-left:20%;”	type	=	“submit”	value	=	“Login”	>

	

Login

</button>

</center>

</div>

</form>

</body>

</html>

	

	

What	we	need	next	is	to	set	up	our	URLs	and	then	we	will	be	in	a	position	to	get	started.

The	code	given	below	can	be	used	for	specification	of	these:

	

	

from	django.conf.urls	import	patterns,	url

from	django.views.generic	import	TemplateView

upatterns	=	patterns(

‘myapplication.views’,	url(r’^profile/’,TemplateView.as_view(

template_name	=	‘profile.html’)),	url(r’^saved/’,	‘SvProfile’,	name	=	‘saved’)

)

	

	

Now	we	should	be	 in	a	position	 to	upload	 images	 to	our	web	app.	However,	when	you

need	to	upload	another	type	of	file,	the	“ImageField”	has	to	be	replaced	with	“FileField”

in	both	the	Form	and	the	Model.

Chapter	14-	Handling	Cookies
	
	

Sometimes,	we	might	 need	 our	web	 app	 to	 store	 information	 about	 each	 visitor	 to	 our

website.	Note	that	cookies	will	always	be	stored	on	the	client	side	of	our	web	app	and	they

may	work	or	not	work.

	

	

Let’s	 demonstrate	 how	 cookies	 work	 in	 Django	 by	 creating	 a	 login	 app	 as	 we	 did

previously.	The	app	will	log	you	in	for	a	number	of	minutes	and	once	the	time	has	expired,

you	will	be	logged	out	of	the	app.	For	this	purpose,	two	cookies	have	to	be	set	up.	These

include	the	“username”	and	“last_connection”.	The	login	view	has	to	be	changed	to	the

following:

	

	

from	django.template	import	RequestContext

def	login(request):

username	=	“not	yet	logged	in”

if	request.method	==	“POST”:

#Getting	our	posted	form

MyForm	=	LoginForm(request.POST)

if	MyForm.is_valid():

username	=	MyForm.cleaned_data[‘username’]

else:

MyForm	=	LoginForm()

response	=	render_to_response(request,	‘loggedin.html’,	{“username”	:
username},

	

context_instance	=	RequestContext(request))

response.set_cookie(‘last_connection’,	datetime.datetime.now())

	

response.set_cookie(‘username’,	datetime.datetime.now())

return	response

	

	

The	method	“set_cookie”	is	used	for	the	purpose	of	setting	cookies	as	shown	in	the	above

code.	The	values	for	all	of	our	cookies	have	to	be	returned	as	a	string.

	

	

It	 is	 now	 time	 for	 us	 to	 create	 a	 “fmView”	 for	 our	 login	 form,	 so	 the	 form	will	 not	 be

displayed	if	the	cookie	has	been	set	and	is	no	more	than	5	seconds	old.	This	is	shown	in

the	code	given	below:

	

def	fmView(request):

if	‘username’	in	request.COOKIES	and	‘last_connection’	in	request.COOKIES:

	

username	=	request.COOKIES[‘username’]

last_connection	=	request.COOKIES[‘last_connection’]

last_connection_time	=	datetime.datetime.strptime(last_connection[:-7],

“%Y-%m-%d	%H:%M:%S”)

if	(datetime.datetime.now()	-	last_connection_time).seconds	<	5:

	

return	render(request,	‘loggedin.html’,	{“username”	:	username})

	

else:

return	render(request,	‘login.html’,	{})

							

else:

return	render(request,	‘login.html’,	{})

	

	

As	shown	in	the	code	given	below,	for	us	to	access	the	cookie	that	has	been	used,	we	use

the	“COOKIES	attribute	(dict)”	of	our	request.	Now	we	must	change	the	URL	in	the	file

“url.py”	so	that	it	matches	with	the	current	view.	This	is	shown	below:

	

	

from	django.conf.urls	import	patterns,	url

from	django.views.generic	import	TemplateView

upatterns	=	patterns(‘myapplication.views’,

url(r’^connection/’,‘formView’,	name	=	‘loginform’),

url(r’^login/’,	‘login’,	name	=	‘login’))

Testing	Cookies

	

The	“request”	object	in	Django	provides	us	with	some	methods	that	can	help	us	in	testing

of	cookies.	Examples	of	such	methods	include:	“set_test_cookie()”,

“test_cookie_worked()”	and	“delete_test_cookie()”.	In	one	of	your	views,	you	are

expected	to	create	a	cookie,	and	then	test	it	in	another	view.	To	test	cookies,	you	need	two

cookies,	as	you	will	have	to	wait	and	see	if	the	client	has	accepted	the	cookie	from	the

server.

	

In	the	view	you	created	previously,	add	the	following	line:

	

request.session.set_test_cookie()

	

It	is	a	good	idea	to	ensure	that	this	line	is	executed.	Set	it	as	the	first	line	in	the	view	and

ensure	that	it	is	outside	any	conditional	block.	In	the	second	view,	add	the	following	code

at	the	top	to	ensure	that	it	is	executed:

	

if	request.session.test_cookie_worked():

print	“>>>>	TEST	COOKIE	HAS	WORKED!”

request.session.delete_test_cookie()

Client	Side	Cookies

	

Now	that	you	are	sure	that	cookies	work,	you	need	to	implement	a	site	visit	counter	by

making	the	concept	of	cookies.	To	achieve	this,	you	will	have	to	implement	two	cookies:

one	that	will	be	used	for	keeping	track	of	the	number	of	times	that	a	user	visits	the

website,	and	another	cookie	for	tracking	the	last	time	that	the	user	visited	the	site.

	

The	following	code	best	demonstrates	this:

	

def	index(request):

context	=	RequestContext(request)

category_list	=	Category.objects.all()

context_dict	=	{‘categories’:	category_list}

for	category	in	category_list:

category.url	=	encode_url(category.name)

page_list	=	Page.objects.order_by(‘-views’)[:5]

context_dict[‘pages’]	=	page_list

####	NEW	CODE	####

#	Obtain	the	Response	object	early	so	as	to	add	the	cookie	information.

	

response	=	render_to_response(‘myfolder/index.html’,	context_dict,	context)

	

#	Get	number	of	visits	to	our	site.

#Use	the	COOKIES.get()	function	for	obtaining	the	visits	cookie.

	

#	In	case	the	cookie	exists,	the	returned	value	will	be	casted	to	an	integer.

	

#	If	the	cookie	does	not	exist,	we	will	default	to	zero	and	then	cast	that.

	

visits	=	int(request.COOKIES.get(‘visits’,	‘0’))

#	Do	you	find	the	last_visit	cookie?

if	‘last_visit’	in	request.COOKIES:

#	Yes	it	exists!	Get	the	value	of	the	cookie.

last_visit	=	request.COOKIES[‘last_visit’]

#	Casting	our	value	to	a	date/time	object	in	Python.

last_visit_time	=	datetime.strptime(last_visit[:-7],	“%Y-%m-%d	%H:%M:%S”)

	

#	If	it	has	been	more	than	one	day	since	the	user’s	last	visit…

if	(datetime.now()	-	last_visit_time).days	>	0:

#	…reassign	its	value	to	+1	of	which	it	was	before…

response.set_cookie(‘visits’,	visits+1)

#	…and	then	update	the	last	visit	cookie,	also.

response.set_cookie(‘last_visit’,	datetime.now())

else:

#	Cookie	last_visit	does	not	exist,	so	make	it	to	your	current	date/time.

	

response.set_cookie(‘last_visit’,	datetime.now())

#	Return	the	response	back	to	user,	and	update	any	cookies	that	need	changing.

	

return	response

####	END	NEW	CODE	####

	

	

As	you	may	have	noticed,	the	majority	of	the	above	code	is	for	checking	the	current	date

and	time.	This	can	only	work	after	we	have	included	the	“datetime”	module	for	Python.

To	do	this,	just	add	the	following	import	statement	at	the	top	of	your	code:

	

from	datetime	import	datetime

Chapter	15-	Sessions	in	Django
	

Sessions	are	used	for	 the	purpose	of	handling	cookies	and	improving	the	security	of	our

web	app.	They	abstract	how	cookies	are	received	and	sent.

	

	

Setting	up	Cookies

	

In	Django,	 sessions	 can	be	 enabled	 in	 the	 file	 “settings.py”,	 and	 some	 lines	 have	 to	 be

added	between	 the	“MIDDLEWARE_CLASSES”	 and	 “INSTALLED_APPS”.	This	 should

be	 done	 when	 the	 project	 is	 being	 created.	 You	 should	 be	 aware	 that	 the

“MIDDLE_WARE”	classes	should	have	the	following:

	

	

‘django.contrib.sessions.middleware.SessionMiddleware’

	

	

And	the	“INSTALLED_APPS”	should	have	the	following:

	

	

‘django.contrib.sessions’

	

	

We	should	now	change	the	login	view	to	save	the	server	side	of	our	username	cookie.	This

is	shown	in	the	code	given	below:

	

	

def	login(request):

username	=	‘not	logged	in’

if	request.method	==	‘POST’:

MyForm	=	LoginForm(request.POST)

if	MyLoginForm.is_valid():

username	=	MyForm.cleaned_data[‘username’]

request.session[‘username’]	=	username

else:

MyForm	=	LoginForm()

							

return	render(request,	‘loggedin.html’,	{“username”	:	username}

	

	

We	 can	 then	 create	 the	 view	 “fmView”,	 and	 the	 form	will	 not	 be	 displayed	 in	 case	 the

cookie	has	been	set.	This	is	shown	in	the	code	given	below:

	

	

def	fmView(request):

if	request.session.has_key(‘username’):

username	=	request.session[‘username’]

return	render(request,	‘loggedin.html’,	{“username”	:	username})

	

else:

return	render(request,	‘login.html’,	{})

	

	

We	should	now	change	the	file	“url.py”	so	that	it	can	match	the	new	view	we	have.	This	is

shown	below:

	

	

from	django.conf.urls	import	patterns,	url

from	django.views.generic	import	TemplateView

upatterns	=	patterns(‘myapplication.views’,

url(r’^connection/’,‘formView’,	name	=	‘loginform’),

url(r’^login/’,	‘login’,	name	=	‘login’))

	

	

The	following	is	a	logout	view	that	will	work	to	delete	our	cookie:

	

	

def	logout(request):

try:

del	request.session[‘username’]

except:

pass

return	HttpResponse(“You	have	been	logged	out.”)

	

	

This	can	be	paired	with	a	logout	URL	in	the	file	“myapplication/url.py”	as	shown	below:

	

url(r’^logout/’,	‘logout’,	name	=	‘logout’),

	

	

The	following	are	other	useful	actions	associated	with	sessions:

	

	

set_expiry	(value)	–	For	setting	the	expiration	time	of	the	session.

get_expiry_age()	–	For	returning	the	number	of	the	seconds	until	the	session

expires.

get_expiry_date()	–	For	returning	the	date	that	the	session	will	expire.

clear_expired()	–	For	removing	the	expired	sessions	from	our	session	store.

get_expire_at_browser_close()	–	For	returning	either	“True”	or	“False”,	as

determined	by	whether	the	session	cookies	had	expired	during	the	time	of	closing

the	browser.

Session	Data

	

To	be	more	secure,	it	is	recommended	that	we	store	our	session	data	on	the	server	side.

The	session	ID	cookie	that	has	been	stored	on	the	client	side	can	be	used	for	the	purpose

of	unlocking	the	data.	The	example	given	below	best	demonstrates	how	this	can	be	done:

	

	

def	index(request):

context	=	RequestContext(request)

category_list	=	Category.objects.all()

context_dict	=	{‘categories’:	category_list}

for	category	in	category_list:

category.url	=	encode_url(category.name)

page_list	=	Page.objects.order_by(‘-views’)[:5]

context_dict[‘pages’]	=	page_list

####	NEW	CODE	####

if	request.session.get(‘last_visit’):

#	The	session	has	the	value	for	last	visit

last_visit_time	=	request.session.get(‘last_visit’)

visits	=	request.session.get(‘visits’,	0)

if	(datetime.now()	-	datetime.strptime(last_visit_time[:-7],	“%Y-%m-%d
%H:%M:%S”)).days	>	0:

	

request.session[‘visits’]	=	visits	+	1

request.session[‘last_visit’]	=	str(datetime.now())

else:

#	The	get	will	return	None,	as	the	session	doesn’t	have	a	value	for	user’s	last	visit.

	

request.session[‘last_visit’]	=	str(datetime.now())

request.session[‘visits’]	=	1

###

#	END	NEW	CODE	####

	

#	Render	and	then	return	rendered	response	back	to	user.

return	render_to_response(‘myfolder/index.html’,	context_dict,	context)

	

	

It	is	recommended	that	you	delete	the	client-side	cookies	before	you	begin	to	make	use	of

the	session-based	data.	You	should	do	this	from	the	browser’s	developer	tools	and	delete

each	of	the	cookies	individually.	You	can	also	choose	to	entirely	clear	the	cache	for	your

browser.

Chapter	16-	Memory	Caching	in	Django
	

Caching	 is	used	 to	 save	 the	 result	of	 an	expensive	operation	 so	 that	 there	 is	no	need	 to

perform	 the	 operation	 again	 if	 its	 result	 is	 needed	 in	 the	 future.	 The	 pseudocode	 given

below	demonstrates	how	caching	is	done:

	

	

given	a	URL,	try	to	find	the	page	in	the	cache

if	page	is	found	in	cache:

return	the	cached	page

else:

generate	the	page

save	the	generated	page	in	a	cache

return	the	generated	page

	

	

Django	has	an	inbuilt	caching	system	that	enables	its	users	to	store	their	dynamic	pages.

This	will	mean	that	they	will	not	have	to	calculate	them	again	if	they	need	them.	Django	is

good	at	this,	because	the	user	can	cache	the	following:

The	output	of	specific	view.

A	part	of	the	template.

The	entire	site.

	

	

For	Django	developers	to	use	the	cache,	they	first	have	to	specify	where	the	cache	will	be

stored.	There	 are	 numerous	 possibilities	 for	 this	 as	 the	 cache	 can	 be	 stored	 in	memory,

database	or	on	file	system.	For	this	to	be	set,	one	has	to	edit	the	file	“settings.py”	for	the

project.

How	to	set	up	Cache	in	Database

	

Add	the	following	code	to	the	file	“settings.py”	of	the	project:

	

	

CACHES	=	{

‘default’:	{

‘BACKEND’:	‘django.core.cache.backends.db.DatabaseCache’,

‘LOCATION’:	‘table_name’,

}

}

	

	

For	 the	 setting	 to	 be	 completed,	 we	 have	 to	 create	 a	 cache	 table	 and	 give	 it	 the	 name

“table_name”.

	

How	to	Set	Up	the	Cache	in	Memory

	

This	is	the	most	effective	way	to	set	up	the	cache.	However,	it	is	determined	by	the	Python

Binding	Library	 that	you	are	using	 for	your	memory	cache.	The	 implementation	can	be

done	as	shown	below:

	

	

CACHES	=	{

‘default’:	{

‘BACKEND’:	‘django.core.cache.backends.memcached.MemcachedCache’,

‘LOCATION’:	‘127.0.0.1:12344’,

}

}

Or

CACHES	=	{

‘default’:	{

‘BACKEND’:	‘django.core.cache.backends.memcached.MemcachedCache’,

‘LOCATION’:	‘unix:/tmp/memcached.sock’,

}

}

How	to	Cache	the	Entire	Site

	

This	 is	 the	 simplest	 way	 that	 caching	 can	 be	 done	 in	Django.	 For	 this	 to	 be	 done,	 the

option	“MIDDLEWARE_CLASSES”	has	to	be	edited	in	the	file	“settings.py”.	Consider	the

code	given	below,	which	shows	what	has	to	be	added	to	the	section:

	

	

MIDDLEWARE_CLASSES	+=	(

‘django.middleware.cache.UpdateCacheMiddleware’,

‘django.middleware.common.CommonMiddleware’,

‘django.middleware.cache.FetchFromCacheMiddleware’,

)

	

	

Note	 that	 the	 above	 should	 be	 implemented	 in	 the	 given	 order	 as	 if	 not	 done	 that	way,

errors	will	occur.

	

The	following	also	need	to	be	set	in	the	same	file:

	

	

CACHE_MIDDLEWARE_ALIAS	–cache	alias	to	be	used	for	the	storage.

	

CACHE_MIDDLEWARE_SECONDS	–	number	of	seconds	that	each	page	should	be
cached.

	

	

Caching	a	View

	

For	 those	who	 don’t	 need	 to	 cache	 an	 entire	 site,	 they	 can	 choose	 to	 cache	 parts	 of	 an

entire	site.	This	can	be	done	through	the	use	of	a	decorator	named	“cache_page”,	which

comes	inbuilt	 in	Django.	Suppose	we	need	to	cache	the	result	of	 the	view	“vwArticles”.

This	can	be	done	as	shown	below:

	

	

from	django.views.decorators.cache	import	cache_page

@cache_page(60	*	15)

def	vwArticles(request,	year,	month):

text	=	“Displaying	the	articles	of	:	%s/%s”%(year,	month)

return	HttpResponse(text)

	

The	view	given	above	was	map	to	the	following:

	

upatterns	=	patterns(‘myapplication.views’,

url(r’^articles/(?P<month>\d{2})/(?P<year>\d{4})/’,	‘vwArticles’,	name	=
‘articles’),)

	

	

Caching	a	Template	Fragment

	

One	can	also	decide	 to	catch	parts	of	 a	 fragment.	The	“cache”	 tag	can	be	used	 for	 this

purpose.	The	template	“hello.html”	is	as	shown	below:

	

	

{%	extends	“template.html”	%}

{%	block	title	%}Hello	Page{%	endblock	%}

{%	block	content	%}

Hello	there!!!<p>Today	is	on{{day}}</p>

We	are	on

{%	if	day.day	==	1	%}

the	first	day	of	the	month.

{%	elif	day	==	30	%}

the	last	day	of	the	month.

{%	else	%}

I	am	not	aware.

{%endif%}

<p>

{%	for	today	in	days_of_week	%}

{{day}}

</p>

{%	endfor	%}

{%	endblock	%}

	

	

For	us	to	cache	the	content	block,	the	template	will	be	as	follows:

	

	

{%	load	cache	%}

{%	extends	”	template.html”	%}

{%	block	title	%}	Hello	Page{%	endblock	%}

{%	cache	500	content	%}

{%	block	content	%}

Hello	there!!!<p>Today	is	on{{day}}</p>

We	are	on

{%	if	day.day	==	1	%}

the	first	day	of	the	month.

{%	elif	day	==	30	%}

the	last	day	of	the	month.

{%	else	%}

I	am	not	aware.

{%endif%}

<p>

{%	for	today	in	days_of_week	%}

{{today}}

</p>

{%	endfor	%}

{%	endblock	%}

{%	endcache	%}

	

Conclusion
	
	

We	 have	 come	 to	 the	 conclusion	 of	 the	 guide.	 Django	 is	 a	 very	 useful	 framework	 of

Python	 that	 lets	 us	 develop	 web	 applications	 in	 an	 easy	 and	 quick	 manner.	 Before

beginning	 to	use	 this	 framework	 for	development	of	web	apps,	 you	have	 to	 ensure	 that

you	have	installed	Python	itself,	a	database	system	and	as	well	as	having	set	up	a	server.

From	there,	you	can	begin	to	develop	your	web	apps	using	all	the	helpful	information	in

this	book.

	Chapter 1- Definition
	Chapter 2- Setting up the Environment
	Chapter 3- The Admin Interface
	Chapter 4- Creating Views in Django
	Chapter 5- URL Mapping
	Chapter 6- Template System
	Chapter 7- Models
	Chapter 8- Page Redirection
	Chapter 9- Sending E-mails
	Chapter 10- Generic Views
	Chapter 11- Form Processing in Django
	Chapter 12- Uploading Files
	Chapter 13- Handling Cookies
	Chapter 14- Sessions in Django
	Chapter 15- Memory Caching in Django
	Conclusion

